Science.gov

Sample records for possess distinct roles

  1. Plasmodium alveolins possess distinct but structurally and functionally related multi-repeat domains.

    PubMed

    Al-Khattaf, Fatimah S; Tremp, Annie Z; Dessens, Johannes T

    2015-02-01

    The invasive and motile life stages of malaria parasites (merozoite, ookinete and sporozoite) possess a distinctive cortical structure termed the pellicle. The pellicle is characterised by a double-layered 'inner membrane complex' (IMC) located underneath the plasma membrane, which is supported by a cytoskeletal structure termed the subpellicular network (SPN). The SPN consists of intermediate filaments, whose major constituents include a family of proteins called alveolins. Here, we re-appraise the alveolins in the genus Plasmodium with respect to their repertoire, structure and interrelatedness. Amongst 13 family members identified, we distinguish two domain types that, albeit distinct at the primary structure level, are structurally related and contain tandem repeats with a consensus 12-amino acid periodicity. Analysis in Plasmodium berghei of the most divergent alveolin, PbIMC1d, reveals a zoite-specific expression in ookinetes and a subcellular localisation in the pellicle, consistent with its predicted role as a SPN component. Knockout of PbIMC1d gives rise to a wild-type phenotype with respect to ookinete morphogenesis, tensile strength, gliding motility and infectivity, presenting the first example of apparent functional redundancy amongst alveolin family members.

  2. Duck Hepatitis A virus possesses a distinct type IV internal ribosome entry site element of picornavirus.

    PubMed

    Pan, Meng; Yang, Xiaorong; Zhou, Lei; Ge, Xinna; Guo, Xin; Liu, Jinhua; Zhang, Dabing; Yang, Hanchun

    2012-01-01

    Sequence analysis of duck hepatitis virus type 1 (DHV-1) led to its classification as the only member of a new genus, Avihepatovirus, of the family Picornaviridae, and so was renamed duck hepatitis A virus (DHAV). The 5' untranslated region (5' UTR) plays an important role in translation initiation and RNA synthesis of the picornavirus. Here, we provide evidence that the 651-nucleotide (nt)-long 5' UTR of DHAV genome contains an internal ribosome entry site (IRES) element that functions efficiently in vitro and within BHK cells. Comparative sequence analysis showed that the 3' part of the DHAV 5' UTR is similar to the porcine teschovirus 1 (PTV-1) IRES in sequence and predicted secondary structure. Further mutational analyses of the predicted domain IIId, domain IIIe, and pseudoknot structure at the 3' end of the DHAV IRES support our predicted secondary structure. However, unlike the case for the PTV-1 IRES element, analysis of various deletion mutants demonstrated that the optimally functional DHAV IRES element with a size of approximately 420 nt is larger than that of PTV-1 and contains other peripheral domains (Id and Ie) that do not exist within the type IV IRES elements. The domain Ie, however, could be removed without significant loss of activity. Surprisingly, like the hepatitis A virus (HAV) IRES element, the activity of DHAV IRES could be eliminated by expression of enterovirus 2A protease. These findings indicate that the DHAV IRES shares common features with type IV picornavirus IRES elements, whereas it exhibits significant differences from type IV IRESs. Therefore, we propose that DHAV possesses a distinct type IV IRES element of picornavirus.

  3. Nominal Possession in Swahili: Its Role in Communication.

    ERIC Educational Resources Information Center

    Hawkinson, Annie K.

    This paper defines the grammatical role of a particle in Swahili in terms of the semantic information which it contributes to all utterances in which it occurs. The particle -A occurs in the syntactic configuration Noun 1 -A Noun 2 and has been traditionally described as reflecting relations of possession and attribution between the two nouns in…

  4. Biologically distinct subtypes of Mycobacterium avium differ in possession of insertion sequence IS901.

    PubMed

    Kunze, Z M; Portaels, F; McFadden, J J

    1992-09-01

    Mycobacterium avium causes disease, principally tuberculosis in immunocompromised individuals. It is the most frequent cause of disseminated infections in AIDS patients in the West. The pathogen is also associated with disease in animals, chiefly birds and livestock, and may be isolated from environmental samples such as soil and water. Analysis of strains of M. avium isolated from clinical, veterinary, and environmental sources for the presence of the mycobacterial insertion sequences IS900 and IS901 demonstrates the specific association of IS901 to animal pathogenic M. avium strains. In contrast, most clinical M. avium strains and all AIDS-derived strains examined so far lacked IS901. Significant differences in the plasmid contents and serotypes of strains with and without IS901 were also found. We therefore suggest that the presence of IS901 divides M. avium into two clearly distinct subtypes with differing host range, virulence, plasmid possession, and serotyping antigens. By using DNA sequence data from IS901 and M. avium DNA, a set of polymerase chain reactions were developed for the specific detection and differentiation of these subtypes.

  5. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation.

    PubMed

    Bitzer, Zachary T; Glisan, Shannon L; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Lambert, Joshua D; Neilson, Andrew P

    2015-08-01

    Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity because the size-activity relationship appears to be system dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High-molecular-weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high-molecular-weight procyanidins, are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cocoa Procyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of Colonic Inflammation

    PubMed Central

    Bitzer, Zachary T.; Glisan, Shannon L.; Dorenkott, Melanie R.; Goodrich, Katheryn M.; Ye, Liyun; O’Keefe, Sean F.; Lambert, Joshua D.; Neilson, Andrew P.

    2015-01-01

    Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity, because the size-activity relationship appears to be system-dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric, and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High molecular weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease, and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high molecular weight procyanidins, are warranted. PMID:25869594

  7. Opioid receptors: distinct roles in mood disorders

    PubMed Central

    Lutz, Pierre-Eric; Kieffer, Brigitte L.

    2012-01-01

    The roles of opioid receptors in pain and addiction have been extensively studied, but their function in mood disorders has received less attention. Accumulating evidence from animal research reveal that mu, delta and kappa opioid receptors (MORs, DORs and KORs, respectively) exert highly distinct controls over mood-related processes. DOR agonists and KOR antagonists have promising antidepressant potential, whereas the risk-benefit ratio of currently available MOR agonists as antidepressants remain difficult to evaluate, in addition to their inherent abuse liability. At present, both human and animal studies have mainly examined MORs in the etiology of depressive disorders, and future studies will address delta and kappa receptor function in established and emerging neurobiological aspects of depression, including neurogenesis, neurodevelopment and social behaviors. PMID:23219016

  8. [Possession of weapon and hunting license: the role of the physician].

    PubMed

    Manaouil, Cécile; Gignon, Maxime; Giboulet, Nicolas; Jardé, Olivier

    2012-01-01

    In France, the physician can inform the prefect that a patient, detaining weapon and followed for a pathology (psychiatric notably), is dangerous. Then, it comes back to the prefect to appreciate the appropriate measurements to take, notably to order the delivery of weapon and ammunitions. In France, the doctor can be solicited to establish the necessary medical certficates during requests of approval or acquisition and having guns for hunting and sports shooting, or to obtain the licence of hunting. The acquisition and the possession of certain weapon cannot be granted if the applicant is a protected person over 18, was or is hospitalized, without his consent, owing to mental disturbances or, is in a physical or psychical state apparently incompatible with the possession of weapon. But it appears that the access to this information by the prefects is made difficult by the absence of files centralizing these data. Question settles to institute an automated national file of hospitalizations under pressure, which could be consulted prior to the deliverance or the approval of possession of weapon for hunting and as sports shooting. In our opinion, this should be made, in a strictly supervised manner, through a sworn doctor, systematically solicited as part of the licence of hunting and licence of shooting, to liberate the family practitioners of an expertise role.

  9. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance

    PubMed Central

    Šmehilová, Mária; Dobrůšková, Jana; Novák, Ondřej; Takáč, Tomáš; Galuszka, Petr

    2016-01-01

    Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in

  10. How Risky Is Marijuana Possession? Considering the Role of Age, Race, and Gender

    ERIC Educational Resources Information Center

    Nguyen, Holly; Reuter, Peter

    2012-01-01

    Arrest rates per capita for possession of marijuana have increased threefold over the last 20 years and now constitute the largest single arrest offense category. Despite the increase in arrest numbers, rates of use have remained stable during much of the same period. This article presents the first estimates of the arrest probabilities for…

  11. How Risky Is Marijuana Possession? Considering the Role of Age, Race, and Gender

    ERIC Educational Resources Information Center

    Nguyen, Holly; Reuter, Peter

    2012-01-01

    Arrest rates per capita for possession of marijuana have increased threefold over the last 20 years and now constitute the largest single arrest offense category. Despite the increase in arrest numbers, rates of use have remained stable during much of the same period. This article presents the first estimates of the arrest probabilities for…

  12. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells.

    PubMed

    Gidda, Satinder K; Shockey, Jay M; Rothstein, Steven J; Dyer, John M; Mullen, Robert T

    2009-10-01

    Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the committed step in the production of glycerolipids, which are major components of cellular membranes, seed storage oils, and epicuticular wax coatings. While the biochemical activities of GPATs have been characterized in detail, the cellular features of these enzymes are only beginning to emerge. Here we characterized the phylogenetic relationships and cellular properties of two GPAT enzymes from the relatively large Arabidopsis thaliana GPAT family, including GPAT8, which is involved in cutin biosynthesis, and GPAT9, which is a new putative GPAT that has extensive homology with a GPAT from mammalian cells involved in storage oil formation and, thus, may have a similar role in plants. Immunofluorescence microscopy of transiently-expressed myc-epitope-tagged GPAT8 and GPAT9 revealed that both proteins were localized to the endoplasmic reticulum (ER), and differential permeabilization experiments indicated that their N- and C-termini were oriented towards the cytosol. However, these two proteins contained distinct types of ER retrieval signals, with GPAT8 possessing a divergent type of dilysine motif (-KK-COOH rather than the prototypic -KKXX-COOH or -KXKXX-COOH motif) and GPAT9 possessing a hydrophobic pentapeptide motif (-phi-X-X-K/R/D/E-phi-; where phi are large hydrophobic amino acid residues). Notably, the divergent dilysine motif in GPAT8 only functioned effectively when additional upstream residues were included to provide the proper protein context. Extensive mutational analyses of the divergent dilysine motif, based upon sequences present in the C-termini of other GPAT8s from various plant species, further expanded the functional definition of this molecular targeting signal, thereby providing insight to the targeting signals in other GPAT family members as well as other ER-resident membrane proteins within plant cells.

  13. Role of Distinct Natural Killer Cell Subsets in Anticancer Response

    PubMed Central

    Stabile, Helena; Fionda, Cinzia; Gismondi, Angela; Santoni, Angela

    2017-01-01

    Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response. PMID:28360915

  14. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection.

    PubMed

    Diner, Benjamin A; Lum, Krystal K; Toettcher, Jared E; Cristea, Ileana M

    2016-11-15

    The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses. How mammalian cells detect and respond to DNA viruses that replicate in the nucleus is poorly understood. Here, we decipher the distinct functions of two viral DNA sensors, IFI16 and cGAS, during active immune signaling upon infection with two herpesviruses, herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV). We show that IFI16

  15. Distinct yet overlapping roles of Rab GTPases on synaptic vesicles

    PubMed Central

    Pavlos, Nathan J

    2011-01-01

    Exo-endocytotic cycling of synaptic vesicles (SVs) is one of the most intensely studied membrane trafficking pathways. It is governed by sets of conserved proteins including Rab GTPases. Long considered to define the identity and composition of a subcellular organelle, it has become increasingly evident that multiple Rabs co-exist on intracellular compartments, each contributing to its membrane organization and specialised function. Indeed, we have recently demonstrated that at least 11 distinct Rab proteins co-exist on highly purified SVs. These include Rabs involved in exocytosis (Rab3a/b/c and Rab27b) and intermediates of SV recycling such as early endosomes (Rab4, Rab5, Rab10, Rab11b and Rab14). Interestingly, we found that while two of these proteins, namely Rab3a and Rab27b, exhibited differential cycling dynamics on SV membranes; they played complementary roles during Ca2+-triggered neurotransmitter release. The implications of these findings in the SV trafficking cycle are discussed. PMID:21776405

  16. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection

    PubMed Central

    Diner, Benjamin A.; Lum, Krystal K.; Toettcher, Jared E.

    2016-01-01

    ABSTRACT The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses. PMID:27935834

  17. Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function.

    PubMed

    Houston, B; Curry, B; Aitken, R J

    2015-06-01

    Reactive oxygen species (ROS) are known to play an important role in the regulation of human sperm function. In this study, we demonstrate for the first time that human spermatozoa possess interleukin-induced gene 1 (IL4I1), an l-amino acid oxidase (LAAO) which is capable of generating ROS on exposure to aromatic amino acids in the presence of oxygen. The preferred substrates were found to be phenylalanine and tryptophan while the enzyme was located in the acrosomal region and midpiece of these cells. In contrast to equine and bovine spermatozoa, enzyme activity was lost as soon as the spermatozoa became non-viable. On a cell-to-cell basis human spermatozoa were also shown to generate lower levels of hydrogen peroxide than their equine counterparts on exposure to phenylalanine. Stimulation of LAAO activity resulted in the induction of several hallmarks of capacitation including tyrosine phosphorylation of the sperm flagellum and concomitant activation of phospho-SRC expression. In addition, stimulation of LAAO resulted in an increase in the levels of acrosomal exocytosis in both the presence and absence of progesterone stimulation, via mechanisms that could be significantly reversed by the presence of catalase. As is often the case with free radical-mediated phenomena, prolonged exposure of human spermatozoa to phenylalanine resulted in the stimulation of apoptosis as indicated by significant increases in mitochondrial superoxide generation and the activation of intracellular caspases. These results confirm the existence of an LAAO in human spermatozoa with a potential role in driving the redox regulation of sperm capacitation and acrosomal exocytosis.

  18. Subsurface fluids from basement basalt of the Juan de Fuca Ridge possess microbial communities that are distinct from overlying sediments and surrounding seawater

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Bowers, R. M.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappe, M. S.

    2013-12-01

    Hydrothermal circulation of fluids through the porous and permeable ocean basement fuels a deep subsurface microbial community that remains poorly characterized due to the logistical and methodological constraints associated with sampling the sediment-covered seafloor. Ocean Drilling Program and Integrated Ocean Drilling Program holes penetrating 1.2-3.5 million-years old sediment-covered basaltic crust of the Juan de Fuca Ridge flank fitted with Circulation Obviation Retrofit Kit (CORK) borehole observatories have enabled sampling of chemically-reducing basement fluids over the course of multiple years (2008-2013). Consistent and reliable access to pristine fluids from the ocean crust is due to improvements to CORK observatories, through incorporation of microbiologically-friendly materials, and fluid sampling techniques and equipment. By analyzing ~1.7 million reads of the small subunit ribosomal RNA (SSU rRNA) gene by next-generation Illumina sequencing from marine sediment, deep seawater, and 24 crustal fluid samples spanning multiple years and boreholes (1025C, U1301A, U1362A, and U1362), a distinct subseafloor biosphere dominated by the domain Bacteria was uncovered. Fluids from borehole U1301A sampled annually over the course of three years each had distinct microbial community structure and were dominated by the Proteobacteria. In contrast, fluids from boreholes 1362A and 1362B, located ~500 meters to the northeast, contained lineages phylogenetically related to the phylum Nitrospirae in highest abundance. The domain Archaea was was dominated by either the phylum Crenarchaeota (borehole U1301A) or the Euryarchaeota (boreholes 1025C, U1362A and U1362B). SSU rRNA genes phylogenetically affiliated with known lineages of methane producing Euryarchaeota (e.g. Methanobacteria) were the most abundant archaeal group detected in fluids from Holes U1362A and U1362B, predominantly within samples originating from the deepest subsurface sampling horizon (~200 meters sub

  19. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica.

    PubMed

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-04-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. © 2015 The Authors Development, Growth & Differentiation published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Developmental Biologists.

  20. Dynamic melody recognition: distinctiveness and the role of musical expertise.

    PubMed

    Bailes, Freya

    2010-07-01

    The hypothesis that melodies are recognized at moments when they exhibit a distinctive musical pattern was tested. In a melody recognition experiment, point-of-recognition (POR) data were gathered from 32 listeners (16 musicians and 16 nonmusicians) judging 120 melodies. A series of models of melody recognition were developed, resulting from a stepwise multiple regression of two classes of information relating to melodic familiarity and melodic distinctiveness. Melodic distinctiveness measures were assembled through statistical analyses of over 15,000 Western themes and melodies. A significant model, explaining 85% of the variance, entered measures primarily of timing distinctiveness and pitch distinctiveness, but excluding familiarity, as predictors of POR. Differences between nonmusician and musician models suggest a processing shift from momentary to accumulated information with increased exposure to music. Supplemental materials for this article may be downloaded from http://mc.psychonomic-journals.org/content/supplemental.

  1. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    SciTech Connect

    Migliaccio, Christopher T. . E-mail: christopher.migliaccio@umontana.edu; Hamilton, Raymond F.; Holian, Andrij

    2005-06-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO{sub 2}). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis.

  2. The Golgi apparatus: roles for distinct 'cis' and 'trans' compartments.

    PubMed

    Rothman, J E

    1982-01-01

    The Golgi apparatus seems to consist of distinct cis and trans compartments that are proposed to act sequentially to refine the protein export of the endoplasmic reticulum by removing escaped endoplasmic reticulum proteins. Refinement may be a multi-stage process that employs a principle akin to fractional distillation; the stack of cisternae comprising the cis Golgi may be the plates in this distillation tower. The trans Golgi, consisting of the last one or two cisternae, may be the receiver that collects from the cis Golgi only its most refined fraction for later distribution to specific locations throughout the cell.

  3. Inverse coupling in leak and voltage-activated K+ channel gates underlies distinct roles in electrical signaling.

    PubMed

    Ben-Abu, Yuval; Zhou, Yufeng; Zilberberg, Noam; Yifrach, Ofer

    2009-01-01

    Voltage-activated (Kv) and leak (K(2P)) K(+) channels have key, yet distinct, roles in electrical signaling in the nervous system. Here we examine how differences in the operation of the activation and slow inactivation pore gates of Kv and K(2P) channels underlie their unique roles in electrical signaling. We report that (i) leak K(+) channels possess a lower activation gate, (ii) the activation gate is an important determinant controlling the conformational stability of the K(+) channel pore, (iii) the lower activation and upper slow inactivation gates of leak channels cross-talk and (iv) unlike Kv channels, where the two gates are negatively coupled, these two gates are positively coupled in K(2P) channels. Our results demonstrate how basic thermodynamic properties of the K(+) channel pore, particularly conformational stability and coupling between gates, underlie the specialized roles of Kv and K(2P) channel families in electrical signaling.

  4. Distinct Wnt signaling pathways have opposing roles in appendage regeneration.

    PubMed

    Stoick-Cooper, Cristi L; Weidinger, Gilbert; Riehle, Kimberly J; Hubbert, Charlotte; Major, Michael B; Fausto, Nelson; Moon, Randall T

    2007-02-01

    In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.

  5. The distinctive role of executive functions in implicit emotion regulation.

    PubMed

    Sperduti, Marco; Makowski, Dominique; Arcangeli, Margherita; Wantzen, Prany; Zalla, Tiziana; Lemaire, Stéphane; Dokic, Jérôme; Pelletier, Jérôme; Piolino, Pascale

    2017-02-01

    Several theoretical models stress the role of executive functions in emotion regulation (ER). However, most of the previous studies on ER employed explicit regulatory strategies that could have engaged executive functions, beyond regulatory processes per se. Recently, there has been renewed interest in implicit forms of ER, believed to be closer to daily-life requirements. While various studies have shown that implicit and explicit ER engage partially overlapping neurocognitive processes, the contribution of different executive functions in implicit ER has not been investigated. In the present study, we presented participants with negatively valenced pictures of varying emotional intensity preceded by short texts describing them as either fictional or real. This manipulation was meant to induce a spontaneous emotional down-regulation. We recorded electrodermal activity (EDA) and subjective reports of emotion arousal. Executive functions (updating, switching, and inhibition) were also assessed. No difference was found between the fictional and real condition on EDA. A diminished self-reported arousal was observed, however, when pictures were described as fictional for high- and mild-intensity material, but not for neutral material. The amount of down-regulation in the fictional condition was found to be predicted by interindividual variability in updating performances, but not by the other measures of executive functions, suggesting its implication even in implicit forms of ER. The relationship between down-regulation and updating was significant only for high-intensity material. We discuss the role of updating in relation to the consciousness of one's emotional state.

  6. Elucidating distinct roles for NF1 in melanomagenesis.

    PubMed

    Maertens, Ophélia; Johnson, Bryan; Hollstein, Pablo; Frederick, Dennie T; Cooper, Zachary A; Messiaen, Ludwine; Bronson, Roderick T; McMahon, Martin; Granter, Scott; Flaherty, Keith; Wargo, Jennifer A; Marais, Richard; Cichowski, Karen

    2013-03-01

    BRAF mutations play a well-established role in melanomagenesis; however, without additional genetic alterations, tumor development is restricted by oncogene-induced senescence (OIS). Here, we show that mutations in the NF1 tumor suppressor gene cooperate with BRAF mutations in melanomagenesis by preventing OIS. In a genetically engineered mouse model, Nf1 mutations suppress Braf-induced senescence, promote melanocyte hyperproliferation, and enhance melanoma development. Nf1 mutations function by deregulating both phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. As such, Nf1/Braf-mutant tumors are resistant to BRAF inhibitors but are sensitive to combined inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase and mTOR. Importantly, NF1 is mutated or suppressed in human melanomas that harbor concurrent BRAF mutations, NF1 ablation decreases the sensitivity of melanoma cell lines to BRAF inhibitors, and NF1 is lost in tumors from patients following treatment with these agents. Collectively, these studies provide mechanistic insight into how NF1 cooperates with BRAF mutations in melanoma and show that NF1/neurofibromin inactivation may have an impact on responses to targeted therapies.

  7. Elucidating distinct roles for NF1 in melanomagenesis

    PubMed Central

    Maertens, Ophélia; Johnson, Bryan; Hollstein, Pablo; Frederick, Dennie T.; Cooper, Zachary A.; Messiaen, Ludwine; Bronson, Roderick T.; McMahon, Martin; Granter, Scott; Flaherty, Keith; Wargo, Jennifer A.; Marais, Richard; Cichowski, Karen

    2013-01-01

    BRAF mutations play a well-established role in melanomagenesis; however, without additional genetic alterations tumor development is restricted by oncogene-induced senescence (OIS). Here we show that mutations in the NF1 tumor suppressor gene cooperate with BRAF mutations in melanomagenesis by preventing OIS. In a genetically engineered mouse model, Nf1 mutations suppress Braf-induced senescence, promote melanocyte hyperproliferation, and enhance melanoma development. Nf1 mutations function by deregulating both PI3K and ERK pathways. As such, Nf1/Braf mutant tumors are resistant to BRAF inhibitors but are sensitive to combined MEK/mTOR inhibition. Importantly, NF1 is mutated or suppressed in human melanomas that harbor concurrent BRAF mutations, NF1 ablation decreases the sensitivity of melanoma cell lines to BRAF inhibitors, and NF1 is lost in tumors from patients following treatment with these agents. Collectively, these studies provide mechanistic insight into how NF1 cooperates with BRAF mutations in melanoma and demonstrate that NF1-inactivation may impact responses to targeted therapies. PMID:23171796

  8. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins

    PubMed Central

    Tamilselvam, Batcha; Spiegelman, Lindsey M.; Son, Sophia B.; Eshraghi, Aria; Blanke, Steven R.; Bradley, Kenneth A.

    2015-01-01

    Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways. PMID:26618479

  9. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    PubMed

    Dixon, Shandee D; Huynh, Melanie M; Tamilselvam, Batcha; Spiegelman, Lindsey M; Son, Sophia B; Eshraghi, Aria; Blanke, Steven R; Bradley, Kenneth A

    2015-01-01

    Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.

  10. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica

    PubMed Central

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-01-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. PMID:25708270

  11. Late Adolescent Girls' Relationships with Parents and Romantic Partner: The Distinct Role of Mothers and Fathers

    ERIC Educational Resources Information Center

    Scharf, Miri; Mayseless, Ofra

    2008-01-01

    The distinct role of mothers and fathers in shaping the quality of relationships with romantic partner was explored. One hundred and twenty 17-year old girls were observed during their senior year in high school with each of their parents during a Revealed differences task [Allen, J. P., Hauser, S. T., Bell, K. L., Boykin, K. A., & Tate, D. C.…

  12. Strategies of Clausal Possession

    ERIC Educational Resources Information Center

    Langacker, Ronald W.

    2003-01-01

    Across languages, clauses expressing possession, location, and existence exhibit many similarities. To capture their evident affinity, it is often claimed that possessives derive--synclironically or diaclironically--from expressions of location/existence. This localist account obscures a basic contrast between two broad classes of possessive…

  13. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.

    PubMed

    Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel

    2017-07-05

    The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA)

    PubMed Central

    Dave, Anuja; Graham, Ian A.

    2012-01-01

    Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA. PMID:22645585

  15. Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning.

    PubMed

    Donato, Flavio; Chowdhury, Ananya; Lahr, Maria; Caroni, Pico

    2015-02-18

    Brain networks can support learning by promoting acquisition of task-relevant information or by adhering to validated rules, but the mechanisms involved are poorly understood. Upon learning, local inhibitory parvalbumin (PV)-expressing Basket cell networks can switch to opposite configurations that either favor or interfere with further learning, but how this opposite plasticity is induced and relates to distinct learning requirements has remained unclear. Here, we show that PV Basket cells consist of hitherto unrecognized subpopulations, with distinct schedules of neurogenesis, input connectivities, output target neurons, and roles in learning. Plasticity of hippocampal early-born PV neurons was recruited in rule consolidation, whereas plasticity of late-born PV neurons was recruited in new information acquisition. This involved regulation of early-born neuron plasticity specifically through excitation, and of late-born neuron plasticity specifically through inhibition. Therefore, opposite learning requirements are implemented by distinct local networks involving PV Basket cell subpopulations specifically regulated through inhibition or excitation.

  16. The roles of shared vs. distinctive conceptual features in lexical access.

    PubMed

    Vieth, Harrison E; McMahon, Katie L; de Zubicaray, Greig I

    2014-01-01

    Contemporary models of spoken word production assume conceptual feature sharing determines the speed with which objects are named in categorically-related contexts. However, statistical models of concept representation have also identified a role for feature distinctiveness, i.e., features that identify a single concept and serve to distinguish it quickly from other similar concepts. In three experiments we investigated whether distinctive features might explain reports of counter-intuitive semantic facilitation effects in the picture word interference (PWI) paradigm. In Experiment 1, categorically-related distractors matched in terms of semantic similarity ratings (e.g., zebra and pony) and manipulated with respect to feature distinctiveness (e.g., a zebra has stripes unlike other equine species) elicited interference effects of comparable magnitude. Experiments 2 and 3 investigated the role of feature distinctiveness with respect to reports of facilitated naming with part-whole distractor-target relations (e.g., a hump is a distinguishing part of a CAMEL, whereas knee is not, vs. an unrelated part such as plug). Related part distractors did not influence target picture naming latencies significantly when the part denoted by the related distractor was not visible in the target picture (whether distinctive or not; Experiment 2). When the part denoted by the related distractor was visible in the target picture, non-distinctive part distractors slowed target naming significantly at SOA of -150 ms (Experiment 3). Thus, our results show that semantic interference does occur for part-whole distractor-target relations in PWI, but only when distractors denote features shared with the target and other category exemplars. We discuss the implications of these results for some recently developed, novel accounts of lexical access in spoken word production.

  17. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells.

    PubMed

    Ghosh, S; Strum, J C; Sciorra, V A; Daniel, L; Bell, R M

    1996-04-05

    Previous studies demonstrated that the cysteine-rich amino-terminal domain of Raf-1 kinase interacts selectively with phosphatidylserine (Ghosh, S., Xie, W. Q., Quest, A. F. G., Mabrouk, G. M., Strum, J. C., and Bell, R. M. (1994) J. Biol. Chem. 269, 10000-10007). Further analysis showed that full-length Raf-1 bound to both phosphatidylserine and phosphatidic acid (PA). Specifically, a carboxyl-terminal domain of Raf-1 kinase (RafC; residues 295 648 of human Raf-1) interacted strongly with phosphatidic acid. The binding of RafC to PA displayed positive cooperativity with Hill numbers between 3.3 and 6.2; the apparent Kd ranged from 4.9 +/- 0.6 to 7.8 +/- 0.9 mol % PA. The interaction of RafC with PA displayed a pH dependence distinct from the interaction between the cysteine-rich domain of Raf-1 and PA. Also, the RafC-PA interaction was unaffected at high ionic strength. Of all the lipids tested, only PA and cardiolipin exhibited high affinity binding; other acidic lipids were either ineffective or weakly effective. By deletion mutagenesis, the PA binding site within RafC was narrowed down to a 35-amino acid segment between residues 389 and 423. RafC did not bind phosphatidyl alcohols; also, inhibition of PA formation in Madin-Darby canine kidney cells by treatment with 1% ethanol significantly reduced the translocation of Raf-1 from the cytosol to the membrane following stimulation with 12-O-tetradecanoylphorbol-13-acetate. These results suggest a potential role of the lipid second messenger, PA, in the regulation of translocation and subsequent activation of Raf-1 in vivo.

  18. The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals.

    PubMed

    Ruiz, L M; Castro, M; Barriga, A; Jerez, C A; Guiliani, N

    2012-02-01

      The primary goal of this study was to characterize the existence of a functional c-di-GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans.   A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c-di-GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c-di-GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c-di-GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells.   At. ferrooxidans possesses a functional c-di-GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes.   This is the first global study about the c-di-GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro-organisms during the bioleaching process. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production.

    PubMed

    Gouttenoire, Jérôme; Montserret, Roland; Paul, David; Castillo, Rosa; Meister, Simon; Bartenschlager, Ralf; Penin, François; Moradpour, Darius

    2014-10-01

    Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.

  20. Aminoterminal Amphipathic α-Helix AH1 of Hepatitis C Virus Nonstructural Protein 4B Possesses a Dual Role in RNA Replication and Virus Production

    PubMed Central

    Gouttenoire, Jérôme; Montserret, Roland; Paul, David; Castillo, Rosa; Meister, Simon; Bartenschlager, Ralf; Penin, François; Moradpour, Darius

    2014-01-01

    Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B. PMID:25392992

  1. Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology

    PubMed Central

    Buckner, Michelle M. C.; La Ragione, Roberto M.; Newcombe, Jane; Dwyer, Daniel J.; Ivens, Alasdair

    2016-01-01

    ABSTRACT For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles. PMID:27879336

  2. Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology.

    PubMed

    Buckner, Michelle M C; Blair, Jessica M A; La Ragione, Roberto M; Newcombe, Jane; Dwyer, Daniel J; Ivens, Alasdair; Piddock, Laura J V

    2016-11-22

    For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles.

  3. Nominalization of Possessive Sentences

    ERIC Educational Resources Information Center

    Rugaleva, Anelja

    1977-01-01

    Nominalization of possessive sentences in Russian is discussed. It is maintained that all lexical surface items originate as terms in a situation model, and that their actualization as different parts of speech is language-specific. Language data are used to support a locative interpretation of the semantic model. (CHK)

  4. Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota.

    PubMed

    Kramer, Carolyn D; Simas, Alexandra M; He, Xianbao; Ingalls, Robin R; Weinberg, Ellen O; Genco, Caroline Attardo

    2017-06-01

    Mounting evidence in humans supports an etiological role for the microbiota in inflammatory atherosclerosis. Atherosclerosis is a progressive disease characterized by accumulation of inflammatory cells and lipids in vascular tissue. While retention of lipoprotein into the sub-endothelial vascular layer is believed to be the initiating stimulus leading to the development of atherosclerosis, activation of multiple pathways related to vascular inflammation and endothelial dysfunction sustain the process by stimulating recruitment of leukocytes and immune cells into the sub-endothelial layer. The Gram-negative oral pathogen Porphyromonas gingivalis has been associated with the development and acceleration of atherosclerosis in humans and these observations have been validated in animal models. It has been proposed that common mechanisms of immune signaling link stimulation by lipids and pathogens to vascular inflammation. Despite the common outcome of P. gingivalis and lipid feeding on atherosclerosis progression, we established that these pro-atherogenic stimuli induced distinct gene signatures in the ApoE(-/-) mouse model of atherosclerosis. In this study, we further defined the distinct roles of dietary lipids and P. gingivalis infection on atherosclerosis progression and the gut microbiota. We demonstrate that diet-induced lipid lowering resulted in less atherosclerotic plaque in ApoE(-/-) mice compared to ApoE(-/-) mice continuously fed a Western diet. However, the effect of diet-induced lipid lowering on plaque accumulation was blunted by P. gingivalis infection. Using principal component analysis and hierarchical clustering, we demonstrate that dietary intervention as well as P. gingivalis infection result in distinct bacterial communities in fecal and cecal samples of ApoE(-/-) mice as compared to ApoE(-/-) mice continuously fed either a Western diet or a normal chow diet. Collectively, we identified distinct microbiota changes accompanying atherosclerotic

  5. Structurally Distinct Ubiquitin- and Sumo-Modified PCNA: Implications for Their Distinct Roles in the DNA Damage Response

    DOE PAGES

    Tsutakawa, Susan E.; Yan, Chunli; Xu, Xiaojun; ...

    2015-03-12

    Proliferating cell nuclear antigen (PCNA) is a pivotal replication protein, which also controls cellular responses to DNA damage. Posttranslational modification of PCNA by SUMO and ubiquitin modulate these responses. How the modifiers alter PCNA-dependent DNA repair and damage tolerance pathways is largely unknown. Here, we used hybrid methods to identify atomic models of PCNAK107-Ub and PCNAK164-SUMO consistent with small-angle X-ray scattering data of these complexes in solution. We show that SUMO and ubiquitin have distinct modes of association to PCNA. Ubiquitin adopts discrete docked binding positions. By contrast, SUMO associates by simple tethering and adopts extended flexible conformations. These structuralmore » differences are the result of the opposite electrostatic potentials of SUMO and Ub. In conclusion, the unexpected contrast in conformational behavior of Ub-PCNA and SUMO-PCNA has implications for interactions with partner proteins, interacting surfaces accessibility, and access points for pathway regulation.« less

  6. Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

    PubMed Central

    Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H. William; Miceli, Cristina

    2012-01-01

    Background The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. Methodology/Principal Findings With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. Conclusion/Significance We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different

  7. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli

    SciTech Connect

    Srikhanta, Yogitha N.; Atack, John M.; Beacham, Ifor R.; Jennings, Michael P.

    2013-07-05

    Highlights: •Escherichia coli contains two L-asparaginase isozymes with distinct localization, kinetics and regulation. •Mutant strains were used to examine the roles of these enzymes in L-asparagine utilization. •We report that L-asparaginase II permits growth on asparagine and glycerol under anaerobic conditions. •We propose that this enzyme is the first step in a co-regulated pathway leading to fumarate. •The pathway is regulated by anaerobiosis and cAMP and provides a terminal elector acceptor. -- Abstract: Escherichia coli expresses two L-asparaginase (EC 3.5.1.1) isozymes: L-asparaginse I, which is a low affinity, cytoplasmic enzyme that is expressed constitutively, and L-asparaginase II, a high affinity periplasmic enzyme that is under complex co-transcriptional regulation by both Fnr and Crp. The distinct localisation and regulation of these enzymes suggest different roles. To define these roles, a set of isogenic mutants was constructed that lacked either or both enzymes. Evidence is provided that L-asparaginase II, in contrast to L-asparaginase I, can be used in the provision of an anaerobic electron acceptor when using a non-fermentable carbon source in the presence of excess nitrogen.

  8. The Role of Cognitive Content and Cognitive Processes in Chronic Pain: An Important Distinction?

    PubMed

    Jensen, Mark P; Thorn, Beverly E; Carmody, James; Keefe, Francis J; Burns, John W

    2017-09-29

    Pain-related cognitive content (what people think about pain) and cognitive processes (how people think about pain; what they do with their pain-related thoughts) and their interaction are hypothesized to play distinct roles in patient function. However, questions have been raised regarding whether it is possible or practical to assess cognitive content and cognitive process as distinct domains. The aim of this study was to determine the extent to which measures that appear to assess mostly pain-related cognitive content, cognitive processes, and content and process, are relatively independent from each other and contribute unique variance to the prediction of patient function. Individuals with chronic low back pain (N=165) participating in an ongoing RCT were administered measures of cognitions, pain, and function (depressive symptoms and pain interference) pre-treatment. Analyses provided support for the hypothesis that cognitive content and cognitive process, while related, can be assessed as distinct components. However, the measure assessing a cognitive process - mindfulness - evidenced relatively weak associations with function, especially compared with the stronger and more consistent findings for the measures of content (catastrophizing and self-efficacy). Moreover, the results provide preliminary evidence for the possibility that mindfulness could have both benefits and costs. Research to evaluate this possibility is warranted.

  9. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli.

    PubMed

    Srikhanta, Yogitha N; Atack, John M; Beacham, Ifor R; Jennings, Michael P

    2013-07-05

    Escherichia coli expresses two L-asparaginase (EC 3.5.1.1) isozymes: L-asparaginse I, which is a low affinity, cytoplasmic enzyme that is expressed constitutively, and L-asparaginase II, a high affinity periplasmic enzyme that is under complex co-transcriptional regulation by both Fnr and Crp. The distinct localisation and regulation of these enzymes suggest different roles. To define these roles, a set of isogenic mutants was constructed that lacked either or both enzymes. Evidence is provided that L-asparaginase II, in contrast to L-asparaginase I, can be used in the provision of an anaerobic electron acceptor when using a non-fermentable carbon source in the presence of excess nitrogen.

  10. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region.

    PubMed

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-11-05

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis.

  11. Distinct roles of synapsin I and synapsin II during neuronal development.

    PubMed Central

    Ferreira, A.; Chin, L. S.; Li, L.; Lanier, L. M.; Kosik, K. S.; Greengard, P.

    1998-01-01

    The synapsins are a family of neuron-specific proteins, associated with the cytoplasmic surface of synaptic vesicles, which have been shown to regulate neurotransmitter release in mature synapses and to accelerate development of the nervous system. Using neuronal cultures from mice lacking synapsin I, synapsin II, or both synapsins I and II, we have now found that synapsin I and synapsin II play distinct roles in neuronal development. Deletion of synapsin II, but not synapsin I, greatly retarded axon formation. Conversely, deletion of synapsin I, but not synapsin II, greatly retarded synapse formation. Remarkably, the deletion of both synapsins led to partial restoration of the wild phenotype. The results suggest that the synapsins play separate but coordinated developmental roles. Images Fig. 1 Fig. 2 PMID:9513186

  12. Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution.

    PubMed

    Marlétaz, Ferdinand; Maeso, Ignacio; Faas, Laura; Isaacs, Harry V; Holland, Peter W H

    2015-08-01

    The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates.

  13. Differential localization of Mox-1 and Mox-2 proteins indicates distinct roles during development.

    PubMed

    Candia, A F; Wright, C V

    1996-12-01

    Transcript localizations for Mox genes have implicated this homeobox gene subfamily in the early steps of mesoderm formation. We have extended these studies by determining the protein expression profile of Mox-1 and Mox-2 during mouse development. The time of onset of Mox protein expression has been accurately obtained to provide clues as to their roles during gastrulation. Expression of Mox-1 protein is first detected in the newly formed mesoderm of primitive streak stage mouse embryos (7.5 days post-coitum, d.p.c.). In contrast, Mox-2 protein is first detected at 9.0 d.p.c. in thr already formed somites. Additionally, immunostaining reveals new and distinct areas of Mox expression in the branchial arches and limbs that were not reported in our previous mRNA localization analysis. Mouse Mox-2 antibodies cross-react specifically in similar embryonic tissues in chick indicating the conservation of function of Mox genes in vertebrates. These expression data suggest that the Mox genes function transiently in the formation of mesodermal and mesenchymal derivatives, after their initial specification, but before their overt differentiation. Furthermore, while there appears to be some overlap in protein expression between Mox-1 and Mox-2 during somitogenesis, unique areas of expression indicate several distinct roles for the Mox genes during development.

  14. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus.

    PubMed

    Wang, Hui; Zhang, Dunfang; Han, Qi; Zhao, Xin; Zeng, Xin; Xu, Yi; Sun, Zheng; Chen, Qianming

    2016-07-01

    Oral lichen planus (OLP) is one of the most common chronic inflammatory oral mucosal diseases with T-cell-mediated immune pathogenesis. In subepithelial and lamina propria of OLP local lesions, the presence of CD4(+) T helper (CD4(+) Th) cells appeared as the major lymphocytes. These CD4(+) T lymphocytes can differentiate into distinct Th cell types such as Th1, Th2, Treg, Th17, Th22, Th9, and Tfh within the context of certain cytokines environment. Growing evidence indicated that Th1/Th2 imbalance may greatly participate into the cytokine network of OLP immunopathology. In addition, Th1/Th2 imbalance can be regulated by the Treg subset and also greatly influenced by the emerging novel CD4(+) Th subset Th17. Furthermore, the presence of novel subsets Th22, Th9 and Tfh in OLP patients is yet to be clarified. All these Th subsets and their specific cytokines may play a critical role in determining the character, extent and duration of immune responses in OLP pathogenesis. Therefore, we review the roles of distinct CD4(+) Th subsets and their signature cytokines in determining disease severity and susceptibility of OLP and also reveal the novel therapeutic strategies based on T lymphocytes subsets in OLP treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Distinct Roles of FANCO/RAD51C Protein in DNA Damage Signaling and Repair

    PubMed Central

    Somyajit, Kumar; Subramanya, Shreelakshmi; Nagaraju, Ganesh

    2012-01-01

    RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G2/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor. PMID:22167183

  16. Racial and Ethnic Differences in Advance Directive Possession: Role of Demographic Factors, Religious Affiliation, and Personal Health Values in a National Survey of Older Adults

    PubMed Central

    Neuhaus, John M.; Chiong, Winston

    2016-01-01

    Abstract Background: Black and Hispanic older Americans are less likely than white older Americans to possess advance directives. Understanding the reasons for this racial and ethnic difference is necessary to identify targets for future interventions to improve advance care planning in these populations. Methods: The aim of the study was to evaluate whether racial and ethnic differences in advance directive possession are explained by other demographic factors, religious characteristics, and personal health values. A general population survey was conducted in a nationally representative sample using a web-enabled survey panel of American adults aged 50 and older (n = 2154). Results: In a sample of older Americans, white participants are significantly more likely to possess advance directives (44.0%) than black older Americans (24.0%, p < 0.001) and Hispanic older Americans (29.0%, p = 0.006). Gender, age, retired or disabled employment status, educational attainment, religious affiliation, Internet access, preferences for physician-centered decision making, and desiring longevity regardless of functional status were independent predictors of advance directive possession. In fully adjusted multivariable models with all predictors included, black older Americans remained significantly less likely than white older Americans to have an advance directive (odds ratio [OR] = 0.42, 95% confidence interval [CI] = 0.24–0.75), whereas the effect of Hispanic ethnicity was no longer statistically significant (OR = 0.65, 95% CI = 0.39–1.1). Conclusion: In a nationally representative sample, black race is an independent predictor for advance directive possession. This association remains even after adjustment for other demographic variables, religious characteristics, and personal health values. These findings support targeted efforts to mitigate racial disparities in access to advance care planning. PMID:26840850

  17. Racial and Ethnic Differences in Advance Directive Possession: Role of Demographic Factors, Religious Affiliation, and Personal Health Values in a National Survey of Older Adults.

    PubMed

    Huang, Ivy A; Neuhaus, John M; Chiong, Winston

    2016-02-01

    Black and Hispanic older Americans are less likely than white older Americans to possess advance directives. Understanding the reasons for this racial and ethnic difference is necessary to identify targets for future interventions to improve advance care planning in these populations. The aim of the study was to evaluate whether racial and ethnic differences in advance directive possession are explained by other demographic factors, religious characteristics, and personal health values. A general population survey was conducted in a nationally representative sample using a web-enabled survey panel of American adults aged 50 and older (n = 2154). In a sample of older Americans, white participants are significantly more likely to possess advance directives (44.0%) than black older Americans (24.0%, p < 0.001) and Hispanic older Americans (29.0%, p = 0.006). Gender, age, retired or disabled employment status, educational attainment, religious affiliation, Internet access, preferences for physician-centered decision making, and desiring longevity regardless of functional status were independent predictors of advance directive possession. In fully adjusted multivariable models with all predictors included, black older Americans remained significantly less likely than white older Americans to have an advance directive (odds ratio [OR] = 0.42, 95% confidence interval [CI] = 0.24-0.75), whereas the effect of Hispanic ethnicity was no longer statistically significant (OR = 0.65, 95% CI = 0.39-1.1). In a nationally representative sample, black race is an independent predictor for advance directive possession. This association remains even after adjustment for other demographic variables, religious characteristics, and personal health values. These findings support targeted efforts to mitigate racial disparities in access to advance care planning.

  18. Schizophrenia or possession?

    PubMed

    Irmak, M Kemal

    2014-06-01

    Schizophrenia is typically a life-long condition characterized by acute symptom exacerbations and widely varying degrees of functional disability. Some of its symptoms, such as delusions and hallucinations, produce great subjective psychological pain. The most common delusion types are as follows: "My feelings and movements are controlled by others in a certain way" and "They put thoughts in my head that are not mine." Hallucinatory experiences are generally voices talking to the patient or among themselves. Hallucinations are a cardinal positive symptom of schizophrenia which deserves careful study in the hope it will give information about the pathophysiology of the disorder. We thought that many so-called hallucinations in schizophrenia are really illusions related to a real environmental stimulus. One approach to this hallucination problem is to consider the possibility of a demonic world. Demons are unseen creatures that are believed to exist in all major religions and have the power to possess humans and control their body. Demonic possession can manifest with a range of bizarre behaviors which could be interpreted as a number of different psychotic disorders with delusions and hallucinations. The hallucination in schizophrenia may therefore be an illusion-a false interpretation of a real sensory image formed by demons. A local faith healer in our region helps the patients with schizophrenia. His method of treatment seems to be successful because his patients become symptom free after 3 months. Therefore, it would be useful for medical professions to work together with faith healers to define better treatment pathways for schizophrenia.

  19. Ideas Exchange: Should School Districts Have a Specific Individual Designated as the Director or Coordinator for Physical Education? What Credentials Should One Possess to Be Effective in Such a Role?

    ERIC Educational Resources Information Center

    Kerekes, Jack; Chase, Melissa A.; Reiss, Carole B.; Fennel, Adam; Vulpis,Dominick; Magnotta, John; Arcadi, Mary; Siracuse, Robert M.; Christenson, Robert S.; Wright, Jim

    2010-01-01

    This article presents the opinions/ideas of professionals who were asked these questions: "Should school districts have a specific individual designated as the Director or Coordinator for Physical Education? What credentials should one possess to be effective in such a role?" The professionals contend that every school district needs to have a…

  20. Distinct Roles for Neuropilin1 and Neuropilin2 during Mouse Corneal Innervation

    PubMed Central

    McKenna, Chelsey C.; Munjaal, Ravi P.; Lwigale, Peter Y.

    2012-01-01

    Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1sema−/− mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2−/− mutants. The corneal epithelium was prematurely innervated in both Npn1sema−/− and Npn2−/− mutants. These defects were exacerbated in Npn1sema−/−;Npn2−/− double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea. PMID:22615927

  1. Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions.

    PubMed

    Sakuno, Takeshi; Watanabe, Yoshinori

    2009-01-01

    During meiosis, a single round of genome duplication is followed by two sequential rounds of chromosome segregation. Through this process, a diploid parent cell generates gametes with a haploid set of chromosomes. A characteristic of meiotic chromosome segregation is a stepwise loss of sister chromatid cohesion along chromosomal arms and at centromeres. Whereas arm cohesion plays an important role in ensuring homologue disjunction at meiosis I, persisting cohesion at pericentromeric regions throughout meiosis I is essential for the faithful equational segregation of sisters in the following meiosis II, similar to mitosis. A widely conserved pericentromeric protein called shugoshin, which associates with protein phosphatase 2A (PP2A), plays a critical role in this protection of cohesin. Another key aspect of meiosis I is the establishment of monopolar attachment of sister kinetochores to spindle microtubules. Cohesion or physical linkage at the core centromeres, where kinetochores assemble, may conjoin sister kinetochores, leading to monopolar attachment. A meiosis-specific kinetochore factor such as fission yeast Moa1 or budding yeast monopolin contributes to this regulation. We propose that cohesion at the core centromere and pericentromeric regions plays distinct roles, especially in defining the orientation of kinetochores.

  2. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization

    PubMed Central

    Suzuki, Shigeki; Sreenath, Taduru; Haruyama, Naoto; Honeycutt, Cherlita; Terse, Anita; Cho, Andrew; Kohler, Thomas; Müller, Ralph; Goldberg, Michel; Kulkarni, Ashok B.

    2009-01-01

    Dentin sialophosphoprotein (DSPP), a major non-collagenous matrix protein of odontoblasts, is proteolytically cleaved into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Our previous studies revealed that DSPP null mice display a phenotype similar to human autosomal dominant dentinogenesis imperfecta, in which teeth have widened predentin and irregular dentin mineralization resulting in sporadic unmineralized areas in dentin and frequent pulp exposure. Earlier in vitro studies suggested that DPP, but not DSP, plays a significant role in initiation and maturation of dentin mineralization. However, the precise in vivo roles of DSP and DPP are far from clear. Here we report the generation of DPPcKO mice, in which only DSP is expressed in a DSPP null background, resulting in a conditional DPP knockout. DPPcKO teeth show a partial rescue of the DSPP null phenotype with the restored predentin width, an absence of irregular unmineralized areas in dentin, and less frequent pulp exposure. Micro-computed tomography (micro-CT) analysis of DPPcKO molars further confirmed this partial rescue with a significant recovery in the dentin volume, but not in the dentin mineral density. These results indicate distinct roles of DSP and DPP in dentin mineralization, with DSP regulating initiation of dentin mineralization, and DPP being involved in the maturation of mineralized dentin. PMID:19348940

  3. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  4. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.

    PubMed

    Cockburn, Darrell; Nielsen, Morten M; Christiansen, Camilla; Andersen, Joakim M; Rannes, Julie B; Blennow, Andreas; Svensson, Birte

    2015-04-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.

  5. Mmp1 and Mmp2 cooperatively induce Drosophila fat body cell dissociation with distinct roles.

    PubMed

    Jia, Qiangqiang; Liu, Yang; Liu, Hanhan; Li, Sheng

    2014-12-18

    During Drosophila metamorphosis, the single-cell layer of fat body tissues gradually dissociates into individual cells. Via a fat body-specific RNAi screen in this study, we found that two matrix metalloproteinases (MMPs), Mmp1 and Mmp2, are both required for fat body cell dissociation. As revealed through a series of cellular, biochemical, molecular, and genetic experiments, Mmp1 preferentially cleaves DE-cadherin-mediated cell-cell junctions, while Mmp2 preferentially degrades basement membrane (BM) components and thus destroy cell-BM junctions, resulting in the complete dissociation of the entire fat body tissues into individual cells. Moreover, several genetic interaction experiments demonstrated that the roles of Mmp1 and Mmp2 in this developmental process are cooperative. In conclusion, Mmp1 and Mmp2 induce fat body cell dissociation during Drosophila metamorphosis in a cooperative yet distinct manner, a finding that sheds light on the general mechanisms by which MMPs regulate tissue remodeling in animals.

  6. Crystal structures of the viral protease Npro imply distinct roles for the catalytic water in catalysis.

    PubMed

    Zögg, Thomas; Sponring, Michael; Schindler, Sabrina; Koll, Maria; Schneider, Rainer; Brandstetter, Hans; Auer, Bernhard

    2013-06-04

    Npro is a key effector protein of pestiviruses such as bovine viral diarrhea virus and abolishes host cell antiviral defense mechanisms. Synthesized as the N-terminal part of the viral polyprotein, Npro releases itself via an autoproteolytic cleavage, triggering its immunological functions. However, the mechanisms of its proteolytic action and its immune escape were unclear. Here, we present the crystal structures of Npro to 1.25 Å resolution. Structures of pre- and postcleavage intermediates identify three catalytically relevant elements. The trapping of the putative catalytic water reveals its distinct roles as a base, acid, and nucleophile. The presentation of the substrate further explains the enigmatic latency of the protease, ensuring a single in cis cleavage. Additionally, we identified a zinc-free, disulfide-linked conformation of the TRASH motif, an interaction hub of immune factors. The structure opens additional opportunities in utilizing Npro as an autocleaving fusion protein and as a pharmaceutical target.

  7. Distinctive Role of Symbolic Number Sense in Mediating the Mathematical Abilities of Children with Autism

    PubMed Central

    Hiniker, Alexis

    2016-01-01

    Despite reports of mathematical talent in autism spectrum disorders (ASD), little is known about basic number processing abilities in affected children. We investigated number sense, the ability to rapidly assess quantity information, in 36 children with ASD and 61 typically developing controls. Numerical acuity was assessed using symbolic (Arabic numerals) as well as non-symbolic (dot array) formats. We found significant impairments in non-symbolic acuity in children with ASD, but symbolic acuity was intact. Symbolic acuity mediated the relationship between non-symbolic acuity and mathematical abilities only in children with ASD, indicating a distinctive role for symbolic number sense in the acquisition of mathematical proficiency in this group. Our findings suggest that symbolic systems may help children with ASD organize imprecise information. PMID:26659551

  8. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  9. Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles.

    PubMed

    Toyomasu, Tomonobu; Usui, Masami; Sugawara, Chizu; Kanno, Yuri; Sakai, Arisa; Takahashi, Hirokazu; Nakazono, Mikio; Kuroda, Masaharu; Miyamoto, Koji; Morimoto, Yu; Mitsuhashi, Wataru; Okada, Kazunori; Yamaguchi, Shinjiro; Yamane, Hisakazu

    2015-01-01

    Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A-E, and oryzalexins A-F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT-PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence.

  10. Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles

    PubMed Central

    Toyomasu, Tomonobu; Usui, Masami; Sugawara, Chizu; Kanno, Yuri; Sakai, Arisa; Takahashi, Hirokazu; Nakazono, Mikio; Kuroda, Masaharu; Miyamoto, Koji; Morimoto, Yu; Mitsuhashi, Wataru; Okada, Kazunori; Yamaguchi, Shinjiro; Yamane, Hisakazu

    2015-01-01

    Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A–E, and oryzalexins A–F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription–PCR (qRT–PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT–PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence. PMID:25336684

  11. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.

  12. HPC-1/syntaxin 1A and syntaxin 1B play distinct roles in neuronal survival.

    PubMed

    Kofuji, Takefumi; Fujiwara, Tomonori; Sanada, Masumi; Mishima, Tatsuya; Akagawa, Kimio

    2014-08-01

    Two types of syntaxin 1 isoforms, HPC-1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are thought to have similar functions in exocytosis of synaptic vesicles. STX1A(-/-) mice which we generated previously develop normally, possibly because of compensation by STX1B. We produced STX1B(-/-) mice using targeted gene disruption and investigated their phenotypes. STX1B(-/-) mice were born alive, but died before postnatal day 14, unlike STX1A(-/-) mice. Morphologically, brain development in STX1B(-/-) mice was impaired. In hippocampal neuronal culture, the cell viability of STX1B(-/-) neurons was lower than that of WT or STX1A(-/-) neurons after 9 days. Interestingly, STX1B(-/-) neurons survived on WT or STX1A(-/-) glial feeder layers as well as WT neurons. However, STX1B(-/-) glial feeder layers were less effective at promoting survival of STX1B(-/-) neurons. Conditioned medium from WT or STX1A(-/-) glial cells had a similar effect on survival, but that from STX1B(-/-) did not promote survival. Furthermore, brain-derived neurotrophic factor (BDNF) or neurotrophin-3 supported survival of STX1B(-/-) neurons. BDNF localization in STX1B(-/-) glial cells was disrupted, and BDNF secretion from STX1B(-/-) glial cells was impaired. These results suggest that STX1A and STX1B may play distinct roles in supporting neuronal survival by glia. Syntaxin 1A (STX1A) and syntaxin 1B (STX1B) are thought to have similar functions as SNARE proteins. However, we found that STX1A and STX1B play distinct roles in neuronal survival using STX1A(-/-) mice and STX1B(-/-) mice. STX1B was important for neuronal survival, possibly by regulating the secretion of neurotrophic factors, such as BDNF, from glial cells. © 2014 International Society for Neurochemistry.

  13. Pulmonary collectins play distinct roles in host defense against Mycobacterium avium.

    PubMed

    Ariki, Shigeru; Kojima, Takashi; Gasa, Shinsei; Saito, Atsushi; Nishitani, Chiaki; Takahashi, Motoko; Shimizu, Takeyuki; Kurimura, Yuichiro; Sawada, Norimasa; Fujii, Nobuhiro; Kuroki, Yoshio

    2011-09-01

    Pulmonary collectins, surfactant protein A (SP-A) and surfactant protein D (SP-D), play important roles in the innate immunity of the lung. Mycobacterium avium is one of the well-known opportunistic pathogens that can replicate within macrophages. We examined the effects of pulmonary collectins in host defense against M. avium infection achieved via direct interaction between bacteria and collectins. Although both pulmonary collectins bound to M. avium in a Ca(2+)-dependent manner, these collectins revealed distinct ligand-binding specificity and biological activities. SP-A and SP-D bound to a methoxy group containing lipid and lipoarabinomannan, respectively. Binding of SP-D but not SP-A resulted in agglutination of M. avium. A chimeric protein with the carbohydrate recognition domain of SP-D, which chimera revealed a bouquet-like arrangement similar to SP-A, also agglutinated M. avium. The ligand specificity of the carbohydrate recognition domain of SP-D seems to be necessary for agglutination activity. The binding of SP-A strongly inhibited the growth of M. avium in culture media. Although pulmonary collectins did not increase membrane permeability of M. avium, they attenuated the metabolic rate of the bacteria. Observations under a scanning electron microscope revealed that SP-A almost completely covers bacterial surfaces, whereas SP-D binds to certain areas like scattered dots. These observations suggest that a distinct binding pattern of collectins correlates with the difference of their biological activities. Furthermore, the number of bacteria phagocytosed by macrophages was significantly increased in the presence of SP-D. These data indicate that pulmonary collectins play critical roles in host defense against M. avium.

  14. Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models.

    PubMed

    Liadis, Nicole; Salmena, Leonardo; Kwan, Edwin; Tajmir, Panteha; Schroer, Stephanie A; Radziszewska, Anna; Li, Xie; Sheu, Laura; Eweida, Mohamed; Xu, Shilong; Gaisano, Herbert Y; Hakem, Razqallah; Woo, Minna

    2007-09-01

    Inadequate pancreatic beta-cell mass resulting from excessive beta-cell apoptosis is a key defect in type 1 and type 2 diabetes. Caspases are the major molecules involved in apoptosis; however, in vivo roles of specific caspases in diabetes are unclear. The purpose of this study is to examine the role of Caspase (Casp)8 in beta-cells in vivo. Using the Cre-loxP system, mice lacking Casp8 in beta-cells (RIPcre(+)Casp8(fl/fl) mice) were generated to address the role of Casp8 in beta-cells in physiological and diabetes models. We show that islets isolated from RIPcre(+)Casp8(fl/fl) mice were protected from Fas ligand (FasL)-and ceramide-induced cell death. Furthermore, RIPcre(+)Casp8(fl/fl) mice were protected from in vivo models of type 1 and type 2 diabetes. In addition to being the central mediator of apoptosis in diabetes models, we show that Casp8 is critical for maintenance of beta-cell mass under physiological conditions. With aging, RIPcre(+)Casp8(fl/fl) mice gradually develop hyperglycemia and a concomitant decline in beta-cell mass. Their islets display decreased expression of molecules involved in insulin/IGF-I signaling and show decreased pancreatic duodenal homeobox-1 and cAMP response element binding protein expression. At the level of individual islets, we observed increased insulin secretory capacity associated with increased expression of exocytotic proteins. Our results show distinct context-specific roles of Casp8 in physiological and disease states; Casp8 is essential for beta-cell apoptosis in type 1 and type 2 diabetes models and in regulating beta-cell mass and insulin secretion under physiological conditions.

  15. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex.

    PubMed

    Blosser, Timothy R; Loeff, Luuk; Westra, Edze R; Vlot, Marnix; Künne, Tim; Sobota, Małgorzata; Dekker, Cees; Brouns, Stan J J; Joo, Chirlmin

    2015-04-02

    Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses-interference and priming-remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets.

  16. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region

    PubMed Central

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  17. Distinct roles for ROCK1 and ROCK2 in the regulation of keratinocyte differentiation.

    PubMed

    Lock, Frances E; Hotchin, Neil A

    2009-12-04

    The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the question of which ROCK isoform was involved in regulation of keratinocyte differentiation. We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal differentiation. These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal differentiation.

  18. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation.

    PubMed

    Thangavel, Saravanabhavan; Mendoza-Maldonado, Ramiro; Tissino, Erika; Sidorova, Julia M; Yin, Jinhu; Wang, Weidong; Monnat, Raymond J; Falaschi, Arturo; Vindigni, Alessandro

    2010-03-01

    Cellular and biochemical studies support a role for all five human RecQ helicases in DNA replication; however, their specific functions during this process are unclear. Here we investigate the in vivo association of the five human RecQ helicases with three well-characterized human replication origins. We show that only RECQ1 (also called RECQL or RECQL1) and RECQ4 (also called RECQL4) associate with replication origins in a cell cycle-regulated fashion in unperturbed cells. RECQ4 is recruited to origins at late G(1), after ORC and MCM complex assembly, while RECQ1 and additional RECQ4 are loaded at origins at the onset of S phase, when licensed origins begin firing. Both proteins are lost from origins after DNA replication initiation, indicating either disassembly or tracking with the newly formed replisome. Nascent-origin DNA synthesis and the frequency of origin firing are reduced after RECQ1 depletion and, to a greater extent, after RECQ4 depletion. Depletion of RECQ1, though not that of RECQ4, also suppresses replication fork rates in otherwise unperturbed cells. These results indicate that RECQ1 and RECQ4 are integral components of the human replication complex and play distinct roles in DNA replication initiation and replication fork progression in vivo.

  19. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease.

    PubMed

    Qian, Meng; Shen, Xiaoqiang; Wang, Huanhuan

    2016-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.

  20. Late adolescent girls' relationships with parents and romantic partner: the distinct role of mothers and fathers.

    PubMed

    Scharf, Miri; Mayseless, Ofra

    2008-12-01

    The distinct role of mothers and fathers in shaping the quality of relationships with romantic partner was explored. One hundred and twenty 17-year old girls were observed during their senior year in high school with each of their parents during a Revealed differences task [Allen, J. P., Hauser, S. T., Bell, K. L., Boykin, K. A., & Tate, D. C. (1994). Autonomy and relatedness coding system manual, version 2.01. Unpublished manual] and filled out questionnaires pertaining to their relationships with romantic partners. A year and a half later (7 months after conscription to compulsory military service) they again filled out questionnaires. Whereas self-reports did not distinguish between relations with mothers and fathers observational data revealed that relationships with each parent are associated with somewhat different aspects of the romantic relationship. Better quality of relationship with mother was associated with delays in the girl's entrance into sexual romantic relationships, and with better quality of romantic relationship concurrently whereas better quality of relationship with father was associated with better quality of romantic relationship once they are formed concurrently and longitudinally. The findings highlight the central role that mothers and fathers play in shaping the quality of the romantic relationships that late adolescent girls form and underscore the importance of using observational data as well as questionnaire data.

  1. Distinct Roles for Intracellular and Extracellular Lipids in Hepatitis C Virus Infection.

    PubMed

    Narayanan, Sowmya; Nieh, Albert H; Kenwood, Brandon M; Davis, Christine A; Tosello-Trampont, Annie-Carole; Elich, Tedd D; Breazeale, Steven D; Ward, Eric; Anderson, Richard J; Caldwell, Stephen H; Hoehn, Kyle L; Hahn, Young S

    2016-01-01

    Hepatitis C is a chronic liver disease that contributes to progressive metabolic dysfunction. Infection of hepatocytes by hepatitis C virus (HCV) results in reprogramming of hepatic and serum lipids. However, the specific contribution of these distinct pools of lipids to HCV infection remains ill defined. In this study, we investigated the role of hepatic lipogenesis in HCV infection by targeting the rate-limiting step in this pathway, which is catalyzed by the acetyl-CoA carboxylase (ACC) enzymes. Using two structurally unrelated ACC inhibitors, we determined that blockade of lipogenesis resulted in reduced viral replication, assembly, and release. Supplementing exogenous lipids to cells treated with ACC inhibitors rescued HCV assembly with no effect on viral replication and release. Intriguingly, loss of viral RNA was not recapitulated at the protein level and addition of 2-bromopalmitate, a competitive inhibitor of protein palmitoylation, mirrored the effects of ACC inhibitors on reduced viral RNA without a concurrent loss in protein expression. These correlative results suggest that newly synthesized lipids may have a role in protein palmitoylation during HCV infection.

  2. Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes.

    PubMed

    Wang, Qiao-Ping; Kawahara, Taemi; Horn, David

    2010-09-01

    African trypanosomes evade the host immune response through antigenic variation, which is achieved by periodically expressing different variant surface glycoproteins (VSGs). VSG expression is monoallelic such that only one of approximately 15 telomeric VSG expression sites (ESs) is transcribed at a time. Epigenetic regulation is involved in VSG control but our understanding of the mechanisms involved remains incomplete. Histone deacetylases are potential drug targets for diseases caused by protozoan parasites. Here, using recombinant expression we show that the essential Trypanosoma brucei deacetylases, DAC1 (class I) and DAC3 (class II) display histone deacetylase activity. Both DAC1 and DAC3 are nuclear proteins in the bloodstream stage parasite, while only DAC3 remains concentrated in the nucleus in insect-stage cells. Consistent with developmentally regulated localization, DAC1 antagonizes SIR2rp1-dependent telomeric silencing only in the bloodstream form, indicating a conserved role in the control of silent chromatin domains. In contrast, DAC3 is specifically required for silencing at VSG ES promoters in both bloodstream and insect-stage cells. We conclude that DAC1 and DAC3 play distinct roles in subtelomeric gene silencing and that DAC3 represents the first readily druggable target linked to VSG ES control in the African trypanosome.

  3. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development

    PubMed Central

    Liu, Hong-Xiang; Grosse, Ann S.; Iwatsuki, Ken; Mishina, Yuji; Gumucio, Deborah L.; Mistretta, Charlotte M.

    2012-01-01

    Although canonical Wnt signaling is known to regulate taste papilla induction and numbers, roles for noncanonical Wnt pathways in tongue and taste papilla development have not been explored. With mutant mice and whole tongue organ cultures we demonstrate that Wnt5a protein and message are within anterior tongue mesenchyme across embryo stages from the initiation of tongue formation, through papilla placode appearance and taste papilla development. The Wnt5a mutant tongue is severely shortened, with an ankyloglossia, and lingual mesenchyme is disorganized. However, fungiform papilla morphology, number and innervation are preserved, as is expression of the papilla marker, Shh. These data demonstrate that the genetic regulation for tongue size and shape can be separated from that directing lingual papilla development. Preserved number of papillae in a shortened tongue results in an increased density of fungiform papillae in the mutant tongues. In tongue organ cultures, exogenous Wnt5a profoundly suppresses papilla formation and simultaneously decreases canonical Wnt signaling as measured by the TOPGAL reporter. These findings suggest that Wnt5a antagonizes canonical Wnt signaling to dictate papilla number and spacing. In all, distinctive roles for Wnt5a in tongue size, fungiform papilla patterning and development are shown and a necessary balance between non-canonical and canonical Wnt paths in regulating tongue growth and fungiform papillae is proposed in a model, through the Ror2 receptor. PMID:22024319

  4. The Splice Isoforms of the Drosophila Ecdysis Triggering Hormone Receptor Have Developmentally Distinct Roles

    PubMed Central

    Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H.

    2016-01-01

    To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone’s neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced “Trojan exon” technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952

  5. Distinct roles for lateral and medial anterior prefrontal cortex in contextual recollection.

    PubMed

    Simons, Jon S; Gilbert, Sam J; Owen, Adrian M; Fletcher, Paul C; Burgess, Paul W

    2005-07-01

    A key feature of human recollection is the ability to remember details of the context in which events were experienced, as well as details of the events themselves. Previous studies have implicated a number of regions of prefrontal cortex in contextual recollection, but the role of anterior prefrontal cortex has so far resisted detailed characterization. We used event-related functional MRI (fMRI) to contrast recollection of two forms of contextual information: 1) decisions one had previously made about stimuli (task memory) and 2) which of two temporally distinct lists those stimuli had been presented in (list memory). In addition, a retrieval cue manipulation permitted evaluation of the stage of the retrieval process in which the activated regions might be involved. The results indicated that anterior prefrontal cortex responded significantly more during recollection of task than list context details. Furthermore, activation profiles for lateral and medial aspects of anterior prefrontal cortex suggested differing roles in recollection. Lateral regions seem to be more involved in the early retrieval specification stages of recollection, with medial regions contributing to later stages (e.g., monitoring and verification).

  6. Distinct Roles for Intracellular and Extracellular Lipids in Hepatitis C Virus Infection

    PubMed Central

    Narayanan, Sowmya; Nieh, Albert H.; Kenwood, Brandon M.; Davis, Christine A.; Tosello-Trampont, Annie-Carole; Elich, Tedd D.; Breazeale, Steven D.; Ward, Eric; Anderson, Richard J.; Caldwell, Stephen H.; Hoehn, Kyle L.; Hahn, Young S.

    2016-01-01

    Hepatitis C is a chronic liver disease that contributes to progressive metabolic dysfunction. Infection of hepatocytes by hepatitis C virus (HCV) results in reprogramming of hepatic and serum lipids. However, the specific contribution of these distinct pools of lipids to HCV infection remains ill defined. In this study, we investigated the role of hepatic lipogenesis in HCV infection by targeting the rate-limiting step in this pathway, which is catalyzed by the acetyl-CoA carboxylase (ACC) enzymes. Using two structurally unrelated ACC inhibitors, we determined that blockade of lipogenesis resulted in reduced viral replication, assembly, and release. Supplementing exogenous lipids to cells treated with ACC inhibitors rescued HCV assembly with no effect on viral replication and release. Intriguingly, loss of viral RNA was not recapitulated at the protein level and addition of 2-bromopalmitate, a competitive inhibitor of protein palmitoylation, mirrored the effects of ACC inhibitors on reduced viral RNA without a concurrent loss in protein expression. These correlative results suggest that newly synthesized lipids may have a role in protein palmitoylation during HCV infection. PMID:27280294

  7. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity.

    PubMed

    Fischer, Henrike J; Witte, Ann-Kathrin; Walter, Lutz; Gröne, Hermann-Josef; van den Brandt, Jens; Reichardt, Holger M

    2016-05-01

    T-cell lymphopenia is a major risk factor for autoimmunity. Here we describe congenic Lewis (LEW) rats with a loss-of-function mutation in the Gimap5 gene, leading to a 92% reduction in peripheral T-cell numbers. Gimap5-deficient LEW rats developed eosinophilic autoimmune gastroenteritis accompanied by a 40-fold increase in IgE serum levels. This phenotype was ameliorated by antibiotic treatment, indicating a critical role of the microbial flora in the development of inflammatory bowel disease. Interestingly, Gimap5-deficient LEW rats showed strongly aggravated experimental autoimmune encephalomyelitis (EAE) after immunization with guinea pig myelin basic protein. This phenotype, however, persisted after antibiosis, confirming that the enhanced CNS autoimmune response in T-cell lymphopenic Gimap5-deficient LEW rats was unrelated to the composition of the microbial flora. Rather, it seems that it was caused by the 7-fold increase in the percentage of activated T cells producing IL-17 and IFN-γ, and the skewed T-cell receptor (TCR) repertoire, both of which were the result of T-cell lymphopenia and not affected by antibiosis. This notion was supported by the observation that adoptive T-cell transfer corrected the TCR repertoire and improved EAE. Collectively, our findings confirm a critical albeit differential role of T-cell lymphopenia in the susceptibility to organ-specific autoimmune responses.-Fischer, H. J., Witte, A.-K., Walter, L., Gröne, H.-J., van den Brandt, J., Reichardt, H. M. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity. © FASEB.

  8. The role of self-other distinction in understanding others' mental and emotional states: neurocognitive mechanisms in children and adults.

    PubMed

    Steinbeis, Nikolaus

    2016-01-19

    Social interactions come with the fundamental problem of trying to understand others' mental and affective states while under the overpowering influence of one's own concurrent thoughts and feelings. The ability to distinguish between simultaneous representations of others' current experiences as well as our own is crucial to navigate our complex social environments successfully. The developmental building blocks of this ability and how this is given rise to by functional and structural brain development remains poorly understood. In this review, I outline some of the key findings on the role of self-other distinction in understanding others' mental as well as emotional states in children and adults. I will begin by clarifying the crucial role for self-other distinction in avoiding egocentric attributions of one's own cognitive as well as affective states to others in adults and outline the underlying neural circuitry in overcoming such egocentricity. This will provide the basis for a discussion of the emergence of self-other distinction in early childhood as well as developmental changes therein throughout childhood and into adulthood. I will demonstrate that self-other distinction of cognitive and emotional states is already dissociable early in development. Concomitantly, I will show that processes of self-other distinction in cognitive and affective domains rely on adjacent but distinct neural circuitry each with unique connectivity profiles, presumably related to the nature of the distinction that needs to be made.

  9. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing

    PubMed Central

    Meehan, Tracy L.; Joudi, Tony F.; Timmons, Allison K.; Taylor, Jeffrey D.; Habib, Corey S.; Peterson, Jeanne S.; Emmanuel, Shanan; Franc, Nathalie C.; McCall, Kimberly

    2016-01-01

    Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells. PMID:27347682

  10. Distinct roles for IT and IH in controlling the frequency and timing of rebound spike responses

    PubMed Central

    Engbers, Jordan D T; Anderson, Dustin; Tadayonnejad, Reza; Mehaffey, W Hamish; Molineux, Michael L; Turner, Ray W

    2011-01-01

    Abstract The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (IT) and hyperpolarization-activated HCN channels (IH) increase in availability upon hyperpolarization, allowing for a rebound depolarization after a period of inhibition. Although rebound responses have long been recognized in deep cerebellar nuclear (DCN) neurons, the actual extent to which IT and IH contribute to rebound spike output following physiological levels of membrane hyperpolarization has not been clearly established. The current study used recordings and simulations of large diameter cells of the in vitro rat DCN slice preparation to define the roles for IT and IH in a rebound response. We find that physiological levels of hyperpolarization make only small proportions of the total IT and IH available, but that these are sufficient to make substantial contributions to a rebound response. At least 50% of the early phase of the rebound spike frequency increase is generated by an IT-mediated depolarization. An additional frequency increase is provided by IH in reducing the time constant and thus the extent of IT inactivation as the membrane returns from a hyperpolarized state to the resting level. An IH-mediated depolarization creates an inverse voltage-first spike latency relationship and produces a 35% increase in the precision of the first spike latency of a rebound. IT and IH can thus be activated by physiologically relevant stimuli and have distinct roles in the frequency, timing and precision of rebound responses. PMID:21969455

  11. Neuronal somata and extrasomal compartments play distinct roles during synapse formation between Lymnaea neurons.

    PubMed

    Xu, Fenglian; Luk, Collin C; Wiersma-Meems, Ryanne; Baehre, Kelly; Herman, Cameron; Zaidi, Wali; Wong, Noelle; Syed, Naweed I

    2014-08-20

    Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program. Copyright © 2014 the authors 0270-6474/14/3411304-12$15.00/0.

  12. Distinct roles of two alternative splice variants of matrilin-2 in protein oligomerization and proteolysis.

    PubMed

    Li, Longxuan; Zhang, Liangqing; Shao, Yiming; Wang, Guirong; Gong, Rujun; Wang, Zhengke; Peng, Jinwu; Wang, Shuhua; Genochio, David; Zhao, Bin; Luo, Junming

    2012-11-01

    Matrilin-2 (matn2) contains a unique domain, between the second von Willebrand factor A (vWFA) domain and the C-terminal coiled-coil domain, with no sequence homology with other family members. Complementary DNA (cDNA) sequence analysis of matn2 expression in both mice and humans revealed an alternative splice site in the region of the unique domain, which forms a short and a long splicing variant (containing an additional 19 amino acids). However, the expression heterogeneity of the alternative spliced variants, and the roles of the unique domain in oligomerization and proteolysis of matn2 are unknown. In this study, we examined the expression of the two alternative splice variants of matn2 in several skeletal and non-skeletal tissues by reverse transcription-polymerase chain reaction. Both splice variants of matn2 were detected at the mRNA level in all tissues studied. To explore the biochemical significance, several minigene constructs containing the second vWFA domain, the unique domain (with either a long or short form) and the coiled-coil domain of mouse mini matn2 were generated. Ectopic expression of these constructs demonstrated that the long form of matn2 is capable of self-assembling into several oligomeric forms, including a tetramer, trimer, pentamer or multimer; but the short form is only capable of forming a tetramer, trimer or dimer. Moreover, we observed that the splice variants of matn2 are important in modulating matn2 cleavage when co-expressed with matrilin-1 or matrilin-3. These results indicate that the two alternative splice variants have distinct roles in the processes of post-translational modification of matn2, which may have an impact on the homeostasis of the matrilin filamentous network of the extracellular matrix.

  13. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex

    PubMed Central

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B.

    2016-01-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer–promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and “bridging” proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior–posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. PMID:26715665

  14. Distinctive roles of unsaturated and saturated fatty acids in hyperlipidemic pancreatitis

    PubMed Central

    Chang, Yu-Ting; Chang, Ming-Chu; Tung, Chien-Chih; Wei, Shu-Chen; Wong, Jau-Min

    2015-01-01

    AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C (PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression. CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members. PMID:26327761

  15. CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development.

    PubMed

    Makihara, Hiroko; Nakai, Shiori; Ohkubo, Wataru; Yamashita, Naoya; Nakamura, Fumio; Kiyonari, Hiroshi; Shioi, Go; Jitsuki-Takahashi, Aoi; Nakamura, Haruko; Tanaka, Fumiaki; Akase, Tomoko; Kolattukudy, Pappachan; Goshima, Yoshio

    2016-09-01

    Collapsin response mediator protein 2, CRMP2, has been identified as an intracellular signaling mediator for Semaphorin 3A (Sema3A). CRMP2 plays a key role in axon guidance, dendritic morphogenesis, and cell polarization. It has been also implicated in a variety of neurological and psychiatric disorders. However, the in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2(-/-) ) mice. The crmp2(-/-) mice showed irregular development of dendritic spines in cortical neurons. The density of dendritic spines was reduced in the cortical layer V pyramidal neurons of crmp2(-/-) mice as well as in those of sema3A(-/-) and crmp1(-/-) mice. However, no abnormality was found in dendritic patterning in crmp2(-/-) compared to wild-type (WT) neurons. The level of CRMP1 was increased in crmp2(-/-) , but the level of CRMP2 was not altered in crmp1(-/-) compared to WT cortical brain lysates. Dendritic spine density and branching were reduced in double-heterozygous sema3A(+/-) ;crmp2(+/-) and sema3A(+/-) ;crmp1(+/-) mice. The phenotypic defects had no genetic interaction between crmp1 and crmp2. These findings suggest that both CRMP1 and CRMP2 mediate Sema3A signaling to regulate dendritic spine maturation and patterning, but through overlapping and distinct signaling pathways.

  16. Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis

    PubMed Central

    Deakin, Nicholas O.; Turner, Christopher E.

    2011-01-01

    Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin, and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly. PMID:21148292

  17. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex.

    PubMed

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B

    2016-02-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. Copyright © 2016 by the Genetics Society of America.

  18. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus.

    PubMed

    Amari, Khalid; Di Donato, Martin; Dolja, Valerian V; Heinlein, Manfred

    2014-10-01

    Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.

  19. Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus

    PubMed Central

    Amari, Khalid; Di Donato, Martin; Dolja, Valerian V.; Heinlein, Manfred

    2014-01-01

    Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection. PMID:25329993

  20. GDP-mannose transporter paralogues play distinct roles in polarized growth of Aspergillus nidulans.

    PubMed

    Jackson-Hayes, Loretta; Hill, Terry W; Loprete, Darlene M; Gordon, Barbara S; Groover, Chassidy J; Johnson, Laura R; Martin, Stuart A

    2010-01-01

    GDP-mannose transporters (GMT) carry GDP-mannose nucleotide sugars from the cytosol across the Golgi apparatus membrane for use as substrates in protein glycosylation in plants, animals and fungi. Genomes of some fungal species, such as the yeast Saccharomyces cerevisiae, contain only one gene encoding a GMT, while others, including Aspergillus nidulans, contain two (gmtA and gmtB). We previously showed that cell wall integrity and normal hyphal morphogenesis in A. nidulans depend upon the function of GmtA and that GmtA localizes to a Golgi-like compartment. Cells bearing the calI11 mutation in gmtA also have reduced cell surface mannosylation. Here we show that GmtB colocalizes with GmtA, suggesting that the role of GmtB is similar to that of GmtA, although the respective transcript levels differ during spore germination and early development. Transcript levels of gmtB are high in ungerminated spores and remain so throughout the first 16 h of germination. In contrast, transcript levels of gmrtA are negligible in ungerminated spores but increase to levels comparable to those of gmtB during germination. These observations suggest that although GmtA and GmtB reside within the same subcellular compartments, they nevertheless perform distinct functions at different stages of development.

  1. Distinct roles of neuronal and microglial CB2 cannabinoid receptors in the mouse hippocampus.

    PubMed

    Li, Yong; Kim, Jimok

    2017-09-06

    The effects of cannabinoids are primarily mediated by type-1 cannabinoid receptors in the brain and type-2 cannabinoid receptors (CB2Rs) in the peripheral immune system. However, recent evidence demonstrates that CB2Rs are also expressed in the brain and implicated in neuropsychiatric effects. Diverse types of cells in various regions in the brain express CB2Rs but the cellular loci of CB2Rs that induce specific behavioral effects have not been determined. To manipulate CB2R expression in specific types of cells in the dorsal hippocampus of adult mice, we used Cre-dependent overexpression and CRISPR-Cas9 genome-editing techniques in combination with adeno-associated viruses and transgenic mice. Elevation and disruption of CB2R expression in microglia in the CA1 area increased and decreased, respectively, contextual fear memory. In CA1 pyramidal neurons, disruption of CB2R expression enhanced spatial working memory, whereas their overexpression reduced anxiety levels assessed asan increase in the exploration time in the central area of open field. Interneuronal CB2Rs were not involved in the modulation of cognitive or emotional behaviors tested in this study. The targeted manipulation of CB2R expression in pyramidal neurons and microglia suggests that CB2Rs in different types of cells in the mature hippocampus play distinct roles in the regulation of memory and anxiety. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Two NADPH: Protochlorophyllide Oxidoreductase (POR) Isoforms Play Distinct Roles in Environmental Adaptation in Rice.

    PubMed

    Kwon, Choon-Tak; Kim, Suk-Hwan; Song, Giha; Kim, Dami; Paek, Nam-Chon

    2017-12-01

    NADPH: protochlorophyllide oxidoreductase (POR) is an essential enzyme that catalyzes the photoreduction of protochlorophyllide to chlorophyllide, which is ultimately converted to chlorophyll in developing leaves. Rice has two POR isoforms, OsPORA and OsPORB. OsPORA is expressed in the dark during early leaf development; OsPORB is expressed throughout leaf development regardless of light conditions. The faded green leaf (fgl) is a loss-of-function osporB mutant that displays necrotic lesions and variegation in the leaves due to destabilized grana thylakoids, and has increased numbers of plastoglobules in the chloroplasts. To investigate whether the function of OsPORA can complement that of OsPORB, we constitutively overexpressed OsPORA in fgl mutant. In the 35S:OsPORA/fgl (termed OPAO) transgenic plants, the necrotic lesions of the mutant disappeared and the levels of photosynthetic pigments and proteins, as well as plastid structure, were recovered in developing leaves under natural long days in the paddy field and under short days in an artificially controlled growth room. Under constant light conditions, however, total chlorophyll and carotenoid levels in the developing leaves of OPAO plants were lower than those of wild type. Moreover, the OPAO plants exhibited mild defects in mature leaves beginning at the early reproductive stage in the paddy field. The physiological function of OsPORB in response to constant light or during reproductive growth cannot be completely replaced by constitutive activity of OsPORA, although the biochemical functions of OsPORA and OsPORB are redundant. Therefore, we suggest that the two OsPORs have differentiated over the course of evolution, playing distinct roles in the adaptation of rice to the environment.

  3. Assembly of RecA-like recombinases: Distinct roles for mediator proteins in mitosis and meiosis

    PubMed Central

    Gasior, Stephen L.; Olivares, Heidi; Ear, Uy; Hari, Danielle M.; Weichselbaum, Ralph; Bishop, Douglas K.

    2001-01-01

    Members of the RecA family of recombinases from bacteriophage T4, Escherichia coli, yeast, and higher eukaryotes function in recombination as higher-order oligomers assembled on tracts of single-strand DNA (ssDNA). Biochemical studies have shown that assembly of recombinase involves accessory factors. These studies have identified a class of proteins, called recombination mediator proteins, that act by promoting assembly of recombinase on ssDNA tracts that are bound by ssDNA-binding protein (ssb). In the absence of mediators, ssb inhibits recombination reactions by competing with recombinase for DNA-binding sites. Here we briefly review mediated recombinase assembly and present results of new in vivo experiments. Immuno-double-staining experiments in Saccharomyces cerevisiae suggest that Rad51, the eukaryotic recombinase, can assemble at or near sites containing ssb (replication protein A, RPA) during the response to DNA damage, consistent with a need for mediator activity. Correspondingly, mediator gene mutants display defects in Rad51 assembly after DNA damage and during meiosis, although the requirements for assembly are distinct in the two cases. In meiosis, both Rad52 and Rad55/57 are required, whereas either Rad52 or Rad55/57 is sufficient to promote assembly of Rad51 in irradiated mitotic cells. Rad52 promotes normal amounts of Rad51 assembly in the absence of Rad55 at 30°C but not 20°C, accounting for the cold sensitivity of rad55 null mutants. Finally, we show that assembly of Rad51 is induced by radiation during S phase but not during G1, consistent with the role of Rad51 in repairing the spontaneous damage that occurs during DNA replication. PMID:11459983

  4. Naming from definition: the role of feature type and feature distinctiveness.

    PubMed

    Marques, J Frederico

    2005-05-01

    The present paper evaluates the contribution of feature type and feature distinctiveness to naming of living and nonliving things using a naming from definition task. Normal subjects read verbal descriptions containing features varying in type (i.e., sensory vs. functional) and distinctiveness (i.e., distinct vs. shared) and were asked to name the concept described and to select the three features that most contributed to their answer. Main results showed that sensory features were selected more often than functional features to support naming living things and that, independent of feature type, more distinct features were selected to support naming more often than shared features. Results are discussed considering the implications for understanding naming and for neuropsychological evaluation.

  5. Learning of Syllable-Object Relations by Preverbal Infants: The Role of Temporal Synchrony and Syllable Distinctiveness

    ERIC Educational Resources Information Center

    Gogate, Lakshmi J.

    2010-01-01

    The role of temporal synchrony and syllable distinctiveness in preverbal infants' learning of word-object relations was investigated. In Experiment 1, 7- and 8-month-olds (N=64) were habituated under conditions where two "similar-sounding" syllables, /tah/ and /gah/, were spoken simultaneously with the motions of one of two sets of…

  6. Learning of Syllable-Object Relations by Preverbal Infants: The Role of Temporal Synchrony and Syllable Distinctiveness

    ERIC Educational Resources Information Center

    Gogate, Lakshmi J.

    2010-01-01

    The role of temporal synchrony and syllable distinctiveness in preverbal infants' learning of word-object relations was investigated. In Experiment 1, 7- and 8-month-olds (N=64) were habituated under conditions where two "similar-sounding" syllables, /tah/ and /gah/, were spoken simultaneously with the motions of one of two sets of…

  7. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making

    PubMed Central

    Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.

    2012-01-01

    plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined. PMID:23114368

  8. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.

    PubMed

    Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L

    2012-12-01

    pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.

  9. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis.

    PubMed

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A; Yun, Dae-Jin; Hwang, Inhwan

    2012-05-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses.

  10. A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis[W

    PubMed Central

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A.; Yun, Dae-Jin; Hwang, Inhwan

    2012-01-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses. PMID:22582100

  11. Role of Importance and Distinctiveness of Semantic Features in People with Aphasia: A Replication Study

    ERIC Educational Resources Information Center

    Mason-Baughman, Mary Beth; Wallace, Sarah E.

    2014-01-01

    Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…

  12. Role of Importance and Distinctiveness of Semantic Features in People with Aphasia: A Replication Study

    ERIC Educational Resources Information Center

    Mason-Baughman, Mary Beth; Wallace, Sarah E.

    2014-01-01

    Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…

  13. On the roles of distinctiveness and semantic expectancies in episodic encoding of emotional words.

    PubMed

    Kamp, Siri-Maria; Potts, Geoffrey F; Donchin, Emanuel

    2015-12-01

    We examined the factors that contribute to enhanced recall for emotionally arousing words by analyzing behavioral performance, the P300 as an index of distinctiveness, and the N400 as an index of semantic expectancy violation in a modified Von Restorff paradigm. While their EEG was recorded, participants studied three list types (1) neutral words including one emotionally arousing isolate (either positive or negative), (2) arousing, negative words including one neutral isolate, or (3) arousing, positive words including one neutral isolate. Immediately after each list, free recall was tested. Negative, but not positive, words exhibited enhanced recall when presented as isolates in lists of neutral words and elicited a larger P300 for subsequently recalled than not-recalled words. This suggests that arousing, negative words stand out and that their distinctiveness contributes to their superior recall. Positive valence had an enhancing effect on recall only when the list contained mostly other positive words. Neutral isolates placed in either positive or negative lists elicited an N400, suggesting that semantic expectations developed in emotional word lists regardless of valence. However, semantic relatedness appeared to more strongly contribute to recall for positive than negative words. Our results suggest that distinctiveness and semantic relatedness contribute to episodic encoding of arousing words, but the impact of each factor depends on both a word's valence and its context.

  14. Sex and Sex-Role Identification: An Important Distinction for Organizational Research.

    ERIC Educational Resources Information Center

    Powell, Gary N.; Butterfield, R. Anthony

    Studies which have investigated males' and females' attitudes and behavior in organizations have yielded apparently contradictory results. In some studies, individuals have followed traditional sex-role stereotypes; in others, they have not. A proposed explanation for these inconsistencies is that sex-role identification is a more important…

  15. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  16. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  17. Silver Nanoparticles Alter Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating and Composition

    PubMed Central

    Powers, Christina M.; Slotkin, Theodore A.; Seidler, Frederic J.; Badireddy, Appala R.; Padilla, Stephanie

    2011-01-01

    Silver nanoparticles (AgNPs) act as antibacterials by releasing monovalent silver (Ag+) and are increasingly used in consumer products, thus elevating exposures in human and wildlife populations. In vitro models indicate that AgNPs are likely to be developmental neurotoxicants with actions distinct from those of Ag+. We exposed developing zebrafish (Danio rerio) to Ag+ or AgNPs on days 0–5 post-fertilization and evaluated hatching, morphology, survival and swim bladder inflation. Larval swimming behavior and responses to different lighting conditions were assessed 24 hr after the termination of exposure. Comparisons were made with AgNPs of different sizes and coatings: 10 nm citrate-coated AgNP (AgNP-C), and 10 or 50 nm polyvinylpyrrolidone-coated AgNPs (AgNP-PVP). Ag+ and AgNP-C delayed hatching to a similar extent but Ag+ was more effective in slowing swim bladder inflation, and elicited greater dysmorphology and mortality. In behavioral assessments, Ag+ exposed fish were hyperresponsive to light changes, whereas AgNP-C exposed fish showed normal responses. Neither of the AgNP-PVPs affected survival or morphology but both evoked significant changes in swimming responses to light in ways that were distinct from Ag+ and each other. The smaller AgNP-PVP caused overall hypoactivity whereas the larger caused hyperactivity. AgNPs are less potent than Ag+ with respect to dysmorphology and loss of viability, but nevertheless produce neurobehavioral effects that highly depend on particle coating and size, rather than just reflecting the release of Ag+. Different AgNP formulations are thus likely to produce distinct patterns of developmental neurotoxicity. PMID:21315816

  18. Understanding animate agents: distinct roles for the social network and mirror system.

    PubMed

    Wheatley, Thalia; Milleville, Shawn C; Martin, Alex

    2007-06-01

    How people understand the actions of animate agents has been vigorously debated. This debate has centered on two hypotheses focused on anatomically distinct neural substrates: The mirror-system hypothesis proposes that the understanding of others is achieved via action simulation, and the social-network hypothesis proposes that such understanding is achieved via the integration of critical biological properties (e.g., faces, affect). In this study, we assessed the areas of the brain that were engaged when people interpreted and imagined moving shapes as animate or inanimate. Although observing and imagining the moving shapes engaged the mirror system, only activation of the social network was modulated by animacy.

  19. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    SciTech Connect

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  20. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    SciTech Connect

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  1. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes

    PubMed Central

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2008-01-01

    Telomeres are maintained by three DNA-binding proteins (telomeric repeat binding factor 1 [TRF1], TRF2, and protector of telomeres 1 [POT1]) and several associated factors. One factor, TRF1-interacting protein 2 (TIN2), binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether subcomplexes also exist in vivo. We provide evidence for two TIN2 subcomplexes with distinct functions in human cells. We isolated these two TIN2 subcomplexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13 and TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist and that TIN2-15C–sensitive subcomplexes are particularly important for cell survival in the absence of functional p53. PMID:18443218

  2. Distinct Temporal Regulation of RET Isoform Internalization: Roles of Clathrin and AP2.

    PubMed

    Crupi, Mathieu J F; Yoganathan, Piriya; Bone, Leslie N; Lian, Eric; Fetz, Andrew; Antonescu, Costin N; Mulligan, Lois M

    2015-11-01

    The RET receptor tyrosine kinase (RTK) contributes to kidney and nervous system development, and is implicated in a number of human cancers. RET is expressed as two protein isoforms, RET9 and RET51, with distinct interactions and signaling properties that contribute to these processes. RET isoforms are internalized from the cell surface into endosomal compartments in response to glial cell line-derived neurotropic factor (GDNF) ligand stimulation but the specific mechanisms of RET trafficking remain to be elucidated. Here, we used total internal reflection fluorescence (TIRF) microscopy to demonstrate that RET internalization occurs primarily through clathrin coated pits (CCPs). Activated RET receptors colocalize with clathrin, but not caveolin. The RET51 isoform is rapidly and robustly recruited to CCPs upon GDNF stimulation, while RET9 recruitment occurs more slowly and is less pronounced. We showed that the clathrin-associated adaptor protein complex 2 (AP2) interacts directly with each RET isoform through its AP2 μ subunit, and is important for RET internalization. Our data establish that interactions with the AP2 complex promote RET receptor internalization via clathrin-mediated endocytosis but that RET9 and RET51 have distinct internalization kinetics that may contribute to differences in their biological functions.

  3. Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1

    PubMed Central

    Hermkes, Rebecca; Fu, Yong-Fu; Nürrenberg, Kerstin; Budhiraja, Ruchika; Schmelzer, Elmon; Elrouby, Nabil; Dohmen, R. Jürgen; Coupland, George

    2010-01-01

    SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions. Electronic supplementary material The online version of this article (doi:10.1007/s00425-010-1281-z) contains supplementary material, which is available to authorized users. PMID:20922545

  4. Distinct functional roles for the Menkes and Wilson copper translocating P-type ATPases in human placental cells.

    PubMed

    Hardman, Belinda; Michalczyk, Agnes; Greenough, Mark; Camakaris, James; Mercer, Jjulian; Ackland, Leigh

    2007-01-01

    The copper transporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND) are essential for normal copper transport in the human body. The placenta is the key organ in copper supply to the fetus during pregnancy and it is one of the few organs in the body to express both of the ATPases. The placenta therefore provides a unique opportunity to elucidate the specific roles of these transporters within the one cell type. Using polarized placental Jeg-3 cells, siRNA technology and radio-labelled 64Cu transport assays, MNK and WND were shown to have distinct roles in the vectorial transport of copper. MNK transported copper from the cell via the basolateral membrane and in contrast, WND transported copper from the apical membrane. Inactivation of MNK resulted in decreased activity of two important cuproenzymes, lysyl oxidase and Cu/Zn-superoxide dismutase. Overall, these results provide definitive evidence for distinct roles of MNK and WND in the human placenta, and are consistent with a role for MNK in the transport of copper into the fetal circulation, and through delivery of copper to placental cuproenzymes, whilst WND contributes to the maintenance of placental copper homeostasis by transporting copper to the maternal circulation.

  5. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton

    PubMed Central

    Zuniga, Elizabeth; Rippen, Marie; Alexander, Courtney; Schilling, Thomas F.; Crump, J. Gage

    2011-01-01

    Patterning of the upper versus lower face involves generating distinct pre-skeletal identities along the dorsoventral (DV) axes of the pharyngeal arches. Whereas previous studies have shown roles for BMPs, Endothelin 1 (Edn1) and Jagged1b-Notch2 in DV patterning of the facial skeleton, how these pathways are integrated to generate different skeletal fates has remained unclear. Here, we show that BMP and Edn1 signaling have distinct roles in development of the ventral and intermediate skeletons, respectively, of the zebrafish face. Using transgenic gain-of-function approaches and cell-autonomy experiments, we find that BMPs strongly promote hand2 and msxe expression in ventral skeletal precursors, while Edn1 promotes the expression of nkx3.2 and three Dlx genes (dlx3b, dlx5a and dlx6a) in intermediate precursors. Furthermore, Edn1 and Jagged1b pattern the intermediate and dorsal facial skeletons in part by inducing the BMP antagonist Gremlin 2 (Grem2), which restricts BMP activity to the ventral-most face. We therefore propose a model in which later cross-inhibitory interactions between BMP and Edn1 signaling, in part mediated by Grem2, separate an initially homogenous ventral region into distinct ventral and intermediate skeletal precursor domains. PMID:22031546

  6. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton.

    PubMed

    Zuniga, Elizabeth; Rippen, Marie; Alexander, Courtney; Schilling, Thomas F; Crump, J Gage

    2011-12-01

    Patterning of the upper versus lower face involves generating distinct pre-skeletal identities along the dorsoventral (DV) axes of the pharyngeal arches. Whereas previous studies have shown roles for BMPs, Endothelin 1 (Edn1) and Jagged1b-Notch2 in DV patterning of the facial skeleton, how these pathways are integrated to generate different skeletal fates has remained unclear. Here, we show that BMP and Edn1 signaling have distinct roles in development of the ventral and intermediate skeletons, respectively, of the zebrafish face. Using transgenic gain-of-function approaches and cell-autonomy experiments, we find that BMPs strongly promote hand2 and msxe expression in ventral skeletal precursors, while Edn1 promotes the expression of nkx3.2 and three Dlx genes (dlx3b, dlx5a and dlx6a) in intermediate precursors. Furthermore, Edn1 and Jagged1b pattern the intermediate and dorsal facial skeletons in part by inducing the BMP antagonist Gremlin 2 (Grem2), which restricts BMP activity to the ventral-most face. We therefore propose a model in which later cross-inhibitory interactions between BMP and Edn1 signaling, in part mediated by Grem2, separate an initially homogenous ventral region into distinct ventral and intermediate skeletal precursor domains.

  7. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader

    PubMed Central

    Seybert, Anja; Wigley, Dale B

    2004-01-01

    Circular clamps are utilised by replicative polymerases to enhance processivity. The topological problem of loading a toroidal clamp onto DNA is overcome by ATP-dependent clamp loader complexes. Different organisms use related protein machines to load clamps, but the mechanisms by which they utilise ATP are surprisingly different. Using mutant clamp loaders that are deficient in either ATP binding or hydrolysis in different subunits, we show how the different subunits of an archaeal clamp loader use ATP binding and hydrolysis in distinct ways at different steps in the loading process. Binding of nucleotide by the large subunit and three of the four small subunits is sufficient for clamp loading. However, ATP hydrolysis by the small subunits is required for release of PCNA to allow formation of the complex between PCNA and the polymerase, while hydrolysis by the large subunit is required for catalytic clamp loading. PMID:15014449

  8. The pleasures and pains of distinct self-construals: the role of interdependence in regulatory focus.

    PubMed

    Lee, A Y; Aaker, J L; Gardner, W L

    2000-06-01

    Regulatory focus theory distinguishes between self-regulatory processes that focus on promotion and prevention strategies for goal pursuit. Five studies provide support for the hypothesis that these strategies differ for individuals with distinct self-construals. Specifically, individuals with a dominant independent self-construal were predicted to place more emphasis on promotion-focused information, and those with a dominant interdependent self-construal on prevention-focused information. Support for this hypothesis was obtained for participants who scored high versus low on the Self-Construal Scale, participants who were presented with an independent versus interdependent situation, and participants from a Western versus Eastern culture. The influence of interdependence on regulatory focus was observed in both importance ratings of information and affective responses consistent with promotion or prevention focus.

  9. Beauty Hinders Attention Switch in Change Detection: The Role of Facial Attractiveness and Distinctiveness

    PubMed Central

    Chen, Wenfeng; Liu, Chang Hong; Nakabayashi, Kazuyo

    2012-01-01

    Background Recent research has shown that the presence of a task-irrelevant attractive face can induce a transient diversion of attention from a perceptual task that requires covert deployment of attention to one of the two locations. However, it is not known whether this spontaneous appraisal for facial beauty also modulates attention in change detection among multiple locations, where a slower, and more controlled search process is simultaneously affected by the magnitude of a change and the facial distinctiveness. Using the flicker paradigm, this study examines how spontaneous appraisal for facial beauty affects the detection of identity change among multiple faces. Methodology/Principal Findings Participants viewed a display consisting of two alternating frames of four faces separated by a blank frame. In half of the trials, one of the faces (target face) changed to a different person. The task of the participant was to indicate whether a change of face identity had occurred. The results showed that (1) observers were less efficient at detecting identity change among multiple attractive faces relative to unattractive faces when the target and distractor faces were not highly distinctive from one another; and (2) it is difficult to detect a change if the new face is similar to the old. Conclusions/Significance The findings suggest that attractive faces may interfere with the attention-switch process in change detection. The results also show that attention in change detection was strongly modulated by physical similarity between the alternating faces. Although facial beauty is a powerful stimulus that has well-demonstrated priority, its influence on change detection is easily superseded by low-level image similarity. The visual system appears to take a different approach to facial beauty when a task requires resource-demanding feature comparisons. PMID:22393457

  10. Beauty hinders attention switch in change detection: the role of facial attractiveness and distinctiveness.

    PubMed

    Chen, Wenfeng; Liu, Chang Hong; Nakabayashi, Kazuyo

    2012-01-01

    Recent research has shown that the presence of a task-irrelevant attractive face can induce a transient diversion of attention from a perceptual task that requires covert deployment of attention to one of the two locations. However, it is not known whether this spontaneous appraisal for facial beauty also modulates attention in change detection among multiple locations, where a slower, and more controlled search process is simultaneously affected by the magnitude of a change and the facial distinctiveness. Using the flicker paradigm, this study examines how spontaneous appraisal for facial beauty affects the detection of identity change among multiple faces. Participants viewed a display consisting of two alternating frames of four faces separated by a blank frame. In half of the trials, one of the faces (target face) changed to a different person. The task of the participant was to indicate whether a change of face identity had occurred. The results showed that (1) observers were less efficient at detecting identity change among multiple attractive faces relative to unattractive faces when the target and distractor faces were not highly distinctive from one another; and (2) it is difficult to detect a change if the new face is similar to the old. The findings suggest that attractive faces may interfere with the attention-switch process in change detection. The results also show that attention in change detection was strongly modulated by physical similarity between the alternating faces. Although facial beauty is a powerful stimulus that has well-demonstrated priority, its influence on change detection is easily superseded by low-level image similarity. The visual system appears to take a different approach to facial beauty when a task requires resource-demanding feature comparisons.

  11. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    PubMed

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  12. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity.

    PubMed

    Ishihara, Naotada; Eura, Yuka; Mihara, Katsuyoshi

    2004-12-15

    The mammalian homologues of yeast and Drosophila Fzo, mitofusin (Mfn) 1 and 2, are both essential for mitochondrial fusion and maintenance of mitochondrial morphology. Though the GTPase domain is required for Mfn protein function, the molecular mechanisms of the GTPase-dependent reaction as well as the functional division of the two Mfn proteins are unknown. To examine the function of Mfn proteins, tethering of mitochondrial membranes was measured in vitro by fluorescence microscopy using green fluorescence protein- or red fluorescent protein-tagged and Mfn1-expressing mitochondria, or by immunoprecipitation using mitochondria harboring HA- or FLAG-tagged Mfn proteins. These experiments revealed that Mfn1-harboring mitochondria were efficiently tethered in a GTP-dependent manner, whereas Mfn2-harboring mitochondria were tethered with only low efficiency. Sucrose density gradient centrifugation followed by co-immunoprecipitation revealed that Mfn1 produced oligomerized approximately 250 kDa and approximately 450 kDa complexes in a GTP-dependent manner. The approximately 450 kDa complex contained oligomerized Mfn1 from distinct apposing membranes (docking complex), whereas the approximately 250 kDa complex was composed of Mfn1 present on the same membrane or in the membrane-solubilized state (cis complex). These results were also confirmed using blue-native PAGE. Mfn1 exhibited higher activity for this reaction than Mfn2. Purified recombinant Mfn1 exhibited approximately eightfold higher GTPase activity than Mfn2. These findings indicate that the two Mfn proteins have distinct activities, and suggest that Mfn1 is mainly responsible for GTP-dependent membrane tethering.

  13. PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down.

    PubMed

    Sun, Qian; Turrigiano, Gina G

    2011-05-04

    Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear to what extent scaling up and scaling down use distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding "slot" that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other membrane-associated guanylate kinases (MAGUKs) drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95 MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast, scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age and was unaffected by a superabundance of PSD-95. Together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95 MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that use distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR.

  14. PSD-95 and PSD-93 Play Critical but Distinct Roles in Synaptic Scaling Up and Down

    PubMed Central

    Sun, Qian; Turrigiano, Gina G.

    2011-01-01

    Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPAR abundance are incompletely understood. Further, it remains unclear to what extent scaling up and scaling down utilize distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding “slot” that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other MAGUKs drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95-MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age, and was unaffected by a superabundance of PSD-95. Taken together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95-MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that utilize distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR. PMID:21543610

  15. Distinct roles of cadherin-6 and E-cadherin in tubulogenesis and lumen formation.

    PubMed

    Jia, Liwei; Liu, Fengming; Hansen, Steen H; Ter Beest, Martin B A; Zegers, Mirjam M P

    2011-06-15

    Classic cadherins are important regulators of tissue morphogenesis. The predominant cadherin in epithelial cells, E-cadherin, has been extensively studied because of its critical role in normal epithelial development and carcinogenesis. Epithelial cells may also coexpress other cadherins, but their roles are less clear. The Madin Darby canine kidney (MDCK) cell line has been a popular mammalian model to investigate the role of E-cadherin in epithelial polarization and tubulogenesis. However, MDCK cells also express relatively high levels of cadherin-6, and it is unclear whether the functions of this cadherin are redundant to those of E-cadherin. We investigate the specific roles of both cadherins using a knockdown approach. Although we find that both cadherins are able to form adherens junctions at the basolateral surface, we show that they have specific and mutually exclusive roles in epithelial morphogenesis. Specifically, we find that cadherin-6 functions as an inhibitor of tubulogenesis, whereas E-cadherin is required for lumen formation. Ablation of cadherin-6 leads to the spontaneous formation of tubules, which depends on increased phosphoinositide 3-kinase (PI3K) activity. In contrast, loss of E-cadherin inhibits lumen formation by a mechanism independent of PI3K.

  16. Strategies for coping with work-family conflict: the distinctive relationships of gender role ideology.

    PubMed

    Somech, Anit; Drach-Zahavy, Anat

    2007-01-01

    Study 1, with 266 employed parents, identified 8 coping strategies: super at home, good enough at home, delegation at home, priorities at home, super at work, good enough at work, delegation at work, and priorities at work. Study 2, with 679 employed parents, demonstrated a moderating effect of sex and gender role ideology in the relationship between coping strategy and work-family conflict. Specifically, the relationships between coping strategies (i.e., good enough at home, good enough at work, and delegation at work) and work interference with family were moderated by sex and gender role ideology. Regarding family interference with work, the relationships between coping strategies (i.e., good enough at home and good enough at work, delegation at home and delegation at work, and priorities at home) and family interference with work were moderated by sex and gender role ideology.

  17. oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction

    PubMed Central

    Kanke, Matt; Jambor, Helena; Reich, John; Marches, Brittany; Gstir, Ronald; Ryu, Young Hee; Ephrussi, Anne; Macdonald, Paul M.

    2015-01-01

    The Drosophila oskar (osk) mRNA is unusual in that it has both coding and noncoding functions. As an mRNA, osk encodes a protein required for embryonic patterning and germ cell formation. Independent of that function, the absence of osk mRNA disrupts formation of the karyosome and blocks progression through oogenesis. Here we show that loss of osk mRNA also affects the distribution of regulatory proteins, relaxing their association with large RNPs within the germline, and allowing them to accumulate in the somatic follicle cells. This and other noncoding functions of the osk mRNA are mediated by multiple sequence elements with distinct roles. One role, provided by numerous binding sites in two distinct regions of the osk 3′ UTR, is to sequester the translational regulator Bruno (Bru), which itself controls translation of osk mRNA. This defines a novel regulatory circuit, with Bru restricting the activity of osk, and osk in turn restricting the activity of Bru. Other functional elements, which do not bind Bru and are positioned close to the 3′ end of the RNA, act in the oocyte and are essential. Despite the different roles played by the different types of elements contributing to RNA function, mutation of any leads to accumulation of the germline regulatory factors in the follicle cells. PMID:25862242

  18. oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction.

    PubMed

    Kanke, Matt; Jambor, Helena; Reich, John; Marches, Brittany; Gstir, Ronald; Ryu, Young Hee; Ephrussi, Anne; Macdonald, Paul M

    2015-06-01

    The Drosophila oskar (osk) mRNA is unusual in that it has both coding and noncoding functions. As an mRNA, osk encodes a protein required for embryonic patterning and germ cell formation. Independent of that function, the absence of osk mRNA disrupts formation of the karyosome and blocks progression through oogenesis. Here we show that loss of osk mRNA also affects the distribution of regulatory proteins, relaxing their association with large RNPs within the germline, and allowing them to accumulate in the somatic follicle cells. This and other noncoding functions of the osk mRNA are mediated by multiple sequence elements with distinct roles. One role, provided by numerous binding sites in two distinct regions of the osk 3' UTR, is to sequester the translational regulator Bruno (Bru), which itself controls translation of osk mRNA. This defines a novel regulatory circuit, with Bru restricting the activity of osk, and osk in turn restricting the activity of Bru. Other functional elements, which do not bind Bru and are positioned close to the 3' end of the RNA, act in the oocyte and are essential. Despite the different roles played by the different types of elements contributing to RNA function, mutation of any leads to accumulation of the germline regulatory factors in the follicle cells.

  19. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways

    PubMed Central

    Kimura, Makoto; Morinaka, Yuriko; Imai, Kenichiro; Kose, Shingo; Horton, Paul; Imamoto, Naoko

    2017-01-01

    Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin-β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo allocation to the receptors. The redundancies of the receptors vary widely depending on the cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes. DOI: http://dx.doi.org/10.7554/eLife.21184.001 PMID:28117667

  20. Finding subtypes of transcription factor motif pairs with distinct regulatory roles

    PubMed Central

    Bais, Abha Singh; Kaminski, Naftali; Benos, Panayiotis V.

    2011-01-01

    DNA sequences bound by a transcription factor (TF) are presumed to contain sequence elements that reflect its DNA binding preferences and its downstream-regulatory effects. Experimentally identified TF binding sites (TFBSs) are usually similar enough to be summarized by a ‘consensus’ motif, representative of the TF DNA binding specificity. Studies have shown that groups of nucleotide TFBS variants (subtypes) can contribute to distinct modes of downstream regulation by the TF via differential recruitment of cofactors. A TFA may bind to TFBS subtypes a1 or a2 depending on whether it associates with cofactors TFB or TFC, respectively. While some approaches can discover motif pairs (dyads), none address the problem of identifying ‘variants’ of dyads. TFs are key components of multiple regulatory pathways targeting different sets of genes perhaps with different binding preferences. Identifying the discriminating TF–DNA associations that lead to the differential downstream regulation is thus essential. We present DiSCo (Discovery of Subtypes and Cofactors), a novel approach for identifying variants of dyad motifs (and their respective target sequence sets) that are instrumental for differential downstream regulation. Using both simulated and experimental datasets, we demonstrate how current motif discovery can be successfully leveraged to address this question. PMID:21486752

  1. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti.

    PubMed

    Zhang, Juan; Subramanian, Senthil; Stacey, Gary; Yu, Oliver

    2009-01-01

    Flavonoids play critical roles in legume-rhizobium symbiosis. However, the role of individual flavonoid compounds in this process has not yet been clearly established. We silenced different flavonoid-biosynthesis enzymes to generate transgenic Medicago truncatula roots with different flavonoid profiles. Silencing of chalcone synthase, the key entry-point enzyme for flavonoid biosynthesis led to flavonoid-deficient roots. Silencing of isoflavone synthase and flavone synthase led to roots deficient for a subset of flavonoids, isoflavonoids (formononetin and biochanin A) and flavones (7,4'-dihydroxyflavone), respectively. When tested for nodulation by Sinorhizobium meliloti, flavonoid-deficient roots had a near complete loss of nodulation, whereas flavone-deficient roots had reduced nodulation. Isoflavone-deficient roots nodulated normally, suggesting that isoflavones might not play a critical role in M. truncatula nodulation, even though they are the most abundant root flavonoids. Supplementation of flavone-deficient roots with 7, 4'-dihydroxyflavone, a major inducer of S. meliloti nod genes, completely restored nodulation. However, the same treatment did not restore nodulation in flavonoid-deficient roots, suggesting that other non-nod gene-inducing flavonoid compounds are also critical to nodulation. Supplementation of roots with the flavonol kaempferol (an inhibitor of auxin transport), in combination with the use of flavone pre-treated S. meliloti cells, completely restored nodulation in flavonoid-deficient roots. In addition, S. meliloti cells constitutively producing Nod factors were able to nodulate flavone-deficient roots, but not flavonoid-deficient roots. These observations indicated that flavones might act as internal inducers of rhizobial nod genes, and that flavonols might act as auxin transport regulators during nodulation. Both these roles of flavonoids appear critical for symbiosis in M. truncatula.

  2. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    PubMed

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  3. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles?

    PubMed

    Rieusset, J

    2015-11-01

    Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling.

  4. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory

    PubMed Central

    Gyurkó, M. Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-01-01

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans. PMID:26469632

  5. Distinct roles of left inferior frontal regions that explain individual differences in second language acquisition.

    PubMed

    Sakai, Kuniyoshi L; Nauchi, Arihito; Tatsuno, Yoshinori; Hirano, Kazuyoshi; Muraishi, Yukimasa; Kimura, Masakazu; Bostwick, Mike; Yusa, Noriaki

    2009-08-01

    Second language (L2) acquisition is more susceptible to environmental and idiosyncratic factors than first language acquisition. Here, we used functional magnetic resonance imaging for L2 learners of different ages of first exposure (mean: 12.6 and 5.6 years) in a formal school environment, and compared the cortical activations involved in processing English sentences containing either syntactic or spelling errors, where the testing ages and task performances of both groups were matched. We found novel activation patterns in two regions of the left inferior frontal gyrus (IFG) that correlated differentially with the performances of the late and early learners. Specifically, activations of the dorsal and ventral triangular part (F3t) of the left IFG correlated positively with the accuracy of the syntactic task for the late learners, whereas activations of the left ventral F3t correlated negatively with the accuracy for the early learners. In contrast, other cortical regions exhibited differential correlation patterns with the reaction times (RTs) of the syntactic task. Namely, activations of the orbital part (F3O) of the left IFG, as well as those of the left angular gyrus, correlated positively with the RTs for the late learners, whereas those activations correlated negatively with the RTs for the early learners. Moreover, the task-selective activation of the left F3O was maintained for both the late and early learners. These results explain individual differences in L2 acquisition, such that the acquisition of linguistic knowledge in L2 is subserved by at least two distinct inferior frontal regions of the left F3t and F3O.

  6. Role of distinct phospholipases A2 and their modulators in meconium aspiration syndrome in human neonates.

    PubMed

    De Luca, Daniele; Minucci, Angelo; Tripodi, Domenico; Piastra, Marco; Pietrini, Domenico; Zuppi, Cecilia; Conti, Giorgio; Carnielli, Virgilio P; Capoluongo, Ettore

    2011-07-01

    Meconium aspiration syndrome (MAS) is a life-threatening neonatal lung injury, whose pathophysiology has been mainly studied in animal models. In such models, pancreatic secretory phospholipase A2 (sPLA2-IB) and proinflammatory cytokines present in meconium challenge the lungs, catabolising surfactant and harming the alveoli. Locally produced phospholipases might perpetuate the injury and influence clinical pictures and therapeutic approaches. Our aim is to verify whether pulmonary phospholipase A2 (sPLA2-IIA) is involved in the damage and to determine if phospholipases and their modulators are associated with MAS clinical pictures. We studied distinct phospholipases A2 and their modulators in broncho-alveolar lavage (BAL) fluids and in meconium of five MAS neonates and in five control neonates ventilated for extrapulmonary reasons. MAS patients have higher amounts of pulmonary phospholipase (sPLA2-IIA; P = 0.016) and Clara cell secretory protein (CCSP; P = 0.032). The local production of such proteins by the lung is confirmed by their very low levels in meconium. sPLA2-IIA contributes to the higher total enzyme activity in MAS patients, as compared to controls (P = 0.008). Cytosolic phospholipase was not detected in meconium or alveolar fluid. sPLA2 activity and sPLA2-IIA concentrations are correlated with the TNFα and with the release of CCSP. sPLA2 total activity, sPLA2-IIA and TNFα concentrations in BAL fluids correlate with the oxygenation impairment and haemorrhagic lung oedema. Pulmonary sPLA2 is locally produced and contributes to the total sPLA2 activity during MAS. CCSP is also produced in trying to lower the inflammation. Both sPLA2 activity and sPLA2-IIA are significantly correlated with oxygenation impairment and haemorrhagic lung oedema.

  7. Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana.

    PubMed

    Saari, Paulus; French, Andrew S; Torkkeli, Päivi H; Liu, Hongxia; Immonen, Esa-Ville; Frolov, Roman V

    2017-04-03

    Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s(1) because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.

  8. AAA+ proteases and their role in distinct stages along the Vibrio cholerae lifecycle.

    PubMed

    Pressler, Katharina; Vorkapic, Dina; Lichtenegger, Sabine; Malli, Gerald; Barilich, Benjamin P; Cakar, Fatih; Zingl, Franz G; Reidl, Joachim; Schild, Stefan

    2016-09-01

    The facultative human pathogen Vibrio cholerae has to adapt to different environmental conditions along its lifecycle by means of transcriptional, translational and post-translational regulation. This study provides a first comprehensive analysis regarding the contribution of the cytoplasmic AAA+ proteases Lon, ClpP and HslV to distinct features of V. cholerae behaviour, including biofilm formation, motility, cholera toxin expression and colonization fitness in the mouse model. While absence of HslV did not yield to any altered phenotype compared to wildtype, absence of Lon or ClpP resulted in significantly reduced colonization in vivo. In addition, a Δlon deletion mutant showed altered biofilm formation and increased motility, which could be correlated with higher expression of V. cholerae flagella gene class IV. Concordantly, we could show by immunoblot analysis, that Lon is the main protease responsible for proteolytic control of FliA, which is required for class IV flagella gene transcription, but also downregulates virulence gene expression. FliA becomes highly sensitive to proteolytic degradation in absence of its anti-sigma factor FlgM, a scenario reported to occur during mucosal penetration due to FlgM secretion through the broken flagellum. Our results confirm that the high stability of FliA in the absence of Lon results in less cholera toxin and toxin corgulated pilus production under virulence gene inducing conditions and in the presence of a damaged flagellum. Thus, the data presented herein provide a molecular explanation on how V. cholerae can achieve full expression of virulence genes during early stages of colonization, despite FliA getting liberated from the anti-sigma factor FlgM. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    PubMed

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways. Published by Elsevier Inc.

  10. Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons.

    PubMed

    Sah, P

    1995-04-22

    Whole-cell and sharp microelectrode recordings were obtained from neurons of rat dorsal motor nucleus of the vagus (DMV) in transverse slices of the rat medulla maintained in vitro. Calcium currents were studied with sodium currents blocked with tetrodotoxin, potassium currents blocked by perfusing the cell with caesium as the main cation and using barium as the charge carrier. From a holding potential of -60 mV, inward currents activated at potentials positive of -50 mV and peaked around 0 mV. Voltage clamping the neuron at more hyperpolarised potentials did not reveal any low-threshold inward current. The inward current was effectively blocked by cadmium (100 microM) and nicked (1 mM), suggesting that it is carried by voltage-dependent calcium channels. The inward current could be separated into three pharmacologically distinct components: 40% of the whole cell current was omega-conotoxin sensitive; 20% of the current was nifedipine sensitive; and the rest was blocked by high concentrations of cadmium and nickel. This remaining current cannot be due to P-type calcium channels as omega-agatoxin had no effect on the inward current. Nifedipine had no significant effect on the action potential. Application of omega-conotoxin reduced the calcium component of the action potential and significantly reduced the potassium current underlying the afterhyperpolarization. Application of charybdotoxin slowed action potential repolarization. When N-type calcium channels were blocked with omega-conotoxin, charybdotoxin was still effective in slowing repolarization. In contrast, charybdotoxin was ineffective ineffective when calcium influx was blocked with the non-specific calcium channel blocker cadmium.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles.

    PubMed

    Julien, Olivier; Zhuang, Min; Wiita, Arun P; O'Donoghue, Anthony J; Knudsen, Giselle M; Craik, Charles S; Wells, James A

    2016-04-05

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.

  12. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles

    PubMed Central

    Zhuang, Min; Wiita, Arun P.; O’Donoghue, Anthony J.; Knudsen, Giselle M.; Craik, Charles S.; Wells, James A.

    2016-01-01

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events. PMID:27006500

  13. Distinct Roles of DBHS Family Members in the Circadian Transcriptional Feedback Loop

    PubMed Central

    Kowalska, Elzbieta; Ripperger, Jürgen A.; Muheim, Christine; Maier, Bert; Kurihara, Yasuyuki; Fox, Archa H.; Kramer, Achim

    2012-01-01

    Factors interacting with core circadian clock components are essential to achieve transcriptional feedback necessary for metazoan clocks. Here, we show that all three members of the Drosophila behavior human splicing (DBHS) family of RNA-binding proteins play a role in the mammalian circadian oscillator, abrogating or altering clock function when overexpressed or depleted in cells. Although these proteins are members of so-called nuclear paraspeckles, depletion of paraspeckles themselves via silencing of the structural noncoding RNA (ncRNA) Neat1 did not affect overall clock function, suggesting that paraspeckles are not required for DBHS-mediated circadian effects. Instead, we show that the proteins bound to circadian promoter DNA in a fashion that required the PERIOD (PER) proteins and potently repressed E-box-mediated transcription but not cytomegalovirus (CMV) promoter-mediated transcription when they were exogenously recruited. Nevertheless, mice with one or both copies of these genes deleted show only small changes in period length or clock gene expression in vivo. Data from transient transfections show that each of these proteins can either repress or activate, depending on the context. Taken together, our data suggest that all of the DBHS family members serve overlapping or redundant roles as transcriptional cofactors at circadian clock-regulated genes. PMID:22966205

  14. Distinct Roles of SOM and VIP Interneurons during Cortical Up States

    PubMed Central

    Neske, Garrett T.; Connors, Barry W.

    2016-01-01

    During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well-understood. We previously showed that many of the major interneuron subtypes in mouse barrel cortex are highly active during Up states (Neske et al., 2015); while fast-spiking (FS), parvalbumin (PV)-positive cells were the most active interneuron subtype, many non-fast-spiking (NFS), PV-negative interneurons were as active or more active than neighboring pyramidal cells. This suggests that the NFS cells could play a role in maintaining or modulating Up states. Here, using optogenetic techniques, we further dissected the functional roles during Up states of two major NFS, PV-negative interneuron subtypes: somatostatin (SOM)-positive cells and vasoactive intestinal peptide (VIP)-positive cells. We found that while pyramidal cell excitability during Up states significantly increased when SOM cells were optogenetically silenced, VIP cells did not influence pyramidal cell excitability either upon optogenetic silencing or activation. VIP cells failed to contribute to Up states despite their ability to inhibit SOM cells strongly. We suggest that the contribution of VIP cells to the excitability of pyramidal cells may vary with cortical state. PMID:27507936

  15. Non-Mammalian Vertebrates: Distinct Models to Assess the Role of Ion Gradients in Energy Expenditure.

    PubMed

    Geisler, Caroline E; Kentch, Kyle P; Renquist, Benjamin J

    2017-01-01

    Animals store metabolic energy as electrochemical gradients. At least 50% of mammalian energy is expended to maintain electrochemical gradients across the inner mitochondrial membrane (H(+)), the sarcoplasmic reticulum (Ca(++)), and the plasma membrane (Na(+)/K(+)). The potential energy of these gradients can be used to perform work (e.g., transport molecules, stimulate contraction, and release hormones) or can be released as heat. Because ectothermic species adapt their body temperature to the environment, they are not constrained by energetic demands that are required to maintain a constant body temperature. In fact, ectothermic species expend seven to eight times less energy than similarly sized homeotherms. Accordingly, ectotherms adopt low metabolic rates to survive cold, hypoxia, and extreme bouts of fasting that would result in energy wasting, lactic acidosis and apoptosis, or starvation in homeotherms, respectively. Ectotherms have also evolved unique applications of ion gradients to allow for localized endothermy. Endothermic avian species, which lack brown adipose tissue, have been integral in assessing the role of H(+) and Ca(++) cycling in skeletal muscle thermogenesis. Accordingly, the diversity of non-mammalian vertebrate species allows them to serve as unique models to better understand the role of ion gradients in heat production, metabolic flux, and adaptation to stressors, including obesity, starvation, cold, and hypoxia.

  16. Non-Mammalian Vertebrates: Distinct Models to Assess the Role of Ion Gradients in Energy Expenditure

    PubMed Central

    Geisler, Caroline E.; Kentch, Kyle P.; Renquist, Benjamin J.

    2017-01-01

    Animals store metabolic energy as electrochemical gradients. At least 50% of mammalian energy is expended to maintain electrochemical gradients across the inner mitochondrial membrane (H+), the sarcoplasmic reticulum (Ca++), and the plasma membrane (Na+/K+). The potential energy of these gradients can be used to perform work (e.g., transport molecules, stimulate contraction, and release hormones) or can be released as heat. Because ectothermic species adapt their body temperature to the environment, they are not constrained by energetic demands that are required to maintain a constant body temperature. In fact, ectothermic species expend seven to eight times less energy than similarly sized homeotherms. Accordingly, ectotherms adopt low metabolic rates to survive cold, hypoxia, and extreme bouts of fasting that would result in energy wasting, lactic acidosis and apoptosis, or starvation in homeotherms, respectively. Ectotherms have also evolved unique applications of ion gradients to allow for localized endothermy. Endothermic avian species, which lack brown adipose tissue, have been integral in assessing the role of H+ and Ca++ cycling in skeletal muscle thermogenesis. Accordingly, the diversity of non-mammalian vertebrate species allows them to serve as unique models to better understand the role of ion gradients in heat production, metabolic flux, and adaptation to stressors, including obesity, starvation, cold, and hypoxia.

  17. Individual ball possession in soccer

    PubMed Central

    Hoernig, Martin

    2017-01-01

    This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC), Individual Ball Action (IBA), Individual Ball Control (IBC), Team Ball Possession (TBP), Team Ball Control (TBC) und Team Playmaking (TPM) according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min) and the longest for goalkeepers (1:38 ± 0:58 min), central defenders (1:38 ± 1:09 min) and central midfielders (1:27 ± 1:08 min). The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession. PMID:28692649

  18. Individual ball possession in soccer.

    PubMed

    Link, Daniel; Hoernig, Martin

    2017-01-01

    This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC), Individual Ball Action (IBA), Individual Ball Control (IBC), Team Ball Possession (TBP), Team Ball Control (TBC) und Team Playmaking (TPM) according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min) and the longest for goalkeepers (1:38 ± 0:58 min), central defenders (1:38 ± 1:09 min) and central midfielders (1:27 ± 1:08 min). The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession.

  19. Biochemical properties of nematode O-acetylserine(thiol)lyase paralogs imply their distinct roles in hydrogen sulfide homeostasis.

    PubMed

    Vozdek, Roman; Hnízda, Aleš; Krijt, Jakub; Será, Leona; Kožich, Viktor

    2013-12-01

    O-Acetylserine(thiol)lyases (OAS-TLs) play a pivotal role in a sulfur assimilation pathway incorporating sulfide into amino acids in microorganisms and plants, however, these enzymes have not been found in the animal kingdom. Interestingly, the genome of the roundworm Caenorhabditis elegans contains three expressed genes predicted to encode OAS-TL orthologs (cysl-1-cysl-3), and a related pseudogene (cysl-4); these genes play different roles in resistance to hypoxia, hydrogen sulfide and cyanide. To get an insight into the underlying molecular mechanisms we purified the three recombinant worm OAS-TL proteins, and we determined their enzymatic activities, substrate binding affinities, quaternary structures and the conformations of their active site shapes. We show that the nematode OAS-TL orthologs can bind O-acetylserine and catalyze the canonical reaction although this ligand may more likely serve as a competitive inhibitor to natural substrates instead of being a substrate for sulfur assimilation. In addition, we propose that S-sulfocysteine may be a novel endogenous substrate for these proteins. However, we observed that the three OAS-TL proteins are conformationally different and exhibit distinct substrate specificity. Based on the available evidences we propose the following model: CYSL-1 interacts with EGL-9 and activates HIF-1 that upregulates expression of genes detoxifying sulfide and cyanide, the CYSL-2 acts as a cyanoalanine synthase in the cyanide detoxification pathway and simultaneously produces hydrogen sulfide, while the role of CYSL-3 remains unclear although it exhibits sulfhydrylase activity in vitro. All these data indicate that C. elegans OAS-TL paralogs have distinct cellular functions and may play different roles in maintaining hydrogen sulfide homeostasis.

  20. Expression Profiling of Macrophages Reveals Multiple Populations with Distinct Biological Roles in an Immunocompetent Orthotopic Model of Lung Cancer

    PubMed Central

    Poczobutt, Joanna M.; De, Subhajyoti; Yadav, Vinod K.; Nguyen, Teresa T.; Li, Howard; Sippel, Trisha R.; Weiser-Evans, Mary C.M.; Nemenoff, Raphael A.

    2016-01-01

    Macrophages represent an important component of the tumor microenvironment and play a complex role in cancer progression. These cells are characterized by a high degree of plasticity, and alter their phenotype in response to local environmental cues. While the M1/M2 classification of macrophages has been widely used, the complexity of macrophage phenotypes has not been well studied, particularly in lung cancer. In this study we employed an orthotopic immunocompetent model of lung adenocarcinoma in which murine lung cancer cells are directly implanted into the left lobe of syngeneic mice. Using multi-marker flow cytometry, we defined and recovered several distinct populations of monocytes/macrophages from tumors at different stages of progression. We used RNA-seq transcriptional profiling to define distinct features of each population and determine how they change during tumor progression. We defined an alveolar resident macrophage population that does not change in number and expresses multiple genes related to lipid metabolism and lipid signaling. We also defined a population of tumor-associated macrophages that increase dramatically with tumor, and selectively expresses a panel of chemokine genes. A third population, which resembles tumor-associated monocytes, expresses a large number of genes involved in matrix remodeling. By correlating transcriptional profiles with clinically prognostic genes, we show that specific monocyte/macrophage populations are enriched in genes that predict outcomes in lung adenocarcinoma, implicating these subpopulations as critical determinants of patient survival. Our data underscore the complexity of monocytes/macrophages in the tumor microenvironment, and suggest that distinct populations play specific roles in tumor progression. PMID:26873985

  1. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing

    PubMed Central

    Kim, Dong-Hwee; Khatau, Shyam B.; Feng, Yunfeng; Walcott, Sam; Sun, Sean X.; Longmore, Gregory D.; Wirtz, Denis

    2012-01-01

    The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to biochemical stimuli. Actin cap associated focal adhesions (ACAFAs) dominate cell mechanosensing over a wide range of matrix stiffness, an ACAFA-specific function regulated by actomyosin contractility in the actin cap, while conventional focal adhesions are restrictively involved in mechanosensing for extremely soft substrates. These results establish the perinuclear actin cap and associated ACAFAs as major mediators of cellular mechanosensing and a critical element of the physical pathway that transduce mechanical cues all the way to the nucleus. PMID:22870384

  2. Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe.

    PubMed

    Kim, Ji Sun; Bang, Mi-Ae; Lee, Songmi; Chae, Ho Zoon; Kim, Kanghwa

    2010-03-01

    To investigate the differences in the functional roles of peroxiredoxins (Prxs) and glutathione peroxidase (GPx) of Schizosaccharomyces pombe, we examined the peroxidase and molecular chaperone properties of the recombinant proteins. TPx (thioredoxin peroxidase) exhibited a capacity for peroxide reduction with the thioredoxin system. GPx also showed thioreoxin-dependent peroxidase activity rather than GPx activity. The peroxidase activity of BCP (bacterioferritin comigratory protein) was similar to that of TPx. However, peroxidase activity was not observed for PMP20 (peroxisomal membrane protein 20). TPx, PMP20, and GPx inhibited thermal aggregation of citrate synthase at 43(o)C, but BCP failed to inhibit the aggregation. The chaperone activities of PMP20 and GPx were weaker than that of TPx. The peroxidase and chaperone properties of TPx, BCP, and GPx of the fission yeast are similar to those of Saccharomyces cerevisiae. The fission yeast PMP20 without thioredoxin-dependent peroxidase activity may act as a molecular chaperone.

  3. The Drosophila Helicase Maleless (MLE) is Implicated in Functions Distinct From its Role in Dosage Compensation*

    PubMed Central

    Cugusi, Simona; Kallappagoudar, Satish; Ling, Huiping; Lucchesi, John C.

    2015-01-01

    Helicases are ubiquitous enzymes that unwind or remodel single or double-stranded nucleic acids, and that participate in a vast array of metabolic pathways. The ATP-dependent DEXH-box RNA/DNA helicase MLE was first identified as a core member of the chromatin remodeling MSL complex, responsible for dosage compensation in Drosophila males. Although this complex does not assemble in females, MLE is present. Given the multiplicity of functions attributed to its mammalian ortholog RNA helicase A, we have carried out an analysis for the purpose of determining whether MLE displays the same diversity. We have identified a number of different proteins that associate with MLE, implicating its role in specific pathways. We have documented this association in selected examples that include the spliceosome complex, heterogeneous Nuclear Ribonucleoproteins involved in RNA Processing and in Heterochromatin Protein 1 deposition, and the NuRD complex. PMID:25776889

  4. A Distributed Neural Network Model for the Distinct Roles of Medial and Lateral HVC in Zebra Finch Song Production.

    PubMed

    Galvis, Daniel; Wu, Wei; Hyson, Richard L; Johnson, Frank; Bertram, Richard

    2017-04-05

    Male zebra finches produce a song consisting of a canonical sequence of syllables, learned from a tutor and repeated throughout its adult life. Much of the neural circuitry responsible for this behavior is located in the cortical premotor region HVC (acronym is name). In a recent study from our lab, we found that partial bilateral ablation of the medial portion of HVC has effects on the song that are qualitatively different from those of bilateral ablation of the lateral portion. In this report we describe a neural network organization that can explain these data, and in so doing suggests key roles for other brain nuclei in the production of song. We also suggest that syllables and the gaps between them are each coded separately by neural chains within HVC, and that the timing mechanisms for syllables and gaps are distinct. The design principles underlying this model assign distinct roles for medial and lateral HVC circuitry that explain the data on medial and lateral ablations. In addition, despite the fact that the neural coding of song sequence is distributed among several brain nuclei in our model, it accounts for data showing that cooling of HVC stretches syllables uniformly and to a greater extent than gaps. Finally, the model made unanticipated predictions about details of the effects of medial and lateral HVC ablations that were then confirmed by reanalysis of these previously acquired behavioral data.

  5. A distinct role of the queen in coordinated workload and soil distribution in eusocial naked mole-rats.

    PubMed

    Kutsukake, Nobuyuki; Inada, Masayuki; Sakamoto, Shinsuke H; Okanoya, Kazuo

    2012-01-01

    We investigated how group members achieve collective decision-making, by considering individual intrinsic behavioural rules and behavioural mechanisms for maintaining social integration. Using a simulated burrow environment, we investigated the behavioural rules of coordinated workload for soil distribution in a eusocial mammal, the naked mole-rat (Heterocephalus glaber). We tested two predictions regarding a distinct role of the queen, a socially dominant individual in the caste system: the presence of a queen would increase the workload of other caste individuals, and the cues by a queen would affect the soil distribution. In experiment 1, we placed four individuals of various castes from the same colony into an experimental burrow. Workers exhibited the highest frequency of workload compared to other castes. The presence of a queen activated the workload by other individuals. Individuals showed a consistent workload in a particular direction so as to bias the soil distribution. These results suggest that individuals have a consensus on soil distribution and that the queen plays a distinct role. In experiment 2, we placed the odour of a queen in one of four cells and observed its effect on other individuals' workload and soil distribution. Relative to other cells, individuals frequently dug in the queen cell so the amount of soil in the queen cell decreased. These results suggest that queen odour is an important cue in coordinated workload and soil distribution in this species.

  6. A Distinct Role of the Queen in Coordinated Workload and Soil Distribution in Eusocial Naked Mole-Rats

    PubMed Central

    Kutsukake, Nobuyuki; Inada, Masayuki; Sakamoto, Shinsuke H.; Okanoya, Kazuo

    2012-01-01

    We investigated how group members achieve collective decision-making, by considering individual intrinsic behavioural rules and behavioural mechanisms for maintaining social integration. Using a simulated burrow environment, we investigated the behavioural rules of coordinated workload for soil distribution in a eusocial mammal, the naked mole-rat (Heterocephalus glaber). We tested two predictions regarding a distinct role of the queen, a socially dominant individual in the caste system: the presence of a queen would increase the workload of other caste individuals, and the cues by a queen would affect the soil distribution. In experiment 1, we placed four individuals of various castes from the same colony into an experimental burrow. Workers exhibited the highest frequency of workload compared to other castes. The presence of a queen activated the workload by other individuals. Individuals showed a consistent workload in a particular direction so as to bias the soil distribution. These results suggest that individuals have a consensus on soil distribution and that the queen plays a distinct role. In experiment 2, we placed the odour of a queen in one of four cells and observed its effect on other individuals’ workload and soil distribution. Relative to other cells, individuals frequently dug in the queen cell so the amount of soil in the queen cell decreased. These results suggest that queen odour is an important cue in coordinated workload and soil distribution in this species. PMID:22957085

  7. Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development.

    PubMed

    Annoura, Takeshi; van Schaijk, Ben C L; Ploemen, Ivo H J; Sajid, Mohammed; Lin, Jing-wen; Vos, Martijn W; Dinmohamed, Avinash G; Inaoka, Daniel K; Rijpma, Sanna R; van Gemert, Geert-Jan; Chevalley-Maurel, Severine; Kiełbasa, Szymon M; Scheltinga, Fay; Franke-Fayard, Blandine; Klop, Onny; Hermsen, Cornelus C; Kita, Kiyoshi; Gego, Audrey; Franetich, Jean-Francois; Mazier, Dominique; Hoffman, Stephen L; Janse, Chris J; Sauerwein, Robert W; Khan, Shahid M

    2014-05-01

    The 10 Plasmodium 6-Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6-cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional "6-Cys family-related" proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver-stage development. RT-PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human-hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6-Cys sporozoite proteins P52 and P36. Our results show that 6-Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver-stage development.

  8. P16 and p53 play distinct roles in different subtypes of breast cancer.

    PubMed

    Shan, Ming; Zhang, Xianyu; Liu, Xiaolong; Qin, Yu; Liu, Tong; Liu, Yang; Wang, Ji; Zhong, Zhenbin; Zhang, Youxue; Geng, Jingshu; Pang, Da

    2013-01-01

    Breast cancers are heterogeneous and complex diseases, and subtypes of breast cancers may involve unique molecular mechanisms. The p16(INK4a) and p53 pathways are two of the major pathways involved in control of the cell cycle. They also play key roles in tumorigenesis. However, whether the roles of these pathways differ in the subtypes of breast cancer is unclear. Therefore, p16 and p53 expression were investigated in different breast cancer subtypes to ascertain their contributions to these cancers. A total of 400 cases of non-invasive ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC), including the major molecular subtypes luminal-A, luminal-B, Her-2, and triple-negative subtypes, and 50 cases of normal controls were compared. Luminal-A cancers expressed the lowest level of p16 among the subtypes in DCIS, and the level of p16 expression was up-regulated in the luminal-A of IDC (P<0.008). Triple-negative breast cancers were characterized by a correlation of p53 overexpression with a high level of p16 expression. Luminal lesion types with high p16 expression in DCIS were found to be more likely to develop into aggressive breast cancers, possibly promoted by p53 dysfunction. Taken together, the present study suggest that p16 expression in luminal-A breast cancers is associated with their progression from DCIS to IDC, and both p53 and p16 expressions are important for the development of triple-negative breast cancers in DCIS and IDC.

  9. P16 and P53 Play Distinct Roles in Different Subtypes of Breast Cancer

    PubMed Central

    Liu, Xiaolong; Qin, Yu; Liu, Tong; Liu, Yang; Wang, Ji; Zhong, Zhenbin; Zhang, Youxue; Geng, Jingshu; Pang, Da

    2013-01-01

    Breast cancers are heterogeneous and complex diseases, and subtypes of breast cancers may involve unique molecular mechanisms. The p16INK4a and p53 pathways are two of the major pathways involved in control of the cell cycle. They also play key roles in tumorigenesis. However, whether the roles of these pathways differ in the subtypes of breast cancer is unclear. Therefore, p16 and p53 expression were investigated in different breast cancer subtypes to ascertain their contributions to these cancers. A total of 400 cases of non-invasive ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC), including the major molecular subtypes luminal-A, luminal-B, Her-2, and triple-negative subtypes, and 50 cases of normal controls were compared. Luminal-A cancers expressed the lowest level of p16 among the subtypes in DCIS, and the level of p16 expression was up-regulated in the luminal-A of IDC (P<0.008). Triple-negative breast cancers were characterized by a correlation of p53 overexpression with a high level of p16 expression. Luminal lesion types with high p16 expression in DCIS were found to be more likely to develop into aggressive breast cancers, possibly promoted by p53 dysfunction. Taken together, the present study suggest that p16 expression in luminal-A breast cancers is associated with their progression from DCIS to IDC, and both p53 and p16 expressions are important for the development of triple-negative breast cancers in DCIS and IDC. PMID:24146864

  10. Distinct Roles of Meiosis-Specific Cohesin Complexes in Mammalian Spermatogenesis.

    PubMed

    Biswas, Uddipta; Hempel, Kai; Llano, Elena; Pendas, Alberto; Jessberger, Rolf

    2016-10-01

    Mammalian meiocytes feature four meiosis-specific cohesin proteins in addition to ubiquitous ones, but the roles of the individual cohesin complexes are incompletely understood. To decipher the functions of the two meiosis-specific kleisins, REC8 or RAD21L, together with the only meiosis-specific SMC protein SMC1β, we generated Smc1β-/-Rec8-/- and Smc1β-/-Rad21L-/- mouse mutants. Analysis of spermatocyte chromosomes revealed that besides SMC1β complexes, SMC1α/RAD21 and to a small extent SMC1α/REC8 contribute to chromosome axis length. Removal of SMC1β and RAD21L almost completely abolishes all chromosome axes. The sex chromosomes do not pair in single or double mutants, and autosomal synapsis is impaired in all mutants. Super resolution microscopy revealed synapsis-associated SYCP1 aberrantly deposited between sister chromatids and on single chromatids in Smc1β-/-Rad21L-/- cells. All mutants show telomere length reduction and structural disruptions, while wild-type telomeres feature a circular TRF2 structure reminiscent of t-loops. There is no loss of centromeric cohesion in both double mutants at leptonema/early zygonema, indicating that, at least in the mutant backgrounds, an SMC1α/RAD21 complex provides centromeric cohesion at this early stage. Thus, in early prophase I the most prominent roles of the meiosis-specific cohesins are in axis-related features such as axis length, synapsis and telomere integrity rather than centromeric cohesion.

  11. Distinct Roles of Myosins in Aspergillus fumigatus Hyphal Growth and Pathogenesis

    PubMed Central

    Renshaw, Hilary; Vargas-Muñiz, José M.; Richards, Amber D.; Asfaw, Yohannes G.; Juvvadi, Praveen R.

    2016-01-01

    Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans. However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies. PMID:26953327

  12. Distinct Roles of Meiosis-Specific Cohesin Complexes in Mammalian Spermatogenesis

    PubMed Central

    Biswas, Uddipta; Hempel, Kai; Llano, Elena; Pendas, Alberto; Jessberger, Rolf

    2016-01-01

    Mammalian meiocytes feature four meiosis-specific cohesin proteins in addition to ubiquitous ones, but the roles of the individual cohesin complexes are incompletely understood. To decipher the functions of the two meiosis-specific kleisins, REC8 or RAD21L, together with the only meiosis-specific SMC protein SMC1β, we generated Smc1β-/-Rec8-/- and Smc1β-/-Rad21L-/- mouse mutants. Analysis of spermatocyte chromosomes revealed that besides SMC1β complexes, SMC1α/RAD21 and to a small extent SMC1α/REC8 contribute to chromosome axis length. Removal of SMC1β and RAD21L almost completely abolishes all chromosome axes. The sex chromosomes do not pair in single or double mutants, and autosomal synapsis is impaired in all mutants. Super resolution microscopy revealed synapsis-associated SYCP1 aberrantly deposited between sister chromatids and on single chromatids in Smc1β-/-Rad21L-/- cells. All mutants show telomere length reduction and structural disruptions, while wild-type telomeres feature a circular TRF2 structure reminiscent of t-loops. There is no loss of centromeric cohesion in both double mutants at leptonema/early zygonema, indicating that, at least in the mutant backgrounds, an SMC1α/RAD21 complex provides centromeric cohesion at this early stage. Thus, in early prophase I the most prominent roles of the meiosis-specific cohesins are in axis-related features such as axis length, synapsis and telomere integrity rather than centromeric cohesion. PMID:27792785

  13. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism.

    PubMed

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K; Weiss, David S; Cronan, John E

    2015-06-09

    The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. Our findings show that Francisella novicida has evolved two functional biotin protein ligases, BplA and BirA. BplA is a much more efficient enzyme than BirA, and its expression is significantly induced upon infection of macrophages. Only BplA is required for F. novicida pathogenicity, whereas BirA prevents wasteful biotin synthesis. These data

  14. Distinct Behaviour of Sorafenib in Experimental Cachexia-Inducing Tumours: The Role of STAT3

    PubMed Central

    Busquets, Sílvia; López-Soriano, Francisco J.; Argilés, Josep M.

    2014-01-01

    The presence of a tumour is very often associated with wasting in the host, affecting both skeletal muscle and adipose tissue. In the present study we used sorafenib, a multi-kinase inhibitor with anti-tumour activity, in order to investigate the effects of chemotherapy on wasting. Three different experimental mouse tumour models were included: C26 colon carcinoma, B16 melanoma and Lewis lung carcinoma (LLC). The results obtained clearly show that sorafenib was effective in reducing tumour growth in LLC and B16 models, while it had no effect on C26. Interestingly, sorafenib treatment reduced the signs of muscle wasting and improved the physical activity in the LLC model and also in the C26, despite the absence of antineoplastic action in the latter. Our results discard a role for IL-6 in the action of sorafenib since the drug did not affect the levels of this cytokine. Conversely, sorafenib seems to act by influencing both STAT3 and ERK activity at muscle level, leading to reduced accumulation of Pax7 and atrogin-1. Sorafenib may interfere with muscle wasting by decreasing the activation of these signal transduction pathways. PMID:25436606

  15. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment

    PubMed Central

    Shi, Jianjian; Wu, Xiangbing; Surma, Michelle; Vemula, Sasidhar; Zhang, Lumin; Yang, Yu; Kapur, Reuben; Wei, Lei

    2013-01-01

    This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment. PMID:23392171

  16. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment.

    PubMed

    Shi, Jianjian; Wu, Xiangbing; Surma, Michelle; Vemula, Sasidhar; Zhang, Lumin; Yang, Yu; Kapur, Reuben; Wei, Lei

    2013-02-07

    This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1(-/-) and ROCK2(-/-) mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1(-/-) MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2(-/-) MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.

  17. Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA

    PubMed Central

    Thakar, Ketan; May, Christopher K.; Rogers, Anna; Carroll, Christopher W.

    2017-01-01

    Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes span the nuclear envelope and transduce force from dynamic cytoskeletal networks to the nuclear lamina. Here we show that LINC complexes also signal from the nuclear envelope to critical regulators of the actin cytoskeleton. Specifically, we find that LINC complexes that contain the inner nuclear membrane protein Sun2 promote focal adhesion assembly by activating the small GTPase RhoA. A key effector in this process is the transcription factor/coactivator complex composed of SRF/Mkl1. A constitutively active form of SRF/Mkl1 was not sufficient to induce focal adhesion assembly in cells lacking Sun2, however, suggesting that LINC complexes support RhoA activity through a transcription-independent mechanism. Strikingly, we also find that the inner nuclear membrane protein Sun1 antagonizes Sun2 LINC complexes and inhibits RhoA activation and focal adhesion assembly. Thus different LINC complexes have opposing roles in the transcription-independent control of the actin cytoskeleton through the small GTPase RhoA. PMID:28035049

  18. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability

    PubMed Central

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  19. Distinct roles of DKK1 and DKK2 in tumor angiogenesis.

    PubMed

    Park, Hongryeol; Jung, Hyei Yoon; Choi, Hyun-Jung; Kim, Dong Young; Yoo, Ji-Young; Yun, Chae-Ok; Min, Jeong-Ki; Kim, Young-Myoung; Kwon, Young-Guen

    2014-01-01

    Tumor angiogenesis is essential for tumor invasive growth and metastasis, and generates abnormal vascular structures unlike developmental neovessel formation. To reduce tumor vascular abnormalities such as leakage and perivascular cell coverage deficiency that limit cancer therapy effectiveness, novel therapeutic approaches focus on vessel normalization. We have previously shown that Dickkopf-1 (DKK1), a Wnt antagonist, inhibits and its homolog DKK2 enhances, angiogenesis in normal tissues. In the present study, we investigated the effects of DKK1 and DKK2 on tumor growth and angiogenesis. Treatment of B16F10 melanoma-bearing mice with adenovirus expressing DKK1 significantly reduced tumor growth but DKK2 increased growth compared with controls. Similar pattern of tumor growth was observed in endothelial-specific DKK1 and DKK2 transgenic mice. Interestingly, tumor vascular density and perfusion were significantly decreased by DKK1 but increased by DKK2. Moreover, coverage of blood vessels by pericytes was reduced by DKK1, while DKK2 increased it. We further observed that DKK1 diminished retinal vessel density and increased avascular area in an in vivo murine model of oxygen-induced retinopathy, whereas DKK2 showed opposite results. These findings demonstrate that DKK1 and DKK2 have differential roles in normalization and functionality of tumor blood vessels, in addition to angiogenesis.

  20. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone

    PubMed Central

    1996-01-01

    Filopodial motility is critical for many biological processes, particularly for axon guidance. This motility is based on altering the F-actin-based cytoskeleton, but the mechanisms of how this occurs and the actin-associated proteins that function in this process remain unclear. We investigated two of these proteins found in filopodia, talin and vinculin, by inactivating them in subregions of chick dorsal root ganglia neuronal growth cones and by observing subsequent behavior by video-enhanced microscopy and quantitative morphometry. Microscale chromophore-assisted laser inactivation of talin resulted in the temporary cessation of filopodial extension and retraction. Inactivation of vinculin caused an increased incidence of filopodial bending and buckling within the laser spot but had no effect on extension or retraction. These findings show that talin acts in filopodial motility and may couple both extension and retraction to actin dynamics. They also suggest that vinculin is not required for filopodial extension and retraction but plays a role in the structural integrity of filopodia. PMID:8794861

  1. The distinct role of performing euthanasia on depression and suicide in veterinarians.

    PubMed

    Tran, Lily; Crane, Monique F; Phillips, Jacqueline K

    2014-04-01

    Veterinarians are more likely to experience mood disorders and suicide than other occupational groups (Fritschi, Morrison, Shirangi & Day, 2009; Platt, Hawton, Simkin, & Mellanby, 2010). The performance of euthanasia has been implicated as contributing determinately to the prevalence of suicide risk and psychological distress in veterinarians (Bartram & Baldwin, 2008, 2010). In contrast, the application of psychological approaches would suggest a possible protective role for euthanasia administration. This paper is the first to investigate the association between euthanasia-administration frequency and depressed mood and suicide risk. A cross-sectional survey sampled 540 Australia-registered veterinarians (63.8% women), ranging in age from 23 to 74. Results revealed that the administration of objectionable euthanasia (i.e., euthanasia that the veterinarian disagreed with) was not related to our mental health variables. In contrast, overall euthanasia frequency had a weak positive linear relationship with depression. Moreover, overall euthanasia frequency moderated the impact of depression on suicide risk. The nature of this moderation suggested that average frequency per week of performing euthanasia attenuated the relationship between depressed mood and suicide risk. The implications of these findings and directions for further research are discussed.

  2. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.

    PubMed

    Devore, Sasha; de Almeida, Licurgo; Linster, Christiane

    2014-08-20

    The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns.

  3. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions

    PubMed Central

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-01-01

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution. DOI: http://dx.doi.org/10.7554/eLife.13764.001 PMID:27490481

  4. The Vpr protein from HIV-1: distinct roles along the viral life cycle

    PubMed Central

    Le Rouzic, Erwann; Benichou, Serge

    2005-01-01

    The genomes of human and simian immunodeficiency viruses (HIV and SIV) encode the gag, pol and env genes and contain at least six supplementary open reading frames termed tat, rev, nef, vif, vpr, vpx and vpu. While the tat and rev genes encode regulatory proteins absolutely required for virus replication, nef, vif, vpr, vpx and vpu encode for small proteins referred to "auxiliary" (or "accessory"), since their expression is usually dispensable for virus growth in many in vitro systems. However, these auxiliary proteins are essential for viral replication and pathogenesis in vivo. The two vpr- and vpx-related genes are found only in members of the HIV-2/SIVsm/SIVmac group, whereas primate lentiviruses from other lineages (HIV-1, SIVcpz, SIVagm, SIVmnd and SIVsyk) contain a single vpr gene. In this review, we will mainly focus on vpr from HIV-1 and discuss the most recent developments in our understanding of Vpr functions and its role during the virus replication cycle. PMID:15725353

  5. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces.

    PubMed

    Tsompanidou, Eleni; Denham, Emma L; Becher, Dörte; de Jong, Anne; Buist, Girbe; van Oosten, Marleen; Manson, Willem L; Back, Jaap Willem; van Dijl, Jan Maarten; Dreisbach, Annette

    2013-02-01

    The human pathogen Staphylococcus aureus is renowned for the rapid colonization of contaminated wounds, medical implants, and food products. Nevertheless, little is known about the mechanisms that allow S. aureus to colonize the respective wet surfaces. The present studies were therefore aimed at identifying factors used by S. aureus cells to spread over wet surfaces, starting either from planktonic or biofilm-associated states. Through proteomics analyses we pinpoint phenol-soluble modulins (PSMs) as prime facilitators of the spreading process. To dissect the roles of the eight PSMs produced by S. aureus, these peptides were chemically synthesized and tested in spreading assays with different psm mutant strains. The results show that PSMα3 and PSMγ are the strongest facilitators of spreading both for planktonic cells and cells in catheter-associated biofilms. Compared to the six other PSMs of S. aureus, PSMα3 and PSMγ combine strong surfactant activities with a relatively low overall hydropathicity. Importantly, we show that PSM-mediated motility of S. aureus facilitates the rapid colonization of wet surfaces next to catheters and the colonization of fresh meat.

  6. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses

    PubMed Central

    Nguyen, Quynh-Anh; Horn, Meryl E; Nicoll, Roger A

    2016-01-01

    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively. DOI: http://dx.doi.org/10.7554/eLife.19236.001 PMID:27805570

  7. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses.

    PubMed

    Nguyen, Quynh-Anh; Horn, Meryl E; Nicoll, Roger A

    2016-11-02

    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively.

  8. Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation

    PubMed Central

    Dalebroux, Zachary D.; Yagi, Brian F.; Sahr, Tobias; Buchrieser, Carmen; Swanson, Michele S.

    2010-01-01

    SUMMARY To transit between hosts, intracellular Legionella pneumophila transform into a motile, infectious, transmissive state. Here we exploit the pathogen’s life cycle to examine how guanosine tetraphosphate (ppGpp) and DksA cooperate to govern bacterial differentiation. Transcriptional profiling revealed that during transmission alarmone accumulation increases the mRNA for flagellar and Type IV-secretion components, secreted host effectors, and regulators, and decreases transcripts for translation, membrane modification and ATP synthesis machinery. DksA is critical for differentiation, since mutants are defective for stationary phase survival, flagellar gene activation, lysosome avoidance, and macrophage cytotoxicity. The roles of ppGpp and DksA depend on the context. For macrophage transmission, ppGpp is essential, whereas DksA is dispensable, indicating ppGpp can act autonomously. In broth, DksA promotes differentiation when ppGpp levels increase, or during fatty acid stress, as judged by flaA expression and evasion of degradation by macrophages. For flagella morphogenesis, DksA is required for basal fliA (σ28) promoter activity. When alarmone levels increase, DksA cooperates with ppGpp to generate a pulse of Class II rod RNA or to amplify the Class III sigma factor and Class IV flagellin RNAs. Thus, DksA responds to the level of ppGpp and other stress signals to coordinate L. pneumophila differentiation. PMID:20199605

  9. The Petunia Ortholog of Arabidopsis SUPERMAN Plays a Distinct Role in Floral Organ Morphogenesis

    PubMed Central

    Nakagawa, Hitoshi; Ferrario, Silvia; Angenent, Gerco C.; Kobayashi, Akira; Takatsuji, Hiroshi

    2004-01-01

    Arabidopsis (Arabidopsis thaliana) SUPERMAN (SUP) plays a role in establishing a boundary between whorls 3 and 4 of flowers and in ovule development. We characterized a Petunia hybrida (petunia) homolog of SUP, designated PhSUP1, to compare with SUP. Genomic DNA of the PhSUP1 partially restored the stamen number and ovule development phenotypes of the Arabidopsis sup mutant. Two P. hybrida lines of transposon (dTph1) insertion mutants of PhSUP1 exhibited increased stamen number at the cost of normal carpel development, and ovule development was defective owing to aberrant growth of the integument. Unlike Arabidopsis sup mutants, phsup1 mutants also showed extra tissues connecting stamens, a petal tube and an ovary, and aberrancies in the development of anther and placenta. PhSUP1 transcripts occurred in the basal region of wild-type flowers around developing organ primordia in whorls 2 and 3 as well as in the funiculus of the ovule, concave regions of the placenta, and interthecal regions of developing anthers. Overexpression of PhSUP1 in P. hybrida resulted in size reduction of petals, leaves, and inflorescence stems. The shortening of inflorescence stems and petal tubes was primarily attributable to suppression of cell elongation, whereas a decrease in cell number was mainly responsible for the size reduction of petal limbs. PMID:15020746

  10. The petunia ortholog of Arabidopsis SUPERMAN plays a distinct role in floral organ morphogenesis.

    PubMed

    Nakagawa, Hitoshi; Ferrario, Silvia; Angenent, Gerco C; Kobayashi, Akira; Takatsuji, Hiroshi

    2004-04-01

    Arabidopsis (Arabidopsis thaliana) SUPERMAN (SUP) plays a role in establishing a boundary between whorls 3 and 4 of flowers and in ovule development. We characterized a Petunia hybrida (petunia) homolog of SUP, designated PhSUP1, to compare with SUP. Genomic DNA of the PhSUP1 partially restored the stamen number and ovule development phenotypes of the Arabidopsis sup mutant. Two P. hybrida lines of transposon (dTph1) insertion mutants of PhSUP1 exhibited increased stamen number at the cost of normal carpel development, and ovule development was defective owing to aberrant growth of the integument. Unlike Arabidopsis sup mutants, phsup1 mutants also showed extra tissues connecting stamens, a petal tube and an ovary, and aberrancies in the development of anther and placenta. PhSUP1 transcripts occurred in the basal region of wild-type flowers around developing organ primordia in whorls 2 and 3 as well as in the funiculus of the ovule, concave regions of the placenta, and interthecal regions of developing anthers. Overexpression of PhSUP1 in P. hybrida resulted in size reduction of petals, leaves, and inflorescence stems. The shortening of inflorescence stems and petal tubes was primarily attributable to suppression of cell elongation, whereas a decrease in cell number was mainly responsible for the size reduction of petal limbs.

  11. Distinct Roles of Phenol-Soluble Modulins in Spreading of Staphylococcus aureus on Wet Surfaces

    PubMed Central

    Tsompanidou, Eleni; Denham, Emma L.; Becher, Dörte; de Jong, Anne; Buist, Girbe; van Oosten, Marleen; Manson, Willem L.; Back, Jaap Willem; Dreisbach, Annette

    2013-01-01

    The human pathogen Staphylococcus aureus is renowned for the rapid colonization of contaminated wounds, medical implants, and food products. Nevertheless, little is known about the mechanisms that allow S. aureus to colonize the respective wet surfaces. The present studies were therefore aimed at identifying factors used by S. aureus cells to spread over wet surfaces, starting either from planktonic or biofilm-associated states. Through proteomics analyses we pinpoint phenol-soluble modulins (PSMs) as prime facilitators of the spreading process. To dissect the roles of the eight PSMs produced by S. aureus, these peptides were chemically synthesized and tested in spreading assays with different psm mutant strains. The results show that PSMα3 and PSMγ are the strongest facilitators of spreading both for planktonic cells and cells in catheter-associated biofilms. Compared to the six other PSMs of S. aureus, PSMα3 and PSMγ combine strong surfactant activities with a relatively low overall hydropathicity. Importantly, we show that PSM-mediated motility of S. aureus facilitates the rapid colonization of wet surfaces next to catheters and the colonization of fresh meat. PMID:23183971

  12. Besieged by devils--thoughts on possession and possession states.

    PubMed

    Prins, H

    1992-07-01

    Aspects of possession are reviewed in historical, cultural and clinical contexts. Consideration is given to differential diagnosis and management. It is suggested that a multi-disciplinary approach is required for a condition that stands at the boundaries of psychiatry. Two quotations from Elizabethan playwrights are relevant to the theme of this paper: 'Beware you do not conjure up a spirit you cannot lay' Ben Johnson, The New Inn (Act III, Scene ii) 'Farewell the tranquil mind: farewell content.' Shakespeare, Othello (Act III, Scene iii).

  13. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-04-21

    decrease in solvation free energy, harnessing the monomer solvation free energy earned during the misfolding. The second step, where a compact dimer structure is formed, is driven by direct protein-protein interactions, but again it is accompanied by an increase in solvation free energy. The increased solvation free energy of the dimer will function as the driving force to recruit another Aβ protein in the approach stage of subsequent oligomerizations. The fluctuating thermodynamics analysis of the misfolding and dimerization of the Aβ protein indicates that the interaction of the protein with surrounding water plays a critical role in protein aggregation. Such a water-centric perspective is further corroborated by demonstrating that, for a large number of Aβ mutants and mutants of other protein systems, the change in the experimental aggregation propensity upon mutation has a significant correlation with the protein solvation free energy change. We also find striking discrimination between the positively and negatively charged residues on the protein surface by surrounding water molecules, which is shown to play a crucial role in determining the protein aggregation propensity. We argue that the protein total charge dictates such striking behavior of the surrounding water molecules. Our results provide new insights for understanding and predicting the protein aggregation propensity, thereby offering novel design principles for producing aggregation-resistant proteins for biotherapeutics.

  14. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  15. Distinct roles of ROCK1 and ROCK2 during development of porcine preimplantation embryos.

    PubMed

    Zhang, Jin Yu; Dong, Huan Sheng; Oqani, Reza K; Lin, Tao; Kang, Jung Won; Jin, Dong Il

    2014-07-01

    Cell-to-cell contact mediated by cell adhesion is fundamental to the compaction process that ensures blastocyst quality during embryonic development. In this study, we first showed that Rho-associated coiled-coil protein kinases (ROCK1 and ROCK2) were expressed both in porcine oocytes and IVF preimplantation embryos, playing different roles in oocytes maturation and embryo development. The amount of mRNA encoding ROCK1 and the protein concentration clearly increased between the eight-cell and morula stages, but decreased significantly when blastocysts were formed. Conversely, ROCK2 was more abundant in the blastocyst compared with other embryonic stages. Moreover, immunostaining showed that ROCK1 protein distribution changed as the embryo progressed through cleavage and compaction to the morula stage. Initially, the protein was predominantly associated with the plasma membrane but later became cytoplasmic. By contrast, ROCK2 protein was localized in both the cytoplasm and the spindle rotation region during oocyte meiosis, but in the cytoplasm and nucleus as the embryo developed. In addition, ROCK2 was present in the trophectoderm cells of the blastocyst. Treatment with 15 μM Y27632, a specific inhibitor of ROCKs, completely blocked further development of early four-cell stage embryos. Moreover, we did not detect the expression of ROCK1 but did detect ROCK2 expression in blastocysts. Moreover, lysophosphatidic acid an activator of ROCKs significantly improved the rates of blastocyst formation. These data demonstrate that ROCKs are required for embryo development to the blastocyst stage. Together, our results indicate that ROCK1 and ROCK2 may exert different biological functions during the regulation of compaction and in ensuring development of porcine preimplantation embryos to the blastocyst stage. © 2014 Society for Reproduction and Fertility.

  16. Distinct roles of cortical and pallidal β and γ frequencies in hemiparkinsonian and dyskinetic rats.

    PubMed

    Salvadè, Agnese; D'Angelo, Vincenza; Di Giovanni, Giuseppe; Tinkhauser, Gerd; Sancesario, Giuseppe; Städler, Claudio; Möller, Jens C; Stefani, Alessandro; Kaelin-Lang, Alain; Galati, Salvatore

    2016-01-01

    Enhanced β band (βB) activity, which is suppressed by levodopa (LD) treatment, has been demonstrated within the basal ganglia (BG) of Parkinson's disease (PD) patients. However, some data suggest that Parkinsonian symptoms are not directly related to this brain frequency and therefore, its causative role remains questionable. A less explored phenomenon is the link between the γ band (γB) and PD phenomenology. Here, we monitored the development of the oscillatory activity during chronic LD depletion and LD treatment in Parkinsonian and levodopa-induced dyskinesia (LID) in rats. We found a significant and bilateral power increase in the high βB frequencies (20-30 Hz) within the first 10 days after 6-hydroxydopamine (6-OHDA) lesion, which was in accordance with a significant depletion of dopaminergic fibers in the striatum. We also observed a clear-cut γB increase during LD treatment. The development of LID was characterized by a slight increase in the cumulative power of βB accompanied by a large augmentation in the γB frequency (60-80 Hz). This latter effect reached a plateau in the frontal cortex bilaterally and the left globus pallidus after the second week of LD treatment. Our data suggest that the βB parallels the emergence of Parkinsonian signs and can be taken as a predictive sign of DA depletion, matching TH-staining reduction. On the other hand, the γB is strictly correlated to the development of LID. LD treatment had an opposite effect on βB and γB, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.

    PubMed

    Porri, Aimone; Torti, Stefano; Romera-Branchat, Maida; Coupland, George

    2012-06-01

    The plant growth regulator gibberellin (GA) contributes to many developmental processes, including the transition to flowering. In Arabidopsis, GA promotes this transition most strongly under environmental conditions such as short days (SDs) when other regulatory pathways that promote flowering are not active. Under SDs, GAs activate transcription of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY) at the shoot meristem, two genes encoding transcription factors involved in flowering. Here, the tissues in which GAs act to promote flowering were tested under different environmental conditions. The enzyme GIBBERELLIN 2 OXIDASE 7 (GA2ox7), which catabolizes active GAs, was overexpressed in most tissues from the viral CaMV 35S promoter, specifically in the vascular tissue from the SUCROSE TRANSPORTER 2 (SUC2) promoter or in the shoot apical meristem from the KNAT1 promoter. We find that under inductive long days (LDs), GAs are required in the vascular tissue to increase the levels of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) mRNAs, which encode a systemic signal transported from the leaves to the meristem during floral induction. Similarly, impairing GA signalling in the vascular tissue reduces FT and TSF mRNA levels and delays flowering. In the meristem under inductive LDs, GAs are not required to activate SOC1, as reported under SDs, but for subsequent steps in floral induction, including transcription of genes encoding SQUAMOSA PROMOTER BINDING PROMOTER LIKE (SPL) transcription factors. Thus, GA has important roles in promoting transcription of FT, TSF and SPL genes during floral induction in response to LDs, and these functions are spatially separated between the leaves and shoot meristem.

  18. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects.

    PubMed

    Konopova, Barbora; Smykal, Vlastimil; Jindra, Marek

    2011-01-01

    Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.

  19. Common and Distinct Roles of Juvenile Hormone Signaling Genes in Metamorphosis of Holometabolous and Hemimetabolous Insects

    PubMed Central

    Jindra, Marek

    2011-01-01

    Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis. PMID:22174880

  20. Distinct role of Tim-3 in systemic lupus erythematosus and clear cell renal cell carcinoma.

    PubMed

    Zheng, Hongying; Guo, Xingqing; Tian, Qingwu; Li, Hui; Zhu, Yuanqi

    2015-01-01

    Tim-3 is considered as one of the T-cell immunoglobulin mucin (TIM) gene family members, which contributes to the activating or silencing genes, but the mechanism of Tim-3 function in mediating SLE or tumor metastasis has not been well explored. Here, we reported Tim-3 was high expressed in the peripheral blood mononuclear cells (PBMCs) of patients with SLE, detected by RT-PCR, significantly, GATA-3 mRNA expression also increased in patients with SLE, compared with the healthy control groups. The bioinformatics used to detect the TCGA database indicated the abnormal expression of Tim-3 was involved in several different cancer types. Further, the higher expression of Tim-3 in kidney renal clear cell carcinoma TCGA database indicated it was a marker for worse 5-year survival. The high expression of Tim-3 in different ccRCC cell lines was detected in both RNA level and protein level. Further, two kinds of relative Tim-3 siRNAs in ccRCC cell lines inhibit cell migration and invasion in vitro, However, the inhibition could be partially rescued by the additional GATA3 knockdown. Further, the down regulation in the RNA and protein levels of GATA3, and the negative correlation between Tim-3 and GATA3 implied that suppression of downstream GATA3 was an important mechanism by which Tim-3 triggered metastasis in ccRCC cell lines. Together, our experiments reveal the role for Tim-3 in facilitating SLE or invasive potential of ccRCC cells by either activating GATA3 or inhibiting GATA3, suggesting that Tim-3 might be a potential therapeutic target for treating SLE or clear cell renal cell carcinoma.

  1. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles.

    PubMed

    Ikmi, Aissam; Netter, Sophie; Coen, Dario

    2008-05-15

    The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.

  2. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

    PubMed

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-06-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1.

  3. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles

    PubMed Central

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-01-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30–Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130–Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33–Cys130′ and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33–Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. PMID:24625320

  4. 50 CFR 20.33 - Possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Possession limit. 20.33 Section 20.33... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.33 Possession limit. No person shall possess more migratory game birds taken in the United States than the possession limit or the aggregate...

  5. 50 CFR 20.33 - Possession limit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Possession limit. 20.33 Section 20.33... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.33 Possession limit. No person shall possess more migratory game birds taken in the United States than the possession limit or the aggregate...

  6. Distinct roles for Dectin-1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis.

    PubMed

    Leal, Sixto M; Cowden, Susan; Hsia, Yen-Cheng; Ghannoum, Mahmoud A; Momany, Michelle; Pearlman, Eric

    2010-07-01

    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1beta and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that beta-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1(-/-) corneas have impaired IL-1beta and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high beta-glucan. In contrast to Dectin 1(-/-) mice, cellular infiltration into infected TLR2(-/-), TLR4(-/-), and MD-2(-/-) mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4(-/-) mice, but not TLR2(-/-) or MD-2(-/-) mice. We also found that TRIF(-/-) and TIRAP(-/-) mice exhibited no fungal-killing defects, but that MyD88(-/-) and IL-1R1(-/-) mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which beta-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1beta, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent

  7. Distinctive topologies of partner-switching signaling networks correlate with their physiological roles

    PubMed Central

    Igoshin, Oleg A.; Brody, Margaret S.; Price, Chester W.; Savageau, Michael A.

    2009-01-01

    principles agree with the known or suspected roles of similar networks in diverse bacteria. PMID:17498739

  8. Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata.

    PubMed

    Yang, Siwy Ling; Chung, Kuang-Ren

    2013-08-01

    requirement of Nox in ROS resistance and provide insights into its critical role in regulating both YAP1 and HOG1 in A. alternata. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  9. Role of distinct type IV collagen networks in glomerular development and function.

    PubMed

    Harvey, S J; Zheng, K; Sado, Y; Naito, I; Ninomiya, Y; Jacobs, R M; Hudson, B G; Thorner, P S

    1998-12-01

    In X-linked Alport syndrome, mutations in the COL4A5 gene encoding the alpha 5 chain of type IV collagen result in progressive renal failure. This nephropathy appears to relate to the arrest of a switch from an alpha 1/alpha 2 to an alpha 3/alpha 4/alpha 5 network of type IV collagen in the developing glomerular basement membrane (GBM; Kalluri et al, J Clin Invest 99:2470, 1997). We examined the role of this switch in glomerular development and function using a canine model of X-linked nephritis with a COL4A5 mutation. The electron microscopic appearance and the expression of the alpha 1-alpha 6 chains of type IV collagen in the GBM was correlated with glomerular function. In normal neonatal glomeruli, once capillary loops were present, there was staining of GBM for the alpha 1-alpha 5 chains. Prior to this stage, only alpha 1 and alpha 2 chains were present, with rare glomeruli positive for the alpha 5 chain. As glomeruli matured, the alpha 1 and alpha 2 chains tended to disappear from the GBM, with the alpha 3-alpha 5 chains remaining. In affected male dogs, only the alpha 1 and alpha 2 chains were detected at any stage. GBM ultrastructure in these dogs remained normal until one month and proteinuria did not appear until two months. Our results show that normal glomerular development involves a switch in type IV collagen networks. In affected male dogs, a failure of this switch results in an absence of the alpha 3/alpha 4/alpha 5 network and a persistence of the alpha 1/alpha 2 network in GBM. GBM ultrastructure and glomerular function remain normal for one month, indicating that GBM deterioration in Alport syndrome begins as a postnatal process. Hence, only the alpha 1/alpha 2 network is essential for normal glomerular development, whereas the alpha 3/alpha 4/alpha 5 network is essential for long-term maintenance of glomerular structure and function.

  10. Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    PubMed Central

    Leal, Sixto M.; Cowden, Susan; Hsia, Yen-Cheng; Ghannoum, Mahmoud A.; Momany, Michelle; Pearlman, Eric

    2010-01-01

    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4

  11. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    PubMed Central

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  12. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.

    PubMed

    Painter, David R; Dux, Paul E; Mattingley, Jason B

    2015-07-01

    circuits underlying target and distractor capture, as well as distinct roles for the IPS and TPJ.

  13. Distinct roles and differential expression levels of Wnt5a mRNA isoforms in colorectal cancer cells

    PubMed Central

    Huang, Tsui-Chin; Huang, Chi-Chen; Ko, Chiung-Yuan; Lee, Yi-Chao; Lin, Ding-Yen; Cheng, Ya-Wen

    2017-01-01

    The canonical Wnt/β-catenin pathway is constitutively activated in more than 90% of colorectal cancer (CRC) cases in which β-catenin contributes to CRC cell growth and survival. In contrast to the Wnt/β-catenin pathway, the non-canonical Wnt pathway can antagonize functions of the canonical Wnt/β-catenin pathway. Wnt5a is a key factor in the non-canonical Wnt pathway, and it plays diverse roles in different types of cancers. It was shown that reintroducing Wnt5a into CRC cells resulted in inhibited cell proliferation and impaired cell motility. However, contradictory results were reported describing increased Wnt5a expression being associated with a poor prognosis of CRC patients. Recently, it was shown that the diverse roles of Wnt5a are due to two distinct roles of Wnt5a isoforms. However, the exact roles and functions of the Wnt5a isoforms in CRC remain largely unclear. The present study for the first time showed the ambiguous role of Wnt5a in CRC was due to the encoding of distinct roles of the various Wnt5a mRNA isoforms. A relatively high expression level of the Wnt5a-short (S) isoform transcript and a low expression level of the Wnt5a-long (L) isoform transcript were detected in CRC cell lines and specimens. In addition, high expression levels of the Wnt5a-S mRNA isoform and low expression levels of the Wnt5a-L mRNA isoform were significantly positively correlated with tumor depth of CRC patients. Furthermore, knockdown of the endogenous expression of the Wnt5a-S mRNA isoform in HCT116 cells drastically inhibited their growth ability by inducing apoptosis through induction of FASLG expression and reduction of TNFRSF11B expression. Moreover, reactivation of methylation inactivation of the Wnt5a-L mRNA isoform by treatment with 5-azacytidine (5-Aza) enhanced the siWnt5a-S isoform's ability to induce apoptosis. Finally, we showed that the simultaneous reactivation of Wnt5a-L mRNA isoform and knockdown of Wnt5a-S mRNA isoform expression enhanced siWnt5a

  14. Distinct roles for the actin nucleators Arp2/3 and hDia1 during NK-mediated cytotoxicity

    PubMed Central

    Butler, Boyd; Cooper, John A.

    2010-01-01

    Background Several actin nucleators, including Arp2/3 and various formins, control numerous cytoskeletal-based functions in vivo. Results We investigated the relative roles of these nucleators. As a model system, we used natural killer (NK) lymphocytes, which display a wide range of cytoskeletal-based functions that culminate in the lysis of target cells. NK cells lacking either Arp2/3 or the formin hDia1 were ineffective in target cell lysis, but for distinct reasons. Loss of Arp2/3 function led to defects in cells adhesion and actin assembly at the junction with the target cell (the lytic synapse). In contrast, loss of hDia1 did not disrupt actin assembly at the lytic synapse. Instead, loss of hDia1 led to perturbations in the microtubule cytoskeleton, including the targeting of microtubules to the lytic synapse. Conclusions These studies reveal novel distinctions and relationships among the functions of Arp2/3, formins and microtubules in cells. Notably, a formin mediates the capture of microtubules at the cell periphery. PMID:19913427

  15. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.

    PubMed

    Centonze, Diego; Grande, Cristina; Saulle, Emilia; Martin, Ana B; Gubellini, Paolo; Pavón, Nancy; Pisani, Antonio; Bernardi, Giorgio; Moratalla, Rosario; Calabresi, Paolo

    2003-09-17

    Stimulation of dopamine (DA) receptors in the striatum is essential for voluntary motor activity and for the generation of plasticity at corticostriatal synapses. In the present study, mice lacking DA D1 receptors have been used to investigate the involvement of the D1-like class (D1 and D5) of DA receptors in locomotion and corticostriatal long-term depression (LTD) and long-term potentiation (LTP). Our results suggest that D1 and D5 receptors exert distinct actions on both activity-dependent synaptic plasticity and spontaneous motor activity. Accordingly, the ablation of D1 receptors disrupted corticostriatal LTP, whereas pharmacological blockade of D5 receptors prevented LTD. On the other side, genetic ablation of D1 receptors increased locomotor activity, whereas the D1/D5 receptor antagonist SCH 23390 decreased motor activity in both control mice and mice lacking D1 receptors. Endogenous DA stimulated D1 and D5 receptors in distinct subtypes of striatal neurons to induce, respectively, LTP and LTD. In control mice, in fact, LTP was blocked by inhibiting the D1-protein kinase A pathway in the recorded spiny neuron, whereas the striatal nitric oxide-producing interneuron was presumably the neuronal subtype stimulated by D5 receptors during the induction phase of LTD. Understanding the role of DA receptors in striatal function is essential to gain insights into the neural bases of critical brain functions and of dramatic pathological conditions such as Parkinson's disease, schizophrenia, and drug addiction.

  16. Four Isoforms of Arabidopsis 4-Coumarate:CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism1[OPEN

    PubMed Central

    Kim, Jeong Im

    2015-01-01

    The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals that 4CL1, 4CL2, and 4CL4 are more closely related to each other than to 4CL3, suggesting that the two groups may serve different biological functions. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, and 4CL3 has acquired a distinct role in flavonoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis, is greatly reduced in the 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. 4CL1 accounts for the majority of the total 4CL activity, and loss of 4CL1 leads to reduction in lignin content but no growth defect. The 4cl1 4cl2 and 4cl1 4cl2 4cl3 mutants are both dwarf but do not have further reduced lignin than the 4cl1 mutant, indicating that either 4CL1 or 4CL2 is required for normal plant growth. Although 4CL4 has a limited expression profile, it does make a modest contribution to lignin biosynthesis. Together, these data show that the four isoforms of 4CL in Arabidopsis have overlapping yet distinct roles in phenylpropanoid metabolism. PMID:26491147

  17. Nrf1 and Nrf2 Play Distinct Roles in Activation of Antioxidant Response Element-dependent Genes*S⃞

    PubMed Central

    Ohtsuji, Makiko; Katsuoka, Fumiki; Kobayashi, Akira; Aburatani, Hiroyuki; Hayes, John D.; Yamamoto, Masayuki

    2008-01-01

    Nrf1 is a member of the vertebrate Cap`n'Collar (CNC) transcription factor family that commonly contains a unique basic-leucine zipper domain. Among CNC family members, Nrf2 is known to regulate a battery of antioxidant and xenobiotic-metabolizing enzyme genes through the antioxidant response element (ARE). Although Nrf1 has also been shown to bind the ARE, it is unclear whether it plays a distinct role from Nrf2 in regulating genes with this element. To address this issue in vivo, we generated mice bearing a hepatocyte-specific disruption of the Nrf1 gene. AlthoughNrf2 knock-out mice did not exhibit liver damage when they were maintained in an unstressed condition, hepatocyte-specific deletion of Nrf1 caused liver damage resembling the human disease non-alcoholic steatohepatitis. Gene expression analysis revealed that the disruption of Nrf1 causes stress that activates a number of ARE-driven genes in an Nrf2-dependent manner, indicating that Nrf2 cannot compensate completely for loss of Nrf1 function in the liver. In contrast, expression of metallothionein-1 and -2 (MT1 and MT2) genes, each of which harbors at least one ARE in its regulatory region, was decreased in the Nrf1-null mutant mice. Whereas Nrf1 and Nrf2 bound the MT1 ARE with comparable affinity, Nrf1 preferentially activated the reporter gene expression through the MT1 ARE. This study has, thus, identified the first ARE-dependent gene that relies exclusively on Nrf1, suggesting that it plays a distinct functional role in regulating ARE-driven genes. PMID:18826952

  18. The Dithiol Glutaredoxins of African Trypanosomes Have Distinct Roles and Are Closely Linked to the Unique Trypanothione Metabolism*

    PubMed Central

    Ceylan, Sevgi; Seidel, Vera; Ziebart, Nicole; Berndt, Carsten; Dirdjaja, Natalie; Krauth-Siegel, R. Luise

    2010-01-01

    Trypanosoma brucei, the causative agent of African sleeping sickness, possesses two dithiol glutaredoxins (Grx1 and Grx2). Grx1 occurs in the cytosol and catalyzes protein deglutathionylations with kcat/Km-values of up to 2 × 105 m−1 s−1. It accelerates the reduction of ribonucleotide reductase by trypanothione although less efficiently than the parasite tryparedoxin and has low insulin disulfide reductase activity. Despite its classical CPYC active site, Grx1 forms dimeric iron-sulfur complexes with GSH, glutathionylspermidine, or trypanothione as non-protein ligands. Thus, contrary to the generally accepted assumption, replacement of the Pro is not a prerequisite for cluster formation. T. brucei Grx2 shows an unusual CQFC active site, and orthologues occur exclusively in trypanosomatids. Grx2 is enriched in mitoplasts, and fractionated digitonin lysis resulted in a co-elution with cytochrome c, suggesting localization in the mitochondrial intermembrane space. Grx2 catalyzes the reduction of insulin disulfide but not of ribonucleotide reductase and exerts deglutathionylation activity 10-fold lower than that of Grx1. RNA interference against Grx2 caused a growth retardation of procyclic cells consistent with an essential role. Grx1 and Grx2 are constitutively expressed with cellular concentrations of about 2 μm and 200 nm, respectively, in both the mammalian bloodstream and insect procyclic forms. Trypanothione reduces the disulfide form of both proteins with apparent rate constants that are 3 orders of magnitude higher than those with glutathione. Grx1 and, less efficiently, also Grx2 catalyze the reduction of GSSG by trypanothione. Thus, the Grxs play exclusive roles in the trypanothione-based thiol redox metabolism of African trypanosomes. PMID:20826822

  19. Involuntary mass spirit possession among the Miskitu.

    PubMed

    Wedel, Johan

    2012-01-01

    This paper seeks to understand the outbreaks and the development of grisi siknis, a form of mass spirit possession among the Miskitu of north-eastern Nicaragua. Earlier documented outbreaks typically involved a few adolescents, however, in recent years, violent large-scale epidemics have taken place, involving many people of all ages. This has coincided with recent developments in Miskitu society marked by conflicts, contradictions and tense social relations. The anthropological field technique of participant-observation was used. The research took place during 11 months from 2005 to 2008 in the port town of Puerto Cabezas. A total of 38 informants were interviewed. Group discussions, narratives and informal and semi-structured interviews were carried out, as well as participation in healing rituals. The paper shows that socio-economic, cultural, personal as well as environmental factors all contribute to outbreaks of grisi siknis. The affliction has previously been considered a 'culture-bound syndrome' only occurring among the Miskitu. However, when viewed in a more contemporary context and cross-cultural perspective, grisi siknis shows similarities with other forms of involuntary mass spirit possession, particularly in the ways it is manifested, experienced and appears to be spreading. The paper argues that the phenomenon should no longer be considered a 'culture-bound condition' but in fact a Miskitu version of involuntary mass spirit possession. Further research that seeks to understand other forms of involuntary mass spirit possession should emphasize the social, personal and environmental context as well as cross-cultural comparisons in order to encompass fully the role of culture in relation to illness and suffering.

  20. Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression.

    PubMed

    Oricchio, E; Sciamanna, I; Beraldi, R; Tolstonog, G V; Schumann, G G; Spadafora, C

    2007-06-21

    Transformed cells express high levels of non-telomeric reverse-transcriptase (RT) activity of retrotransposon and endogenous retrovirus origin. We previously reported that RT inhibition, either pharmacological or through transient silencing of RT-encoding LINE-1 (L1) elements by RNA interference (RNAi), reduced proliferation, induced differentiation and reprogrammed gene expression in human tumorigenic cell lines. Moreover, the antiretroviral drug efavirenz antagonized tumor progression in animal models in vivo. To get insight into the role of retroelements in tumorigenesis, we have now produced two cell lines derived from A-375 melanoma, in which the expression of either L1 retrotransposon, or HERV-K endogenous retrovirus, was stably suppressed by RNAi. Compared to the parental A-375 cell line, cells with stably interfered L1 expression show a lower proliferation rate, a differentiated morphology and lower tumorigenicity when inoculated in nude mice. L1 silencing modulates expression of several genes and, unexpectedly, also downregulates HERV-K expression. In HERV-K interfered cells, instead, L1 expression was unaffected, and cell proliferation and differentiation remained unchanged compared to parental A-375 cells. In vivo, however, their tumorigenic potential was found to be reduced after inoculation in nude mice. These results suggest that L1 and HERV-K play specific and distinct roles in cell transformation and tumor progression.

  1. MHF1-2/CENP-S-X performs distinct roles in centromere metabolism and genetic recombination.

    PubMed

    Bhattacharjee, Sonali; Osman, Fekret; Feeney, Laura; Lorenz, Alexander; Bryer, Claire; Whitby, Matthew C

    2013-09-11

    The histone-fold proteins Mhf1/CENP-S and Mhf2/CENP-X perform two important functions in vertebrate cells. First, they are components of the constitutive centromere-associated network, aiding kinetochore assembly and function. Second, they work with the FANCM DNA translocase to promote DNA repair. However, it has been unclear whether there is crosstalk between these roles. We show that Mhf1 and Mhf2 in fission yeast, as in vertebrates, serve a dual function, aiding DNA repair/recombination and localizing to centromeres to promote chromosome segregation. Importantly, these functions are distinct, with the former being dependent on their interaction with the FANCM orthologue Fml1 and the latter not. Together with Fml1, they play a second role in aiding chromosome segregation by processing sister chromatid junctions. However, a failure of this activity does not manifest dramatically increased levels of chromosome missegregation due to the Mus81-Eme1 endonuclease, which acts as a failsafe to resolve DNA junctions before the end of mitosis.

  2. Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer

    PubMed Central

    Virtakoivu, Reetta; Pellinen, Teijo; Rantala, Juha K.; Perälä, Merja; Ivaska, Johanna

    2012-01-01

    AKT1 and AKT2 kinases have been shown to play opposite roles in breast cancer migration and invasion. In this study, an RNA interference screen for integrin activity inhibitors identified AKT1 as an inhibitor of β1-integrin activity in prostate cancer. Validation experiments investigating all three AKT isoforms demonstrated that, unlike in breast cancer, both AKT1 and AKT2 function as negative regulators of cell migration and invasion in PC3 prostate cancer cells. Down-regulation of AKT1 and AKT2, but not AKT3, induced activation of cell surface β1-integrins and enhanced adhesion, migration, and invasion. Silencing of AKT1 and AKT2 also resulted in increased focal adhesion size. Importantly, the mechanisms involved in integrin activity regulation were distinct for the two AKT isoforms. Silencing of AKT1 relieved feedback suppression of the expression and activity of several receptor tyrosine kinases, including EGFR and MET, with established cross-talk with β1-integrins. Silencing of AKT2, on the other hand, induced up-regulation of the microRNA-200 (miR-200) family, and overexpression of miR-200 was sufficient to induce integrin activity and cell migration in PC3 cells. Taken together, these data define an inhibitory role for both AKT1 and AKT2 in prostate cancer migration and invasion and highlight the cell type–specific actions of AKT kinases in the regulation of cell motility. PMID:22809628

  3. Distinct Roles for Lymphotoxin-α and Tumor Necrosis Factor in the Control of Leishmania donovani Infection

    PubMed Central

    Engwerda, Christian R.; Ato, Manabu; Stäger, Simona; Alexander, Clare E.; Stanley, Amanda C.; Kaye, Paul M.

    2004-01-01

    Tumor necrosis factor (TNF) is critical for the control of visceral leishmaniasis caused by Leishmania donovani. However, the role of the related cytokine lymphotoxin (LT) α in this infection is unknown. Here we report that C57BL/6 mice deficient in TNF (B6.TNF−/−) or LTα (B6.LTα−/−) have increased susceptibility to hepatic L. donovani infection. Furthermore, the outcome of infection in bone marrow chimeric mice is dependent on donor hematopoietic cells, indicating that developmental defects in lymphoid organs were not responsible for increased susceptibility to L. donovani. Although both LTα and TNF regulated the migration of leukocytes into the sinusoidal area of the infected liver, their roles were distinct. LTα was essential for migration of leukocytes from periportal areas, an event consistent with LTα-dependent up-regulation of VCAM-1 on liver sinusoid lining cells, whereas TNF was essential for leukocyte recruitment to the liver. During visceral leishmaniasis, both cytokines were produced by radio-resistant cells and by CD4+ T cells. LTα and TNF production by the former was required for granuloma assembly, while production of these cytokines by CD4+ T cells was necessary to control parasite growth. The production of inducible nitric oxide synthase was also found to be deficient in TNF- and LTα-deficient infected mice. These results demonstrate that both LTα and TNF are required for control of L. donovani infection in noncompensatory ways. PMID:15579454

  4. MHF1–2/CENP-S-X performs distinct roles in centromere metabolism and genetic recombination

    PubMed Central

    Bhattacharjee, Sonali; Osman, Fekret; Feeney, Laura; Lorenz, Alexander; Bryer, Claire; Whitby, Matthew C.

    2013-01-01

    The histone-fold proteins Mhf1/CENP-S and Mhf2/CENP-X perform two important functions in vertebrate cells. First, they are components of the constitutive centromere-associated network, aiding kinetochore assembly and function. Second, they work with the FANCM DNA translocase to promote DNA repair. However, it has been unclear whether there is crosstalk between these roles. We show that Mhf1 and Mhf2 in fission yeast, as in vertebrates, serve a dual function, aiding DNA repair/recombination and localizing to centromeres to promote chromosome segregation. Importantly, these functions are distinct, with the former being dependent on their interaction with the FANCM orthologue Fml1 and the latter not. Together with Fml1, they play a second role in aiding chromosome segregation by processing sister chromatid junctions. However, a failure of this activity does not manifest dramatically increased levels of chromosome missegregation due to the Mus81–Eme1 endonuclease, which acts as a failsafe to resolve DNA junctions before the end of mitosis. PMID:24026537

  5. Distinct cytoprotective roles of pyruvate and ATP by glucose metabolism on epithelial necroptosis and crypt proliferation in ischaemic gut.

    PubMed

    Huang, Ching-Ying; Kuo, Wei-Ting; Huang, Chung-Yen; Lee, Tsung-Chun; Chen, Chin-Tin; Peng, Wei-Hao; Lu, Kuo-Shyan; Yang, Chung-Yi; Yu, Linda Chia-Hui

    2017-01-15

    Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria-derived septic complications. Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive. A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes. Pyruvate suppressed epithelial cell death in an ATP-independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut. Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti-necroptotic role of glycolytic pyruvate under ischaemic stress. Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor-interacting protein kinase (RIP)-dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium-glucose transporter 1 ameliorated ischaemia/reperfusion-induced epithelial injury, partly via anti-apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1-dependent epithelial necroptosis and

  6. 50 CFR 648.125 - Possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Possession limit. 648.125 Section 648.125... § 648.125 Possession limit. (a) No person shall possess more than 10 scup in, or harvested from, the EEZ... moratorium permit are subject to this possession limit. The owner, operator, and crew of a charter or party...

  7. 50 CFR 648.145 - Possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Possession limit. 648.145 Section 648.145... Fishery § 648.145 Possession limit. (a) No person shall possess more than 25 black sea bass, in, or... that is not eligible for a black sea bass moratorium permit are subject to this possession limit. The...

  8. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.

    PubMed

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith

    2014-01-17

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.

  9. The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport*

    PubMed Central

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith

    2014-01-01

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367

  10. Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in Uropathogenic Escherichia coli

    PubMed Central

    Cai, Wentong; Cai, Xuwang; Yang, Yongwu; Yan, Shigan; Zhang, Haibin

    2017-01-01

    conditions. Therefore, different transcriptional regulation led to distinct roles played by C5038 and KgtP in KG utilization and fitness in vivo. This study thus potentially expanded our understanding of UPEC pathobiology. PMID:28270808

  11. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    PubMed

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance.

  12. Distinct Roles of the DmNav and DSC1 Channels in the Action of DDT and Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S.; Dong, Ke

    2015-01-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (parats) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a parats1 allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in parats1 mutant flies was almost completely abolished in parats1;DSC1−/− double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w1118A), and the parats1;DSC1−/− double mutant flies were even more resistant to DDT compared to the DSC1 knockout or parats1 mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544

  13. Distinct roles for I(T) and I(H) in controlling the frequency and timing of rebound spike responses.

    PubMed

    Engbers, Jordan D T; Anderson, Dustin; Tadayonnejad, Reza; Mehaffey, W Hamish; Molineux, Michael L; Turner, Ray W

    2011-11-15

    The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (I(T)) and hyperpolarization-activated HCN channels (I(H)) increase in availability upon hyperpolarization, allowing for a rebound depolarization after a period of inhibition. Although rebound responses have long been recognized in deep cerebellar nuclear (DCN) neurons, the actual extent to which I(T) and I(H) contribute to rebound spike output following physiological levels of membrane hyperpolarization has not been clearly established. The current study used recordings and simulations of large diameter cells of the in vitro rat DCN slice preparation to define the roles for I(T) and I(H) in a rebound response. We find that physiological levels of hyperpolarization make only small proportions of the total I(T) and I(H) available, but that these are sufficient to make substantial contributions to a rebound response. At least 50% of the early phase of the rebound spike frequency increase is generated by an I(T)-mediated depolarization. An additional frequency increase is provided by I(H) in reducing the time constant and thus the extent of I(T) inactivation as the membrane returns from a hyperpolarized state to the resting level. An I(H)-mediated depolarization creates an inverse voltage-first spike latency relationship and produces a 35% increase in the precision of the first spike latency of a rebound. I(T) and I(H) can thus be activated by physiologically relevant stimuli and have distinct roles in the frequency, timing and precision of rebound responses.

  14. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells.

    PubMed

    Mesicek, Judith; Lee, Hyunmi; Feldman, Taya; Jiang, Xuejun; Skobeleva, Anastasia; Berdyshev, Evgeny V; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2010-09-01

    The role of ceramide neo-genesis in cellular stress response signaling is gaining increasing attention with recent progress in elucidating the novel roles and biochemical properties of the ceramide synthase (CerS) enzymes. Selective tissue and subcellular distribution of the six mammalian CerS isoforms, combined with distinct fatty acyl chain length substrate preferences, implicate differential functions of specific ceramide species in cellular signaling. We report here that ionizing radiation (IR) induces de novo synthesis of ceramide to influence HeLa cell apoptosis by specifically activating CerS isoforms 2, 5, and 6 that generate opposing anti- and pro-apoptotic ceramides in mitochondrial membranes. Overexpression of CerS2 resulted in partial protection from IR-induced apoptosis whereas overexpression of CerS5 increased apoptosis in HeLa cells. Knockdown studies determined that CerS2 is responsible for all observable IR-induced C(24:0) CerS activity, and while CerS5 and CerS6 each confer approximately 50% of the C(16:0) CerS baseline synthetic activity, both are required for IR-induced activity. Additionally, co-immunoprecipitation studies suggest that CerS2, 5, and 6 might exist as heterocomplexes in HeLa cells, providing further insight into the regulation of CerS proteins. These data add to the growing body of evidence demonstrating interplay among the CerS proteins in a stress stimulus-, cell type- and subcellular compartment-specific manner.

  15. Distinct roles of 1α and 1β heavy chains of the inner arm dynein I1 of Chlamydomonas flagella

    PubMed Central

    Toba, Shiori; Fox, Laura A.; Sakakibara, Hitoshi; Porter, Mary E.; Oiwa, Kazuhiro; Sale, Winfield S.

    2011-01-01

    The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1β complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1β motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1β motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding. PMID:21148301

  16. Distinct roles of N-glycosylation at different sites of corin in cell membrane targeting and ectodomain shedding.

    PubMed

    Wang, Hao; Zhou, Tiantian; Peng, Jianhao; Xu, Ping; Dong, Ningzheng; Chen, Shenghan; Wu, Qingyu

    2015-01-16

    Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.

  17. Distinct roles of the steroid receptor coactivator 1 and of MED1 in retinoid-induced transcription and cellular differentiation.

    PubMed

    Flajollet, Sébastien; Lefebvre, Bruno; Rachez, Christophe; Lefebvre, Philippe

    2006-07-21

    Retinoic acid receptors (RARs) are the molecular relays of retinoid action on transcription, cellular differentiation and apoptosis. Transcriptional activation of retinoid-regulated promoters requires the dismissal of corepressors and the recruitment of coactivators to promoter-bound RAR. RARs recruit in vitro a plethora of coactivators whose actual contribution to retinoid-induced transcription is poorly characterized in vivo. Embryonal carcinoma P19 cells, which are highly sensitive to retinoids, were depleted from archetypical coactivators by RNAi. SRC1-deficient P19 cells showed severely compromised retinoid-induced responses, in agreement with the supposed role of SRC1 as a RAR coactivator. Unexpectedly, Med1/TRAP220/DRIP205-depleted cells exhibited an exacerbated response to retinoids, both in terms transcriptional responses and of cellular differentiation. Med1 depletion affected TFIIH and cdk9 detection at the prototypical retinoid-regulated RARbeta2 promoter, and favored a higher RNA polymerase II detection in transcribed regions of the RARbeta2 gene. Furthermore, the nature of the ligand impacted strongly on the ability of RARs to interact with a given coactivator and to activate transcription in intact cells. Thus RAR accomplishes transcriptional activation as a function of the ligand structure, by recruiting regulatory complexes which control distinct molecular events at retinoid-regulated promoters.

  18. Distinct Roles for Interfacial Hydration in Site-Specific DNA Recognition by ETS-Family Transcription Factors.

    PubMed

    Xhani, Suela; Esaki, Shingo; Huang, Kenneth; Erlitzki, Noa; Poon, Gregory M K

    2017-04-06

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. Unlike other ETS homologues, such as Ets-1, DNA recognition by PU.1 is highly sensitive to its osmotic environment due to excess interfacial hydration in the complex. To investigate interfacial hydration in the two homologues, we mutated a conserved tyrosine residue, which is exclusively engaged in coordinating a well-defined water contact between the protein and DNA among ETS proteins, to phenylalanine. The loss of this water-mediated contact blunted the osmotic sensitivity of PU.1/DNA binding, but did not alter binding under normo-osmotic conditions, suggesting that PU.1 has evolved to maximize osmotic sensitivity. The homologous mutation in Ets-1, which was minimally sensitive to osmotic stress due to a sparsely hydrated interface, reduced DNA-binding affinity at normal osmolality but the complex became stabilized by osmotic stress. Molecular dynamics simulations of wildtype and mutant PU.1 and Ets-1 in their free and DNA-bound states, which recapitulated experimental features of the proteins, showed that abrogation of this tyrosine-mediated water contact perturbed the Ets-1/DNA complex not through disruption of interfacial hydration, but by inhibiting local dynamics induced specifically in the bound state. Thus, a configurationally identical water-mediated contact plays mechanistically distinct roles in mediating DNA recognition by structurally homologous ETS transcription factors.

  19. CXCR4 and CXCR7 play distinct roles in cardiac lineage specification and pharmacologic β-adrenergic response.

    PubMed

    Ceholski, Delaine K; Turnbull, Irene C; Pothula, Venu; Lecce, Laura; Jarrah, Andrew A; Kho, Changwon; Lee, Ahyoung; Hadri, Lahouaria; Costa, Kevin D; Hajjar, Roger J; Tarzami, Sima T

    2017-08-01

    CXCR4 and CXCR7 are prominent G protein-coupled receptors (GPCRs) for chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). This study demonstrates that CXCR4 and CXCR7 induce differential effects during cardiac lineage differentiation and β-adrenergic response in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using lentiviral vectors to ablate CXCR4 and/or CXCR7 expression, hiPSC-CMs were tested for phenotypic and functional properties due to gene knockdown. Gene expression and flow cytometry confirmed the pluripotent and cardiomyocyte phenotype of undifferentiated and differentiated hiPSCs, respectively. Although reduction of CXCR4 and CXCR7 expression resulted in a delayed cardiac phenotype, only knockdown of CXCR4 delayed the spontaneous beating of hiPSC-CMs. Knockdown of CXCR4 and CXCR7 differentially altered calcium transients and β-adrenergic response in hiPSC-CMs. In engineered cardiac tissues, depletion of CXCR4 or CXCR7 had opposing effects on developed force and chronotropic response to β-agonists. This work demonstrates distinct roles for the SDF-1/CXCR4 or CXCR7 network in hiPSC-derived ventricular cardiomyocyte specification, maturation and function. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. The Chang'E-1 orbiter plays a distinctive role in China's first successful selenodetic lunar mission

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Su, Xiaoli; Huang, Qian; Yan, Jianguo

    2011-12-01

    The first Chinese lunar orbiter Chang'E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang'E-1 payloads can benefit studies of the lunar origin and evolution, as well as other relevant research areas, after careful validation of the data. Among the new results, the Chang'E-1 selenodetic products are continually uncovering characteristics of the lunar surface, undersurface and inner structure. Successful lunar orbiters such as the Clementine, Lunar Prospector, KAGUYA/SELENE, Chang'E-1, Lunar Reconnaissance Orbiter and GRAIL have been revealing, with increasing clarity, global selenodetic characteristics with state-of-the-art fine resolution and high precision. In particular, the Chang'E-1 plays an important distinctive role in selenodetic exploration through enhancing lunar topography and gravity models. The gravity model has been successfully improved with a factor of two after applying the Chang'E-1 long-wavelength tracking data. Using the new models, some medium-scale lunar surface characteristics such as basins and volcanoes have been identified. Furthermore, the old mascon basins of Bouguer, gravity anomaly and craters have been discovered with the Chang'E-1 selenodetic data.

  1. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks

    PubMed Central

    van Attikum, Haico; Fritsch, Olivier; Gasser, Susan M

    2007-01-01

    INO80 and SWR1 are two closely related ATP-dependent chromatin remodeling complexes that share several subunits. Ino80 was reported to be recruited to the HO endonuclease-induced double-strand break (DSB) at the budding yeast mating-type locus, MAT. We find Swr1 similarly recruited in a manner dependent on the phosphorylation of H2A (γH2AX). This is not unique to cleavage at MAT; both Swr1 and Ino80 bind near an induced DSB on chromosome XV. Whereas Swr1 incorporates the histone variant H2A.Z into chromatin at promoters, H2A.Z levels do not increase at DSBs. Instead, H2A.Z, γH2AX and core histones are coordinately removed near the break in an INO80-dependent, but SWR1-independent, manner. Mutations in INO80-specific subunits Arp8 or Nhp10 impair the binding of Mre11 nuclease, yKu80 and ATR-related Mec1 kinase at the DSB, resulting in defective end-processing and checkpoint activation. In contrast, Mre11 binding, end-resection and checkpoint activation were normal in the swr1 strain, but yKu80 loading and error-free end-joining were impaired. Thus, these two related chromatin remodelers have distinct roles in DSB repair and checkpoint activation. PMID:17762868

  2. Temporally distinct roles of ATM and ROS in genotoxic-stress-dependent induction and maintenance of cellular senescence.

    PubMed

    Nair, Raji R; Bagheri, Meisam; Saini, Deepak Kumar

    2015-01-15

    Cells exposed to genotoxic stress induce cellular senescence through a DNA damage response (DDR) pathway regulated by ATM kinase and reactive oxygen species (ROS). Here, we show that the regulatory roles for ATM kinase and ROS differ during induction and maintenance of cellular senescence. Cells treated with different genotoxic agents were analyzed using specific pathway markers and inhibitors to determine that ATM kinase activation is directly proportional to the dose of the genotoxic stress and that senescence initiation is not dependent on ROS or the p53 status of cells. Cells in which ROS was quenched still activated ATM and initiated the DDR when insulted, and progressed normally to senescence. By contrast, maintenance of a viable senescent state required the presence of ROS as well as activated ATM. Inhibition or removal of either of the components caused cell death in senescent cells, through a deregulated ATM-ROS axis. Overall, our work demonstrates existence of an intricate temporal hierarchy between genotoxic stress, DDR and ROS in cellular senescence. Our model reports the existence of different stages of cellular senescence with distinct regulatory networks.

  3. Cucumber SUPERMAN Has Conserved Function in Stamen and Fruit Development and a Distinct Role in Floral Patterning

    PubMed Central

    Jiang, Li; Ding, Lian; Yan, Shuang Shuang; Zhang, Juan; Dong, Zhaobin; Ren, Huazhong; Zhang, Xiaolan

    2014-01-01

    The Arabidopsis SUPERMAN (SUP) gene encodes a C2H2 type zinc finger protein that is required for maintaining the boundaries between stamens and carpels, and for regulating development of ovule outer integument. Orthologs of SUP have been characterized in bisexual flowers as well as dioecious species, but it remains elusive in monoecious plants with unisexual flowers on the same individual. Here we isolate the SUP ortholog in Cucumis sativus L (CsSUP), a monoecious vegetable. CsSUP is predominantly expressed in female specific organs: the female flower buds and ovules. Ectopic expression of CsSUP in Arabidopsis can partially complement the fruit development in sup-5 mutant, and its over-expression in wide-type leads to reduced silique length, suppressed stamen development and distorted petal patterning. Our data suggest that CsSUP plays conserved as well as distinct roles during flower and fruit development, and it may function in the boundaries and ovules to balance petal patterning, stamen and ovule development in Arabidopsis. PMID:24465952

  4. Cucumber SUPERMAN has conserved function in stamen and fruit development and a distinct role in floral patterning.

    PubMed

    Zhao, Jianyu; Liu, Meiling; Jiang, Li; Ding, Lian; Yan, Shuang Shuang; Zhang, Juan; Dong, Zhaobin; Ren, Huazhong; Zhang, Xiaolan

    2014-01-01

    The Arabidopsis SUPERMAN (SUP) gene encodes a C2H2 type zinc finger protein that is required for maintaining the boundaries between stamens and carpels, and for regulating development of ovule outer integument. Orthologs of SUP have been characterized in bisexual flowers as well as dioecious species, but it remains elusive in monoecious plants with unisexual flowers on the same individual. Here we isolate the SUP ortholog in Cucumis sativus L (CsSUP), a monoecious vegetable. CsSUP is predominantly expressed in female specific organs: the female flower buds and ovules. Ectopic expression of CsSUP in Arabidopsis can partially complement the fruit development in sup-5 mutant, and its over-expression in wide-type leads to reduced silique length, suppressed stamen development and distorted petal patterning. Our data suggest that CsSUP plays conserved as well as distinct roles during flower and fruit development, and it may function in the boundaries and ovules to balance petal patterning, stamen and ovule development in Arabidopsis.

  5. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes.

    PubMed

    Schaetzlein, Sonja; Chahwan, Richard; Avdievich, Elena; Roa, Sergio; Wei, Kaichun; Eoff, Robert L; Sellers, Rani S; Clark, Alan B; Kunkel, Thomas A; Scharff, Matthew D; Edelmann, Winfried

    2013-07-02

    Mammalian Exonuclease 1 (EXO1) is an evolutionarily conserved, multifunctional exonuclease involved in DNA damage repair, replication, immunoglobulin diversity, meiosis, and telomere maintenance. It has been assumed that EXO1 participates in these processes primarily through its exonuclease activity, but recent studies also suggest that EXO1 has a structural function in the assembly of higher-order protein complexes. To dissect the enzymatic and nonenzymatic roles of EXO1 in the different biological processes in vivo, we generated an EXO1-E109K knockin (Exo1(EK)) mouse expressing a stable exonuclease-deficient protein and, for comparison, a fully EXO1-deficient (Exo1(null)) mouse. In contrast to Exo1(null/null) mice, Exo1(EK/EK) mice retained mismatch repair activity and displayed normal class switch recombination and meiosis. However, both Exo1-mutant lines showed defects in DNA damage response including DNA double-strand break repair (DSBR) through DNA end resection, chromosomal stability, and tumor suppression, indicating that the enzymatic function is required for those processes. On a transformation-related protein 53 (Trp53)-null background, the DSBR defect caused by the E109K mutation altered the tumor spectrum but did not affect the overall survival as compared with p53-Exo1(null) mice, whose defects in both DSBR and mismatch repair also compromised survival. The separation of these functions demonstrates the differential requirement for the structural function and nuclease activity of mammalian EXO1 in distinct DNA repair processes and tumorigenesis in vivo.

  6. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes

    PubMed Central

    Almeida, Inês; Soares, Sandra C.; Castelo-Branco, Miguel

    2015-01-01

    pulvinar. Conclusion These results show that subcortical structures containing foveal representations such as the amygdala, pulvinar and superior colliculus play distinct roles in the central and peripheral processing of snake shapes. Our findings suggest multiple phylogenetic fingerprints in the responses of subcortical structures to fear-relevant stimuli. PMID:26075614

  7. 50 CFR 648.145 - Possession limit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Possession limit. 648.145 Section 648.145... Fishery § 648.145 Possession limit. Link to an amendment published at 76 FR 60638, Sept. 29, 2011. (a) No... bass moratorium permit are subject to this possession limit. The owner, operator, and crew of a charter...

  8. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota

    PubMed Central

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D.

    2015-01-01

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o’nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens. PMID:25548172

  9. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.

  10. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains

    PubMed Central

    Grego-Bessa, Joaquim; Hildebrand, Jeffrey; Anderson, Kathryn V.

    2015-01-01

    The genetic control of mammalian epithelial polarity and dynamics can be studied in vivo at cellular resolution during morphogenesis of the mouse neural tube. The mouse neural plate is a simple epithelium that is transformed into a columnar pseudostratified tube over the course of ∼24 h. Apical F-actin is known to be important for neural tube closure, but the precise roles of actin dynamics in the neural epithelium are not known. To determine how the organization of the neural epithelium and neural tube closure are affected when actin dynamics are blocked, we examined the cellular basis of the neural tube closure defect in mouse mutants that lack the actin-severing protein cofilin 1 (CFL1). Although apical localization of the adherens junctions, the Par complex, the Crumbs complex and SHROOM3 is normal in the mutants, CFL1 has at least two distinct functions in the apical and basal domains of the neural plate. Apically, in the absence of CFL1 myosin light chain does not become phosphorylated, indicating that CFL1 is required for the activation of apical actomyosin required for neural tube closure. On the basal side of the neural plate, loss of CFL1 has the opposite effect on myosin: excess F-actin and myosin accumulate and the ectopic myosin light chain is phosphorylated. The basal accumulation of F-actin is associated with the assembly of ectopic basal tight junctions and focal disruptions of the basement membrane, which eventually lead to a breakdown of epithelial organization. PMID:25742799

  11. Orexin/Hypocretin and Histamine: Distinct Roles in the Control of Wakefulness Demonstrated Using Knock-Out Mouse Models

    PubMed Central

    Anaclet, Christelle; Parmentier, Régis; Ouk, Koliane; Guidon, Gérard; Buda, Colette; Sastre, Jean-Pierre; Akaoka, Hidéo; Sergeeva, Olga A.; Yanagisawa, Masashi; Ohtsu, Hiroshi; Franco, Patricia; Haas, Helmut L.; Lin, Jian Sheng

    2009-01-01

    To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin(Ox) knockout(−/−) mice and compared them with those of histidine-decarboxylase(HDC, HA-synthesizing enzyme)−/−mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep(PS), they presented a number of marked differences: 1) The PS-increase in HDC−/−mice was seen during lightness, whereas that in Ox−/−mice occurred during darkness; 2) Contrary to HDC−/−, Ox−/−mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; 3) Only Ox−/−, but not HDC−/−mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, WT, but not littermate Ox−/−mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox-neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox−/−mice was due to the absence of Ox because intraventricular dosing of Ox-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical-EEG activation. PMID:19923277

  12. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation

    PubMed Central

    Moura, Danielle MN; Reis, Christian RS; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  13. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models.

    PubMed

    Anaclet, Christelle; Parmentier, Régis; Ouk, Koliane; Guidon, Gérard; Buda, Colette; Sastre, Jean-Pierre; Akaoka, Hidéo; Sergeeva, Olga A; Yanagisawa, Masashi; Ohtsu, Hiroshi; Franco, Patricia; Haas, Helmut L; Lin, Jian-Sheng

    2009-11-18

    To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin (Ox) knock-out (-/-) mice and compared them with those of histidine-decarboxylase (HDC, HA-synthesizing enzyme)-/- mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep (PS), they presented a number of marked differences: (1) the PS increase in HDC(-/-) mice was seen during lightness, whereas that in Ox(-/-) mice occurred during darkness; (2) contrary to HDC(-/-), Ox(-/-) mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; (3) only Ox(-/-), but not HDC(-/-) mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, wild-type (WT), but not littermate Ox(-/-) mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox(-/-) mice was due to the absence of Ox because intraventricular dosing of orexin-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical EEG activation.

  14. Distinct Roles of Met and Interacting Proteins on the Expressions of takeout Family Genes in Brown Planthopper

    PubMed Central

    Lin, Xinda; Zhang, Ling; Jiang, Yanyun

    2017-01-01

    The takeout family genes encode relatively small proteins that are related to olfaction and are regulated by juvenile hormone (JH). The takeout genes modulate various physiological processes, such as behavioral plasticity in the migratory locust Locusta migraloria and feeding and courtship behaviors in Drosophila. Therefore, to understand the regulatory mechanism of these physiological processes, it is important to study the expressions of the takeout genes that are regulated by JH signaling. We used quantitative real-time PCR (qRTPCR) to study the role of JH signaling in the regulation of the takeout family genes in the brown planthopper Nilaparvata lugens (N. lugens) through the application of Juvenile hormone III (JHIII) and the down-regulation of key genes in the JH signaling pathway. The topical application of JHIII induced the expressions of most of the takeout family genes, and their expressions decreased 2 and 3 days after the JHIII application. Down-regulating the brown planthopper JH receptor NlMethoprene-tolerant (NlMet) and its interacting partners, NlTaiman (NlTai) and Nlß-Ftz-F1 (Nlß-Ftz), through RNAi, exhibited distinct effects on the expressions of the takeout family genes. The down-regulation of NlMet and NlKrüppel-homolog 1 (NlKr-h1) increased the expressions of the takeout family genes, while the down-regulation of the Met interacting partners NlTai and Nlß-Ftz decreased the expressions of most of the takeout family genes. This work advanced our understanding of the molecular function and the regulatory mechanism of JH signaling. PMID:28270774

  15. Distinct roles for Cav2.1–2.3 in activity-dependent synaptic dynamics

    PubMed Central

    Ricoy, Ulises M.

    2014-01-01

    Synaptic transmission throughout most of the CNS is steeply dependent on presynaptic calcium influx through the voltage-gated calcium channels Cav2.1–Cav2.3. In addition to triggering exocytosis, this calcium influx also recruits short-term synaptic plasticity. During the complex patterns of presynaptic activity that occur in vivo, several forms of plasticity combine to generate a synaptic output that is dynamic, in which the size of a given excitatory postsynaptic potential (EPSP) in response to a given spike depends on the short-term history of presynaptic activity. It remains unclear whether the different Cav2 channels play distinct roles in defining these synaptic dynamics and, if so, under what conditions different Cav2 family members most effectively determine synaptic output. We examined these questions by measuring the effects of calcium channel-selective toxins on synaptic transmission at the Schaffer collateral synapse in hippocampal slices from adult mice in response to both low-frequency stimulation and complex stimulus trains derived from in vivo recordings. Blockade of Cav2.1 had a greater inhibitory effect on synaptic transmission during low-frequency components of the stimulus train than on synaptic transmission during high-frequency components of the train, indicating that Cav2.1 had a greater fractional contribution to synaptic transmission at low frequencies than at high frequencies. Relative to Cav2.1, Cav2.2 had a disproportionately reduced contribution to synaptic transmission at frequencies >20 Hz, while Cav2.3 had a disproportionately increased contribution to synaptic transmission at frequencies >1 Hz. These activity-dependent effects of different Cav2 family members shape the filtering characteristics of GABAB receptor-mediated presynaptic inhibition. Thus different Cav2 channels vary in their coupling to synaptic transmission over different frequency ranges, with consequences for the frequency tuning of both synaptic dynamics and

  16. Fractionation of an ECM hydrogel into structural and soluble components reveals distinctive roles in regulating macrophage behavior.

    PubMed

    Slivka, P F; Dearth, C L; Keane, T J; Meng, F W; Medberry, C J; Riggio, R T; Reing, J E; Badylak, S F

    2014-08-26

    Extracellular matrix (ECM) derived from mammalian tissues has been utilized to repair damaged or missing tissue and improve healing outcomes. More recently, processing of ECM into hydrogels has expanded the use of these materials to include platforms for 3-dimensional cell culture as well as injectable therapeutics that can be delivered by minimally invasive techniques and fill irregularly shaped cavities. At the cellular level, ECM hydrogels initiate a multifaceted host response that includes recruitment of endogenous stem/progenitor cells, regional angiogenesis, and modulation of the innate immune response. Unfortunately, little is known about the components of the hydrogel that drive these responses. We hypothesized that different components of ECM hydrogels could play distinctive roles in stem cell and macrophage behavior. Utilizing a well-characterized ECM hydrogel derived from urinary bladder matrix (UBM), we separated the soluble and structural components of UBM hydrogel and characterized their biological activity. Perivascular stem cells migrated toward and reduced their proliferation in response to both structural and soluble components of UBM hydrogel. Both components also altered macrophage behavior but with different fingerprints. Soluble components increased phagocytosis with an IL-1RA(high), TNFα(low), IL-1β(low), uPA(low) secretion profile. Structural components decreased phagocytosis with a PGE2(high), PGF2α(high), TNFα(low), IL-1β(low), uPA(low), MMP2(low), MMP9(low), secretion profile. The biologic activity of the soluble components was mediated by Notch and PI3K/Akt signaling, while the biologic activity of the structural components was mediated by integrins and MEK/ERK signaling. Collectively, these findings demonstrate that soluble and structural components of ECM hydrogels contribute to the host response but through different mechanisms.

  17. EGFR and HER2 exert distinct roles on colon cancer cell functional properties and expression of matrix macromolecules.

    PubMed

    Ellina, Maria-Ioanna; Bouris, Panagiotis; Aletras, Alexios J; Theocharis, Achilleas D; Kletsas, Dimitris; Karamanos, Nikos K

    2014-08-01

    ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression. Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules. EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF-EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF-EGFR network. The EGF-EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2. The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF-EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Recognition of β–Calcineurin by the Domains of Calmodulin: Thermodynamic and Structural Evidence for Distinct Roles

    PubMed Central

    O’Donnell, Susan E.; Yu, Liping; Fowler, Andrew; Shea, Madeline A.

    2010-01-01

    Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca2+-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaNB (the regulatory subunit) triggers conformational change in CaNA (the catalytic subunit). Two isoforms of CaNA (α, β) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca2+)4-CaM1-148 bound to βCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from βCaNp were ~1 μM. A limiting Kd ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to 15N-(Ca2+)4-CaM1-148 monitored by 15N/1HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the 13C-edited and 12C-14N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the βCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. PMID:21287611

  19. Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions.

    PubMed

    Hart, Genevra; Leung, Beatrice K; Balleine, Bernard W

    2014-02-01

    Considerable evidence suggests that distinct neural processes mediate the acquisition and performance of goal-directed instrumental actions. Whereas a cortical-dorsomedial striatal circuit appears critical for the acquisition of goal-directed actions, a cortical-ventral striatal circuit appears to mediate instrumental performance, particularly the motivational control of performance. Here we review evidence that these distinct mechanisms of learning and performance constitute two distinct 'streams' controlling instrumental conditioning. From this perspective, the regulation of the interaction between these 'streams' becomes a matter of considerable importance. We describe evidence that the basolateral amygdala, which is heavily interconnected with both the dorsal and ventral subregions of the striatum, coordinates this interaction providing input to the final common path to action as a critical component of the limbic-motor interface.

  20. Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions

    PubMed Central

    Hart, Genevra; Leung, Beatrice K.; Balleine, Bernard W.

    2014-01-01

    Considerable evidence suggests that distinct neural processes mediate the acquisition and performance of goal-directed instrumental actions. Whereas a cortical-dorsomedial striatal circuit appears critical for the acquisition of goal-directed actions, a cortical-ventral striatal circuit appears to mediate instrumental performance, particularly the motivational control of performance. Here we review evidence that these distinct mechanisms of learning and performance constitute two distinct ‘streams’ controlling instrumental conditioning. From this perspective, the regulation of the interaction between these ‘streams’ becomes a matter of considerable importance. We describe evidence that the basolateral amygdala, which is heavily interconnected with both the dorsal and ventral subregions of the striatum, coordinates this interaction providing input to the final common path to action as a critical component of the limbic-motor interface. PMID:24231424

  1. The Distinct Roles of Sociometric and Perceived Popularity in Friendship: Implications for Adolescent Depressive Affect and Self-Esteem

    ERIC Educational Resources Information Center

    Litwack, Scott D.; Aikins, Julie Wargo; Cillessen, Antonius H. N.

    2012-01-01

    The primary goal of this study was to examine the similarities and distinctions between two types of popularity, sociometric and perceived, in their associations with friendship characteristics and how they in turn are related to depressive affect and self-esteem. Among 245 eighth graders, sociometric popularity was associated with a greater…

  2. The Distinct Roles of Sociometric and Perceived Popularity in Friendship: Implications for Adolescent Depressive Affect and Self-Esteem

    ERIC Educational Resources Information Center

    Litwack, Scott D.; Aikins, Julie Wargo; Cillessen, Antonius H. N.

    2012-01-01

    The primary goal of this study was to examine the similarities and distinctions between two types of popularity, sociometric and perceived, in their associations with friendship characteristics and how they in turn are related to depressive affect and self-esteem. Among 245 eighth graders, sociometric popularity was associated with a greater…

  3. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... an open access herring permit or a Limited Access Incidental Catch Herring Permit, and only as... the area. (4) A vessel issued an open access herring permit may fish for, possess, or land up to 6,600... limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring...

  4. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... an open access herring permit or a Limited Access Incidental Catch Herring Permit, and only as... the area. (4) A vessel issued an open access herring permit may fish for, possess, or land up to 6,600... limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring...

  5. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... an open access herring permit or a Limited Access Incidental Catch Herring Permit, and only as... the area. (4) A vessel issued an open access herring permit may fish for, possess, or land up to 6,600... limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring...

  6. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... an open access herring permit or a Limited Access Incidental Catch Herring Permit, and only as... the area. (4) A vessel issued an open access herring permit may fish for, possess, or land up to 6,600... limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring...

  7. Possession and Morality in Early Development

    ERIC Educational Resources Information Center

    Rochat, Philippe

    2011-01-01

    From the moment children say "mine!" by two years of age, objects of possession change progressively from being experienced as primarily unalienable property (i.e., something that is absolute or nonnegotiable), to being alienable (i.e., something that is negotiable in reciprocal exchanges). As possession begins to be experienced as alienable, the…

  8. Possession and Morality in Early Development

    ERIC Educational Resources Information Center

    Rochat, Philippe

    2011-01-01

    From the moment children say "mine!" by two years of age, objects of possession change progressively from being experienced as primarily unalienable property (i.e., something that is absolute or nonnegotiable), to being alienable (i.e., something that is negotiable in reciprocal exchanges). As possession begins to be experienced as alienable, the…

  9. Epilepsy and religious experiences: Voodoo possession.

    PubMed

    Carrazana, E; DeToledo, J; Tatum, W; Rivas-Vasquez, R; Rey, G; Wheeler, S

    1999-02-01

    Epileptic seizures have a historical association with religion, primarily through the concept of spirit possession. Five cases where epileptic seizures were initially attributed to Voodoo spirit possession are presented. The attribution is discussed within the context of the Voodoo belief system.

  10. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in Area 1 only if issued an open access herring permit or a Limited Access Incidental Catch Herring... issued an open access herring permit may not fish for, possess, or land more than 6,600 lb (3 mt) of... access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring from or...

  11. 50 CFR 648.25 - Possession restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atlantic Mackerel, Squid, and Butterfish Fisheries § 648.25 Possession restrictions. (a) Atlantic mackerel. During a closure of the directed Atlantic mackerel fishery that occurs prior to June 1, vessels may not fish for, possess, or land more than 20,000 lb (9.08 mt) of Atlantic mackerel per trip at any time,...

  12. 50 CFR 648.25 - Possession restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic Mackerel, Squid, and Butterfish Fisheries § 648.25 Possession restrictions. Link to an amendment published at 76 FR 60620, Sept. 29, 2011. (a) Atlantic mackerel. During a closure of the directed Atlantic mackerel fishery that occurs prior to June 1, vessels may not fish for, possess, or land more than...

  13. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections.

    PubMed

    Lin, Jian-Da; Feng, Ningguo; Sen, Adrish; Balan, Murugabaskar; Tseng, Hsiang-Chi; McElrath, Constance; Smirnov, Sergey V; Peng, Jianya; Yasukawa, Linda L; Durbin, Russell K; Durbin, Joan E; Greenberg, Harry B; Kotenko, Sergei V

    2016-04-01

    Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets

  14. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination

    PubMed Central

    Voegele, Antje; Linkies, Ada; Müller, Kerstin; Leubner-Metzger, Gerhard

    2011-01-01

    Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly. PMID:21778177

  15. Possession and carrying of firearms among suburban youth.

    PubMed Central

    Sheley, J F; Brewer, V E

    1995-01-01

    Despite a growing body of anecdotal evidence suggesting the spread of firearms to suburban juvenile populations, most studies of firearm activity by juveniles focus either on urban youth or on nationally representative samples that blur urban and nonurban distinctions. This study represents the first systematic empirical investigation specifically of a suburban population of juveniles. The authors examine both ownership and carrying behaviors, distinguish types of handguns involved, and assess the influence of drug activity, violent criminality, and the perception of one's social environment as dangerous upon the possession and carrying of firearms. Among the variables linked at the bivariate level to possession and carrying of guns were sex, involvement in criminal activity, involvement in drug activity, and most indicators of a dangerous social environment. At the multivariate level, however, only sex was associated with possession of a revolver, and only sex, criminal activity (for boys only), and one indicator of dangerous environment (having been threatened with a gun, for girls only) were associated with possession of an automatic or semiautomatic handgun. Aside from sex, criminal and drug activities were associated with gun carrying. Despite its importance among urban samples, in this study the dangerous environment was not linked to firearm activity. Possible reasons for this difference are explored in the conclusion. PMID:7838938

  16. Possession and carrying of firearms among suburban youth.

    PubMed

    Sheley, J F; Brewer, V E

    1995-01-01

    Despite a growing body of anecdotal evidence suggesting the spread of firearms to suburban juvenile populations, most studies of firearm activity by juveniles focus either on urban youth or on nationally representative samples that blur urban and nonurban distinctions. This study represents the first systematic empirical investigation specifically of a suburban population of juveniles. The authors examine both ownership and carrying behaviors, distinguish types of handguns involved, and assess the influence of drug activity, violent criminality, and the perception of one's social environment as dangerous upon the possession and carrying of firearms. Among the variables linked at the bivariate level to possession and carrying of guns were sex, involvement in criminal activity, involvement in drug activity, and most indicators of a dangerous social environment. At the multivariate level, however, only sex was associated with possession of a revolver, and only sex, criminal activity (for boys only), and one indicator of dangerous environment (having been threatened with a gun, for girls only) were associated with possession of an automatic or semiautomatic handgun. Aside from sex, criminal and drug activities were associated with gun carrying. Despite its importance among urban samples, in this study the dangerous environment was not linked to firearm activity. Possible reasons for this difference are explored in the conclusion.

  17. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections

    PubMed Central

    Balan, Murugabaskar; Tseng, Hsiang-Chi; McElrath, Constance; Smirnov, Sergey V.; Peng, Jianya; Yasukawa, Linda L.; Durbin, Russell K.; Durbin, Joan E.; Greenberg, Harry B.; Kotenko, Sergei V.

    2016-01-01

    Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets

  18. Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters

    PubMed Central

    Georgianna, D. Ryan; Fedorova, Natalie D.; Burroughs, James L.; Dolezal, Andrea L.; Bok, J.; Horowitz-Brown, S.; Woloshuk, Charles P.; Yu, Jiujiang; Keller, Nancy P.; Payne, Gary A.

    2014-01-01

    SUMMARY Species of Aspergillus produce a diverse array of secondary metabolites, and recent genomic analysis predicts that these species have the capacity to synthesize many more compounds. It has been possible to infer the presence of 55 gene clusters associated with secondary metabolism in A. flavus, however, only three metabolic pathways - aflatoxin, cyclopiazonic acid (CPA), and aflatrem - have been assigned to these clusters. To gain insight into the regulation of, and infer ecological significance for the 55 secondary metabolite gene clusters predicted in A. flavus, we examined their expression over 28 diverse conditions. Variables included culture media and temperature, fungal development, colonization of developing maize seeds, and misexpression of laeA, a global regulator of secondary metabolism. Hierarchical clustering analysis of expression profiles allowed us to categorize the gene clusters into four distinct clades. Gene clusters for the production of aflatoxins, CPA, and seven other unknown compound(s) were identified as belonging to one clade. To further explore the relationships found by gene expression analysis, aflatoxin and CPA production were quantified under five different cell culture environments known to be conducive or non-conducive for aflatoxin biosynthesis and during colonization of developing maize seeds. Results from these studies showed that secondary metabolism gene clusters have distinctive gene expression profiles. Aflatoxin and CPA were found to have unique regulation but are similar enough that they would be expected to co-occur in substrates colonized with A. flavus. PMID:20447271

  19. Unraveling the role of perfectionism in chronic fatigue syndrome: is there a distinction between adaptive and maladaptive perfectionism?

    PubMed

    Kempke, Stefan; Van Houdenhove, Boudewijn; Luyten, Patrick; Goossens, Lutgarde; Bekaert, Patrick; Van Wambeke, Peter

    2011-04-30

    In the current study, we investigated whether the distinction between adaptive (i.e. high personal standards) and maladaptive (i.e. concern over mistakes and doubt about actions) perfectionism that has been found in the literature, is also valid in patients with chronic fatigue syndrome (CFS). We hypothesized that maladaptive, but not adaptive, perfectionism would be significantly and positively related to severity of fatigue and depression in CFS. We examined this hypothesis in a sample of 192 CFS patients using structural equation modelling (SEM). Although the two perfectionism dimensions were related to each other, results supported a model in which only maladaptive perfectionism was positively related to severity of fatigue and depression. Further, we found that depression fully mediated the effect of maladaptive perfectionism on fatigue. The results suggest that adaptive and maladaptive perfectionism are two distinct, albeit related, dimensions in CFS. Findings of this study have important implications for theory and treatment of CFS, particularly for cognitive-behavioral treatment. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Subself theory and reincarnation/possession.

    PubMed

    Lester, David

    2004-12-01

    A subself model of the mind is used to account for multiple personality, possession, the spirit controls of mediums, reincarnation, and the auditory hallucinations of schizophrenics, with suggestions for empirical research.

  1. 22 CFR 72.14 - Nominal possession; property not normally taken into physical possession.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... into physical possession. 72.14 Section 72.14 Foreign Relations DEPARTMENT OF STATE PROTECTION AND... States Citizens and Nationals § 72.14 Nominal possession; property not normally taken into physical... acton is not a taking of physical possession by the officer. Before releasing the property, the consular...

  2. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering

    PubMed Central

    Wu, Rong-Mei; Walton, Eric F.; Richardson, Annette C.; Wood, Marion; Hellens, Roger P.; Varkonyi-Gasic, Erika

    2012-01-01

    MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering. PMID:22071267

  3. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis

    PubMed Central

    Yamauchi, Teruo; Yamauchi, Jun; Kuwata, Takeshi; Tamura, Tomohiko; Yamashita, Tsuyoshi; Bae, Nancy; Westphal, Heiner; Ozato, Keiko; Nakatani, Yoshihiro

    2000-01-01

    PCAF plays a role in transcriptional activation, cell-cycle arrest, and cell differentiation in cultured cells. PCAF contributes to transcriptional activation by acetylating chromatin and transcription factors through its intrinsic histone acetylase activity. In this report, we present evidence for the in vivo function of PCAF and the closely related PCAF-B/GCN5. Mice lacking PCAF are developmentally normal without a distinct phenotype. In PCAF null-zygous mice, protein levels of PCAF-B/GCN5 are drastically elevated in lung and liver, where PCAF is abundantly expressed in wild-type mice, suggesting that PCAF-B/GCN5 functionally compensates for PCAF. In contrast, animals lacking PCAF-B/GCN5 die between days 9.5 and 11.5 of gestation. Normally, PCAF-B/GCN5 mRNA is expressed at high levels already by day 8, whereas PCAF mRNA is first detected on day 12.5, which may explain, in part, the distinct knockout phenotypes. These results provide evidence that PCAF and PCAF-B/GCN5 play distinct but functionally overlapping roles in embryogenesis. PMID:11027331

  4. The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology.

    PubMed

    Pribylova, Lenka; Papouskova, Klara; Sychrova, Hana

    2008-10-01

    Antiporters exporting Na(+) and K(+) in exchange for protons are conserved among yeast species. The only exception so far has been Zygosaccharomyces rouxii, an osmotolerant species closely related to Saccharomyces cerevisiae. Z. rouxii was described as possessing one plasma-membrane antiporter transporting only Na(+) (ZrSod2-22p in the CBS 732(T) type strain). We report the characterization of a second gene, ZrNHA1, encoding a new K(+)(Na(+))/H(+)-antiporter capable of both K(+) and Na(+) export. Synteny analyses suggested that ZrSOD2-22 originated by single duplication of the ZrNHA1 gene. Substrate specificities and transport properties of ZrNha1p and ZrSod2-22p were compared upon heterologous expression in S. cerevisiae, and then directly in Z. rouxii. Deletion mutants and phenotype analyses revealed that ZrSod2-22 antiporter is important for Na(+) detoxification, probably together with ZrEna1 ATPase; ZrNha1p is indispensable to maintain potassium homeostasis and ZrEna1p is not, in contrast to the situation in S. cerevisiae, involved in this function.

  5. Exorcism and possession in psychotherapy practice.

    PubMed

    Henderson, J

    1982-03-01

    There has been an evolution in the layman's concept of mental disorder. Medieval belief in possession by demons and witches gave way to a 19th century medical model and more recently classical psychoanalytic formulations. Concurrently professional helping endeavor has moved increasingly from a more traditionally medical to psychotherapeutic process, and from a classical psychotherapeutic process wherein the therapist remained to a degree unresponsive and detached to a more modern emphasis on such qualities as empathy, sensitivity, reliability, and optimism as ingredients of successful psychotherapeutic practice. Freud's account of Haizmann's demonological neurosis usefully formulates the possession concept in psychological terms. However, recent developments in psychotherapeutic practice argue for a validity in the possession model of psychological distress. The possessing forces of object relations psychology are of course not the possessing demons and witches of medieval times but the possessing good and bad objects of early intrapsychic life set up through processes of introjection and incorporation in response to frustration in the early infant-mother relationship. Points of similarity in this comparison should not obscure features of contrast--ther is no place for histrionic manipulation nor for a moralistic attitude in the practice of psychotherapy. A case is described to illustrate these points.

  6. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  7. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways

    PubMed Central

    Reyniers, Lauran; Del Giudice, Maria Grazia; Civiero, Laura; Belluzzi, Elisa; Lobbestael, Evy; Beilina, Alexandra; Arrigoni, Giorgio; Derua, Rita; Waelkens, Etienne; Li, Yan; Crosio, Claudia; Iaccarino, Ciro; Cookson, Mark R.; Baekelandt, Veerle; Greggio, Elisa; Taymans, Jean-Marc

    2014-01-01

    Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson’s disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. PMID:24947832

  8. Ectopic expression in the giant fiber system of Drosophila reveals distinct roles for roundabout (Robo), Robo2, and Robo3 in dendritic guidance and synaptic connectivity.

    PubMed

    Godenschwege, Tanja A; Simpson, Julie H; Shan, Xiaoliang; Bashaw, Greg J; Goodman, Corey S; Murphey, Rodney K

    2002-04-15

    The Roundabout (Robo) receptors have been intensively studied for their role in regulating axon guidance in the embryonic nervous system, whereas a role in dendritic guidance has not been explored. In the adult giant fiber system of Drosophila, we have revealed that ectopic Robo expression can regulate the growth and guidance of specific motor neuron dendrites, whereas Robo2 and Robo3 have no effect. We also show that the effect of Robo on dendritic guidance can be suppressed by Commissureless coexpression. Although we confirmed a role for all three Robo receptors in giant fiber axon guidance, the strong axon guidance alterations caused by overexpression of Robo2 or Robo3 have no effect on synaptic connectivity. In contrast, Robo overexpression in the giant fiber seems to directly interfere with synaptic function. We conclude that axon guidance, dendritic guidance, and synaptogenesis are separable processes and that the different Robo family members affect them distinctly.

  9. Transnational Geographies of Academic Distinction: The Role of Social Capital in the Recognition and Evaluation of "Overseas" Credentials

    ERIC Educational Resources Information Center

    Waters, Johanna L.

    2009-01-01

    This paper examines the role of specific and place-based social capital in the recognition and evaluation of international credentials. Whilst research on labour market segmentation has contributed towards an understanding of the spatial variability of the value of human capital, very little attention has been paid to the ways in which the…

  10. Emerging Role of CaV1.2 Channels in Proliferation and Migration in Distinct Cancer Cell Lines.

    PubMed

    Martínez-Delgado, Gustavo; Felix, Ricardo

    2017-03-30

    Extensive research is currently underway, seeking better diagnostic methods and treatments and a better understanding of the molecular mechanisms involved in cancer, from the role of specific genetic mutations to the intricate biochemical and molecular pathways involved. Because of their role in regulating relevant physiological events such as cell proliferation, migration, and invasion, ion channels have recently been recognized as important elements in cancer initiation and progression. Moreover, it has been reported that pharmacological intervention in ion channel activity might provide protection against diverse types of cancer, and that ion channels could be used as targets to counteract tumor growth, prevent metastasis, and overcome the therapy resistance of tumor cells. In this context, Ca2+ channels have been found to play a role in tumorigenesis and tumor progression. Specifically, L-type Ca2+ channel inhibition may affect cell proliferation, differentiation, and apoptosis. This review aims to provide insights into the potential role of these channels in cancer cell lines, emphasizing their participation in cell proliferation, migration, and autophagy induction, as well as their potential as rational targets for new cancer therapeutics.

  11. Transnational Geographies of Academic Distinction: The Role of Social Capital in the Recognition and Evaluation of "Overseas" Credentials

    ERIC Educational Resources Information Center

    Waters, Johanna L.

    2009-01-01

    This paper examines the role of specific and place-based social capital in the recognition and evaluation of international credentials. Whilst research on labour market segmentation has contributed towards an understanding of the spatial variability of the value of human capital, very little attention has been paid to the ways in which the…

  12. Histone H3 K79 methylation states play distinct roles in UV-induced sister chromatid exchange and cell cycle checkpoint arrest in Saccharomyces cerevisiae

    PubMed Central

    Rossodivita, Alyssa A.; Boudoures, Anna L.; Mecoli, Jonathan P.; Steenkiste, Elizabeth M.; Karl, Andrea L.; Vines, Eudora M.; Cole, Arron M.; Ansbro, Megan R.; Thompson, Jeffrey S.

    2014-01-01

    Histone post-translational modifications have been shown to contribute to DNA damage repair. Prior studies have suggested that specific H3K79 methylation states play distinct roles in the response to UV-induced DNA damage. To evaluate these observations, we examined the effect of altered H3K79 methylation patterns on UV-induced G1/S checkpoint response and sister chromatid exchange (SCE). We found that the di- and trimethylated states both contribute to activation of the G1/S checkpoint to varying degrees, depending on the synchronization method, although methylation is not required for checkpoint in response to high levels of UV damage. In contrast, UV-induced SCE is largely a product of the trimethylated state, which influences the usage of gene conversion versus popout mechanisms. Regulation of H3K79 methylation by H2BK123 ubiquitylation is important for both checkpoint function and SCE. H3K79 methylation is not required for the repair of double-stranded breaks caused by transient HO endonuclease expression, but does play a modest role in survival from continuous exposure. The overall results provide evidence for the participation of H3K79 methylation in UV-induced recombination repair and checkpoint activation, and further indicate that the di- and trimethylation states play distinct roles in these DNA damage response pathways. PMID:24748660

  13. Possession Divestment by Sales in Later Life

    PubMed Central

    Ekerdt, David J.; Addington, Aislinn

    2015-01-01

    Residential relocation in later life is almost always a downsizing, with many possessions to be divested in a short period of time. This article examines older movers’ capacities for selling things, and ways that selling attenuates people's ties to those things, thus accomplishing the human dis-possession of the material convoy. In qualitative interviews in 79 households in the Midwestern United States, older adults reported their experience with possession sales associated with residential relocation. Among this group, three-quarters of the households downsized by selling some belongings. Informal sales seemed the least fraught of all strategies, estate sales had mixed reviews, and garage sales were recalled as laborious. Sellers’ efforts were eased by social relations and social networks as helpers and buyers came forward. As selling proceeded, sentiment about possessions waned as their materiality and economic value came to the fore, easing their detachment from the household. Possession selling is challenging because older adults are limited in the knowledge, skills, and efforts that they can apply to the recommodification of their belongings. Selling can nonetheless be encouraged as a divestment strategy as long as the frustrations and drawbacks are transparent, and the goal of ridding is kept in view. PMID:26162722

  14. Possession divestment by sales in later life.

    PubMed

    Ekerdt, David J; Addington, Aislinn

    2015-08-01

    Residential relocation in later life is almost always a downsizing, with many possessions to be divested in a short period of time. This article examines older movers' capacities for selling things, and ways that selling attenuates people's ties to those things, thus accomplishing the human dis-possession of the material convoy. In qualitative interviews in 79 households in the Midwestern United States, older adults reported their experience with possession sales associated with residential relocation. Among this group, three-quarters of the households downsized by selling some belongings. Informal sales seemed the least fraught of all strategies, estate sales had mixed reviews, and garage sales were recalled as laborious. Sellers' efforts were eased by social relations and social networks as helpers and buyers came forward. As selling proceeded, sentiment about possessions waned as their materiality and economic value came to the fore, easing their detachment from the household. Possession selling is challenging because older adults are limited in the knowledge, skills, and efforts that they can apply to the recommodification of their belongings. Selling can nonetheless be encouraged as a divestment strategy as long as the frustrations and drawbacks are transparent, and the goal of ridding is kept in view.

  15. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite

    PubMed Central

    Ganter, Markus; Rizopoulos, Zaira; Schüler, Herwig; Matuschewski, Kai

    2015-01-01

    Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs. PMID:25565321

  16. Evaluative vs. trait representation in intergroup social judgments: distinct roles of anterior temporal lobe and prefrontal cortex.

    PubMed

    Gilbert, Sam J; Swencionis, Jillian K; Amodio, David M

    2012-12-01

    When interacting with someone from another social group, one's responses may be influenced by both stereotypes and evaluations. Given behavioral results suggesting that stereotypes and evaluative associations operate independently, we used fMRI to test whether these biases are mediated by distinct brain systems. White participants viewed pairs of Black or White faces and judged them based on an evaluation (who would you befriend?) or a stereotype-relevant trait (who is more likely to enjoy athletic activities?). Multi-voxel pattern analysis revealed that a predominantly occipital network represented race in a context-invariant manner. However, lateral orbitofrontal cortex preferentially represented race during friendship judgments, whereas anterior medial prefrontal cortex preferentially represented race during trait judgments. Furthermore, representation of race in left temporal pole correlated with a behavioral measure of evaluative bias during friendship judgments and, independently, a measure of stereotyping during trait judgments. Whereas early sensory regions represent race in an apparently invariant manner, representations in higher-level regions are multi-componential and context-dependent.

  17. Distinct effects of TRAIL on the mitochondrial network in human cancer cells and normal cells: role of plasma membrane depolarization.

    PubMed

    Suzuki-Karasaki, Yoshihiro; Fujiwara, Kyoko; Saito, Kosuke; Suzuki-Karasaki, Miki; Ochiai, Toyoko; Soma, Masayoshi

    2015-08-28

    Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a promising anticancer drug due to its tumor-selective cytotoxicity. Here we report that TRAIL exhibits distinct effects on the mitochondrial networks in malignant cells and normal cells. Live-cell imaging revealed that multiple human cancer cell lines and normal cells exhibited two different modes of mitochondrial responses in response to TRAIL and death receptor agonists. Mitochondria within tumor cells became fragmented into punctate and clustered in response to toxic stimuli. The mitochondrial fragmentation was observed at 4 h, then became more pronounced over time, and associated with apoptotic cell death. In contrast, mitochondria within normal cells such as melanocytes and fibroblasts became only modestly truncated, even when they were treated with toxic stimuli. Although TRAIL activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, inhibition of this process by Drp1 knockdown or with the Drp1 inhibitor mdivi-1, potentiated TRAIL-induced apoptosis, mitochondrial fragmentation, and clustering. Moreover, mitochondrial reactive oxygen species (ROS)-mediated depolarization accelerated mitochondrial network abnormalities in tumor cells, but not in normal cells, and TRAIL caused higher levels of mitochondrial ROS accumulation and depolarization in malignant cells than in normal cells. Our findings suggest that tumor cells are more prone than normal cells to oxidative stress and depolarization, thereby being more vulnerable to mitochondrial network abnormalities and that this vulnerability may be relevant to the tumor-targeting killing by TRAIL.

  18. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide.

    PubMed

    A -H -Mackerness, S; John, C F; Jordan, B; Thomas, B

    2001-02-02

    The nature and origin of the reactive oxygen species (ROS) involved in the early part of Ultraviolet-B (UV-B)-induced signaling pathways were investigated in Arabidopsis thaliana using a range of enzyme inhibitors and free radical scavengers. The increase in PR-1 transcript and decrease in Lhcb transcript in response to UV-B exposure was shown to be mediated through pathways involving hydrogen peroxide (H(2)O(2)) derived from superoxide (O(2)(&z.rad;-)). In contrast, the up-regulation of PDF1.2 transcript was mediated through a pathway involving O(2)(&z.rad;-) directly. The origins of the ROS were also shown to be distinct and to involve NADPH oxidase and peroxidase(s). The up-regulation of Chs by UV-B was not affected by ROS scavengers, but was reduced by inhibitors of nitric oxide synthase (NOS) or NO scavengers. Together these results suggest that UV-B exposure leads to the generation of ROS, from multiple sources, and NO, through increased NOS activity, giving rise to parallel signaling pathways mediating responses of specific genes to UV-B radiation.

  19. Role of the cytokine environment and cytokine receptor expression on the generation of functionally distinct dendritic cells from human monocytes.

    PubMed

    Conti, Lucia; Cardone, Marco; Varano, Barbara; Puddu, Patrizia; Belardelli, Filippo; Gessani, Sandra

    2008-03-01

    Myeloid dendritic cells (DC) and macrophages evolve from a common precursor. However, factors controlling monocyte differentiation toward DC or macrophages are poorly defined. We report that the surface density of the GM-CSF receptor (GM-CSFR) alpha subunit in human peripheral blood monocytes varies among donors. Although no correlation was found between the extent of GM-CSFR and monocyte differentiation into DC driven by GM-CSF and IL-4, GM-CSFR expression strongly influenced the generation of CD1a(+) dendritic-like cells in the absence of IL-4. CD1a(+) cells generated in the presence of GM-CSF express CD40, CD80, MHC class I and II, DC-SIGN, MR, CCR5, and partially retain CD14 expression. Interestingly, they spontaneously induce the expansion of CD4(+) and CD8(+) allogeneic T lymphocytes producing IFN-gamma, and migrate toward CCL4 and CCL19. Upon stimulation with TLR ligands, they acquire the phenotypic features of mature DC. In contrast, the allostimulatory capacity is not further increased upon LPS activation. However, by blocking LPS-induced IL-10, a higher T cell proliferative response and IL-12 production were observed. Interestingly, IL-23 secretion was not affected by endogenous IL-10. These results highlight the importance of GM-CSFR expression in monocytes for cytokine-induced DC generation and point to GM-CSF as a direct player in the generation of functionally distinct DC.

  20. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite.

    PubMed

    Ganter, Markus; Rizopoulos, Zaira; Schüler, Herwig; Matuschewski, Kai

    2015-04-01

    Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs.

  1. Subcellular localizations of AS1 and AS2 suggest their common and distinct roles in plant development.

    PubMed

    Zhu, Yan; Li, Ziyu; Xu, Ben; Li, Hongda; Wang, Lingjian; Dong, Aiwu; Huang, Hai

    2008-07-01

    During leaf organogenesis, a critical step for normal leaf primordium initiation is the repression of the class 1 KNOTTED1-like homeobox (KNOX) genes. After leaf primordia are formed, they must establish polarity for normal leaf morphogenesis. Recent studies have led to the identification of a number of genes that participate in the class 1 KNOX gene repression and/or the leaf polarity establishment. ASTMMETRIC LEAVES1 and 2 (AS1 and AS2) are two of these genes, which are critical for both of these two processes. As a first step towards understanding the molecular genetic basis of the AS1-AS2 action, we determined the subcellular localizations of the two proteins in both tobacco BY2 cells and Arabidopsis plants, by fusing them to yellow/cyan fluorescent protein (YFP/CFP). Our data showed that AS1 and AS2 alone were predominantly localized in the nucleolus and the nucleoplasm, respectively. The presence of both AS1 and AS2 proteins in the same interphase cell demonstrated their co-localization in both nucleolus and nucleoplasm. In addition, AS1 alone was able to associate with the condensed chromosome in the metaphase cell. Our data suggest that AS1, AS2 and the AS1-AS2 protein complex may have distinct functions, which are all required for normal plant development.

  2. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein.

    PubMed

    Sargent, F; Stanley, N R; Berks, B C; Palmer, T

    1999-12-17

    In Escherichia coli, transmembrane translocation of proteins can proceed by a number of routes. A subset of periplasmic proteins are exported via the Tat pathway to which proteins are directed by N-terminal "transfer peptides" bearing the consensus (S/T)RRXFLK "twin-arginine" motif. The Tat system involves the integral membrane proteins TatA, TatB, TatC, and TatE. Of these, TatA, TatB, and TatE are homologues of the Hcf106 component of the DeltapH-dependent protein import system of plant thylakoids. Deletion of the tatB gene alone is sufficient to block the export of seven endogenous Tat substrates, including hydrogenase-2. Complementation analysis indicates that while TatA and TatE are functionally interchangeable, the TatB protein is functionally distinct. This conclusion is supported by the observation that Helicobacter pylori tatA will complement an E. coli tatA mutant, but not a tatB mutant. Analysis of Tat component stability in various tat deletion backgrounds shows that TatC is rapidly degraded in the absence of TatB suggesting that TatC complexes, and is stabilized by, TatB.

  3. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory.

    PubMed

    Kim, Jong Min; Kim, Dong Hyun; Lee, Younghwan; Park, Se Jin; Ryu, Jong Hoon

    2014-03-13

    It is well known that the hippocampus plays a role in spatial and contextual memory, and that spatial information is tightly regulated by the hippocampus. However, it is still highly controversial whether the hippocampus plays a role in object recognition memory. In a pilot study, the administration of bicuculline, a GABAA receptor antagonist, enhanced memory in the passive avoidance task, but not in the novel object recognition task. In the present study, we hypothesized that these different results are related to the characteristics of each task and the different roles of hippocampus and perirhinal cortex. A region-specific drug-treatment model was employed to clarify the role of the hippocampus and perirhinal cortex in object recognition memory. After a single habituation in the novel object recognition task, intra-perirhinal cortical injection of bicuculline increased and intra-hippocampal injection decreased the exploration time ratio to novel object. In addition, when animals were repeatedly habituated to the context, intra-perirhinal cortical administration of bicuculline still increased exploration time ratio to novel object, but the effect of intra-hippocampal administration disappeared. Concurrent increases of c-Fos expression and ERK phosphorylation were observed in the perirhinal cortex of the object with context-exposed group either after single or repeated habituation to the context, but no changes were noted in the hippocampus. Altogether, these results suggest that object recognition memory formation requires the perirhinal cortex but not the hippocampus, and that hippocampal activation interferes with object recognition memory by the information encoding of unfamiliar environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Block of cyclic nucleotide-gated channels by tetracaine derivatives: role of apolar interactions at two distinct locations

    PubMed Central

    Strassmaier, Timothy; Kirk, Sarah R.; Banerji, Tapasree; Karpen, Jeffrey W.

    2008-01-01

    A series of new tetracaine derivatives was synthesized to explore the effects of hydrophobic character on blockade of cyclic nucleotide-gated (CNG) channels. Increasing the hydrophobicity at either of two positions on the tetracaine scaffold, the tertiary amine or the butyl tail, yields blockers with increased potency. However, shape also plays an important role. While gradual increases in length of the butyl tail lead to increased potency, substitution of the butyl tail with branched alkyl or cyclic groups is deleterious. PMID:18055205

  5. Drp2 and Periaxin form Cajal Bands with Dystroglycan but have Distinct Roles in Schwann Cell Growth

    PubMed Central

    Sherman, Diane L.; Wu, Lai Man N.; Grove, Matthew; Gillespie, C. Stewart; Brophy, Peter J.

    2012-01-01

    Cajal bands are cytoplasmic channels flanked by appositions where the abaxonal surface of Schwann cell myelin apposes and adheres to the overlying plasma membrane. These appositions contain a dystroglycan complex that includes periaxin and dystrophin-related protein 2 (Drp2). Loss of periaxin disrupts appositions and Cajal bands in Schwann cells and causes a severe demyelinating neuropathy in mouse and man. Here we have investigated the role of mouse Drp2 in apposition assembly and Cajal band function and compared it to periaxin. We show that Periaxin and Drp2 are not only both required to form appositions, but they must also interact. Periaxin-Drp2 interaction is also required for Drp2 phosphorylation but phosphorylation is not required for the assembly of appositions. Drp2 loss causes corresponding increases in Dystrophin family members, utrophin and dystrophin Dp116 though dystroglycan remains unchanged. We also show that all dystroglycan complexes in Schwann cells utilise the uncleaved form of β-dystroglycan. Drp2-null Schwann cells have disrupted appositions and Cajal bands, and they undergoe focal hypermyelination and concomitant demyelination. Nevertheless, they do not have the short internodal lengths and associated reduced nerve conduction velocity seen in the absence of periaxin, showing that periaxin regulates Schwann cell elongation independent of its role in the dystroglycan complex. We conclude that the primary role of the dystroglycan complex in appositions is to stabilize and limit the radial growth of myelin. PMID:22764250

  6. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa).

    PubMed

    Bian, Hongwu; Xie, Yakun; Guo, Fu; Han, Ning; Ma, Shengyun; Zeng, Zhanghui; Wang, Junhui; Yang, Yinong; Zhu, Muyuan

    2012-10-01

    • MicroRNA (miRNA)-mediated regulation of auxin signaling components plays a critical role in plant development. miRNA expression and functional diversity contribute to the complexity of regulatory networks of miRNA/target modules. • This study functionally characterizes two members of the rice (Oryza sativa) miR393 family and their target genes, OsTIR1 and OsAFB2 (AUXIN SIGNALING F-BOX), the two closest homologs of Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 (TIR1). • We found that the miR393 family members possess distinctive expression patterns, with miR393a expressed mainly in the crown and lateral root primordia, as well as the coleoptile tip, and miR393b expressed in the shoot apical meristem. Transgenic plants overexpressing miR393a/b displayed a severe phenotype with hallmarks of altered auxin signaling, mainly including enlarged flag leaf inclination and altered primary and crown root growth. Furthermore, OsAFB2- and OsTIR1-suppressed lines exhibited increased inclination of flag leaves at the booting stage, resembling miR393-overexpressing plants. Moreover, yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsTIR1 and OsAFB2 interact with OsIAA1. • Expression diversification of miRNA393 implies the potential role of miRNA regulation during species evolution. The conserved mechanisms of the miR393/target module indicate the fundamental importance of the miR393-mediated regulation of auxin signal transduction in rice.

  7. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  8. Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes.

    PubMed

    Liao, Xiao-Hui; Di Cosmo, Caterina; Dumitrescu, Alexandra M; Hernandez, Arturo; Van Sande, Jacqueline; St Germain, Donald L; Weiss, Roy E; Galton, Valerie Anne; Refetoff, Samuel

    2011-03-01

    Mice deficient in the thyroid hormone (TH) transporter Mct8 (Mct8KO) have increased 5'-deiodination and impaired TH secretion and excretion. These and other unknown mechanisms result in the low-serum T(4), high T(3), and low rT(3) levels characteristic of Mct8 defects. We investigated to what extent each of the 5'-deiodinases (D1, D2) contributes to the serum TH abnormalities of the Mct8KO by generating mice with all combinations of Mct8 and D1 and/or D2 deficiencies and comparing the resulting eight genotypes. Adding D1 deficiency to that of Mct8 corrected the serum TH abnormalities of Mct8KO mice, normalized brain T(3) content, and reduced the impaired expression of TH-responsive genes. In contrast, Mct8D2KO mice maintained the serum TH abnormalities of Mct8KO mice. However, the serum TSH level increased 27-fold, suggesting a severely impaired hypothalamo-pituitary-thyroid axis. The brain of Mct8D2KO manifested a pattern of more severe impairment of TH action than Mct8KO alone. In triple Mct8D1D2KO mice, the markedly increased serum TH levels produced milder brain defect than that of Mct8D2KO at the expense of more severe liver thyrotoxicosis. Additionally, we observed that mice deficient in D2 had an unexplained marked reduction in the thyroid growth response to TSH. Our studies on these eight genotypes provide a unique insight into the complex interplay of the deiodinases in the Mct8 defect and suggest that D1 contributes to the increased serum T(3) in Mct8 deficiency, whereas D2 mainly functions locally, converting T(4) to T(3) to compensate for distinct cellular TH depletion in Mct8KO mice.

  9. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    PubMed

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions.

  10. Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development.

    PubMed

    Andersson, Olov; Bertolino, Philippe; Ibáñez, Carlos F

    2007-11-15

    Vg1, a member of the TGF-beta superfamily of ligands, has been implicated in the induction of mesoderm, formation of primitive streak, and left-right patterning in Xenopus and chick embryos. In mice, GDF1 and GDF3 - two TGF-beta superfamily ligands that share high sequence identity with Vg1 - have been shown to independently mimic distinct aspects of Vg1's functions. However, the extent to which the developmental processes controlled by GDF1 and GDF3 and the underlying signaling mechanisms are evolutionarily conserved remains unclear. Here we show that phylogenetic and genomic analyses indicate that Gdf1 is the true Vg1 ortholog in mammals. In addition, and similar to GDF1, we find that GDF3 signaling can be mediated by the type I receptor ALK4, type II receptors ActRIIA and ActRIIB, and the co-receptor Cripto to activate Smad-dependent reporter genes. When expressed in heterologous cells, the native forms of either GDF1 or GDF3 were incapable of inducing downstream signaling. This could be circumvented by using chimeric constructs carrying heterologous prodomains, or by co-expression with the Furin pro-protein convertase, indicating poor processing of the native GDF1 and GDF3 precursors. Unexpectedly, co-expression with Nodal - another TGF-beta superfamily ligand involved in mesoderm formation - could also expose the activities of native GDF1 and GDF3, suggesting a potentially novel mode of cooperation between these ligands. Functional complementarity between GDF1 and GDF3 during embryonic development was investigated by analyzing genetic interactions between their corresponding genes. This analysis showed that Gdf1(-/-);Gdf3(-/-) compound mutants are more severely affected than either Gdf1(-/-) or Gdf3(-/-) single mutants, with defects in the formation of anterior visceral endoderm and mesoderm that recapitulate Vg1 loss of function, suggesting that GDF1 and GDF3 together represent the functional mammalian homologs of Vg1.

  11. Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae).

    PubMed

    Wang, Shih-Yu; Lee, Pei-Fang; Lee, Yung-I; Hsiao, Yu-Yun; Chen, You-Yi; Pan, Zhao-Jun; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2011-03-01

    The orchid floral organs represent novel and effective structures for attracting pollination vectors. In addition, to avoid inbreeding, the androecium and gynoecium are united in a single structure termed the gynostemium. Identification of C-class MADS-box genes regulating reproductive organ development could help determine the level of homology with the current ABC model of floral organ identity in orchids. In this study, we isolated and characterized two C-class AGAMOUS-like genes, denoted CeMADS1 and CeMADS2, from Cymbidium ensifolium. These two genes showed distinct spatial and temporal expression profiles, which suggests their functional diversification during gynostemium development. Furthermore, the expression of CeMADS1 but not CeMADS2 was eliminated in the multitepal mutant whose gynostemium is replaced by a newly emerged flower, and this ecotopic flower continues to produce sepals and petals centripetally. Protein interaction relationships among CeMADS1, CeMADS2 and E-class PeMADS8 proteins were assessed by yeast two-hybrid analysis. Both CeMADS1 and CeMADS2 formed homodimers and heterodimers with each other and the E-class PeMADS protein. Furthermore, transgenic Arabidopsis plants overexpressing CeMADS1 or CeMADS2 showed limited growth of primary inflorescence. Thus, CeMADS1 may have a pivotal C function in reproductive organ development in C. ensifolium. © The Author 2011. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Epilepsy, hysteria, and "possession". A historical essay.

    PubMed

    Glaser, G H

    1978-04-01

    A historical essay is presented relating concepts of epilepsy, hysteria, and "possession." The designation "hysteroepilepsy" is placed into the context of combined phenomena in individual subject instances. An association of psychotic states resembling a schizoprenic disorder is indicated as occurring in certain epileptic patients, especially some complex partial seizures (i.e., temporal lobe-psychomotor type). Phenomena of possession may appear within any of these entities. Differential diagnosis now is aided greatly by ulilization of monitoring with combined split screen television viewing and recording of the patient's behavior and the concomitant electroencephalogram. Treatment is directed both medically and toward alleviation of contributing and precipitating psychological and sociological factors.

  13. Type A and B monoamine oxidase in age-related neurodegenerative disorders: their distinct roles in neuronal death and survival.

    PubMed

    Naoi, Makoto; Maruyama, Wakako; Inaba-Hasegawa, Keiko

    2012-01-01

    In neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, type B monoamine oxidase (MAO-B) has been proposed to play a primary role though generating reactive oxygen species in oxidation of monoamine substrates. MAO-B oxidizes MPTP into MPP+, and an MAO-B inhibitor, deprenyl, prevents the MPTP oxidation and also MPP+neutotoxicity. These results suggest the association of MAO-B with neuronal death in neurodegenerative disorders. On the other hand, deprenyl and rasagiline, selective MAO-B inhibitors, have been proved to protect neuronal cells in cellular and animal models of neurodegeneration. These inhibitors decrease oxidation of the substrates, scavenge oxygen radicals, intervene apoptosis signal pathway in mitochondria and induce pro-survival genes coding anti-apoptotic Bcl-2 and neurotrophic factors. However, the association of MAO-B itself with the neuroprotective function of MAO-B inhibitors remains enigmatic. Recently, the involvement of type A MAO (MAO-A) in neuronal death has been shown by upregulation MAO-A expression in cellular models. MAO-A is a target of an endogenous neurotoxin, Nmethyl( R)salsolinol, and MAO-A knockdown (KO) with short interfering (si)RNA protects neuronal death from apoptosis. In addition, MAO-A mediates the increased expression of genes for anti-apoptotic, pro-survival Bcl-2 and neurotrophic factors by MAO-B inhibitors, whereas MAO-B doe not. In this review, we present our recent results on the novel role of MAO-A and MAO-B in neuronal death and also in the neuroprotective gene induction by MAO inhibitors. The future development of new series of neuroprotective drugs is discussed among compounds, which have high affinity to MAO-A and can induce pro-survival genes. MAO-A is expected to play a role in disease-modifying therapy for neurodegenerative disorders.

  14. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport.

    PubMed

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis.

  15. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport

    PubMed Central

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L. Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis. PMID:26839958

  16. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor

    PubMed Central

    Azevedo, Anthony W; Doan, Thuy; Moaven, Hormoz; Sokal, Iza; Baameur, Faiza; Vishnivetskiy, Sergey A; Homan, Kristoff T; Tesmer, John JG; Gurevich, Vsevolod V; Chen, Jeannie; Rieke, Fred

    2015-01-01

    Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity. DOI: http://dx.doi.org/10.7554/eLife.05981.001 PMID:25910054

  17. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases.

    PubMed

    Harbut, Michael B; Velmourougane, Geetha; Dalal, Seema; Reiss, Gilana; Whisstock, James C; Onder, Ozlem; Brisson, Dustin; McGowan, Sheena; Klemba, Michael; Greenbaum, Doron C

    2011-08-23

    Malaria causes worldwide morbidity and mortality, and while chemotherapy remains an excellent means of malaria control, drug-resistant parasites necessitate the discovery of new antimalarials. Peptidases are a promising class of drug targets and perform several important roles during the Plasmodium falciparum erythrocytic life cycle. Herein, we report a multidisciplinary effort combining activity-based protein profiling, biochemical, and peptidomic approaches to functionally analyze two genetically essential P. falciparum metallo-aminopeptidases (MAPs), PfA-M1 and Pf-LAP. Through the synthesis of a suite of activity-based probes (ABPs) based on the general MAP inhibitor scaffold, bestatin, we generated specific ABPs for these two enzymes. Specific inhibition of PfA-M1 caused swelling of the parasite digestive vacuole and prevented proteolysis of hemoglobin (Hb)-derived oligopeptides, likely starving the parasite resulting in death. In contrast, inhibition of Pf-LAP was lethal to parasites early in the life cycle, prior to the onset of Hb degradation suggesting that Pf-LAP has an essential role outside of Hb digestion.

  18. A genetic approach to study H2O2 scavenging in fission yeast--distinct roles of peroxiredoxin and catalase.

    PubMed

    Paulo, Esther; García-Santamarina, Sarela; Calvo, Isabel A; Carmona, Mercè; Boronat, Susanna; Domènech, Alba; Ayté, José; Hidalgo, Elena

    2014-04-01

    The main peroxiredoxin in Schizosaccharomyces pombe, Tpx1, is important to sustain aerobic growth, and cells lacking this protein are only able to grow on solid plates under anaerobic conditions. We have found that deletion of the gene coding for thioredoxin reductase, trr1, is a suppressor of the sensitivity to aerobic growth of Δtpx1 cells, so that cells lacking both proteins are able to grow on solid plates in the presence of oxygen. We have investigated this suppression effect, and determined that it depends on the presence of catalase, which is constitutively expressed in Δtrr1 cells in a transcription factor Pap1-dependent manner. A complete characterization of the repertoire of hydrogen peroxide scavenging activities in fission yeast suggests that Tpx1 is the only enzyme with sufficient sensitivity for peroxides and cellular abundance as to control the low levels produced during aerobic growth, catalase being the next barrier of detoxification when the steady-state levels of peroxides are increased in Δtpx1 cells. Gpx1, the only glutathione peroxidase encoded by the S. pombe genome, only has a minor secondary role when extracellular peroxides are added. Our study proposes non-overlapping roles for the different hydrogen peroxide scavenging activities of this eukaryotic organism.

  19. Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation.

    PubMed

    Naveilhan, P; Canals, J M; Arenas, E; Ernfors, P

    2001-09-01

    Intracranial injection of neuropeptide Y (NPY) increases the sensitivity to sodium pentobarbital and ketamin sedation and has similar properties as GABA agonists on sleep. Mice sensitive to sedation have increased levels of NPY in many brain regions and Y1(-/-) mice show a marked resistance to barbiturates. Here we characterized the role of the NPY Y receptors in anesthetic-induced sedation. We show that Y1 and Y2, but not Y5, receptors participate in the modulation of sedation. Administration of a Y1 agonist increased the sodium pentobarbital-induced sedation and Y1(-/-) mice were less sensitive to this anesthetic. However, Y2(-/-) mice display increased sensitivity, showing that Y2 modulates GABAergic induced sedation both pharmacologically and physiologically and has a functionally opposing role to the Y1 receptor. Analysis of Y1(-/-)/Y2(-/-) double mutant mice show that increased sensitivity by Y1 occurs independent of the Y2 receptor, while the decreased sensitivity mediated by Y2 depend on an intact Y1 receptor. In contrast to sodium pentobarbital, both Y1 and Y2 receptors increase the sensitivity in a collaborative fashion to NMDA antagonist-induced sedation. These data demonstrate the physiological and pharmacological impact of the Y1 and Y2 receptors on sedation.

  20. Two Types of Neurons in the Primate Globus Pallidus External Segment Play Distinct Roles in Antisaccade Generation.

    PubMed

    Yoshida, Atsushi; Tanaka, Masaki

    2016-03-01

    The globus pallidus external segment (GPe) constitutes part of the indirect pathway of the basal ganglia. Because of inhibitory projections from the striatum, most GPe neurons are expected to reduce activity during movements. However, many GPe neurons in fact display increased activity. We previously found that both excitatory and inhibitory responses were modulated during antisaccades, when eyes were directed away from a visual stimulus. To elucidate the roles of these neurons during antisaccades, we examined neuronal activities as monkeys performed antisaccades, prosaccades, and NoGo tasks under 2 conditions. In the Deliberate condition, the task-rule was instructed by color of the fixation point, while in the Immediate condition, it was given by color of the target. Under both conditions, the increase-type neurons exhibited greater activity during antisaccades compared with the other tasks and neuronal activity negatively correlated with saccade latency. The decrease-type neurons also showed greater modulation during antisaccades but their activity was comparable between NoGo and antisaccade trials in the Immediate condition. These results suggest that the increase-type neurons might play a role in facilitating antisaccades, whereas the decrease-type neurons could mediate signals for reflexive saccade suppression. We propose that these GPe neurons are differently involved in basal ganglia pathways.

  1. Distinct Roles for Laminin Globular Domains in Laminin α1 Chain Mediated Rescue of Murine Laminin α2 Chain Deficiency

    PubMed Central

    Gawlik, Kinga I.; Åkerlund, Mikael; Carmignac, Virginie; Elamaa, Harri; Durbeej, Madeleine

    2010-01-01

    Background Laminin α2 chain mutations cause congenital muscular dystrophy with dysmyelination neuropathy (MDC1A). Previously, we demonstrated that laminin α1 chain ameliorates the disease in mice. Dystroglycan and integrins are major laminin receptors. Unlike laminin α2 chain, α1 chain binds the receptors by separate domains; laminin globular (LG) domains 4 and LG1-3, respectively. Thus, the laminin α1 chain is an excellent tool to distinguish between the roles of dystroglycan and integrins in the neuromuscular system. Methodology/Principal Findings Here, we provide insights into the functions of laminin α1LG domains and the division of their roles in MDC1A pathogenesis and rescue. Overexpression of laminin α1 chain that lacks the dystroglycan binding LG4-5 domains in α2 chain deficient mice resulted in prolonged lifespan and improved health. Importantly, diaphragm and heart muscles were corrected, whereas limb muscles were dystrophic, indicating that different muscles have different requirements for LG4-5 domains. Furthermore, the regenerative capacity of the skeletal muscle did not depend on laminin α1LG4-5. However, this domain was crucial for preventing apoptosis in limb muscles, essential for myelination in peripheral nerve and important for basement membrane assembly. Conclusions/Significance These results show that laminin α1LG domains and consequently their receptors have disparate functions in the neuromuscular system. Understanding these interactions could contribute to design and optimization of future medical treatment for MDC1A patients. PMID:20657839

  2. XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning.

    PubMed

    Onuma, Yasuko; Yeo, Chang-Yeol; Whitman, Malcolm

    2006-01-01

    Members of the EGF-CFC family facilitate signaling by a subset of TGFbeta superfamily ligands that includes the nodal-related factors and GDF1/VG1. Studies in mouse, zebrafish, and chick point to an essential role for EGF-CFC proteins in the action of nodal/GDF1 signals in the early establishment of the mesendoderm and later visceral left-right patterning. Antisense knockdown of the only known frog EGF-CFC factor (FRL1), however, has argued against an essential role for this factor in nodal/GDF1 signaling. To address this apparent paradox, we have identified two additional Xenopus EGF-CFC family members. The three Xenopus EGF-CFC factors show distinct patterns of expression. We have examined the role of XCR2, the only Xenopus EGF-CFC factor expressed in post-gastrula embryos, in embryogenesis. Antisense morpholino oligonucleotide-mediated depletion of XCR2 disrupts left-right asymmetry of the heart and gut. Although XCR2 is expressed bilaterally at neurula stage, XCR2 is required on the left side, but not the right side, for normal left-right patterning. Left-side expression of XNR1 in the lateral plate mesoderm depends on XCR2, whereas posterior bilateral expression of XNR1 does not, suggesting that distinct mechanisms maintain XNR1 expression in different regions of neurula-tailbud embryos. Ectopic XCR2 on the right side initiates premature right-side expression of XNR1 and XATV, and can reverse visceral patterning. This activity of XCR2 depends on its co-receptor function. These observations indicate that XCR2 has a crucial limiting role in maintaining a bistable asymmetry in nodal family signaling across the left-right axis.

  3. Am I seeing myself, my friend or a stranger? The role of personal familiarity in visual distinction of body identities in the human brain.

    PubMed

    Kruse, Barbara; Bogler, Carsten; Haynes, John-Dylan; Schütz-Bosbach, Simone

    2016-10-01

    Several brain regions appear to play a role in representing different body identities. The specific contribution of each of these regions is still unclear, however. Here we investigated which brain areas enable the visual distinction between self and other bodies of different familiarity, and between familiar and unfamiliar other individuals, and moreover, where identity-specific information on the three individuals was encoded. Participants were confronted with standardized headless human body stimuli either showing the participant's own, a personally familiar or an unfamiliar other body, while performing a luminance discrimination task. Employing multivariate pattern analysis, we were able to identify areas that allowed for the distinction of self from personal familiar other bodies within the medial prefrontal cortex (mPFC) and posterior cingulate cortex/precuneus. Successful distinction of self from unfamiliar others was possible in the left middle frontal gyrus, the right inferior frontal gyrus, the left pre-supplementary motor area and the right putamen. Personally familiar others could be distinguished from unfamiliar others in the right temporoparietal junction (TPJ). An analysis of identity-specific information revealed a spatial gradient ranging from inferior posterior to superior anterior portions of the mPFC that was associated with encoding identity-related information for self via familiar to unfamiliar other bodies, respectively. Furthermore, several midline and frontal regions encoded information on more than one identity. The TPJ's role in deviance detection was underlined, as only identity-specific information on unfamiliar others was encoded here. Together, our findings suggest substantial spatial overlap in neural correlates of self and other body representation and thus, support the hypothesis of a socially-related representation of the self.

  4. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Begum, Nasim A; Honjo, Tasuku

    2014-10-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR.

  5. Cost Comparison Among Provable Data Possession Schemes

    DTIC Science & Technology

    2016-03-01

    possession,” in Proceedings of the 11th International Conference on Ap- plied Cryptography and Network Security. Berlin, Heidelberg: Springer-Verlag, 2013...curves,” in Security and Cryptography (SECRYPT), 2013 International Conference on, July 2013, pp. 1–12. [19] R. S. Kumar and A. Saxena, “Data integrity

  6. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  7. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  8. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  9. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  10. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  11. 50 CFR 648.105 - Possession restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fish boxes having a liquid capacity of 18.2 gal (70 L), or a volume of not more than 4,320 in 3 (2.5 ft... Summer Flounder Fisheries § 648.105 Possession restrictions. (a) Unless otherwise specified pursuant to... that person is the owner or operator of a fishing vessel issued a summer flounder moratorium permit, or...

  12. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure.

    PubMed

    Wang, Xiaodong; Hayes, Jeffrey J

    2008-01-01

    Nucleosome arrays undergo salt-dependent self-association into large oligomers in a process thought to recapitulate essential aspects of higher-order tertiary chromatin structure formation. Lysine acetylation within the core histone tail domains inhibits self-association, an effect likely related to its role in facilitating transcription. As acetylation of specific tail domains may encode distinct functions, we investigated biochemical and self-association properties of model nucleosome arrays containing combinations of native and mutant core histones with lysine-to-glutamine substitutions to mimic acetylation. Acetylation mimics within the tail domains of H2B and H4 caused the largest inhibition of array self-association, while modification of the H3 tail uniquely affected the stability of DNA wrapping within individual nucleosomes. In addition, the effect of acetylation mimics on array self-association is inconsistent with a simple charge neutralization mechanism. For example, acetylation mimics within the H2A tail can have either a positive or negative effect on self-association, dependent upon the acetylation state of the other tails and nucleosomal repeat length. Finally, we demonstrate that glutamine substitutions and lysine acetylation within the H4 tail domain have identical effects on nucleosome array self-association. Our results indicate that acetylation of specific tail domains plays distinct roles in the regulation of chromatin structure.

  13. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B

    PubMed Central

    Abraham, Nabil M.; Lamlertthon, Supaporn; Fowler, Vance G.

    2012-01-01

    Staphylococcus aureus is a leading cause of catheter infections, and biofilm formation plays a key role in the pathogenesis. Metal ion chelators inhibit bacterial biofilm formation and viability, making them attractive candidates as components in catheter lock solutions. The goal of this study was to characterize further the effect of chelators on biofilm formation. The effect of the calcium chelators ethylene glycol tetraacetic acid (EGTA) and trisodium citrate (TSC) on biofilm formation by 30 S. aureus strains was tested. The response to subinhibitory doses of EGTA and TSC varied dramatically depending on strain variation. In some strains, the chelators prevented biofilm formation, in others they had no effect, and they actually enhanced biofilm formation in others. The molecular basis for this phenotypic variability was investigated using two related strains: Newman, in which biofilm formation was inhibited by chelators, and 10833, which formed strong biofilms in the presence of chelators. It was found that deletion of the gene encoding the surface adhesin clumping factor B (clfB) completely eliminated chelator-induced biofilm formation in strain 10833. The role of ClfB in biofilm formation activity in chelators was confirmed in additional strains. It was concluded that biofilm-forming ability varies strikingly depending on strain background, and that ClfB is involved in biofilm formation in the presence EGTA and citrate. These results suggest that subinhibitory doses of chelating agents in catheter lock solutions may actually augment biofilm formation in certain strains of S. aureus, and emphasize the importance of using these agents appropriately so that inhibitory doses are achieved consistently. PMID:22516131

  14. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    PubMed

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-11-08

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes.

  15. The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control

    PubMed Central

    Halter, David; Collart, Martine A.; Panasenko, Olesya O.

    2014-01-01

    Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968

  16. Phosphorylation-induced modulation of pNBC1 function: distinct roles for the amino- and carboxy-termini

    PubMed Central

    Gross, E; Fedotoff, O; Pushkin, A; Abuladze, N; Newman, D; Kurtz, I

    2003-01-01

    The human NBC1 (SLC4A4) gene encodes the electrogenic sodium bicarbonate cotransporters kNBC1 and pNBC1, which are highly expressed in the kidney and pancreas, respectively. The HCO3−:Na+ stoichiometry of these cotransporters is an important determinant of the direction of ion flux. Recently we showed in a mouse proximal tubule (mPCT) cell line expressing kNBC1, that 8-Br-cAMP shifts the stoichiometry of the cotransporter from 3:1 to 2:1 via protein kinase A (PKA)-dependent phosphorylation of Ser982. pNBC1 has the identical carboxy-terminal consensus phosphorylation PKA site (KKGS1026), and an additional site in its amino-terminus (KRKT49). In this study we determined the potential role of these sites in regulating the function of pNBC1. The results demonstrated that in mPCT cells expressing pNBC1, PKA-dependent phosphorylation of Ser1026 following 8-Br-cAMP treatment shifted the stoichiometry from 3:1 to 2:1. The effect was electrostatic in nature as replacing Ser1026 with Asp resulted in a similar stoichiometry shift. In addition to shifting the stoichiometry, 8-Br-cAMP caused a significant increase in the 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS)-sensitive basolateral membrane conductance (GDS) of cells expressing pNBC1, but not kNBC1. Although, the effect did not involve phosphorylation of Thr49, which was endogenously phosphorylated, replacing this residue with Asp or Ala abolished the 8-Br-cAMP-induced increase in GDS. In the mPEC pancreatic duct cell line, where endogenous pNBC1 functions with a HCO3−:Na+ stoichiometry of 2:1, 8-Br-cAMP increased GDS by ∼90 % without altering the stoichiometry or inducing phosphorylation of the cotransporter. The results demonstrate that phosphorylation of Ser1026 mediates the cAMP-dependent shift in the stoichiometry of pNBC1, whereas Thr49 plays an essential role in the cAMP-induced increase in GDS. PMID:12730338

  17. The Endoplasmic Reticulum Membrane J Protein C18 Executes a Distinct Role in Promoting Simian Virus 40 Membrane Penetration

    PubMed Central

    Bagchi, Parikshit; Walczak, Christopher Paul

    2015-01-01

    ABSTRACT The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10:e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. IMPORTANCE Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In

  18. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain

    PubMed Central

    Labuz, Dominika; Celik, Melih Ö.; Zimmer, Andreas; Machelska, Halina

    2016-01-01

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment. PMID:27605249

  19. Distinct roles of STAT3 and STAT5 in the pathogenesis and targeted therapy of breast cancer

    PubMed Central

    Walker, Sarah R.; Xiang, Michael; Frank, David A.

    2013-01-01

    The transcription factors STAT3 and STAT5 play important roles in the regulation of mammary gland function during pregnancy, lactation, and involution. Given that STAT3 and STAT5 regulate genes involved in proliferation and survival, it is not surprising that inappropriate activation of STAT3 and STAT5 occurs commonly in breast cancer. Although these proteins are structurally similar, they have divergent and opposing effects on gene expression and cellular phenotype. Notably, when STAT5 and STAT3 are activated simultaneously, STAT5 has a dominant effect, and leads to decreased proliferation and increased sensitivity to cell death. Similarly, in breast cancer, activation of both STAT5 and STAT3 is associated with longer patient survival than activation of STAT3 alone. Pharmacological inhibitors of STAT3 and STAT5 are being developed for cancer therapy, though understanding the activation state and functional interaction of STAT3 and STAT5 in a patient's tumor may be critical for the optimal use of this strategy. PMID:23531638

  20. The Roles of Two Distinct Regions of PINCH-1 in the Regulation of Cell Attachment and Spreading

    PubMed Central

    Ito, Satoko; Takahara, Yuko; Hyodo, Toshinori; Hasegawa, Hitoki; Asano, Eri; Hamaguchi, Michinari

    2010-01-01

    Cells attach to the extracellular matrix (ECM) through integrins to form focal adhesion complexes, and this process is followed by the extension of lamellipodia to enable cell spreading. PINCH-1, an adaptor protein essential for the regulation of cell–ECM adhesion, consists of five tandem LIM domains and a small C-terminal region. PINCH-1 is known to interact with integrin-linked kinase (ILK) and Ras suppressor protein 1 (Rsu-1); however, the precise mechanism by which this complex regulates cell–ECM adhesion is not fully understood. We report here that the LIM1 domain of PINCH-1, which associates with ILK to stabilize the expression of this protein, is sufficient for cell attachment but not for cell spreading. In contrast, the C-terminal region of PINCH-1, which binds to Rsu-1, plays a pivotal role in cell spreading but not in cell attachment. We also show that PINCH-1 associates with Rsu-1 to activate Rac1 and that Rac1 activation is necessary for cell spreading. Thus, these data reveal how specific domains of PINCH-1 direct two independent pathways: one utilizing ILK to allow cell attachment, and the other recruiting Rsu-1 to activate Rac1 in order to promote cell spreading. PMID:20926685

  1. The roles of two distinct regions of PINCH-1 in the regulation of cell attachment and spreading.

    PubMed

    Ito, Satoko; Takahara, Yuko; Hyodo, Toshinori; Hasegawa, Hitoki; Asano, Eri; Hamaguchi, Michinari; Senga, Takeshi

    2010-12-01

    Cells attach to the extracellular matrix (ECM) through integrins to form focal adhesion complexes, and this process is followed by the extension of lamellipodia to enable cell spreading. PINCH-1, an adaptor protein essential for the regulation of cell-ECM adhesion, consists of five tandem LIM domains and a small C-terminal region. PINCH-1 is known to interact with integrin-linked kinase (ILK) and Ras suppressor protein 1 (Rsu-1); however, the precise mechanism by which this complex regulates cell-ECM adhesion is not fully understood. We report here that the LIM1 domain of PINCH-1, which associates with ILK to stabilize the expression of this protein, is sufficient for cell attachment but not for cell spreading. In contrast, the C-terminal region of PINCH-1, which binds to Rsu-1, plays a pivotal role in cell spreading but not in cell attachment. We also show that PINCH-1 associates with Rsu-1 to activate Rac1 and that Rac1 activation is necessary for cell spreading. Thus, these data reveal how specific domains of PINCH-1 direct two independent pathways: one utilizing ILK to allow cell attachment, and the other recruiting Rsu-1 to activate Rac1 in order to promote cell spreading.

  2. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination

    NASA Astrophysics Data System (ADS)

    Savard, Martine M.; Somers, George; Smirnoff, Anna; Paradis, Daniel; van Bochove, Eric; Liao, Shawna

    2010-02-01

    SummaryGlobally, fertilizers are identified as principle sources of nitrate in waters of intensely cultivated areas. Here this general concept is appraised on a seasonal basis over a two year period, under temperate climatic conditions. Water ( δ2H and δ18O) and nitrate ( δ15N and δ18O) isotopes in surface water and groundwater suggest that freshwater is acting as a transport vector conducting nitrate from agricultural soils to groundwater and ultimately to surface water. Measured nitrate isotopes of organic and inorganic fertilizers and of nitrate in groundwater are used to constrain a conceptual apportionment model quantifying the relative seasonal N contributions in an area of intense potato production. Source inputs differ strongly between the growing (summer and fall) and non-growing (winter and spring) periods. Chemical fertilizers and soil organic matter equally dominate and contribute to the growing period load, whereas soil organic matter dominates the non-growing period load, and accounts for over half of the overall annual nitrogen charge. These findings reveal the magnitude of nitrogen cycling by soil organic matter, and point to the benefits of controlling the timing of its nitrate release from this organic material. We conclude that strategies to attenuate contamination by nitrate in waters of temperate climate row-cropping regions must consider nitrogen cycling by soil organic matter, including the crucial role of crop residues throughout both the growing and non-growing seasons.

  3. Role of the Hippocampus in Distinct Memory Traces: Timing of Match and Mismatch Enhancement Revealed by Intracranial Recording.

    PubMed

    Ni, Bing; Wu, Ruijie; Yu, Tao; Zhu, Hongwei; Li, Yongjie; Liu, Zuxiang

    2017-08-31

    A previous functional magnetic resonance imaging study reported evidence for parallel memory traces in the hippocampus: a controlled match signal detecting matches to internally-generated goal states and an automatic mismatch signal identifying unpredicted perceptual novelty. However, the timing information in this process is unknown. In the current study, facilitated by the high spatial and temporal resolution of intracranial recording from human patients, we confirmed that the left posterior hippocampus played an important role in the goal match enhancement effect, in which combinations of object identity and location were involved. We also found that this effect happened within 520 ms to 735 ms after the probe onset, ~150 ms later than the perceptual mismatch enhancement found bilaterally in both the anterior and posterior hippocampus. More specifically, the latency of the perceptual mismatch enhancement effect of the right hippocampus was positively correlated with the performance accuracy. These results suggested that the hippocampus is crucial in working memory if features binding with location are involved in the task and the goal match enhancement effect happens after perceptual mismatch enhancement, implying the dissociation of different components of working memory at the hippocampus. Moreover, single trial decoding results suggested that the intracranial field potential response in the right hippocampus can classify the match or switch task. This is consistent with the findings that the right hippocampal activity observed during the simulation of the future events may reflect the encoding of the simulation into memory.

  4. Distinctive role of opinion leaders in the social networks of school adolescents: an investigation of e-cigarette use.

    PubMed

    Gentina, E; Kilic, D; Dancoine, P-F

    2017-03-01

    This study examines a diverse set of social motives (e.g. peer support, peer pressure, social loneliness) for e-cigarette use, through the mediating effects of opinion leadership, among both male and female adolescents. Prospective cohort study. The data were obtained from a survey conducted among 666 adolescents across 14 school classes, namely, students at three urban schools, public and private, in Lille, France. The proposed integrative model includes social motives, opinion leadership and e-cigarette use in a trilateral relationship; gender is proposed and tested as a potential moderator in a structural equation model. More positive peer support is negatively associated with opinion leadership and e-cigarette use. Both loneliness and susceptibility to peer influence are positively related to opinion leadership and e-cigarette use. Moreover, social support from peers and opinion leadership shape e-cigarette use differently across genders. Policy makers should account for the various (positive and negative) roles of peers and consider the gender of their audience when designing anti-e-cigarette policies. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  5. Distinct roles of ASIC3 and TRPV1 receptors in electroacupuncture-induced segmental and systemic analgesia.

    PubMed

    Xin, Juanjuan; Su, Yangshuai; Yang, Zhaokun; He, Wei; Shi, Hong; Wang, Xiaoyu; Hu, Ling; Yu, Xiaochun; Jing, Xianghong; Zhu, Bing

    2016-12-01

    Previous studies have demonstrated the effects of different afferent fibers on electroacupuncture (EA)-induced analgesia. However, contributions of functional receptors expressed on afferent fibers to the EA analgesia remain unclear. This study investigates the roles of acid-sensing ion channel 3 (ASIC3) and transient receptor potential vanilloid 1 (TRPV1) receptors in EA-induced segmental and systemic analgesia. Effects of EA at acupoint ST36 with different intensities on the C-fiber reflex and mechanical and thermal pain thresholds were measured among the ASIC3(-/-), TRPV1(-/-), and C57BL/6 mice. Compared with C57BL/6 mice, the ipsilateral inhibition of EA with 0.8 C-fiber threshold (0.8Tc) intensity on C-fiber reflex was markedly reduced in ASIC3(-/-) mice, whereas the bilateral inhibition of 1.0 and 2.0Tc EA was significantly decreased in TRPV1(-/-) mice. The segmental increase in pain thresholds induced by 0.3 mA EA was significantly reduced in ASIC3(-/-) mice, whereas the systemic enhancement of 1.0 mA EA was markedly decreased in TRPV1(-/-) mice. Thus, segmental analgesia of EA with lower intensity is partially mediated by ASIC3 receptor on Aβ-fiber, whereas systemic analgesia induced by EA with higher intensity is more likely induced by TRPV1 receptor on Aδ- and C-fibers.

  6. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain.

    PubMed

    Labuz, Dominika; Celik, Melih Ö; Zimmer, Andreas; Machelska, Halina

    2016-09-08

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment.

  7. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

    PubMed Central

    Riggio, Marina; Perrone, María C.; Polo, María L.; Rodriguez, María J.; May, María; Abba, Martín; Lanari, Claudia; Novaro, Virginia

    2017-01-01

    The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy. PMID:28287129

  8. Proteins that bind the Src homology 3 domain of CrkI have distinct roles in Crk transformation.

    PubMed

    Zheng, J; Machida, K; Antoku, S; Ng, K Y; Claffey, K P; Mayer, B J

    2010-12-02

    The v-Crk oncogene product consists of two protein interaction modules, a Src homology 2 (SH2) domain and a Src homology 3 (SH3) domain. Overexpression of CrkI, the cellular homolog of v-Crk, transforms mouse fibroblasts, and elevated CrkI expression is observed in several human cancers. The SH2 and SH3 domains of Crk are required for transformation, but the identity of the critical cellular binding partners is not known. A number of candidate Crk SH3-binding proteins have been identified, including the nonreceptor tyrosine kinases c-Abl and Arg, and the guanine nucleotide exchange proteins C3G, SOS1 and DOCK180. The aim of this study is to determine which of these are required for transformation by CrkI. We found that short hairpin RNA-mediated knockdown of C3G or SOS1 suppressed anchorage-independent growth of NIH-3T3 cells overexpressing CrkI, whereas knockdown of SOS1 alone was sufficient to suppress tumor formation by these cells in nude mice. Knockdown of C3G was sufficient to revert morphological changes induced by CrkI expression. By contrast, knockdown of Abl family kinases or their inhibition with imatinib enhanced anchorage-independent growth and tumorigenesis induced by Crk. These results show that SOS1 is essential for CrkI-induced fibroblast transformation, and also reveal a surprising negative role for Abl kinases in Crk transformation.

  9. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation

    PubMed Central

    Obhi, Sukhvinder S.; Banissy, Michael J.; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-01-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation—participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation. PMID:25481003

  10. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation.

    PubMed

    Hogeveen, Jeremy; Obhi, Sukhvinder S; Banissy, Michael J; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-07-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation-participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation.

  11. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish

    PubMed Central

    Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M

    2017-01-01

    To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889

  12. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another.

    PubMed

    Rowland, Leslie A; Maurya, Santosh K; Bal, Naresh C; Kozak, Leslie; Periasamy, Muthu

    2016-07-01

    It is well known that uncoupling protein 1 (UCP1) in brown adipose tissue plays an important role in diet-induced thermogenesis. In this study, whether sarcolipin (SLN), a regulator of sarco/endoplasmic reticulum Ca(2+) -ATPase pump in muscle, is also an important player of diet-induced thermogenesis was investigated, as well as whether loss of SLN could be compensated by increased UCP1 expression and vice versa. Age- and sex-matched UCP1(-/-) , SLN(-/-) , and double knockout for both UCP1 and SLN mice maintained in C57Bl/6J background were challenged to high-fat diet for 12 weeks and then analyzed for weight gain, alterations in serum metabolites, and changes in thermogenic protein expression. Loss of either SLN or UCP1 alone was sufficient to cause diet-induced obesity. No compensatory upregulation of UCP1 in SLN(-/-) mice or vice versa was found. Paradoxically, loss of both mechanisms failed to exacerbate the obesity phenotype. Data suggest that both SLN- and UCP1-based adaptive thermogenic mechanisms were essential for achieving maximal diet-induced thermogenesis. When both mechanisms were absent, less efficient thermogenic mechanisms were activated to counter energy imbalance. © 2016 The Obesity Society.

  13. GPAT3 and GPAT4 are regulated by insulin-stimulated phosphorylation and play distinct roles in adipogenesis[S

    PubMed Central

    Shan, Dandan; Li, Jian-liang; Wu, Leeying; Li, Dongmei; Hurov, Jonathan; Tobin, James F.; Gimeno, Ruth E.; Cao, Jingsong

    2010-01-01

    Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step during de novo synthesis of glycerolipids. Mammals have at least four GPAT isoforms. Here we report the further characterization of the two recently identified microsomal GPAT3 and GPAT4. Both enzymes are highly expressed in adipose tissues. However, while GPAT3 is highly (∼60-fold) induced during adipocyte differentiation, GPAT4 induction is only modest (∼5-fold), leading to a lower abundance of GPAT4 mRNA in adipocytes. While overexpression of GPAT3 and GPAT4 in either insect or mammalian cells results in a comparable increase of GPAT activity, shRNA-mediated knockdown of GPAT3, but not GPAT4, in 3T3-L1 adipocytes led to a significant decrease in GPAT activity, a profound inhibition of lipid accumulation, and a lack of expression of several adipogenic markers during adipocyte differentiation. These data suggest that GPAT3 may encode the major GPAT isoform in adipocytes and play an important role in adipogenesis. Furthermore, we have shown that both GPAT3 and GPAT4 are phosphorylated by insulin at Ser and Thr residues, leading to increased GPAT activity that is sensitive to wortmannin. Our results reveal a link between the lipogenic effects of insulin and microsomal GPAT3 and GPAT4, implying their importance in glycerolipid biosynthesis. PMID:20181984

  14. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain.

    PubMed

    Kovachev, Petar Stefanov; Banerjee, Debapriya; Rangel, Luciana Pereira; Eriksson, Jonny; Pedrote, Murilo M; Martins-Dinis, Mafalda Maria D C; Edwards, Katarina; Cordeiro, Yraima; Silva, Jerson L; Sanyal, Suparna

    2017-06-02

    Inactivation of the tumor suppressor protein p53 by mutagenesis, chemical modification, protein-protein interaction, or aggregation has been associated with different human cancers. Although DNA is the typical substrate of p53, numerous studies have reported p53 interactions with RNA. Here, we have examined the effects of RNA of varied sequence, length, and origin on the mechanism of aggregation of the core domain of p53 (p53C) using light scattering, intrinsic fluorescence, transmission electron microscopy, thioflavin-T binding, seeding, and immunoblot assays. Our results are the first to demonstrate that RNA can modulate the aggregation of p53C and full-length p53. We found bimodal behavior of RNA in p53C aggregation. A low RNA:protein ratio (∼1:50) facilitates the accumulation of large amorphous aggregates of p53C. By contrast, at a high RNA:protein ratio (≥1:8), the amorphous aggregation of p53C is clearly suppressed. Instead, amyloid p53C oligomers are formed that can act as seeds nucleating de novo aggregation of p53C. We propose that structured RNAs prevent p53C aggregation through surface interaction and play a significant role in the regulation of the tumor suppressor protein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Distinct Role of Rab27a in Granule Movement at the Plasma Membrane and in the Cytosol of NK Cells

    PubMed Central

    Long, Eric O.

    2010-01-01

    Protocols were developed to automate image analysis and to track the movement of thousands of vesicular compartments in live cells. Algorithms were used to discriminate among different types of movement (e.g. random, caged, and directed). We applied these tools to investigate the steady-state distribution and movement of lytic granules (LG) in live natural killer (NK) cells by high-speed 3-dimensional (3D) spinning disc confocal and 2-dimensional total internal reflection fluorescence microscopy. Both mouse NK cells and a human NK cell line deficient in the small GTPase Rab27a were examined. The unbiased analysis of large datasets led to the following observations and conclusions. The majority of LG in the cytosol and at the plasma membrane of unstimulated NK cells are mobile. The use of inhibitors indicated that movement in the cytosol required microtubules but not actin, whereas movement at the plasma membrane required both. Rab27a deficiency resulted in fewer LG, and in a reduced fraction of mobile LG, at the plasma membrane. In contrast, loss of Rab27a increased the fraction of mobile LG and the extent of their movement in the cytosol. Therefore, in addition to its documented role in LG delivery to the plasma membrane, Rab27a may restrict LG movement in the cytosol. PMID:20877725

  16. Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin.

    PubMed

    Letra-Vilela, Ricardo; Sánchez-Sánchez, Ana María; Rocha, Ana Maia; Martin, Vanesa; Branco-Santos, Joana; Puente-Moncada, Noelia; Santa-Marta, Mariana; Outeiro, Tiago Fleming; Antolín, Isaac; Rodriguez, Carmen; Herrera, Federico

    2016-10-15

    Melatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines. Inhibition of NFkB mimicked melatonin's antiproliferative and antioxidant effects, but not neuroprotection. Our results strongly suggest that neuroprotective and antiproliferative effects of melatonin rely on different parts of the molecule and are likely mediated by different mechanisms. We also predict that melatonin metabolism by target cells could determine whether melatonin inhibits cell proliferation, prevents toxicity or induces cell death (e.g. apoptosis or autophagy). These observations could have important implications for the rational use of melatonin in personalized medicine.

  17. Distinct responses of the low-latitude ionosphere to CME and HSSWS: The role of the IMF Bz oscillation frequency

    NASA Astrophysics Data System (ADS)

    Rodríguez-Zuluaga, J.; Radicella, S. M.; Nava, B.; Amory-Mazaudier, C.; Mora-Páez, H.; Alazo-Cuartas, K.

    2016-11-01

    In this work an attempt to identify the role of the interplanetary magnetic field (IMF) in the response of the ionosphere to different solar phenomena is presented. For this purpose, the day-to-day variability of the equatorial ionospheric anomaly (EIA) and the main ionospheric disturbances are analyzed during one coronal mass ejection (CME) and two high-speed solar wind streams (HSSWSs). The EIA parameters considered are the zonal electric field and both the strength and position of its northern crest. The disturbances being the prompt penetration of magnetospheric electric field (PPMEF) and disturbance dynamo electric field (DDEF) are studied using the magnetic response of their equivalent current systems. In accordance, ground-based Global Navigation Satellite Systems receivers and magnetometers at geomagnetic low latitudes in the American sector are used. During both phenomena, patterns of PPMEF related to fluctuations of the IMF are observed. Diurnal and semidiurnal magnetic oscillations are found to be likely related to DDEF. Comparisons among the EIA parameters and the DDEF magnetic response exhibit poor relation during the CME in contrast to good relation during the HSSWSs. It is concluded that the response of the low-latitude ionosphere to solar phenomena is largely determined through the oscillation frequency of the IMF Bz by affecting the generation of the PPMEF and DDEF differently. This is seen as an effect of how the energy from the solar wind is transferred into the magnetosphere-ionosphere system.

  18. Analysis of origin and protein-protein interaction maps suggests distinct oncogenic role of nuclear EGFR during cancer evolution

    PubMed Central

    Sharip, Ainur; Abdukhakimova, Diyora; Wang, Xiao; Kim, Alexey; Kim, Yevgeniy; Sharip, Aigul; Orakov, Askarbek; Miao, Lixia; Sun, Qinglei; Chen, Yue; Chen, Zhenbang; Xie, Yingqiu

    2017-01-01

    Receptor tyrosine kinase EGFR usually is localized on plasma membrane to induce progression of many cancers including cancers in children (Bodey et al. In Vivo. 2005, 19:931-41), but it contains a nuclear localization signal (NLS) that mediates EGFR nuclear translocation (Lin et al. Nat Cell Biol. 2001, 3:802-8). Here we report that NLS of EGFR has its old evolutionary origin. Protein-protein interaction maps suggests that nEGFR pathways are different from membrane EGFR and EGF is not found in nEGFR network while androgen receptor (AR) is found, which suggests the evolution of prostate cancer, a well-known AR driven cancer, through changes in androgen- or EGF-dependence. Database analysis suggests that nEGFR correlates with the tumor grades especially in prostate cancer patients. Structural predication analysis suggests that NLS can compromise the differential protein binding to EGFR through stretch linkers with evolutionary mutation from N to V. In experiment, elevation of nEGFR but not membrane EGFR was found in castration resistant prostate cancer cells. Finally, systems analysis of NLS and transmembrane domain (TM) suggests that NLS has old origin while NLS neighboring domain of TM has been undergone accelerated evolution. Thus nEGFR has an old origin resembling the cancer evolution but TM may interfere with NLS driven signaling for natural selection of survival to evade NLS induced aggressive cancers. Our data suggest NLS is a dynamic inducer of EGFR oncogenesis during evolution for advanced cancers. Our model provides novel insights into the evolutionary role of NLS of oncogenic kinases in cancers. PMID:28382154

  19. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    PubMed Central

    Hall, M. Kristen; Weidner, Douglas A.; Zhu, Yong; Dayal, Sahil; Whitman, Austin A.; Schwalbe, Ruth A.

    2016-01-01

    Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9) technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO) cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties. PMID:27304954

  20. Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions.

    PubMed

    Brinkman, Loek; Stolk, Arjen; Dijkerman, H Chris; de Lange, Floris P; Toni, Ivan

    2014-10-29

    Rhythmic neural activity within the alpha (8-12 Hz) and beta (15-25 Hz) frequency bands is modulated during actual and imagined movements. Changes in these rhythms provide a mechanism to select relevant neuronal populations, although the relative contributions of these rhythms remain unclear. Here we use MEG to investigate changes in oscillatory power while healthy human participants imagined grasping a cylinder oriented at different angles. This paradigm allowed us to study the neural signals involved in the simulation of a movement in the absence of signals related to motor execution and sensory reafference. Movement selection demands were manipulated by exploiting the fact that some object orientations evoke consistent grasping movements, whereas others are compatible with both overhand and underhand grasping. By modulating task demands, we show a functional dissociation of the alpha- and beta-band rhythms. As movement selection demands increased, alpha-band oscillatory power increased in the sensorimotor cortex ipsilateral to the arm used for imagery, whereas beta-band power concurrently decreased in the contralateral sensorimotor cortex. The same pattern emerged when motor imagery trials were compared with a control condition, providing converging evidence for the functional dissociation of the two rhythms. These observations call for a re-evaluation of the role of sensorimotor rhythms. We propose that neural oscillations in the alpha-band mediate the allocation of computational resources by disengaging task-irrelevant cortical regions. In contrast, the reduction of neural oscillations in the beta-band is directly related to the disinhibition of neuronal populations involved in the computations of movement parameters. Copyright © 2014 the authors 0270-6474/14/3414783-10$15.00/0.

  1. Type III IFNs in Pteropid Bats: Differential Expression Patterns Provide Evidence for Distinct Roles in Antiviral Immunity

    PubMed Central

    Zhou, Peng; Cowled, Chris; Todd, Shawn; Crameri, Gary; Virtue, Elena R.; Marsh, Glenn A.; Klein, Reuben; Shi, Zhengli; Wang, Lin-Fa; Baker, Michelle L.

    2011-01-01

    Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses. PMID:21278349

  2. Distinct Etiological Roles for Myocytes and Motor Neurons in a Mouse Model of Kennedy's Disease/Spinobulbar Muscular Atrophy.

    PubMed

    Ramzan, Firyal; McPhail, Mike; Rao, Pengcheng; Mo, Kaiguo; Halievski, Katherine; Swift-Gallant, Ashlyn; Mendoza-Viveros, Lucia; Cheng, Hai-Ying M; Monks, D Ashley

    2015-04-22

    Polyglutamine (polyQ) expansion of the androgen receptor (AR) causes Kennedy's disease/spinobulbar muscular atrophy (KD/SBMA) through poorly defined cellular mechanisms. Although KD/SBMA has been thought of as a motor neuron disease, recent evidence indicates a key role for skeletal muscle. To resolve which early aspects of the disease can be caused by neurogenic or myogenic mechanisms, we made use of the tet-On and Cre-loxP genetic systems to selectively and acutely express polyQ AR in either motor neurons (NeuroAR) or myocytes (MyoAR) of transgenic mice. After 4 weeks of transgene induction in adulthood, deficits in gross motor function were seen in NeuroAR mice, but not MyoAR mice. Conversely, reduced size of fast glycolytic fibers and alterations in expression of candidate genes were observed only in MyoAR mice. Both NeuroAR and MyoAR mice exhibited reduced oxidative capacity in skeletal muscles, as well as a shift in fast fibers from oxidative to glycolytic. Markers of oxidative stress were increased in the muscle of NeuroAR mice and were reduced in motor neurons of both NeuroAR and MyoAR mice. Despite secondary pathology in skeletal muscle and behavioral deficits, no pathological signs were observed in motor neurons of NeuroAR mice, possibly due to relatively low levels of polyQ AR expression. These results indicate that polyQ AR in motor neurons can produce secondary pathology in muscle. Results also support both neurogenic and myogenic contributions of polyQ AR to several acute aspects of pathology and provide further evidence for disordered cellular respiration in KD/SBMA skeletal muscle.

  3. Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection.

    PubMed

    Xu, Mei; Yip, George Wai-Cheong; Gan, Le-Ting; Ng, Yee-Kong

    2005-09-07

    Oxidative stress plays an important role in the pathogenesis of neurodegeneration after the acute central nervous system injury. We reported previously that increased nitric oxide (NO) production following spinal cord hemisection tends to lead to neurodegeneration in neurons of the nucleus dorsalis (ND) that normally lacks expression of neuronal NO synthase (nNOS) in opposition to those in the red nucleus (RN) that constitutively expresses nNOS. We wondered whether oxidative stress could be a mechanism underlying this NO involved neurodegeneration. In the present study, we examined oxidative damage evaluated by the presence of 4-hydroxynonenal (HNE) and iron accumulation and expression of putative antioxidant enzymes heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in neurons of the ND and RN after spinal cord hemisection. We found that HNE expression was induced in neurons of the ipsilateral ND from 1 to 14 days following spinal cord hemisection. Concomitantly, iron staining was seen from 7 to 14 days after lesion. HO-1, however, was only transiently induced in ipsilateral ND neurons between 3 and 7 days after lesion. In contrast to the ND neurons, HNE was undetectable and iron level was unaltered in the RN neurons after spinal cord hemisection. HO-1, SOD-Cu/Zn and SOD-Mn were constitutively expressed in RN neurons, and lesion to the spinal cord did not change their expression. These results suggest that oxidative stress is involved in the degeneration of the lesioned ND neurons; whereas constitutive antioxidant enzymes may protect the RN neurons from oxidative damage.

  4. Tobacco-smoke-inducible human haem oxygenase-1 gene expression: role of distinct transcription factors and reactive oxygen intermediates.

    PubMed Central

    Favatier, F; Polla, B S

    2001-01-01

    Exposure of eukaryotic cells to a variety of reactive-oxygen-intermediate (ROI)-mediated sources of cellular injury, including heavy metals and UV radiation, induces the expression of heat-shock (HS) and stress-related genes among which is a 32-34 kDa protein identified as inducible haem oxygenase-1 (HO-1). We previously showed that tobacco smoke (TS), a potent source of oxidants leading to oxidative stress, induces both HS proteins (HSPs) and HO-1 in normal human monocytes. Here we investigated the induction mechanisms of human HO-1 gene expression by TS in the human premonocytic line U937. Northern blotting and flow cytometry revealed a dose- and time-dependent induction of HO-1 mRNA and protein by TS. In order to clarify the role of transacting factors in this induction, electrophoretic mobility-shift analysis was performed with nuclear extracts from control, TS-, cadmium (Cd)- or H(2)O(2)-exposed cells, incubated with consensus elements and binding sites of the promoter region of HO-1[heat-shock factor (HSF), nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1)] and the cadmium-responsive element (CdRE) isolated by Takeda, Ishizawa, Sato, Yoshida and Shibahara [(1994) J. Biol. Chem. 269, 22858-22867]. We report an inhibition of NF-kappaB activation by TS, no effect on AP-1 and a strong activation of CdRE-binding activity, whereas cadmium chelation from TS only partially prevented HO-1 induction. H(2)O(2) also activated the CdRE-binding activity, and pretreatment with N-acetyl-L-cysteine, which replenishes the intracellular levels of GSH, suppressed, in TS-treated cells, both the CdRE-binding activity and the increased HO-1 expression. PMID:11171043

  5. Distinct electrical and chemical connectivity maps in the thalamic reticular nucleus: potential roles in synchronization and sensation.

    PubMed

    Deleuze, Charlotte; Huguenard, John R

    2006-08-16

    GABAergic neurons of the thalamic reticular nucleus (nRt) provide thalamocortical relay neurons with feedback inhibition that influences sensory processing and thalamocortical rhythm generation. Mutual interactions between reticular neurons coordinate oscillatory activities developed within the network during normal sleep and in absence epilepsy, but the chemical versus electrical nature of these connections and their functional influence remain controversial. Here, we investigated the incidence and spatial extent of intra-nRt connectivity in vitro in horizontal and coronal thalamic slices from rat. Laser scanning photostimulation activated presynaptic nRt cells during patch-clamp recordings of postsynaptic neurons. Photolysis of caged glutamate evoked GABAergic IPSCs and/or depolarizing events (spikelets, mediated via electrical coupling) in a large proportion of neurons, thus indicating connectivity with presynaptic cell(s). Synaptic inputs were organized along the major axis of the nucleus in the same orientation as, but commonly exceeding the extent of, dendritic arborization of the postsynaptic neuron. In the anteroposterior (horizontal) plane, chemical connectivity had higher incidence (60% of recorded neurons vs 40% in vertical plane) and longer spatial extent, whereas in the dorsoventral (vertical) plane, electrical coupling dominated (47% incidence vs 37% in horizontal plane) and was more widely distributed. These data demonstrate that both electrical and chemical synapses are prominent within nRt and suggest different roles for the two types of connections. We thus propose that, along the vertical plane, electrical connectivity will promote coordinated rhythmic activity of sleep and/or thalamocortical epilepsy, whereas along the horizontal plane, chemical connectivity will oppose widespread thalamocortical synchronization and modulate sensory throughput.

  6. The role of left superior parietal lobe in male sexual behavior: dynamics of distinct components revealed by FMRI.

    PubMed

    Cera, Nicoletta; Di Pierro, Ezio D; Sepede, Gianna; Gambi, Francesco; Perrucci, Mauro Gianni; Merla, Arcangelo; Tartaro, Armando; Del Gratta, Cosimo; Galatioto Paradiso, Giuseppe; Vicentini, Carlo; Romani, Gian Luca; Ferretti, Antonio

    2012-06-01

    Despite the interest for the brain correlates of male sexual arousal, few studies investigated neural mechanisms underlying psychogenic erectile dysfunction (ED). Although these studies showed several brain regions active in ED patients during visual erotic stimulation, the dynamics of inhibition of sexual response is still unclear. This study investigated the dynamics of brain regions involved in the psychogenic ED. Functional magnetic resonance imaging (fMRI) and simultaneous penile tumescence (PT) were used to study brain activity evoked in 17 outpatients with psychogenic ED and 19 healthy controls during visual erotic stimulation. Patterns of brain activation related to different phases of sexual response in the two groups were compared. Simultaneous recording of blood oxygen level-dependent fMRI responses and PT during visual erotic stimulation. During visual erotic stimuli, a larger activation was observed for the patient group in the left superior parietal lobe, ventromedial prefrontal cortex, and posterior cingulate cortex, whereas the control group showed larger activation in the right middle insula and dorsal anterior cingulate cortex and hippocampus. Moreover, the left superior parietal lobe showed a larger activation in patients than controls especially during the later stage of sexual response. Our results suggest that, among regions more active in patient group, the left superior parietal lobe plays a crucial role in inhibition of sexual response. Previous studies showed that left superior parietal lobe is involved in monitoring of internal body representation. The larger activation of this region in patients during later stages of sexual response suggests a high monitoring of the internal body representation, possibly affecting the behavioral response. These findings provide insight on brain mechanisms involved in psychogenic ED. © 2012 International Society for Sexual Medicine.

  7. Characterization of Two Homeodomain Transcription Factors with Critical but Distinct Roles in Virulence in the Vascular Pathogen Verticillium dahliae.

    PubMed

    Sarmiento-Villamil, J L; Prieto, P; Klosterman, S J; García-Pedrajas, M D

    2017-07-20

    Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem on crop production worldwide. In this work we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putative homolog of the transcription factor Ste12. Vhb1 (VDAG_08786), identified in a forward genetics approach, is similar to the homeobox transcription factor Htf1, reported as a regulator of conidiogenesis in several fungi. Deletion of vph1 did not affect vegetative growth whereas deletion of vhb1 greatly reduced sporulation rates in liquid medium. Both mutants failed to induce Verticillium wilt symptoms. However, unlike Δvph1, Δvhb1 could be re-isolated from the vascular system of some asymptomatic plants. Confocal microscopy further indicated that Δvph1 and Δvhb1 differed in their behaviour in planta; Δvph1 could not penetrate the root cortex while Δvhb1 was impaired in its ability to colonize the xylem. In agreement with these observations, only Δvhb1 could penetrate cellophane paper. On cellophane, wildtype and Δvhb1 strains produced numerous short branches with swollen tips resembling the hyphopodia formed on root surfaces, contrasting with Δvph1, which generated unbranched long filaments without swollen tips. A microarray analysis showed that these differences in growth were associated with differences in global transcription patterns, and allowed us to identify a large set of novel genes potentially involved in virulence in V. dahliae. Ste12 homologs are known regulators of invasive growth but Vhb1 is the first putative Htf1 homolog identified with a critical role in virulence. This article is protected by copyright. All rights reserved. © 2017 BSPP and John Wiley & Sons Ltd.

  8. Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles

    PubMed Central

    Clark, Laura C.; Hoskisson, Paul A.

    2011-01-01

    Understanding morphological transformations is essential to elucidating the evolution and developmental biology of many organisms. The Gram-positive soil bacterium, Streptomyces coelicolor has a complex lifecycle which lends itself well to such studies. We recently identified a transcriptional regulator, devA, which is required for correct sporulation in this organism, with mutants forming short, mis-septate aerial hyphae. devA is highly conserved within the Streptomyces genus along with a duplicate copy, devE. Disruption of devE indicates this gene also plays a role in sporulation; however the phenotype of a devE mutant differs from a devA mutant, forming long un-septate aerial hyphae. Transcriptional analysis of devA and devE indicates that they are expressed at different stages of the lifecycle. This suggests that following duplication they have diverged in regulation and function. Analysis of fully sequenced actinomycete genomes shows that devA is found in a single copy in morphologically simpler actinobacteria, suggesting that duplication has lead to increased morphological complexity. Complementation studies with devA from Salinispora, which sporulates but does not form aerial hyphae, indicates the ancestral gene cannot complement devA or devE, suggesting neo-functionalisation has occurred. Analysis of the synonymous and non-synonymous nucleotide changes within the devA paralogues suggest subfunctionalisation has occurred as both copies have diverged from the ancestral sequences. Divergence is also asymmetric with a higher level of functional constraint observed in the DNA binding domain compared with the effector binding/oligomerisation domain, suggesting diversification in the substrate specificity of these paralogues has contributed to their evolution. PMID:21998634

  9. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    SciTech Connect

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  10. Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels.

    PubMed

    Gao, Yanhong; Yechikov, Sergey; Vazquez, Ana E; Chen, Dongyang; Nie, Liping

    2013-01-01

    Loss-of-function mutations in the KCNQ4 channel cause DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss. Previous studies have demonstrated that the majority of the pathogenic KCNQ4 mutations lead to trafficking deficiency and loss of KCNQ4 currents. Over the last two decades, various strategies have been developed to rescue trafficking deficiency of pathogenic mutants; the most exciting advances have been made by manipulating activities of molecular chaperones involved in the biogenesis and quality control of the target protein. However, such strategies have not been established for KCNQ4 mutants and little is known about the molecular chaperones governing the KCNQ4 biogenesis. To identify KCNQ4-associated molecular chaperones, a proteomic approach was used in this study. As a result, two major molecular chaperones, HSP70 and HSP90, were identified and then confirmed by reciprocal co-immunoprecipitation assays, suggesting that the HSP90 chaperone pathway might be involved in the KCNQ4 biogenesis. Manipulating chaperone expression further revealed that two different isoforms of HSP90, the inducible HSP90α and the constitutive HSP90β, had opposite effects on the cellular level of the KCNQ4 channel; that HSP40, HSP70, and HOP, three key components of the HSP90 chaperone pathway, were crucial in facilitating KCNQ4 biogenesis. In contrast, CHIP, a major E3 ubiquitin ligase, had an opposite effect. Collectively, our data suggest that HSP90α and HSP90β play key roles in controlling KCNQ4 homeostasis via the HSP40-HSP70-HOP-HSP90 chaperone pathway and the ubiquitin-proteasome pathway. Most importantly, we found that over-expression of HSP90β significantly improved cell surface expression of the trafficking-deficient, pathogenic KCNQ4 mutants L274H and W276S. KCNQ4 surface expression was restored by HSP90β in cells mimicking heterozygous conditions of the DFNA2 patients, even though it was

  11. Tracking the actions and possessions of agents

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.; Stilwell, Sarah

    2014-01-01

    We propose that there is a powerful human disposition to track the actions and possessions of agents. In two experiments, 3-year-olds and adults viewed sets of objects, learned a new fact about one of the objects in each set (either that it belonged to the participant, or that it possessed a particular label), and were queried about either the taught fact or an unrelated dimension (preference) immediately after a spatiotemporal transformation, and after a delay. Adults uniformly tracked object identity under all conditions, whereas children tracked identity more when taught ownership versus labeling information, and only regarding the taught fact (not the unrelated dimension). These findings suggest that the special attention that children and adults pay to agents readily extends to include inanimate objects. That young children track an object’s history, despite their reliance on surface features on many cognitive tasks, suggests that unobservable historical features are foundational in human cognition. PMID:25111732

  12. The two SAMP repeats and their phosphorylation state in Drosophila Adenomatous polyposis coli-2 play mechanistically distinct roles in negatively regulating Wnt signaling

    PubMed Central

    Kunttas-Tatli, Ezgi; Von Kleeck, Ryan A.; Greaves, Bradford D.; Vinson, David; Roberts, David M.; McCartney, Brooke M.

    2015-01-01

    The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the β-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC’s tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation–based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function. PMID:26446838

  13. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide.

    PubMed

    Chaves, Guilherme Maranhão; da Silva, Walicyranison Plinio

    2012-12-01

    To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.

  14. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair.

    PubMed

    Chai, Bob; Huang, Jian; Cairns, Bradley R; Laurent, Brehon C

    2005-07-15

    The failure of cells to repair damaged DNA can result in genomic instability and cancer. To efficiently repair chromosomal DNA lesions, the repair machinery must gain access to the damaged DNA in the context of chromatin. Here we report that both the RSC and Swi/Snf ATP-dependent chromatin-remodeling complexes play key roles in double-strand break (DSB) repair, specifically by homologous recombination (HR). RSC and Swi/Snf are each recruited to an in vivo DSB site but with distinct kinetics. We show that Swi/Snf is required earlier, at or preceding the strand invasion step of HR, while RSC is required following synapsis for completion of the recombinational repair event.

  15. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately killed...

  16. Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein.

    PubMed

    Marschall, M; Herrler, G; Böswald, C; Foerst, G; Meier-Ewert, H

    1994-09-01

    A model of long term viral persistence has been established by selecting a spontaneous mutant strain of influenza C/Ann Arbor/1/50 virus in a permanent carrier culture of MDCK cells. Infectivity and cell tropism are mainly determined by the multifunctional viral membrane glycoprotein (HEF). HEF analysis was aimed at identifying a putative correlation between sequence and function, i.e. receptor binding, enzymatic activity, antigenicity and rate of infection. The current experimental picture is summarized by the following findings: (i) C/Ann Arbor/1/50 persistent virus carries a modified receptor-binding sequence, (ii) receptor-binding activity is altered, as indicated by a higher efficiency in recognizing low amounts of the receptor determinant N-acetyl-9-O-acetylneuraminic acid, (iii) direct attachment to cell surfaces differs from that of wild-type virus, as measured by slower kinetics of viral elution, (iv) receptor-destroying enzymatic activity is diminished, (v) characteristic features of virion surface morphology are altered or unstable, (vi) persistent-type HEF epitopes are distinguishable by monoclonal antibodies from wild-type and (vii) viral infectivity is intensified for cells bearing a low number of receptors. The sum of these changes highlights a structurally and functionally modified HEF glycoprotein that allows long term viral persistence. In order to clarify which of the described points are required for the persistent viral phenotype, a working concept is presented.

  17. Traumatic Experience and Somatoform Dissociation Among Spirit Possession Practitioners in the Dominican Republic.

    PubMed

    Schaffler, Yvonne; Cardeña, Etzel; Reijman, Sophie; Haluza, Daniela

    2016-03-01

    Recent studies in African contexts have revealed a strong association between spirit possession and severe trauma, with inclusion into a possession cult serving at times a therapeutic function. Research on spirit possession in the Dominican Republic has so far not included quantitative studies of trauma and dissociation. This study evaluated demographic variables, somatoform dissociative symptoms, and potentially traumatizing events in the Dominican Republic with a group of Vodou practitioners that either do or do not experience spirit possession. Inter-group comparisons revealed that in contrast to non-possessed participants (n = 38), those experiencing spirit possession (n = 47) reported greater somatoform dissociation, more problems with sleep, and previous exposure to mortal danger such as assaults, accidents, or diseases. The two groups did not differ significantly in other types of trauma. The best predictor variable for group classification was somatoform dissociation, although those items could also reflect the experience of followers during a possession episode. A factor analysis across variables resulted in three factors: having to take responsibility early on in life and taking on a professional spiritual role; traumatic events and pain; and distress/dissociation. In comparison with the non-possessed individuals, the possessed ones did not seem to overall have a remarkably more severe story of trauma and seemed to derive economic gains from possession practice.

  18. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility.

    PubMed

    Hong, Jeum Kyu; Choi, Du Seok; Kim, Sang Hee; Yi, Seung Yeon; Kim, Young Jin; Hwang, Byung Kook

    2008-08-01

    Plant integral membrane proteins have essential roles in diverse internal and external physiological processes as signal receptors or ion transporters. The pepper CaPIMP1 gene encoding a putative integral membrane protein with four transmembrane domains was isolated and functionally characterized from pepper leaves infected with the avirulent strain Xanthomonas campestris pv. vesicatoria (Xcv). CaPIMP1-green fluorescence protein (GFP) fusions localized to the plasma membrane in onion cells, as observed by confocal microscopy. CaPIMP1 was expressed in an organ-specific manner in healthy pepper plants. Infection with Xcv induced differential accumulation of CaPIMP1 transcripts in pepper leaf tissues during compatible and incompatible interactions. The function of CaPIMP1 was examined by using the virus-induced gene silencing technique in pepper plants and by overexpression in Arabidopsis. CaPIMP1-silenced pepper plants were highly susceptible to Xcv infection and expressed lower levels of the defense-related gene CaSAR82A. CaPIMP1 overexpression (CaPIMP1-OX) in transgenic Arabidopsis conferred enhanced resistance to P. syringae pv. tomato infection, accompanied by enhanced AtPDF1.2 gene expression. In contrast, CaPIMP1-OX plants were highly susceptible to the biotrophic oomycete Hyaloperonospora parasitica. Taken together, we propose that CaPIMP1 plays distinct roles in both bacterial disease resistance and oomycete disease susceptibility.

  19. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite

    PubMed Central

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-01-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called ‘serine repeat antigens’ (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs. PMID:20039882

  20. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    PubMed

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

  1. PTS1 Peroxisomal Import Pathway Plays Shared and Distinct Roles to PTS2 Pathway in Development and Pathogenicity of Magnaporthe oryzae

    PubMed Central

    Wang, Jiaoyu; Zhang, Zhen; Wang, Yanli; Li, Ling; Chai, Rongyao; Mao, Xueqin; Jiang, Hua; Qiu, Haiping; Du, Xinfa; Lin, Fucheng; Sun, Guochang

    2013-01-01

    Peroxisomes participate in various important metabolisms and are required in pathogenicity of fungal plant pathogens. Peroxisomal matrix proteins are imported from cytoplasm into peroxisomes through peroxisomal targeting signal 1 (PTS1) or peroxisomal targeting signal 2 (PTS2) import pathway. PEX5 and PEX7 genes participate in the two pathways respectively. The involvement of PEX7 mediated PTS2 import pathway in fungal pathogenicity has been documented, while that of PTS1 remains unclear. Through null mutant analysis of MoPEX5, the PEX5 homolog in Magnaporthe oryzae, we report the crucial roles of PTS1 pathway in the development and host infection in the rice blast fungus, and compared with those of PTS2. We found that MoPEX5 disruption specifically blocked the PTS1 pathway. Δmopex5 was unable to use lipids as sole carbon source and lost pathogenicity completely. Similar as Δmopex7, Δmopex5 exhibited significant reduction in lipid utilization and mobilization, appressorial turgor genesis and H2O2 resistance. Additionally, Δmopex5 presented some distinct defects which were undetected in Δmopex7 in vegetative growth, conidial morphogenesis, appressorial morphogenesis and melanization. The results indicated that the PTS1 peroxisomal import pathway, in addition to PTS2, is required for fungal development and pathogenicity of the rice blast fungus, and also, as a main peroxisomal import pathway, played a more predominant role than PTS2. PMID:23405169

  2. Distinctive Roles of 5-aza-2′-deoxycytidine in Anterior Agranular Insular and Basolateral Amygdala in Reconsolidation of Aversive Memory Associated with Morphine in Rats

    PubMed Central

    Liu, Peng; Zhang, JianJun; Li, Ming; Sui, Nan

    2016-01-01

    5-aza-2′-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), has been implicated in aversive memory and the function of brain region involved in processing emotion. However, little is known about the role of 5-aza in the reconsolidation of opiate withdrawal memory. In the present study, using the morphine-naloxone induced conditioned place aversion (CPA) model in rats, we injected 5-aza into agranular insular (AI), granular insular (GI), basolateral amygdala (BLA) and central amygdala (CeA) immediately after the memory retrieval and tested the behavioral consequences at 24 h, 7 and 14 days after retrieval test. We found that 5-aza injection into AI disrupted the reconsolidation of morphine-associated withdrawal memory, but 5-aza injection into GI had no impact on the reconsolidation. Meanwhile, 5-aza injection into BLA but not CeA attenuated the withdrawal memory trace 14 days later. However, 5-aza administration to rats, in the absence of memory reactivation, had no effect on morphine-associated withdrawal memory. These findings suggest that 5-aza interferes with the reconsolidation of opiate withdrawal memory, and the roles of insular and amygdala in reconsolidation are distinctive. PMID:27014010

  3. P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation

    PubMed Central

    Moynihan, Patrick J.; Kitova, Elena N.; Walvoort, Marthe T. C.; Little, Dustin J.; Whitney, John C.; Dawson, Karen; Weadge, Joel T.; Robinson, Howard; Ohman, Dennis E.; Codée, Jeroen D. C.; Klassen, John S.; Clarke, Anthony J.; Howell, P. Lynne

    2014-01-01

    The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. PMID:25165982

  4. Structural and functional dissection reveals distinct roles of Ca2+-binding sites in the giant adhesin SiiE of Salmonella enterica

    PubMed Central

    Klingl, Stefan; Sandmann, Achim; Taccardi, Nicola; Sticht, Heinrich; Muller, Yves A.; Hensel, Michael

    2017-01-01

    The giant non-fimbrial adhesin SiiE of Salmonella enterica mediates the first contact to the apical site of epithelial cells and enables subsequent invasion. SiiE is a 595 kDa protein composed of 53 repetitive bacterial immunoglobulin (BIg) domains and the only known substrate of the SPI4-encoded type 1 secretion system (T1SS). The crystal structure of BIg50-52 of SiiE revealed two distinct Ca2+-binding sites per BIg domain formed by conserved aspartate or glutamate residues. In a mutational analysis Ca2+-binding sites were disrupted by aspartate to serine exchange at various positions in the BIg domains of SiiE. Amounts of secreted SiiE diminish with a decreasing number of intact Ca2+-binding sites. BIg domains of SiiE contain distinct Ca2+-binding sites, with type I sites being similar to other T1SS-secreted proteins and type II sites newly identified in SiiE. We functionally and structurally dissected the roles of type I and type II Ca2+-binding sites in SiiE, as well as the importance of Ca2+-binding sites in various positions of SiiE. Type I Ca2+-binding sites were critical for efficient secretion of SiiE and a decreasing number of type I sites correlated with reduced secretion. Type II sites were less important for secretion, stability and surface expression of SiiE, however integrity of type II sites in the C-terminal portion was required for the function of SiiE in mediating adhesion and invasion. PMID:28558023

  5. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora.

    PubMed

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-09-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.

  6. Haemophilus ducreyi RpoE and CpxRA appear to play distinct yet complementary roles in regulation of envelope-related functions.

    PubMed

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Liu, Yunlong; Munson, Robert S; Spinola, Stanley M

    2014-12-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid and a chronic limb ulceration syndrome in children. In humans, H. ducreyi is found in an abscess and overcomes a hostile environment to establish infection. To sense and respond to membrane stress, bacteria utilize two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors. We previously showed that activation of CpxRA, the only intact TCS in H. ducreyi, does not regulate homologues of envelope protein folding factors but does downregulate genes encoding envelope-localized proteins, including many virulence determinants. H. ducreyi also harbors a homologue of RpoE, which is the only ECF sigma factor in the organism. To potentially understand how H. ducreyi responds to membrane stress, here we defined RpoE-dependent genes using transcriptome sequencing (RNA-Seq). We identified 180 RpoE-dependent genes, of which 98% were upregulated; a major set of these genes encodes homologues of envelope maintenance and repair factors. We also identified and validated a putative RpoE promoter consensus sequence, which was enriched in the majority of RpoE-dependent targets. Comparison of RpoE-dependent genes to those controlled by CpxR showed that each transcription factor regulated a distinct set of genes. Given that RpoE activated a large number of genes encoding envelope maintenance and repair factors and that CpxRA represses genes encoding envelope-localized proteins, these data suggest that RpoE and CpxRA appear to play distinct yet complementary roles in regulating envelope homeostasis in H. ducreyi.

  7. Differential loss of prolyl isomerase or chaperone activity of Ran-binding protein 2 (Ranbp2) unveils distinct physiological roles of its cyclophilin domain in proteostasis.

    PubMed

    Cho, Kyoung-in; Patil, Hemangi; Senda, Eugene; Wang, Jessica; Yi, Haiqing; Qiu, Sunny; Yoon, Dosuk; Yu, Minzhong; Orry, Andrew; Peachey, Neal S; Ferreira, Paulo A

    2014-02-21

    The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2(WT-HA)) or without PPIase activities (Tg-Ranbp2(R2944A-HA)). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2(CLDm-HA)::Ranbp2(-/-), harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results

  8. Differential Loss of Prolyl Isomerase or Chaperone Activity of Ran-binding Protein 2 (Ranbp2) Unveils Distinct Physiological Roles of Its Cyclophilin Domain in Proteostasis*

    PubMed Central

    Cho, Kyoung-in; Patil, Hemangi; Senda, Eugene; Wang, Jessica; Yi, Haiqing; Qiu, Sunny; Yoon, Dosuk; Yu, Minzhong; Orry, Andrew; Peachey, Neal S.; Ferreira, Paulo A.

    2014-01-01

    The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2WT-HA) or without PPIase activities (Tg-Ranbp2R2944A-HA). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2R2944A-HA::Ranbp2−/−. Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2R2944A-HA::Ranbp2−/−. This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2CLDm-HA::Ranbp2−/−, harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results unveil

  9. Distinct roles of two cytoplasmic thioredoxin reductases (Trr1/2) in the redox system involving cysteine synthesis and host infection of Beauveria bassiana.

    PubMed

    Zhang, Long-Bin; Tang, Li; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-12-01

    Two thioredoxin (Trx) reductases (Trr1/2) are known to play overlapping roles in the yeast Trx-Trr redox system but are generally unexplored in filamentous fungi, which possess multiple Trx homologues. This study seeks to characterize the functions of Trr1 and Trr2 in Beauveria bassiana, a filamentous fungal insect pathogen, and to probe their Trx partners. Both Trr1 and Trr2 were evidently localized in the cytoplasm of B. bassiana, unlike the two yeast homologues that have been reported to localize in the cytoplasm and mitochondria, respectively. Most of the six trx genes were greatly upregulated at the transcriptional level in the absence of trr1 instead of trr2 in B. bassiana, in which the trr1/2 double deletion failed in many attempts. Deletion of trr1 resulted in increased Trx activity, severe cysteine auxotrophy, and drastically reduced activities of peroxidases and superoxide dismutases under normal or oxidative conditions despite little change in catalase activity. Such changes disappeared in the absence of trr2 and were completely restored by complementation of trr1/2 or overexpression of trx1/6 in the Δtrr1 mutant, but were not restored at all by overexpression of trx2/3/4/5 or trr2 in the same mutant. All of these mutants exhibited similar trends of changes in the antioxidant response, conidiation, germination, thermotolerance, UV-B resistance, and virulence. Taken together, the findings indicate that Trr1 could reduce Trx2-5 and hence dominate the intracellular redox state, profoundly affecting the potential of B. bassiana against arthropod pests. Trr2 could reduce Trx1/6 but function only in the absence of Trr1.

  10. Cherished Possessions and Adaptation of Older People to Nursing Homes.

    ERIC Educational Resources Information Center

    Wapner, Seymour; And Others

    1990-01-01

    Examined cherished possessions and adaptation to nursing home of 100 nursing home residents. Findings showed those with possessions were better adapted; possessions served functions of historical continuity, comfort, and belongingness; and more women than men had cherished possessions. (Author/PVV)

  11. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately killed...

  12. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately killed...

  13. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately killed...

  14. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately killed...

  15. [The phenomenon of possession. Conception and experiences of possession in youth].

    PubMed

    Bron, B

    1975-01-01

    In the last few years, a trend to the multiplication of experiences of possession has been observed in young people. On the basis of four typical examples, the author examines this phenomenon in the light of the psychiatric, psychoanalytic and theological understanding of possession. It involves mostly young people, who do not have hysterical fits or psychotic episodes during spiritualist practices but who specially tend to take a strong interest in occultism, who very often consume drugs and have contacts with groups in which the interest for demonology plays an important part.

  16. Is Face Distinctiveness Gender Based?

    ERIC Educational Resources Information Center

    Baudouin, Jean-Yves; Gallay, Mathieu

    2006-01-01

    Two experiments were carried out to study the role of gender category in evaluations of face distinctiveness. In Experiment 1, participants had to evaluate the distinctiveness and the femininity-masculinity of real or artificial composite faces. The composite faces were created by blending either faces of the same gender (sexed composite faces,…

  17. Is Face Distinctiveness Gender Based?

    ERIC Educational Resources Information Center

    Baudouin, Jean-Yves; Gallay, Mathieu

    2006-01-01

    Two experiments were carried out to study the role of gender category in evaluations of face distinctiveness. In Experiment 1, participants had to evaluate the distinctiveness and the femininity-masculinity of real or artificial composite faces. The composite faces were created by blending either faces of the same gender (sexed composite faces,…

  18. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle.

    PubMed

    Rawat, Anamika; Brejšková, Lucie; Hála, Michal; Cvrčková, Fatima; Žárský, Viktor

    2017-04-11

    The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Transcription Factor STE12α Has Distinct Roles in Morphogenesis, Virulence, and Ecological Fitness of the Primary Pathogenic Yeast Cryptococcus gattii†

    PubMed Central

    Ren, Ping; Springer, Deborah J.; Behr, Melissa J.; Samsonoff, William A.; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2006-01-01

    Cryptococcus gattii is a primary pathogenic yeast, increasingly important in public health, but factors responsible for its host predilection and geographical distribution remain largely unknown. We have characterized C. gattii STE12α to probe its role in biology and pathogenesis because this transcription factor has been linked to virulence in many human and plant pathogenic fungi. A full-length STE12α gene was cloned by colony hybridization and sequenced using primer walk and 3′ rapid amplification of cDNA ends strategies, and a ste12αΔ gene knockout mutant was created by URA5 insertion at the homologous site. A semiquantitative analysis revealed delayed and poor mating in ste12αΔ mutant; this defect was not reversed by exogenous cyclic AMP. C. gattii parent and mutant strains showed robust haploid fruiting. Among putative virulence factors tested, the laccase transcript and enzymatic activity were down regulated in the ste12αΔ mutant, with diminished production of melanin. However, capsule, superoxide dismutase, phospholipase, and urease were unaffected. Similarly, Ste12 deficiency did not cause any auxotrophy, assimilation defects, or sensitivity to a large panel of chemicals and antifungals. The ste12αΔ mutant was markedly attenuated in virulence in both BALB/c and A/Jcr mice models of meningoencephalitis, and it also exhibited significant in vivo growth reduction and was highly susceptible to in vitro killing by human neutrophils (polymorphonuclear leukocytes). In tests designed to simulate the C. gattii natural habitat, the ste12αΔ mutant was poorly pigmented on wood agar prepared from two tree species and showed poor survival and multiplication in wood blocks. Thus, STE12α plays distinct roles in C. gattii morphogenesis, virulence, and ecological fitness. PMID:16835451

  20. RPL30 regulation of splicing reveals distinct roles for Cbp80 in U1 and U2 snRNP cotranscriptional recruitment.

    PubMed

    Bragulat, Mireia; Meyer, Markus; Macías, Sara; Camats, Maria; Labrador, Mireia; Vilardell, Josep

    2010-10-01

    Pre-mRNA splicing is catalyzed by the spliceosome, and its control is essential for correct gene expression. While splicing repressors typically interfere with transcript recognition by spliceosomal components, the yeast protein L30 blocks spliceosomal rearrangements required for the engagement of U2 snRNP (small ribonucleoprotein particle) to its own transcript RPL30. Using a mutation in the RPL30 binding site that disrupts this repression, we have taken a genetic approach to reveal that regulation of splicing is restored in this mutant by deletion of the cap-binding complex (CBC) component Cbp80. Indeed, our data indicate that Cbp80 plays distinct roles in the recognition of the intron by U1 and U2 snRNP. It promotes the initial 5' splice site recognition by U1 and, independently, facilitates U2 recruitment, depending on sequences located in the vicinity of the 5' splice site. These results reveal a novel function for CBC in splicing and imply that these molecular events can be the target of a splicing regulator.

  1. Structural and Functional Modularity of the Orange Carotenoid Protein: Distinct Roles for the N- and C-Terminal Domains in Cyanobacterial Photoprotection[C][W

    PubMed Central

    Leverenz, Ryan L.; Jallet, Denis; Li, Ming-De; Mathies, Richard A.; Kirilovsky, Diana; Kerfeld, Cheryl A.

    2014-01-01

    The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)–associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCPO, to an active red form, OCPR. The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP’s photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCPR. A comparison of the spectroscopic properties of the RCP with OCPR indicates that critical protein–chromophore interactions within the C-terminal domain are weakened in the OCPR form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain. PMID:24399299

  2. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking.

    PubMed

    Zirngibl, R; Schulze, D; Mirski, S E; Cole, S P; Greer, P A

    2001-05-15

    The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse cytoplasmic localization, but in addition it showed distinct accumulations in cytoplasmic vesicles as well as in a perinuclear region consistent with the Golgi. This localization was very similar to that of TGN38, a known marker of the trans Golgi. The localization of Fps/Fes and TGN38 were both perturbed by brefeldin A, a fungal metabolite that disrupts the Golgi apparatus. Fps/Fes was also found to colocalize to various extents with several Rab proteins, which are members of the monomeric G-protein superfamily involved in vesicular transport between specific subcellular compartments. Using Rabs that are involved in endocytosis (Rab5B and Rab7) or exocytosis (Rab1A and Rab3A), we showed that Fps/Fes is localized in both pathways. These results suggest that Fps/Fes may play a general role in the regulation of vesicular trafficking.

  3. Distinct roles of enhancer nuclear factor 1 (NF1) sites in plasmacytoma and osteopetrosis induction by Akv1-99 murine leukemia virus

    SciTech Connect

    Sorensen, Karina Dalsgaard; Sorensen, Annette Balle; Quintanilla-Martinez, Leticia; Kunder, Sandra; Schmidt, Joerg; Pedersen, Finn Skou . E-mail: fsp@mb.au.dk

    2005-04-10

    Murine leukemia viruses (MLVs) can be lymphomagenic and bone pathogenic. In this work, the possible roles of two distinct proviral enhancer nuclear factor 1 (NF1) binding sites in osteopetrosis and tumor induction by B-lymphomagenic Akv1-99 MLV were investigated. Akv1-99 and mutants either with NF1 site 1, NF1 site 2 or both sites disrupted induced tumors (plasma cell proliferations by histopathology) with remarkably similar incidence and mean latency in inbred NMRI mice. Clonal immunoglobulin gene rearrangement detection, by Southern analysis, confirmed approximately half of the tumors induced by each virus to be plasmacytomas while the remaining lacked detectable clonally rearranged Ig genes and were considered polyclonal; a demonstration that enhancer NF1 sites are dispensable for plasmacytoma induction by Akv1-99. In contrast, X-ray analysis revealed significant differences in osteopetrosis induction by the four viruses strongly indicating that NF1 site 2 is critical for viral bone pathogenicity, whereas NF1 site 1 is neutral or moderately inhibitory. In conclusion, enhancer NF1 sites are major determinants of osteopetrosis induction by Akv1-99 without significant influence on viral oncogenicity.

  4. The Adipocyte-Inducible Secreted Phospholipases PLA2G5 and PLA2G2E Play Distinct Roles in Obesity

    PubMed Central

    Sato, Hiroyasu; Taketomi, Yoshitaka; Ushida, Ayako; Isogai, Yuki; Kojima, Takumi; Hirabayashi, Tetsuya; Miki, Yoshimi; Yamamoto, Kei; Nishito, Yasumasa; Kobayashi, Tetsuyuki; Ikeda, Kazutaka; Taguchi, Ryo; Hara, Shuntaro; Ida, Satoshi; Miyamoto, Yuji; Watanabe, Masayuki; Baba, Hideo; Miyata, Keishi; Oike, Yuichi; Gelb, Michael H.; Murakami, Makoto

    2014-01-01

    Summary Metabolic disorders including obesity and insulin resistance have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5−/− and Pla2g2e−/− mice revealed distinct and previously unrecognized roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia and obesiy. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of “metabolic sPLA2s” adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators. PMID:24910243

  5. Expression patterns suggest that despite considerable functional redundancy, galectin-4 and -6 play distinct roles in normal and damaged mouse digestive tract.

    PubMed

    Houzelstein, Denis; Reyes-Gomez, Edouard; Maurer, Marie; Netter, Pierre; Higuet, Dominique

    2013-05-01

    The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication.

  6. Expression Patterns Suggest that Despite Considerable Functional Redundancy, Galectin-4 and -6 Play Distinct Roles in Normal and Damaged Mouse Digestive Tract

    PubMed Central

    Reyes-Gomez, Edouard; Maurer, Marie; Netter, Pierre; Higuet, Dominique

    2013-01-01

    The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication. PMID:23360694

  7. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.

    PubMed

    Matano, Christian; Kolkenbrock, Stephan; Hamer, Stefanie N; Sgobba, Elvira; Moerschbacher, Bruno M; Wendisch, Volker F

    2016-08-05

    In Gram-positive Corynebacterium glutamicum and other members of the suborder Corynebacterianeae, which includes mycobacteria, cell elongation and peptidoglycan biosynthesis is mainly due to polar growth. C. glutamicum lacks an uptake system for the peptidoglycan constituent N-acetylglucosamine (GlcNAc), but is able to catabolize GlcNAc-6-phosphate. Due to its importance in white biotechnology and in order to ensure more sustainable processes based on non-food renewables and to reduce feedstock costs, C. glutamicum strains have previously been engineered to produce amino acids from GlcNAc. GlcNAc also is a constituent of chitin, but it is unknown if C. glutamicum possesses chitinolytic enzymes. Chitin was shown here not to be growth substrate for C. glutamicum. However, its genome encodes a putative N-acetylglucosaminidase. The nagA 2 gene product was active as β-N-acetylglucosaminidase with 0.27 mM 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside as substrate supporting half-maximal activity. NagA2 was secreted into the culture medium when overproduced with TAT and Sec dependent signal peptides, while it remained cytoplasmic when overproduced without signal peptide. Heterologous expression of exochitinase gene chiB from Serratia marcescens resulted in chitinolytic activity and ChiB secretion was enhanced when a signal peptide from C. glutamicum was used. Colloidal chitin did not support growth of a strain secreting exochitinase ChiB and β-N-acetylglucosaminidase NagA2. C. glutamicum possesses β-N-acetylglucosaminidase. In the wild type, β-N-acetylglucosaminidase activity was too low to be detected. However, overproduction of the enzyme fused to TAT or Sec signal peptides led to secretion of active β-N-acetylglucosaminidase. The finding that concomitant secretion of endogenous NagA2 and exochitinase ChiB from S. marcescens did not entail growth with colloidal chitin as sole or combined carbon source, may indicate the requirement for higher or additional enzyme

  8. 22 CFR 72.14 - Nominal possession; property not normally taken into physical possession.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... possession. (a) When a consular officer take articles of a decedent's personal property from a foreign... Department discharging the consular officer of any responsibility for the articles transferred. (b) A... effects; (2) Motor vehicles, airplanes or watercraft; (3) Toiletries, such as toothpaste or razors; (4...

  9. Three α-Subunits of Heterotrimeric G Proteins and an Adenylyl Cyclase Have Distinct Roles in Fruiting Body Development in the Homothallic Fungus Sordaria macrospora

    PubMed Central

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-01-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884

  10. Distinct Roles of the Salmonella enterica Serovar Typhimurium CyaY and YggX Proteins in the Biosynthesis and Repair of Iron-Sulfur Clusters

    PubMed Central

    Velayudhan, Jyoti; Karlinsey, Joyce E.; Frawley, Elaine R.; Becker, Lynne A.; Nartea, Margaret

    2014-01-01

    Labile [4Fe-4S]2+ clusters found at the active sites of many dehydratases are susceptible to damage by univalent oxidants that convert the clusters to an inactive [3Fe-4S]1+ form. Bacteria repair damaged clusters in a process that does not require de novo protein synthesis or the Isc and Suf cluster assembly pathways. The current study investigates the participation of the bacterial frataxin ortholog CyaY and the YggX protein, which are proposed to play roles in iron trafficking and iron-sulfur cluster repair. Previous reports found that individual mutations in cyaY or yggX were not associated with phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that CyaY and YggX might have functionally redundant roles. However, we have found that individual mutations in cyaY or yggX confer enhanced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium. In addition, inactivation of the stm3944 open reading frame, which is located immediately upstream of cyaY and which encodes a putative inner membrane protein, dramatically enhances the hydrogen peroxide sensitivity of a cyaY mutant. Overexpression of STM3944 reduces the elevated intracellular free iron levels observed in an S. Typhimurium fur mutant and also reduces the total cellular iron content under conditions of iron overload, suggesting that the stm3944-encoded protein may mediate iron efflux. Mutations in cyaY and yggX have different effects on the activities of the iron-sulfur cluster-containing aconitase, serine deaminase, and NADH dehydrogenase I enzymes of S. Typhimurium under basal conditions or following recovery from oxidative stress. In addition, cyaY and yggX mutations have additive effects on 6-phosphogluconate dehydratase-dependent growth during nitrosative stress, and a cyaY mutation reduces Salmonella virulence in mice. Collectively, these results indicate that CyaY and YggX play distinct supporting roles in iron-sulfur cluster biosynthesis

  11. Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III.

    PubMed

    You, H J; Swanson, R L; Doetsch, P W

    1998-04-28

    We previously identified two distinct genes of Saccharomyces cerevisiae redoxyendonuclease (SCR1 and SCR2) which possess a high degree of sequence similarity to Escherichia coli endonuclease III [Augeri, L., Lee, Y. M., Barton, A. B., and Doetsch, P. W. (1997) Biochemistry 36, 721-729]. The proteins encoded by SCR1 and SCR2 were overexpressed in E. coli and purified to apparent homogeneity. Both proteins recognized and cleaved DNA substrates containing dihydrouracil, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (FaPy-7-MeGua), and abasic sites but not DNA substrates containing uracil or 8-oxoguanine. Purified Scr2, but not Scr1, possesses spectral properties which indicate the presence of an iron-sulfur center. Kinetic parameters for Scr1 and Scr2 were determined by using an oligonucleotide containing a single dihydrouracil. Analysis of the deduced amino acid sequences of Scr1 and Scr2 suggests that Scr2 bears an iron-sulfur motif, while Scr1 does not have this motif. However, Scr1 has a long, positively charged N-terminus that could be a mitochondrial transit sequence. Targeted gene disruption of SCR1 and SCR2 produced a double mutant that had no detectable enzymatic activity against the dihydrouracil-containing substrate. Northern blot analysis showed that SCR1 was induced by menadione, but SCR2 was not. These results indicate that although Scr1 and Scr2 are both functional homologues of E. coli endonuclease III, they differ from each other with respect to their amino acid sequences and inducibility by DNA damaging agents, suggesting that their precise biological roles may be different.

  12. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation.

    PubMed

    Mauriat, Mélanie; Moritz, Thomas

    2009-06-01

    Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula x P. tremuloides (PttGID1.1-1.4). These were functional when expressed in Arabidopsis thaliana, and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter (LMX5). The 35S:PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1, PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem.

  13. Distinct roles for transforming growth factor-β2 and tumour necrosis factor-α in immune deviation elicited by hapten-derivatized antigen-presenting cells

    PubMed Central

    Hecker, K H; Niizeki, H; Streilein, J W

    1999-01-01

    The role of antigen-presenting cells (APC) in the induction of antigen-specific unresponsiveness was examined, using two functionally distinct murine macrophage hybridomas, #59 and #63 cells. Derivatized with the hapten (dinitrofluorobenzene; DNFB), #59 cells induced contact hypersensitivity (CH) in mice. Hapten-derivatized #63 cells failed to induce CH. Instead, they prevented recipients from acquiring CH when exposed subsequently to a sensitizing dose of the hapten. Similarly, hapten-derivatized #59 cells, pretreated in vitro with transforming growth factor-β2 (TGF-β2) lost their capacity to evoke CH, and induced tolerance. Hapten-derivatized #63 cells and TGF-β2-treated #59 cells eliminated CH in mice sensitized to hapten. Reverse transcription–polymerase chain reaction analysis of mRNAs for various accessory molecules important in T-cell activation revealed that #63 and TGF-β2-treated #59 cells differed only in their expression of tumour necrosis factor-α (TNF-α) mRNA. The latter expressed higher levels of TNF-α mRNA than did untreated #59 cells. As a consequence, #63 and TGF-β2-treated #59 cells, both of which induce tolerance, secrete TNF-α protein unlike untreated #59 cells, which do not induce tolerance to hapten. Since neutralizing anti-TNF-α antibodies abrogated the tolerogenic potential of #63 cells in vivo, we conclude that TGF-β2 equips hapten-bearing APC with the capacity to evoke systemic immune deviation in which CH is selectively silenced. We speculate that one effect of TGF-β2 is to cause APC to up-regulate TNF-α production. In turn, this cytokine biases the functional property of responding hapten-specific T cells in a direction that not only interferes with acquisition, but suppresses induction of CH. PMID:10233718

  14. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE).

    PubMed

    Mumma, Jane Odhiambo; Chhay, Juliet S; Ross, Kerry L; Eaton, Jana S; Newell-Litwa, Karen A; Fridovich-Keil, Judith L

    2008-02-01

    Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.

  15. Grb2 and Shc Adapter Proteins Play Distinct Roles in Neu (ErbB-2)-Induced Mammary Tumorigenesis: Implications for Human Breast Cancer

    PubMed Central

    Dankort, David; Maslikowski, Bart; Warner, Neil; Kanno, Nubufumi; Kim, Harold; Wang, Zhixiang; Moran, Michael F.; Oshima, Robert G.; Cardiff, Robert D.; Muller, William J.

    2001-01-01

    Amplification of the Neu (ErbB-2 or HER-2) receptor tyrosine kinase occurs in 20 to 30% of human mammary carcinomas, correlating with a poor clinical prognosis. We have previously demonstrated that four (Y1144 Y1201, Y1227 and Y1253) of the five known Neu autophosphorylation sites can independently mediate transforming signals. The transforming potential of two of these mutants correlates with their capacity to recruit Grb2 directly to Y1144 (YB) or indirectly through Shc to Y1227 (YD). Here, we demonstrate that these transformation-competent neu mutants activate extracellular signal-regulated kinases and stimulate Ets-2-dependent transcription. Although the transforming potential of three of these mutants (YB, YD, and YE) was susceptible to inhibition by Rap1A, a genetic antagonist of Ras, the transforming potential of YC was resistant to inhibition by Rap1A. To further address the significance of these ErbB-2-coupled signaling molecules in induction of mammary cancers, transgenic mice expressing mutant Neu receptors lacking the known autophosphorylation sites (NYPD) or those coupled directly to either Grb2 (YB) or Shc (YD) adapter molecules were derived. In contrast to the NYPD strains, which developed focal mammary tumors after a long latency period with low penetrance, all female mice derived from YB and YD strains rapidly developed mammary tumors. Although female mice from several independent YB or YD lines developed mammary tumors, the YB strains developed lung metastases at substantially higher rates than the YD strains. These observations argue that Grb2 and Shc play important and distinct roles in ErbB-2/Neu-induced mammary tumorigenesis and metastasis. PMID:11238891

  16. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus.

    PubMed

    Susin, Michelle F; Baldini, Regina L; Gueiros-Filho, Frederico; Gomes, Suely L

    2006-12-01

    Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.

  17. The role of a parasite-specific allosteric site in the distinctive activation behavior of Eimeria tenella cGMP-dependent protein kinase.

    PubMed

    Salowe, Scott P; Wiltsie, Judyann; Liberator, Paul A; Donald, Robert G K

    2002-04-02

    A cGMP-dependent protein kinase (PKG) was recently identified as an anticoccidial target for the apicomplexan parasite Eimeria tenella [Gurnett, A., Liberator, P. A., Dulski, P., Salowe, S., Donald, R. G. K., Anderson, J., Wiltsie, J., Diaz, C., Harris, G., Chang, B., Darkin-Rattray, S. J., Nare, B., Crumley, T., Blum, P., Misura, A., Tamas, T., Sardana, M., Yuan, J., Biftu, T., and Schmatz, D. (2002) J. Biol. Chem. (in press)]. Unlike the PKGs of higher organisms that have two cGMP binding sites in their regulatory domain, the PKG from Eimeria tenella (Et-PKG) contains three putative cGMP binding sites and has distinctive activation properties, including a very large stimulation by cGMP ( approximately 1000-fold) with significant cooperativity (Hill coefficient of 1.7). During our investigation of Et-PKG activation, we found that 8-substituted cGMP analogues are weak partial activators. For example, 8-NBD-cGMP provides a maximal stimulation of activity of only 20-fold with little evident cooperativity, although cGMP can synergize with the analogue to provide full activation. The results suggest that partial activation is a consequence of restricted binding of 8-NBD-cGMP to a subset of cGMP sites in the enzyme. Site-directed mutagenesis of conserved arginine and glutamate residues in the parasite-specific third cGMP site confirms that this site is an important functional participant in the allosteric regulation of the kinase and that it exhibits very high selectivity against 8-NBD-cGMP. Since the results are consistent with full activation of Et-PKG requiring cyclic nucleotide binding in all three allosteric sites, one role for the additional cGMP site may be to establish a stricter regulatory mechanism for the kinase activity than is present in the PKGs of higher organisms containing only two allosteric sites.

  18. Role of Zucchini and Its Distinctive Components in the Modulation of Degenerative Processes: Genotoxicity, Anti-Genotoxicity, Cytotoxicity and Apoptotic Effects

    PubMed Central

    Martínez-Valdivieso, Damián; Font, Rafael; Fernández-Bedmar, Zahira; Merinas-Amo, Tania; Gómez, Pedro; Alonso-Moraga, Ángeles

    2017-01-01

    Zucchini (Cucurbita pepo subsp. pepo) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits (“Yellow” and “Light Green” varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) “Yellow” zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) “Light Green” zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H2O2-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes. PMID:28708122

  19. Role of Zucchini and Its Distinctive Components in the Modulation of Degenerative Processes: Genotoxicity, Anti-Genotoxicity, Cytotoxicity and Apoptotic Effects.

    PubMed

    Martínez-Valdivieso, Damián; Font, Rafael; Fernández-Bedmar, Zahira; Merinas-Amo, Tania; Gómez, Pedro; Alonso-Moraga, Ángeles; Del Río-Celestino, Mercedes

    2017-07-14

    Zucchini (Cucurbita pepo subsp. pepo) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits ("Yellow" and "Light Green" varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) "Yellow" zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) "Light Green" zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H₂O₂-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes.

  20. Distinctive Roles for α7*- and α9*-Nicotinic Acetylcholine Receptors in Inflammatory and Autoimmune Responses in the Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis.

    PubMed

    Liu, Qiang; Whiteaker, Paul; Morley, Barbara J; Shi, Fu-Dong; Lukas, Ronald J

    2017-01-01

    Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE) model in mice of some forms of multiple sclerosis (MS). Other studies using knock-out (KO) mice have implicated nicotinic acetylcholine (ACh) receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR) in different, disease-exacerbating or disease-ameliorating processes. These outcomes are in harmony with gene expression analyses showing nAChR subunit mRNA in many classes of immune system cell types. Consistent with influences on disease status, predictable effects of nAChR subunit (and subtype) KO, or of nicotine exposure, are seen on immune cell numbers and distribution and on cytokine levels or other markers of immunity, inflammation, demyelination, and axonal degradation. Providing support for our hypotheses about distinctive roles for nAChR subtypes in EAE, here we have used direct and adoptive EAE induction and a nAChR subunit gene double knock-out (DKO) strategy. Immune cell expression of nAChR α9 subunits as protein is demonstrated by immunostaining of isolated CD4(+), CD8(+), CD11b(+) and CD11c(+) cells from wild-type (WT) mice, but not in cells from nAChR α9 subunit KO animals. Nicotine exposure is protective against directly-induced EAE in WT or α7/α9 DKO animals relative to effects seen in WT/vehicle-treated mice, but, remarkably, EAE is exacerbated in vehicle-treated α7/α9 DKO mice. Brain lesion volume and intra-cranial inflammatory activity similarly are higher in DKO/vehicle than in WT/vehicle-treated animals, although nicotine's protective effects are seen in each instance. By contrast, in adoptive transfer studies, disease severity is attenuated and disease onset is delayed in recipients of splenocytes from WT animals treated with nicotine rather than with vehicle. Moreover, protection as seen in nicotine-treated WT animals is the same in recipients of splenocytes from

  1. The clinical characteristics of possession disorder among 20 Chinese patients in the Hebei province of China.

    PubMed

    Gaw, A C; Ding, Q; Levine, R E; Gaw, H

    1998-03-01

    This paper describes the clinical characteristics of 20 hospitalized psychiatric patients in the Hebei province of China who believed they were possessed. A structured interview focused on clinical characteristics associated with possession phenomena was developed and administered to 20 patients at eight hospitals in the province. All patients had been given the Chinese diagnosis of yi-ping (hysteria) by Chinese physicians before being recruited for the study. The subjects' mean age was 37 years. Most were women from rural areas with little education. Major events reported to precede possession included interpersonal conflicts, subjectively meaningful circumstances, illness, and death of an individual or dreaming of a deceased individual. Possessing agents were thought to be spirits of deceased individuals, deities, animals, and devils. Twenty percent of subjects reported multiple possessions. The initial experience of possession typically came on acutely and often became a chronic relapsing illness. Almost all subjects manifested the two symptoms of loss of control over their actions and acting differently. They frequently showed loss of awareness of surroundings, loss of personal identity, inability to distinguish reality from fantasy, change in tone of voice, and loss of perceived sensitivity to pain. Preliminary findings indicate that the disorder is a syndrome with distinct clinical characteristics that adheres most closely to the DSM-IV diagnosis of dissociative trance disorder under the category of dissociative disorder not otherwise specified.

  2. 31 CFR 0.215 - Possession of weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Possession of weapons and explosives... OF THE TREASURY EMPLOYEE RULES OF CONDUCT Rules of Conduct § 0.215 Possession of weapons and explosives. (a) Employees shall not possess firearms, explosives, or other dangerous or deadly weapons...

  3. 50 CFR 648.145 - Black sea bass possession limit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Black sea bass possession limit. 648.145... Measures for the Black Sea Bass Fishery § 648.145 Black sea bass possession limit. (a) During the recreational fishing season specified at § 648.146, no person shall possess more than 15 black sea bass in, or...

  4. 50 CFR 648.145 - Black sea bass possession limit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Black sea bass possession limit. 648.145... Measures for the Black Sea Bass Fishery § 648.145 Black sea bass possession limit. (a) During the recreational fishing season specified at § 648.146, no person shall possess more than 20 black sea bass in, or...

  5. 50 CFR 648.145 - Black sea bass possession limit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Black sea bass possession limit. 648.145... Measures for the Black Sea Bass Fishery § 648.145 Black sea bass possession limit. (a) From January 1 through February 28, no person shall possess more than 15 black sea bass in, or harvested from, the EEZ...

  6. 31 CFR 0.215 - Possession of weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Possession of weapons and explosives... explosives. (a) Employees shall not possess firearms, explosives, or other dangerous or deadly weapons... paragraph (a) of this section does not apply to employees who are required to possess weapons or explosives...

  7. 46 CFR 308.504 - Definition of territories and possessions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Definition of territories and possessions. 308.504... RISK INSURANCE War Risk Cargo Insurance I-Introduction § 308.504 Definition of territories and possessions. Whenever reference is made to the territories and possessions of the United States in this...

  8. 50 CFR 20.39 - Termination of possession.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.39 Termination of possession. Subject to all other requirements of this part, the possession of birds taken by any hunter shall be... consigned for transport by the Postal Service or a common carrier to some person other than the hunter. ...

  9. 50 CFR 20.35 - Field possession limit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Field possession limit. 20.35 Section 20.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.35 Field possession limit. No...

  10. 50 CFR 20.35 - Field possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Field possession limit. 20.35 Section 20.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.35 Field possession limit. No...

  11. 50 CFR 20.35 - Field possession limit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Field possession limit. 20.35 Section 20.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.35 Field possession limit. No...

  12. 50 CFR 20.35 - Field possession limit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Field possession limit. 20.35 Section 20.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.35 Field possession limit. No...

  13. 50 CFR 20.35 - Field possession limit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Field possession limit. 20.35 Section 20.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.35 Field possession limit. No...

  14. 31 CFR 0.215 - Possession of weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Possession of weapons and explosives... OF THE TREASURY EMPLOYEE RULES OF CONDUCT Rules of Conduct § 0.215 Possession of weapons and explosives. (a) Employees shall not possess firearms, explosives, or other dangerous or deadly...

  15. 31 CFR 0.215 - Possession of weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Possession of weapons and explosives... OF THE TREASURY EMPLOYEE RULES OF CONDUCT Rules of Conduct § 0.215 Possession of weapons and explosives. (a) Employees shall not possess firearms, explosives, or other dangerous or deadly...

  16. 31 CFR 0.215 - Possession of weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Possession of weapons and explosives... OF THE TREASURY EMPLOYEE RULES OF CONDUCT Rules of Conduct § 0.215 Possession of weapons and explosives. (a) Employees shall not possess firearms, explosives, or other dangerous or deadly...

  17. 50 CFR 622.277 - Bag and possession limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ATLANTIC Dolphin and Wahoo Fishery Off the Atlantic States § 622.277 Bag and possession limits. Section 622.11(a) provides the general applicability for bag and possession limits. (a) Atlantic dolphin and wahoo. Bag and possession limits are as follows: (1) Dolphin—10, not to exceed 60 per vessel,...

  18. 50 CFR 622.277 - Bag and possession limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ATLANTIC Dolphin and Wahoo Fishery Off the Atlantic States § 622.277 Bag and possession limits. Section 622.11(a) provides the general applicability for bag and possession limits. (a) Atlantic dolphin and wahoo. Bag and possession limits are as follows: (1) Dolphin—10, not to exceed 60 per vessel,...

  19. Adducin family proteins possess different nuclear export potentials.

    PubMed

    Liu, Chia-Mei; Hsu, Wen-Hsin; Lin, Wan-Yi; Chen, Hong-Chen

    2017-05-10

    The adducin (ADD) family proteins, namely ADD1, ADD2, and ADD3, are actin-binding proteins that play important roles in the stabilization of membrane cytoskeleton and cell-cell junctions. All the ADD proteins contain a highly conserved bipartite nuclear localization signal (NLS) at the carboxyl termini, but only ADD1 can localize to the nucleus. The reason for this discrepancy is not clear. To avoid the potential effect of cell-cell junctions on the distribution of ADD proteins, HA epitope-tagged ADD proteins and mutants were transiently expressed in NIH3T3 fibroblasts and their distribution in the cytoplasm and nucleus was examined by immunofluorescence staining. Several nuclear proteins were identified to interact with ADD1 by mass spectrometry, which were further verified by co-immunoprecipitation. In this study, we found that ADD1 was detectable both in the cytoplasm and nucleus, whereas ADD2 and ADD3 were detected only in the cytoplasm. However, ADD2 and ADD3 were partially (~40%) sequestered in the nucleus by leptomycin B, a CRM1/exportin1 inhibitor. Upon the removal of leptomycin B, ADD2 and ADD3 re-distributed to the cytoplasm. These results indicate that ADD2 and ADD3 possess functional NLS and are quickly transported to the cytoplasm upon entering the nucleus. Indeed, we found that ADD2 and ADD3 possess much higher potential to counteract the activity of the NLS derived from Simian virus 40 large T-antigen than ADD1. All the ADD proteins appear to contain multiple nuclear export signals mainly in their head and neck domains. However, except for the leucine-rich motif ((377)FEALMRMLDWLGYRT(391)) in the neck domain of ADD1, no other classic nuclear export signal was identified in the ADD proteins. In addition, the nuclear retention of ADD1 facilitates its interaction with RNA polymerase II and zinc-finger protein 331. Our results suggest that ADD2 and ADD3 possess functional NLS and shuttle between the cytoplasm and nucleus. The discrepancy in the

  20. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea.

    PubMed

    Cohrs, Kim C; Schumacher, Julia

    2017-09-01

    The plant-pathogenic leotiomycete Botrytis cinerea is known for the strict regulation of its asexual differentiation programs by environmental light conditions. Sclerotia are formed in constant darkness; black/near-UV (NUV) light induces conidiation; and blue light represses both differentiation programs. Sensing of black/NUV light is attributed to proteins of the cryptochrome/photolyase family (CPF). To elucidate the molecular basis of the photoinduction of conidiation, we functionally characterized the two CPF proteins encoded in the genome of B. cinerea as putative positive-acting components. B. cinerea CRY1 (BcCRY1), a cyclobutane pyrimidine dimer (CPD) photolyase, acts as the major enzyme of light-driven DNA repair (photoreactivation) and has no obvious role in signaling. In contrast, BcCRY2, belonging to the cry-DASH proteins, is dispensable for photorepair but performs regulatory functions by repressing conidiation in white and especially black/NUV light. The transcription of bccry1 and bccry2 is induced by light in a White Collar complex (WCC)-dependent manner, but neither light nor the WCC is essential for the repression of conidiation through BcCRY2 when bccry2 is constitutively expressed. Further, BcCRY2 affects the transcript levels of both WCC-induced and WCC-repressed genes, suggesting a signaling function downstream of the WCC. Since both CPF proteins are dispensable for photoinduction by black/NUV light, the origin of this effect remains elusive and may be connected to a yet unknown UV-light-responsive system.IMPORTANCEBotrytis cinerea is an economically important plant pathogen that causes gray mold diseases in a wide variety of plant species, including high-value crops and ornamental flowers. The spread of disease in the field relies on the formation of conidia, a process that is regulated by different light qualities. While this feature has been known for a long time, we are just starting to understand the underlying molecular mechanisms

  1. Dissociative trance and spirit possession: Challenges for cultures in transition.

    PubMed

    Bhavsar, Vishal; Ventriglio, Antonio; Bhugra, Dinesh

    2016-12-01

    The cross-cultural validity of dissociative possession and trance disorders is a matter of some debate, limiting research and meaningful interpretation of prevalence data. Intimate to these concerns is the status of spirit possession categories studied in the social sciences, particularly anthropology. These two categories are phenomenologically related and display similar epidemiological associations. In India, dissociative and conversion disorders are fairly common in clinical settings. There is no doubt that there are true cultural variations in possession and trance disorders. A new framework may enable clinicians to better understand possession states and spirit possession. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  2. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    PubMed

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium.

  3. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.

    PubMed Central

    Lu, Q; Wallrath, L L; Granok, H; Elgin, S C

    1993-01-01

    -inducible expression but play only a minor role in establishing the chromatin structure of the transgenes. Previous analysis indicates that prior to heat shock, these HSEs appear to be free of protein. Our results suggest that GAGA factor, an abundant protein factor required for normal expression of many Drosophila genes, and heat shock factor, a specific transcription factor activated upon heat shock, play distinct roles in gene regulation: the GAGA factor establishes and/or maintains the DH sites prior to heat shock induction, while the activated heat shock factor recognizes and binds HSEs located within the DH sites to trigger transcription. Images PMID:8474442

  4. Quantitative testing critical-taper wedge theory with distinct-element modeling and the role of dynamics in controlling wedge tapers

    NASA Astrophysics Data System (ADS)

    Strayer, Luther; Suppe, John

    2014-05-01

    Critical-taper wedge mechanics (e.g. Davis, et al. 1983, Dahlen 1990) provides fundamental relationships between the observed tapered geometries of fold-and-thrust belts and accretionary wedges and their detachment and wedge strengths. This theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts, much of which has been aided by extensive analog and numerical modeling. The field has grown large, with several thousand papers addressing real-world, analog, and numerical wedges (cf. Buiter 2012). The majority of the insight has been qualitative, but nevertheless quite influential in our current understanding of mountain belts and submarine wedges. In contrast, quantitative applications of wedge theory, either to nature or models, has been rather limited because of the complexity of most wedge equations. It it is easy to become "lost in parameter space" with many strength parameters that are difficult to constrain or have ambiguous meaning, given real-world data and observations. Recently wedge theory has been recast into a very simple form (Suppe 2007; Yeh and Suppe 2014) that provides an unambiguous relationship between the observed covariation of surface slope α with detachment dip β and the wedge W and fault F strengths with few assumptions. In the real world we have limited knowledge of strengths, forces, fluid pressures and earthquake history, or the relationship between strength heterogeneity and structural style, or to what extent the strength of a wedge is an evolving macroscopic property (e.g. folding, imbrications and strain localization) or a material property. The well-defined relationship between wedge taper and global strength makes numerical wedges an ideal tool for the study of compressive mountain belts. In this work: [1] We successfully test this simpler quantitative wedge theory over a very wide range of wedge strengths and structural styles using distinct

  5. Investigating the link between gun possession and gun assault.

    PubMed

    Branas, Charles C; Richmond, Therese S; Culhane, Dennis P; Ten Have, Thomas R; Wiebe, Douglas J

    2009-11-01

    We investigated the possible relationship between being shot in an assault and possession of a gun at the time. We enrolled 677 case participants that had been shot in an assault and 684 population-based control participants within Philadelphia, PA, from 2003 to 2006. We adjusted odds ratios for confounding variables. After adjustment, individuals in possession of a gun were 4.46 (P < .05) times more likely to be shot in an assault than those not in possession. Among gun assaults where the victim had at least some chance to resist, this adjusted odds ratio increased to 5.45 (P < .05). On average, guns did not protect those who possessed them from being shot in an assault. Although successful defensive gun uses occur each year, the probability of success may be low for civilian gun users in urban areas. Such users should reconsider their possession of guns or, at least, understand that regular possession necessitates careful safety countermeasures.

  6. Developing of Library for Proofs of Data Possession in Charm

    DTIC Science & Technology

    2013-06-01

    Provable data possession at untrusted stores ,” in Proc. of the 14th ACM Conf. on Comput. and...is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Provable Data Possession (PDP) is a cryptographic tool for auditing big... Provable Data Possession (PDP) is a cryptographic tool for auditing big data on a storage server or in the cloud. The goal of PDP is to efficiently

  7. The pursuit of optimal distinctiveness and consumer preferences.

    PubMed

    He, Lingnan; Cong, Feng; Liu, Yanping; Zhou, Xinyue

    2010-10-01

    This article investigates the effect of optimal distinctiveness on consumer product consumption. The authors argue that consumers acquire and display material possessions to restore their optimal levels of distinctiveness. Results showed that placing consumers in a state of low distinctiveness increased desire to acquire distinctive products, whereas perceptions of high distinctiveness reduced desire to acquire such products. Consumers' desire for distinctiveness-related products held true for various consumer choices, including willingness to pay more for limited-edition products and preference for unpopular gifts. This finding has implications for understanding consumer choice in expressing identity.

  8. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing vessel... taken from its management unit or a sailfish taken shoreward of the outer boundary of the EEZ or lands...

  9. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing vessel... taken from its management unit or a sailfish taken shoreward of the outer boundary of the EEZ or lands...

  10. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. Link to an amendment published at 75 FR 57702, Sept. 22, 2010. (a... marlin taken from its management unit or a sailfish taken shoreward of the outer boundary of the EEZ...

  11. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... taken from its management unit or a sailfish taken shoreward of the outer boundary of the EEZ or lands a... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing...

  12. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... taken from its management unit or a sailfish taken shoreward of the outer boundary of the EEZ or lands a... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing...

  13. 50 CFR 648.40 - Prohibition on possession.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish...

  14. 50 CFR 648.40 - Prohibition on possession.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish...

  15. 50 CFR 648.40 - Prohibition on possession.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish...

  16. 50 CFR 648.40 - Prohibition on possession.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish...

  17. 50 CFR 648.40 - Prohibition on possession.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atlantic Salmon § 648.40 Prohibition on possession. (a) Incidental catch. All Atlantic salmon caught... maximum probability of survival. (b) Presumption. The possession of Atlantic salmon is prima facie evidence that such Atlantic salmon were taken in violation of this regulation. Evidence that such fish...

  18. 50 CFR 648.235 - Possession and landing restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Measures for the Spiny Dogfish Fishery § 648.235 Possession and landing restrictions. (a) Quota Period 1. From May 1 through October 31, vessels issued a valid Federal spiny dogfish permit specified under § 648.4(a)(11) may: (1) Possess up to 3,000 lb (1.36 mt) of spiny dogfish per trip; and (2) Land only...

  19. 50 CFR 648.235 - Possession and landing restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Measures for the Spiny Dogfish Fishery § 648.235 Possession and landing restrictions. Link to an amendment... a valid Federal spiny dogfish permit specified under § 648.4(a)(11) may: (1) Possess up to 3,000 lb (1.36 mt) of spiny dogfish per trip; and (2) Land only one trip of spiny dogfish per calendar day. (b...

  20. Parental contributions to adolescents' possessions and educational expenses: gender differences.

    PubMed

    Peters, J F

    1991-01-01

    This study explored adolescent gender differences in possessions and parental financial assistance. Eight common adolescent possessions were analyzed, as well as expected parental contributions to their children's postsecondary education. The issues of gender inequality in the home and gender differences in the process of adolescent independence are addressed.

  1. Pre-Posed Possessive Constructions in Russian and Polish

    ERIC Educational Resources Information Center

    Houle, Erik Richard

    2013-01-01

    In Contemporary Standard Russian (CSR) and Contemporary Standard Polish (CSP) nominal possession is conveyed by means of the adnominal genitive. In this construction the dependent follows the noun it modifies and is marked morphologically for possession in the genitive case. The head noun is marked morphologically for any one of the six…

  2. The Meaning of Cherished Personal Possessions for the Elderly

    ERIC Educational Resources Information Center

    Sherman, Edmund; Newman, Evelyn S.

    1977-01-01

    In this exploratory study, 94 elderly persons, in seven senior service centers and one nursing home, were interviewed to identify and ascertain the meaning of cherished possessions in later years. Lack of cherished possessions was associated with low life satisfaction scores, a suggested indicator of poor adjustment to old age. (Author)

  3. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... recycling or reclaiming the glass or other approved liquor bottle material. (26 U.S.C. 5301) ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any...

  4. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... recycling or reclaiming the glass or other approved liquor bottle material. (26 U.S.C. 5301) ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any...

  5. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... recycling or reclaiming the glass or other approved liquor bottle material. (26 U.S.C. 5301) ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any...

  6. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... recycling or reclaiming the glass or other approved liquor bottle material. (26 U.S.C. 5301) ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any...

  7. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... recycling or reclaiming the glass or other approved liquor bottle material. (26 U.S.C. 5301) ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any...

  8. The Relationship between Social Capital and Weapon Possession on Campus

    ERIC Educational Resources Information Center

    Messer, Rachel H.; Bradley, Kristopher I.; Calvi, Jessica L.; Kennison, Shelia M.

    2012-01-01

    The present research focused on the problem of how college officials might be able to predict weapon possession on college campuses. We hypothesized that measures of social capital (i.e., trust and participation in society) may be useful in identifying individuals who are likely to possess weapons on campuses. Prior research has shown that those…

  9. 50 CFR 640.23 - Bag/possession limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Management... daily bag or possession limit for spiny lobster in or from the EEZ off the southern Atlantic states... fishing season specified in § 640.20(b)(1), the daily bag or possession limit of spiny lobster in or...

  10. 50 CFR 640.23 - Bag/possession limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Management... daily bag or possession limit for spiny lobster in or from the EEZ off the southern Atlantic states... fishing season specified in § 640.20(b)(1), the daily bag or possession limit of spiny lobster in or...

  11. 50 CFR 640.23 - Bag/possession limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Management... daily bag or possession limit for spiny lobster in or from the EEZ off the southern Atlantic states... fishing season specified in § 640.20(b)(1), the daily bag or possession limit of spiny lobster in or...

  12. 18 CFR 1306.3 - Surrender of possession.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Surrender of possession. 1306.3 Section 1306.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY RELOCATION ASSISTANCE AND REAL PROPERTY ACQUISITION POLICIES Regulations and Procedures § 1306.3 Surrender of possession...

  13. 18 CFR 1306.3 - Surrender of possession.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Surrender of possession. 1306.3 Section 1306.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY RELOCATION ASSISTANCE AND REAL PROPERTY ACQUISITION POLICIES Regulations and Procedures § 1306.3 Surrender of possession...

  14. 18 CFR 1306.3 - Surrender of possession.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Surrender of possession. 1306.3 Section 1306.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY RELOCATION ASSISTANCE AND REAL PROPERTY ACQUISITION POLICIES Regulations and Procedures § 1306.3 Surrender of possession...

  15. 18 CFR 1306.3 - Surrender of possession.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Surrender of possession. 1306.3 Section 1306.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY RELOCATION ASSISTANCE AND REAL PROPERTY ACQUISITION POLICIES Regulations and Procedures § 1306.3 Surrender of possession...

  16. 18 CFR 1306.3 - Surrender of possession.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Surrender of possession. 1306.3 Section 1306.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY RELOCATION ASSISTANCE AND REAL PROPERTY ACQUISITION POLICIES Regulations and Procedures § 1306.3 Surrender of possession...

  17. Whose? L2-English Speakers' Possessive Pronoun Gender Errors

    ERIC Educational Resources Information Center

    Anton-Mendez, Ines

    2011-01-01

    This article reports the results of an experiment on production of "his/her" in English as a second language (L2) by proficient native speakers of Italian, Spanish, and Dutch. In Dutch and English, 3rd person singular possessive pronouns agree in gender with their antecedents, in Italian and Spanish possessives in general agree with the noun they…

  18. 19 CFR 123.62 - Baggage in possession of traveler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Baggage in possession of traveler. 123.62 Section 123.62 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT... traveler. For baggage arriving in the actual possession of a traveler, his declaration shall be accepted in...

  19. The Relationship between Social Capital and Weapon Possession on Campus

    ERIC Educational Resources Information Center

    Messer, Rachel H.; Bradley, Kristopher I.; Calvi, Jessica L.; Kennison, Shelia M.

    2012-01-01

    The present research focused on the problem of how college officials might be able to predict weapon possession on college campuses. We hypothesized that measures of social capital (i.e., trust and participation in society) may be useful in identifying individuals who are likely to possess weapons on campuses. Prior research has shown that those…

  20. Pre-Posed Possessive Constructions in Russian and Polish

    ERIC Educational Resources Information Center

    Houle, Erik Richard

    2013-01-01

    In Contemporary Standard Russian (CSR) and Contemporary Standard Polish (CSP) nominal possession is conveyed by means of the adnominal genitive. In this construction the dependent follows the noun it modifies and is marked morphologically for possession in the genitive case. The head noun is marked morphologically for any one of the six…

  1. 32 CFR 552.120 - Possession and control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Explosives-Fort Lewis, Washington § 552.120 Possession and control. (a) Possession of weapons on the post by... Lewis. Prior coordination for the use of ranges will be made through the Range Control Officer or Range... privately owned weapons by either military or civilian personnel is prohibited while on the Fort Lewis...

  2. 50 CFR 648.94 - Monkfish possession and landing restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... = 191). A vessel may not possess heads only without possessing the equivalent weight of tails allowed by... (head on and gutted), or any combination of the three provided the weight of monkfish heads on board does not exceed 1.91 times the weight of monkfish tails on board. When any combination of tails, and...

  3. 9. Photocopy of 1845 manuscript (original in the possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of 1845 manuscript (original in the possession of the Metropolitan Museum of Art, New York City, N.Y.; photocopy in the possession of the Onondaga Historical Association) ENTRY IN A. J. DAVIS' (ARCHITECT) ACCOUNT BOOK, SHOWING SKETCH OF WEST ELEVATION AND FIRST LEVEL PLAN, AND SCHEDULE OF TEN DRAWINGS - Sedgewick House, 742 James Street, Syracuse, Onondaga County, NY

  4. Creating Distinctiveness: Lessons from Uncommon Colleges and Universities. ERIC Digest.

    ERIC Educational Resources Information Center

    Townsend, Barbara K.; And Others

    This brief report summarizes a longer document with the same title. Distinctive colleges and universities possess a unifying theme or vision that is expressed in all their activities. They also usually respond to newly emerging societal or community needs unmet by existing schools of higher education. Distinctiveness, however, can limit the…

  5. Possession experiences in dissociative identity disorder: a preliminary study.

    PubMed

    Ross, Colin A

    2011-01-01

    Dissociative trance disorder, which includes possession experiences, was introduced as a provisional diagnosis requiring further study in the Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Consideration is now being given to including possession experiences within dissociative identity disorder (DID) in the Diagnostic and Statistical Manual of Mental Disorders (5th ed.), which is due to be published in 2013. In order to provide empirical data relevant to the relationship between DID and possession states, I analyzed data on the prevalence of trance, possession states, sleepwalking, and paranormal experiences in 3 large samples: patients with DID from North America; psychiatric outpatients from Shanghai, China; and a general population sample from Winnipeg, Canada. Trance, sleepwalking, paranormal, and possession experiences were much more common in the DID patients than in the 2 comparison samples. The study is preliminary and exploratory in nature because the samples were not matched in any way.

  6. China English: Its Distinctive Features

    ERIC Educational Resources Information Center

    Yang, Wei-dong; Dai, Wei-ping

    2011-01-01

    This paper attempts to expound that China English boasting its own distinctive features on the levels of phonology, words, sentences and discourse has been playing an irreplaceable role in intercultural activities, though still in its infancy and in the process of developing and perfecting itself, and it now makes every effort to move towards…

  7. Ca(2+) and H+ homeostasis in fission yeast: a role of Ca(2+)/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles.

    PubMed

    Okorokov, L A; Silva, F E; Okorokova Façanha, A L

    2001-09-14

    We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.

  8. View combination in moving objects: the role of motion in discriminating between novel views of similar and distinctive objects by humans and pigeons.

    PubMed

    Friedman, Alinda; Vuong, Quoc C; Spetch, Marcia L

    2009-03-01

    Humans and pigeons were trained to discriminate between views of similar and distinctive objects that rotated in depth coherently or non-coherently. We tested novel views that were either moving or static and were either between the training viewpoints or beyond them. With both types of motion, both species recognized views between the training viewpoints better than views beyond this range. Additionally, for humans, and to some extent for pigeons, when similar objects were learned via coherent motion, dynamic cues facilitated recognition of viewpoints predictable from the direction of motion. Overall, the results suggest that dynamic information may be added to object representations for both species.

  9. Determinants of possession of the ball in soccer.

    PubMed

    Lago, Carlos; Martín, Rafael

    2007-07-01

    In research on the importance of the possession of the ball in soccer, little attention has been paid to its determinants. Using data from 170 matches of the 2003 - 2004 Spanish Soccer League, we explain why differences in the possession of the ball among teams are so great. In particular, four variables are examined: evolving match status (i.e. whether the team is winning, losing or drawing), venue (i.e. playing at home or away), and the identities of the team and the opponent in each match. Results of linear regression analysis show that these four variables are statistically significant and together explain most of the variance in possession. In short, home teams have more possession than away teams, teams have more possession when they are losing matches than when winning or drawing, and the identity of the opponent matters - the worse the opponent, the greater the possession of the ball. Combinations of these variables could be used to develop a model that predicts possession in soccer.

  10. Must an inventor "possess" an invention to patent it?

    PubMed

    Woessner, Warren D; Chadwick, Robin A

    2014-09-18

    The requirements for patenting inventions relating to biotechnology have become increasingly strict and complicated in recent years. Despite early patent rulings that there is no need for an inventor to "reduce to practice" an invention, the courts are now ruling that an inventor must "possess" his or her invention before filing for patent. This review discusses what such "possession" may mean and describes decisions in which courts have found that an inventor has met or failed the possession test before filing for patent protection. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Possession syndrome at high altitude ( 4575 m/15000 ft ).

    PubMed

    Khan, I D; Sahni, A K

    2013-01-01

    In a first of its kind, a 20 year old Hindu, highlander, working girl presented with abnormal behavior, unrelenting symptoms, had limited benefit by usual treatment and was diagnosed as possession syndrome. Exorcism offered symptomatic relief. The girl resumed normal activities with no recurrence in a 12 month follow up. Possession syndrome is explained in both medical and theological perspectives. Modern medicine associates it with a mental illness though True Possession syndrome without associated mental illness has been reported. Theological perspective can be amalgamated with current scientific theory and practice, thereby complimenting existing concepts.

  12. The Distinctive Role of Romantic Relationships in Moderating the Effects of Early Caregiving on Adult Anxious-Depressed Symptoms over Nine Years

    PubMed Central

    Salvatore, Jessica E.; Haydon, Katherine C.; Simpson, Jeffry A.; Collins, W. Andrew

    2012-01-01

    This study tests a model of young adult romantic quality as a moderator of the effects of early caregiving on anxious-depressed symptoms over a nine-year period in adulthood. Participants (n = 93) were a subsample from a longitudinal study of risk and adaptation. Quality of early caregiving was measured using observational data collected at five points in the first four years of life. Young adult romantic relationship quality was assessed from interviews with participants at age 23. Self-report anxious-depressed symptoms were measured at ages 23, 26, and 32. The results indicated that romantic quality moderated early caregiving to predict symptom levels across this period, with evidence for inoculation, amplification, and compensation effects. A discriminant analysis examining young adult work competence as a moderator provided further evidence for the distinctiveness of romantic relationships in changing the association between early caregiving and adult internalizing symptoms. PMID:23880395

  13. Encoding NF-κB temporal control in response to TNF: distinct roles for the negative regulators IκBα and A20

    PubMed Central

    Werner, Shannon L.; Kearns, Jeffrey D.; Zadorozhnaya, Victoria; Lynch, Candace; O’Dea, Ellen; Boldin, Mark P.; Ma, Averil; Baltimore, David; Hoffmann, Alexander

    2008-01-01

    TNF-induced NF-κB activity shows complex temporal regulation whose different phases lead to distinct gene expression programs. Combining experimental studies and mathematical modeling, we identify two temporal amplification steps—one determined by the obligate negative feedback regulator IκBα—that define the duration of the first phase of NF-κB activity. The second phase is defined by A20, whose inducible expression provides for a rheostat function by which other inflammatory stimuli can regulate TNF responses. Our results delineate the nonredundant functions implied by the knockout phenotypes of iκbα and a20, and identify the latter as a signaling cross-talk mediator controlling inflammatory and developmental responses. PMID:18676814

  14. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition.

    PubMed

    Tessé, Sophie; Storlazzi, Aurora; Kleckner, Nancy; Gargano, Silvana; Zickler, Denise

    2003-10-28

    Ski8p is implicated in degradation of non-poly(A) and double-stranded RNA, and in meiotic DNA recombination. We have identified the Sordaria macrospora SKI8 gene. Ski8p is cytoplasmically localized in all vegetative and sexual cycle cells, and is nuclear localized, specifically in early-mid-meiotic prophase, in temporal correlation with Spo11p, the meiotic double-strand break (DSB) transesterase. Localizations of Ski8p and Spo11p are mutually interdependent. ski8 mutants exhibit defects in vegetative growth, entry into the sexual program, and sporulation. Diverse meiotic defects, also seen in spo11 mutants, are diagnostic of DSB absence, and they are restored by exogenous DSBs. These results suggest that Ski8p promotes meiotic DSB formation by acting directly within meiotic prophase chromosomes. Mutant phenotypes also divide meiotic homolog juxtaposition into three successive, mechanistically distinct steps; recognition, presynaptic alignment, and synapsis, which are distinguished by their differential dependence on DSBs.

  15. Distinct roles for matrix metalloproteinase-2 and alpha4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis.

    PubMed

    Graesser, D; Mahooti, S; Madri, J A

    2000-09-22

    Expression of alpha4 integrin by auto-reactive T cells is critical for their ability to induce EAE, an autoimmune disease of the central nervous system in mice, used as a model to study human multiple sclerosis. Having previously identified one role for alpha4 integrin in adhesion-mediated induction of matrix metalloproteinase-2 (MMP-2), an enzyme that degrades the subendothelial basement membrane matrix, we investigated independent roles for MMP-2 and alpha4 integrin during EAE. The data suggest that expression of alpha4 integrin by auto-reactive T cells is important not only in mediating MMP-2 induction to facilitate entry into the CNS, but also plays a role in maintaining residency within the CNS.

  16. 20. Photocopy of negative (original in possession of WACC), photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of negative (original in possession of WACC), photographer unknown, c.1920's BOY WITH DEER STANDING IN EAST YARD OF MAIN HOUSE WITH WELL AND SCREENED PORCH PICTURED IN LEFT BACKGROUND - Faraway Ranch, Willcox, Cochise County, AZ

  17. 9. Photocopy of drawing (Original in possession of National Archives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of drawing (Original in possession of National Archives and Record Service, Record Group 92) Delineator unknown, Date unknown FIRST FLOOR PLAN - Omaha Quartermaster Depot Historic District, Twenty-second & Woolworth Streets, Omaha, Douglas County, NE

  18. 10. Photocopy of drawing (Original in possession of National Archives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing (Original in possession of National Archives and Record Service, Record Group 92) Delineator unknown, Date unknown SECOND FLOOR PLAN - Omaha Quartermaster Depot Historic District, Twenty-second & Woolworth Streets, Omaha, Douglas County, NE

  19. 8. Photocopy of drawing (Original in possession of National Archives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of drawing (Original in possession of National Archives and Record Service, Record Group 92) Delineator unknown, Date unknown BASEMENT FLOOR PLAN - Omaha Quartermaster Depot Historic District, Twenty-second & Woolworth Streets, Omaha, Douglas County, NE

  20. 10. Photocopy of photograph (original in possession of NYC Economic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original in possession of NYC Economic Development Corp.) Signal Corps, USA, 1945 INTERIOR VIEW OF PIER SHED - Brooklyn Army Supply Base, Pier 2, Brooklyn, Kings County, NY