Science.gov

Sample records for possibly involves kallikrein

  1. Increased circulating levels of tissue kallikrein in systemic sclerosis correlate with microvascular involvement

    PubMed Central

    Del Rosso, A; Distler, O; Milia, A; Emanueli, C; Ibba-Manneschi, L; Guiducci, S; Conforti, M; Generini, S; Pignone, A; Gay, S; Madeddu, P; Matucci-Cerinic, M

    2005-01-01

    Background: In systemic sclerosis (SSc) the lack of an angiogenic response to hypoxia may be due to inappropriate synthesis of angiogenic and angiostatic factors. Tissue kallikrein (t-kallikrein), regulating the kallikrein-kinin system and acting on the microcirculation, is a potent angiogenic agent, and kallistatin is its natural inhibitor. Objective: To evaluate, in patients with SSc, t-kallikrein and kallistatin levels and their correlation with clinical features and measures of microvascular involvement. Patients and methods: Serum levels of t-kallikrein and kallistatin (ELISA) and t-kallikrein skin expression (immunohistochemistry) were studied in patients with SSc, and evaluated for subset (dSSc or lSSc), clinical and immunological features, and microvascular involvement (ulcers, telangiectasias, nailfold videocapillaroscopy). Results: Circulating levels of t-kallikrein were higher in SSc than in controls (p<0.001). T-kallikrein did not differ between lSSc and dSSc, although it was higher in lSSc than in controls (p<0.001).T-kallikrein levels were higher in patients with early and active capillaroscopic pattern than in those with late pattern (p = 0.019 and 0.023). Patients with giant capillaries and capillary microhaemorrhages had higher t-kallikrein concentrations than patients with architectural derangement (p = 0.04). No differences in kallistatin levels were detected between patients with SSc and controls, or between lSSc and dSSc. In early SSc skin, the presence of t-kallikrein was found in endothelial and in perivascular inflammatory cells, while no staining in skin of advanced SSc was detected. Conclusion: T-kallikrein levels are increased in patients with SSc, particularly in lSSc, and are associated with early and active capillaroscopic patterns. T-kallikrein may play a part in SSc microvascular changes. PMID:15708892

  2. Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes

    PubMed Central

    Stefanini, Ana Carolina B.; da Cunha, Bianca Rodrigues; Henrique, Tiago; Tajara, Eloiza H.

    2015-01-01

    Human kallikrein-related peptidases (KLKs) are a subgroup of serine proteases that participate in proteolytic pathways and control protein levels in normal physiology as well as in several pathological conditions. Their complex network of stimulatory and inhibitory interactions may induce inflammatory and immune responses and contribute to the neoplastic phenotype through the regulation of several cellular processes, such as proliferation, survival, migration, and invasion. This family of proteases, which includes one of the most useful cancer biomarkers, kallikrein-related peptidase 3 or PSA, also has a protective effect against cancer promoting apoptosis or counteracting angiogenesis and cell proliferation. Therefore, they represent attractive therapeutic targets and may have important applications in clinical oncology. Despite being intensively studied, many gaps in our knowledge on several molecular aspects of KLK functions still exist. This review aims to summarize recent data on their involvement in different processes related to health and disease, in particular those directly or indirectly linked to the neoplastic process. PMID:26783378

  3. Decreased expression of kallikrein-related peptidase 13: possible contribution to metastasis of human oral cancer.

    PubMed

    Ishige, Shunsaku; Kasamatsu, Atsushi; Ogoshi, Kenji; Saito, Yasuhiro; Usukura, Katsuya; Yokoe, Hidetaka; Kouzu, Yukinao; Koike, Hirofumi; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2014-07-01

    The human kallikrein-related peptidase family is comprised of 15 serine protease genes on chromosome 19q13.4. Our previous microarray analyses showed that the gene kallikrein-related peptidase 13 (KLK13) was down-regulated in oral squamous cell carcinoma (OSCC) cell lines. We evaluated the expression status of KLK13 in primary OSCCs and performed functional molecular experiments in OSCC cell lines. In 102 primary tumors studied, KLK13 expression significantly (P < 0.05) decreased compared with matched normal counterparts. Interestingly, KLK13-negative cases correlated significantly (P < 0.05) with regional lymph node metastasis. In vitro, cells overexpressing KLK13 (oeKLK13) had decreased invasiveness and motility and up-regulation of adhesion molecules (E-cadherin, α-catenin, β-catenin, junction plakoglobin, plakophilin4, desmocollin2, desmoglein3, and desmoplakin) compared with control cells. A rescue experiment that transfected oeKLK13 cells with siRNA against KLK13 restored invasiveness and migration activities with down-regulated adhesion molecules. Based on our results, we concluded that KLK13 may play an important role in regulating cellular migration and invasiveness, making the loss of KLK13 a potential biomarker for early detection of lymph node metastasis in OSCCs.

  4. Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System

    PubMed Central

    Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during

  5. Exogenous kallikrein protects against diabetic nephropathy.

    PubMed

    Liu, Wenjuan; Yang, Yeping; Liu, Yemei; Lu, Xiaolan; Guo, Shizhe; Wu, Meng; Wang, Meng; Yan, Linling; Wang, Qinghua; Zhao, Xiaolong; Tong, Xian; Hu, Ji; Li, Yiming; Hu, Renming; Stanton, Robert C; Zhang, Zhaoyun

    2016-11-01

    The kallikrein-kinin system has been shown to be involved in the development of diabetic nephropathy, but specific mechanisms are not fully understood. Here, we determined the renal-protective role of exogenous pancreatic kallikrein in diabetic mice and studied potential mechanisms in db/db type 2 diabetic and streptozotocin-induced type 1 diabetic mice. After the onset of diabetes, mice were treated with either pancreatic kallikrein (db/db+kallikrein, streptozotocin+kallikrein) or saline (db/db+saline, streptozotocin+saline) for 16 weeks, while another group of streptozotocin-induced diabetic mice received the same treatment after onset of albuminuria (streptozotocin'+kallikrein, streptozotocin'+saline). Db/m littermates or wild type mice were used as non-diabetic controls. Pancreatic kallikrein had no effects on body weight, blood glucose and blood pressure, but significantly reduced albuminuria among all three groups. Pathological analysis showed that exogenous kallikrein decreased the thickness of the glomerular basement membrane, protected against the effacement of foot process, the loss of endothelial fenestrae, and prevented the loss of podocytes in diabetic mice. Renal fibrosis, inflammation and oxidative stress were reduced in kallikrein-treated mice compared to diabetic controls. The expression of kininogen1, tissue kallikrein, kinin B1 and B2 receptors were all increased in the kallikrein-treated compared to saline-treated mice. Thus, exogenous pancreatic kallikrein both prevented and ameliorated diabetic nephropathy, which may be mediated by activating the kallikrein-kinin system.

  6. The relationship between kallikrein and water excretion and the conditional relationship between kallikrein and sodium excretion.

    PubMed Central

    Mills, I H; Ward, P E

    1975-01-01

    1. The renal kallikrein-kinin system has previously been linked with renal control of sodium and water excretion. The present investigations were carried out to examine more closely these relationships. 2. In physiological studies with rabbits, urinary kallikrein was measured by a modification of the [3-H]TAME method. 3. With rabbits on free sodium and water intake, urinary kallikrein was positively correlated with both sodium and water excretion. Kallikrein excretion was also negatively correlated with urinary osmolality. 4. In rabbits on chronic high and low sodium diets, urinary kallikrein was positively correlated with urinary volume but not with sodium excretion. 5. In rabbits held to a constant fluid intake but with sodium intake changed, urinary kallikrein was not correlated with sodium excretion. 6. These results indicate that the positive correlation of kallikrein excretion with sodium excretion under conditions of free sodium and water intake may be only secondary to the positive relationship of kallikrein excretion with urinary volume. 7. The results of the present investigations do not support the hypothesis that the renal kallikrein-kinin system is necessarily involved in renal control of sodium excretion under normal conditions but it is where a change in sodium intake leads to a change in fluid intake and consequently of urinary volume. 8. In the above experiments, urinary kallikrein was always positively correlated with urinary volume and negatively correlated with urinary osmolality. This may indicate a functional relationship between renal kallikrein and water excretion. PMID:1133793

  7. [Therapy of male fertility disorders with kallikrein].

    PubMed

    Schill, W B

    1976-11-26

    An overview of the use of kallikrein to treat male sterility is presented. Kallikrein was shown to increase sperm motility in both in vivo and in vitro studies. The vitality and longevity of the sperm are also enhanced. These effects are due to the stimulation of the intracellular concentration of cyclical adenosonemonophosphates in the sperm. Quinine receptors on the sperm surface are assumed to be the mechanism responsible for the kallikrein effect. Kallikrein stimulates spermal penetration of cervical mucus by about 80% and causes a significant increase in total sperm output 3 months from the beginning of treatment. After 2 months of use, kallikrein leads to an increase in the number of normally formed spermatozoa in the ejaculate. Kallikrein is indicated in cases of asthenospermia and oligozoospermia, in some cases of teratozoospermia, in cases of the vegetative-functional congestion syndrome desecribed by Hoffmann, and is recommended in cases of testicular parenchyme damage involving tubulus function. Parenteral administration involves 40 KE (1KE=8mcg) thrice weekly, oral administration 300-600 KE daily. Kallikrein is added directly to the ejaculate in instrumental insemination in cases of therapy-resistant decrease in motility associated with asthenospermia or oligozoospermia. Concentrations of 5 KE per ml ejaculate are used in such cases. Chronic infection, especially in the genital area, and the incidence of dizziness during therapy are contraindications to kellikrein use.

  8. Involvement of the renal kallikrein-kinin system in K(+)-induced diuresis and natriuresis in anesthetized rats.

    PubMed

    Suzuki, T; Katori, M; Fujita, T; Kumagai, Y; Majima, M

    2000-07-07

    Intravenous infusion of a high-K(+) solution (67.5 mM KCl, 67.5 mM NaCl) to anesthetized rats increased urine volume by 47.6% after 60 min, compared with infusion of a Na(+) solution (135 mM NaCl). This treatment also increased urinary excretion of Na(+) by 32.2%, in parallel with an increase in excretion of K(+) or Cl(-). Urinary excretion of kallikrein increased within 60 min after the start of K(+) infusion. A bradykinin B(2) receptor antagonist, 8-[3-[N-[(E)-3-(6-acetamidopyridin-3-yl)acryloylglycyl]-N-me thylamino ]-2,6-dichlorobenzyloxy]-2-methylquinoline (FR173657; 1.0 mg/kg, i.v. ), inhibited the K(+)-induced diuresis and natriuresis by 41.0% and 26.7%, respectively. These results indicate that K(+) load induces diuresis and natriuresis through the renal kallikrein-kinin system in rats.

  9. Plasma half-life and organ uptake ratio of radiolabeled glandular kallikrein in control and nephrectomized rats

    SciTech Connect

    Nishimura, K.; Iwata, T.; Kokubu, T.

    1986-01-01

    The purified rat urinary kallikrein was radiolabeled by lactoperoxidase method and by chloramine T method. Plasma half-life of radiolabeled kallikrein was 5.06 +/- 0.59 (n = 5) min in control rats and 5.24 +/- 0.42 (n = 5) min in nephrectomized rats. There was no difference between two groups. From autoradiogram, main metabolic organs of radiolabeled kallikrein were liver, kidney and spleen. Total uptake of radiolabeled kallikrein in ech organ was the highest in liver (73.2%). The uptake per g tissue of radiolabeled kallikrein in each organ was high in liver (33.0%), kidney (31.4%) and spleen (21.1%). These results suggest that the active kallikrein is metabolized mainly in the liver, and kidney is not so an important organ to metabolize or to eliminate the active kallikrein in plasma. In order to clarify the mode of existence of active kallikrein in plasma, the following experiment was done by using disc gel electrophoresis. Radioactive profile of radiolabeled kallikrein showed one peak (Rf = 1.0), but radiolabeled kallikrein mixed with rat plasma showed two peaks, that is small peak (Rf = 1.0), and main peak (RF = 0.5). The most of radiolabeled kallikrein was bound to plasma protein and only five per cent was in free form. Furthermore, the binding of radiolabeled kallikrein to plasma protein was interfered by the addition of active kallikrein. These results suggest the possibility of existence of kallikrein binding protein in plasma.

  10. Kallikreins - the melting pot of activity and function

    PubMed Central

    Kalinska, Magdalena; Meyer-Hoffert, Ulf; Kantyka, Tomasz; Potempa, Jan

    2015-01-01

    The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered. PMID:26408415

  11. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    PubMed Central

    Fernández, Israel S.; Ständker, Ludger; Forssmann, Wolf-Georg; Giménez-Gallego, Guillermo; Romero, Antonio

    2007-01-01

    Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way. PMID:17671364

  12. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice.

    PubMed

    Herring, Arne; Münster, Yvonne; Akkaya, Tamer; Moghaddam, Sahar; Deinsberger, Katharina; Meyer, Jakob; Zahel, Julia; Sanchez-Mendoza, Eduardo; Wang, Yachao; Hermann, Dirk M; Arzberger, Thomas; Teuber-Hanselmann, Sarah; Keyvani, Kathy

    2016-12-01

    Memory loss and increased anxiety are clinical hallmarks of Alzheimer's disease (AD). Kallikrein-8 is a protease implicated in memory acquisition and anxiety, and its mRNA is known to be up-regulated in AD-affected human hippocampus. Therefore, an involvement of Kallikrein-8 in Alzheimer's pathogenesis is conceivable but remains to be proved. We determined the cerebral expression of Kallikrein-8 mRNA and protein during the course of AD in patients and in transgenic mice and tested the impact of Kallikrein-8 inhibition on AD-related pathology in mice and in primary glial cells. Kallikrein-8 mRNA and protein were up-regulated in both species at incipient stages of AD. Kallikrein-8 inhibition impeded amyloidogenic amyloid-precursor-protein processing, facilitated amyloid β (Aβ) clearance across the blood-brain-barrier, boosted autophagy, reduced Aβ load and tau pathology, enhanced neuroplasticity, reversed molecular signatures of anxiety, and ultimately improved memory and reduced fear. Kallikrein-8 is a promising new therapeutic target against AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Involvement of skeletal renin-angiotensin system and kallikrein-kinin system in bone deteriorations of type 1 diabetic mice with estrogen deficiency.

    PubMed

    Zhang, Yan; Wang, Liang; Liu, Jin-Xin; Wang, Xin-Luan; Shi, Qi; Wang, Yong-Jun

    This study was aimed to investigate the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) in bone deteriorations of mice in response to the combination treatment of estrogen deficiency and hyperglycemia. The female C57BL/6J mice were sham-operated or ovariectomized with vehicle or streptozotocin (STZ) treatment. Two weeks later, the biochemistries in serum and urine were determined by standard colorimetric methods or ELISA. The H&E and TRAP staining were performed at the tibial proximal metaphysis. The polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. The mice after treating with ovariectomy and STZ showed the decreased level of serum Ca and the increased level of serum PTH and urine Ca. The H&E staining showed trabecular bone abnormalities as demonstrated by the loss, disconnection and separation of trabecular bone network as well as the loss of chondrocytes and appearance of chondrocyte cluster at growth plate of tibia. The significant increase of matured osteoclast number was shown in group with double treatments. The combination treatment significantly up-regulated mRNA expression of AGT, ACE, renin receptor, MMP-9 and CAII, and protein expression of renin, and decreased the ratio of OPG/RANKL and the expression of bradykinin receptors in bone tissue. Ovariectomy combined with STZ induction produced more detrimental actions on bone through the activation of local bone RAS and the down-regulation of bradykinin receptors, as compared to the respective single treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Kallikrein-related Peptidase-8 (KLK8) Is an Active Serine Protease in Human Epidermis and Sweat and Is Involved in a Skin Barrier Proteolytic Cascade

    PubMed Central

    Eissa, Azza; Amodeo, Vanessa; Smith, Christopher R.; Diamandis, Eleftherios P.

    2011-01-01

    Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg164. Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1′-P2′. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied. PMID:20940292

  15. Parental Involvement in Education: Possibilities and Limitations.

    ERIC Educational Resources Information Center

    Khan, Mir Baiz

    1996-01-01

    Examines parental involvement in school affairs as a means to forge school-community partnerships in education. Identifies fundamental barriers to meaningful parental involvement and suggests possible solutions, such as parent empowerment, administrators' support, home-school interdependency, awareness of current research, reorganized structures,…

  16. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    SciTech Connect

    Fernández, Israel S.; Ständker, Ludger; Forssmann, Wolf-Georg; Giménez-Gallego, Guillermo; Romero, Antonio

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.

  17. Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer.

    PubMed

    Pampalakis, Georgios; Sotiropoulou, Georgia

    2007-09-01

    Human tissue kallikreins (KLKs or kallikrein-related peptidases) are a subgroup of extracellular serine proteases that act on a wide variety of physiological substrates, while they display aberrant expression patterns in certain types of cancer. Differential expression patterns lead to the exploitation of these proteins as new cancer biomarkers for hormone-dependent malignancies, in particular. The prostate-specific antigen or kallikrein-related peptidase 3 (PSA/KLK3) is an established tumor marker for the diagnosis and monitoring of prostate cancer. It is well documented that specific KLK genes are co-expressed in tissues and in various pathologies suggesting their participation in complex proteolytic cascades. Here, we review the currently established knowledge on the involvement of KLK proteolytic cascades in the regulation of physiological and pathological processes in prostate tissue and in skin. It is well established that the activity of KLKs is often regulated by auto-activation and subsequent autolytic internal cleavage leading to enzymatic inactivation, as well as by inhibitory serpins or by allosteric inhibition by zinc ions. Redistribution of zinc ions and alterations in their concentration due to physiological or pathological reasons activates specific KLKs initiating the kallikrein cascade(s). Recent studies on kallikrein substrate specificity allowed for the construction of a kallikrein interaction network involved in semen liquefaction and prostate cancer, as well as in skin pathologies, such as skin desquamation, psoriasis and cancer. Furthermore, we discuss the crosstalks between known proteolytic pathways and the kallikrein cascades, with emphasis on the activation of plasmin and its implications in prostate cancer. These findings may have clinical implications for the underlying molecular mechanism and management of cancer and other disorders in which KLK activity is elevated.

  18. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension.

    PubMed

    Katori, Makoto; Majima, Masataka

    2003-02-01

    The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.

  19. Therapeutic modulation of tissue kallikrein expression.

    PubMed

    Campbell, Duncan J

    2016-12-01

    The kallikrein kinin system has cardioprotective actions and mediates in part the cardioprotection produced by angiotensin converting enzyme inhibitors and angiotensin type 1 receptor blockers. Additional approaches to exploit the cardioprotective effects of the kallikrein kinin system include the administration of tissue kallikrein and kinin receptor agonists. The renin inhibitor aliskiren was recently shown to increase cardiac tissue kallikrein expression and bradykinin levels, and to reduce myocardial ischemia-reperfusion injury by bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. Thus, aliskiren represents a prototype drug for the modulation of tissue kallikrein expression for therapeutic benefit.

  20. Involvement of DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP Pathways in Human Tissue Kallikrein 1 Protecting Erectile Function in Aged Rats

    PubMed Central

    Tang, Zhe; Rao, Ke; Wang, Tao; Chen, Zhong; Wang, Shaogang; Liu, Jihong; Wang, Daowen

    2017-01-01

    Our previous studies had reported that Human Tissue Kallikrein 1 (hKLK1) preserved erectile function in aged transgenic rats, while the detailed mechanism of hKLK1 protecting erectile function in aged rats through activation of cGMP and cAMP was not mentioned. To explore the latent mechanism, male wild-type Sprague-Dawley rats (WTR) and transgenic rats harboring the hKLK1 gene (TGR) were fed to 4 and 18 months old and divided into four groups: young WTR (yWTR) as the control, aged WTR (aWTR), aged TGR (aTGR) and aged TGRs with HOE140 (aTGRH). Erectile function of all rats was evaluated by cavernous nerve electrostimulation method and measured by the ratio of intracavernous pressure/ mean arterial pressure (ICP/MAP) in rats. Expression levels of cAMP and cGMP were assessed, and related signaling pathways were detected by western blot, immunohistochemistry and RT-PCR. Our experiment results showed erectile function of the aWTR group and aTGRH group was lower compared with those of other two groups. Also, expression levels of cAMP and cGMP were significantly lower than those of other two groups. Moreover, expressions of related signaling pathways including DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP were also downregulated in the corpus cavernosum of rats in aWTR group. Our finding revealed hKLK1 played a protective role in age-related ED. The DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP pathways that were linked to the mechanism hKLK1 could increase the levels of cGMP and cAMP, which might provide novel therapy targets for age-related ED. PMID:28103290

  1. Differential interactions of human kallikrein-binding protein and alpha 1-antitrypsin with human tissue kallikrein.

    PubMed Central

    Chen, L M; Chao, L; Mayfield, R K; Chao, J

    1990-01-01

    The characteristics of a new kallikrein-binding protein in human serum and its activities were studied. Both the kallikrein-binding protein and alpha 1-antitrypsin form 92 kDa SDS-stable and heat-stable complexes with human tissue kallikrein. In non-SDS/PAGE, the mobility of these complexes differ. Complex-formation between kallikrein and the binding protein is inhibited by heparin, whereas that between kallikrein and alpha 1-antitrypsin is heparin-resistant. In normal or alpha 1-antitrypsin-deficient-serum, the amount of 92 kDa SDS-stable complex formed upon addition of kallikrein is not related to serum alpha 1-antitrypsin levels. The rate of complex-formation between kallikrein and the binding protein is 12 times higher than that between kallikrein and alpha 1-antitrypsin. Purified alpha 1-antitrypsin, which exhibits normal elastase binding, has a kallikrein-binding activity less than 5% of that of serum. Binding of tissue kallikrein in serum is not inhibited by increasing elastase concentrations, and elastase binding in serum is not inhibited by excess tissue kallikrein. A specific monoclonal antibody to human alpha 1-antitrypsin does not bind to either 92 kDa endogenous or exogenous kallikrein complexes isolated from human serum. The studies demonstrate a new tissue kallikrein-binding protein, distinct from alpha 1-antitrypsin, is present in human serum. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2327990

  2. Inhibitors of Kallikrein in Human Plasma

    PubMed Central

    McConnell, David J.

    1972-01-01

    Human plasma was fractionated by ammonium sulfate precipitation, DEAE-cellulose chromatography, and Sephadex G-200 gel filtration to determine which method would give the greatest number of clearly separable kallikrein inhibitory peaks. With G-200 gel filtration three peaks could be separated which were demonstrated to contain α2-macroglobulin, C1̄ inactivator, and α1-antitrypsin. No other kallikrein inhibitors could be identified. The fractions containing C1̄ inactivator and α2-macroglobulin appeared to be more effective against kallikrein than that containing α1-antitrypsin. A patient with hereditary angioneurotic edema was shown to have an abnormal C1̄ inactivator protein capable of interfering with kallikrein's biologic, but not its esterolytic activity. Heat-treated human plasma, a commonly used source of kininogen for experiments with kallikrein, was shown to have kallikrein inhibitory activity. PMID:4113391

  3. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  4. Studies on kallikrein in the duct systems of the salivary glands of the cat

    PubMed Central

    Shnitka, †T. K.; Maranda, B.; Rodrigues, J. A. A.; Schachter, M.; Weinberg, J.

    1978-01-01

    unevenly distributed and were concentrated in only a few lobules of the gland. Specific immunofluorescence was seen only in sections containing striated ducts. 4. The possible physiological role of kallikrein in the salivary glands is discussed. ImagesPlate 1A, BCDPlate 3 PMID:349133

  5. Kallikrein 5-Mediated Inflammation in Rosacea

    PubMed Central

    Two, Aimee M.

    2014-01-01

    Rosacea is a chronic inflammatory condition of facial skin estimated to affect more than 16 million Americans. Although the pathogenesis of rosacea is not fully understood, recent evidence in vitro as well as in vivo has supported the role of increased levels of the trypsin-like serine protease, kallikrein 5, in initiating an augmented inflammatory response in rosacea. The increase in the quantity and magnitude of biological activity of kallikrein 5 leads to production of greater quantities of cathelicidin (LL-37), an antimicrobial peptide associated with increases in innate cutaneous inflammation, vasodilation, and vascular proliferation, all of which are characteristic features of rosacea. In this article, the authors review the literature supporting the role of kallikrein 5 in the pathophysiology of rosacea, including how therapeutic interventions modulate the effects of kallikrein 5, thus providing further support for this pathophysiological model that at least partially explains many of the clinical features of cutaneous rosacea. PMID:24563692

  6. RELEASE OF KALLIKREIN FROM GUINEA PIG LUNG DURING ANAPHYLAXIS

    PubMed Central

    Jonasson, O.; Becker, E. L.

    1966-01-01

    An antigen-antibody reaction occurring in the perfused sensitized guinea pig lung, has been demonstrated to release kallikrein, a proteolytic enzyme related to the formation of kinins. This lung kallikrein is similar to plasma kallikrein in all properties studied, including susceptibility to the same inhibitors, electrophoretic mobility, and heterogeneity in molecular size. The release of kallikrein during anaphylaxis in the guinea pig lung occurs in the presence of ethylenediaminetetraacetate. Perfusion of ellagic acid into nonsensitized lungs will also release kallikrein, presumably through activation of Hageman factor. On the basis of these findings the hypothesis is suggested that the kallikrein in perfused lung activated by the antigen-antibody reaction is, in fact, plasma kallikrein. It is further suggested that activation of such kallikrein by the antigen-antibody reaction proceeds through Hageman factor. PMID:5937059

  7. Clearance and metabolism of glandular kallikrein in the rat

    SciTech Connect

    Rabito, S.F.; Seto, M.; Maitra, S.R.; Carretero, O.A.

    1985-06-01

    This study was undertaken to characterize the clearance of circulating rat glandular kallikrein and to determine the contribution of various organs and the urinary excretion to the removal of glandular kallikrein from the bloodstream. The authors injected either active /sup 125/I-kallikrein or kallikrein inactivated with phenylmethylsulfonyl fluoride (/sup 125/I-PMSF-kallikrein) intravenously into intact or nephrectomized rats and then studied the disappearance rate of trichloroacetic acid (TCA)-precipitable radioactivity from the circulation. Inactivation by PMSF markedly reduced the binding of kallikrein to plasma protease inhibitors. The removal rate of the acid-precipitable radioactivity fit a biexponential curve for both active and inactive kallikrein. In the intact rats approximately 50% of the radioactivity was removed from the circulation 30 min after the injection of active /sup 125/I-kallikrein. Removal of the kidneys did not significantly affect the clearance of active kallikrein. On the other hand, inactive /sup 125/I-PMSF-kallikrein was removed from blood faster than active /sup 125/I-kallikrein in normal animals. Approximately 50% of the radioactivity was removed from the circulation 8 min after the injection, and the half-life of inactive /sup 125/I-PMSF-kallikrein was markedly prolonged by bilateral nephrectomy. Active /sup 125/I-kallikrein was taken up by tissues, particularly the liver and the kidney. In urine, less than 2% of the radioactivity was excreted in 60 min as TCA-precipitable material. The authors concluded that glandular kallikrein is cleared rapidly from the circulation of the rat, probably in the form of a complex with a plasma protease inhibitor.

  8. Evidence for Environmental Familiality of Kallikrein Excretion in Utah Kindreds

    PubMed Central

    Dadone, Mary M.; Williams, Roger R.; Ash, K. Owen; Smith, Jean B.; Anderton, Douglas L.

    1986-01-01

    In investigating the role of urinary kallikrein in the pathophysiology of hypertension, we measured 12-hour kallikrein excretion in 1,100 persons in 68 Utah kindreds. The kallikrein excretion was statistically adjusted to account for variations in body size and urine output. Adjusted kallikrein excretion was greater in youths than in adults and correlated with potassium excretion and sodium excretion in persons with normal blood pressure. It was decreased in normotensive subjects with strong family histories of stroke and hypertension, but was not significantly different in adults with hypertension. Adjusted kallikrein excretion was correlated between pairs of siblings, parent-offspring pairs and spouses. Our results indicate that kallikrein excretion is a familial variable, with the familiality due more to shared environmental than genetic factors. PMID:3636040

  9. Involving people with learning disabilities in research: issues and possibilities.

    PubMed

    Gilbert, Tony

    2004-07-01

    Advances in the social position of people with learning disabilities have led to a situation where research and evaluation studies are increasingly required to include the views and opinions of people with learning disabilities. One key outcome of this shift is that some of the major funding bodies now insist on the inclusion of people with learning disabilities as a condition of research funding. This has produced new possibilities and new challenges for researchers, and it has real consequences for people working in health and social care. The present paper sets out to explore some of the developments and challenges in research with people with learning disabilities. The author provides a selective overview of developments with the aim of demonstrating the richness, ingenuity and potential of research involving people with learning disabilities. The paper is divided into three broad sections that focus on: (1) the ethics and philosophy of participatory research; (2) the methodologies employed at particular points in the research process that are designed to ensure the involvement of participants in research; and (3) building capacity in participatory research as a precondition to the further development of this approach. An investment in capacity would enable this approach to move into the mainstream of research activity involving people with learning disabilities.

  10. Identification of a new tissue-kallikrein-binding protein.

    PubMed Central

    Chao, J; Tillman, D M; Wang, M Y; Margolius, H S; Chao, L

    1986-01-01

    We have identified a tissue-kallikrein-binding protein in human serum and in the serum-free culture media from human lung fibroblasts (WI-38) and rodent neuroblastoma X glioma hybrid cells (NG108-15). Purified and 125I-labelled tissue kallikrein and human serum form an approximately 92,000-Mr SDS-stable complex. The relative quantity of this complex-formation is measured by densitometric scanning of autoradiograms. Complex-formation between tissue kallikrein and the serum binding protein was time-dependent and detectable after 5 min incubation at 37 degrees C, with half-maximal binding at 28 min. Binding of 125I-kallikrein to kallikrein-binding protein is temperature-dependent and can be inhibited by heparin or excess unlabelled tissue kallikrein but not by plasma kallikrein, collagenase, thrombin, urokinase, alpha 1-antitrypsin or kininogens. The kallikrein-binding protein is acid- and heat-labile, as pretreatment of sera at pH 3.0 or at 60 degrees C for 30 min diminishes complex-formation. However, the formed complexes are stable to acid or 1 M-hydroxylamine treatment and can only be partially dissociated with 10 mM-NaOH. When kallikrein was inhibited by the active-site-labelling reagents phenylmethanesulphonyl fluoride or D-Phe-D-Phe-L-Arg-CH2Cl no complex-formation was observed. An endogenous approximately 92,000-Mr kallikrein-kallikrein-binding protein complex was isolated from normal human serum by using a human tissue kallikrein-agarose affinity column. These complexes were recognized by anti-(human tissue kallikrein) antibodies, but not by anti-alpha 1-antitrypsin serum, in Western-blot analyses. The results show that the kallikrein-binding protein is distinct from alpha 1-antitrypsin and is not identifiable with any of the well-characterized plasma proteinase inhibitors such as alpha 2-macroglobulin, inter-alpha-trypsin inhibitor, C1-inactivator or antithrombin III. The functional role of this kallikrein-binding protein and its impact on kallikrein

  11. Factors affecting the secretion of submandibular salivary kallikrein in cats.

    PubMed

    Garrett, J R; Smith, R E; Kyriacou, K; Kidd, A; Liao, J

    1987-07-01

    Glandular kallikrein has been assessed in submandibular saliva, homogenates and plasma by the fluorimetric substrate D-Val-Leu-Arg-7-amino-4-trifluoromethylcoumarin (AFC) and histochemically in tissue sections by the 4-methoxy-2-naphthylamide (MNA) analogue. Nerve stimulation was used to produce salivary secretion. Parasympathetic saliva contained low concentrations of kallikrein, independently of any circulating catecholamines from the adrenals. Sympathetic saliva contained very high concentrations of kallikrein; the amounts in individual drops rapidly reached a peak then declined gradually. Adrenergic blocking drugs during mixed parasympathetic and sympathetic stimulation showed that beta-adrenergic effects normally increase the secretion of kallikrein in response to the alpha-adrenergic influence from sympathetic nerve impulses. Small amounts of a glandular kallikrein-like activity are present in the plasma. Effluent blood from the submandibular gland before, during and after stimulation of either nerve gave no indication that submandibular kallikrein passes from the glandular compartment to the blood under conditions of unobstructed salivary flow. Excision of the chorda tympani indicated that parasympathetic nerve impulses are required for the normal resynthesis of submandibular kallikrein. The secretion of salivary kallikrein is essentially an exocrine function but its role in the saliva remains obscure. The results suggest that sudden mobilization of kallikrein may occur at times into the saliva and that a separate population of adrenergic axons, under separate central control, may pass to the striated ducts specially for this purpose.

  12. Possible involvement of peptidylprolyl isomerase Pin1 in rheumatoid arthritis.

    PubMed

    Nagaoka, Akiko; Takizawa, Naohiro; Takeuchi, Ryohei; Inaba, Yutaka; Saito, Izumi; Nagashima, Yoji; Saito, Tomoyuki; Aoki, Ichiro

    2011-02-01

    The peptidylprolyl isomerase Pin1 is over-expressed in some human diseases including malignancies and chronic inflammatory diseases, this suggests that it contributes to the constitutive activation of certain intracellular signaling pathways that promote cell proliferation and cell invasion. Here, we investigate the possible role of Pin1 in rheumatoid arthritis (RA). Pin1 expression was immunohistochemically analyzed in synovial tissue (ST) obtained from patients with RA and osteoarthritis (OA). To investigate the correlation between Pin1 and motility and proliferation of synovial cells, Pin1 localization was immunohistochemically compared with matrix metalloproteinase (MMP)-1, MMP-3, and proliferating cell nuclear antigen (PCNA). Double immunofluorescent staining for Pin1 and p65 was performed to determine whether Pin1 is involved in nuclear factor κB (NF-κB) activation in RA-ST. Results showed Pin1 expression was significantly higher in RA-ST than in OA-ST. The expression of MMP-1, MMP-3, and PCNA was also significantly elevated in RA-ST. Double immunofluorescent staining revealed colocalization of Pin1 and p65 in the nuclei of RA-ST. These results suggest that Pin1 may be involved in the pathogenesis of RA binding with p65 to activate the proteins MMP-1, MMP-3, and PCNA. Therefore, Pin1 may play a pivotal role in the pathogenesis of RA. © 2010 The Authors. Pathology International © 2010 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  13. Possible involvement of poly(A) in protein synthesis.

    PubMed Central

    Jacobson, A; Favreau, M

    1983-01-01

    The experiments of this paper have re-evaluated the possibility that poly(A) is involved in protein synthesis by testing whether purified poly(A) might competitively inhibit in vitro protein synthesis in rabbit reticulocyte extracts. We have found that poly(A) inhibits the rate of translation of many different poly(A)+ mRNAs and that comparable inhibition is not observed with other ribopolymers. Inhibition by poly(A) preferentially affects the translation of adenylated mRNAs and can be overcome by increased mRNA concentrations or by translating mRNPs instead of mRNA. The extent of inhibition is dependent on the size of the competitor poly(A) as well as on the translation activity which a lysate has for poly(A)+ RNA. In light of our results and numerous experiments in the literature, we propose that poly(A) has a function in protein synthesis and that any role in the determination of mRNA stability is indirect. Images PMID:6137807

  14. Plasma Kallikrein Inhibitors in Cardiovascular Disease: An Innovative Therapeutic Approach.

    PubMed

    Kolte, Dhaval; Shariat-Madar, Zia

    2016-01-01

    Plasma prekallikrein is the liver-derived precursor of the trypsin-like serine protease plasma kallikrein, and circulates in plasma bound to high molecular weight kininogen. Plasma prekallikrein is activated to plasma kallikrein by activated factor XII or prolylcarboxypeptidase. Plasma kallikrein regulates the activity of multiple proteolytic cascades in the cardiovascular system such as the intrinsic pathway of coagulation, the kallikrein-kinin system, the fibrinolytic system, the renin-angiotensin system, and the complement pathways. As such, plasma kallikrein plays a central role in the pathogenesis of thrombosis, inflammation, and blood pressure regulation. Under physiological conditions, plasma kallikrein serves as a cardioprotective enzyme. However, its increased plasma concentration or hyperactivity perpetuates cardiovascular disease (CVD). In this article, we review the biochemistry and cell biology of plasma kallikrein and summarize data from preclinical and clinical studies that have established important functions of this serine protease in CVD states. Finally, we propose plasma kallikrein inhibitors as a novel class of drugs with potential therapeutic applications in the treatment of CVDs.

  15. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer.

    PubMed

    Filippou, Panagiota S; Karagiannis, George S; Musrap, Natasha; Diamandis, Eleftherios P

    2016-08-01

    The kallikrein-related peptidases (KLKs) represent the largest family of serine proteases within the human genome and are expressed in various tissues. Although they regulate several important physiological functions, KLKs have also been implicated in numerous pathophysiological processes, including cancer. Growing evidence describing the deregulation of KLK expression and secretion, as well as activation in various malignancies, has uncovered their potential as mediators of cancer progression, biomarkers of disease and as candidate therapeutic targets. The diversity of signalling pathways and proteolytic cascades involving KLKs and their downstream targets appears to affect cancer biology through multiple mechanisms, including those related to the hallmarks of cancer. The aim of this review is to provide an update on the importance of KLK-driven molecular pathways in relation to cancer cell traits associated with the hallmarks of cancer and to highlight their potential in personalized therapeutics.

  16. Plasma Kallikrein Promotes Epidermal Growth Factor Receptor Transactivation and Signaling in Vascular Smooth Muscle through Direct Activation of Protease-activated Receptors*

    PubMed Central

    Abdallah, Rany T.; Keum, Joo-Seob; Lee, Mi-Hye; Wang, Bing; Gooz, Monika; Luttrell, Deirdre K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2010-01-01

    The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus. PMID:20826789

  17. Identification, purification, and localization of tissue kallikrein in rat heart.

    PubMed Central

    Xiong, W; Chen, L M; Woodley-Miller, C; Simson, J A; Chao, J

    1990-01-01

    A tissue kallikrein has been isolated from rat heart extracts by DEAE-Sepharose and aprotinin-affinity column chromatography. The purified cardiac enzyme has both N-tosyl-L-arginine methyl ester esterolytic and kinin-releasing activities, and displays parallelism with standard curves in a kallikrein radioimmunoassay, indicating it to have immunological identity with tissue kallikrein. The enzyme is inhibited by aprotinin, antipain, leupeptin and by high concentrations of soybean trypsin inhibitor, but stimulated by lima-bean or ovomucoid trypsin inhibitor and low concentrations of soybean trypsin inhibitor. By using a specific monoclonal antibody to tissue kallikrein in Western blot as well as active-site labelling with [14C]di-isopropyl fluorophosphate, the cardiac enzyme was identified as a protein of 38 kDa, a molecular mass identical with that of tissue kallikrein. Immunocytochemistry at the electron-microscopic level localized this enzyme to the sarcoplasmic reticulum and granules of rat atrial myocytes. Two cardiac kallikrein precursors, (38 and 40 kDa) were identified from the translation in vitro of heart mRNA by immunoprecipitation and electrophoresis of [35S]methionine-labelled cell-free translation products. Kallikrein mRNA in the rat heart was also demonstrated by dot-blot analysis using a tissue kallikrein cDNA probe. These results indicate that the tissue kallikrein gene is expressed in the rat heart and that the purified enzyme is indistinguishable from tissue kallikrein with respect to enzymic and immunological characteristics. Images Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2140256

  18. Effect of glandular kallikrein on distal bicarbonate transport. Role of basolateral Cl-/HCO3- exchanger and vacuolar H(+)-ATPase.

    PubMed

    Manucha, W; Vallés, P

    1999-12-01

    The luminal membrane of collecting duct cells, specially the intercalated cells, is normally exposed to active kallikrein. This is due to the specific localization of renal kallikrein in the connecting tubule cells. We have previously reported inhibition of distal bicarbonate secretion by renal kallikrein. The present study was performed to evaluate the participation of basolateral Cl-/HCO3- exchanger and luminal H(+)-ATPase activity of cortical collecting duct segments (CCD) in the mechanism involved in the inhibition of bicarbonate secretion induced by the enzyme. The effect of orthograde injections of 1 microgram/ml (250 U/6.3 mg) pig pancreatic kallikrein, in the absence and presence of 1 mM DIDS (stilbene-disulfonic acid) in the renal tubule system, was evaluated. Urine fractions were collected after two-minutes stop-flow. Changes in the urine fraction (Fr) related to those in free-flow urine samples (Ff) were related to the respective polyfructosan (Inutest) ratio. Renal kallikrein activity (Fr:Ff kallikrein/Fr:Ff polyfructosan) increased significantly in the first 120 microliters urine fraction collected after glandular 1 microgram/ml kallikrein, P < 0.05, (first stop-flow) and after glandular 1 microgram/ml kallikrein plus 1 mM. DIDS P < 0.05 (second stop flow). Bicarbonate secretion rate (Fr:Ff HCO3-/Fr:Ff polyfructosan) of collecting ducts was significantly reduced in the first 120 microliters urine fraction collected, related to control, during the first and second stop-flow periods. No difference was shown in bicarbonate excretion between the first 120 microliters urine fractions collected after administration of glandular kallikrein and glandular kallikrein plus DIDS. To measure H(+)-ATPase activity, rat microdissected cortical collector tubules (CCD) were incubated in the presence of increasing glandular kallikrein doses (A: 93, B: 187 and C: 375 mU/200 microL) in the presence of ouabain (4 microM) and omeprazole (100 microM) to inhibit Na

  19. Clonidine and Cortical Plasticity: Possible Evidence for Noradrenergic Involvement.

    DTIC Science & Technology

    1984-10-31

    D 616 CLONIDINE AND CORTICAL PLASTICITY POSSIBLE EVIDENCE / FOR NORADRENERGIC IN..(U) BROWIN UNIV PROVIDENCE RICENTER FOR NEURAL SCIENCE S B NELSON...plasticity in kitten visual cortex, we monocularly deprived kittens while administering the at-2 adrenergic agonist clonidine (CLON). To avoid bias in...Distribution/ AvailabilitY Codes Avail and/or Dist Special I. S N 0102- LF. 014- 6601 SECuRITY CLASSIVrCATION OF TMIS PA*S St’e DOI@ MAIN Clonidine and Cortical

  20. Evidence suggesting possible SCA1 gene involvement in schizophrenia

    SciTech Connect

    Diehl, S.R.; Wange, S.; Sun, C.

    1994-09-01

    Several findings suggest a possible role for the SCA1 gene on chromosome 6p in some cases of schizophrenia. First, linkage analyses in Irish pedigrees provided LOD scores up to 3.0 for one model tested using microsatellites closely linked to SCA1. Reanalysis of these data using affected sibpair methods yielded a significant result (p = 0.01) for one marker. An attempt to replicate this linkage finding was made using 44 NIMH families (206 individuals, 80 affected) and 12 Utah families (120 individuals, 49 affected). LOD scores were negative in these new families, even allowing for heterogeneity, as were results using affected sibpair methods. However, one Utah family provided a LOD score of 1.3. We also screened the SCA1 trinucleotide repeat to search for expansions characteristic of this disorder in these families and in 38 additional unrelated schizophrenics. We found 1 schizophrenic with 41 repeats, which is substantially larger than the maximum size of 36 repeats observed in previous studies of several hundred controls. We are now assessing whether the distribution of SCA1 repeats differs significantly in schizophrenia versus controls. Recent reports suggest possible anticipation in schizophrenia (also characteristic of SCA1) and a few cases of psychiatric symptoms suggesting schizophrenia have been observed in the highly related disorder DRPLA (SCA2), which is also based on trinucleotide repeat expansion. These findings suggest that further investigations of this gene and chromosome region may be a priority.

  1. Inhibition of vascular permeability by antisense-mediated inhibition of plasma kallikrein and coagulation factor 12.

    PubMed

    Bhattacharjee, Gourab; Revenko, Alexey S; Crosby, Jeffrey R; May, Chris; Gao, Dacao; Zhao, Chenguang; Monia, Brett P; MacLeod, A Robert

    2013-06-01

    Hereditary angioedema (HAE) is a rare disorder characterized by recurrent, acute, and painful episodes of swelling involving multiple tissues. Deficiency or malfunction of the serine protease inhibitor C1 esterase inhibitor (C1-INH) results in HAE types 1 and 2, respectively, whereas mutations in coagulation factor 12 (f12) have been associated with HAE type 3. C1-INH is the primary inhibitor of multiple plasma cascade pathways known to be altered in HAE patients, including the complement, fibrinolytic, coagulation, and kinin-kallikrein pathways. We have selectively inhibited several components of both the kinin-kallikrein system and the coagulation cascades with potent and selective antisense oligonucleotides (ASOs) to investigate their relative contributions to vascular permeability. We have also developed ASO inhibitors of C1-INH and characterized their effects on vascular permeability in mice as an inducible model of HAE. Our studies demonstrate that ASO-mediated reduction in C1-INH plasma levels results in increased vascular permeability and that inhibition of proteases of the kinin-kallikrein system, either f12 or prekallikrein (PKK) reverse the effects of C1-INH depletion with similar effects on both basal and angiotensin converting enzyme (ACE) inhibitor-induced permeability. In contrast, inhibition of coagulation factors 11 (f11) or 7 (f7) had no effect. These results suggest that the vascular defects observed in C1-INH deficiency are dependent on the kinin-kallikrein system proteases f12 and PKK, and not mediated through the coagulation pathways. In addition, our results highlight a novel therapeutic modality that can potentially be employed prophylactically to prevent attacks in HAE patients.

  2. Immunofluorometric assay of human kallikrein 6 (zyme/protease M/neurosin) and preliminary clinical applications.

    PubMed

    Diamandis, E P; Yousef, G M; Soosaipillai, A R; Grass, L; Porter, A; Little, S; Sotiropoulou, G

    2000-07-01

    The human kallikrein gene family has contributed the best prostatic biomarkers currently available, including prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2). Recently, new members of the human kallikrein gene family have been identified. One new member is the KLK6 gene, encoding for human kallikrein 6 (hK6), which is also known as zyme/protease M/neurosin. In this paper, we describe development of antibodies and a sensitive immunofluorometric procedure for hK6 protein. Recombinant hK6 protein was used as immunogen to develop polyclonal antibodies in rabbits and mice. These antibodies were used to develop a sandwich-type time-resolved immunofluorometric procedure for hK6. The newly developed hK6 immunofluorometric assay has a detection limit of 0.5 microg/L and upper concentration range of 200 microg/L. The assay is highly specific (no detectable cross-reactivity from PSA and hK2) and was used to quantify hK6 protein in various biologic fluids. Highest concentrations of hK6 were found in milk of lactating women, cerebral spinal fluid, nipple aspirate fluid, and breast cyst fluid. hK6 was also detected in male and female serum, in the majority of seminal plasmas and in a small fraction of amniotic fluids and breast tumor cytosols. hK6 was not detectable in urine. Chromatographic studies indicated that hK6 is present in these biologic fluids in its free, 30-kDa form. This is the first reported sensitive immunofluorometric procedure for quantifying hK6 protein. hK6 is a secreted proteolytic enzyme that is found at high levels in cerebrospinal fluid and all breast secretions. This assay will facilitate further studies to examine the possible application of hK6 in diagnostics, including cancer and neurodegenerative disorders.

  3. Various Possible Toxicants Involved in Thyroid Dysfunction: A Review

    PubMed Central

    Bajaj, Jagminder K.; Salwan, Poonam

    2016-01-01

    About 300 million people across the world suffer from thyroid gland dysfunction. Environmental factors play an important role in causation of autoimmune thyroid diseases in susceptible individuals. Genetics contributes to 70% of the risk. In order to reduce the risk, we need to understand the association of environmental agents with thyroid dysfunction. These factors are especially relevant for those at increased risk due to positive family history. The ideal study to see the impact of a thyroid toxicant consists of directly measuring the degree of exposure to toxicant in an individual with his thyroid status. Knowledge of various factors influencing thyroid dysfunction can help in interpreting the results of such studies in a better way. This article is an attempt to highlight the various possible toxicants affecting thyroid function so that adequate measures can be undertaken to control excessive exposure in future to reduce the prevalence of thyroid disorders. PMID:26894086

  4. Possible involvement of queuine in regulation of cell proliferation.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2007-01-01

    An increase in cell number is one of the most prominent characteristics of cancer cells. This may be caused by an increase in cell proliferation or decrease in cell death. Queuine is one of the modified base which is found at first anticodon position of specific tRNAs. It is ubiquitously present throughout the living system except mycoplasma and yeast. The tRNAs of Q-family are completely modified to Q-tRNAs in terminally differentiated somatic cells, however hypomodification of Q-tRNA is closely associated with cell proliferation and malignancy. Queuine participates at various cellular functions such as regulation of cell proliferation, cell signaling and alteration in the expression of growth associated proto-oncogenes. Like other proto-oncogenes bcl2 is known to involve in cell survival by inhibiting apoptosis. Queuine or Q-tRNA is suggested to inhibit cell proliferation but the mechanism of regulation of cell proliferation by queuine or Q-tRNA is not well understood. Therefore, in the present study regulation in cell proliferation by queuine in vivo and in vitro as well as the expression of cell death regulatory protein Bcl2 are investigated. For this DLAT cancerous mouse, U87 cell line and HepG2 cell line are treated with different concentrations of queuine and the effect of queuine on cell proliferation and apoptosis are studied. The results indicate that queuine down regulates cell proliferation and expression of Bcl2 protein, suggesting that queuine promotes cell death and participates in the regulation of cell proliferation.

  5. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    SciTech Connect

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli; Carpio, Daniel; Figueroa, Carlos D.; Burgos, Maria E.; Ardiles, Leopoldo

    2014-10-15

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.

  6. Accumulation of α-synuclein in dementia with Lewy bodies is associated with decline in the α-synuclein-degrading enzymes kallikrein-6 and calpain-1.

    PubMed

    Miners, J Scott; Renfrew, Ruth; Swirski, Marta; Love, Seth

    2014-12-05

    Kallikrein-6 and calpain-1 are amongst a small group of proteases that degrade α-synuclein. We have explored the possibility that reduction in the level or activity of these enzymes contributes to the accumulation of α-synuclein in Lewy body diseases. We measured calpain-1 activity by fluorogenic activity assay, kallikrein-6 level by sandwich ELISA, and levels of α-synuclein and α-synuclein phosphorylated at serine 129 (α-synuclein-P129), in post-mortem brain tissue in pure dementia with Lewy bodies (DLB, n=12), Alzheimer's disease (AD, n=20) and age-matched controls (n=19). Calpain-1 activity was significantly reduced in DLB within the cingulate and parahippocampal cortex, regions with highest α-synuclein and α-synuclein-P129 load, and correlated inversely with the levels of α-synuclein and α-synuclein-P129. Calpain-1 was unaltered in the thalamus and frontal cortex, regions with less α-synuclein pathology. Kallikrein-6 level was reduced in the cingulate cortex in the DLB cohort, and correlated inversely with α-synuclein and α-synuclein-P129. Kallikrein-6 was also reduced in DLB in the thalamus but not in relation to α-synuclein or α-synuclein-P129 load and was unaltered in the frontal and parahippocampal cortex. In SH-SY5Y cells overexpressing wild-type α-synuclein there was partial co-localisation of kallikrein-6 and calpain-1 with α-synuclein, and siRNA-mediated knock-down of kallikrein-6 and calpain-1 increased the amount of α-synuclein in cell lysates. Our results indicate that reductions in kallikrein-6 and calpain-1 may contribute to the accumulation of α-synuclein in DLB.

  7. Possible involvement of ghrelin on pain threshold in obesity.

    PubMed

    Guneli, Ensari; Gumustekin, Mukaddes; Ates, Mehmet

    2010-03-01

    Pain threshold (or perception) can increase or decrease according to some factors like gender, depression or individual differences. Also, previous studies showed that pain threshold can change in obesity but, these studies on the effects of obesity on pain threshold have given controversial results. In the obese people who were exposed to pain stimulation to determined pain threshold, an increased pain threshold was observed. Contrarily, in the studies using electrophysiological test had lower pain threshold, which indicates a reverse correlation between degree of overweight and the threshold of the nociceptive reflex. These studies indicate possible interrelationships between the endogenous opioids, nociception and obesity or eating behavior. Nevertheless, its mechanism is still unclear. The endocrine changes that play an important role in obesity can lead an increase or decrease in pain threshold. There are a few researches about these hormonal factors which are related to pain pathways, that they are nociceptive (like leptin) or antinociceptive effect (like ghrelin, orexin A and B). Ghrelin is one of the hormones which is related to obesity. There are studies which prove the relationship between this hormone and the systems that play a role in pain modulation in the brain. However, there is no previous knowledge about the effects of ghrelin on pain threshold in obesity. But, many strong evidence are present to hypothesise that ghrelin may have effects on pain threshold. Obesity and fasting are the two main situations in which ghrelin secretion is mostly modified. Circulating ghrelin levels negatively correlate with BMI, meaning increased ghrelin secretion during fasting, malnutrition, cachexia, and in anorexia nervosa and reduced ghrelin secretion in obesity. Therefore, we have the opinion that ghrelin play an important role in obesity-pain relationship and/or regulate other systems that are related to pain pathway. Based on the above analyses, we propose a

  8. Inhibiting Plasma Kallikrein for Hereditary Angioedema Prophylaxis.

    PubMed

    Banerji, Aleena; Busse, Paula; Shennak, Mustafa; Lumry, William; Davis-Lorton, Mark; Wedner, Henry J; Jacobs, Joshua; Baker, James; Bernstein, Jonathan A; Lockey, Richard; Li, H Henry; Craig, Timothy; Cicardi, Marco; Riedl, Marc; Al-Ghazawi, Ahmad; Soo, Carolyn; Iarrobino, Ryan; Sexton, Daniel J; TenHoor, Christopher; Kenniston, Jon A; Faucette, Ryan; Still, J Gordon; Kushner, Harvey; Mensah, Robert; Stevens, Chris; Biedenkapp, Joseph C; Chyung, Yung; Adelman, Burt

    2017-02-23

    Hereditary angioedema with C1 inhibitor deficiency is characterized by recurrent, unpredictable swelling episodes caused by uncontrolled plasma kallikrein generation and excessive bradykinin release resulting from cleavage of high-molecular-weight kininogen. Lanadelumab (DX-2930) is a new kallikrein inhibitor with the potential for prophylactic treatment of hereditary angioedema with C1 inhibitor deficiency. We conducted a phase 1b, multicenter, double-blind, placebo-controlled, multiple-ascending-dose trial. Patients with hereditary angioedema with C1 inhibitor deficiency were randomly assigned in a 2:1 ratio to receive either lanadelumab (24 patients) or placebo (13 patients), in two administrations 14 days apart. Patients assigned to lanadelumab were enrolled in sequential dose groups: total dose of 30 mg (4 patients), 100 mg (4 patients), 300 mg (5 patients), or 400 mg (11 patients). The pharmacodynamic profile of lanadelumab was assessed by measurement of plasma levels of cleaved high-molecular-weight kininogen, and efficacy was assessed by the rate of attacks of angioedema during a prespecified period (day 8 to day 50) in the 300-mg and 400-mg groups as compared with the placebo group. No discontinuations occurred because of adverse events, serious adverse events, or deaths in patients who received lanadelumab. The most common adverse events that emerged during treatment were attacks of angioedema, injection-site pain, and headache. Dose-proportional increases in serum concentrations of lanadelumab were observed; the mean elimination half-life was approximately 2 weeks. Lanadelumab at a dose of 300 mg or 400 mg reduced cleavage of high-molecular-weight kininogen in plasma from patients with hereditary angioedema with C1 inhibitor deficiency to levels approaching that from patients without the disorder. From day 8 to day 50, the 300-mg and 400-mg groups had 100% and 88% fewer attacks, respectively, than the placebo group. All patients in the 300-mg group and

  9. The kallikrein-kinin system in diabetic nephropathy

    PubMed Central

    Tomita, Hirofumi; Sanford, Ryan B.; Smithies, Oliver; Kakoki, Masao

    2012-01-01

    Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme (ACE) inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy. PMID:22318421

  10. Urinary kallikrein activity of workers exposed to lead.

    PubMed Central

    Boscolo, P; Porcelli, G; Cecchetti, G; Salimei, E; Iannaccone, A

    1978-01-01

    Two groups of men of different age ranges and with the same period of lead exposure were selected for study in a recently opened car-battery factory. Two other groups of age-matched men, not exposed to heavy metals in their work, were used as controls. Morning urines were collected from control and exposed groups for determination of urinary kallikrein activity, urinary delta-amino-levulinic acid (ALA) and lead levels. The environmental lead levels and the urinary ALA and lead values indicated that exposure in the factory was not heavy. The older group of lead-exposed workers showed greatly reduced urinary kallikrein activity compared with that of the age-matched controls. In contrast, the younger group did not show any significant alteration in urinary kallikrein excretion. PMID:698136

  11. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  12. Human plasma kallikrein-kinin system: Physiological and biochemical parameters

    PubMed Central

    Bryant, J.W.; Shariat-Madar, z

    2016-01-01

    The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity. PMID:19689262

  13. Identification and characterization of a tissue kallikrein in rat skeletal muscles.

    PubMed Central

    Shimojo, N; Chao, J; Chao, L; Margolius, H S; Mayfield, R K

    1987-01-01

    A tissue kallikrein was purified from rat skeletal muscle. Characterization of the enzyme showed that it has alpha-N-tosyl-L-arginine methylesterase activity and releases kinin from purified bovine low-Mr kininogen substrate. The pH optimum (9.0) of its esterase activity and the profile of inhibition by serine-proteinase inhibitors are identical with those of purified RUK (rat urinary kallikrein). Skeletal-muscle kallikrein also behaved identically with urinary kallikrein in a radioimmunoassay using a polyclonal anti-RUK antiserum. On Western-blot analysis, rat muscle kallikrein was recognized by affinity-purified monoclonal anti-kallikrein antibody at a position similar to that of RUK (Mr 38,000). Immunoreactive-kallikrein levels were measured in skeletal muscles which have different fibre types. The soleus, a slow-contracting muscle with high mitochondrial oxidative-enzyme activity, had higher kallikrein content than did the extensor digitorum longus or gastrocnemius, both fast-contracting muscles with low oxidative-enzyme activity. Streptozotocin-induced diabetes reduced muscle weights, but did not alter the level of kallikrein (pg/mg of protein) in skeletal muscle, suggesting that insulin is not a regulator of kallikrein in this tissue. Although the role of kallikrein in skeletal muscle is unknown, its localization and activity in relation to muscle functions and disease can now be studied. Images Fig. 4. PMID:3311022

  14. Tissue kallikrein synthesis and its modification by testosterone or low dietary sodium.

    PubMed Central

    Miller, D H; Chao, J; Margolius, H S

    1984-01-01

    A method has been developed to measure the relative rate of rat tissue kallikrein synthesis which employs a specific antiserum raised against a purified rat urinary kallikrein. Incorporation of [35S]methionine into kallikrein and protein 20 min after intraperitoneal injection was measured in submaxillary gland, pancreas, kidney and descending colon. Kallikrein content was measured with a direct radioimmunoassay, and kallikrein-specific incorporation of [35S]methionine measured after immunoprecipitation. Kallikrein specific radioactivity (c.p.m./mg of enzyme) was about 100-fold greater than that in total protein in both kidney and colon. In contrast, in pancreas the incorporation into the enzyme was only 5-fold higher than into protein, and in submaxillary gland the incorporation was equivalent. Measured as kallikrein-specific radioactivity relative to total protein radioactivity incorporated in 20 min, kallikrein represents 0.18% of total protein synthesis in the kidney, 0.34% in the pancreas, 0.41% in the colon, but 7.29% in the submaxillary gland. Dietary Na+ restriction increased the relative rate of kallikrein synthesis 1.8-fold in the kidney without a comparable effect in submaxillary gland. In contrast, testosterone increased the relative rate of synthesis 2.3-fold in submaxillary gland, but decreased it in kidney. The data show that endogenous kallikrein synthesis differs markedly in various tissues, and that interventions which are known to change kallikrein content or excretion also change the relative rate of enzyme synthesis. PMID:6561955

  15. Nucleotide sequence of cloned cDNA for human pancreatic kallikrein.

    PubMed

    Fukushima, D; Kitamura, N; Nakanishi, S

    1985-12-31

    Cloned cDNA sequences for human pancreatic kallikrein have been isolated and determined by molecular cloning and sequence analysis. The identity between human pancreatic and urinary kallikreins is indicated by the complete coincidence between the amino acid sequence deduced from the cloned cDNA sequence and that reported partially for urinary kallikrein. The active enzyme form of the human pancreatic kallikrein consists of 238 amino acids and is preceded by a signal peptide and a profragment of 24 amino acids. A sequence comparison of this with other mammalian kallikreins indicates that key amino acid residues required for both serine protease activity and kallikrein-like cleavage specificity are retained in the human sequence, and residues corresponding to some external loops of the kallikrein diverge from other kallikreins. Analyses by RNA blot hybridization, primer extension, and S1 nuclease mapping indicate that the pancreatic kallikrein mRNA is also expressed in the kidney and sublingual gland, suggesting the active synthesis of urinary kallikrein in these tissues. Furthermore, the tissue-specific regulation of the expression of the members of the human kallikrein gene family has been discussed.

  16. Structural studies of human urinary kallikrein (urokallikrein).

    PubMed

    ole-MoiYoi, O K; Spragg, J; Austen, K F

    1979-07-01

    Human urinary kallikrein (urokallikrein) has been purified by affinity chromatography with aprotinin coupled to CH-Sepharose and by gel filtration. The isolation procedure, which was performed under mild conditions, was completed in a 36-hr period and yielded an overall recovery of more than 75% and a purification of 1727-fold. Homogeneity of the urokallikrein was demonstrated by three criteria: the coincidence of the stained protein band and functional urokallikrein in duplicate gels after alkaline disc gel electrophoresis; the appearance of a single stained band of molecular weight 48,000 on sodium dodecyl sulfate/polyacrylamide gel electrophoresis of reduced and unreduced enzyme; and the finding of a single amino-terminal residue, namely alanine after dansylation and acid hydrolysis of purified enzyme. The Km of urokallikrein on N alpha-p-tosyl-L-arginine methyl ester was 400 microM, and the Vmax was 194 mumol/min per mg of protein, which is higher than that observed with any previous preparations. The molecular weight of 48,700 determined on gel filtration and the molecular weight of 48,000 observed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis are in good agreement with the molecular weight of 48,213 calculated from the amino acid composition. The finding of a molecular weight higher than those previously reported, namely 27,000-43,500, the increased functional activity on tosylarginine methyl ester, and the detection of a single amino-terminal residue are consistent with the isolation of a more native protein by the procedure described in this paper.

  17. Leukocytic cell sources of airway tissue kallikrein

    PubMed Central

    Lauredo, Isabel T.; Forteza, Rosanna M.; Botvinnikova, Yelena; Abraham, William M.

    2008-01-01

    Lung tissue kallikrein (TK) is a serine proteinase that putatively plays a role in the pathophysiology of asthma by generating kallidin and bradykinin, mediators that contribute to airway hyperresponsiveness. In previous studies we observed biphasic increases in TK activity in bronchoalveolar lavage fluid following airway allergen challenge in allergic sheep. Although glandular TK is likely a major source of the initial increase in TK, the sources of the late increases in TK that are associated with the development of airway hyperresponsiveness may be dependent on activated resident and recruited inflammatory cells including alveolar macrophages (AMs) and neutrophils (PMNs). These cells increase concomitantly with the late increases in TK activity. To test this hypothesis, we obtained AMs from bronchoalveolar lavage fluid and PMNs and monocytes (precursors of AMs) from sheep blood and determined whether these cells contained TK and whether these same cells could release TK upon activation. Using confocal microscopy, immunocytochemical techniques, and enzyme activity assays, we found that all three cell types contained and secreted TK. All three cell types demonstrated basal release of TK, which could be increased after stimulation with zymosan. In addition, PMNs also released TK in the presence of phorbol ester, suggesting multiple secretory pathways in these cells. Further-more, we showed that human monocytes also contain and secrete TK. We conclude that in the airways, monocytes, PMNs, and AMs may contribute to increased TK activity. Knowing the sources of TK in the airways could be important in understanding the mechanisms of inflammation that contribute to the pathophysiology of asthma and may help in the development of new therapies to control the disease. PMID:14660481

  18. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models.

    PubMed

    Brito, Marlon V; de Oliveira, Cleide; Salu, Bruno R; Andrade, Sonia A; Malloy, Paula M D; Sato, Ana C; Vicente, Cristina P; Sampaio, Misako U; Maffei, Francisco H A; Oliva, Maria Luiza V

    2014-05-01

    The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis.

  19. Critical Role for PAR1 in Kallikrein 6-Mediated Oligodendrogliopathy

    PubMed Central

    Burda, Joshua E.; Radulovic, Maja; Yoon, Hyesook; Scarisbrick, Isobel A.

    2014-01-01

    Kallikrein 6 (Klk6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of Klk6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke and glioblastoma. Taken with recent evidence establishing Klk6 as a CNS-endogenous activator of protease-activated receptors (PARs), we hypothesized that Klk6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1-deficient mice and the murine oligodendrocyte cell line, Oli-neu, were used to demonstrate that Klk6 mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1-dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1-activating peptides (PAR1-APs). Klk6 also exacerbated ATP-mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1-mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1-APs, into the dorsal column white matter of PAR+/+ but not PAR−/− mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC-1+ oligodendrocytes. These results demonstrate a functional role for Klk6-PAR1 signaling in oligodendroglial pathophysiology and suggest that PAR1 or PAR1-agonists may represent new targets to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease. PMID:23832758

  20. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.

    PubMed

    Breger, Joyce C; Sapsford, Kim E; Ganek, Jessica; Susumu, Kimihiro; Stewart, Michael H; Medintz, Igor L

    2014-07-23

    Contamination and adulterants in both naturally derived and synthetic drugs pose a serious threat to the worldwide medical community. Developing rapid and sensitive sensors/devices to detect these hazards is thus a continuing need. We describe a hydrophilic semiconductor quantum dot (QD)-peptide Förster resonance energy transfer (FRET) nanosensor for monitoring the activity of kallikrein, a key proteolytic enzyme functioning at the initiation of the blood clotting cascade. Kallikrein is also activated by the presence of an oversulfated contaminant recently found in preparations of the drug heparin. Quantitatively monitoring the activity of this enzyme within a nanosensor format has proven challenging because of inherent steric and kinetic considerations. Our sensor is designed around a central QD donor platform which displays controlled ratios of a modular peptidyl substrate. This peptide, in turn, sequentially expresses a terminal oligohistidine motif that mediates the rapid self-assembly of peptides to the QD surface, a linker-spacer sequence to extend the peptide away from the QD surface, a kallikrein recognized-cleavage site, and terminates in an acceptor dye-labeling site. Hydrophilic QDs prepared with compact, zwitterionic surface coatings were first evaluated for their ability to self-assemble the dye-labeled peptide substrates. An optimized two-step protocol was then utilized where high concentrations of peptide were initially digested with purified human kallikrein and samples collected at distinct time points were subsequently diluted into QD-containing solutions for assaying. This sensor provided a quantitative FRET-based readout for monitoring kallikrein activity and comparison to a calibration curve allowed estimation of the relevant Michaelis-Menten kinetic descriptors. The results further suggest that almost any protease should be amenable to a QD-based FRET assay format with appropriate design considerations.

  1. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats.

    PubMed Central

    Wang, C; Chao, L; Chao, J

    1995-01-01

    Hypertension is a multigene and multifactorial disorder affecting approximately 25% of the population. To demonstrate potential therapeutic effects of human tissue kallikrein in hypertension, spontaneously hypertensive rats were subjected to somatic gene therapy. Two human tissue kallikrein DNA constructs, one under the promoter control of the metallothionein metal response element and the other under the control of the Rous sarcoma virus 3'-LTR, were generated. We delivered naked DNA constructs into spontaneously hypertensive rats via intravenous injection. The expression of human tissue kallikrein in rats was identified in the heart, lung, and kidney by reverse transcription polymerase chain reaction followed by Southern blot analysis and an ELISA specific for human tissue kallikrein. A single injection of both human kallikrein plasmid DNA constructs caused a sustained reduction of blood pressure which began 1 wk after injection and continued for 6 wk. A maximal effect of blood pressure reduction of 46 mmHg in rats was observed 2-3 wk after injection with kallikrein DNA as compared to rats with vector DNA (n = 6, P < 0.05). The hypotensive effect caused by somatic gene delivery of human tissue kallikrein in hypertensive rats is reversed by subcutaneous injection of aprotinin, a potent tissue kallikrein inhibitor. No antibodies to either human tissue kallikrein or kallikrein DNA were detected in rat sera after injection of the human kallikrein gene. These results show that direct gene delivery of human tissue kallikrein causes a sustained reduction in systolic blood pressure in genetically hypertensive rats and indicate that the feasibility of kallikrein gene therapy for treating human hypertension should be studied. Images PMID:7535795

  2. Immunoreactive glandular kallikrein in rat plasma: a radioimmunoassay for its determination

    SciTech Connect

    Rabito, S.F.; Scicli, A.G.; Kher, V.; Carretero, O.A.

    1982-04-01

    A radioimmunoassay (RIA) has been developed to measure immunoreactive glandular kallikrein in rat plasma. To prevent the binding of radioactive kallikrein to plasma inhibitors, /sup 125/I-kallikrein was inactivated with phenylmethylsulfonyl fluoride (PMSF), a procedure that maintained /sup 125/I-kallikrein immunoreactivity. Different volumes of plasma displaced /sup 125/I-PMSF-kallikrein in a parallel fashion to the kallikrein standard curve. The sensitivity of the RIA was 200 pg, and the recovery of nonradioactive active kallikrein added to plasma was 58.7%. The concentration of immunoreactive glandular kallikrein in normal rat plasma averaged 47.1 +/- 1.7 (SE) ng/ml. Bilateral nephrectomy caused a threefold increase in circulating glandular kallikrein (50 +/- 2.7 to 167 +/- 7 ng/ml; P < 0.001). Removal of the submandibular and sublingual glands signficantly decreased its concentration from 52 +/- 2.3 to 34 +/- 1.6 ng/ml (P < 0.001). Immunoreactive glandular kallikrein was higher in the submandibular gland vein than in arterial blood (venous; 94 +/- 10.5; arterial: 64 +/- 6.3 ng/ml; P < 0.05) and was lower in the renal venous blood (venous: 44 +/- 2.2; arterial: 53 +/- 2.6 ng/ml; P < 0.05). In conclusion, this study shows that the use of /sup 125/I-PMSF-kallikrein as tracer prevents the interference in the RIA caused by plasma protease inhibitors. It also indicates that the submandibular gland is an important source of the immunoreactive glandular kallikrein in rat plasma and that the kidney probably participates in its metabolism. Glandular kallikrein released by the submandibular gland into the circulation may participate in regulating local blood flow before it is inactivated by plasma inhibitors.

  3. A role for plasma kallikrein-kinin system activation in the synovial recruitment of endothelial progenitor cells in arthritis

    PubMed Central

    Dai, Jihong; Agelan, Alexis; Yang, Aizhen; Zuluaga, Viviana; Sexton, Daniel; Colman, Robert W.; Wu, Yi

    2012-01-01

    Objective To examine whether the activation of plasma kallikrein-kinin system (KKS) mediates synovial recruitment of endothelial progenitor cells (EPCs) in arthritis. Methods EPCs were isolated from Lewis rat bone marrow and characterized by the expression of progenitor cell lineage markers and functional property. EPCs were intravenously injected into Lewis rats bearing arthritis, their recruitment and formation of de novo blood vessels in inflamed synovium were evaluated. The role of plasma KKS was examined using a plasma kallikrein inhibitor EPI-KAL2 and an anti-kallikrein antibody 13G11. Transendothelial migration (TEM) assay was used to determine the role of bradykinin and its receptor in EPC mobilization. Results Lewis rat EPCs exhibited strong capacities to form tubes and vacuoles, and expressed higher level of bradykinin type 2 receptor (B2R) and progenitor cell markers CD34 and Sca-1. In Lewis rats bearing arthritis, EPCs were recruited into inflamed synovium at acute phase and formed de novo blood vessels. Inhibition of plasma kallikrein by EPI-KAL2 and 13G11 significantly suppressed synovial recruitment of EPCs and hyperproliferation of synovial cells. Bradykinin concentration-dependently stimulated TEM of EPCs, which was mediated by B2R, as the knockdown of B2R by silencing RNA completely blocked bradykinin-stimulated TEM. Moreover, bradykinin selectively upregulated the expression of homing receptor C-X-C chemokine receptor type 4 (CXCR-4) in EPCs. Conclusion These observations demonstrate a novel role for plasma KKS activation in the synovial recruitment of EPCs in arthritis, acting via kallirein activation and B2R-dependent mechanisms. B2R might be involved in the mobilization of EPCs via upregulation of CXCR-4. PMID:22739815

  4. Induction of salivary kallikreins by the diet containing a sweet-suppressive peptide, gurmarin, in the rat.

    PubMed

    Yamada, Ayako; Nakamura, Yuki; Sugita, Daigo; Shirosaki, Shinya; Ohkuri, Tadahiro; Katsukawa, Hideo; Nonaka, Kazuaki; Imoto, Toshiaki; Ninomiya, Yuzo

    2006-07-28

    Gymnema sylvestre (gymnema) contains gurmarin that selectively inhibits responses to sweet substances in rodents. The present study investigated possible interaction between gurmarin and the submandibular saliva in rats fed diet containing gymnema. Electrophoretic analyses demonstrated that relative amounts of two proteins in the saliva clearly increased in rats fed the gymnema diet. However, rats previously given section of the bilateral glossopharyngeal nerve showed no such salivary protein induction. Analyses of amino acid sequence indicate that two proteins are rat kallikrein 2 (rK2) and rat kallikrein 9 (rK9). rK2 and rK9, a family of serine proteases, have a striking resemblance of cleavage site in the protein substrates. Interestingly, gurmarin possesses comparable residues with those rK2 and rK9 prefer. The kallikreins significantly inhibited immunoreaction between gurmarin and antigurmarin antiserum. These results suggest that rK2 and rK9 increased by chemosensory information for the gymnema diet via the glossopharyngeal nerve might cleave gurmarin or at least cause specific binding with it.

  5. Expression and characterization of rat kallikrein-binding protein in Escherichia coli.

    PubMed Central

    Ma, J X; Chao, L; Zhou, G; Chao, J

    1993-01-01

    Rat kallikrein-binding protein is a novel serine-proteinase inhibitor that forms a covalent complex with tissue kallikrein. We have purified rat kallikrein-binding protein and cloned the cDNA and the gene encoding rat kallikrein-binding protein [Chao, Chai, Chen, Xiong, Chao, Woodley-Miller, Wang, Lu and Chao (1990) J. Biol. Chem. 265, 16394-16401; Chai, Ma, Murray, Chao and Chao (1991) J. Biol. Chem. 266, 16029-16036]. In the present study, we have expressed rat kallikrein-binding protein in Escherichia coli with a T7-polymerase/promoter expression system. A high level of expression was detected by an e.l.i.s.a. with an average of 24.2 mg of recombinant rat kallikrein-binding protein per 1 of culture. The recombinant protein appeared as a major protein in a crude extract of Escherichia coli on SDS/PAGE. It showed a molecular mass of 43 kDa and was recognized by polyclonal antibody to the native rat kallikrein-binding protein in Western-blot analysis. The recombinant rat kallikrein-binding protein has been purified to apparent homogeneity by DEAE-Sepharose CL-6B, hydroxyapatite Bio-Gel HPHT and Mono P 5/5 column chromatography. The purified recombinant rat kallikrein-binding protein showed immunological identity with the native rat kallikrein-binding protein purified from rat serum, in a specific e.l.i.s.a. To confirm the fidelity of the expression, the N-terminal ten amino acids of the recombinant rat kallikrein-binding protein were sequenced and were shown to match perfectly with those of the native rat kallikrein-binding protein. The purified recombinant rat kallikrein-binding protein formed SDS- and heat-stable complexes with rat tissue kallikrein (rK1) and T-kininogenase (rK10) in vitro, but not with other enzymes in the rat kallikrein gene family, such as tonin (rK2) and S3 protein (rK9), which indicates enzyme-specific binding. The properties of the recombinant rat kallikrein-binding protein including its size, charge, complex formation with target enzymes

  6. Human kallikrein 6 activity is regulated via an autoproteolytic mechanism of activation/inactivation.

    PubMed

    Bayés, Alex; Tsetsenis, Theodoros; Ventura, Salvador; Vendrell, Josep; Aviles, Francesc X; Sotiropoulou, Georgia

    2004-06-01

    Human kallikrein 6 (protease M/zyme/neurosin) is a serine protease that has been suggested to be a serum biomarker for ovarian cancer and may also be involved in pathologies of the CNS. The precursor form of human kallikrein 6 (pro-hK6) was overexpressed in Pichia pastoris and found to be autoprocessed to an active but unstable mature enzyme that subsequently yielded the inactive, self-cleavage product, hK6 (D81-K244). Site-directed mutagenesis was used to investigate the basis for the intrinsic catalytic activity and the activation mechanism of pro-hK6. A single substitution R80 --> Q stabilized the activity of the mature enzyme, while substitution of the active site serine (S197 --> A) resulted in complete loss of hK6 proteolytic activity and facilitated protein production. Our data suggest that the enzymatic activity of hK6 is regulated by an autoactivation/autoinactivation mechanism. Mature hK6 displayed a trypsin-like activity against synthetic substrates and human plasminogen was identified as a putative physiological substrate for hK6, as specific cleavage at the plasminogen internal bond S460-V461 resulted in the generation of angiostatin, an endogenous inhibitor of angiogenesis and metastatic growth.

  7. Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin on prokallikrein synthesis and activation.

    PubMed Central

    Jaffa, A A; Miller, D H; Bailey, G S; Chao, J; Margolius, H S; Mayfield, R K

    1987-01-01

    The effects of streptozotocin (STZ) diabetes and insulin on regulation of renal kallikrein were studied in the rat. 1 and 2 wk after STZ injection, diabetic rats had reduced renal levels and urinary excretion of active kallikrein. Tissue and urinary prokallikrein levels were unchanged, but the rate of renal prokallikrein synthesis relative to total protein synthesis was reduced 30-45% in diabetic rats. Treatment of diabetic rats with insulin prevented or reversed the fall in tissue level and excretion rate of active kallikrein and normalized prokallikrein synthesis rate. To further examine insulin's effects, nondiabetic rats were treated with escalating insulin doses to produce hyperinsulinemia. In these rats, renal active kallikrein increased. Although renal prokallikrein was not increased significantly by hyperinsulinemia, its synthesis was increased. As this was accompanied by proportionally increased total protein synthesis, relative kallikrein synthesis rate was not changed. Excretion of active kallikrein was unchanged, but prokallikrein excretion was markedly reduced. Therefore, increased tissue active kallikrein seen with hyperinsulinemia can be explained not only by increased synthesis but also by retention and increased activation of renal prokallikrein. These studies show that STZ diabetes produces an impairment in renal kallikrein synthesis and suggest that this disease state also impairs renal prokallikrein activation. The findings also suggest that insulin modulates renal kallikrein production, activation, and excretion. Images PMID:3316279

  8. Kinins produced from bovine colostrum by kallikrein and saliva

    PubMed Central

    Guth, Paul S.

    1959-01-01

    Substances capable of stimulating smooth muscle are produced on the incubation of bovine colostrum with urinary kallikrein or calf saliva. These substances, called urine- and saliva-colostrokinin, have been differentiated from kallidin, substance A and similar smooth muscle activating agents. Saliva-colostrokinin is likely to be formed in the suckling calf. Further, as colostrum became milk, the ability to form colostrokinin diminished. A function for saliva-colostrokinin in the newborn is suggested. PMID:13830444

  9. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells

    PubMed Central

    Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian

    2015-01-01

    ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural

  10. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells.

    PubMed

    Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian; Schelhaas, Mario

    2015-07-01

    The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that

  11. Human kallikrein 5: a potential novel serum biomarker for breast and ovarian cancer.

    PubMed

    Yousef, George M; Polymeris, Mary-Ellen; Grass, Linda; Soosaipillai, Antoninus; Chan, Pak-Cheung; Scorilas, Andreas; Borgoño, Carla; Harbeck, Nadia; Schmalfeldt, Barbara; Dorn, Julia; Schmitt, Manfred; Diamandis, Eleftherios P

    2003-07-15

    The kallikrein family is a group of 15 serine protease genes clustered on chromosome 19q13.4. Human kallikrein (hK) gene 5 (KLK5) is a member of this family and encodes for a secreted serine protease (hK5). KLK5 was shown to be differentially expressed at the mRNA level in breast and ovarian cancer. Until now, detection of hK5 protein in either biological fluids or tissues has not been described due to lack of suitable reagents and methods. The aim of this study was to develop immunological reagents and a sensitive and specific fluorometric immunoassay (ELISA) for hK5, to examine the presence of hK5 in human tissues and biological fluids, and to study the possible clinical utility of hK5 as a biomarker for endocrine-related malignancies. Recombinant hK5 protein was produced and purified using a Pichia pastoris yeast expression system. The protein was used as an immunogen to generate mouse and rabbit polyclonal anti-hK5 antibodies. A sandwich-type microplate immunoassay (ELISA) was developed using these antibodies, coupled with a time-resolved fluorometric detection technique. The ELISA assay was then used to measure hK5 in various biological fluids, tissue extracts, and serum samples from normal individuals and patients with various malignancies. The hK5 ELISA immunoassay has a lower detection limit of 0.1 micro g/liter, is specific for hK5, and has no cross-reactivity with other homologous kallikreins. The dynamic range is 0.1-25 micro g/liter, and within-run and between-run coefficients of variation within this range are <10%. hK5 is found in many tissues, with the highest expression levels seen in the skin, breast, salivary gland, and esophagus. hK5 is present at relatively high levels in milk of lactating women. Whereas the levels of hK5 are almost undetectable in serum of normal individuals (male and female) and patients with diverse malignancies, higher concentrations were found in a proportion of patients with ovarian (69%) and breast (49%) cancer. High

  12. The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder.

    PubMed

    Fountoulakis, Konstantinos N

    2012-01-01

    Glutamate is the most abundant excitatory neurotransmitter in the brain and the ionotropic NMDA receptor is one of the major classes of its receptors, thought to play an important role in schizophrenia and mood disorders. The current systematic review summarized the evidence concerning the involvement of NMDA receptors in the pathophysiology of bipolar disorder. Genetic studies point to the genes encoding the NMDA 1, 2A and 2B subunits while neuropathological studies suggest a possible region specific decrease in the density of NMDA receptor and more consistently a reduced NMDA-mediated glutamatergic activity in patients with bipolar disorder in the frame of slower NMDA kinetics because of lower contribution of NR2A subunits. However the literature is poor and incomplete; future research is necessary to elucidate the mechanisms underlying bipolar disorder and its specific relationship to a possible NMDA malfunction and to explore the possibility of developing novel therapeutic agents.

  13. A kallikrein-targeting RNA aptamer inhibits the intrinsic pathway of coagulation and reduces bradykinin release.

    PubMed

    Steen Burrell, K-A; Layzer, J; Sullenger, B A

    2017-09-01

    Essentials Kallikrein amplifies contact activation and is a potential target for preventing thrombosis. We developed and characterized a kallikrein aptamer using convergent evolution and kinetic assays. Kall1-T4 prolongs intrinsic clotting time by inhibiting factor XIIa-mediated prekallikrein activation. Kall1-T4 decreases high-molecular-weight kininogen cleavage and bradykinin release. Background Plasma kallikrein is a serine protease that plays an integral role in many biological processes, including coagulation, inflammation, and fibrinolysis. The main function of kallikrein in coagulation is the amplification of activated factor XII (FXIIa) production, which ultimately leads to thrombin generation and fibrin clot formation. Kallikrein is generated by FXIIa-mediated cleavage of the zymogen prekallikrein, which is usually complexed with the non-enzymatic cofactor high molecular weight kininogen (HK). HK also serves as a substrate for kallikrein to generate the proinflammatory peptide bradykinin (BK). Interestingly, prekallikrein-deficient mice are protected from thrombotic events while retaining normal hemostatic capacity. Therefore, therapeutic targeting of kallikrein may provide a safer alternative to traditional anticoagulants with anti-inflammatory benefits. Objectives To isolate and characterize an RNA aptamer that binds to and inhibits plasma kallikrein, and to elucidate its mechanism of action. Methods and Results Using convergent Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we isolated an RNA aptamer that targets kallikrein. This aptamer, Kall1-T4, specifically binds to both prekallikrein and kallikrein with similar subnanomolar binding affinities, and dose-dependently prolongs fibrin clot formation in an activated partial thromboplastin time (APTT) coagulation assay. In a purified in vitro system, Kall1-T4 inhibits the reciprocal activation of prekallikrein and FXII primarily by reducing the rate of FXIIa-mediated prekallikrein

  14. Functional stability and structural transitions of Kallikrein: spectroscopic and molecular dynamics studies.

    PubMed

    Dalal, Sayli; Mhashal, Anil; Kadoo, Narendra; Gaikwad, Sushama M

    2017-02-01

    Kallikrein, a physiologically vital serine protease, was investigated for its functional and conformational transitions during chemical (organic solvents, Gdn-HCl), thermal, and pH induced denaturation using biochemical and biophysical techniques and molecular dynamics (MD) simulations approach. The enzyme was exceptionally stable in isopropanol and ethanol showing 110% and 75% activity, respectively, after 96 h, showed moderate tolerance in acetonitrile (45% activity after 72 h) and much lower stability in methanol (40% activity after 24 h) (all the solvents [90% v/v]). Far UV CD and fluorescence spectra indicated apparent reduction in compactness of KLKp structure in isopropanol system. MD simulation studies of the enzyme in isopropanol revealed (1) minimal deviation of the structure from native state (2) marginal increase in radius of gyration and solvent accessible surface area (SASA) of the protein and the active site, and (3) loss of density barrier at the active site possibly leading to increased accessibility of substrate to catalytic triad as compared to methanol and acetonitrile. Although kallikrein was structurally stable up to 90 °C as indicated by secondary structure monitoring, it was functionally stable only up to 45 °C, implicating thermolabile active site geometry. In GdnHCl [1.0 M], 75% of the activity of KLKp was retained after incubation for 4 h, indicating its denaturant tolerance. A molten globule-like structure of KLKp formed at pH 1.0 was more thermostable and exhibited interesting structural transitions in organic solvents. The above results provide deeper understanding of functional and structural stability of the serine proteases at molecular level.

  15. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease.

    PubMed

    Shirato, Kazuya; Imada, Yoshio; Kawase, Miyuki; Nakagaki, Keiko; Matsuyama, Shutoku; Taguchi, Fumihiro

    2014-12-01

    Although human coronavirus (HCoV)-NL63 was once considered a possible causative agent of Kawasaki disease based on RT-PCR analyses, subsequent studies could not confirm the result. In this study, this possibility was explored using serological tests. To evaluate the role of HCoV infection in patients with Kawasaki disease, immunofluorescence assays and virus neutralizing tests were performed. Paired serum samples were obtained from patients with Kawasaki disease who had not been treated with γ-globulin. HCoV-NL63 and two antigenically different isolates of HCoV-229E (ATCC-VR740 and a new isolate, Sendai-H) were examined as controls. Immunofluorescence assays detected no difference in HCoV-NL63 antibody positivity between the patients with Kawasaki disease and controls, whereas the rate of HCoV-229E antibody positivity was higher in the patients with Kawasaki disease than that in controls. The neutralizing tests revealed no difference in seropositivity between the acute and recovery phases of patients with Kawasaki disease for the two HCoV-229Es. However, the Kawasaki disease specimens obtained from patients in recovery phase displayed significantly higher positivity for Sendai-H, but not for ATCC-VR740, as compared to the controls. The serological test supported no involvement of HCoV-NL63 but suggested the possible involvement of HCoV-229E in the development of Kawasaki disease.

  16. Studies on the prekallikrein (kallikreinogen)—kallikrein enzyme system of human plasma

    PubMed Central

    Colman, Robert W.; Mattler, Lawrence; Sherry, Sol

    1969-01-01

    Evidence is presented in this paper that the kaolin-activated arginine esterase of plasma is related to plasma kallikrein activity. Such a relationship is based on studies that (1) establish a constant ratio of esterase activity on various synthetic substrates for the kaolin-activated arginine esterase, purified kallikrein(s), and preparations obtained during the fractionation procedure; (2) exclude other known plasma and tissue arginine esterases; (3) confirm the requirement for factor XII in the activation of the enzyme precursor; and (4) show similarities in behavior between the plasma esterase and purified kallikrein(s) toward a variety of inhibitors. Based on this probable identification, evidence is provided that the concentration of active factor XII determines the rate of activation of plasma kallikreinogen, and that the activation may be blocked by polybrene. Once activated, plasma kallikrein is rapidly inactivated by the naturally occurring plasma inhibitor, but the inhibition is incomplete. Acid or chloroform treatment of plasma rapidly inactivates the plasma inhibitor without affecting the concentration of plasma kallikreinogen. Another plasma arginine esterase with properties suggestive of permeability factor is activated by factor XII in the presence of synthetic substrates, but only at low ionic strength. The data suggest that this enzyme is closely related to plasma kallikrein and that it arises from a common precursor. PMID:4237065

  17. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress?

    PubMed

    Basha, Basma; Samuel, Samson Mathews; Triggle, Chris R; Ding, Hong

    2012-01-01

    The vascular complications of diabetes mellitus impose a huge burden on the management of this disease. The higher incidence of cardiovascular complications and the unfavorable prognosis among diabetic individuals who develop such complications have been correlated to the hyperglycemia-induced oxidative stress and associated endothelial dysfunction. Although antioxidants may be considered as effective therapeutic agents to relieve oxidative stress and protect the endothelium, recent clinical trials involving these agents have shown limited therapeutic efficacy in this regard. In the recent past experimental evidence suggest that endoplasmic reticulum (ER) stress in the endothelial cells might be an important contributor to diabetes-related vascular complications. The current paper contemplates the possibility of the involvement of ER stress in endothelial dysfunction and diabetes-associated vascular complications.

  18. Endothelial Dysfunction in Diabetes Mellitus: Possible Involvement of Endoplasmic Reticulum Stress?

    PubMed Central

    Basha, Basma; Samuel, Samson Mathews; Triggle, Chris R.; Ding, Hong

    2012-01-01

    The vascular complications of diabetes mellitus impose a huge burden on the management of this disease. The higher incidence of cardiovascular complications and the unfavorable prognosis among diabetic individuals who develop such complications have been correlated to the hyperglycemia-induced oxidative stress and associated endothelial dysfunction. Although antioxidants may be considered as effective therapeutic agents to relieve oxidative stress and protect the endothelium, recent clinical trials involving these agents have shown limited therapeutic efficacy in this regard. In the recent past experimental evidence suggest that endoplasmic reticulum (ER) stress in the endothelial cells might be an important contributor to diabetes-related vascular complications. The current paper contemplates the possibility of the involvement of ER stress in endothelial dysfunction and diabetes-associated vascular complications. PMID:22474423

  19. [The kallikrein-kinin system of blood in hypertensive crises in hot climate].

    PubMed

    Malaia, L T; Berkelieva, S Ch; Berkeliev, M B; Soltanova, I B

    1991-06-01

    The values of depressive humoral factors drastically decrease in healthy subjects and patients with hypertensive disease running with crisis in the areas of hot climate in summer. After arresting hypertensive crises, the levels of kallikreinogen, kallikrein, kininogen increase. In the crises, there is a significant inverse correlation between the blood pressure and blood kallikrein and kininogen concentrations. The values of kallikrein-kinin system components clearly characterize the clinical status of patients with hypertensive disease running with crisis and are of predictive value for clarification of the body's protective reserves.

  20. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    PubMed

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  1. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus

    PubMed Central

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-01-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis. PMID:25949205

  2. Melatonin in humans: Possible involvement in SIDS, and use in contraceptives

    NASA Technical Reports Server (NTRS)

    Wurtman, Richard J.; Lynch, Harry J.; Sturner, William Q.

    1991-01-01

    Relatively few tools exist for assessing the possible involvement of melatonin in normal or abnormal physiologlcal and behavioral states. One cannot perform the classic ablation experiment of endocrinologists by cavalierly removing the human's pineal, nor derive the same effect pharmacologically by administering a drug which blocks the actions of the indole on its receptors (because no such drugs, demonstrated to work in humans, exist). About all that can be done is to administer the melatonin and see what happens, or measure its levels in a body fluid and determine whether its temporal patterns track those of the physiological or behavioral variable being examined. The clinical state of Sudden Infant Death Syndrome (SIDS) which apparently is associated with abnormalities in melatonin concentrations within body fluids obtained at autopsy is described. New data which suggest that exogenous melatonin has sufficient antigonadal potency to allow it to replace estrogen and, acting in combination with norethisterone, serve as a useful contraceptive agent is summarized.

  3. Melatonin in humans: Possible involvement in SIDS, and use in contraceptives

    NASA Technical Reports Server (NTRS)

    Wurtman, Richard J.; Lynch, Harry J.; Sturner, William Q.

    1991-01-01

    Relatively few tools exist for assessing the possible involvement of melatonin in normal or abnormal physiologlcal and behavioral states. One cannot perform the classic ablation experiment of endocrinologists by cavalierly removing the human's pineal, nor derive the same effect pharmacologically by administering a drug which blocks the actions of the indole on its receptors (because no such drugs, demonstrated to work in humans, exist). About all that can be done is to administer the melatonin and see what happens, or measure its levels in a body fluid and determine whether its temporal patterns track those of the physiological or behavioral variable being examined. The clinical state of Sudden Infant Death Syndrome (SIDS) which apparently is associated with abnormalities in melatonin concentrations within body fluids obtained at autopsy is described. New data which suggest that exogenous melatonin has sufficient antigonadal potency to allow it to replace estrogen and, acting in combination with norethisterone, serve as a useful contraceptive agent is summarized.

  4. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms.

    PubMed

    Maqbool, Faheem; Mostafalou, Sara; Bahadar, Haji; Abdollahi, Mohammad

    2016-01-15

    Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Involvement of Renin-Angiotensin System in Retinopathy of Prematurity - A Possible Target for Therapeutic Intervention

    PubMed Central

    Nath, Madhu; Chandra, Parijat; Halder, Nabanita; Singh, Baskar; Deorari, Ashok Kumar; Kumar, Atul; Azad, Rajvardhan; Velpandian, Thirumurthy

    2016-01-01

    Objective Examining the Retinal Renin Angiotensin System (RRAS) in the ROP neonates and analyzing the possibility of modulating the RRAS to prevent the progression in Oxygen Induced Retinopathy (OIR) model. Method Vitreous of ROP patients (n = 44, median age 5.5 months) was quantified for RRAS components, VEGF, HIF-1α and compared with age matched control. The involvement of RRAS in ROP was tested in the rat model of OIR and compared with normoxia. Expressions of RAS components, VEGF and HIF-1α in retina were analyzed using qPCR and retinal structure and function was also analyzed. Effect of Angiotensin Converting Enzyme Inhibitor (ACEI) and Angiotensin Receptor Blocker (ARB) was evaluated and compared with Bevacizumab which served as a positive control. Drug penetration into retina was confirmed by liquid chromatography coupled ESI-tandem mass spectroscopy (LC-MS/MS). Results Multifold increase in the expression of RAS components in human vitreous and rat retina showed their involvement in ROP. ERG & fundus studies in OIR revealed the altered function of retina and were successfully prevented by ARB (telmisartan), ACEI (lisinopril) and bevacizumab. Retinal analysis revealed the presence of ACEI and ARB in their therapeutic levels. Conclusion This study for the first time demonstrates the upregulated level of RAS components in human ROP vitreous and further that the pharmacological intervention in RRAS can functionally and structurally preserve retina against the progression of ROP in the OIR model. PMID:28033392

  6. Adaptive Evolution of Skin in Terrestrial Vertebrates and Possible Involvement of Endogenous Retroviruses.

    PubMed

    Matsui, Takeshi

    2016-01-01

    The first terrestrial vertebrates emerged from water and adapted to living on land approximately 360 million years ago (late Devonian). In particular, amphibians are thought to have surface epithelia that changed from multilayered epithelia into keratinized stratified squamous epithelia by acquiring stratum corneum (SC), which is composed of several dead cell layers that serve as an air liquid interface barrier. Then, reptiles appeared and became a major terrestrial vertebrate group approximately 340 million years ago by forming hard SC. About 220 million years ago, mammals radiated by acquiring soft and moisturized SC, and endogenous retroviruses were thought to be actively integrated into mammalian genomes. Skin ASpartic Protease (SASPase)/ASPRV1 is the mammalian-specific endogenous retroviral-derived protease. SASPase-deficient mice had dry skin and aberrant accumulation of profilaggrin, which is another mammalian-specific gene that regulates SC barrier function and is a major predisposing factor for atopic dermatitis. These findings indicate that the retroviral element SASPase was integrated into the first mammalian species and was involved in the adaptive evolution of mammals, as it facilitates moisturization of skin SC. It is possible that other uncharacterized endogenous retroviruses were also involved in epidermal barrier function.

  7. Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration.

    PubMed

    Masuo, Yoshinori; Ishido, Masami

    2011-01-01

    Environmental chemicals that act as endocrine disruptors do not appear to pose a risk to human reproduction; however, their effects on the central nervous systems are less well understood. Animal studies suggested that maternal exposure to endocrine-disrupting chemicals (EDC) produced changes in rearing behavior, locomotion, anxiety, and learning/memory in offspring, as well as neuronal abnormalities. Some investigations suggested that EDC exert effects on central monoaminergic neurons, especially dopaminergic neurons. Our data demonstrated that EDC attenuate the development of dopaminergic neurons, which might be involved in developmental disorders. Perinatal exposure to EDC might affect neuronal plasticity in the hippocampus, thereby potentially modulating neuronal development, leading to impaired cognitive and memory functions. Endocrine disruptors also attenuate gender differences in brain development. For example, the locus ceruleus is larger in female rats than in males, but treatments with bisphenol-A (BPA) enlarge this region in males. Some reports indicated that EDC induce hypothyroidism, which might be evidenced as abnormal brain development. Endocrine disruptors might also affect mature neurons, resulting in neurodegenerative disorders such as Parkinson's disease. The current review focused on alterations in the brain induced by EDC, specifically on the possible involvement of EDC in brain development and neurodegeneration.

  8. Possible involvement of Mycoplasma hominis in inhibiting the formation of biofilms by uropathogenic Escherichia coli (UPEC).

    PubMed

    Oh, Sangnam; Go, Gwang-Woong; Choi, Nag-Jin; Oh, Sejong; Kim, Younghoon

    2013-01-01

    Here we examined the involvement of Mycoplasma hominis in the formation of biofilms by uropathogenic Escherichia coli (UPEC) strain CFT073. Initially, we thought that M. hominis does not affect the fitness of UPEC, including the growth and production of signaling molecules, such as autoinducer-2 and indole. We found, however, that the presence of M. hominis significantly decreased the degree of biofilm formation by UPEC CFT073 (approximately a 60% reduction for 10(5) ccu/mL of M. hominis as compared with UPEC alone). We also found that it had a slight effect in inhibiting the attachment and cytotoxicity of UPEC CFT073. These findings are specific to these UPEC strains rather than to enterohemorrhagic E. coli (EHEC) strains, found in normal intestinal flora. In addition, we performed whole-transcriptome profiling and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. This indicated that the PhoPQ system and the anti-termination protein (encoded by ybcQ) were involved in the reduction of biofilm formation by M. hominis (corroborated by qRT-PCR). Furthermore, our results indicate that M. hominis raises the degree of transcription of toxin genes, including hha and pasT. Hence, we suggest a possible role of M. hominis in affecting the formation of biofilms by UPEC in the urinary tract.

  9. Cholecystokinin impact on rainbow trout glucose homeostasis: possible involvement of central glucosensors.

    PubMed

    Polakof, Sergio; Míguez, Jesus M; Soengas, José L

    2011-12-10

    Although the role of cholecystokinin (CCK) on fish appetite regulation has been widely studied, its involvement in the regulation of glucose metabolism had been little explored to date. In the present study we have carried out different experimental approaches to study CCK effects in rainbow trout (a so-called 'glucose intolerant' fish species) glucose homeostasis. We have found that for the first time in a vertebrate species, systemic or central CCK administration causes hyperglycemia, which is at least in part related to the presence of an ancestral gut-brain axis in which CCK is involved. By using capsaicin we have found that part of the action of CCK on glucose homeostasis is mediated by vagal and splanchnic afferents. Changes in hepatic metabolism after systemic CCK administration suggest that the effects are not directly taking place on the liver, but probably in other tissues, while after the central CCK administration, the glycogenolytic response observed in liver could be mediated by the activation of the sympathetic system. In hypothalamus and hindbrain changes elicited by CCK-8 treatment are likely related to the glucosensor response to the increased glycemia and/or vagal/splanchnic afferences whereas in hindbrain a possible action through specific CCK-1 receptors cannot be excluded. All these processes result in changes in metabolic parameters related with glucose homeostasis control. Further studies are needed to fully understand the role of this peptide on glucose homeostasis control in fish.

  10. On the possible involvement of bovine serum albumin precursor in lipofection pathway.

    PubMed

    Mukherjee, Anubhab; Bhattacharyya, Jayanta; Chaudhuri, Arabinda

    2014-03-01

    Protein factors involved in lipofection pathways remain elusive. Using avidin-biotin affinity chromatography and mass finger printing analysis technique, herein we report the identification of a 70 kDa size protein (bovine serum albumin precursor, BSAP) which binds strongly with lipoplexes and may play role in lipofection pathway. Using multiple cultured animal cells and three structurally different cationic transfection lipids, we show that the efficiencies of liposomal transfection vectors get significantly enhanced (by ~2.5- to 5.0-fold) in cells pre-transfected with lipoplexes of reporter plasmid construct encoding BSAP. Findings in the cellular uptake experiments in A549 cells cultured in DMEM supplemented with 10 percent (w/w) BODIPY-labelled BSAP are consistent with the supposition that BSAP enters cell cytoplasm from the cell culture medium (DMEM supplemented with 10 percent FBS) used in lipofection. Cellular uptake studies by confocal microscopy using BODIPY-labelled BSAP and FITC-labelled plasmid DNA revealed co-localization of plasmid DNA and BSAP within the cell cytoplasm and nucleus. In summary, the present findings hint at the possible involvement of BSAP in lipofection pathway.

  11. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica

    PubMed Central

    Zheng, Xiangfeng; Yang, Qiya; Zhang, Hongyin; Cao, Jing; Zhang, Xiaoyun; Apaliya, Maurice Tibiru

    2016-01-01

    In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the capacity of degradation of patulin. Proteomics analyses revealed that patulin treatment resulted in an upregulated protein which was involved in metabolism and stress response processes. Our results suggested that the mechanism of degradation of patulin by P. caribbica was not absorption; the presence of patulin can induce P. caribbica to produce associated intracellular and extracellular enzymes, both of which have the ability to degrade patulin. The result provides a new possible method that used the enzymes produced by yeast to detoxify patulin in food and feed. PMID:27735830

  12. Possible involvement of the cerebellum in motor-function impairment in progranulin-deficient mice.

    PubMed

    Matsuwaki, Takashi; Kobayashi, Akira; Mase, Kanade; Nakamura, Katsuyuki; Nakano, Shin-Ichi; Miyoshi, Takahiro; Yamanouchi, Keitaro; Nishihara, Masugi

    2015-09-30

    Progranulin (PGRN) is a multifunctional growth factor involved in many physiological and pathological processes in the brain such as sexual differentiation, neurogenesis, neuroinflammation, and neurodegeneration. Previously, we showed that PGRN was expressed broadly in the brain and the Purkinje cells in the cerebellum were one of the regions with the highest expression level of PGRN. Thus, in the present study, we investigated the possible roles of PGRN in the cerebellum by comparing wild-type (WT) and PGRN-deficient (KO) mice with immunohistochemical staining for calbindin, a marker of Purkinje cells. The results showed that the density of Purkinje cell dendrites in the molecular layer of the cerebellum was significantly higher in KO mice than in WT mice, although the number of cell bodies was comparable between the genotypes. Subsequently, as the cerebellum is the center of the motor function, we performed a rotarod test and found that KO mice remained on the rotating rod for significantly shorter periods than WT mice. However, KO and WT mice did not differ significantly with respect to the diameter of myofibers in a skeletal muscle. These results suggest that PGRN is involved in the development and/or maturation of neuronal networks comprising Purkinje cells in the cerebellum, which may be a prerequisite to normal motor function.

  13. Contribution of the Kallikrein/Kinin System to the Mediation of ConA-Induced Inflammatory Ascites.

    PubMed

    Baintner, Károly

    2016-03-01

    Intraperitoneal administration of concanavalin A (ConA, 25 mg/kg b.w.), a cell-binding plant lectin was used for inducing inflammatory ascites, and potential inhibitors were tested in 1 h and 2.5 h experiments, i.e. still before the major influx of leucocytes. At the end of the experiment the peritoneal fluid was collected and measured. The ConA-induced ascites was significantly (p<0.01) and dose-dependently inhibited by icatibant (HOE-140), a synthetic polypeptide antagonist of bradykinin receptors. Aprotinin, a kallikrein inhibitor protein also had significant (p<0.01), but less marked inhibitory effect. L-NAME, an inhibitor of NO synthesis, and atropine methylnitrate, an anticholinergic compound, were ineffective. It is concluded, that the kallikrein/kinin system contributes to the mediation of the ConA-induced ascites by increasing subperitoneal vascular permeability, independent of the eventual vasodilation produced by NO. It is known, that membrane glycoproteins are aggregated by the tetravalent ConA and the resulting distortion of membrane structure may explain the activation of the labile prekallikrein. Complete inhibition of the ConA-induced ascites could not be achieved by aprotinin or icatibant, which indicates the involvement of additional mediators.

  14. Kallikrein and Renin in the Membrane Fractions of the Rat Kidney.

    DTIC Science & Technology

    1980-05-23

    and Renin _____ ___ i.;? - 2 SUMMARY Plasma membrane (P-H) and endoplasmic reticulum (ER) enriched fractions were isolated from the homogenized rat...The inhibitor of proteases, p-methylsulfonylfluoride inhibited 77-80% all kallikrein preparations at 3 w*1 concentration . Activation of renin Renin ...fold although only at a concentration 5-10 times higher than used with kallikrein. The relative rate of activation of renin in the ER fraction was

  15. Plasma Kallikrein Mediates Vascular Endothelial Growth Factor–Induced Retinal Dysfunction and Thickening

    PubMed Central

    Clermont, Allen; Murugesan, Nivetha; Zhou, Qunfang; Kita, Takeshi; Robson, Peter A.; Rushbrooke, Louise J.; Evans, D. Michael; Aiello, Lloyd Paul; Feener, Edward P.

    2016-01-01

    Purpose Plasma kallikrein is a serine protease and circulating component of inflammation, which exerts clinically significant effects on vasogenic edema. This study examines the role of plasma kallikrein in VEGF-induced retinal edema. Methods Intravitreal injections of VEGF and saline vehicle were performed in plasma prekallikrein–deficient (KLKB1−/−) and wild-type (WT) mice, and in both rats and mice receiving a selective plasma kallikrein inhibitor, VA999272. Retinal vascular permeability (RVP) and retinal thickness were measured by Evans blue permeation and optical coherence tomography, respectively. The retinal kallikrein kinin system was examined by Western blotting and immunohistochemistry. Retinal neovascularization was investigated in KLKB1−/− and WT mice subjected to oxygen-induced retinopathy. Results Vascular endothelial growth factor–induced RVP and retinal thickening were reduced in KLKB1−/− mice by 68% and 47%, respectively, compared to VEGF responses in WT mice. Plasma kallikrein also contributes to TNFα-induced retinal thickening, which was reduced by 52% in KLKB1−/− mice. Systemic administration of VA999272 reduced VEGF-induced retinal thickening by 57% (P < 0.001) in mice and 53% (P < 0.001) in rats, compared to vehicle-treated controls. Intravitreal injection of VEGF in WT mice increased plasma prekallikrein in the retina, which was diffusely distributed throughout the inner and outer retinal layers. Avascular and neovascular areas induced by oxygen-induced retinopathy were similar in WT and KLKB1−/− mice. Conclusions Vascular endothelial growth factor increases extravasation of plasma kallikrein into the retina, and plasma kallikrein is required for the full effects of VEGF on RVP and retinal thickening in rodents. Systemic plasma kallikrein inhibition may provide a therapeutic opportunity to treat VEGF-induced retina edema. PMID:27138737

  16. Kallikrein-like activity in nonpregnant and pregnant rat uterus, fetal membranes, placenta and amniotic fluid.

    PubMed

    Miatello, R M; Lama, M C; González, E S; Nolly, H L

    1992-01-01

    SBTI-resistant kininogenase activity was found in nonpregnant and pregnant rat uterus, placenta, amniotic fluid and fetal membranes. After trypsin treatment the kininogenase activity increased 2-3 fold. Total kininogenase (active plus inactive) was completely blocked by kallikrein antibodies. The physiological role of these kallikrein-like enzymes is unknown. It is speculated that these enzymes play a local role, perhaps in the processing of polypeptide hormones of through the release of kinins in the regulation of uterine blood flow.

  17. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH

  18. A phenomenographic analysis of first-year engineering students' experiences with problems involving multiple possible solutions

    NASA Astrophysics Data System (ADS)

    Dringenberg, Emily A.

    Engineers are expected to solve problems that are ill-structured. These problems are presented with a lack of necessary information and allow for different ways of engaging with the problem; they are open-ended and involve multiple possible solutions with multiple means of evaluation. In order to allow maximum time for students to develop skills for solving such problems, undergraduate engineering programs can introduce such problems during the first year of students' education, in the form of cornerstone design tasks. This provides students with more opportunities to develop their ability to engage with ill-structured problems, which are characteristic of engineering work. Researchers have documented variation within both the behavior and perceptions of students' early experiences with design problems. General themes include novice-like design behavior, discomfort with lack of information, difficulty with problem scoping, and resistance to ambiguity. To build on these generalizations of students' experiences, a more thorough understanding of the variation in how students experience this phenomenon of engaging with ill-structured problems is needed to design effective learning environments. This work presents the qualitatively different ways that engineering students experience problems with multiple possible solutions during their first year of engineering studies. Using phenomenography as the methodological framework, data were collected through in-depth, semi-structured interviews with 27 first-year engineering students. The iterative, phenomenographic analysis resulted in seven descriptive categories for the ways participants experienced problems involving multiple possible solutions. The names of these categories represent the different foci of the students' experiences: completion, transition, iteration, organization, collaboration, reasoning, and growth. These categories are organized along two crucial dimensions of variation: reaction to ambiguity and role

  19. Hereditary Angioedema Therapy: Kallikrein Inhibition and Bradykinin Receptor Antagonism

    PubMed Central

    2010-01-01

    Current strategies for the treatment of hereditary angioedema (HAE) include targeted inhibition or antagonism of the contact system, which is dysregulated in HAE patients by a C1 esterase inhibitor deficiency. Ecallantide, a plasma kallikrein inhibitor, and icatibant, a selective bradykinin-2 receptor antagonist, have recently been evaluated in clinical studies for the treatment of acute HAE attacks. Both drugs have demonstrated evidence of efficacy and safety in treating acute HAE episodes, with ecallantide approved for use in the United States and icatibant approved for use in Europe. As therapeutic options for HAE expand for both for prophylactic and acute treatment strategies, a number of patient-specific and drug-specific factors have emerged as important considerations when developing individualized HAE management plans. Optimization of HAE therapy will require further integration of new therapies into the current treatment paradigm. PMID:23282868

  20. Tissue-specific expression and promoter analyses of the human tissue kallikrein gene in transgenic mice.

    PubMed Central

    Xiong, W; Wang, J; Chao, L; Chao, J

    1997-01-01

    The expression of the tissue kallikrein gene is tissue-specific and exhibits a complex pattern of transcriptional and post-translational regulation. Information concerning the mechanism of its tissue-specific expression has been limited owing to the lack of suitable cell lines for the expression study. We approached this problem by introducing human tissue kallikrein gene constructs into mouse embryos, creating transgenic lines carrying its coding sequence with varying lengths of the promoter region. One construct (PHK) contained 801 bp in the 5'-flanking region and two deletion constructs contained either 302 bp (D300) or 202 bp (D200) of the promoter region. The expression of human tissue kallikrein in these transgenic mice was monitored by Northern blot, reverse transcriptase-PCR followed by Southern blot, and radioimmunoassay. In all three lines, human tissue kallikrein was expressed predominantly in the pancreas and at lower levels in other tissues, including salivary gland, kidney and spleen. This pattern was similar to that of tissue kallikrein expression in human tissues. The D300 line has higher levels of transgene expression than the D200 and PHK lines. The results indicate that the 202 bp segment immediately upstream of the translation starting site is sufficient to direct a tissue-specific expression pattern of the human tissue kallikrein gene, and that regulatory elements might exist between -801 and -202. PMID:9224635

  1. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs)

    PubMed Central

    Goettig, Peter; Magdolen, Viktor; Brandstetter, Hans

    2010-01-01

    Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn2+ ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α2-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches. PMID:20615447

  2. Copy Number Variants in the Kallikrein Gene Cluster

    PubMed Central

    Lindahl, Pernilla; Säll, Torbjörn; Bjartell, Anders; Johansson, Anna M.; Lilja, Hans; Halldén, Christer

    2013-01-01

    The kallikrein gene family (KLK1-KLK15) is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE) repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC), we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy) using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions. PMID:23894413

  3. Possible involvement of fibrocytes in atrial fibrosis in patients with chronic atrial fibrillation.

    PubMed

    Xie, Xudong; Liu, Yanrong; Gao, Shilong; Wu, Bifeng; Hu, Xiaosheng; Chen, Junzhu

    2014-01-01

    Chronic atrial fibrillation (AF) is characterized by a remodeling process with prominent atrial fibrosis. Fibrocytes, a bone marrow-derived population of fibroblast-like cells, have been placed at the center of a number of fibrosing conditions. The purpose of this study was to evaluate the contribution of fibrocytes to atrial fibrosis in patients with chronic AF and the possible mechanisms.  We enrolled 22 consecutive valvular heart disease patients with chronic AF (>6 months: CAF group) and 15 valvular heart disease patients in sinus rhythm served as controls (SR group). Left atrial tissue samples were obtained during cardiac surgery. The infiltration of fibrocytes into the atrial interstitium was observed by confocal microscopy. The number of atrial fibrocytes was approximately three-fold higher in the CAF group compared with the SR controls, and positively correlated with both the atrial collagen volume fraction (r=0.713; P=0.0002) and the left atrial volume index (r=0.631; P=0.002). In the peripheral blood samples collected before the operation, approximately 2.5-fold higher percentage of circulating fibrocytes was identified in the CAF group. These fibrocytes showed a stronger proliferative capacity (≍2.5-fold) and higher level expression of collagen I and α-SMA (≍2-fold and 4-fold, respectively) compared with the SR controls. The results suggested that fibrocytes may be involved in atrial fibrosis in chronic AF through enhanced profibrotic characteristics.  

  4. Effect of Diazepam on Severity of Acute Pancreatitis: Possible Involvement of Peripheral Benzodiazepine Receptors

    PubMed Central

    Abed, Alireza; Minaiyan, Mohsen; Safaei, Azadeh; Taheri, Diana

    2013-01-01

    Acute pancreatitis is a lethal inflammatory condition of pancreas with high mortality rate. There is a pressing need for research to explore active agents and novel mechanisms involving in the treatment of pancreatitis. Clinical studies have shown after the initial acinar cell injury plasma levels of pro-inflammatory cytokines are elevated in patients with acute pancreatitis and the degree of cytokine elevation correlates with disease severity. Diazepam may decrease interleukin release from macrophages, suppress neutrophil activities, and exhibit anti-inflammatory effects. So it is expected that in vivo pretreatment of acute pancreatitis with different doses of diazepam can attenuate its severity. Thus, we evaluated the effects of diazepam, intraperitoneally (5, 10, and 20 mg/kg i.p.), intracerebroventricularly (ICV 10 μg), and concurrently with flumazenil (1 mg/kg) on cerulein-induced acute pancreatitis in mice. Interestingly, the pretreatment with diazepam (5 mg/kg i.p.) reduced significantly the inflammatory response of acute pancreatitis by ameliorating pancreatic edema, amylase and lipase serum levels, myeloperoxidase activity, pancreatic TNF-alpha, and pathological alteration compared to control group. Diazepam i.c.v. was ineffective, suggesting that central benzodiazepine receptors have no significant role in this property. These results demonstrate that pretreatment with diazepam exhibits anti-inflammatory property in cerulein-induced acute pancreatitis possibly through peripheral benzodiazepine receptors. PMID:23956866

  5. Viral serological and molecular data on possible involvement of herpes viruses in periodontal disease.

    PubMed

    Antipa, Cristiana; Bleotu, Coralia; Grancea, Camelia; Rosu, Andreea Oana; Anton, Gabriela; Ruta, Simona

    2016-12-01

    Recent studies have suggested that latent herpes virus infections can be associated with chronic periodontal sites that exhibit a predisposition to disease progression. The aim of this study was to identify the possible relationship between infections with CMV and EBV and the severity of periodontal disease. Fifty two patients aged between 27 and 70 years, diagnosed with periodontal disease were enrolled in the study after giving informed consent. Quantitative immunoenzymatic assays were used to determine the concentration of anti CMV and EBV antibodies. The presence of CMV and EBV DNA was tested in biopsies from periodontal tissues using an in-house PCR adapted after a method described previously. Higher titers of the anti CMV antibodies appear to be correlated with the severity of the periodontal lesions (p<0, 05). These correlations have not been found for anti EBV antibodies. Higher titers of specific anti CMV and EBV antibodies were correlated with a history of periodontal treatment (p<0, 05). Only two samples were positive for the viral genome. Both samples were collected from female patients diagnosed with very advanced forms of periodontal disease. Although the molecular biology data from the present study do not support the pathogenic involvement of EBV or CMV in the development of chronic periodontitis lesions, the serological data might be important markers for the evolution and severity of the periodontal disease. Copyright © 2016. Published by Elsevier B.V.

  6. Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks.

    PubMed

    Zrig, Ahlem; Tounekti, Taïeb; Vadel, Ahmedou Mohamed; Ben Mohamed, Hatem; Valero, Daniel; Serrano, María; Chtara, Chaker; Khemira, Habib

    2011-11-01

    Leaf physiological and biochemical adaptive strategies and more particularly the possible involvement of polyamines and polyphenols in salt stress tolerance were investigated. Three almond rootstocks (GN15, GF677 and bitter almond) were subjected to 0, 25, 50 and 75 mM NaCl for 30 days. The dry mass of leaves, stems and roots decreased with increasing salt concentration in the irrigation solution regardless of genotype. Photosynthetic assimilation rate decreased in the three almond rootstocks, but more so in GF677 and bitter almond. The accumulation of toxic ions was greater in the leaves than in the roots in all genotypes. GN15 accumulated less Na(+) and Cl(-) than GF677 and bitter almond. GF677 accumulated polyphenols, but had less anthocyanin and antioxidant activity in its leaves compared to bitter almond. It seems that GN15 was more able to tolerate the excess of toxic ions using anthocyanins which are abundant in its red leaves and free polyamines for a more efficient response to stress. However, most of the antioxidant activity was found in the leaves and was lower in the roots. Given that the upper part of the tree will be of a different cultivar after grafting, this advantage may not be relevant for the tree's survival. GF677 showed a different antioxidant strategy; it maintained a stable carotenoids content and accumulated polyphenols in its leaves. The three rootstocks used different strategies to deal with the excess of salt in the growth medium.

  7. Ultraviolet-induced transformation of keratinocytes: possible involvement of long interspersed element-1 reverse transcriptase.

    PubMed

    Banerjee, Gautam; Gupta, Nishma; Tiwari, Jyoti; Raman, Govindarajan

    2005-02-01

    The normal human keratinocyte cell line, HaCaT, was transformed using multiple doses of ultraviolet (UV)A+B (UVA, 150-200 mJ/cm(2) and UVB, 15-20 mJ/cm(2) x 6). Malignant transformation was confirmed by upregulation of Cyclin D1 (mRNA) and formation of colonies on soft agar. To identify the genes involved in this transformation process, we have done rapid amplification of polymorphic DNA using RNA from unexposed and multiple-exposed cells. Six percent PAGE showed several differentially regulated genes in exposed cells compared with unexposed cells. Total 19 genes were identified, cloned and sequenced. Three of these 19 cloned genes showed 99% homology at both DNA and protein levels to a stretch of 540 bp (180 aa) of long interspersed element (LINE)-1 reverse transcriptase (RT) open reading frame (ORF-2). Colonies from soft agar showed upregulation of this gene compared with non-colonized (lawn on soft agar) cells as detected by RT-PCR. This data implicates LINE-1 RT (ORF-2) in UV-induced malignancy and can possibly be used as a marker for the diagnosis of UV-induced skin cancer.

  8. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

    PubMed

    Kissmehl, R; Treptau, T; Hofer, H W; Plattner, H

    1996-07-01

    In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA

  9. The involvement and possible mechanism of NR4A1 in chondrocyte apoptosis during osteoarthritis

    PubMed Central

    Shi, Xinge; Ye, Hui; Yao, Xuedong; Gao, Yanzheng

    2017-01-01

    Osteoarthritis (OA) is a joint disease caused by the breakdown of joint cartilage and underlying bone, and places great burdens to daily life of patients. Nuclear orphan receptor nuclear receptor subfamily 4, group A, member 1 (NR4A1) is vital for cell apoptosis, but little is known about its role in OA. This study aims to reveal the expression and function of NR4A1 during OA chondrocyte apoptosis. NR4A1 expression by qRT-PCR and western blot, and chondrocyte apoptosis by TUNEL assay were detected in normal and OA joint cartilage. NR4A1 was located in cartilage sections by immunohistofluorescence. Chondrocytes from normal joint cartilage were cultured in vitro for interleukin 6 (IL6) or tumor necrosis factor (TNF) treatment and si-NR4A1 transfection, after which the possible mechanism involving NR4A1 was analyzed. Results showed that NR4A1 expression and chondrocyte apoptosis were significantly elevated in OA cartilage (P < 0.05 and P < 0.01). NR4A1 was located in nuclei of normal cartilage chondrocytes, but was translocated to mitochondria and co-located with B-cell lymphoma 2 in OA chondrocytes. NR4A1 expression in cultured chondrocytes could be promoted by both IL6 and TNF treatment. si-NR4A1 partly reduced TNF-induced cell apoptosis. Inhibiting p38 by SB203580 could decrease TNF-induced NR4A1 to some extent, while inhibiting JNK could not. So NR4A1 is likely to facilitate OA chondrocyte apoptosis, which is associated with p38 MAPK and mitochondrial apoptosis pathway. This study provides a potential therapeutic target for OA treatment and offers information for regulatory mechanisms in OA. PMID:28337303

  10. Achyranthes aspera Attenuates epilepsy in experimental animals: possible involvement of GABAergic mechanism.

    PubMed

    Viswanatha, Gollapalle Lakshminarayanashastry; Venkataranganna, Marikunte V; Prasad, Nunna Bheema Lingeswara; Godavarthi, Ashok

    2017-03-06

    The present study was aimed to examine the possible anticonvulsant property of aerial parts of Achyranthes aspera using various experimental models of epilepsy in mice. Petroleum ether extract of aerial parts of A. aspera (PeAA), methanolic eAA (MeAA) and aqueous eAA (AeAA) was initially evaluated against six-hertz seizure model in mice, based on the outcomes the effective extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ) models in mice. In addition, the potent extract was evaluated against the PTZ model by co-administering with flumazenil (FMZ), and also evaluated for its effect on GABA levels in brain and NMDA-induced lethality in mice. Furthermore, the probable locomotor deficit-inducing property of the extract was evaluated by actophotometer test in mice. In results, only MeAA showed protection against six-hertz-induced seizures in mice, based on these outcomes only MeAA was evaluated in MES and PTZ models. Notably, the MeAA (200, 400 and 800 mg/kg) has offered mild and dose dependent protection against MES and PTZ-induced seizures in mice. Alongside, the MeAA (400 mg/kg) showed a significant increase in GABA levels in the brain compared to control, and in line with these findings the anti-PTZ effect of MeAA (400 mg/kg, p.o.) was blocked when co-administered with flumazenil (5 mg/kg, i.p.). However, the MeAA has not shown significant protection against NMDA-induced mortality and also did not cause significant change in locomotor activity compared to before treatment. These findings suggest that MeAA possess mild anticonvulsant activity and the outcomes further confirmed the involvement of GABAergic mechanism behind the anticonvulsant activity of MeAA.

  11. Detection of High Grade Prostate Cancer among PLCO Participants Using a Prespecified 4-Kallikrein Marker Panel.

    PubMed

    Kim, Eric H; Andriole, Gerald L; Crawford, E David; Sjoberg, Daniel D; Assel, Melissa; Vickers, Andrew J; Lilja, Hans

    2017-04-01

    We assessed the performance of a 4-kallikrein panel with and without microseminoprotein-β to predict high grade (Gleason 7+/Gleason Grade Group 2+) prostate cancer on biopsy in a multiethnic cohort from PLCO (Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial). Levels of free, intact, total prostate specific antigen, human kallikrein-2 and microseminoprotein-β were measured while blinded to outcomes in cryopreserved serum from men in the intervention arm of PLCO. Marker levels of 946 men, of whom 100 were African American, were incorporated into a prespecified statistical model to predict high grade prostate cancer on biopsy. The detection of high grade prostate cancer in 94 men (10%) was enhanced by the 4-kallikrein panel with an AUC of 0.79 compared to 0.73 for PCPTRC (Prostate Cancer Prevention Trial Risk Calculator), representing a 0.060 increase (95% CI 0.032-0.088, p <0.01). Additionally, the AUC increased from 0.79 to 0.81 when microseminoprotein-β was added to the 4-kallikrein panel. In African American men, the 4-kallikrein panel model also enhanced high grade prostate cancer detection over that of prostate specific antigen (AUC 0.80 vs 0.67). As an illustration of clinical implications, using 1 cutoff point for biopsy (6% risk of high grade prostate cancer) with the 4-kallikrein panel model would have eliminated unnecessary biopsies in 420 per 1,000 men (42%) while detecting high grade prostate cancer in 83 of 93 (88%). In a multiethnic United States population, the 4-kallikrein panel demonstrated improved risk discrimination for high grade prostate cancer over conventional clinical variables (age, prostate specific antigen and digital rectal examination) as well as PCPTRC. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Is Human Kallikrein 11 in Non-small Cell Lung Cancer Treated Chemoradiotherapy Associated with Survival?

    PubMed

    Unal, Dilek; Eroglu, Celalettin; Tasdemir, Arzu; Karaman, Hatice; Kurtul, Neslihan; Oguz, Arzu; Goksu, Sema Sezgin; Kaplan, Bunyamin

    2016-01-01

    Involvement of human kallikreins (hKs) in human cancers has been reported and several hKs are promising biomarkers of various cancers. The aim of this study was to evaluate the prognostic significance of hK11 expression in patients with non-metastatic non-small cell lung cancer (NSCLC). The study included 44 patients with NSCLC. hK11 expression was determined by immunohistochemical staining. The estimation of disease-free and overall survival by Kaplan-Meier was 11 months and 17 months, respectively. The estimation of overall survival by Kaplan-Meier was significantly higher in patients with hK11 strongly positive (2+) than in those with hK11 weakly positive (1+) (20 months vs. 11 months, p=0.032). Although not statistically different, the estimation of disease-free survival by Kaplan-Meier was higher in patients with hK11 strongly positive (2+) than in those with hK11 weakly positive (1+) (12 months vs. 9 months, p=0.113). Multivariate Cox regression analysis showed that the overall survival rates were significantly associated with response to chemoradiotherapy and the degree of staining with hK11. The stronger hK11 expression in NSCLC appears to be associated with better survival rates. hK11 may be a prognostic biomarker of NSCLC.

  13. Kallikrein 6 regulates early CNS demyelination in a viral model of multiple sclerosis.

    PubMed

    Scarisbrick, Isobel A; Yoon, Hyesook; Panos, Michael; Larson, Nadya; Blaber, Sachiko I; Blaber, Michael; Rodriguez, Moses

    2012-09-01

    Kallikrein 6 (Klk6) is a secreted serine protease that is elevated in active multiple sclerosis lesions and patient sera. To further evaluate the involvement of Klk6 in chronic progressive demyelinating disease, we determined its expression in the brain and spinal cord of SJL mice infected with Theiler's murine encephalomyelitis virus (TMEV) and assessed the effects of Klk6-neutralizing antibodies on disease progression. Klk6 RNA expression was elevated in the brain and spinal cord by 7 days postinfection (dpi). Thereafter, Klk6 expression persisted primarily in the spinal cord reaching a peak of fivefold over controls at mid-chronic stages (60 dpi-120 dpi). Significant elevations in Klk6 RNA were also induced in splenocytes stimulated with viral capsid proteins in vitro and in activated human acute monocytic leukemia cells. Klk6-neutralizing antibodies reduced TMEV-driven brain and spinal cord pathology and delayed-type hypersensitivity (DTH) responses when examined at early chronic time points (40 dpi). Reductions in spinal cord pathology included a decrease in activated monocytes/microglia and reductions in the loss of myelin basic protein (MBP). By 180 dpi, pathology scores no longer differed between groups. These findings point to regulatory activities for Klk6 in the development and progression of central nervous system (CNS) inflammation and demyelination that can be effectively targeted through the early chronic stages with neutralizing antibody.

  14. Is Human Kallikrein 11 in Non-small Cell Lung Cancer Treated Chemoradiotherapy Associated with Survival?

    PubMed Central

    Unal, Dilek; Eroglu, Celalettin; Tasdemir, Arzu; Karaman, Hatice; Kurtul, Neslihan; Oguz, Arzu; Goksu, Sema Sezgin; Kaplan, Bunyamin

    2016-01-01

    Purpose Involvement of human kallikreins (hKs) in human cancers has been reported and several hKs are promising biomarkers of various cancers. The aim of this study was to evaluate the prognostic significance of hK11 expression in patients with non-metastatic non-small cell lung cancer (NSCLC). Materials and Methods The study included 44 patients with NSCLC. hK11 expression was determined by immunohistochemical staining. Results The estimation of disease-free and overall survival by Kaplan-Meier was 11 months and 17 months, respectively. The estimation of overall survival by Kaplan-Meier was significantly higher in patients with hK11 strongly positive (2+) than in those with hK11 weakly positive (1+) (20 months vs. 11 months, p=0.032). Although not statistically different, the estimation of disease-free survival by Kaplan-Meier was higher in patients with hK11 strongly positive (2+) than in those with hK11 weakly positive (1+) (12 months vs. 9 months, p=0.113). Multivariate Cox regression analysis showed that the overall survival rates were significantly associated with response to chemoradiotherapy and the degree of staining with hK11. Conclusion The stronger hK11 expression in NSCLC appears to be associated with better survival rates. hK11 may be a prognostic biomarker of NSCLC. PMID:25779361

  15. Investigation of possible involvement of several genes related to development of hepatocarcinogenesis in rats.

    PubMed

    Todaka, N; Higashi, K; Yan, Y; Abe, T; Yamashiro, K; Hiai, H

    2000-06-01

    A comparative study on the possible involvement of several genes in the susceptibility of chemical carcinogenesis was carried out using carcinogen-resistant DRH rat and -sensitive Donryu and F344 rats. Previously, we observed that the induction of glutathione S-transferase placental form (GST-P) in the liver of Donryu rats by 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) was significantly greater than that of DRH rats. In the present study, we tentatively determined base sequences of the enhancer region including GPE-I and GPE-II (GST-P enhancers I and II) of GST-P genes of DRH, Donryu and F344 rats, but we did not observe any nucleotide polymorphism around these regions. Furthermore, the mRNA levels of silencer binding protein (NFA-1) for the GST-P promoter of rat liver were also similar in the DRH and Donryu rats. Since clonal expansion of putative preneoplastic GST-P-positive foci in the DRH rat liver was significantly suppressed during 3'-Me-DAB administration, we examined whether two opposite growth controlling factors, TGF-alpha and TGF-beta, may participate in such suppression of growth. It was supposed that mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), at least in part, activates TGF-beta preproprotein. However, we observed that the levels of M6P/IGF2R mRNA in the livers of DRH were not higher than those of Donryu rats after being fed 3'-Me-DAB for 8 weeks. Another important factor in the carcinogenesis is insulin-like growth factor II itself. Although liver tumors induced by 3'-Me-DAB in F344 had high levels of IGF-II mRNA, little IGF-II gene expression existed in normal adult livers of Donryu, F344 and DRH rats. High levels of IGF-II mRNA were detected similarly in the livers of neonates from all these three strains of rats. Finally, we detected a significant increase of AFP (alpha-fetoprotein) mRNA in the livers of Donryu rats around 6 to 8 weeks from the start of 3'-Me-DAB feeding, which is in parallel with detrimental effects

  16. The human kallikrein 10 promoter contains a functional retinoid response element.

    PubMed

    Zeng, Musheng; Zhang, Ying; Bhat, Ishfaq; Wazer, David E; Band, Hamid; Band, Vimla

    2006-06-01

    Human kallikrein 10 (hK10) protein is expressed in normal breast but is significantly downregulated in a majority of invasive breast cancers. Thus, understanding how hK10 expression is regulated is of substantial significance. In this study, we analyzed the promoter region of hK10 using a website software (TRANSFAC 3.0), which predicted three possible retinoic acid response elements (RAREs), RARE1 at -1041 (TGACCTCGTGATCC), RARE2 at -859 (TGACCTCCTATGA) and RARE3 at -765 (TGACCTCCTGTGA), each with a half-site of a canonical sequence (TGACCT; reverse complement AGGTCA). Using electrophoretic mobility shift assays and nucleotide competition analysis, as well as chromatin immunoprecipitation of the native hK10 promoter, we demonstrated specific binding of RXR only to RARE1. The functional importance of RARE in the hK10 promoter was demonstrated by retinoid induction of hk10 promoter-reporters; furthermore, mutation of RARE1 but not of RARE2 or RARE3 abolished the induction of the reporter. Finally, we demonstrated the induction of hK10 mRNA and protein expression upon retinoid treatment of cells. In view of the correlation of the downregulation of hK10 mRNA and protein with breast cancer progression, these findings suggest a potential approach to restore hK10 expression in cancer patients.

  17. Kallikrein-related Peptidase 5 Functions in Proteolytic Processing of Profilaggrin in Cultured Human Keratinocytes*

    PubMed Central

    Sakabe, Jun-ichi; Yamamoto, Mami; Hirakawa, Satoshi; Motoyama, Akira; Ohta, Isao; Tatsuno, Kazuki; Ito, Taisuke; Kabashima, Kenji; Hibino, Toshihiko; Tokura, Yoshiki

    2013-01-01

    Filaggrin protein is synthesized in the stratum granulosum of the skin and contributes to the formation of the human skin barrier. Profilaggrin is cleaved by proteolytic enzymes and converted to functional filaggrin, but its processing mechanism remains not fully elucidated. Kallikrein-related peptidase 5 (KLK5) is a major serine protease found in the skin, which is secreted from lamellar granules following its expression in the stratum granulosum and activated in the extracellular space of the stratum corneum. Here, we searched for profilaggrin-processing protease(s) by partial purification of epidermal extracts and found KLK5 as a possible candidate. We used high performance liquid chromatography coupled with electrospray tandem mass spectrometry to show that KLK5 cleaves profilaggrin. Furthermore, based on a proximity ligation assay, immunohistochemistry, and immunoelectron microscopy analysis, we reveal that KLK5 and profilaggrin co-localize in the stratum granulosum in human epidermis. KLK5 knockdown in normal cultured human epidermal keratinocytes resulted in higher levels of profilaggrin, indicating that KLK5 potentially functions in profilaggrin cleavage. PMID:23629652

  18. Immigrant Parent Involvement in U.S. Schools: Current Practices and Future Possibilities

    ERIC Educational Resources Information Center

    Aleixo, Marina Bandeira

    2012-01-01

    This dissertation examines how parent involvement expectations are communicated and enacted in interactions at one small urban high school. Through detailed descriptions of school interactions between supporting staff and immigrant parents, this study examines how parent involvement expectations are understood and perceived. Although scholarly…

  19. Immigrant Parent Involvement in U.S. Schools: Current Practices and Future Possibilities

    ERIC Educational Resources Information Center

    Aleixo, Marina Bandeira

    2012-01-01

    This dissertation examines how parent involvement expectations are communicated and enacted in interactions at one small urban high school. Through detailed descriptions of school interactions between supporting staff and immigrant parents, this study examines how parent involvement expectations are understood and perceived. Although scholarly…

  20. Effect of various concentrations of caffeine, pentoxifylline, and kallikrein on hyperactivation of frozen bovine semen.

    PubMed

    Barakat, Ibrahim A H; Danfour, Mohamed A; Galewan, Fatma A M; Dkhil, Mohamed A

    2015-01-01

    Caffeine, pentoxifylline, and kallikrein are substances that affect the efficiency of sperms in the fertilization process; however, they have not been adequately studied. The present study aimed to examine the influence of caffeine, kallikrein, and pentoxifylline on sperm motility in bovine as well as investigate their optimum concentrations for increasing the movement of sperms in bovine. Frozen bovine sperms were thawed in universal IVF medium supplemented with 1, 5, and 10 mM caffeine or pentoxifylline or 1, 4, and 8 U/mL kallikrein and were then incubated for 30 min. Treated semen parameters were analyzed using a computer assisted semen analyzer (CASA). Data analysis showed that the mean values concerning progression and motility of sperm increased in caffeine and pentoxifylline treatments when compared with the kallikrein group. The obtained results revealed that kallikrein is not necessary for the improvement of bovine sperm motility. Additionally, our results revealed that 5 mM from caffeine was the best concentration added to the medium, followed by 1 or 5 mM from pentoxifylline. Therefore, it is concluded from the present study that caffeine has hyperactivation efficacy at 5 mM concentration compared to other treatments.

  1. Kinins— The Kallikrein-Kinin System and Oxidative Stress

    PubMed Central

    Kayashima, Yukako; Smithies, Oliver; Kakoki, Masao

    2012-01-01

    Purpose of review The Kallikrein-kinin system (KKS) constitutes a complex multi-enzyme cascade that produces several bioactive kinin peptides and their derivatives including bradykinin. In addition to the classical notion of the KKS as a potent vasodilator and a mediator of inflammatory responses, recent studies suggest a link between the KKS and oxidative stress. A number of established mouse model with altered levels of KKS components opened the way to evaluate precise functions of the KKS. Here we review recent findings on the role of the KKS in cardiovascular diseases and chronic kidney diseases, and discuss potential benefits of KKS activation in these diseases. Recent findings Deletion of both B1R and B2R in a diabetic mouse model exacerbates its renal phenotypes, suggesting that the KKS exerts protective effects on diabetic nephropathy by suppressing oxidative stress, presumably via nitric oxide (NO) and prostaglandins (PGs). Summary Accumulating evidence has highlighted the importance of the KKS as a protective system against oxidative stress and organ damage in the heart and kidney. The activation of the KKS by ACE inhibitors and vasopeptidase inhibitors is likely to be beneficial in senescence-associated cardiovascular diseases and chronic kidney diseases. PMID:22048723

  2. Tissue kallikrein permits early renal adaptation to potassium load.

    PubMed

    El Moghrabi, Soumaya; Houillier, Pascal; Picard, Nicolas; Sohet, Fabien; Wootla, Bharath; Bloch-Faure, May; Leviel, Françoise; Cheval, Lydie; Frische, Sebastian; Meneton, Pierre; Eladari, Dominique; Chambrey, Régine

    2010-07-27

    Tissue kallikrein (TK) is a serine protease synthetized in renal tubular cells located upstream from the collecting duct where renal potassium balance is regulated. Because secretion of TK is promoted by K+ intake, we hypothesized that this enzyme might regulate plasma K+ concentration ([K+]). We showed in wild-type mice that renal K+ and TK excretion increase in parallel after a single meal, representing an acute K+ load, whereas aldosterone secretion is not modified. Using aldosterone synthase-deficient mice, we confirmed that the control of TK secretion is aldosterone-independent. Mice with TK gene disruption (TK-/-) were used to assess the impact of the enzyme on plasma [K+]. A single large feeding did not lead to any significant change in plasma [K+] in TK+/+, whereas TK-/- mice became hyperkalemic. We next examined the impact of TK disruption on K+ transport in isolated cortical collecting ducts (CCDs) microperfused in vitro. We found that CCDs isolated from TK-/- mice exhibit net transepithelial K+ absorption because of abnormal activation of the colonic H+,K+-ATPase in the intercalated cells. Finally, in CCDs isolated from TK-/- mice and microperfused in vitro, the addition of TK to the perfusate but not to the peritubular bath caused a 70% inhibition of H+,K+-ATPase activity. In conclusion, we have identified the serine protease TK as a unique kalliuretic factor that protects against hyperkalemia after a dietary K+ load.

  3. Pregnant rats treated with a serotonin precursor have reduced fetal weight and lower plasma volume and kallikrein levels.

    PubMed

    Salas, Sofía P; Giacaman, Andrea; Romero, William; Downey, Patricio; Aranda, Eduardo; Mezzano, Diego; Vío, Carlos P

    2007-10-01

    Pregnant women with preeclampsia have increased serotonin levels, suggesting a possible role of this amine in abnormal pregnancy. With the hypothesis that an increase in serotonin would reduce volume expansion and cause fetal growth restriction, we evaluated the maternal and fetal effects of the administration of the serotonin precursor 5-hidroxytryptophan (5-HTP) to Sprague-Dawley rats. At pregnancy day 13 (n=19) or in random cycle nonpregnant rats (n=10), animals were assigned to a single injection of 5-HTP (100 mg/kg IP) or to a control group. Animals were studied at day 21, after overnight urinary collection. Additional pregnant rats received ketanserin (1 mg/kg), a 5-HT(2) receptor antagonist, 1 hour before 5-HTP injection. In pregnant rats, 5-HTP lowered plasma volume (control: 22+/-1.1; 5-HTP: 17+/-0.7 mL; P<0.001) and creatinine clearance, whereas serum creatinine and urinary protein excretion were increased; no changes were observed in nonpregnant rats. Systolic blood pressure did not change significantly. Urinary kallikrein activity and plasma aldosterone levels decreased only in pregnant animals. Fetal (control: 5.5+/-0.1; 5-HTP: 4.2+/-0.2 g; P<0.001) and placental weights were reduced. In nonpregnant and pregnant animals, 5-HTP caused profound renal morphological alterations and decreased kallikrein immunostaining. Preadministration of ketanserin abolished all of the changes associated with the use of 5-HTP. These data indicate that the administration of a serotonin precursor to pregnant rats limits plasma volume expansion and fetal growth via 5-HT(2) receptors, suggesting a possible role for serotonin in abnormal pregnancy. We postulate that an increased vascular resistance, both at the placental and renal levels, mediates these effects.

  4. Role of tissue kallikrein-kininogen-kinin pathways in the cardiovascular system.

    PubMed

    Sharma, Jagdish N

    2006-04-01

    All the components of the kallikrein-kinin system are located in the cardiac muscle, and its deficiency may lead to cardiac dysfunction. In recent years, numerous observations obtained from clinical and experimental models of diabetes, hypertension, cardiac failure, ischemia, myocardial infarction and left ventricular hypertrophy have suggested that the reduced activity of the local kallikrein-kinin system may be instrumental for the induction of cardiovascular-related diseases. The cardioprotective property of the angiotensin converting enzyme inhibitors is primarily mediated via kinin-releasing pathway, which may cause regression of the left ventricular hypertrophy in hypertensive situations. The ability of kallikrein gene delivery to produce a wide spectrum of beneficial effects makes it an excellent candidate in treating hypertension, cardiovascular and renal diseases. In addition, stable kinin agonists may also be available in the future as therapeutic agents for cardiovascular and renal disorders.

  5. Detection of active kallikrein in induced blister fluids of hereditary angioedema patients

    PubMed Central

    1980-01-01

    Six suction-induced blister fluids obtained from five patients with hereditary angioedema (HAE) contained active kallikrein, whereas only two blister fluids obtained from eight normal volunteers contained small amounts of this activity. Kallikrein was present in large amounts of HAE blister fluids as assessed by its ability to liberate smooth- muscle-contracting activity from purified high molecular weight kininogen. It was inhibited by purified antibodies specific for plasma prekallikrein and also by purified C1 inhibitor, but not by antibodies specific for C1s. These observations suggest that activation of the Hageman-factor-dependent pathways occurs in the tissues of HAE patients, and once generated, active kallikrein persists in these tissues. PMID:6902743

  6. Partial genetic deficiency in tissue kallikrein impairs adaptation to high potassium intake in humans.

    PubMed

    Monteiro, Joana S; Blanchard, Anne; Curis, Emmanuel; Chambrey, Régine; Jeunemaitre, Xavier; Azizi, Michel

    2013-12-01

    Inactivation of the tissue kallikrein gene in mice impairs renal handling of potassium due to enhanced H, K-ATPase activity, and induces hyperkalemia. We investigated whether the R53H loss-of-function polymorphism of the human tissue kallikrein gene affects renal potassium handling. In a crossover study, 30 R53R homozygous and 10 R53H heterozygous healthy males were randomly assigned to a low-sodium/high-potassium or a high-sodium/low-potassium diet to modulate tissue kallikrein synthesis. On the seventh day of each diet, participants were studied before and during a 2-h infusion of furosemide to stimulate distal potassium secretion. Urinary kallikrein activity was significantly lower in R53H than in R53R subjects on the low-sodium/high-potassium diet and was similarly reduced in both genotypes on high-sodium/low-potassium. Plasma potassium and renal potassium reabsorption were similar in both genotypes on an ad libitum sodium/potassium diet or after 7 days of a high-sodium/low-potassium diet. However, the median plasma potassium was significantly higher after 7 days of low-sodium/high-potassium diet in R53H than in R53R individuals. Urine potassium excretion and plasma aldosterone concentrations were similar. On the low-sodium/high-potassium diet, furosemide-induced decrease in plasma potassium was significantly larger in R53H than in R53R subjects. Thus, impaired tissue kallikrein stimulation by a low-sodium/high-potassium diet in R53H subjects with partial tissue kallikrein deficiency highlights an inappropriate renal adaptation to potassium load, consistent with experimental data in mice.

  7. Possible involvement of parotid beta-adrenergic receptors in the etiology of sialadenosis.

    PubMed

    Chilla, R; Witzemann, V; Opaitz, M; Arglebe, C

    1981-01-01

    The concentration of beta-adrenergic receptors was determined in rat and human parotid glands, in normal tissue as well as after sympathetic denervation of the rat, and in human sialadenosis. Receptor levels were clearly elevated after denervation of the rat and in sialadenosis. The possible implications of these findings for the etiology of human sialadenosis are discussed.

  8. Possible Involvement of Hydrosulfide in B12-Dependent Methyl Group Transfer.

    PubMed

    Toohey, John I

    2017-04-05

    Evidence from several fields of investigation lead to the hypothesis that the sulfur atom is involved in vitamin B12-dependent methyl group transfer. To compile the evidence, it is necessary to briefly review the following fields: methylation, the new field of sulfane sulfur/hydrogen sulfide (S°/H₂S), hydrosulfide derivatives of cobalamins, autoxidation of hydrosulfide radical, radical S-adenosylmethionine methyl transfer (RSMT), and methionine synthase (MS). Then, new reaction mechanisms for B12-dependent methyl group transfer are proposed; the mechanisms are facile and overcome difficulties that existed in previously-accepted mechanisms. Finally, the theory is applied to the effect of S°/H₂S in nerve tissue involving the "hypomethylation theory" that was proposed 50 years ago to explain the neuropathology resulting from deficiency of vitamin B12 or folic acid. The conclusions are consistent with emerging evidence that sulfane sulfur/hydrogen sulfide may be beneficial in treating Alzheimer's disease.

  9. Modulation of cytochrome C oxidase-va is possibly involved in metallothionein protection from doxorubicin cardiotoxicity.

    PubMed

    Merten, Kevyn E; Feng, Wenke; Zhang, Li; Pierce, William; Cai, Jian; Klein, Jon B; Kang, Y James

    2005-12-01

    Previous studies using a cardiac-specific metallothionein (MT)-overexpressing transgenic (MT-TG) mouse model have demonstrated that MT protects from doxorubicin (DOX)-induced oxidative heart injury. The molecular mechanisms that underlie this cardioprotection, however, have yet to be defined. In the present study, we tested the hypothesis that MT overexpression activates cytoprotective mechanisms, leading to cardiac protection from DOX toxicity. MT-TG mice and nontransgenic wild-type (WT) controls were treated i.p. with DOX at a single dose of 20 mg/kg and sacrificed on the third day after the treatment. An expression proteomic analysis involving two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to identify MT-induced changes in cytoprotection-related proteins. We identified 18 proteins that were modified by DOX treatment in the heart. These proteins included those involved in cellular antioxidant defense, enzymes of the mitochondrial electron transport chain, enzymes involved in beta-oxidation of fatty acids and glycolysis, and proteins involved in regulation of cardiac muscle contraction. However, the most dominant modification by MT is the cytochrome c oxidase subunit Va (CCO-Va). In response to DOX treatment, a specific isoform of CCO-Va was enhanced in the MT-TG but not in the WT mouse hearts. Because CCO-Va is a critical component in the mitochondrial electron transport chain, the results suggest that the cardioprotective effect of MT may be related to an increased expression or a differential modification of CCO-Va.

  10. The Regulation of Nucleolin Expression in Prostrate Epithelial Cells; Possible Involvement of MYC

    DTIC Science & Technology

    2002-01-01

    physical state. Therefore it is possible that while a specific portion of Nucleolin can interact with H1 in such a way as to promote DNA condensation...phosphorylation is unnecessary in a cell like S cerevisiae in which no nuclear division accompanies cytokinesis (Ginisty et al 1999). The authors...the nucleolus dissipates and the nuclear envelope breaks down. Whether or not this localization function is related to the phosphorylation-dependent

  11. Effect of Kallikrein 4 Loss on Enamel Mineralization

    PubMed Central

    Smith, Charles E.; Richardson, Amelia S.; Hu, Yuanyuan; Bartlett, John D.; Hu, Jan C-C.; Simmer, James P.

    2011-01-01

    Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition. PMID:21454549

  12. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    PubMed Central

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  13. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.

    PubMed

    Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki

    2015-11-01

    Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. © 2015 Wiley Periodicals, Inc.

  14. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen.

    PubMed

    Pinzari, Flavia; Tate, James; Bicchieri, Marina; Rhee, Young Joon; Gadd, Geoffrey Michael

    2013-04-01

    Fungal biodeterioration of ivory was investigated with in vitro inoculation of samples obtained from boar and walrus tusks with the fungi Aspergillus niger and Serpula himantioides, species of known geoactive abilities. A combination of light and scanning electron microscopy together with associated analytical techniques was used to characterize fungal interactions with the ivory, including changes in ivory composition, dissolution and tunnelling, and the formation of new biominerals. The research was aimed at providing further understanding of the potential roles of fungi in the colonization and deterioration of ivory in terrestrial environments, but also contributes to our knowledge regarding the possible origins of the surface damage observed on early medieval sculptures made largely from walrus tusks, referred to as 'the Lewis hoard of gaming pieces', that were presumably produced for playing chess. The experiments have shown that the possibility of damage to ivory being caused by fungi is realistic. Scanning electron microscopy revealed penetration of fungal hyphae within cracks in the walrus tusk that showed also widespread tunnelling by fungal hyphae as well as 'fungal footprints' where the surface was etched as a consequence of mycelial colonization. Similar phenomena were observed with boar tusk ivory, while production of metabolites could lead to complete dissolution of the sample. Colonization of ivory and/or exposure to fungal activity lead to extensive secondary biomineral formation, and this was identified as calcium oxalate, mainly as the monohydrate, whewellite.

  15. Possible involvement of DNA strand breaks in regulation of cell differentiation.

    PubMed

    Sjakste, N; Sjakste, T

    2007-01-01

    The present review summarizes data on the accumulation of DNA strand breaks in differentiating cells. Large 50 Kbp free DNA fragments were observed by several research teams in non-apoptotic insect, mammal and plant cells. A more intensive DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes and neutrophils. In general, accumulation of DNA strand breaks in differentiating cells cannot be attributed to decrease of the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulation of the differentiation process. Scarce data on localization of the differentiation-associated DNA strand breaks indicate their preferred accumulation in specific DNA sequences including the nuclear matrix attachment sites and repeats. Recent data on non-apoptotic functions of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA strand breaks appears to possess considerable research potential.

  16. A Gene Island with Two Possible Configurations Is Involved in Chromatic Acclimation in Marine Synechococcus

    PubMed Central

    Humily, Florian; Partensky, Frédéric; Six, Christophe; Farrant, Gregory K.; Ratin, Morgane; Marie, Dominique; Garczarek, Laurence

    2013-01-01

    Synechococcus, the second most abundant oxygenic phototroph in the marine environment, harbors the largest pigment diversity known within a single genus of cyanobacteria, allowing it to exploit a wide range of light niches. Some strains are capable of Type IV chromatic acclimation (CA4), a process by which cells can match the phycobilin content of their phycobilisomes to the ambient light quality. Here, we performed extensive genomic comparisons to explore the diversity of this process within the marine Synechococcus radiation. A specific gene island was identified in all CA4-performing strains, containing two genes (fciA/b) coding for possible transcriptional regulators and one gene coding for a phycobilin lyase. However, two distinct configurations of this cluster were observed, depending on the lineage. CA4-A islands contain the mpeZ gene, encoding a recently characterized phycoerythrobilin lyase-isomerase, and a third, small, possible regulator called fciC. In CA4-B islands, the lyase gene encodes an uncharacterized relative of MpeZ, called MpeW. While mpeZ is expressed more in blue light than green light, this is the reverse for mpeW, although only small phenotypic differences were found among chromatic acclimaters possessing either CA4 island type. This study provides novel insights into understanding both diversity and evolution of the CA4 process. PMID:24391958

  17. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus.

    PubMed

    Humily, Florian; Partensky, Frédéric; Six, Christophe; Farrant, Gregory K; Ratin, Morgane; Marie, Dominique; Garczarek, Laurence

    2013-01-01

    Synechococcus, the second most abundant oxygenic phototroph in the marine environment, harbors the largest pigment diversity known within a single genus of cyanobacteria, allowing it to exploit a wide range of light niches. Some strains are capable of Type IV chromatic acclimation (CA4), a process by which cells can match the phycobilin content of their phycobilisomes to the ambient light quality. Here, we performed extensive genomic comparisons to explore the diversity of this process within the marine Synechococcus radiation. A specific gene island was identified in all CA4-performing strains, containing two genes (fciA/b) coding for possible transcriptional regulators and one gene coding for a phycobilin lyase. However, two distinct configurations of this cluster were observed, depending on the lineage. CA4-A islands contain the mpeZ gene, encoding a recently characterized phycoerythrobilin lyase-isomerase, and a third, small, possible regulator called fciC. In CA4-B islands, the lyase gene encodes an uncharacterized relative of MpeZ, called MpeW. While mpeZ is expressed more in blue light than green light, this is the reverse for mpeW, although only small phenotypic differences were found among chromatic acclimaters possessing either CA4 island type. This study provides novel insights into understanding both diversity and evolution of the CA4 process.

  18. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment

    PubMed Central

    Wang, Juan; Zhang, Hai-yan; Tang, Xi-can

    2009-01-01

    Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence. Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment. Moreover, cholinergic therapies have shown promising effects on cognitive improvement in VaD patients. The precise mechanisms of these cholinergic agents are currently not fully understood; however, accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway, in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation, although regulation of oxidative stress and energy metabolism, alleviation of apoptosis may also be involved. In this paper, we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation. PMID:19574993

  19. Osteopontin, a protein with cytokine-like properties: a possible involvement in pemphigus vulgaris.

    PubMed

    Baroni, A; De Filippis, A; Buommino, E; Satriano, R A; Cozza, V

    2012-04-01

    Pemphigus is an autoimmune blistering disease characterized by severe and chronic course, histopathologically characterized by infiltration of a large quantity of eosinophils, neutrophils, and activated Th1 and Th2 cells around the blister. Polarization of Th cells to Th1 or Th2 phenotypes, a critical aspect of cell-mediated immunity, is influenced by production of early cytokines, including osteopontin. To determine the involvement of osteopontin in pemphigus vulgaris patients in active stage of the disease, auto-antibodies to desmoglein-1 and desmoglein-3 and plasmatic osteopontin levels were examined by ELISA tests. In this work, significant plasmatic level of osteopontin in PV patients with active stage of disease were found particularly in those patients with both skin and oral pemphigus. OPN might drive the immune responses playing an important role in pemphigus onset.

  20. Possible involvement of calcineurin in retinoic acid-induced inhibition of leukemic HL-60 cell proliferation.

    PubMed

    Kihira, H; Hiasa, A; Yamamoto, M; Katayama, N; Kuno, T; Ohtsuka, K; Shiku, H; Nishikawa, M

    1998-03-01

    Differentiation of leukemic HL-60 cells by all transretinoic acid (ATRA) resulted in a reduced rate of growth. Cyclosporin A and FK506, at concentrations that inhibited calcineurin activity, abrogated the ATRA-induced inhibition of HL-60 cell growth but these immunosuppressants had no effect on the ATRA-induced granulocytic differentiation. Treatment with 1 microM ATRA led to a progressive increase in calcineurin phosphatase activity of HL-60 cells; the increase in this activity appeared to parallel the functional change of HL-60 cells during granulocytic differentiation. Increase in calcineurin activity was concordant with the increased expressions of calcineurin A and calcineurin B subunit proteins. The FKBP12 expression increased during ATRA-induced differentiation and expression of cyclophilin A remained unchanged. We propose that the increased expression of calcineurin is involved in the ATRA-induced inhibition of HL-60 cell proliferation, as in the case with 1,25alpha-dihydroxy-vitamin D3.

  1. Secondary breast cancer in patients presenting with osteosarcoma: possible involvement of germline p53 mutations.

    PubMed

    Russo, C L; McIntyre, J; Goorin, A M; Link, M P; Gebhardt, M C; Friend, S H

    1994-01-01

    Second malignancies following treatment for osteosarcoma are unusual. Breast cancer occurring in patients with osteosarcoma has been reported following therapeutic chest irradiation. We now report three cases of breast cancer occurring in young women who were successfully treated for osteosarcoma. These women had not received therapeutic chest irradiation and in two of the three women there was no family history of breast cancer. Peripheral blood was available for study from one case. Of import, this case demonstrated a germline mutation in exon 7 of the tumor suppressor gene, p53. The mutation was detected by constant denaturing gradient gel electrophoresis and confirmed by DNA sequencing. In this particular patient, inactivation of the p53 gene may be involved in the development of both the first and second malignancy.

  2. Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A

    PubMed Central

    Chieffi, Sergio; Messina, Giovanni; Villano, Ines; Messina, Antonietta; Esposito, Maria; Monda, Vincenzo; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Carotenuto, Marco; Viggiano, Andrea; Cibelli, Giuseppe; Monda, Marcellino

    2017-01-01

    In the present article, we provide a brief review of current knowledge regarding the effects induced by physical exercise on hippocampus. Research involving animals and humans supports the view that physical exercise, enhancing hippocampal neurogenesis and function, improves cognition, and regulates mood. These beneficial effects depend on the contribute of more factors including the enhancement of vascularization and upregulation of growth factors. Among these, the BDNF seems to play a significant role. Another putative factor that might contribute to beneficial effects of exercise is the orexin-A. In support of this hypothesis there are the following observations: (1) orexin-A enhances hippocampal neurogenesis and function and (2) the levels of orexin-A increase with physical exercise. The beneficial effects of exercise may represent an important resource to hinder the cognitive decline associated with the aging-related hippocampal deterioration and ameliorate depressive symptoms. PMID:28261108

  3. Possible involvement of miRNAs in tropism of Parvovirus B19.

    PubMed

    Anbarlou, Azadeh; AkhavanRahnama, Mahshid; Atashi, Amir; Soleimani, Masoud; Arefian, Ehsan; Gallinella, Giorgio

    2016-03-01

    Human Parvovirus B19 (PVB19) is one of the most important pathogens that targets erythroid lineage. Many factors were mentioned for restriction to erythroid progenitor cells (EPCs). Previous studies showed that in non-permissive cells VP1 and VP2 (structural proteins) mRNAs were detected but could not translate to proteins. A bioinformatics study showed that this inhibition might be due to specific microRNAs (miRNAs) present in non-permissive cells but not in permissive EPCs. To confirm the hypothesis, we evaluated the effect of miRNAs on VP expression. CD34(+) HSCs were separated from cord blood. Then, CD34(+) cells were treated with differentiation medium to obtain CD36(+) EPCs. To evaluate the effect of miRNAs on VP expression in MCF7 and HEK-293 cell lines (non-permissive cells) and CD36(+) EPCs, dual luciferase assay was performed in presence of shRNAs against Dicer and Drosha to disrupt miRNA biogenesis. QRT-PCR was performed to check down-regulation of Dicer and Drosha after transfection. All measurements were done in triplicate. Data means were compared using one-way ANOVAs. MicroRNA prediction was done by the online microRNA prediction tools. No significant difference was shown in luciferase activity of CD36(+) EPCs after co-transfection with shRNAs, while it was significant in non-permissive cells. Our study revealed that miRNAs may be involved in inhibition of VP expression in non-permissive cells, although further studies are required to demonstrate which miRNAs exactly are involved in regulation of PVB19 replication.

  4. Zuclopenthixol facilitates memory retrieval in rats: possible involvement of noradrenergic and serotonergic mechanisms.

    PubMed

    Khalifa, Amani E

    2003-07-01

    Although disturbed memory function often coexists with psychosis, the cognitive effects of antipsychotic medications with diverse pharmacodynamic properties are rarely investigated. The neurocognitive profile of zuclopenthixol, a thioxanthene dopaminergic antagonist and a conventional neuroleptic agent, has yet to be investigated despite the effect of the drug on a variety of neurotransmitter systems involved in mediation of learning and memory processes. In this study, the effect of zuclopenthixol was tested on memory retrieval 24 h after training using an inhibitory avoidance task in rats. Acute administration of zuclopenthixol (0.7 and 1.4 mg/kg i.p.) before retrieval testing increased step-through latency during the test session. The same doses of zuclopenthixol did not affect the ambulatory activity of rats in the openfield test and therefore the facilitatory effect of the drug on memory function could not be confounded with any motoric properties. This study also investigated the effect of zuclopenthixol on cortical and hippocampal monoaminergic neurotransmitters' levels together with acetylcholinesterase enzyme (AChE) activity, both of which are known to be important in control of cognitive function. Administration of zuclopenthixol (0.7 and 1.4 mg/kg i.p.) neither affected dopamine (DA) level nor AChE activity in rat cortex and hippocampus. On the other hand, the lower dose of zuclopenthixol elevated cortical norepinephrine (NE) level, while the higher dose elevated both cortical and hippocampal NE level together with hippocampal serotonin (5-HT) level. These results may suggest the involvement of adrenergic and serotonergic mechanisms in the facilitatory effect of zuclopenthixol on retrieval memory. Zuclopenthixol may therefore be a better alternative than other commonly used antipsychotic medications reported to impair cognitive function of schizophrenic patients.

  5. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms

    PubMed Central

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati

    2014-01-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5′-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na+ dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms. PMID:25214397

  6. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    PubMed

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms. Copyright © 2014 the American Physiological Society.

  7. Mystery of Retinal Vein Occlusion: Vasoactivity of the Vein and Possible Involvement of Endothelin-1

    PubMed Central

    2017-01-01

    Retinal vein occlusion (RVO) is a common vascular disease of retina; however, the pathomechanism leading to RVO is not yet clear. In general, increasing age, hypertension, arteriosclerosis, diabetes mellitus, dyslipidemia, cardiovascular disorder, and cerebral stroke are systemic risk factors of RVO. However, RVO often occur in the unilateral eye and sometimes develop in young subjects who have no arteriosclerosis. In addition, RVO show different variations on the degrees of severity; some RVO are resolved without any treatment and others develop vision-threatening complications such as macular edema, combined retinal artery occlusion, vitreous hemorrhage, and glaucoma. Clinical conditions leading to RVO are still open to question. In this review, we discuss how to treat RVO in practice by presenting some RVO cases. We also deliver possible pathomechanisms of RVO through our clinical experience and animal experiments. PMID:28904960

  8. Possible involvement of mast cells in renal fibrosis in patients with IgA nephropathy.

    PubMed

    Sakamoto-Ihara, T; Suzuki, Y; Kurusu, A; Yamashita, M; Horikoshi, S; Tomino, Y

    2007-10-01

    The objective of the present study is to investigate whether human mast cells (MC) contribute to renal damage through local activation of the renin-angiotensin system, by assessing their numbers in renal biopsy specimens from patients with IgA nephropathy (IgAN) or minimal change nephrotic syndrome (MCNS). In patients with IgAN and MCNS, the numbers of tryptase-positive MC (MC(T)) and MC positive for both tryptase and chymase (MC(TC)) were examined histopathologically. Serum creatinine level, mean blood pressure and the severity of glomerular and tubulointerstitial lesions were also determined. MC(TC) numbers differed between IgAN patients and MCNS patients. IgAN patients had more MC(TC) than MC(T). MC were found around but not in the conglomerate of the AngiotensinII (AngII)-positive cells. In the IgAN patients with the most severe pathology, the number of AngII-positive cells was correlated with that of MC(TC) and MC(T). Chymase-dependent AngII synthesis due to human MC may be involved in the inflammatory and fibrotic processes of IgAN.

  9. Assessing the possibilities and challenges of patient involvement in sexual, reproductive and HIV/AIDS services.

    PubMed

    Meyrick, Jane; Gray, Debra; Jones, Abigail

    2016-06-01

    Patient and public involvement (PPI) is a key feature of healthcare services in the UK. Sexual and reproductive health and HIV (SRHH) services face unique PPI challenges, as the anonymity and confidentiality required by service users can be a barrier to attracting patient input. PPI could improve sexual health services, through increased trust in services and the ability to tackle sexual health inequalities. However, specific practical guidance on how to address PPI in sexual health and the evidence to support it is sparse. This research aims to begin building an evidence base for PPI in sexual health services through: 1) an audit of PPI in SRHH in the Bristol region; and 2) a parallel survey of potential users of sexual health services about their experiences of PPI. For the audit, 18 SRHH organisations from all those in the region invited complete a short online survey, representing a range of different service providers. For the survey, participants, through a convenience sample via the University of the West of England and social media, were invited to complete an anonymous online survey of their experiences of PPI in SSRHs; 96 people responded. Reliance on customer satisfaction approaches and patients not being asked for feedback or what PP is for are reported. Services cite under-resourcing and a lack of time as barriers. Improving the use of patient's voice in SRHH could be supported through clarity of purpose (measured against outcomes), better communication with patients, and the need for flexible methods.

  10. Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters

    PubMed Central

    Sato, Masa H

    2011-01-01

    Fab1/PIKfyve produces Phosphatidylinositol-3,5-bisphosphate (PtdIns (3,5) P2) from Phosphatidylinositol-3-phosphate (PtdIns 3-P), and is involved not only in vacuole/lysosome homeostasis, but also in transporting various proteins to the vacuole or recycling proteins on the plasma membrane (PM) through the use of endosomes in a variety of eukaryotic cells. We previously demonstrated that Arabidopsis FAB1A/B functions as PtdIns-3,5-kinase in both Arabidopsis and fission yeast and plays a key role in vacuolar acidification and endocytosis. Although the conditional FAB1A/B knockdown mutant revealed an auxin-resistant phenotype to a membrane-impermeable auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), the mutant did not exhibit this phenotype to a membrane-permeable artificial auxin, naphthalene 1-acetic acid (NAA). The difference in the sensitivities to 2,4-D and NAA is similar to those of the auxin-resistant mutants such as aux1. Taken together, these results suggest that impairment of the function of Arabidopsis FAB1A/B might cause a defect in the membrane recycling capabilities of the auxin transporters and inhibit proper auxin transport into the cells in Arabidopsis. PMID:21412048

  11. Possible involvement of galectin-3 in microglial activation in the hippocampus with trimethyltin treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Taehyub; Kim, Sung-Ho; Kim, Jong-Choon; Kim, Jeongtae; Takayama, Chitoshi; Hayashi, Akinobu; Joo, Hong-Gu; Shin, Taekyun; Moon, Changjong

    2012-12-01

    Trimethyltin (TMT) is an organotin neurotoxicant with effects that are selectively localized to the limbic system (especially the hippocampus), which produces memory deficits and temporal lobe seizures. Galectin-3 (Gal-3) is a beta-galactoside-binding lectin that is important in cell proliferation and regulation of apoptosis. The present study evaluated the temporal expression of Gal-3 in the hippocampus of adult BALB/c mice after TMT treatment (i.p., 2.5mg/kg). Western blotting analyses showed that Gal-3 immunoreactivity began to increase days after treatment; the immunoreactivity peaked significantly within days after treatment but significantly declined between days 4 and 8. Immunohistochemical analysis indicated that Gal-3 expression was very rare in the hippocampi of vehicle-treated controls. However, Gal-3 immunoreactivity appeared between 2 and 8 days after TMT treatment and was primarily localized to the hippocampal dentate gyrus (DG), in which neuronal degeneration occurred. The immunoreactivity was detected predominantly in most of the Iba1-positive microglia and in some GFAP-positive astrocytes of the hippocampal DG. Furthermore, Gal-3 expression co-localized with the pro-inflammatory enzymes cyclooxygenase-2 and inducible nitric oxide synthase in the hippocampal DG. Therefore, we suggest that Gal-3 is involved in the inflammatory process of neurodegenerative disorder induced by organotin intoxication.

  12. Oxytocin is involved in the proconvulsant effects of Sildenafil: Possible role of CREB.

    PubMed

    Khoshneviszadeh, Mahsima; Rahimian, Reza; Fakhfouri, Gohar; Payandemehr, Borna; Khodagholi, Fariba; Ejtemaei Mehr, Shahram; Dehpour, Ahmad Reza

    2016-08-10

    Sildenafil is a phosphodiesterase type 5 inhibitor mainly used for male erectile dysfunction. One of rare yet serious adverse effects of Sildenafil is its potential to decrease seizure threshold. Ample evidence suggests that Sildenafil exerts central effects through induction of Oxytocin (OT) secretion and CREB phosphorylation. The aim of the present study is to evaluate potential roles of OT and CREB in the proconvulsant effects of Sildenafil. The Pentylenetetrazole-induced seizure was used as a standard convulsion model in this study. OT release and pCREB expression were evaluated in the hippocampus of mice using ELISA and western blot assays, respectively. Our results showed that Sildenafil at the dose of 10mgkg(-1) or higher, significantly decreased seizure threshold. Pretreatment with a non-effective dose of OT, potentiated while OT receptor antagonist, Atosiban, reversed fully the proconvulsant effects of Sildenafil (5mgkg(-1)). At biochemical inspection, Sildenafil markedly increased CREB which was attenuated by coadministration of Atosiban. The present study shows for the first time that OT release and the subsequent CREB phosphorylation are involved in the proconvulsant effects of acute Sildenafil treatment in an experimental model of seizure.

  13. Possible involvement of leptin and leptin receptor in developing gastric adenocarcinoma

    PubMed Central

    Zhao, Liang; Shen, Zhi-Xiang; Luo, He-Sheng; Shen, Lei

    2005-01-01

    AIM: To investigate the expression of leptin and leptin receptor (ob-R) in intestinal-type gastric cancer and precancerous lesions, and to explore the possible mechanism and role of the leptin system in developing intestinal-type gastric adenocarcinoma. METHODS: Immunohistochemistry was performed to examine the expression of leptin and leptin receptor in archival samples of gastric adenocarcinoma and preneoplastic lesions, including intestinal metaplasia and mild to severe gastric epithelial dysplasia. Positive staining was identified and percentage of positive staining was graded. RESULTS: Dual expression of leptin and leptin receptor were detected in 80% (16/20) intestinal metaplasia, 86.3% (25/30) mild gastric epithelial dysplasia, 86.7% (26/30) moderate gastric epithelial dysplasia, 93.3% (28/30) severe gastric epithelial dysplasia, 91.3% (55/60) intestinal-type gastric adenocarcinoma and 30.0% (9/30) diffuse-type gastric carcinoma. The percentage of dual expression of leptin and leptin receptor in intestinal-type gastric adenocarcinoma was significantly higher than that in diffuse-type gastric adenocarcinoma (χ2 = 37.022, P<0.01). CONCLUSION: Our results indicate the presence of an autocrine loop of leptin system in the development of intestinal-type gastric adenocarcinoma. PMID:16437696

  14. Possible involvement of P-glycoprotein in the biliary excretion of grepafloxacin.

    PubMed

    Zhao, Ying Lan; Cai, Shao Hui; Wang, Li; Kitaichi, Kiyoyuki; Tatsumi, Yasuaki; Nadai, Masayuki; Yoshizumi, Hideo; Takagi, Kenji; Takagi, Kenzo; Hasegawa, Takaaki

    2002-03-01

    1. In the present study, we have examined the effects of the quinolones norfloxacin (NFLX), enoxacin (ENX), ofloxacin (OFLX), tosufloxacin (TFLX), lomefloxacin (LFLX), sparfloxacin (SPFX) and grepafloxacin (GPFX) on the efflux of doxorubicin from mouse leukaemia P388/ADR cells expressing P-glycoprotein. The relationship between their partition coefficients (hydrophobicity) and effluxing potencies was also elucidated. 2. Both TFLX and SPFX strongly increased the intracellular accumulation of doxorubicin (5 micromol/L) in P388/ADR cells, but had no effect on P388/S cells not expressing P-glycoprotein. The rank of order of the potency of the quinolones (TFLX > SPFX > GPFX > NFLX) was not related directly to their hydrophobicity. These results suggest that some quinolones can reverse anticancer drug resistance. 3. Because GPFX is more highly excreted into the bile than other known quinolones, the effects of doxorubicin (10 mg/kg) or the well-known inhibitors of P-glycoprotein, namely cyclosporine A (10 mg/kg) and erythromycin (100 mg/kg), on the biliary excretion of GPFX at steady state was studied in rats. 4. Doxorubicin, cyclosporine A and erythromycin significantly decreased the biliary clearance of GPFX. Cyclosporine A and erythromycin had a much stronger inhibitory effect on the biliary excretion of GPFX than doxorubicin. These results suggest the possibility that GPFX is, at least in part, excreted into the bile by a P-glycoprotein-mediated transport mechanism.

  15. Possible involvement of delta-6-desaturase in control of melanoma growth by gamma-linolenic acid.

    PubMed

    Gardiner, N S; Duncan, J R

    1991-03-01

    This study examined the effects of linoleic acid (LA) and gamma-linolenic acid (GLA) on BL6 melanoma growth in cell culture and of safflower oil (SFO) which contains LA and evening primrose oil (EPO) which contains GLA, on melanoma growth when grown in mice. The delta-6-desaturase activity of the melanoma cells in the two systems was also examined and an attempt made to relate the activity of the enzyme to the effects of GLA on cell and tumour growth. LA and GLA were found to be equipotent in inhibiting growth of the in vitro cultured BL6 cells which were found to contain an appreciable level of delta-6-desaturase activity. EPO was however found to be a more potent promoter of in vivo melanoma growth in mice than SFO. Melanomas grown in mice were found to lack delta-6-desaturase activity suggesting that the EPO diet, by providing GLA, was able to compensate for the loss of enzyme activity in the melanomas. The possibility that melanomas in mice have a requirement for GLA for growth while in in vitro cultured cells excess GLA inhibits the growth of the cells through an increase in lipid peroxidation is discussed.

  16. Renal allograft rejection: possible involvement of lymphokine-activated killer cells.

    PubMed Central

    Kirby, J A; Forsythe, J L; Proud, G; Taylor, R M

    1989-01-01

    Human renal allograft tissue was recovered at transplant nephrectomy from three patients with irreversible loss of graft function. This tissue was disaggregated and separated into two fractions on the basis of particle size. Fraction 1 contained glomeruli and developed a mixed outgrowth containing adherent epithelial and mesangial cells after a limited period of culture. Fraction 2 contained fragments of renal tubules and produced monolayers of tubular epithelial cells during culture. A population of lymphoid cells was observed to grow from the primary disaggregate into medium supplemented with recombinant human interleukin-2 (IL-2). After culture for 5 days these lymphoid cells were predominantly CD3-positive and carried both class II major histocompatibility antigens (MHC) and the CD25 IL-2 receptor. Culture of peripheral blood-derived mononuclear cells with IL-2 caused the generation of lymphokine-activated killer (LAK) cells; these cells were able to lyse both glomerular and tubular cells grown from nephrectomy tissue without showing MHC antigen restriction. The lymphoid cells grown from renal allograft tissue showed a similar lytic potential for both renal cells prepared from the same nephrectomy specimen and from third party renal tissue. It is possible that any LAK cells formed within a renal allograft by the action of IL-2 may contribute to the tissue destruction observed during graft rejection. Images Figure 2 PMID:2661417

  17. A Novel DBL-Domain of the P. falciparum 332 Molecule Possibly Involved in Erythrocyte Adhesion

    PubMed Central

    Moll, Kirsten; Kaneko, Osamu; Nilsson, Sandra; Winter, Gerhard; Haeggström, Malin; Pan, Weiqing; Berzins, Klavs; Wahlgren, Mats; Chen, Qijun

    2007-01-01

    Plasmodium falciparum malaria is brought about by the asexual stages of the parasite residing in human red blood cells (RBC). Contact between the erythrocyte surface and the merozoite is the first step for successful invasion and proliferation of the parasite. A number of different pathways utilised by the parasite to adhere and invade the host RBC have been characterized, but the complete biology of this process remains elusive. We here report the identification of an open reading frame (ORF) representing a hitherto unknown second exon of the Pf332 gene that encodes a cysteine-rich polypeptide with a high degree of similarity to the Duffy-binding-like (DBL) domain of the erythrocyte-binding-ligand (EBL) family. The sequence of this DBL-domain is conserved and expressed in all parasite clones/strains investigated. In addition, the expression level of Pf332 correlates with proliferation efficiency of the parasites in vitro. Antibodies raised against the DBL-domain are able to reduce the invasion efficiency of different parasite clones/strains. Analysis of the DBL-domain revealed its ability to bind to uninfected human RBC, and moreover demonstrated association with the iRBC surface. Thus, Pf332 is a molecule with a potential role to support merozoite invasion. Due to the high level of conservation in sequence, the novel DBL-domain of Pf332 is of possible importance for development of novel anti-malaria drugs and vaccines. PMID:17534427

  18. Brain Glycogen Decreases During Intense Exercise Without Hypoglycemia: The Possible Involvement of Serotonin.

    PubMed

    Matsui, Takashi; Soya, Shingo; Kawanaka, Kentaro; Soya, Hideaki

    2015-07-01

    Brain glycogen stored in astrocytes, a source of lactate as a neuronal energy source, decreases during prolonged exercise with hypoglycemia. However, brain glycogen dynamics during exercise without hypoglycemia remain unknown. Since intense exercise increases brain noradrenaline and serotonin as known inducers for brain glycogenolysis, we hypothesized that brain glycogen decreases with intense exercise not accompanied by hypoglycemia. To test this hypothesis, we employed a well-established acute intense exercise model of swimming in rats. Rats swam for fourteen 20 s bouts with a weight equal to 8 % of their body mass and were sacrificed using high-power (10 kW) microwave irradiation to inactivate brain enzymes for accurate detection of brain glycogen and monoamines. Intense exercise did not alter blood glucose, but did increase blood lactate levels. Immediately after exercise, brain glycogen decreased and brain lactate increased in the hippocampus, cerebellum, cortex, and brainstem. Simultaneously, serotonin turnover in the hippocampus and brainstem mutually increased and were associated with decreased brain glycogen. Intense swimming exercise that does not induce hypoglycemia decreases brain glycogen associated with increased brain lactate, implying an importance of glycogen in brain energetics during intense exercise even without hypoglycemia. Activated serotonergic regulation is a possible underlying mechanism for intense exercise-induced glycogenolysis at least in the hippocampus and brainstem.

  19. Arsenic decreases antinociceptive activity of paracetamol: possible involvement of serotonergic and endocannabinoid receptors.

    PubMed

    Vijayakaran, Karunakaran; Kesavan, Manickam; Kannan, Kandasamy; Sankar, Palanisamy; Tandan, Surendra Kumar; Sarkar, Souvendra Nath

    2014-09-01

    We assessed whether repeated arsenic exposure can decrease paracetamol-mediated antinociception by modulating serotonergic and endocannabinoid pathways. Rats were preexposed to elemental arsenic (4ppm) as sodium arsenite through drinking water for 28 days. Next day paracetamol's (400mg/kg, oral) antinociceptive activity was assessed through formalin-induced nociception. Serotonin content and gene expression of 5-HT1A, 5-HT2A and CB1 receptors were evaluated in brainstem and frontal cortex. Arsenic decreased paracetamol-mediated analgesia. Paracetamol, but not arsenic, increased serotonin content in these regions. Arsenic attenuated paracetamol-mediated increase in serotonin level. Paracetamol did not alter 5-HT1A expression, but caused down-regulation of 5-HT2A and up-regulation of CB1 receptors. Arsenic down-regulated these receptors. However, paracetamol-mediated down-regulation of 5-HT2A was more pronounced. Arsenic did not modify paracetamol's effect on 5-HT1A expression, but reduced paracetamol-mediated down-regulation of 5-HT2A and reversed up-regulation of CB1 receptors. Results suggest arsenic reduced paracetamol-induced analgesia possibly by interfering with pronociceptive 5-HT2A and antinociceptive CB1 receptors.

  20. Different activation patterns in the plasma kallikrein-kinin and complement systems during coronary bypass surgery.

    PubMed

    Kongsgaard, U E; Smith-Erichsen, N; Geiran, O; Amundsen, E; Mollnes, T E; Garred, P

    1989-07-01

    Components of the plasma kallikrein-kinin and complement systems were determined in patients undergoing open heart surgery with cardiopulmonary bypass. Spontaneous kallikrein activity (KK), plasma prekallikrein (PKK), functional kallikrein inhibition capacity (KKI), C3 activation products (C3-act), and the terminal complement complex (TCC) were measured. A marked, transitory increase in KK and a decrease in PKK were found prior to cardiopulmonary bypass just after heparin injection. An additional decline in PKK and KKI during bypass with a return to near control levels in the postoperative period was observed. C3-act increased in all patients during bypass, reaching a peak value at wound closure. The TCC concentration also increased significantly during cardiopulmonary bypass, returned to control levels in the early postoperative period, and then increased again in the late postoperative period. It is concluded that activation of the kallikrein-kinin system started after injection of heparin, prior to cardiopulmonary bypass. Activation of both the initial and the terminal complement cascade, however, started only after onset of cardiopulmonary bypass.

  1. Misfolded proteins activate Factor XII in humans, leading to kallikrein formation without initiating coagulation

    PubMed Central

    Maas, Coen; Govers-Riemslag, José W.P.; Bouma, Barend; Schiks, Bettina; Hazenberg, Bouke P.C.; Lokhorst, Henk M.; Hammarström, Per; ten Cate, Hugo; de Groot, Philip G.; Bouma, Bonno N.; Gebbink, Martijn F.B.G.

    2008-01-01

    When blood is exposed to negatively charged surface materials such as glass, an enzymatic cascade known as the contact system becomes activated. This cascade is initiated by autoactivation of Factor XII and leads to both coagulation (via Factor XI) and an inflammatory response (via the kallikrein-kinin system). However, while Factor XII is important for coagulation in vitro, it is not important for physiological hemostasis, so the physiological role of the contact system remains elusive. Using patient blood samples and isolated proteins, we identified a novel class of Factor XII activators. Factor XII was activated by misfolded protein aggregates that formed by denaturation or by surface adsorption, which specifically led to the activation of the kallikrein-kinin system without inducing coagulation. Consistent with this, we found that Factor XII, but not Factor XI, was activated and kallikrein was formed in blood from patients with systemic amyloidosis, a disease marked by the accumulation and deposition of misfolded plasma proteins. These results show that the kallikrein-kinin system can be activated by Factor XII, in a process separate from the coagulation cascade, and point to a protective role for Factor XII following activation by misfolded protein aggregates. PMID:18725990

  2. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: possible involvement of mrp2.

    PubMed

    Lindahl, Anders; Sjöberg, Asa; Bredberg, Ulf; Toreson, Helena; Ungell, Anna-Lena; Lennernäs, Hans

    2004-01-01

    The first purpose of this study was to investigate the in vivo absorption, biliary secretion, and first-pass effect of fluvastatin following regional intestinal dosing in the rat. We also examined the membrane transport mechanisms and made in silico predictions of the relative importance of various intestinal regions to the human absorption of fluvastatin. Fluvastatin was administered intravenously (2, 10, and 20 micromol/kg) and into the duodenum (1.46, 2.92, 7.32, and 14.6 micromol/kg), jejunum (14.6 micromol/kg), ileum (1.46 and 14.6 mciromol/kg), and colon (1.46 and 14.6 micromol/kg) as a solution to conscious rats. In a separate group of rats, bile was collected after an i.v. dose of fluvastatin (2 micromol/kg). In the Caco-2 model the bidirectional transport of fluvastatin (16 microM) was investigated with and without various efflux inhibitors (verapamil, vinblastine, probenecid, and indomethacin, 160 microM). The human in vivo absorption of fluvastatin from an oral immediate release tablet and that from an oral extended release tablet (both 40 mg) were simulated in GastroPlus. Neither the dose nor the intestinal region influenced the bioavailability of fluvastatin significantly. The rate of absorption was, however, affected by both the dose and the site of administration; duodenum = jejunum > colon > ileum, and higher following the high dose. Increasing the i.v. dose from 2 to 20 micromol/kg decreased the clearance (26 +/- 3 to 12 +/- 1 mL/min/kg), the hepatic extraction (66 +/- 8 to 30 +/- 2%), and the volume of distribution (7.3 +/- 0.3 to 2.1 +/- 0.7 L/kg) for fluvastatin (p < 0.05). Neither bile cannulation nor bile sampling affected the pharmacokinetics. Fluvastatin was secreted into the bile, probably by active transport. The in vitro permeability for fluvastatin was high (>10 x 10(-6) cm/s). Indomethacin, but not the other inhibitors, affected the transport in both directions suggesting mrp2 to be involved. In silico, 93% of the dose was absorbed from

  3. Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage.

    PubMed

    Li, Nanlin; Kong, Xiangwei; Ye, Ruidong; Yang, Qianzi; Han, Junliang; Xiong, Lize

    2011-06-01

    Age is the single most important risk factor for cerebral stroke. Unfortunately, the effect of age on ischemic brain damage is less clear. In this study, we sought to examine the potential influence of aging on the histologic and functional outcomes after ischemia. Juvenile (4 weeks of age), young adult (4 months of age), mid-aged (11-12 months of age), and aged (18-19 months of age) mice were subjected to transient middle cerebral artery occlusion. There was no remarkable difference of infarct volume on postoperative days 1 and 3. However, on postoperative day 7, aged mice exhibited significantly worsened infarct volume compared with juvenile and young mice. Intriguingly, the increase of infarct volume was most prominent in the striatal area rather than in cortex. Accordingly, aged mice displayed a slower and incomplete functional recovery after stroke. We further evaluated the effects of aging on the oxidative damage and mitochondrial dysfunction following ischemia. Brain tissues were assayed for lipid, DNA, and protein peroxidation products, mitochondrial enzyme activities, mitochondrial membrane potential, production of reactive oxygen species, and antioxidant activities. Aging was associated with declined mitochondrial function and antioxidant detoxification following ischemia, thereby inducing a deteriorated oxidative damage. Regional subanalyses demonstrated that, in accordance with infarct area, the pro-oxidant/antioxidant imbalance occurred more prominently in subcortical areas. Collectively, these findings suggest mitochondria-mediated oxidative damage may be involved in the age-related aggravated injury in subcortical areas. Mitochondrial protection could be a promising target for neuroprotective therapy, especially in the aged population.

  4. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation.

    PubMed

    Casalino, E; Sblano, C; Landriscina, C

    1997-10-15

    The specific activities of D-3-hydroxybutyrate dehydrogenase (BDH) and glutamate dehydrogenase (GDH) are reduced in the liver and kidney of rats intoxicated with 2.5 mg Cd/kg body wt and sacrificed after 24 h; conversely ketone-body concentration is strongly increased in both of these organs and blood. In the same animals a great stimulation of antioxidant enzymes glutathione reductase and glutathione peroxidase occurs. The prooxidant state induced by cadmium in liver mitochondria and microsomes is unaffected by superoxide dismutase, catalase, or mannitol, whereas it is completely blocked by vitamin E thus excluding the involvement of reactive oxygen species in this process. The mechanism by which cadmium induces lipid peroxidation has been investigated by measuring the effect of this metal on liposomes. Ninety-minute treatment of liposomes with CdCl2 does not induce any lipid peroxidation. In contrast, Fe2+ ions under the same conditions cause strong liposome peroxidation. It has also been observed that cadmium promotes a time-dependent iron release from biological membranes. When lipid peroxidation is induced by a low concentration (5 microM) of FeCl2, in place of CdCl2, the characteristics of this process and the sensitivity to the various antioxidants used are similar to those observed with Cd. From these results we conclude that the prooxidative effect of cadmium is an indirect one since it is mediated by iron. With regard to the inhibitory effect on BDH and GDH following cadmium intoxication, it does not appear to be imputable to lipid peroxidation since in vitro investigations indicate that the presence of vitamin E does not remove the inhibition at all.

  5. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  6. Possible involvement of food texture in insulin resistance and energy metabolism in male rats.

    PubMed

    Bae, Cho-Rong; Hasegawa, Kazuya; Akieda-Asai, Sayaka; Kawasaki, Yurie; Senba, Kazuyo; Cha, Youn-Soo; Date, Yukari

    2014-07-01

    Food texture is known to affect energy metabolism. Although feeding with soft pellets (SP) or via a tube is known to cause increases in body weight, it is unclear how different food textures influence energy metabolism. In this study, we investigated the effects of two different food textures on energy balance and glucose and lipid metabolism in male Wistar rats. The rats were fed SP or control pellets (CP) on a 3-h restricted feeding schedule for 14 weeks and their energy intake, body weight, and energy expenditure were examined. The levels of gastrointestinal hormones, glucose and insulin, were investigated at pre-, mid, and post-feeding. Glucose tolerance and insulin tolerance tests were conducted, and the expressions of molecules involved in the insulin signaling system or lipogenesis in the liver were examined. Histological investigation of pancreatic islets was carried out using anti-insulin and anti-Ki-67 antibodies. Furthermore, the expression in the liver and circulating blood of microRNA-33 (miR-33), which regulates insulin receptor substance 2, was examined. There were no significant differences in energy intake, body weight, or gastrointestinal hormone levels between the SP and CP rats; however, the SP rats showed glucose intolerance and insulin resistance with disruption of insulin signaling. Increases in lipogenic factors and miR-33 expression were also found in the SP rats. The numbers of insulin-positive areas and Ki-67-positive cells of SP rats were significantly increased. This study shows that a soft food texture causes diabetes without obesity, so differences in food texture may be an important factor in type 2 diabetes. © 2014 Society for Endocrinology.

  7. Phenylalanine hydroxylase: possible involvement in the S-oxidation of S-carboxymethyl-l-cysteine.

    PubMed

    Boonyapiwat, Boontarika; Forbes, Ben; Steventon, Glyn B

    2004-12-01

    Activated phenylalanine 4-monooxygenase, phenylalanine hydroxylase (PAH), is known to be involved in the S-oxidation of a number of sulfide compounds. One of these compounds, S-carboxymethyl-l-cysteine (SCMC), is currently used for the treatment of chronic obstructive pulmonary disease and otitis media with effusion as a mucolytic agent, and the S-oxides are the major metabolites found in urine. However, the enzyme catalyzing the S-oxidation of SCMC has yet to be identified. Here we report on the role of nonactivated phenylalanine 4-monooxygenase activity in rat liver cytosol in the S-oxidation of SCMC. Linearity of the enzyme assays was seen for both time (0-16 min) and cytosolic protein concentration (0.1-0.5mg/ml). The calculated K(m) and V(max) values for the formation of SCMC (S) S-oxide were 3.92+/-0.15 mM and 1.10+/-0.12 nmol SCMC (S) S-oxide formed/mg protein/min, respectively. The calculated K(m) and V(max) values for the formation of SCMC (R) S-oxide were 9.18+/-1.13 mM and 0.46+/-0.11 nmol SCMC (R) S-oxide formed/mg protein/min, respectively. These results indicate that in the female Wistar rat, nonactivated PAH showed a stereospecific preference for the formation of the (S) S-oxide metabolite of SCMC against the (R) S-oxide metabolite of SCMC.

  8. Characterization of the kallikrein-kinin system, metalloproteinases, and their tissue inhibitors in the in-stent restenosis after peripheral percutaneous angioplasty.

    PubMed

    Ribeiro, Maurício S; Dellalibera-Joviliano, Renata; Becari, Christiane; Teixeira, Felipe Roberti; Araujo, Paula Vasconcelos; Piccinato, Carlos E; Campos, Cesar Presto; Evora, Paulo Roberto B; Joviliano, Edwaldo E

    2014-05-01

    The kallikrein-kinin system (KKS) has several direct and indirect effects on cells and cellular mediators involved in the inflammatory process. Studies about inflammation on percutaneous transluminal angioplasty with stent (PTA/stent) to treat peripheral arterial disease (PAD) in humans are scarce. The matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases expressed in various cells and tissues such as fibroblasts, inflammatory cells, and, smooth muscle cells. Changes in the extracellular matrix (ECM) take place in the pathogenesis of many cardiovascular pathologies. MMPs and their inhibitors (tissue inhibitors of metalloproteinases [TIMPs]) are crucial in ECM remodeling in both physiologic and pathologic conditions. The aim of this study was to evaluate the role of the KKS and the MMP metabolism, which are important mediators that may contribute to tissue repair, in the process of arterial restenosis due to intimal hyperplasia in the femoropopliteal segment with the aim of developing new interventions. Thirty-nine consecutive patients were selected (regardless of ethnic group, age, or sex) for revascularization, who underwent PTA/stent of the femoropopliteal segment. Twenty-five patients with the same clinical characteristics who were scheduled for diagnostic angiography but not subjected to PTA/nitinol stent were also selected. The concentrations in blood of total and kininogen fractions were evaluated using immunoenzymatic methods. Plasma kallikrein was evaluated by the colorimetric method. Tissue kallikrein was evaluated by the spectrophotometric method. The activity of kininase II was measured by fluorometric analysis. Quantification of MMPs was performed by zymography, which is an electrophoresis technique, and TIMPs were measured by enzyme-linked immunosorbent assay. Among the 31 patients who completed the survey, there were 10 cases of angiographically defined restenosis of >50%, and 21 cases without restenosis. There was an

  9. Possible Segregated Ice at the Phoenix Landing Site: Was Liquid Water Involved?

    NASA Astrophysics Data System (ADS)

    Stoker, C.; Blaney, D.; Hecht, M.; Catling, D.; Pike, W. T.; Mellon, M.; Kounaves, S.; Lemmon, M.

    2008-12-01

    exposed in Goldilocks trench and left undisturbed for 79 sols. During this time, the brightness of the material slowly faded and, by sol 99, a sublimation lag covered the bright deposit with nearly the same spectral properties as soil. It was not possible to obtain a large enough sample of the lag to directly measure salt concentration with a wet chemistry cell. Instead, a small sample of the lag was examined with the Optical Microscope to look for morphological evidence of salts. The material was stickier and more cohesive than previous soil samples examined with the microscope, and a population of light colored particles up to 30 microns in diameter with evidence of angularity consistent with microcrystallinity was found. This observation is suggestive of possible salts more concentrated in this area. In conclusion, the microscopy results are consistent with a liquid water formation mechanism but inconclusive without a direct measurement of the composition of the material.

  10. Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone

    NASA Technical Reports Server (NTRS)

    Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.

    2001-01-01

    The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.

  11. Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone

    NASA Technical Reports Server (NTRS)

    Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.

    2001-01-01

    The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.

  12. Local bone interaction between renin-angiotensin system and kallikrein-kinin system in diabetic rat

    PubMed Central

    Li, Yong; Shen, Guang-Si; Yu, Chen; Li, Guang-Fei; Shen, Jun-Kang; Xu, You-Jia; Gong, Jian-Ping

    2015-01-01

    Objective: This study was performed to investigate bone deteriorations and the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) of male rat in response to the hyperglycemia. Methods: The biomarkers in serum and urine were measured by ELISA kit, and tibias were taken for the measurement on gene, protein expression and histological analysis, feumrs were taken for the measurement on biomechanical parameters and micro-CT. Results: The DM1 showed the decreased level of osteocalcin, testosterone and FGF-23, and the increased level of serum CTX as compared to those of vehicle group. The H&E staining showed remarkable bone deteriorations, including increased disconnections and separation of trabecular bone among growth plate and joint cartilage in DM1 group. Biomechanically, the maximum load, maximum stress, and strain parameter of DM1 group was significantly lower than control group. Type 1 diabetic mice displayed bone loss shown the reduction of bone volume/total volume, trabecular number, trabecular thickness and bone mineral density. The STZ injection significantly up-regulated mRNA expression of AT1R, AGT, renin, renin-receptor, and ACE, and the expression of AT2R, B1R and B2R were down-regulated in tibia of rat in hyperglycemia group. The protein expression of renin, ACE and Ang II were significantly up-regulated, and AT2R, B1R and B2R were down-regulated in DM1 group. Conclusions: The treatment of hyperglycemia was detrimental to bone as compared to the vehicle group, and the underlying mechanism was mediated, at least partially, through down-regulation of KSS activity and up-regulation of RAS activity in local bone. PMID:25973045

  13. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays *

    PubMed Central

    Karakosta, Theano D.; Soosaipillai, Antoninus; Batruch, Ihor

    2016-01-01

    Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples

  14. Up-regulation and clinical significance of serine protease kallikrein 6 in colon cancer.

    PubMed

    Kim, Jong-Tae; Song, Eun Young; Chung, Kyung-Sook; Kang, Min Ah; Kim, Jae Wha; Kim, Sang Jick; Yeom, Young Il; Kim, Joo Heon; Kim, Kyo Hyun; Lee, Hee Gu

    2011-06-15

    Kallikrein-related peptidase 6 (KLK6) encodes a trypsin-like serine protease that is up-regulated in several cancers, although the putative functions of KLK6 in cancer have not been elucidated. In the current study, overexpression of KLK6 was identified in colon cancer, and the possibility that KLK6 may be a suitable candidate as a tumor marker was examined. Messenger RNA (mRNA) transcript levels and protein up-regulation of KLK6 in colon cancer tissues was examined using reverse transcriptase-polymerase chain reaction, immunohistochemistry, and clinicopathologic analyses. Cell proliferation, invasiveness, and antiapoptotic activity were determined in colon cancer cells that were transfected with small-interfering RNA (siRNA) of KLK6. KLK6 mRNA was up-regulated significantly in tumor tissues compared with nontumor regions. KLK6 protein was strongly expressed in adenocarcinomas but was not expressed in normal mucosa or in premalignant dysplastic lesions. Sera from patients with colon cancer revealed an increase in KLK6 secretion (0.25 μg/mL; P = .031) compared with noncancer cells (0.19 μg/mL). Clinicopathologic and immunohistochemical studies of 143 patients with colon cancer revealed a significant correlation between KLK6 expression and Dukes disease stage (P = .005). High KLK6 expression was associated significantly with shorter overall (P = .001) and recurrence-free survival (P = .001). The rates of proliferation and invasiveness were decreased by 50% in cells that were transfected with KLK6 siRNA. The overexpression of KLK6 led to decreased activity of the E-cadherin promoter. KLK6 was up-regulated significantly in tissues and sera from patients with colon cancer and was associated closely with a poor prognosis, suggesting that KLK6 may be used as a potential biomarker and a therapeutic target for colon cancer. Copyright © 2010 American Cancer Society.

  15. Proteomic analysis reveals alterations in the renal kallikrein pathway during hypoxia-induced hypertension.

    PubMed

    Thongboonkerd, Visith; Gozal, Evelyne; Sachleben, Leroy R; Arthur, John M; Pierce, William M; Cai, Jian; Chao, Julie; Bader, Michael; Pesquero, Joao B; Gozal, David; Klein, Jon B

    2002-09-20

    Obstructive sleep apnea syndrome (OSAS), a disorder characterized by episodic hypoxia (EH) during sleep, is associated with systemic hypertension. We used proteomic analysis to examine differences in rat kidney protein expression during EH, and their potential relationship to EH-induced hypertension. Young male Sprague-Dawley rats were exposed to either EH or sustained hypoxia (SH) for 14 (EH14/SH14) and 30 (EH30/SH30) days. Mean arterial blood pressure was significantly increased only in EH30 (p < 0.0002). Kidney proteins were resolved by two-dimensional-PAGE and were identified by MALDI-MS. Renal expression of kallistatin, a potent vasodilator, was down-regulated in all animals. Expression of alpha-1-antitrypsin, an inhibitor of kallikrein activation, was up-regulated in EH but down-regulated in SH. Western blotting showed significant elevation of B(2)-bradykinin receptor expression in all normotensive animals but remained unchanged in hypertensive animals. Proteins relevant to vascular hypertrophy, such as smooth muscle myosin and protein-disulfide isomerase were up-regulated in EH30 but were down-regulated in SH30. These data indicate that EH induces changes in renal protein expression consistent with impairment of vasodilation mediated by the kallikrein-kallistatin pathway and vascular hypertrophy. In contrast, SH-induced changes suggest the kallikrein- and bradykinin-mediated compensatory mechanisms for prevention of hypertension and vascular remodeling. To test the hypothesis suggested by the proteomic data, we measured the effect of EH on blood pressure in transgenic hKLK1 rats that overexpress human kallikrein. Transgenic hKLK1 animals were protected from EH-induced hypertension. We conclude that EH-induced hypertension may result, at least in part, from altered regulation of the renal kallikrein system.

  16. Avian circannual clocks: adaptive significance and possible involvement of energy turnover in their proximate control.

    PubMed

    Wikelski, Martin; Martin, Lynn B; Scheuerlein, Alex; Robinson, Maisha T; Robinson, Nuriya D; Helm, Barbara; Hau, Michaela; Gwinner, Eberhard

    2008-01-27

    Endogenous circannual clocks are found in many long-lived organisms, but are best studied in mammal and bird species. Circannual clocks are synchronized with the environment by changes in photoperiod, light intensity and possibly temperature and seasonal rainfall patterns. Annual timing mechanisms are presumed to have important ultimate functions in seasonally regulating reproduction, moult, hibernation, migration, body weight and fat deposition/stores. Birds that live in habitats where environmental cues such as photoperiod are poor predictors of seasons (e.g. equatorial residents, migrants to equatorial/tropical latitudes) rely more on their endogenous clocks than birds living in environments that show a tight correlation between photoperiod and seasonal events. Such population-specific/interspecific variation in reliance on endogenous clocks may indicate that annual timing mechanisms are adaptive. However, despite the apparent adaptive importance of circannual clocks, (i) what specific adaptive value they have in the wild and (ii) how they function are still largely untested. Whereas circadian clocks are hypothesized to be generated by molecular feedback loops, it has been suggested that circannual clocks are either based upon (i) a de-multiplication ('counting') of circadian days, (ii) a sequence of interdependent physiological states, or (iii) one or more endogenous oscillators, similar to circadian rhythms. We tested the de-multiplication of days (i) versus endogenous regulation hypotheses (ii) and (iii) in captive male and female house sparrows (Passer domesticus). We assessed the period of reproductive (testicular and follicular) cycles in four groups of birds kept either under photoperiods of LD 12L:12D (period length: 24h), 13.5L:13.5D (27 h), 10.5L:10.5D (23 h) or 12D:8L:3D:1L (24-h skeleton photoperiod), respectively, for 15 months. Contrary to predictions from the de-multiplication hypothesis, individuals experiencing 27-h days did not differ (i.e. did

  17. Ethnic variation in kallikrein expression in nipple aspirate fluid.

    PubMed

    Sauter, Edward R; Welch, Tamara; Magklara, Angeliki; Klein, Gary; Diamandis, Eleftherios P

    2002-08-20

    Socioeconomic factors cannot entirely explain why black women have an earlier age of breast cancer onset and higher mortality rates, stage for stage, than whites. We and others have shown that prostate-specific antigen [PSA, also known as human kallikrein (hK) 3] is a marker of breast as well as prostate cancer, that hK2 and hK3 are highly homologous at the DNA and protein level and that the level of progesterone, which appears to upregulate hK3, is influenced by ethnicity. We hypothesized that nipple aspiration fluid (NAF) hK2 and hK3 levels are (i) lower in black than white women; (ii) independently associated with breast cancer; (iii) influenced by menopausal status; and (iv) in combination are more informative about whether a woman has breast cancer than either marker alone. NAF was assayed for hK2 and hK3, and the results were stratified by ethnicity, presence or absence of cancer and menopausal status. Statistical analysis was then performed. When stratified by ethnicity, hK2 (p = 0.003) and hK3 (p = 0.027) levels in blacks were lower than in whites. hK2 was lower in premenopausal black than in white subjects, regardless of cancer status. Overall, hK2, hK3 and the ratio hK2/hK3 were lower in subjects with breast cancer than in normal subjects. hK3 was lower in postmenopausal women with breast cancer, regardless of ethnicity. hK2 and hK3 levels were higher in pre- than in postmenopausal whites. Using logistic regression and considering hK2, hK3, hK2/hK3 and ethnicity, hK3 was significantly associated with breast cancer in both pre- (p < 0.001) and postmenopausal women (p = 0.023). In conclusion, whereas hK2, hK3, hK2/hK3 and ethnicity are each significantly associated with breast cancer bivariately, after entering the strongest predictor, hK3, into a logistic regression model, no other variable accounted for additional variation, although this observation is preliminary due to the limited number of black subjects in the study. Copyright 2002 Wiley-Liss, Inc.

  18. In vitro cleavage by asbestos fibers of the fifth component of human complement through free-radical generation and kallikrein activation.

    PubMed

    Governa, M; Amati, M; Valentino, M; Visonà, I; Fubini, B; Botta, G C; Volpe, A R; Carmignani, M

    2000-04-14

    Chrysotile and crocidolite fibers incubated in normal human plasma (NHP) generated from the C5 component of complement C5a-type fragments that stimulated polymorphonuclear leukocyte (PMN) chemotaxis. Absorption of NHP with antiserum against C5a totally abolished neutrophil chemotactic activity. Asbestos fibers also produced C5a small peptides in the presence of ethylene glycol bis(beta-aminoethyl ether) N,N,N'N'-tetraacetic acid (EGTA) but not ethylene diamine tetraacetic acid (EDTA). Activation of C5 was significantly inhibited when asbestos fibers were pretreated with iron chelators such as sodium dithionite (DTN), deferoxamine (DFX), or ascorbate (AA). Concentration-related inhibition of C5 activation was also observed when asbestos fibers were added concurrently to plasma in the presence of DFX, 1,3-dimethyl-2-thiourea (DMTU), a strong hydroxyl scavenger, or aprotinin (APR), a specific protease inhibitor. Further, chrysotile and crocidolite significantly increased plasma kallikrein activity. Data demonstrate that asbestos-induced C5 activation plays a role in inflammatory reactions characteristic of asbestosis through mechanisms involving iron ions, hydroxyl radicals, and oxidized C5-ike fragments. The ferrous ions present at the asbestos fiber surface trigger this activation and catalyze, via Fenton reaction, the production of hydroxyl radicals, which in turn convert native C5 to an oxidized C5-like form. This product is then cleaved by kallikrein, activated by the same asbestos fibers, yielding an oxidized C5a with the same functional properties as C5a.

  19. The kallikrein-kinin-system in head and neck squamous cell carcinoma (HNSCC) and its role in tumour survival, invasion, migration and response to radiotherapy.

    PubMed

    Beck, Carolin; Piontek, Guido; Haug, Anna; Bas, Murat; Knopf, Andreas; Stark, Thomas; Mißlbeck, Martin; Rudelius, Martina; Reiter, Rudolf; Brandstetter, Markus; Pickhard, Anja

    2012-12-01

    In this study, we investigated the role of the kallikrein-kinin-system in head and neck squamous cell carcinoma (HNSCC) and its implication on tumour survival, invasion, migration and response to radiotherapy. The expression of BKB2R was studied in a series of 180 tumour samples to determine the functional significance of BKB2R in HNSCC. Additionally, four different HNSCC cell lines were treated with an irradiation dose of 8Gy following bradykinin receptor stimulation or blockage. Tumour cell survival was tested using a colony formation assay. The invasive potential of tumour cells was assessed using Matrigel invasion chambers, the cells' ability to migrate was determined with a wound-healing assay. To examine the biochemical activation of BKB2R, the epidermal growth factor receptor (EGFR) and its downstream pathways, western blot analyses were conducted. Immunohistochemistry revealed an over-expression of BKB2R in HNSCC tumour cells in comparison to normal peritumoural tissue. Blocking the BKB2R at irradiated tumour cells led to a reduced response to radiotherapy of tumour cells and led to an activation of the EGFR and its downstream pathways, known mediators of tumour cell survival, migration and invasion. Bradykinin stimulation also resulted in a better tumour cell survival, but these effects were achieved via an EGFR-independent signalling. Our results demonstrate that the kallikrein-kinin-system is involved in survival, invasion and migration of HNSCC cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3β pathway

    PubMed Central

    Yao, Yu-Yu; Yin, Hang; Shen, Bo; Smith, Robert S.; Liu, Yuying; Gao, Lin; Chao, Lee; Chao, Julie

    2008-01-01

    Aims We investigated the role of the Akt-glycogen synthase kinase (GSK)-3β signalling pathway in mediating the protective effects of tissue kallikrein on myocardial injury by promoting angiogenesis and blood flow in rats after myocardial infarction (MI). Methods and results Human tissue kallikrein gene in an adenoviral vector, with or without co-administration of dominant-negative Akt (Ad.DN-Akt) or constitutively active GSK-3β (Ad.GSK-3βS9A), was injected into rat myocardium after MI. The expression of recombinant human kallikrein in rat heart significantly improved cardiac function and reduced infarct size 10 days after gene delivery. Kallikrein administration significantly increased myocardial blood flow as well as capillary and arteriole densities in the infarcted myocardium. Kallikrein increased cardiac Akt and GSK-3β phosphorylation in conjunction with decreased GSK-3β activity and the upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2). All of kallikrein’s effects on the myocardium were abrogated by Ad.DN-Akt and Ad.GSK-3βS9A. Moreover, in cultured human aortic endothelial cells, tissue kallikrein stimulated capillary tube formation and promoted cell migration; however, these effects were blocked by Ad.DN-Akt, Ad.GSK-3βS9A, icatibant (a kinin B2 receptor antagonist), Tki (a VEGF receptor tyrosine kinase inhibitor), and a neutralizing VEGF antibody. In addition, tissue kallikrein decreased GSK-3β activity via the phosphatidylinositol 3-kinase-Akt pathway and enhanced VEGF and VEGFR-2 expression in endothelial cells. Conclusion These data provide the first direct evidence that tissue kallikrein protects against acute-phase MI by promoting neovascularization, restoring regional blood flow and improving cardiac function through the kinin B2 receptor-Akt-GSK-3β and VEGF signalling pathways. PMID:18689794

  1. Use of different derivatives of D-Val-Leu-Arg for studying kallikrein activities in cat submandibular glands and saliva.

    PubMed

    Garrett, J R; Kidd, A; Kyriacou, K; Smith, R E

    1985-07-01

    Glandular kallikrein shows a special selectivity for D-Val-Leu-Arg-4-methoxy-2-naphthylamide in comparison with other potential oligopeptide substrates and it provides a useful histochemical substrate, although the reaction may not always be specific. However, in cat submandibular saliva, a biochemical assay using the closely related D-Val-Leu-Arg-7-amino-4-trifluoromethylcoumarin (AFC) as substrate, which affords more sensitive detection, showed that soya bean trypsin inhibitor causes no inhibition. This indicates that there are unlikely to be contaminating enzymes competing for the substrate in this body fluid. Support for this observation has been gained by the useful new enzyme overlay membrane technique for fluorescent assessment of reactive bands of enzymes after isoelectric focusing, using membranes of cellulose acetate impregnated with D-Val-Leu-Arg-AFC. Comparison of results after isoelectric focusing of purified cat submandibular kallikrein with samples of cat submandibular saliva confirmed that the substrate is monospecific for kallikrein in saliva of the cat. This knowledge has enabled us to start assessing the dynamics of the secretion of kallikrein by the gland. Testing individual drops of saliva has shown that an amazingly rapid mobilization of kallikrein occurs in high concentrations on sympathetic nerve stimulation. The corresponding oligopeptide-based inhibitor D-Val-Leu-Arg-chloromethyl ketone was found to be strongly inhibitory of the amidase reaction by kallikrein but showed a low specificity for kallikrein. Nevertheless, its effects have been tested in vivo by the intravascular route and it caused an increase in the resting salivary vascular resistance whether administered close-arterially or intravenously. Thus, it would seem that a kallikrein-like protease does influence the background tone in the vessels and the source of this enzyme is thought to be mast cells.

  2. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  3. Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP.

    PubMed

    Ottaiano, Tatiana F; Andrade, Sheila S; de Oliveira, Cleide; Silva, Mariana C C; Buri, Marcus V; Juliano, Maria A; Girão, Manoel J B C; Sampaio, Misako U; Schmaier, Alvin H; Wlodawer, Alexander; Maffei, Francisco H A; Oliva, Maria Luiza V

    2017-04-01

    Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin αIIbβ3 through interactions with the KGD/KGE sequence motif in huPK. Integrin αIIbβ3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS(473), ERK1/2, and p38 MAPK, and to Ca(2+) release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and αIIbβ3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Specificity of human tissue kallikrein towards substrates containing Phe-Phe pair of amino acids.

    PubMed Central

    Pimenta, D C; Chao, J; Chao, L; Juliano, M A; Juliano, L

    1999-01-01

    We have explored in detail the determinants of specificity for the hydrolysis by human tissue kallikrein (hK1) of substrates containing the Phe-Phe amino acid pair, after which hK1 cleaves kallistatin (human kallikrein-binding protein), a specific serpin for this protease, as well as somatostatin 1-14. Internally quenched fluorogenic peptides were synthesized with the general structure Abz-peptidyl-EDDnp [Abz, o-aminobenzoic acid; EDDnp, N-(2, 4-dinitrophenyl)ethylenediamine], based on the natural reactive-centre loop sequence of kallistatin from P9 to P'13, and the kinetic parameters of their hydrolysis by hK1 were determined. All these peptides were cleaved after the Phe-Phe pair. For comparison, we have also examined peptides containing the reactive-centre loop sequences of human protein-C inhibitor (PCI) and rat kallikrein-binding protein, which were hydrolysed after Phe-Arg and Leu-Lys bonds, respectively. Hybrid peptides containing kallistatin-PCI sequences showed that the efficiency of hK1 activity on the peptides containing kallistatin and PCI sequences depended on both the nature of the P1 amino acid as well as on residues at the P- and P'-sides. Moreover, we have made systematic modifications on the hydrophobic pair Phe-Phe, and on Lys and Ile at the P3 and P4 positions according to the peptide substrate, Abz-AIKFFSRQ-EDDnp. All together, we concluded that tissue kallikrein was very effective on short substrates that are cleaved after the Phe-Arg pair; however, hydrolysis after Phe-Phe or other hydrophobic pairs of amino acids was more restrictive, requiring additional enzyme-substrate interaction and/or particular substrate conformations. PMID:10191281

  5. Sequential cleavage of proinsulin by human pancreatic kallikrein and a human pancreatic kininase

    PubMed Central

    ole-MoiYoi, Onesmo; Seldin, David C.; Spragg, Jocelyn; Pinkus, Geraldine S.; Austen, K. Frank

    1979-01-01

    A pancreatic endopeptidase localized to the β-cells of the pancreas by immunohistochemical techniques has been purified to homogeneity by following its functional and antigenic characteristics as a glandular kallikrein (EC 3.4.21.8). The enzyme gave a single stained band on alkaline disc gel electrophoresis which corresponded in location with the kinin-generating activity eluted from a replicate gel, was of 54,000 molecular weight by gel filtration, was devoid of caseinolytic activity, elicited a monospecific antiserum in a rabbit, and gave a line of complete identity with a single constituent in pancreatic extract, crude urine, and purified urokallikrein when analyzed with monospecific antibody to urokallikrein. The pancreatic glandular kallikrein generated three cleavage products of increasing anodal mobility from bovine and porcine proinsulin, and the presence of pancreatic kininase or bovine carboxypeptidase B increased the quantity of these products. Although the conversion products did not correspond to diarginyl- and monoarginylinsulin, the product of intermediate mobility was also obtained when proinsulin was treated with a low concentration of trypsin in the presence of kininase. The most rapidly migrating product did correspond to desalanylinsulin in the reference standard. Kininase alone had no action on proinsulin, and aprotinin prevented cleavage by kallikrein alone or in combination with kininase. Although the chemical structure of the proinsulin cleavage products has not been established, human pancreatic kallikrein is considered a putative activator of proinsulin because of its location in the β-cell, its preferential action on proinsulin and kininogen as compared to azocasein, and its capacity to generate insulin intermediate products that are further modified by human pancreatic kininase or bovine carboxypeptidase B. Images PMID:386342

  6. Structure of BbKI, a disulfide-free plasma kallikrein inhibitor.

    PubMed

    Zhou, Dongwen; Hansen, Daiane; Shabalin, Ivan G; Gustchina, Alla; Vieira, Debora F; de Brito, Marlon V; Araújo, Ana Paula U; Oliva, Maria Luiza V; Wlodawer, Alexander

    2015-08-01

    A serine protease inhibitor from Bauhinia bauhinioides (BbKI) belongs to the Kunitz family of plant inhibitors, which are common in plant seeds. BbKI does not contain any disulfides, unlike most other members of this family. It is a potent inhibitor of plasma kallikrein, in addition to other serine proteases, and thus exhibits antithrombotic activity. A high-resolution crystal structure of recombinantly expressed BbKI was determined (at 1.4 Å resolution) and was compared with the structures of other members of the family. Modeling of a complex of BbKI with plasma kallikrein indicates that changes in the local structure of the reactive loop that includes the specificity-determining Arg64 are necessary in order to explain the tight binding. An R64A mutant of BbKI was found to be a weaker inhibitor of plasma kallikrein, but was much more potent against plasmin, suggesting that this mutant may be useful for preventing the breakup of fibrin and maintaining clot stability, thus preventing excessive bleeding.

  7. Structure of BbKI, a disulfide-free plasma kallikrein inhibitor

    PubMed Central

    Zhou, Dongwen; Hansen, Daiane; Shabalin, Ivan G.; Gustchina, Alla; Vieira, Debora F.; de Brito, Marlon V.; Araújo, Ana Paula U.; Oliva, Maria Luiza V.; Wlodawer, Alexander

    2015-01-01

    A serine protease inhibitor from Bauhinia bauhinioides (BbKI) belongs to the Kunitz family of plant inhibitors, which are common in plant seeds. BbKI does not contain any disulfides, unlike most other members of this family. It is a potent inhibitor of plasma kallikrein, in addition to other serine proteases, and thus exhibits antithrombotic activity. A high-resolution crystal structure of recombinantly expressed BbKI was determined (at 1.4 Å resolution) and was compared with the structures of other members of the family. Modeling of a complex of BbKI with plasma kallikrein indicates that changes in the local structure of the reactive loop that includes the specificity-determining Arg64 are necessary in order to explain the tight binding. An R64A mutant of BbKI was found to be a weaker inhibitor of plasma kallikrein, but was much more potent against plasmin, suggesting that this mutant may be useful for preventing the breakup of fibrin and maintaining clot stability, thus preventing excessive bleeding. PMID:26249699

  8. Kallikrein generates angiotensin II but not bradykinin in the plasma of the urodele, Amphiuma tridactylum.

    PubMed

    Conlon, J M; Yano, K

    1995-03-01

    Incubation of heat-denatured plasma from the urodele, Amphiuma tridactylum (three-toed amphiuma) or from the anurans Rana ridibunda (European green frog) and Rana catesbeiana (American bullfrog) with either glass beads, porcine pancreatic kallikrein or trypsin did not generate bradykinin-like immunoreactivity. However, peptides were generated in kallikrein-treated amphiuma plasma that contracted vascular rings from the bullfrog systemic arch and had a spasmogenic action on the bullfrog urinary bladder. These peptides which were not generated in trypsin-treated plasma, were purified to homogeneity by reverse-phase HPLC and their primary structures established as: Asp-Arg-Val-Tyr-Val-His-Pro-Phe ([Asp1,Val5]angiotensin II) and Asn-Arg-Val-Tyr-Val-His-Pro-Phe ([Asn1,Val5]angiotensin II). Incubation of synthetic [Asn1,Val5]angiotensin II with amphiuma plasma resulted in deamidation to [Asp1,Val5]angiotensin II. The data suggest, therefore that amphiuma plasma contains an L-asparagine amidohydrolase (asparaginase), as previously described for the eel. Although bradykinin-related peptides have been isolated from frog skin, this study provides evidence tha the kallikrein-kinin system may be absent from the blood of amphibia.

  9. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRα and PPARα transcriptional programs.

    PubMed

    Liu, Xuhan; Li, Guosheng; Zhu, Hua; Huang, Lan; Liu, Yali; Ma, Chunmei; Qin, Chuan

    2010-01-01

    The "lipotoxicity" hypothesis holds that fat-induced hepatic insulin resistance (FIHIR) may play a major role in the pathogenesis of type 2 diabetes. Berberine has been reported to have antidiabetic properties. However, the molecular mechanisms for this action are not fully clarified. Therefore, we will investigate the gene expression alterations involved in the therapeutic effect of berberine on FIHIR in diabetic hamsters and possible mechanisms. In this study, type 2 diabetic hamsters were induced by high-fat diet with streptozotocin injection. After 9 weeks of berberine-treatment, the gene expression alterations involved in the therapeutic molecular mechanisms of berberine on FIHIR will be studied by microarray technology and real time RT-PCR. Our study demonstrates berberine significantly improved fat-induced insulin resistance and diabetic phenotype in type 2 diabetic hamsters. The alterations of certain metabolism related genes and their main regulators: Liver X receptor (LXR) α, Peroxisome proliferator-activated receptor (PPAR) α and Sterol regulatory element-binding protein (SREBPs) are observed in the liver of treated and untreated diabetic hamsters. Compared with diabetic hamsters, the increased mRNA levels of LXRα and PPARα and the decreased mRNA levels of SREBPs are observed in berberine-treated diabetic hamster. The statistical significance of the expression of hepatic LXRα, SREBPs and PPARα and their certain target genes is found between treated and untreated diabetic hamsters. These results suggest that altered hepatic SREBPs, LXRα and PPARα transcriptional programs possibly involve in the therapeutic mechanisms of berberine on FIHIR in type 2 diabetic hamsters.

  10. Kallikrein genes are associated with lupus and glomerular basement membrane–specific antibody–induced nephritis in mice and humans

    PubMed Central

    Liu, Kui; Li, Quan-Zhen; Delgado-Vega, Angelica M.; Abelson, Anna-Karin; Sánchez, Elena; Kelly, Jennifer A.; Li, Li; Liu, Yang; Zhou, Jinchun; Yan, Mei; Ye, Qiu; Liu, Shenxi; Xie, Chun; Zhou, Xin J.; Chung, Sharon A.; Pons-Estel, Bernardo; Witte, Torsten; de Ramón, Enrique; Bae, Sang-Cheol; Barizzone, Nadia; Sebastiani, Gian Domenico; Merrill, Joan T.; Gregersen, Peter K.; Gilkeson, Gary G.; Kimberly, Robert P.; Vyse, Timothy J.; Kim, Il; D’Alfonso, Sandra; Martin, Javier; Harley, John B.; Criswell, Lindsey A.; Wakeland, Edward K.; Alarcón-Riquelme, Marta E.; Mohan, Chandra

    2009-01-01

    Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody–induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that may be responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody–induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family, which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody–induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms, some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody–induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody–induced nephritis and lupus. PMID:19307730

  11. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans.

    PubMed

    Liu, Kui; Li, Quan-Zhen; Delgado-Vega, Angelica M; Abelson, Anna-Karin; Sánchez, Elena; Kelly, Jennifer A; Li, Li; Liu, Yang; Zhou, Jinchun; Yan, Mei; Ye, Qiu; Liu, Shenxi; Xie, Chun; Zhou, Xin J; Chung, Sharon A; Pons-Estel, Bernardo; Witte, Torsten; de Ramón, Enrique; Bae, Sang-Cheol; Barizzone, Nadia; Sebastiani, Gian Domenico; Merrill, Joan T; Gregersen, Peter K; Gilkeson, Gary G; Kimberly, Robert P; Vyse, Timothy J; Kim, Il; D'Alfonso, Sandra; Martin, Javier; Harley, John B; Criswell, Lindsey A; Wakeland, Edward K; Alarcón-Riquelme, Marta E; Mohan, Chandra

    2009-04-01

    Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.

  12. Kallikrein-Related Peptidase 5 Contributes to H3N2 Influenza Virus Infection in Human Lungs.

    PubMed

    Magnen, Mélia; Gueugnon, Fabien; Guillon, Antoine; Baranek, Thomas; Thibault, Virginie C; Petit-Courty, Agnès; de Veer, Simon J; Harris, Jonathan; Humbles, Alison A; Si-Tahar, Mustapha; Courty, Yves

    2017-08-15

    Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans.IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals

  13. Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways.

    PubMed

    Yin, Hang; Chao, Lee; Chao, Julie

    2005-03-04

    Our previous study has shown that human tissue kallikrein protected against ischemia/reperfusion-induced myocardial injury. In the present study, we investigated the protective role of local kallikrein gene delivery in ischemia/reperfusion-induced cardiomyocyte apoptosis and its signaling mechanisms in promoting cardiomyocyte survival. Adenovirus carrying the human tissue kallikrein gene was delivered locally into the heart using a catheter-based technique. Expression and localization of recombinant human kallikrein in rat myocardium after gene transfer were determined immunohistochemically. Kallikrein gene delivery markedly reduced reperfusion-induced cardiomyocyte apoptosis identified by both in situ nick end-labeling and DNA fragmentation. Delivery of the kallikrein gene increased phosphorylation of Src, Akt, glycogen synthase kinase (GSK)-3beta, and Bad(Ser-136) but reduced caspase-3 activation in rat myocardium after reperfusion. The protective effect of kallikrein on apoptosis and its signaling mediators was blocked by icatibant and dominant-negative Akt, indicating a kinin B2 receptor-Akt-mediated event. Similarly, kinin or transduction of kallikrein in cultured cardiomyocytes promoted cell viability and attenuated apoptosis induced by hypoxia/reoxygenation. The effect of kallikrein on cardiomyocyte survival was blocked by dominant-negative Akt and a constitutively active mutant of GSK-3beta, but it was facilitated by constitutively active Akt, catalytically inactive GSK-3beta, lithium, and caspase-3 inhibitor. Moreover, kallikrein promoted Bad.14-3-3 complex formation and inhibited Akt-GSK-3beta-dependent activation of caspase-3, whereas caspase-3 administration caused reduction of the Bad.14-3-3 complex, indicating an interaction between Akt-GSK-caspase-3 and Akt-Bad.14-3-3 signaling pathways. In conclusion, kallikrein/kinin protects against cardiomyocyte apoptosis in vivo and in vitro via Akt-Bad.14-3-3 and Akt-GSK-3beta-caspase-3 signaling pathways.

  14. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays.

    PubMed

    Karakosta, Theano D; Soosaipillai, Antoninus; Diamandis, Eleftherios P; Batruch, Ihor; Drabovich, Andrei P

    2016-09-01

    Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples

  15. Initial study on the possible mechanisms involved in the effects of high doses of perfluorooctane sulfonate (PFOS) on prolactin secretion.

    PubMed

    Salgado, R; Pereiro, N; López-Doval, S; Lafuente, A

    2015-09-01

    Perfluorooctane sulfonate (PFOS) is a fluorinated organic compound. This chemical is neurotoxic and can alter the pituitary secretion. This is an initial study aimed at knowing the toxic effects of high doses of PFOS on prolactin secretion and the possible mechanisms involved in these alterations. For that, adult male rats were orally treated with 3.0 and 6.0 mg of PFOS/kg body weight (b.w.)/day for 28 days. At the end of the treatment, the serum levels of prolactin and estradiol as well as the concentration of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and gamma-aminobutyric acid (GABA) were quantified in the anterior and in the mediobasal hypothalamus. PFOS, at the administered doses, reduced prolactin and estradiol secretion, increased the concentration of dopamine and GABA in the anterior hypothalamus, and decreased the ratios DOPAC/dopamine and HVA/dopamine in this same hypothalamic area. The outcomes reported in this study suggest that (1) high doses of PFOS inhibit prolactin secretion in adult male rats; (2) only the periventricular-hypophysial dopaminergic (PHDA) neurons seem to be involved in this inhibitory effect but not the tuberoinfundibular dopaminergic (TIDA) and the tuberohypophysial dopaminergic (THDA) systems; (3) GABAergic cells from the paraventricular and supraoptic nuclei could be partially responsible for the PFOS action on prolactin secretion; and finally (4) estradiol might take part in the inhibition exerted by elevated concentration of PFOS on prolactin release.

  16. Mechanism of phosphate-induced calcification in rat aortic tissue culture: possible involvement of Pit-1 and apoptosis.

    PubMed

    Mune, Sachiko; Shibata, Maki; Hatamura, Ikuji; Saji, Fumie; Okada, Tadashi; Maeda, Yuka; Sakaguchi, Toshifumi; Negi, Shigeo; Shigematsu, Takashi

    2009-12-01

    Hyperphosphataemia is a known contributing factor in the progression of vascular calcification in dialysis patients. The cellular mechanisms underlying phosphate-induced calcification are still unclear despite intense study, so in this study, we investigated the possible involvement of the type III sodium-dependent phosphate cotransporter, Pit-1, in an aortic tissue culture model. Aortic segments from 9-week-old male Sprague-Dawley rats were incubated in serum-supplemented medium for 10 days. The phosphate concentration of the medium was elevated to induce calcification, which was assessed by histology and calcium content. Phosphonoformic acid (PFA) was used to inhibit phosphate uptake. The involvement of apoptosis was examined using the terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labelling (TUNEL) assay, caspase 3 activation, and inhibition of apoptosis using a general caspase inhibitor. Phenotypic changes in vascular smooth muscle cells (VSMC) were assessed using expression of osteochondrogenic differentiation markers. Medial vascular calcification was induced in aortas cultured in a high phosphate medium. PFA decreased the rates of calcification and apoptosis of VSMC in the media, concomitant with calcification. Caspase inhibitor reduced calcification. No phenotypic transition of VSMC was seen in this model. These results indicate that phosphate uptake through the type III sodium-dependent phosphate cotransporter, Pit-1, leads to induction of apoptosis and subsequent calcification of VSMC.

  17. Studies on Bronchodilator Activity of Salvia officinalis (Sage): Possible Involvement of K(+) Channel Activation and Phosphodiesterase Inhibition.

    PubMed

    Gilani, Anwarul-Hassan; Rehman, Najeeb-Ur; Khan, Aslam; Alkharfy, Khalid M

    2015-06-01

    The aqueous methanolic extract of the aerial parts of Salvia officinalis (So.Cr) was studied to provide possible underlying mechanism(s) for its medicinal use in asthma using the in vivo bronchodilatory assay and isolated tracheal preparations. S. officinalis (1-10 mg/kg) dose-dependently inhibited carbachol (CCh)-induced bronchospasm in anesthetized rats with three-fold greater potency than the positive control, aminophylline. In tracheal preparations, So.Cr inhibited the low K(+) (25 mM)-induced contractions. Pretreatment of the tissues with 4-aminopyridine reversed the inhibitory effect of the plant extract against low K(+) , whereas glibenclamide did not show any effect, thus showing the involvement of voltage-sensitive K(+) channels. When tested against the CCh-induced pre-contractions for the involvement of any additional mechanism, interestingly, the extract showed a dose-dependent (0.03-0.1 mg/mL) inhibitory effect and shifted the inhibitory concentration response curves of isoprenaline to the left, thus showing phosphodiesterase enzyme inhibitory-like action, similar to that of papaverine. These results indicate that the crude extract of S. officinalis possesses bronchodilatory activity mediated predominantly via activation of voltage-dependent K(+) channels and inhibition of phosphodiesterase enzyme; thus, this study provides sound pharmacological basis for its medicinal use in hyperactive airways disorders such as asthma and cough. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Transsynaptic modality codes in the brain: possible involvement of synchronized spike timing, microRNAs, exosomes and epigenetic processes

    PubMed Central

    Smythies, John; Edelstein, Lawrence

    2013-01-01

    This paper surveys two different mechanisms by which a presynaptic cell can modulate the structure and function of the postsynaptic cell. We first present the evidence that this occurs, and then discuss two mechanisms that could bring this about. The first hypothesis relates to the long lasting effects that the spike patterns of presynaptic axons may exert by modulating activity–inducible programs in postsynaptic cells. The second hypothesis is based on recently obtained evidence that, the afferent neuron at the neuromuscular junction buds off exosomes at its synapse and carries a cargo of Wg and Evi, which are large molecular transsynaptic signaling agents (LMTSAs). Further evidence indicates that many types of neurons bud off exosomes containing payloads of various lipids, proteins, and types of RNA. The evidence suggests that they are transmitted across the synapse and are taken up by the postsynaptic structure either by perisynaptic or exosynaptic mechanisms, thus mediating the transfer of information between neurons. To date, the molecular hypothesis has been limited to local interactions within the synapse of concern. In this paper, we explore the possibility that this represents a mechanism for information transfer involving the postsynaptic neuron as a whole. This entails a review of the known functions of these molecules in neuronal physiology, together with an estimate of the possible types of information they could carry and how they might affect neurocomputations. PMID:23316146

  19. Activation of the fibrinolytic, coagulation and plasma kallikrein-kinin systems during and after open heart surgery in children.

    PubMed

    Saatvedt, K; Lindberg, H; Michelsen, S; Pedersen, T; Geiran, O R

    1995-07-01

    Activation of the fibrinolytic, coagulation and plasma kallikrein-kinin systems may be responsible for some of the coagulation disorders and inflammatory sequelae seen after extracorporeal circulation. The activation pattern of these systems was studied in 10 children undergoing open heart surgery with extracorporeal circulation. Blood samples were drawn serially before, during and up to 48 h after surgery. The heparin injection induced a significant elevation of plasmin (PL) (p < 0.05) which stayed elevated during extracorporeal circulation. Antiplasmin (AP) values were reduced at wound closure, while the levels were significantly elevated 48 h postoperatively (p < 0.05). alpha 2-antiplasmin-plasmin (APP) increased significantly perioperatively peaking 10 min after the initiation of cardiopulmonary bypass (p < 0.05). The coagulation markers thrombin-antithrombin (TAT) and the prothrombin fragment F1 & 2 increased significantly, peaking at wound closure and at termination of bypass respectively (p < 0.05). Plasma kallikrein (KK) values increased significantly with subsequent decreased levels of prekallikrein (PKK) and kallikrein inhibitor (KKI) after heparin injection. The KK level stayed elevated during cardiopulmonary bypass (CPB). The proenzyme functional inhibition index (PFI index), defined as the sum of deviations from the control values for proenzyme and functional inhibition values of the coagulation, fibrinolytic and plasma kallikrein-kinin systems, correlated significantly to the duration of cardiopulmonary bypass (p < 0.05). We conclude that open heart surgery in children activates the fibrinolytic, coagulation and plasma kallikrein-kinin systems.

  20. Effect of metoprolol on 24-hour urinary excretion of adrenal steroids and kallikrein in patients with essential hypertension.

    PubMed Central

    Fritschka, E.; Gotzen, R.; Kittler, R.; Schöneshöfer, M.

    1984-01-01

    Treatment of fifteen patients with essential hypertension over four weeks using the beta 1-adrenoceptor blocking agent, metoprolol, resulted in a decrease in 24 h urinary excretion of kallikrein and aldosterone along with a decrease in plasma renin activity. There was no significant change in 24 h excretion rates of the free adrenal steroids deoxycorticosterone, 18-OH-deoxycorticosterone, corticosterone, cortisol or 18-OH-corticosterone during treatment, which were not significantly different from excretion rates of normal males, thus excluding inhibitory effects of adrenal steroids on urinary kallikrein activity. A positive correlation was found between plasma renin activity and urinary excretion of kallikrein during the control period and after 2 weeks on metoprolol, supporting the assumption of a preserved link between the renin-angiotensin-aldosterone system and the renal excretion of kallikrein in these patients. The decrease in kallikrein excretion during beta 1-adrenoceptor blockade in patients with essential hypertension may be explained by a reduction in sympathetic tone and by reduced activity of the renin-aldosterone system. PMID:6367871

  1. Purification and preliminary characterization of a plasma kallikrein inhibitor isolated from sea hares Aplysia dactylomela Rang, 1828.

    PubMed

    González, Y; Araujo, M S; Oliva, M L V; Sampaio, C A M; Chávez, M A

    2004-02-01

    An inhibitor active against pancreatic trypsin was found in the crude extract from the sea hares Aplysia dactylomelaRang, 1828. A stronger inhibitory activity against human plasma kallikrein was detectable after treating this extract at 60 degrees C, for 30 min. The plasma kallikrein inhibitor (AdKI) purification was achieved by acetone fractionation (80%) v/v, ion-exchange chromatography on Mono Q column and gel filtration chromatography on Superdex 75 column (FPLC system). By the latter a molecular mass of 2900 Da was estimated. The purified inhibitor strongly inhibits human plasma kallikrein with a K(i) value of 2.2 x 10(-10)M, while human plasmin and pancreatic trypsin were inhibited with K(i) values of 1.8 x 10(-9) and 4.7 x 10(-9)M, respectively. Chymotrypsin, pancreatic elastase, pancreatic kallikrein and thrombin are not inhibited. The effect of AdKI on plasma kallikrein was confirmed by the prolongation of activated partial thromboplastin time, using a clotting time assay. The inhibitor did not affect prothrombin time or thrombin time. AdKi is a more specific inhibitor than other serine proteinase inhibitors from marine invertebrates.

  2. Possible involvement of dopamine and dopamine2 receptors in the inhibitions of gastric emptying by escin Ib in mice.

    PubMed

    Matsuda, H; Li, Y; Yoshikawa, M

    2000-11-03

    It was previously reported that escin Ib isolated from horse chestnut inhibited gastric emptying (GE) in mice, in which the capsaicin-sensitive sensory nerves (CPSN), the central nervous system and endogenous prostaglandins (PGs) were involved. In the present study, the possible involvement of dopamine and dopamine receptors in the inhibition of GE by escin Ib were investigated in mice. GE inhibition by escin Ib (25 mg/kg, p.o.) was attenuated after pretreatment with a single bolus of DL-alpha-methyl-p-tyrosine methyl ester (400 mg/kg, s.c., an inhibitor of tyrosine hydroxylase), reserpine (5 mg/kg, p.o., a catecholamine depletor), 6-hydroxydopamine (80 mg/kg, i.p., a dopamine depletor). Furthermore, pretreatment with spiperone (0.5-5 mg/kg, s.c., a dopamine2 receptor antagonist), haloperidol (0.5-10 mg/kg, s.c.) and metoclopramide (1-10 mg/kg, s.c.) (centrally acting dopamine2 receptor antagonists) attenuated the effect of escin Ib. Domperidone (0.1-5 mg/kg, s.c., a peripheral-acting dopamine2 antagonist) showed a weak attenuation, but SCH 23390 (1-5 mg/kg, s.c., a dopamine, receptor antagonist) did not. It is postulated that escin Ib inhibits GE, at least in part, mediated by CPSN, to stimulate the synthesis and/or release of dopamine, to act through central dopamine2 receptor, which in turn causes the release of PGs.

  3. Possible involvement of nitric oxide in morphine-induced miosis and reduction of intraocular pressure in rabbits.

    PubMed

    Bonfiglio, Vincenza; Bucolo, Claudio; Camillieri, Giovanni; Drago, Filippo

    2006-03-18

    The role of mu3 opioid receptors in morphine-induced intraocular pressure (IOP) lowering effect and miosis was evaluated in conscious, dark-adapted New Zealand white (NZW) rabbits using a masked-design study. IOP and pupil diameter (PD) measurements were taken at just before and 0.5, 1, 2, 4, 6 h after monolateral instillation of morphine (10, 50 and 100 microg/30 microl) as compared to vehicle administered in the contralateral eye. Morphine-induced ocular effects were challenged by a pre-treatment with the non-selective opioid receptor antagonist, naloxone (100 microg/30 microl), the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME, 1%, 30 microl), or the non-selective mu3 opioid receptor inhibitor, reduced L-glutathione (GSH, 1%, 30 microl). Morphine induced a dose-dependent decrease in IOP and PD. Pre-treatment with naloxone totally prevented morphine-induced decrease in IOP and miosis. Ocular administration of L-NAME or GSH alone failed to affect IOP or PD of NZW rabbits. However, pre-treatment with either drugs significantly reduced, but not totally prevented ocular effects of morphine. These results suggest that biochemical mechanisms related to nitric oxide release are involved, at least in part, in morphine effects on the eye. Since the mu3 opioid receptor subtype is able to release nitric oxide and is sensitive to inactivation by GSH, it may be possible that mu3 opioid receptors are involved in morphine-induced miosis and reduction in IOP.

  4. Possible involvement of sigma-1 receptors in the anti-immobility action of bupropion, a dopamine reuptake inhibitor.

    PubMed

    Dhir, Ashish; Kulkarni, S K

    2008-08-01

    Sigma receptors particularly, sigma-1 subtype is known to modulate the release of catecholamines in the brain and may participate in the mechanism of action of various antidepressants. The present study investigated the possible involvement of sigma receptors in modulating the anti-immobility-like effect of bupropion (a dopamine reuptake inhibitor) using the forced swim test (FST) in mice. Bupropion produced dose-dependent (10-40 mg/kg, i.p.) reduction in immobility period and the ED(50) value was found to be 18.5 (7.34-46.6) mg/kg, i.p. (+)-Pentazocine (2.5 mg/kg, i.p.), a high-affinity sigma-1 receptor agonist, produced synergistic response when it was co-administered with a subeffective dose of bupropion (10 mg/kg, i.p.). On the contrary, pretreatment with progesterone (10 mg/kg, s.c.), a sigma-1 receptor antagonist neurosteroid, rimcazole (5 mg/kg, i.p.), another sigma-1 receptor antagonist, or BD 1047 (1 mg/kg, i.p.), a novel sigma-1 receptor antagonist, reversed the anti-immobility effects of bupropion (20 mg/kg, i.p.). The various modulators used in the study did not show any effect per se on locomotor activity except bupropion which at a higher dose (15-40 mg/kg, i.p.) significantly increased the locomotor activity. The results for the first time demonstrated the involvement of sigma-1 receptors in the anti-immobility effects of bupropion.

  5. Possible involvement of 5-HT and 5-HT2 receptors in acceleration of gastrointestinal transit by escin Ib in mice.

    PubMed

    Matsuda, H; Li, Y; Yoshikawa, M

    2000-01-01

    We have reported previously that escin Ib accelerated gastrointestinal transit (GIT) in mice, and that its effect may be mediated by the release of endogenous prostaglandins (PGs) and nitric oxide (NO). In this study, the possible involvement of 5-HT and 5-HT receptors in the GIT acceleration of escin Ib was investigated in mice. The acceleration of GIT by escin Ib (25 or 50 mg/kg, p.o.) was attenuated by pretreatment with ritanserin (0.5-5 mg/kg, s.c., a 5-HT(2A/2C/2B) receptor antagonist), but not with MDL 72222 (1 and 5 mg/kg, s.c.) and metoclopramide (10 mg/kg, s.c.) (5-HT3 receptor antagonists) or tropisetron (1 and 10 mg/kg, s.c., a 5-HT(3/4) receptor antagonist). Furthermore, pretreatment with ketanserin (0.05-5 mg/kg, s.c.), haloperidol (1-5 mg/kg, s.c.) and spiperone (0.5-5 mg/kg, s.c.) (5-HT2A receptor antagonists), as well as a bolus of dl-p-chlorophenylalanine methyl ester (PCPA, 1000 mg/kg, p.o., 1, 6 or 24 h before administration of the sample) (an inhibitor of 5-HT synthesizing enzyme tryptophan hydroxylase) and reserpine (5 mg/kg, p.o.) (a 5-HT depletor), but not 6-hydroxydopamine (80 mg/kg, i.p., a dopamine depletor) or repeated PCPA (300 mg/kg x2, p.o., 72 and 48 h before administration of the sample), also attenuated the effects of escin Ib. It is postulated that escin Ib accelerates GIT, at least in part, by stimulating the synthesis of 5-HT to act through 5-HT2, possibly 5-HT2A receptors, which in turn causes the release of NO and PGs.

  6. Inhibition of rat brain tryptophan metabolism by ethanol withdrawal and possible involvement of the enhanced liver tryptophan pyrrolase activity.

    PubMed Central

    Badawy, A A; Punjani, N F; Evans, C M; Evans, M

    1980-01-01

    1. Chronic ethanol administration to rats was previously shown to enhance brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain secondarily to the NAD(P)H-mediated inhibition of liver tryptophan pyrrolase activity. 2. At 24h after ethanol withdrawal, all the above effects were observed because liver [NAD(P)H] was still increased. By contrast, all aspects of liver and brain tryptophan metabolism were normal at 12 days after withdrawal. 3. At 7--9 days after withdrawal, brain 5-hydroxytryptamine synthesis was decreased, as was tryptophan availability to the brain. Liver tryptophan pyrrolase activity at these time-intervals was maximally enhanced. 4. Administration of nicotinamide during the withdrawal phase not only abolished the withdrawal-induced enhancement of tryptophan pyrrolase activity on day 8, but also maintained the inhibition previously caused by ethanol. Under these conditions, the withdrawal-induced decreases in brain 5-hydroxytryptamine synthesis and tryptophan availability to the brain were abolished, and both functions were enhanced. Nicotinamide alone exerted similar effects in control rats. 5. It is suggested that ethanol withdrawal inhibits brain 5-hydroxytryptamine synthesis by decreasing tryptophan availability to the brain secondarily to the enhanced liver tryptophan pyrrolase activity. 6. The results are discussed in relation to the possible involvement of 5-hydroxytryptamine in dependence on ethanol and other drugs. PMID:7195200

  7. Cissus quadrangularis L. extract attenuates chronic ulcer by possible involvement of polyamines and proliferating cell nuclear antigen

    PubMed Central

    Jainu, Mallika; Vijaimohan, K.; Kannan, K.

    2010-01-01

    The present study was designed to investigate whether Cissus quandrangularis extract (CQE) had healing effects on gastric ulcer, through modulation of polyamines and proliferating cell nuclear antigen (PCNA) in rats. Administration of acetic acid (AA) was accompanied by reduced PCNA which was determined by immunohistochemical staining, 3H-thymidine incorporation using liquid scintillation spectrometry, mitochondrial marker enzymes, polyamine contents and transforming growth factor-alpha (TGF-α) expression in gastric mucosa of rats. Administration of CQE after the application of AA to the stomach enhanced the reduction of ulcer area in a dose-dependent manner which was confirmed by histoarchitecture. Moreover, CQE significantly increased the 3H-thymidine incorporation and the levels of polyamines such as putrescine, spermine and spermidine in ulcerated rats. In addition, the extract offers gastroprotection in the ulcerated area by increased expression of TGF-α and also reversed the changes in the gastric mucosa of ulcerated rats with significant elevation in mitochondrial tricarboxylic acid (TCA) cycle enzymes and PCNA levels. Based on these results, the healing effect of CQE on AA induced gastric mucosal injury in rats may be attributed to its growth promoting and cytoprotective actions, possibly involving an increase in tissue polyamine contents and cell proliferation. PMID:20931084

  8. Cissus quadrangularis L. extract attenuates chronic ulcer by possible involvement of polyamines and proliferating cell nuclear antigen.

    PubMed

    Jainu, Mallika; Vijaimohan, K; Kannan, K

    2010-07-01

    The present study was designed to investigate whether Cissus quandrangularis extract (CQE) had healing effects on gastric ulcer, through modulation of polyamines and proliferating cell nuclear antigen (PCNA) in rats. Administration of acetic acid (AA) was accompanied by reduced PCNA which was determined by immunohistochemical staining, (3)H-thymidine incorporation using liquid scintillation spectrometry, mitochondrial marker enzymes, polyamine contents and transforming growth factor-alpha (TGF-α) expression in gastric mucosa of rats. Administration of CQE after the application of AA to the stomach enhanced the reduction of ulcer area in a dose-dependent manner which was confirmed by histoarchitecture. Moreover, CQE significantly increased the (3)H-thymidine incorporation and the levels of polyamines such as putrescine, spermine and spermidine in ulcerated rats. In addition, the extract offers gastroprotection in the ulcerated area by increased expression of TGF-α and also reversed the changes in the gastric mucosa of ulcerated rats with significant elevation in mitochondrial tricarboxylic acid (TCA) cycle enzymes and PCNA levels. Based on these results, the healing effect of CQE on AA induced gastric mucosal injury in rats may be attributed to its growth promoting and cytoprotective actions, possibly involving an increase in tissue polyamine contents and cell proliferation.

  9. Circulating angiotensins in the river lamprey, Lampetra fluviatilis, acclimated to freshwater and seawater: possible involvement in the regulation of drinking.

    PubMed

    Rankin, J C; Cobb, C S; Frankling, S C; Brown, J A

    2001-06-01

    Plasma angiotensin levels were measured for the first time in a cyclostome, the river lamprey. With the demonstration that angiotensins are present in the circulation, the possibility of a physiological role in the regulation of drinking was re-examined. Angiotensin II and III concentrations and plasma osmolalities were significantly higher in lampreys acclimated to 28 ppt seawater than in those acclimated to freshwater. No changes were found in angiotensin II and III levels 4 h after transfer from freshwater to 50% seawater, although plasma osmolality had started to rise by this time. There was a suggestion that plasma angiotensin II levels might be related to osmolality in the transfer experiment. Injection of Asp(1)Val(5)- or Asn(1)Val(5)-angiotensin II (40-169 microg/kg body wt.) did not stimulate drinking in freshwater-acclimated lampreys, even when they were still capable of drinking. The angiotensin-converting enzyme inhibitor captopril and the smooth muscle relaxant papaverine both reduced drinking rate in 50% seawater-acclimated lampreys. The data do not provide direct evidence for the involvement of the renin-angiotensin system in the control of drinking behaviour in the lamprey. Indirect evidence from the captopril effect is suggestive, but could have other explanations.

  10. Antinociceptive Effect of Aqueous Extract of Origanum vulgare L. in Male Rats: Possible Involvement of the GABAergic System

    PubMed Central

    Afarineshe Khaki, Mohammad Reza; Pahlavan, Yasamin; Sepehri, Gholamreza; Sheibani, Vahid; Pahlavan, Bahare

    2013-01-01

    The objective of the present investigation was to assess the possible involvement of GABAergic mechanism in analgesic effect of aqueous extract of Origanum Vulgare (ORG) in a rat model of acute pain test. Sixty-three anaesthetized male Wistar rats (200-250 g) were cannulated into the left ventricle. Five to seven days after the recovery from surgery, ORG extract was intraventricularly injected at dose of 3 μg/rat i.c.v. Then, baclofen (10 mg/Kg, IP), CGP35348 (100 nmol/Kg, i.c.v), muscimol (1 mg/Kg IP) and bicuculline (5 mg/Kg IP) were separately injected 20 min before the injection of ORG. The experimental groups were compared with intact (control) group (n = 7). The response latency of rats to thermal stimulation was recorded using Tail-Flick test. Injection of ORG extract resulted in a significant and dose-dependent increase in the response latency. There was also a significant increase in the response latency after co-administration of ORG extract with baclofen when compared with control group. However, following co-administration of ORG extract/bicuculline, a significant decrease in the response latency was observed compared to control group. In conclusion, the results of the present study suggest that aqueous extract of Origanum vulgare L. ssp. viridis possesses antinociceptive activity in a dose-dependent manner and ORG-induced antinociception might be mediated, at least in part, by both GABA receptors. PMID:24250616

  11. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma.

    PubMed

    Diamandis, Eleftherios P; Okui, Akira; Mitsui, Shinichii; Luo, Liu-Ying; Soosaipillai, Antoninus; Grass, Linda; Nakamura, Terukazu; Howarth, David J C; Yamaguchi, Nozomi

    2002-01-01

    Human kallikrein 11 (hK11) is a putative serine protease of the human kallikrein gene family. Currently, no methods are available for measuring hK11 in biological fluids and tissues. Our aim was to develop immunological reagents and assays for measuring hK11 and examine if the concentration of this kallikrein is altered in disease states. We produced recombinant hK11 protein in a baculovirus system and used it to develop monoclonal and polyclonal antibodies against hK11. We then developed an immunofluorometric procedure for measuring hK11 in biological fluids and tissue extracts with high sensitivity and specificity. We further quantified hK11 in various biological fluids and in serum of patients with various cancers. The hK11 immunofluorometric assay is highly sensitive (detection limit, 0.1 microg/l) and specific (no detectable cross-reactivity for other homologous kallikreins). We established the tissue expression pattern of hK11 at the protein level and found the highest levels in the prostate, followed by stomach, trachea, skin, and colon. We have immunohistochemically localized hK11 in epithelial cells of various organs. We further detected hK11 in amniotic fluid, milk of lactating women, cerebrospinal fluid, follicular fluid, and breast cancer cytosols. However, highest levels were seen in prostatic tissue extracts and seminal plasma. hK11 in seminal plasma and prostatic extracts is present at approximately 300-fold lower levels than prostate-specific antigen and at approximately the same levels as hK2. hK11 expression in breast cancer cell lines is up-regulated by estradiol. Elevated serum levels of hK11 were found in 70% of women with ovarian cancer and in 60% of men with prostate cancer. This is the first reported immunological assay for hK11. Analysis of this biomarker in serum may aid in the diagnosis and monitoring of ovarian and prostatic carcinoma.

  12. The kallikrein gene 5 splice variant 2 is a new biomarker for breast and ovarian cancer.

    PubMed

    Yousef, George M; White, Nicole M A; Kurlender, Lisa; Michael, Iacovos; Memari, Nader; Robb, John-Desmond; Katsaros, Dionyssios; Stephan, Carsten; Jung, Klaus; Diamandis, Eleftherios P

    2004-01-01

    The presence of more than one mRNA form for the same gene is common among kallikreins, and many of the kallikrein splice variants may hold significant clinical value. The human kallikrein gene 5 (KLK5) is a member of the human kallikrein gene family of serine proteases on chromosome 19q13.4. KLK5 has been shown to be differentially expressed in a variety of endocrine tumors including ovarian, breast and prostate cancer. Utilizing Expressed Sequence Tag database analysis and reverse transcriptase polymerase chain reaction, we identified a new alternatively spliced form of KLK5(KLK5-splice variant 2, KLK5-SV2). This variant mRNA is 1,438 bp in length; formed of 195 bp of 5' untranslated region, 882 bp of protein coding sequence and a 3' untranslated region of 326 nucleotides. KLK5-SV2 has 7 exons, the first 2 of which are untranslated, and 6 intervening introns. KLK5-SV2 is different from the classic form of the KLK5 mRNA in its 5' untranslated region, where the first 5' untranslated exon of the classic form is split into 2 exons with an intervening intron of 135 nucleotides. KLK5-SV2 is expressed in a variety of tissues, with higher expression levels in the mammary gland, cervix, salivary gland and trachea. The steroid hormone receptor-positive breast cancer cell line BT-474 was used to examine the effect of different steroids on the expression levels of KLK5-SV2. Expression levels were significantly higher after stimulation with androgens, but not estrogens, progestins, aldosterone or corticosteroids. While relatively high levels of expression were found in all 10 normal breast tissues examined, no expression was detected in 16 breast cancer tissues, and expression was significantly lower than normal in the remaining 4 cancers. Expression levels comparable to normal were found in only 1 breast cancer cell line. Weak to no expression was detected in 3 other breast cancer cell lines. KLK5-SV2 was not detectable in any of the 10 normal ovarian tissues examined. It was

  13. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2007-03-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well in the pathogenesis of endocrine-related cancers. Previous experiments have shown that many kallikrein genes are under steroid hormone regulation in breast cancer cell lines. We here examine the coordinated expression of multiple kallikrein genes in several breast cancer cell lines after steroid hormone stimulation. Breast cancer cell lines were treated with various steroid hormones and kallikrein (KLK/hK) expression of hK3 (prostate-specific antigen, PSA), hK5, hK6, hK7, hK8, hK10, hK11, hK13, and hK14 was analyzed at the RNA level via RT-PCR and at the protein level by immunofluorometric ELISA assays. We identified several distinct hK hormone-dependent and hormone-independent expression patterns. Hormone-specific modulation of expression was seen for several kallikreins in BT-474, MCF-7, and T-47D cell lines. hK6 was specifically up-regulated upon estradiol treatment in all three cell lines whereas PSA expression was induced by dihydrotestosterone (DHT) and norgestrel stimulation in BT-474 and T-47D. hK10, hK11, hK13, and hK14 were specifically up-regulated by DHT in T-47D and by estradiol in BT-474 cells. Bioinformatic analysis of upstream proximal promoter sequences for these hKs did not identify any recognizable hormone-response elements (HREs), suggesting that the coordinated activation of these four hKs represents a unique expression "cassette", utilizing a common hormone-dependent mechanism. We conclude that groups of human hKs are coordinately expressed in a steroid hormone-dependent manner. Our data supports clinical observations linking expression of multiple hKs with breast cancer prognosis.

  14. Induction of apoptosis in placentas of pregnant mice exposed to lipopolysaccharides: possible involvement of Fas/Fas ligand system.

    PubMed

    Ejima, K; Koji, T; Tsuruta, D; Nanri, H; Kashimura, M; Ikeda, M

    2000-01-01

    To explore the pathogenesis in placental dysfunction and abruptio placentae, we analyzed the occurrence of placental cell apoptosis and the role of Fas and Fas ligand (L) in that process in an inflammatory placental dysfunction model of pregnant mice, using lipopolysaccharides (LPS). In the present study, Day 13 pregnant mice were injected i.p. with LPS (50 microg/kg) or saline as a control, and the placentas were isolated at various time points after the injection. Analysis of the isolated DNA in agarose-gel electrophoresis revealed a typical ladder pattern of bands consisting of 180-200 base pairs (bp), which is regarded as a hallmark of apoptosis. The intensity of the bands increased time-dependently, reaching a maximum level at 12 h after LPS injection. In accord with the biochemical data, histochemical analysis using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) revealed that nuclei positive for double-stranded DNA breaks were found in decidua, diploid trophoblasts in the basal zone, and spongiotrophoblasts. The number of positive nuclei was maximized at 12 h after LPS injection. As a next step, we investigated the possible involvement of Fas and Fas L in the induction of apoptosis of the placental cells after LPS injection. Western blot analysis indicated that LPS increased the expression of Fas and Fas L in the placenta by about 4-fold at 12 h and 18 h, respectively, after injection. The cells expressing Fas and Fas L were identified, using immunohistochemistry and nonradioactive in situ hybridization, as decidua, diploid trophoblasts in the basal zone, and spongiotrophoblasts. Furthermore, when the expression of 4-hydroxy-2-nonenal (HNE)-modified proteins was assessed to evaluate the relation of oxidative stress elicited by LPS to the induction of apoptosis, once again decidua, diploid trophoblasts in the basal zone, and spongiotrophoblasts were positive. Therefore, the placental dysfunction by LPS may be brought about

  15. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling.

    PubMed

    Guo, Xueling; Shang, Jin; Deng, Yan; Yuan, Xiao; Zhu, Die; Liu, Huiguo

    2015-07-01

    Obstructive sleep apnea, characterized by recurrent episodes of hypoxia [intermittent hypoxia (IH)], has been identified as a risk factor for cardiovascular diseases. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of proteins has important regulatory implications on the pathophysiology of cardiovascular disorders. In this study, we examined the role of O-GlcNAcylation in cardiac architecture and left ventricular function following IH. Rats were randomly assigned to a normoxia and IH group (2 min 21% O2; 2 min 6-8% O2). Left ventricular function, myocardial morphology and the levels of signaling molecules were then measured. IH induced a significant increase in blood pressure, associated with a gradually abnormal myocardial architecture. The rats exposed to 2 or 3 weeks of IH presented with augmented left ventricular systolic and diastolic function, which declined at week 4. Consistently, the O-GlcNAc protein and O-GlcNAcase (OGA) levels in the left ventricular tissues steadily increased following IH, reaching peak levels at week 3. The O-GlcNAc transferase (OGT), extracellular signal-regulated kinase 1/2 (ERK1/2) and the p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation levels were affected in an opposite manner. The phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) remained unaltered. In parallel, compared with exposure to normoxia, 4 weeks of IH augmented the O-GlcNAc protein, OGT, phosphorylated ERK1/2 and p38 MAPK levels, accompanied by a decrease in OGA levels and an increase in the levels of myocardial nuclear factor-κB (NF-κB), inflammatory cytokines, caspase-3 and cardiomyocyte apoptosis. Taken together, our suggest a possible involvement of O-GlcNAc protein and MAPK signaling in the alterations of left ventricular function and cardiac injury following IH.

  16. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the {gamma}-glutamyl cycle

    SciTech Connect

    Stern, Stephan T.; Bruno, Mary K.; Horton, Robert A.; Hill, Dennis W.; Roberts, Jeanette C.; Cohen, Steven D. . E-mail: scohen@mcp.edu

    2005-01-15

    Acetaminophen (APAP) nephrotoxicity has been observed both in humans and research animals. Our recent investigations have focused on the possible involvement of glutathione-derived APAP metabolites in APAP nephrotoxicity and have demonstrated that administration of acetaminophen-cysteine (APAP-CYS) potentiated APAP-induced renal injury with no effects on APAP-induced liver injury. Additionally, APAP-CYS treatment alone resulted in a dose-responsive renal GSH depletion. This APAP-CYS-induced renal GSH depletion could interfere with intrarenal detoxification of APAP or its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and may be the mechanism responsible for the potentiation of APAP nephrotoxicity. Renal-specific GSH depletion has been demonstrated in mice and rats following administration of amino acid {gamma}-glutamyl acceptor substrates for {gamma}-glutamyl transpeptidase ({gamma}-GT). The present study sought to determine if APAP-CYS-induced renal glutathione depletion is the result of disruption of the {gamma}-glutamyl cycle through interaction with {gamma}-GT. The results confirmed that APAP-CYS-induced renal GSH depletion was antagonized by the {gamma}-glutamyl transpeptidase ({gamma}-GT) inhibitor acivicin. In vitro analysis demonstrated that APAP-CYS is a {gamma}-glutamyl acceptor for both murine and bovine renal {gamma}-GT. Analysis of urine from mice pretreated with acivicin and then treated with APAP, APAP-CYS, or acetaminophen-glutathione identified a {gamma}-glutamyl-cysteinyl-acetaminophen metabolite. These findings are consistent with the hypothesis that APAP-CYS contributes to APAP nephrotoxicity by depletion of renal GSH stores through interaction with the {gamma}-glutamyl cycle.

  17. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the gamma-glutamyl cycle.

    PubMed

    Stern, Stephan T; Bruno, Mary K; Horton, Robert A; Hill, Dennis W; Roberts, Jeanette C; Cohen, Steven D

    2005-01-15

    Acetaminophen (APAP) nephrotoxicity has been observed both in humans and research animals. Our recent investigations have focused on the possible involvement of glutathione-derived APAP metabolites in APAP nephrotoxicity and have demonstrated that administration of acetaminophen-cysteine (APAP-CYS) potentiated APAP-induced renal injury with no effects on APAP-induced liver injury. Additionally, APAP-CYS treatment alone resulted in a dose-responsive renal GSH depletion. This APAP-CYS-induced renal GSH depletion could interfere with intrarenal detoxification of APAP or its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and may be the mechanism responsible for the potentiation of APAP nephrotoxicity. Renal-specific GSH depletion has been demonstrated in mice and rats following administration of amino acid gamma-glutamyl acceptor substrates for gamma-glutamyl transpeptidase (gamma-GT). The present study sought to determine if APAP-CYS-induced renal glutathione depletion is the result of disruption of the gamma-glutamyl cycle through interaction with gamma-GT. The results confirmed that APAP-CYS-induced renal GSH depletion was antagonized by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. In vitro analysis demonstrated that APAP-CYS is a gamma-glutamyl acceptor for both murine and bovine renal gamma-GT. Analysis of urine from mice pretreated with acivicin and then treated with APAP, APAP-CYS, or acetaminophen-glutathione identified a gamma-glutamyl-cysteinyl-acetaminophen metabolite. These findings are consistent with the hypothesis that APAP-CYS contributes to APAP nephrotoxicity by depletion of renal GSH stores through interaction with the gamma-glutamyl cycle.

  18. Possible involvement of matrix metalloproteinase-3 in the pathogenesis of macroprolactinaemia in some patients with rheumatoid arthritis.

    PubMed

    Adachi, Takashi; Hattori, Naoki; Ishihara, Takashi; Iida, Hirokazu; Saito, Takanori; Miyashima, Shigeo; Shimatsu, Akira

    2013-08-01

    Macroprolactin primarily comprises a complex of prolactin (PRL) and IgG molecules, particularly anti-PRL autoantibodies. However, it is unknown why autoantibodies against PRL develop in certain subjects. This study aimed to elucidate post-translational modifications in the PRL molecule that may be involved in the pathogenesis of macroprolactinaemia. Macroprolactinaemia was screened with a polyethylene glycol method in 238 patients with rheumatoid arthritis (RA) and 302 control subjects and confirmed by gel chromatography. We examined the relationship between macroprolactinaemia and several RA-related laboratory tests including matrix metalloproteinase-3 (MMP-3) and anti-cyclic citrullinated peptide (CCP) antibody titres. The effect of MMP-3 on the PRL molecule was examined by western blotting. Patients with RA exhibited a significantly higher prevalence of macroprolactinaemia (15/238; 6.3%) than the young control subjects (5/219 subjects; 2.3%), but the prevalence was not different from that observed in the elderly control subjects (5/83 subjects; 6.0%). The prevalence of macroprolactinaemia in patients with elevated MMP-3 levels (9.68%) was significantly higher than that in those with normal MMP-3 levels (2.63%). Digestion of PRL with MMP-3 produced vasoinhibins with several molecular species. Serum total and free PRL levels in RA patients were higher than those in the age- and gender-matched control subjects. The levels of macroprolactin were not significantly correlated with those of RA-specific anti-CCP antibody. We speculate that elevated MMP-3 levels may lead to the formation of new epitopes on the PRL molecule that might trigger an immune response to produce anti-PRL autoantibodies in some patients with RA. Such post-translational modifications may possibly contribute to the increased prevalence of macroprolactinaemia in elderly subjects.

  19. Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D2-induced formation of anandamide

    PubMed Central

    Solinas, Marcello; Tanda, Gianluigi; Wertheim, Carrie E.; Goldberg, Steven R.

    2010-01-01

    Rational Although THC-induced elevations in accumbal dopamine levels are believed to play an important role in the abuse-related effects of cannabis, little direct evidence has been provided that the dopaminergic system is involved in the psychotropic effects of THC. Objectives To investigate whether drugs activating or blocking the dopaminergic system modulate the discriminative effects of THC. Methods and Results In rats that had learned to discriminate 3 mg/kg of THC from vehicle injections, the indirect dopaminergic agonists cocaine and amphetamine, the D1-receptor agonist SKF-38393, and the D2-receptor agonists quinpirole and apomorphine did not produce significant THC-like discriminative effects. However, both cocaine and amphetamine and D2-, but not the D1-, receptor agonists, augmented THC discrimination. Neither the D1-receptor antagonist SCH-23390 nor the D2-receptor antagonist raclopride reduced the discriminative effects of THC, even at doses that significantly depressed baseline operant responding. However, the D2-, but not the D1-, antagonist counteracted the augmentation of THC’s discriminative effects produced by cocaine and amphetamine. We hypothesized that release of anandamide by activation of D2 receptors was responsible for the observed augmentation of THC discrimination. This hypothesis was supported by two findings. First, the cannabinoid CB1-receptor antagonist rimonabant blocked quinpirole-induced augmentation of THC discrimination. Second, inhibition of anandamide degradation by blockade of fatty acid amide hydrolase (FAAH) augmented the THC-like effects of quinpirole. Conclusions Dopamine does not play a major role in THC discrimination. However, activation of the dopaminergic system positively modulates the discriminative effects of THC, possibly through D2-induced elevations in brain levels of anandamide. PMID:20179908

  20. Possible Involvement of Hepatitis B Virus Infection of Hepatocytes in the Attenuation of Apoptosis in Hepatic Stellate Cells

    PubMed Central

    Sasaki, Reina; Kanda, Tatsuo; Nakamura, Masato; Nakamoto, Shingo; Haga, Yuki; Wu, Shuang; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-01-01

    Background The induction of apoptosis in hepatic stellate cells (HSCs) is a promising therapeutic strategy against hepatitis B virus (HBV)-related hepatic fibrosis. The underlying mechanisms of apoptosis in HSCs, however, are unknown under consideration of HBV infection. In this study, the effects of HBV on apoptosis and endoplasmic reticulum (ER) stress signaling in HSCs were examined. Methods The effects of conditioned media (CM) from HepG2.2.15 on apoptosis induced by the proteasome inhibitor MG132 in LX-2 and HHSteC were studied in regard to c-Jun. In combination with c-Fos, c-Jun forms the AP-1 early response transcription factor, leading to AP-1 activation, signal transduction, endoplasmic reticulum (ER) stress and apoptosis. Results In LX-2 cells, MG132 treatment was associated with the phosphorylation of c-Jun, activation of AP-1 and apoptosis. However, in the presence of CM from HepG2.2.15, these phenomena were attenuated. In HHSteC cells, similar results were observed. HBV genomic DNA is not involved in the process of HSC apoptosis. It is possible that HBeAg has an inhibitory effect on MG132-induced apoptosis in LX-2. We also observed the upregulation of several ER stress-associated genes, such as cAMP responsive element binding protein 3-like 3, inhibin-beta A and solute carrier family 17-member 2, in the presence of CM from HepG2.2.15, or CM from PXB cells infected with HBV. Conclusions HBV inhibits the activation of c-Jun/AP-1 in HSCs, contributing to the attenuation of apoptosis and resulting in hepatic fibrosis. HBV also up-regulated several ER stress genes associated with cell growth and fibrosis. These mechanistic insights might shed new light on a treatment strategy for HBV-associated hepatic fibrosis. PMID:26731332

  1. Nicotine improves ethanol-induced impairment of memory: possible involvement of nitric oxide in the dorsal hippocampus of mice.

    PubMed

    Raoufi, N; Piri, M; Moshfegh, A; Shahin, M-S

    2012-09-06

    In the present study, the possible involvement of nitric oxide (NO) systems in the dorsal hippocampus in nicotine's effect on ethanol-induced amnesia and ethanol state-dependent memory was investigated. Adult male mice were cannulated in the CA1 regions of the dorsal hippocampus and trained on a passive avoidance learning task for memory assessment. We found that pre-training intraperitoneal (i.p.) administration of ethanol (1 g/kg) decreased inhibitory avoidance memory when tested 24 h later. The response induced by pre-training ethanol was significantly reversed by pre-test administration of the drug. Similar to ethanol, pre-test administration of nicotine (0.4 and 0.8 μg/mouse, intra-CA1) alone and nicotine (0.2, 0.4 and 0.8 μg/mouse) plus an ineffective dose of ethanol also significantly reversed the amnesia induced by ethanol. Ethanol amnesia was also prevented by pre-test administration of L-arginine (1.2 μg/mouse, intra-CA1), a NO precursor. Interestingly, an ineffective dose of nicotine (0.2 μg/mouse) in combination with a low dose of L-arginine (0.8 μg/mouse) synergistically improved memory performance impaired by ethanol given before training. In contrast, pre-test intra-CA1 microinjection of L-NAME (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (0.4 and 0.8 μg/mouse), which reduced memory retrieval in inhibitory avoidance task by itself, in combination with an effective dose of nicotine (0.4 μg/mouse) prevented the improving effect of nicotine on memory impaired by pre-training ethanol. Moreover, intra-CA1 microinjection of L-NAME reversed the L-arginine-induced potentiation of the nicotine response. The results suggest the importance of NO system(s) in the CA1 regions of the dorsal hippocampus for improving the effect of nicotine on the ethanol-induced amnesia.

  2. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein.

    PubMed Central

    Lilja, H

    1985-01-01

    A 33-kD glycoprotein, known as the "prostate-specific antigen," was purified to homogeneity from human seminal plasma. The prostatic protein was identified as a serine protease, and its NH2-terminal sequence strongly suggests that it belongs to the family of glandular kallikreins. The structural protein of human seminal coagulum, the predominant protein in seminal vesicle secretion, was rapidly cleaved by the prostatic enzyme, which suggests that this seminal vesicle protein may serve as the physiological substrate for the protease. The prostatic enzyme hydrolyzed arginine- and lysine-containing substrates with a distinct preference for the former. All synthetic substrates tested were poor substrates for the enzyme. Synthetic Factor XIa substrate (pyro-glutamyl-prolyl-arginine-p-nitroanilide), and the synthetic kallikrein substrate (H-D-prolyl-phenylalanyl-arginine-p-nitroanilide) were hydrolyzed with maximum specific activities at 23 degrees C of 79 and 34 nmol/min per mg and Km values of 1.0 and 0.45 mM, respectively. Synthetic substrates for plasmin, chymotrypsin, and elastase were either not hydrolyzed by the enzyme at all, or only hydrolyzed very slowly. Images PMID:3902893

  3. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  4. The Impaired Viability of Prostate Cancer Cell Lines by the Recombinant Plant Kallikrein Inhibitor*

    PubMed Central

    Ferreira, Joana Gasperazzo; Diniz, Paula Malloy Motta; de Paula, Cláudia Alessandra Andrade; Lobo, Yara Aparecida; Paredes-Gamero, Edgar Julian; Paschoalin, Thaysa; Nogueira-Pedro, Amanda; Maza, Paloma Korehisa; Toledo, Marcos Sergio; Suzuki, Erika; Oliva, Maria Luiza Vilela

    2013-01-01

    Prostate cancer is the most common type of cancer, and kallikreins play an important role in the establishment of this disease. rBbKIm is the recombinant Bauhinia bauhinioides kallikreins inhibitor that was modified to include the RGD/RGE motifs of the inhibitor BrTI from Bauhinia rufa. This work reports the effects of rBbKIm on DU145 and PC3 prostate cancer cell lines. rBbKIm inhibited the cell viability of DU145 and PC3 cells but did not affect the viability of fibroblasts. rBbKIm caused an arrest of the PC3 cell cycle at the G0/G1 and G2/M phases but did not affect the DU145 cell cycle, although rBbKIm triggers apoptosis and cytochrome c release into the cytosol of both cell types. The differences in caspase activation were observed because rBbKIm treatment promoted activation of caspase-3 in DU145 cells, whereas caspase-9 but not caspase-3 was activated in PC3 cells. Because angiogenesis is important to the development of a tumor, the effect of rBbKIm in this process was also analyzed, and an inhibition of 49% was observed in in vitro endothelial cell capillary-like tube network formation. In summary, we demonstrated that different properties of the protease inhibitor rBbKIm may be explored for investigating the androgen-independent prostate cancer cell lines PC3 and DU145. PMID:23511635

  5. The Extreme Anterior Domain Is an Essential Craniofacial Organizer Acting through Kinin-Kallikrein Signaling

    PubMed Central

    Jacox, Laura; Sindelka, Radek; Chen, Justin; Rothman, Alyssa; Dickinson, Amanda; Sive, Hazel

    2014-01-01

    SUMMARY The extreme anterior domain (EAD) is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC) development and migration was abnormal after loss of function (LOF) in the pathway genes kng, encoding Bradykinin (xBdk), carboxypeptidase-N (cpn) that cleaves Bradykinin and neuronal nitric oxide synthase. Consistent with a role for nitric oxide (NO) in face formation, endogenous NO levels declined after LOF in pathway genes but these were restored and a normal face formed after medial implantation of xBdk-beads into LOF embryos. Facial transplants demonstrated that Cpn function from within the EAD is necessary for migration of first arch cranial NC into the face and to promote mouth opening. The study identifies the EAD as an essential craniofacial organizer acting through Kinin-Kallikrein signaling. PMID:25043181

  6. Evaluation of human tissue kallikrein-related peptidases 6 and 10 expression in early gastroesophageal adenocarcinoma.

    PubMed

    Grin, Andrea; Samaan, Sara; Tripathi, Monika; Rotondo, Fabio; Kovacs, Kalman; Bassily, Mena N; Yousef, George M

    2015-04-01

    Kallikreins are a family of serine proteases that are linked to malignancy of different body organs with potential clinical utility as tumor markers. In this study, we investigated kallikrein-related peptidase 6 (KLK6) and KLK10 expression in early gastroesophageal junction adenocarcinoma and Barrett esophagus (BE) with and without dysplasia. Immunohistochemistry revealed significantly increased KLK6 expression in early invasive cancer compared with dysplastic (P = .009) and nondysplastic BE (P = .0002). There was a stepwise expression increase from metaplasia to dysplasia and invasive tumors. Significantly higher KLK10 was seen in dysplastic lesions compared with metaplasia but not between dysplastic lesions and invasive cancers. KLK6 staining intensity was increased at the invasive front (P = .006), suggesting its role in tumor invasiveness. Neither KLK6 nor KLK10 was significantly associated with other prognostic markers, including depth of invasion, indicating their potential as independent biomarkers. Our results should be interpreted with caution due to limited sample size. There was a significant correlation between KLK6 and KLK10 expression both at the invasive front and within the main tumor, indicating a collaborative effect. We then compared KLK6 and KLK10 messenger RNA expression between metaplastic and cancerous tissues in an independent data set of esophageal carcinoma from The Cancer Genome Atlas. KLK6 and KLK10 may be useful markers and potential therapeutic targets in gastroesophageal junction tumors.

  7. Kallikrein-related peptidases in prostate, breast, and ovarian cancers: from pathobiology to clinical relevance.

    PubMed

    Avgeris, Margaritis; Mavridis, Konstantinos; Scorilas, Andreas

    2012-04-01

    Tissue kallikrein (KLK1) and kallikrein-related peptidases (KLK2-15) comprise a family of 15 highly conserved secreted serine proteases with similar structural characteristics and a wide spectrum of functional properties. Both gene expression and protein activity of KLKs are rigorously controlled at various levels via diverse mechanisms, including extensive steroid hormone regulation, to exert their broad physiological role. Nevertheless, deregulated expression, secretion, and function of KLK family members has been observed in several pathological conditions and, particularly, in endocrine-related human malignancies, including those of the prostate, breast, and ovary. The cancer-related abnormal activity of KLKs upon substrates such as growth factors, cell adhesion molecules, cell surface receptors, and extracellular matrix proteins facilitate both tumorigenesis and disease progression to the advanced stages. The well-documented relationship between KLK status and the clinical outcome of cancer patients has led to their identification as promising diagnostic, prognostic, and treatment response monitoring biomarkers for these complex disease entities. The main objective of this review is to summarize the existing knowledge concerning the role of KLKs in prostate, breast, and ovarian cancers and to highlight their continually evolving biomarker capabilities that can provide significant benefits for the management of cancer patients.

  8. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  9. Kallikrein-kinin system and fibrinolysis in hereditary angioedema due to factor XII gene mutation Thr309Lys.

    PubMed

    Bork, Konrad; Kleist, Rouven; Hardt, Jochen; Witzke, Günther

    2009-07-01

    In a subgroup of hereditary angioedema (HAE) patients with normal C1-esterase inhibitor levels, HAE is caused by a Thr309Lys mutation in the coagulation factor XII (F12) gene. The aim of this study was to examine elements of the kallikrein-kinin system ('contact system') and the downstream-linked coagulation, complement and fibrinolytic systems in the plasma of six patients with HAE caused by the Thr309Lys mutation and healthy probands. Blood samples were taken from participants during the symptom-free interval between attacks. Samples were analyzed for activity and concentrations of components of the kallikrein-kinin system and linked enzyme systems. The mean FXII clotting activity was 90% in patients with the FXII mutation, and the concentration of FXIIa was 4.1 ng/ml; this did not differ from healthy probands. Mean prekallikrein amidolytic activity and high-molecular-weight kininogen clotting activity were 130 and 144%, respectively, both higher than in healthy probands. The mean kallikrein-like activity of the HAE patients was 11.4 U/l and did not differ from healthy probands. There was no difference in FXII surface activation by silicon dioxide or in kallikrein-like activity with and without activation by dextran sulfate. Contrary to the results of a recently published study, no indication that the Thr309Lys mutation causes a 'gain-of-function' of FXIIa was observed in this investigation.

  10. True User Involvement by People Living With HIV is Possible: Description of a User-driven HIV Clinic in Norway.

    PubMed

    Berg, Rigmor C; Gamst, Are; Said, Maryan; Aas, Kristin Bårdsen; Songe, Solveig Helene; Fangen, Kim; Rysstad, Ole

    2015-01-01

    The Greater Involvement of People Living with or Affected by HIV principle highlights the various contributions HIV-infected people can make in HIV program development and implementation. We present a unique example of how service users' involvement led to a complete organizational redesign of an outpatient HIV clinic in Southern Norway. We applied a user-driven, case study method, which showed that establishing a user board laid the foundation for the redesign process, as the board provided a clear infrastructure of user involvement and developed a set of user-defined targets for services. The main targets-optimal health, holistic care and treatment, and empowerment-were operationalized as a set of action points, such as establishing HIV nurse coordinators. While there is no single method for user involvement, we offer useful ideas that can help others develop an involvement project that is effective and sustainable. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Possible stakeholder concerns regarding volatile organic compound in arid soils integrated demonstration technologies not evaluated in the stakeholder involvement program

    SciTech Connect

    Peterson, T.

    1995-12-01

    The Volatile Organic Compounds in Arid Soils Integrated Demonstration (VOC-Arid ID) supported the demonstration of a number of innovative technologies, not all of which were evaluated in the integrated demonstration`s stakeholder involvement program. These technologies have been organized into two categories and the first category ranked in order of priority according to interest in the evaluation of the technology. The purpose of this report is to present issues stakeholders would likely raise concerning each of the technologies in light of commentary, insights, data requirements, concerns, and recommendations offered during the VOC-Arid ID`s three-year stakeholder involvement, technology evaluation program. A secondary purpose is to provide a closeout status for each of the technologies associated with the VOC-Arid ID. This report concludes with a summary of concerns and requirements that stakeholders have for all innovative technologies.

  12. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment.

    PubMed

    Novák, Jan; Bienertová-Vašků, Julie; Kára, Tomáš; Novák, Miroslav

    2014-01-01

    Hyperlipidemia is a well-accepted risk factor in the development of atherosclerosis. MicroRNAs (miRNAs), a novel class of posttranscriptional regulators of gene expression, are involved in a variety of biological and pathological processes, including the regulation of the lipid metabolism and atherosclerosis. As our knowledge of miRNAs expands, a new class of "circulating miRNAs" has recently been described. It includes miRNAs which may be found in various bodily fluids packaged in microvesicles/exosomes, or bound to specific transporting proteins. High-density lipoprotein (HDL) particles have been identified as one such carrier. As this class of miRNAs likely plays a role in intercellular communication, it may also contribute to the atherosclerosis development and progression. This review aims to provide a comprehensive explanation of the roles of distinct miRNAs involved in the regulation of the lipid metabolism. These microRNAs seem to be promising therapeutic agents, as documented in rodents and African green monkeys. The second part of the review focuses on circulating miRNAs and their involvement in the atherosclerosis, especially as their levels have been described as altered in patients with dyslipidemia/hyperlipidemia. Special emphasis is placed on miRNAs transported in a complex with HDL particles and on those which may be considered potential atherosclerosis biomarkers.

  13. Possible involvement of 15-deoxy-Δ(12,14) -prostaglandin J2 in the development of leptin resistance.

    PubMed

    Hosoi, Toru; Matsuzaki, Syu; Miyahara, Tsuyoshi; Shimizu, Kaori; Hasegawa, Yuki; Ozawa, Koichiro

    2015-05-01

    Obesity is a worldwide health problem that urgently needs to be solved. Leptin is an anti-obesity hormone that activates satiety signals to the brain. Evidence to suggest that leptin resistance is involved in the development of obesity is increasing; however, the molecular mechanisms involved remain unclear. We herein demonstrated that 15-deoxy-Δ(12,14) -prostaglandin J2 (15d-PGJ2 ) was involved in the development of leptin resistance. A treatment with 15d-PGJ2 inhibited the leptin-induced activation of signal transducer and activator of transcription 3 (STAT3) in neuronal cells (SH-SY5Y-Ob-Rb cells). Furthermore, the intracerebroventricular administration of 15d-PGJ2 reversed the inhibitory effects of leptin on food intake in rats. The peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist, GW9662, slightly reversed the inhibitory effects of 15d-PGJ2 on the leptin-induced activation of STAT3 in neuronal cells. The PPAR-γ agonist, rosiglitazone, also inhibited leptin-induced STAT3 phosphorylation. Therefore, the inhibitory effects of 15d-PGJ2 may be mediated through PPAR-γ. On the other hand, 15d-PGJ2 -induced leptin resistance may not be mediated by endoplasmic reticulum stress or suppressor of cytokine signaling 3. The results of the present study suggest that 15d-PGJ2 is a novel factor for the development of leptin resistance in obesity. Leptin resistance, an insensitivity to the actions of leptin, is involved in the development of obesity. Here, we found 15-deoxy-Δ(12,14) -prostaglandin J2 (15d-PGJ2 ) may be involved in the development of leptin resistance. The present results suggest that the 15d-PGJ2 may be a novel factor for the development of leptin resistance in obesity. 15d-PGJ2 , 15-Deoxy-Δ(12,14) -prostaglandin J2; STAT3, signal tranducer and activator of transcription 3.

  14. Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy.

    PubMed

    Furio, Laetitia; Hovnanian, Alain

    2014-09-01

    Netherton syndrome (NS) is an orphan genetic skin disease with a profound skin barrier defect and severe allergic manifestations. NS is caused by loss of function mutations in SPINK5 encoding lympho-epithelial Kazal-type inhibitor (LEKTI), a secreted multi-domain serine protease inhibitor expressed in stratified epithelia. Studies in mouse models and in NS patients have established that unopposed kallikrein 5 activity triggers stratum corneum detachment and activates PAR-2 signaling, leading to the autonomous production of pro-allergic and pro-inflammatory mediators. This emerging knowledge on NS pathogenesis has highlighted a central role for protease regulation in skin homeostasis but also in the complexity of the disease, and holds the promise of new specific treatments.

  15. Human glandular kallikrein in breast milk, amniotic fluid, and breast cyst fluid.

    PubMed

    Magklara, A; Scorilas, A; López-Otín, C; Vizoso, F; Ruibal, A; Diamandis, E P

    1999-10-01

    Human glandular kallikrein (hK2) belongs to the serine protease family of enzymes and has high sequence homology with prostate-specific antigen (PSA). The physiological role of hK2 has not as yet been determined, but there is evidence that it can regulate the proteolytic activity of PSA through processing and activating pro-PSA, an inactive precursor. Thus, it is conceivable that these two secreted proteins may coexist in biological fluids. Currently, hK2 is considered an androgen-regulated and prostate-specific protein. Recently, it has been demonstrated that hK2 is expressed in the breast cancer cell line T-47D after stimulation by steroid hormones, and we reported that hK2 can be detected in a subset of breast tumor extracts. These data suggest that hK2 may be expressed in tissues other than the prostate, such as those in which PSA has already been detected. Because hK2 is a secreted protein, it may be present in various biological fluids. We analyzed milk samples from lactating women, amniotic fluid from pregnant women, and breast cyst fluid from patients with gross breast cystic disease, using a highly sensitive and specific immunoassay for hK2. hK2 was present in all three biological fluids. We suggest that the female breast may produce hK2 and provide evidence that hK2 may have value as an additional marker for the discrimination between type I and type II breast cysts. The female breast produces hK2 in addition to PSA. More studies are necessary to establish the role of this kallikrein in nondiseased breast, gross breast cystic disease, and breast cancer.

  16. Kallikrein kinin system activation in post-exercise hypotension in water running of hypertensive volunteers.

    PubMed

    Pontes, Francisco L; Bacurau, Reury F P; Moraes, Milton R; Navarro, Francisco; Casarini, Dulce E; Pesquero, Jorge L; Pesquero, João B; Araújo, Ronaldo C; Piçarro, Ivan C

    2008-02-01

    Previous studies demonstrated a reduction in blood pressure level immediately after different types of exercises, like running, cycling and resistance training, a phenomenon called post-exercise hypotension (PEH). Since PEH can persist for hours it could be suggested as a non-pharmacological therapy for hypertensive individuals. Unfortunately, usually running is not recommended due to the high impact caused by its practice. Therefore running in water treadmill should be a better option, since the environment is completely different and causes lower impact. However it is not known whether PEH occurs in this situation. The objective of this work was to evaluate the existence of PEH after water running and to compare PEH promoted by running in two different environments. In addition, changes in plasmatic concentrations of the kallikrein kinin system (KKS) components were also evaluated. Sixteen hypertensive subjects were submitted to two exercise sessions, conventional running and water running, in two different occasions. The pattern of heart rate, blood pressure and plasmatic concentrations of KKS components immediately after and one hour after exercise were investigated. Results showed a maximal reduction in systolic and diastolic blood pressure 30 min after both exercise models (P<0.001), indicating that moderate water running promotes PEH with similar magnitude as compared to conventional running. Plasma kallikrein activity and bradykinin concentration increased immediately after exercise (P<0.05), but these parameters were not different in both exercise models. In conclusion, our findings show that water running, similarly to conventional running, can also provoke PEH and alterations in the KKS components.

  17. Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man.

    PubMed

    Potier, Louis; Waeckel, Ludovic; Fumeron, Fréderic; Bodin, Sophie; Fysekidis, Marinos; Chollet, Catherine; Bellili, Naima; Bonnet, Fabrice; Gusto, Gaëlle; Velho, Gilberto; Marre, Michel; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine

    2014-05-01

    The kallikrein-kinin system has been suggested to participate in the control of glucose metabolism. Its role and the role of angiotensin-I-converting enzyme, a major kinin-inactivating enzyme, are however the subject of debate. We have evaluated the consequence of deficiency in tissue kallikrein (TK), the main kinin-forming enzyme, on the development of insulin resistance and diabetes in mice and man. Mice with inactivation of the TK gene were fed a high-fat diet (HFD) for 3 months, or crossed with obese, leptin-deficient (ob/ob) mice to generate double ob/ob-TK-deficient mutants. In man, a loss-of-function polymorphism of the TK gene (R53H) was studied in a large general population cohort tested for insulin resistance, the DESIR study (4843 participants, 9 year follow-up). Mice deficient in TK gained less weight on the HFD than their WT littermates. Fasting glucose level was increased and responses to glucose (GTT) and insulin (ITT) tolerance tests were altered at 10 and 16 weeks on the HFD compared with standard on the diet, but TK deficiency had no influence on these parameters. Likewise, ob-TK⁻/⁻ mice had similar GTT and ITT responses to those of ob-TK⁺/⁺ mice. TK deficiency had no effect on blood pressure in either model. In humans, changes over time in BMI, fasting plasma glucose, insulinemia, and blood pressure were not influenced by the defective 53H-coding TK allele. The incidence of diabetes was not influenced by this allele. These data do not support a role for the TK-kinin system, protective or deleterious, in the development of insulin resistance and diabetes.

  18. Differential expression of a human kallikrein 5 (KLK5) splice variant in ovarian and prostate cancer.

    PubMed

    Kurlender, Lisa; Yousef, George M; Memari, Nader; Robb, John-Desmond; Michael, Iacovos P; Borgoño, Carla; Katsaros, Dionyssios; Stephan, Carsten; Jung, Klaus; Diamandis, Eleftherios P

    2004-01-01

    The presence of more than one mRNA form is common among kallikrein genes. We identified an mRNA transcript of the human kallikrein gene 5 (KLK5), denoted KLK5 splice variant 1 (KLK5-SV1). This variant has a different 5'-splice site, but encodes the same protein as the classical KLK5 transcript. RT-PCR analysis of this variant transcript expression in 29 human tissues indicated highest expression in the cervix, salivary gland, kidney, mammary gland, and skin. Comparative analysis of the expression levels of KLK5-SV1, another splice variant named KLK5 splice variant 2 (KLK5-SV2), and the classical KLK5 form showed that out of all three mRNA transcripts, the classical form is predominantly expressed (found in more tissues and at higher expression levels) followed by KLK5-SV1. KLK5-SV1 is expressed at high levels in ovarian, pancreatic, breast and prostate cancer cell lines. KLK5-SV1 was also found to be expressed in 9/10 ovarian cancer tissues, but it was not found in one normal ovarian tissue tested. Hormonal regulation experiments suggest that KLK5-SV1 is regulated by steroid hormones in the BT-474 breast cancer cell line. Furthermore, this variant had significantly higher expression in normal prostate tissues compared to their matched cancer tissue counterparts. KLK5-SV1 may have clinical utility in various malignancies and should be further explored as a potential new biomarker for prostate and ovarian cancer.

  19. Rat epileptic seizures evoked by BmK {alpha}IV and its possible mechanisms involved in sodium channels

    SciTech Connect

    Chai Zhifang; Bai Zhantao; Zhang Xuying; Liu Tong; Pang Xueyan; Ji Yonghua . E-mail: yhji@server.shcnc.ac.cn

    2007-05-01

    This study showed that rat unilateral intracerebroventricular injection of BmK {alpha}IV, a sodium channel modulator derived from scorpion Buthus martensi Karsch, induced clusters of spikes, epileptic discharges and convulsion-related behavioral changes. BmK {alpha}IV potently promoted the release of endogenous glutamate from rat cerebrocortical synaptosomes. In vitro examination of the effect of BmK {alpha}IV on intrasynaptosomal free calcium concentration [Ca{sup 2+}]{sub i} and sodium concentration [Na{sup +}]{sub i} revealed that BmK {alpha}IV-evoked glutamate release from synaptosomes was associated with an increase in Ca{sup 2+} and Na{sup +} influx. Moreover, BmK {alpha}IV-mediated glutamate release and ion influx was completely blocked by tetrodotoxin, a blocker of sodium channel. Together, these results suggest that the induction of BmK {alpha}IV-evoked epileptic seizures may be involved in the modulation of BmK {alpha}IV on tetrodotoxin-sensitive sodium channels located on the nerve terminal, which subsequently enhances the Ca{sup 2+} influx to cause an increase of glutamate release. These findings may provide some insight regarding the mechanism of neuronal action of BmK {alpha}IV in the central nervous system for understanding epileptogenesis involved in sodium channels.

  20. Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder

    PubMed Central

    Traks, Tanel; Koido, Kati; Eller, Triin; Maron, Eduard; Kingo, Külli; Vasar, Veiko; Vasar, Eero; Kõks, Sulev

    2008-01-01

    Background Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD. Methods Case-control association study was performed with seven SNPs from the IL10 gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited. Results None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the IL10 gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (IL20 and IL24 genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097). Conclusion Our study established increased risk for MDD related to the IL20 and IL24 haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation. PMID:19087313

  1. Possible pathways involved in activation of catalase and superoxide dismutase with sodium nitroprusside in yeast Saccharomyces cerevisiae.

    PubMed

    Lushchak, O V; Lushchak, V I

    2009-01-01

    The effect of nitric oxide (*NO) on biological systems depends very much on many circumstances. Nitric oxide can activate redox sensitive pathways that in many cases results in an increase of antioxidant potential of the cell. However, the direct effects of nitric oxide on the activity of principal antioxidant enzymes such as catalase and superoxide dismutase (SOD) have not been studied. In the present work we exploited the yeast model to elucidate a possibility of regulation of the mentioned activity by NO-donor sodium nitroprusside (SNP). We demonstrated that nitric oxide spontaneously generated at SNP decomposition increased the activity of catalase and SOD 1.3 times. Using inhibitors of mRNA (actinomycin D) and protein (cycloheximide) synthesis, the strain deficient in Yap1p, a master regulator coordinating yeast adaptive response to oxidative stress, we have found that these enzymes are up-regulated via synthesis of new molecules at transcription and translation levels. This response is mediated by Yap1p. Despite the increase of SOD activity in yeast cells possibly includes the activation of the present apoprotein by Ccs1p, the ways of nitric oxide regulation of Ccs1p activity are still unclear.

  2. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation

    PubMed Central

    Lu, Yuanping; Wu, Guangmei; Lian, Lingdan; Guo, Lixian; Wang, Wei; Yang, Zhiyun; Miao, Juan; Chen, Bingzhi; Xie, Baogui

    2015-01-01

    Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V. volvacea. PMID

  3. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation.

    PubMed

    Lu, Yuanping; Wu, Guangmei; Lian, Lingdan; Guo, Lixian; Wang, Wei; Yang, Zhiyun; Miao, Juan; Chen, Bingzhi; Xie, Baogui

    2015-12-01

    Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V. volvacea.

  4. Structure of lpg0406, a carboxymuconolactone decarboxylase family protein possibly involved in antioxidative response from Legionella pneumophila.

    PubMed

    Chen, Xiaofang; Hu, Yanjin; Yang, Bo; Gong, Xiaojian; Zhang, Nannan; Niu, Liwen; Wu, Yun; Ge, Honghua

    2015-12-01

    Lpg0406, a hypothetical protein from Legionella pneumophila, belongs to carboxymuconolactone decarboxylase (CMD) family. We determined the crystal structure of lpg0406 both in its apo and reduced form. The structures reveal that lpg0406 forms a hexamer and have disulfide exchange properties. The protein has an all-helical fold with a conserved thioredoxin-like active site CXXC motif and a proton relay system similar to that of alkylhydroperoxidase from Mycobacterium tuberculosis (MtAhpD), suggesting that lpg0406 might function as an enzyme with peroxidase activity and involved in antioxidant defense. A comparison of the size and the surface topology of the putative substrate-binding region between lpg0406 and MtAhpD indicates that the two enzymes accommodate the different substrate preferences. The structural findings will enhance understanding of the CMD family protein structure and its various functions.

  5. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action.

    PubMed Central

    García-Sáinz, J A; Hernández-Sotomayor, S M

    1985-01-01

    We have previously suggested that the effects of alpha 1-adrenergic agents on hepatocyte metabolism involve two mechanisms: (i) a calcium-independent insulin-sensitive process that is modulated by glucocorticoids and (ii) a calcium-dependent insulin-insensitive process that is modulated by thyroid hormones. We have studied the effect of epinephrine (plus propranolol) on gluconeogenesis from lactate and dihydroxyacetone. It was observed that the adrenergic stimulation of gluconeogenesis from lactate seemed to occur through both mechanisms, whereas when the substrate was dihydroxyacetone the action took place exclusively through the calcium-independent insulin-sensitive process. This effect was absent in hepatocytes from adrenalectomized rats, suggesting that it is modulated by glucocorticoids. PMID:2995981

  6. Wave-Dominated Coastlines Responding to Climate Change: Large-Scale Morphodynamics, Human Involvement, and Possible Path Dependence

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Ashton, A. D.; Barkwith, A.; Ellis, M. A.; Ells, K. D.; Hurst, M. D.; McNamara, D.; Thomas, C.; Wood, J.

    2016-02-01

    The flux toward shore of alongshore momentum, which drives alongshore sediment flux, varies with local coastline orientation, and with local degree of exposure to waves. Coastline shape therefore influences the alongshore patterns of alongshore sediment flux. Gradients in this flux, in turn, alter coastline shape—a morphodynamic feedback. Modeling studies show that such feedbacks lead ultimately to dynamic-equilibrium coastline shapes, including sandwaves, capes, and spits (e.g. Ashton and Murray, 2006; Ashton et al., 2015); spiral bays on rocky coastlines (e.g. Barkwith et al., 2014); and convex, spit-bounded coastlines (Ells et al., in prep.). One conclusion arises in each of these studies: Coastline shape depends sensitively on the wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Given this sensitive dependence, shifts in wave climate, as can be expected from shifts in storm statistics, will tend to change coastline shape—involving decadal-scale changes in the location and intensity of coastal erosion (or accretion) zones. Such changes, likely related to changing influence from hurricane-generated waves, have been detected along undeveloped large-scale cuspate capes (NC, USA; Moore et al., 2013). On a developed cape nearby, shoreline stabilization through beach nourishment has prevented an equivalent change in erosion rates. Combined observations and modelling indicate that the signal of wave climate change can be detected in the human component of the system, in the form of increased nourishment rates on one flank of the cape (Johnson et al., 2015). Finally, these recent works involved the implicit assumption that coastline response to changing forcing occurs in a quasi-equilibrium manner. However, new modeling shows that in some cases coastline responses can exhibit long-term memory and path dependence, complicating potential detection and forecasting of climate change signals in some human

  7. Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes.

    PubMed

    Yanase, H; Ando, H; Horikawa, M; Watanabe, M; Mori, T; Matsuda, N

    2001-04-01

    UV-induced melanogenesis is a well known physiological response of human skin exposed to solar radiation; however, the signaling molecules involved in the stimulation of melanogenesis in melanocytes following UV exposure remain unclear. In this study we induced melanogenesis in vitro in normal human epidermal melanocytes using a single irradiation with UVA at 1 kJ/m2 and examined the potential involvement of mitogen-activated protein kinases (MAPK) as UVA-responsive signaling molecules in those cells. UVA irradiation did not affect the proliferation of melanocytes, but it did increase tyrosinase mRNA expression, which reached a maximum level 4 hr after UVA irradiation. The amount of tyrosinase protein, as quantitated by immunoblotting, was also increased at 24 hr following UVA irradiation. Among the MAPK examined, extracellular signal-related kinase (ERK) 1/2 was phosphorylated within 15 min of UVA irradiation, but no such phosphorylation was observed for c-Jun N-terminal kinases (JNK) or p38. Accordingly, the activity of ERK1/2 was also increased shortly after UVA irradiation. These responses of ERK1/2 to UVA irradiation were markedly inhibited when cells were pre-treated with N-acetyl-L-cysteine, an antioxidant, or with suramin, a tyrosine kinase receptor inhibitor. The formation of (6-4)photoproducts or cyclobutane pyrimidine dimers was not detected in cellular DNA after UVA irradiation. These findings suggest that a single UVA irradiation-induced melanogenesis is associated with the activation of ERK1/2 by upstream signals that originate from reactive oxygen species or from activated tyrosine kinase receptors, but not from damaged DNA.

  8. Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin.

    PubMed

    Kobayashi, Yoshiyuki; Yoshida, Shigeo; Nakama, Takahito; Zhou, Yedi; Ishikawa, Keijiro; Arita, Ryoichi; Nakao, Shintaro; Miyazaki, Masanori; Sassa, Yukio; Oshima, Yuji; Izuhara, Kenji; Kono, Toshihiro; Ishibashi, Tatsuro

    2015-04-01

    To determine whether CD163, a specific marker for M2 macrophages, is involved in the formation of preretinal fibrovascular membranes (FVMs) present in eyes with proliferative diabetic retinopathy (PDR). We measured the levels of soluble (s)CD163, periostin and vascular endothelial growth factor by sandwich ELISA in vitreous samples from 74 eyes of 62 patients with PDR, 20 eyes of 18 patients with proliferative vitreoretinopathy, and 56 eyes of 54 patients with non-diabetic ocular diseases (control group). Immunohistochemical analyses were performed to determine the expressions of CD68, CD163 and periostin in the surgically resected FVMs and idiopathic epiretinal membranes (ERMs). The concentrations of sCD163 and periostin in the vitreous were significantly higher in patients with PDR than in non-diabetic controls (p<0.0001). There was a strong correlation between the vitreous concentrations of sCD163 and periostin. The mean vitreous level of sCD163 was significantly higher in eyes with FVMs than in those without FVMs (epicentre only). The number and percentage of CD163+ macrophages were significantly higher in the FVMs than in the idiopathic ERMs. Immunohistochemical analysis showed co-localisation of CD163 and periostin in FVM cells. These findings indicate that the overexpression of CD163 by macrophages may be involved in the development of FVMs partly through periostin production. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-Ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-11-19

    (18)F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.

  10. Sucrose transport and phloem unloading in stem of Vicia faba: possible involvement of a sucrose carrier and osmotic regulation

    SciTech Connect

    Aloni, B.; Wyse, R.E.; Griffith, S.

    1986-06-01

    After pulse labeling of a source leaf with /sup 14/CO/sub 2/, stem sections of Vicia faba plants were cut and the efflux characteristics of /sup 14/C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of /sup 14/C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of (/sup 14/C)sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced (/sup 14/C)sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved.

  11. Increased non-rapid eye movement sleep by cocaine withdrawal: possible involvement of A2A receptors.

    PubMed

    Yang, Shu-Long; Han, Jin-Yi; Kim, Yun-Bae; Nam, Sang-Yoon; Song, Sukgil; Hong, Jin Tae; Oh, Ki-Wan

    2011-02-01

    This study attempted to clarify whether cocaine withdrawal altered sleep architecture and the role of adenosine receptors in this process. Cocaine (20 mg/kg) was administered subcutaneously once per day for 7 days to rat implanted with sleep/wake recording electrode. Polygraphic signs of undisturbed sleep/wake activities were recorded for 24 h before cocaine administration (basal recording as control); withdrawal-day 1 (after 1 day of repeated cocaine administration), withdrawal-day 8 (after 8 days of repeated cocaine administration), and withdrawal-day 14 (after 14 days of repeated cocaine administration), respectively. On cocaine withdrawal-day 1, wakefulness was significantly increased, total sleep was decreased, non-rapid eye movement sleep was markedly reduced, and rapid eye movement sleep was enhanced. Sleep/wake cycles were also increased on cocaine withdrawal day 1. However, non-rapid eye movement sleep was increased on withdrawal-day 8 and 14, whereas rapid eye movement sleep was decreased and no significant changes were observed in the total sleep and sleep/wake cycles during these periods. Adenosine A(2A) receptors expression was increased on withdrawal-day 8 and 14, whereas A(1) receptors levels were reduced after 14 days of withdrawal and the A(2B) receptors remained unchanged. Our findings suggest that alterations of sleep and sleep architecture during cocaine subacute and subchronic withdrawals after repeated cocaine administration may be partially involved in A(2A) receptors over-expression in the rat hypothalamus.

  12. Brain iron accumulation in unexplained fetal and infant death victims with smoker mothers--the possible involvement of maternal methemoglobinemia.

    PubMed

    Lavezzi, Anna M; Mohorovic, Lucijan; Alfonsi, Graziella; Corna, Melissa F; Matturri, Luigi

    2011-07-06

    Iron is involved in important vital functions as an essential component of the oxygen-transporting heme mechanism. In this study we aimed to evaluate whether oxidative metabolites from maternal cigarette smoke could affect iron homeostasis in the brain of victims of sudden unexplained fetal and infant death, maybe through the induction of maternal hemoglobin damage, such as in case of methemoglobinemia. Histochemical investigations by Prussian blue reaction were made on brain nonheme ferric iron deposits, gaining detailed data on their localization in the brainstem and cerebellum of victims of sudden death and controls. The Gless and Marsland's modification of Bielschowsky's was used to identify neuronal cell bodies and neurofilaments. Our approach highlighted accumulations of blue granulations, indicative of iron positive reactions, in the brainstem and cerebellum of 33% of victims of sudden death and in none of the control group. The modified Bielschowsky's method confirmed that the cells with iron accumulations were neuronal cells. We propose that the free iron deposition in the brain of sudden fetal and infant death victims could be a catabolic product of maternal methemoglobinemia, a biomarker of oxidative stress likely due to nicotine absorption.

  13. Possible Involvement of TLRs and Hemichannels in Stress-Induced CNS Dysfunction via Mastocytes, and Glia Activation

    PubMed Central

    Aguirre, Adam; Maturana, Carola J.; Harcha, Paloma A.; Sáez, Juan C.

    2013-01-01

    In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca2+ influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia. PMID:23935250

  14. The antidepressant-like effect of bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system.

    PubMed

    Liu, Xiaojun; Liu, Fang; Yue, Rongcai; Li, Yuanyuan; Zhang, Jigang; Wang, Shuping; Zhang, Shoude; Wang, Rui; Shan, Lei; Zhang, Weidong

    2013-09-01

    In the present study, the antidepressant-like effect of bacopaside I, a saponin compound present in the Bacopa monniera plant, was evaluated by behavioral and neurochemical methods. Bacopaside I (50, 15 and 5 mg/kg) was given to mice via oral gavage for 7 successive days. The treatment significantly decreased the immobility time in mouse models of despair tests, but it did not influence locomotor activity. Neurochemical assays suggested that treatment by bacopaside I (50, 15 and 5 mg/kg) improved brain antioxidant activity to varying degrees after the behavioral despair test. Bacopaside I (15 and 5 mg/kg) significantly reversed reserpine-induced depressive-like behaviors, including low temperature and ptosis. Conversely, bacopaside I did not affect either brain MAO-A or MAO-B activity after the behavioral despair test in mice. Additionally, 5-hydroxytryptophan (a precursor of 5-serotonin) was not involved in the antidepressant-like effect of bacopaside I. These findings indicated that the antidepressant-like effect of bacopaside I might be related to both antioxidant activation and noradrenergic activation, although the exact mechanism remains to be further elucidated.

  15. Establishment of an ovarian metastasis model and possible involvement of E-cadherin down-regulation in the metastasis.

    PubMed

    Kuwabara, Yoshiko; Yamada, Taketo; Yamazaki, Ken; Du, Wen-Lin; Banno, Kouji; Aoki, Daisuke; Sakamoto, Michiie

    2008-10-01

    Clinical observations of cases of ovarian metastasis suggest that there may be a unique mechanism underlying ovarian-specific metastasis. This study was undertaken to establish an in vivo model of metastasis to the ovary, and to investigate the mechanism of ovarian-specific metastasis. We examined the capacity for ovarian metastasis in eight different human carcinoma cell lines by implantation in female NOD/SCID mice transvenously and intraperitoneally. By transvenous inoculation, only RERF-LC-AI, a poorly differentiated carcinoma cell line, frequently demonstrated ovarian metastasis. By intraperitoneal inoculation, four of the eight cell lines (HGC27, MKN-45, KATO-III, and RERF-LC-AI) metastasized to the ovary. We compared E-cadherin expression among ovarian metastatic cell lines and others. All of these four ovarian metastatic cell lines and HSKTC, a Krukenberg tumor cell line, showed E-cadherin down-regulation and others did not. E-cadherin was then forcibly expressed in RERF-LC-AI, and inhibited ovarian metastasis completely. The capacity for metastasizing to the other organs was not affected by E-cadherin expression. We also performed histological investigation of clinical ovarian-metastatic tumor cases. About half of all ovarian-metastatic tumor cases showed loss or reduction of E-cadherin expression. These data suggest that E-cadherin down-regulation may be involved in ovarian-specific metastasis.

  16. Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress.

    PubMed

    Chen, Xiaobo; Yao, Pengbo; Chu, Xiaoqian; Hao, Lili; Guo, Xingqi; Xu, Baohua

    2015-01-01

    Arginine kinases (AK) in invertebrates play the same role as creatine kinases in vertebrates. Both proteins are important for energy metabolism, and previous studies on AK focused on this attribute. In this study, the arginine kinase gene was isolated from Apis cerana cerana and was named AccAK. A 5'-flanking region was also cloned and shown to contain abundant putative binding sites for transcription factors related to development and response to adverse stress. We imitated several abiotic and biotic stresses suffered by A. cerana cerana during their life, including heavy metals, pesticides, herbicides, heat, cold, oxidants, antioxidants, ecdysone, and Ascosphaera apis and then studied the expression patterns of AccAK after these treatments. AccAK was upregulated under all conditions, and, in some conditions, this response was very pronounced. Western blot and AccAK enzyme activity assays confirmed the results. In addition, a disc diffusion assay showed that overexpression of AccAK reduced the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, our results indicated that AccAK may be involved of great significance in response to adverse abiotic and biotic stresses.

  17. Pectins as possible source of the copper involved in the green staining alteration of cv. Gordal table olives.

    PubMed

    Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso; Mínguez-Mosquera, M Isabel

    2002-11-06

    The pectic and pigment compositions and Ca and Cu contents of the alcohol-insoluble solid (AIS) residues were determined in cv. Gordal olives treated with NaOH solution and kept at different constant pH values (3.5-6.5). The same controls were made in table olives presenting green staining alteration. The ratio between the various pectin fractions of the more acid pH experiment samples remained similar in fruits not showing green staining. In altered fruits, the protopectin fraction was lower, and the calcium pectate or EDTA soluble pectins were higher. Regarding the presence of Ca and Cu in the AIS, it was observed that, whereas Ca levels fell at the most acid pH values, those of Cu increased. The concentration of Ca was higher in the AIS of altered olives than in nonaltered ones. The same trend was seen for the zone with or without green staining of an altered fruit. In the case of Cu, the relationship was the opposite: a decrease in the levels of AIS Cu in fruits and zones of fruits with green staining. This result was correlated with the highest concentration of Cu-chlorophyll complexes found in such samples and suggested that pectins might act as a reservoir of Cu involved in the alteration.

  18. Functional heterogeneity of osteocytes in FGF23 production: the possible involvement of DMP1 as a direct negative regulator

    PubMed Central

    Lee, Ji-Won; Yamaguchi, Akira; Iimura, Tadahiro

    2014-01-01

    Fibroblast growth factor 23 (FGF23) and dentin matrix protein (DMP1) are hallmarks of osteocytes in bone. However, the mechanisms underlying the actions of DMP1 as a local factor regulating FGF23 and bone mineralization are not well understood. We first observed spatially distinct distributions of FGF23- and DMP1-positive osteocytic lacunae in rat femurs using immunohistochemistry. Three-dimensional immunofluorescence morphometry further demonstrated that the distribution and relative expression levels of these two proteins exhibited reciprocally reversed patterns especially in midshaft cortical bone. These in vivo findings suggest a direct role of DMP1 in FGF23 expression in osteocytes. We next observed that the inoculation of recombinant DMP1 in UMR-106 osteoblast/osteocyte-like cells and long-cultured MC3T3-E1 osteoblastic cells showed significant downregulation of FGF23 production. This effect was rescued by incubation with an focal adhesion kinase (FAK) inhibitor or MEK (mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)) inhibitor but not inhibitors of phosphoinositide 3-kinase or Rho kinase. Consistently, the levels of phosphorylated FAK, ERK and p38 were significantly elevated, indicating that exogenous DMP1 is capable of activating FAK-mediated MAPK signaling. These findings suggest that DMP1 is a local, direct and negative regulator of FGF23 production in osteocytes involved in the FAK-mediated MAPK pathway, proposing a relevant pathway that coordinates the extracellular environment of osteocytic lacunae and bone metabolism. PMID:24991406

  19. 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase.

    PubMed

    Takeda, Kotaro; Tsuji, Minoru; Miyagawa, Kazuya; Takeda, Hiroshi

    2017-01-18

    Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The present study examined the involvement of extracellular signal-regulated kinase 1/2 (ERK) signaling on the serotonin (5-HT)7 receptor-mediated fear conditioning. Conditioning was performed in a trial in which a tone was followed by an electrical foot-shock. Context- and tone-dependent fear were examined in tests conducted 24 and 48h after conditioning, respectively. The selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl]-2a,3,4,-tetrahydrobenzo(c,d)indol-2-(1H)-one (DR4004) (5mg/kg), when administered intraperitoneally (i.p.) immediately after conditioning, caused a significant decrease in both context- and tone-dependent fear responses (freezing behavior). A significant increase in ERK activity was observed in the amygdala of mice that displayed context- or tone-dependent fear responses, and these changes were also inhibited by the administration of DR4004 (5mg/kg, i.p.) immediately after conditioning. In contrast, the increase in hippocampal ERK activity in mice that displayed context-dependent fear responses was further enhanced by the administration of DR4004 (5mg/kg, i.p.). These results suggest that 5-HT7 receptor-mediated ERK signaling may play a significant role in the processes of emotional learning and memory.

  20. Brain iron accumulation in unexplained fetal and infant death victims with smoker mothers-The possible involvement of maternal methemoglobinemia

    PubMed Central

    2011-01-01

    Background Iron is involved in important vital functions as an essential component of the oxygen-transporting heme mechanism. In this study we aimed to evaluate whether oxidative metabolites from maternal cigarette smoke could affect iron homeostasis in the brain of victims of sudden unexplained fetal and infant death, maybe through the induction of maternal hemoglobin damage, such as in case of methemoglobinemia. Methods Histochemical investigations by Prussian blue reaction were made on brain nonheme ferric iron deposits, gaining detailed data on their localization in the brainstem and cerebellum of victims of sudden death and controls. The Gless and Marsland's modification of Bielschowsky's was used to identify neuronal cell bodies and neurofilaments. Results Our approach highlighted accumulations of blue granulations, indicative of iron positive reactions, in the brainstem and cerebellum of 33% of victims of sudden death and in none of the control group. The modified Bielschowsky's method confirmed that the cells with iron accumulations were neuronal cells. Conclusions We propose that the free iron deposition in the brain of sudden fetal and infant death victims could be a catabolic product of maternal methemoglobinemia, a biomarker of oxidative stress likely due to nicotine absorption. PMID:21733167

  1. Evidence of programmed cell death induced by reconditioning after cold stress in cucumber fruit and possible involvement of ethylene.

    PubMed

    Chen, Xiaohong; Nie, Peng; Deng, Hongjun; Mi, Hongbo; Hou, Xiaorong; Li, Ping; Mao, Linchun

    2014-05-01

    Cucumber fruit is susceptible to chilling injury (CI), which could be accelerated significantly with subsequent shelf-life. This type of CI culminates in deterioration of organs and eventually leads to cell death. In this study, evidence of programmed cell death (PCD), involving cell death induced by cold stress, was investigated in cucumber. Harvested cucumber (Cucumis sativus L. cv. Zhexiu-1) fruits were stored at 2 °C for 3, 6 or 9 days and subsequently transferred to 20 °C for 2 days. Significant cell death acceleration was observed upon reconditioning after 9 days' cold stress when the hallmark of PCD - DNA laddering - was clearly observed. Further evidence of nuclear DNA cleavage was confirmed by the in situ TdT-mediated dUTP nick end labeling (TUNEL) assay. Chromatin condensation and nucleus distortion were observed by nuclear staining of DPI. Ethylene burst was observed upon reconditioning after 9 days of consecutive cold stress. The features of PCD process induced by reconditioning after cold stress in cucumber fruit may be mainly attributed to ethylene burst. © 2013 Society of Chemical Industry.

  2. Synthesis, biological evaluation, and docking studies of PAR2-AP-derived pseudopeptides as inhibitors of kallikrein 5 and 6.

    PubMed

    Severino, Beatrice; Fiorino, Ferdinando; Corvino, Angela; Caliendo, Giuseppe; Santagada, Vincenzo; Assis, Diego Magno; Oliveira, Juliana R; Juliano, Luiz; Manganelli, Serena; Benfenati, Emilio; Frecentese, Francesco; Perissutti, Elisa; Juliano, Maria Aparecida

    2015-01-01

    A series of protease activated receptor 2 activating peptide (PAR2-AP) derivatives (1-15) were designed and synthesized. The obtained compounds were tested on a panel of human kallikreins (hKLK1, hKLK2, hKLK5, hKLK6, and hKLK7) and were found completely inactive toward hKLK1, hKLK2, and hKLK7. Aiming to investigate the mode of interaction between the most interesting compounds and the selected hKLKs, docking studies were performed. The described compounds distinguish the different human tissue kallikreins with compounds 1 and 5 as the best hKLK5 and hKLK6 inhibitors, respectively.

  3. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    PubMed Central

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  4. Possible involvement of melatonin in tooth development: expression of melatonin 1a receptor in human and mouse tooth germs.

    PubMed

    Kumasaka, Shuku; Shimozuma, Masashi; Kawamoto, Tadafumi; Mishima, Kenji; Tokuyama, Reiko; Kamiya, Yoko; Davaadorj, Purevsuren; Saito, Ichiro; Satomura, Kazuhito

    2010-05-01

    Melatonin is known to regulate a variety of physiological processes including control of circadian rhythms, regulation of seasonal reproductive function, regulation of body temperature, free radical scavenging, and so forth. Accumulating evidence from in vitro and in vivo experiments has also suggested that melatonin may have an influence on skeletal growth and bone formation. However, little is known about the effects of melatonin on tooth development and growth, which thus remain to be elucidated. This study was performed to examine the possibility that melatonin might exert its influence on tooth development as well as skeletal growth. Immunohistochemical analysis revealed that melatonin 1a receptor (Mel1aR) was expressed in secretory ameloblasts, the cells of the stratum intermedium and stellate reticulum, external dental epithelial cells, odontoblasts, and dental sac cells. Reverse transcription-polymerase chain reaction and Western blot analysis showed that HAT-7, a rat dental epithelial cell line, expressed Mel1aR and its expression levels increased after the cells reached confluence. These results strongly suggest that melatonin may play a physiological role in tooth development/growth by regulating the cellular function of odontogenic cells in tooth germs.

  5. Libidibia ferrea mature seeds promote antinociceptive effect by peripheral and central pathway: possible involvement of opioid and cholinergic receptors.

    PubMed

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  6. Hydroalcoholic extract of needles of Pinus eldarica enhances pentobarbital-induced sleep: possible involvement of GABAergic system

    PubMed Central

    Forouzanfar, Fatemeh; Ghorbani, Ahmad; Hosseini, Mahmoud; Rakhshandeh, Hassan

    2016-01-01

    Objective: Insomnia is accompanied by several health complications and the currently used soporific drugs can induce several side effects such as psychomotor impairment, amnesia, and tolerance. The present study was planned to investigate the sleep prolonging effect of Pinus eldarica. Materials and Methods: Hydroalcoholic extract (HAE) of P. eldarica, its water fraction (WF), ethyl acetate fraction (EAF) and n-butanol fraction (NBF) were injected (intraperitoneally) to mice 30 min before administration of pentobarbital. Then, the latent period and continuous sleeping time were recorded. Also, LD50 of P. eldarica extract was determined and the possible neurotoxicity of the extract was tested on neural PC12 cells. Results: The HAE and NBF decreased the latency of sleep (p<0.05) and significantly increased duration of sleep (p<0.05) induced by pentobarbital. These effects of P. eldarica were reversed by flumazenil. The LD50 value for HAE was found to be 4.8 g/Kg. HAE and its fractions did not show neurotoxic effects in cultured PC12-cell line. Conclusion: The present data indicate that P. eldarica potentiated pentobarbital hypnosis without major toxic effect. Most probably, the main components responsible for this effect are non-polar agents which are found in NBF of this plant. PMID:27516986

  7. Possible Involvement of Avoidant Attachment Style in the Relations Between Adult IBS and Reported Separation Anxiety in Childhood.

    PubMed

    Ben-Israel, Yuval; Shadach, Eran; Levy, Sigal; Sperber, Ami; Aizenberg, Dov; Niv, Yaron; Dickman, Ram

    2016-12-01

    Irritable bowel syndrome (IBS) in adults as well as separation anxiety disorder (SAD) and recurrent abdominal pain (RAP) in childhood are associated with anxiety and somatization. Our aim was to examine possible associations between IBS in adulthood and SAD in childhood. Patients with IBS and healthy subjects completed a demographic questionnaire, the Separation Anxiety Symptom Inventory (SASI), the Somatization Subscale of Symptom Checklist-90-R (SCL-90-R), the Attachment Style Questionnaire, and a retrospective self-report questionnaire regarding RAP. Compared with controls, patients with IBS were characterized by an avoidant attachment style and scored higher on the SCL-90-R scale regarding the tendency to somatization (25.35 ± 7.47 versus16.50 ± 4.40, p < 0.001). More patients with IBS (25% versus 7.5%) reported RAP in childhood, but contrary to prediction, also had significantly lower SASI scores. Adults with IBS were characterized by somatization, insecure attachment style and recalled higher rates of RAP and surprisingly less symptoms of SAD in childhood. Based on these results, an etiological model for IBS is suggested, in which an avoidant attachment style and a tendency to somatization play an important role in the development of IBS. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Production of Macrophage Inhibitory Factor (MIF) by Primary Sertoli Cells; Its Possible Involvement in Migration of Spermatogonial Cells.

    PubMed

    Huleihel, Mahmoud; Abofoul-Azab, Maram; Abarbanel, Yael; Einav, Iris; Levitas, Elyahu; Lunenfeld, Eitan

    2017-10-01

    Macrophage migration inhibitory factor (MIF) is a multifunctional molecule. MIF was originally identified as a T-cell-derived factor responsible for the inhibition of macrophage migration. In testicular tissue of adult rats, MIF is constitutively expressed by Leydig cells under physiological conditions. The aim of this study was to examine MIF levels in testicular homogenates from different aged mice, and the capacity of Sertoli cells to produce it. We also examined MIF involvement in spermatogonial cell migration. Similar levels of MIF protein were detected in testicular homogenates of mice of different ages (1-8-week-old). However, the RNA expression levels of MIF were high in 1-week-old mice and significantly decreased with age compared to 1-week-old mice. MIF was stained in Sertoli, Leydig cells, and developed germ cells in the seminiferous tubules. Isolated Sertoli cells from 1-week-old mice stained to MIF. Cultures of Sertoli cells from 1-week-old mice produced and expressed high levels of MIF which significantly decreased with age. MIF was localized in the cytoplasm and nucleus of Sertoli cell cultures isolated from 1-week-old mice; however, it was localized only in the cytoplasm and branches of cultures isolated from 8-week-old mice. MIFR was detected in GFRα1 and Sertoli cells. MIF could induce migration of spermatogonial cells, and this effect was synergistic with glial cell-line neurotrophic factor. Our results show, for the first time, the capacity of Sertoli cells to produce MIF under normal conditions and that MIFR expressed in GFRα1 and Sertoli cells. We also showed that MIF induced spermatogonial cell migration. J. Cell. Physiol. 232: 2869-2877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Possible involvement of TRPV1 and TRPV4 in nociceptive stimulation- induced nocifensive behavior and neuroendocrine response in mice.

    PubMed

    Ishikura, Toru; Suzuki, Hitoshi; Shoguchi, Kanako; Koreeda, Yuki; Aritomi, Takafumi; Matsuura, Takanori; Yoshimura, Mitsuhiro; Ohkubo, Jun-ichi; Maruyama, Takashi; Kawasaki, Makoto; Ohnishi, Hideo; Sakai, Akinori; Mizuno, Atsuko; Suzuki, Makoto; Ueta, Yoichi

    2015-09-01

    Members of the transient receptor potential (TRP) family of ion channels play important roles in inflammation and pain. Here, we showed that both TRPV1 and TRPV4 might contribute to biphasic nocifensive behavior and neuroendocrine response following a formalin test. We subcutaneously injected saline, formalin, or the TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD) into one hindpaw of wild-type (WT), TRPV1-deficient (Trpv1(-/-)), and TRPV4-deficient (Trpv4(-/-)) mice to investigate nocifensive behaviors (phase I [0-10 min] and phase II [10-60 min]) and Fos expression in the dorsal horn of the spinal cord and other brain regions related to pain, in the paraventricular nucleus (PVN), paraventricular nucleus of the thalamus, the medial habenular nucleus, the medial nucleus of the amygdala and capsular part of the central amygdala. Subcutaneous (s.c.) injection of formalin caused less nocifensive behavior in Trpv1(-/-) and Trpv4(-/-) mice than in WT mice during phase I. In phase II, however, formalin induced less nocifensive behavior only in the Trpv1(-/-) mice, but not in the Trpv4(-/-) mice, relative to WT mice. The number of Fos-like immunoreactive (LI) neurons in laminae I-II of the dorsal horn increased in all types of mice 90 min after s.c. injection of formalin; however, there was no difference in the other regions between saline- and formalin-treated mice. Furthermore, s.c. injection of 4α-PDD did not induce nociceptive behavior nor influence the number of Fos-LI neurons in the all above mentioned regions in any of the mice. These results suggest that TRPV4-mediated nociceptive information from the peripheral tissue excluding the spinal pathway might be involved the formalin behavioral response during phase I. Only TRPV1 might regulate the formalin behavioral response in peripheral neuron.

  10. Possible involvement of Helios in controlling the immature B cell functions via transcriptional regulation of protein kinase Cs.

    PubMed

    Kikuchi, Hidehiko; Nakayama, Masami; Takami, Yasunari; Kuribayashi, Futoshi; Nakayama, Tatsuo

    2011-01-01

    The transcription factor Ikaros family consists of five zinc-finger proteins: Ikaros, Aiolos, Helios, Eos and Pegasus; these proteins except Pegasus are essential for development and differentiation of lymphocytes. However, in B lymphocytes, the physiological role of Helios remains to be elucidated yet, because its expression level is very low. Here, we generated the Helios-deficient DT40 cells, Helios (-/-), and showed that the Helios-deficiency caused significant increases in transcriptions of four protein kinase Cs (PKCs); PKC-δ, PKC-ε, PKC-η and PKC-ζ, whereas their expressions were drastically down-regulated in the Aiolos-deficient DT40 cells, Aiolos (-/-). In addition, Helios (-/-) was remarkably resistant against phorbol 12-myristate 13-acetate (PMA)/ionomycin treatment, which mimics the B cell receptor (BCR)-mediated stimulation. In the presence of PMA/ionomycin, their viability was remarkably higher than that of DT40, and their DNA fragmentation was less severe than that of DT40 in the opposite manner for the Aiolos-deficiency. The resistance against the PMA/ionomycin-induced apoptosis of Helios (-/-) was sensitive to Rottlerin but not to Go6976. In addition, the Helios-deficiency caused remarkable up-regulation of the Rottlerin-sensitive superoxide (O2 (-))-generating activity. These data suggest that Helios may contribute to the regulation of the BCR-mediated apoptosis and O2 (-)-generating activity, via transcriptional regulation of these four PKCs (especially PKC-δ) in immature B lymphocytes. Together with previous data, our findings may significantly help in the understanding of the B lymphocyte-specific expressions of PKC genes and molecular mechanisms of both the BCR-mediated apoptosis involved in negative selection and the O2 (-)-generating system in immature B lymphocytes.

  11. Possible involvement of Helios in controlling the immature B cell functions via transcriptional regulation of protein kinase Cs

    PubMed Central

    Kikuchi, Hidehiko; Nakayama, Masami; Takami, Yasunari; Kuribayashi, Futoshi; Nakayama, Tatsuo

    2011-01-01

    The transcription factor Ikaros family consists of five zinc-finger proteins: Ikaros, Aiolos, Helios, Eos and Pegasus; these proteins except Pegasus are essential for development and differentiation of lymphocytes. However, in B lymphocytes, the physiological role of Helios remains to be elucidated yet, because its expression level is very low. Here, we generated the Helios-deficient DT40 cells, Helios−/−, and showed that the Helios-deficiency caused significant increases in transcriptions of four protein kinase Cs (PKCs); PKC-δ, PKC-ε, PKC-η and PKC-ζ, whereas their expressions were drastically down-regulated in the Aiolos-deficient DT40 cells, Aiolos−/−. In addition, Helios−/− was remarkably resistant against phorbol 12-myristate 13-acetate (PMA)/ionomycin treatment, which mimics the B cell receptor (BCR)-mediated stimulation. In the presence of PMA/ionomycin, their viability was remarkably higher than that of DT40, and their DNA fragmentation was less severe than that of DT40 in the opposite manner for the Aiolos-deficiency. The resistance against the PMA/ionomycin-induced apoptosis of Helios−/− was sensitive to Rottlerin but not to Go6976. In addition, the Helios-deficiency caused remarkable up-regulation of the Rottlerin-sensitive superoxide (O2−)-generating activity. These data suggest that Helios may contribute to the regulation of the BCR-mediated apoptosis and O2−-generating activity, via transcriptional regulation of these four PKCs (especially PKC-δ) in immature B lymphocytes. Together with previous data, our findings may significantly help in the understanding of the B lymphocyte-specific expressions of PKC genes and molecular mechanisms of both the BCR-mediated apoptosis involved in negative selection and the O2−-generating system in immature B lymphocytes. PMID:24371557

  12. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis.

    PubMed

    Sasaki, Motoko; Yoshimura-Miyakoshi, Masami; Sato, Yasunori; Nakanuma, Yasuni

    2015-09-01

    Deregulated autophagy followed by cellular senescence in biliary epithelial cells (BECs) may be closely related to the abnormal expression of mitochondrial antigens and following autoimmune pathogenesis in primary biliary cirrhosis (PBC). We examined an involvement of endoplasmic reticulum (ER) stress in the deregulated autophagy and cellular senescence in PBC. We examined the degree of ER stress using markers; glucose-regulated protein 78 (GRP78) and protein disulfide isomerases (PDI), autophagy and cellular senescence in cultured BECs treated with an ER stress inducer, tunicamycin (TM), glycochenodeoxycholic acid (GCDC), and palmitic acid (PA), and the effect of pretreatment with tauroursodeoxycholic acid (TUDCA). We examined the expression of PDI and GRP78 in livers taken from the patients with PBC (n = 43) and 75 control livers. The expression of ER stress markers was significantly increased in cultured BECs treated with TM, GCDC or PA in BECs (p < 0.05), and pretreatment with TUDCA significantly suppressed the induced ER stress (p < 0.05). Autophagy, deregulated autophagy, and cellular senescence were induced in BECs treated with TM, GCDC, or PA. Pretreatment with TUDCA further increased autophagy in BECs treated with PA and suppressed cellular senescence caused by treatments with TM, GCDC, or PA (p < 0.05). A granular expression of PDI and GRP78 was significantly more extensive in small bile ducts in PBC, compared with control livers (p < 0.05). The expression of GRP78 was seen in senescent BECs in PBC. ER stress may play a role in the pathogenesis of deregulated autophagy and cellular senescence in biliary epithelial lesions in PBC.

  13. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    PubMed Central

    House, Christopher H.; Beal, Emily J.; Orphan, Victoria J.

    2011-01-01

    On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total

  14. Possible involvement of β₁ receptors in various emetogen-induced increases in salivary amylase activity in rats.

    PubMed

    Fukui, Hideo; Suyama, Yoshimi; Iwachido, Takako; Miwa, Eri

    2011-01-01

    We investigated the inhibitory effects of β₁- or β₂-adrenoceptor (AR) antagonists on salivary amylase secretion produced by various emetic agents, such as cisplatin, apomorphine, and lithium chloride (LiCl), or the non-emetic agent β(½)-AR agonist isoprenaline in rats. We also determined the inhibitory effect of metoclopramide, a dopamine D₂-receptor antagonist, on increases in the salivary amylase activity induced by apomorphine or granisetron, a 5-HT(3)-receptor antagonist, on LiCl-induced increased salivary amylase activity. Isoprenaline (0.01 mg/kg, s.c.) produced an increase in salivary amylase and the increase was inhibited by the β(½)-AR antagonist propranolol (5 mg/kg, s.c.) and β₁-AR antagonist atenolol (2 mg/kg, s.c.) but not by the β₂-AR antagonist butoxamine (8 mg/kg, s.c.). The increased amylase activity induced by cisplatin (15 mg/kg, i.v.), apomorphine (3 mg/kg, s.c.), or LiCl (120 mg/kg, i.p.) was inhibited significantly by atenolol (2 mg/kg, s.c.) but not by butoxamine (8 mg/kg, s.c.). In addition, increases in amylase activities induced by apomorphine and LiCl were inhibited significantly by metoclopramide (10 mg/kg, i.v.) and granisetron (3 mg/kg, i.v.), respectively. These results suggest that salivary amylase secretion induced by various emetogens is involved in β₁-adrenoceptor activity and that salivary amylase activity is useful to detect emetogens with no direct β₁-AR activation in rats, a species that does not exhibit vomiting.

  15. Sexually mature European eels (Anguilla anguilla L.) stimulate gonadal development of neighbouring males: possible involvement of chemical communication.

    PubMed

    Huertas, Mar; Scott, Alexander P; Hubbard, Peter C; Canário, Adelino V M; Cerdà, Joan

    2006-07-01

    This study was aimed to investigate whether sexual maturation of immature male eels could be stimulated indirectly by placing them in contact with either male (Minj) or female (Finj) eels in which sexual maturation had been stimulated directly by weekly injections of human chorionic gonadotropin (hCG) or salmon pituitary extract (SPE), respectively. Untreated males were placed either in the same tank or in a separate tank that was linked to the injected fish via a recirculation system. The hormonal treatments stimulated spermatogenesis and spermiation in Minj, and ovulation in Finj as well as an increase of the ocular (Io) and gonadosomatic (GSI) indices in both sexes. Plasma levels of testosterone (T) and 11-ketotestosterone (11-KT) increased in Minj and T and 17beta-estradiol (E2) in Finj. A small peak of plasma 17,20beta-dihydroxypregn-4-en-3-one (17,20betaP) occurred during ovulation, while the plasma levels of 17alpha-hydroxypregn-4-ene-3,20-dione (17P) were undetectable in both males and females. The water conditioned by Minj and Finj induced significant, though relatively minor, increases in Io and GSI in uninjected males. In addition, uninjected fish showed small changes in plasma T and 11-KT levels, apparently related to the timing of spermiation and ovulation of Minj and Finj, respectively, as well as an activation of spermatogenesis (but not spermiation). Injected fish released free and conjugated T, 11-KT and E2 into the water, although immature eels were unable to smell (by electro-olfactogram) any of these steroids or prostaglandin F2alpha. However, immature males were highly sensitive to water extracts conditioned by spermiating Minj and pre-ovulatory and ovulated Finj. These preliminary results suggest the existence of chemical communication between maturing eels and immature males that stimulates gonad development, although the putative pheromone(s) involved has/have not yet been identified.

  16. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism.

    PubMed

    Wolf, Federica I; Torsello, Angela; Tedesco, Beatrice; Fasanella, Silvia; Boninsegna, Alma; D'Ascenzo, Marcello; Grassi, Claudio; Azzena, Gian Battista; Cittadini, Achille

    2005-03-22

    HL-60 leukemia cells, Rat-1 fibroblasts and WI-38 diploid fibroblasts were exposed for 24-72 h to 0.5-1.0-mT 50-Hz extremely low frequency electromagnetic field (ELF-EMF). This treatment induced a dose-dependent increase in the proliferation rate of all cell types, namely about 30% increase of cell proliferation after 72-h exposure to 1.0 mT. This was accompanied by increased percentage of cells in the S-phase after 12- and 48-h exposure. The ability of ELF-EMF to induce DNA damage was also investigated by measuring DNA strand breaks. A dose-dependent increase in DNA damage was observed in all cell lines, with two peaks occurring at 24 and 72 h. A similar pattern of DNA damage was observed by measuring formation of 8-OHdG adducts. The effects of ELF-EMF on cell proliferation and DNA damage were prevented by pretreatment of cells with an antioxidant like alpha-tocopherol, suggesting that redox reactions were involved. Accordingly, Rat-1 fibroblasts that had been exposed to ELF-EMF for 3 or 24 h exhibited a significant increase in dichlorofluorescein-detectable reactive oxygen species, which was blunted by alpha-tocopherol pretreatment. Cells exposed to ELF-EMF and examined as early as 6 h after treatment initiation also exhibited modifications of NF kappa B-related proteins (p65-p50 and I kappa B alpha), which were suggestive of increased formation of p65-p50 or p65-p65 active forms, a process usually attributed to redox reactions. These results suggest that ELF-EMF influence proliferation and DNA damage in both normal and tumor cells through the action of free radical species. This information may be of value for appraising the pathophysiologic consequences of an exposure to ELF-EMF.

  17. Early postprandial low-grade inflammation after high-fat meal in healthy rats: possible involvement of visceral adipose tissue.

    PubMed

    Magné, Joëlle; Mariotti, François; Fischer, Romy; Mathé, Véronique; Tomé, Daniel; Huneau, Jean François

    2010-06-01

    In the postprandial period, low-grade inflammation may contribute to vascular endothelial dysfunction, a hallmark of atherogenesis. Little is known about the involvement of the adipose tissue in the initiation of the postprandial inflammatory response such as obtained after a high-saturated fat meal (HFM). In the present study, we first studied the time course of appearance of systemic inflammation after a HFM in healthy rats, and then we investigated whether a HFM activates the inflammatory signaling in the visceral adipose tissue, with a focus on the key component, nuclear factor-kappaB (NF-kappaB). Two hours after the HFM, plasma IL-6 and PAI-1, but not plasma C-reactive protein and soluble intracellular adhesion molecule-1, showed a marked, transient increase. These changes were specific to the postprandial state as not observed after a control water load. Neutrophils count and activation markers CD11B and CD62L, assessed by flow cytometry, also rose significantly 2 h after the HFM, while remaining steady after the control. At the same time, the HFM decreased significantly B-cell count and expression of the activation marker CD62L. Interestingly, at the same early time after the HFM, in the visceral adipose tissue, there was a 2.2-fold increase in the activation of NF-kappaB (p65) in nuclear extract and an increase in IL-6 mRNA. As far as we know, this is the first study evidencing an acute, postprandial activation of inflammation in visceral adipose tissue. This early activation of NF-kappaB pathway after a HFM may play a triggering role in the initiation of the complex postprandial proatherogenic phenotype. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: Possible involvement of bradykinin in information flow.

    PubMed

    Pillat, Micheli M; Oliveira, Mona N; Motaln, Helena; Breznik, Barbara; Glaser, Talita; Lah, Tamara T; Ulrich, Henning

    2016-04-01

    The most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h. Up- and down-regulation of matrix metalloproteases (MMP)-9 expression in U87-MG and MSC cells, respectively, in direct co-culture points to possible MSC participation in tumor invasion. MMP9 expression is in line with significantly increased expression of kinin B1 (B1R) and B2 receptor (B2R) in U87-MG cells and their decreased levels in MSC, as confirmed by quantitative assessment using flow cytometric analysis. Similarly, in indirect cultures (IC), lacking the contact between GBM and MSC cells, an increase of B1 and B2 receptor expression was again noted in U87-MG cells, and no significant changes in kinin receptors in MSC was observed. Functionality of kinin-B1 and B2 receptors was evidenced by stimulation of intracellular calcium fluxes by their respective agonists, des-Arg9-bradykinin (DBK) and bradykinin (BK). Moreover, BK showed a feedback control on kinin receptor expression in mono-cultures, direct and indirect co-cultures. The treatment with BK resulted in down-regulation of B1 and B2 receptors in MSC, with simultaneous up-regulation of these receptors in U87-MG cells, suggesting that functions of BK in information flow between these cells is important for tumor progression and invasion. © 2015 International Society for Advancement of Cytometry.

  19. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect.

    PubMed

    Shen, Yuh-Chiang; Chen, Chieh-Fu; Chiou, Wen-Fei

    2002-01-01

    We have reported that andrographolide (ANDRO), an active component of Andrographis paniculata, inhibits inflammatory responses by rat neutrophils. To further elucidate the possible mechanism(s) underlying the ANDRO's effect, N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced adhesion and transmigration of isolated peripheral human neutrophils were studied. Pretreatment with ANDRO (0.1 - 10 microM) concentration-dependently prevented fMLP-induced neutrophil adhesion and transmigration. We further examined the up-expression of surface Mac-1 (CD11b/CD18), an essential integrin mediated in neutrophil adhesion and transmigration. ANDRO pretreatment significantly decreased fMLP-induced up-expression of both CD11b and CD18. Accumulation of reactive oxygen species (ROS) as well as quick intracellular calcium ([Ca(++)](i)) mobilization induced by fMLP displays two important signalling pathways in regulating the up-expression of Mac-1 by neutrophils. That ANDRO pretreatment diminished fMLP-induced production of H(2)O(2) and O(2)*(-), but failed to block that of [Ca(++)](i) mobilization suggested that the ROS but not [Ca(++)](i) signalling could be modulated by ANDRO. To clarify whether ROS production impeded by ANDRO could be an antagonism of fMLP binding, phorbol-12-myristate-13-acetate (PMA), a direct protein kinase C (PKC) activator, was introduced to activate ROS production. PMA triggered remarkable ROS production and adhesion, and were partially reversed by ANDRO. This indicated that a PKC-dependent mechanism might be interfered by ANDRO. We conclude that the prevention of ROS production through, at least in part, modulation of PKC-dependent pathway could confer ANDRO the ability to down-regulate Mac-1 up-expression that is essential for neutrophil adhesion and transmigration.

  20. Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts.

    PubMed

    Kuluncsics, Z; Perdiz, D; Brulay, E; Muel, B; Sage, E

    1999-03-01

    DNA damage profiles have been established in plasmid DNA using purified DNA repair enzymes and a plasmid relaxation assay, following exposure to UVC, UVB, UVA or simulated sunlight (SSL). Cyclobutane pyrimidine dimers (CPDs) are revealed as T4 endonuclease V-sensitive sites, oxidation products at purine and pyrimidine as Fpg- and Nth-sensitive sites, and abasic sites are detected by Nfo protein from Escherichia coli. CPDs are readily detected after UVA exposure, though produced 10(3) and 10(5) times less efficiently than by UVB or UVC, respectively. We demonstrate that CPDs are induced by UVA radiation and not by contaminating UVB wavelengths. Furthermore, they are produced at doses compatible with human exposure and are likely to contribute to the mutagenic specificity of UVA [E. Sage et al., Proc. Natl. Acad. Sci. USA 93 (1996) 176-180]. Oxidative damage is induced with a linear dose dependence, for each region of the solar spectrum, with the exception of oxidized pyrimidine and abasic sites, which are not detectable after UVB irradiation. The distribution of the different classes of photolesions varies markedly, depending on wavelengths. However, the unexpectedly high yield of oxidative lesions, as compared to CPDs, by UVA and SSL led us to investigate their production mechanism. An artificial formation of hydroxyl radicals is observed, which depends on the material of the sample holder used for UVA irradiation and is specific for long UV wavelengths. Our study sheds light on a possible artefact in the production of oxidative damage by UVA radiation. Meanwhile, after eliminating some potential sources of the artefact ratios of CPDs to oxidized purine of three and five upon irradiation with UVA and SSL, respectively, are still observed, whereas these ratios are about 140 and 200 after UVC and UVB irradiation.

  1. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease

    PubMed Central

    Francelle, Laetitia; Galvan, Laurie; Brouillet, Emmanuel

    2014-01-01

    HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion translated into an abnormal poly-glutamine (polyQ) tract in the huntingtin (Htt) protein. The most striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of mutant Htt (mHtt) is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of compensatory responses to cellular stress. In this review, we focus on gene products that are preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene products are for a vast majority down-regulated and more rarely increased in HD. Recent research shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g., MSK1, A2A, and CB1 receptors) whereas others enhance the susceptibility of striatal neurons to mHtt (e.g., Rhes, RGS2, D2 receptors). The down-regulation of these latter proteins may be considered as a potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products that have been identified so far, their function in the striatum is unknown and their modifying effects on mHtt toxicity remain to be experimentally addressed. Focusing on these striatal markers may contribute to a better understanding of HD pathogenesis, and possibly the identification of novel therapeutic targets. PMID:25309327

  2. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9

    PubMed Central

    Kubota, Kunitsugu; Ohtake, Nobuhiro; Ohbuchi, Katsuya; Mase, Akihito; Imamura, Sachiko; Sudo, Yuka; Miyano, Kanako; Yamamoto, Masahiro; Kono, Toru

    2015-01-01

    Various colonic motor activities are thought to mediate propulsion and mixing/absorption of colonic content. The Japanese traditional medicine daikenchuto (TU-100), which is widely used for postoperative ileus in Japan, accelerates colonic emptying in healthy humans. Hydroxy-α sanshool (HAS), a readily absorbable active ingredient of TU-100 and a KCNK3/KCNK9/KCNK18 blocker as well as TRPV1/TRPA1 agonist, has been investigated for its effects on colonic motility. Motility was evaluated by intraluminal pressure and video imaging of rat proximal colons in an organ bath. Distribution of KCNKs was investigated by RT-PCR, in situ hybridization, and immunohistochemistry. Current and membrane potential were evaluated with use of recombinant KCNK3- or KCNK9-expressing Xenopus oocytes and Chinese hamster ovary cells. Defecation frequency in rats was measured. HAS dose dependently induced strong propulsive “squeezing” motility, presumably as long-distance contraction (LDC). TRPV1/TRPA1 agonists induced different motility patterns. The effect of HAS was unaltered by TRPV1/TRPA1 antagonists and desensitization. Lidocaine (a nonselective KCNK blocker) and hydroxy-β sanshool (a geometrical isomer of HAS and KCNK3 blocker) also induced colonic motility as a rhythmic propagating ripple (RPR) and a LDC-like motion, respectively. HAS-induced “LDC,” but not lidocaine-induced “RPR,” was abrogated by a neuroleptic agent tetrodotoxin. KCNK3 and KCNK9 were located mainly in longitudinal smooth muscle cells and in neural cells in the myenteric plexus, respectively. Administration of HAS or TU-100 increased defecation frequency in normal and laparotomy rats. HAS may evoke strong LDC possibly via blockage of the neural KCNK9 channel in the colonic myenteric plexus. PMID:25634809

  3. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9.

    PubMed

    Kubota, Kunitsugu; Ohtake, Nobuhiro; Ohbuchi, Katsuya; Mase, Akihito; Imamura, Sachiko; Sudo, Yuka; Miyano, Kanako; Yamamoto, Masahiro; Kono, Toru; Uezono, Yasuhito

    2015-04-01

    Various colonic motor activities are thought to mediate propulsion and mixing/absorption of colonic content. The Japanese traditional medicine daikenchuto (TU-100), which is widely used for postoperative ileus in Japan, accelerates colonic emptying in healthy humans. Hydroxy-α sanshool (HAS), a readily absorbable active ingredient of TU-100 and a KCNK3/KCNK9/KCNK18 blocker as well as TRPV1/TRPA1 agonist, has been investigated for its effects on colonic motility. Motility was evaluated by intraluminal pressure and video imaging of rat proximal colons in an organ bath. Distribution of KCNKs was investigated by RT-PCR, in situ hybridization, and immunohistochemistry. Current and membrane potential were evaluated with use of recombinant KCNK3- or KCNK9-expressing Xenopus oocytes and Chinese hamster ovary cells. Defecation frequency in rats was measured. HAS dose dependently induced strong propulsive "squeezing" motility, presumably as long-distance contraction (LDC). TRPV1/TRPA1 agonists induced different motility patterns. The effect of HAS was unaltered by TRPV1/TRPA1 antagonists and desensitization. Lidocaine (a nonselective KCNK blocker) and hydroxy-β sanshool (a geometrical isomer of HAS and KCNK3 blocker) also induced colonic motility as a rhythmic propagating ripple (RPR) and a LDC-like motion, respectively. HAS-induced "LDC," but not lidocaine-induced "RPR," was abrogated by a neuroleptic agent tetrodotoxin. KCNK3 and KCNK9 were located mainly in longitudinal smooth muscle cells and in neural cells in the myenteric plexus, respectively. Administration of HAS or TU-100 increased defecation frequency in normal and laparotomy rats. HAS may evoke strong LDC possibly via blockage of the neural KCNK9 channel in the colonic myenteric plexus.

  4. Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: possible involvement of mitochondrial dysfunction and apoptosis.

    PubMed

    Sahu, Bidya Dhar; Anubolu, Harika; Koneru, Meghana; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-06-27

    Preventive and/or therapeutic interventions using natural products for ischemic heart disease have gained considerable attention worldwide. This study investigated the cardioprotective effect and possible mechanism of embelin, a major constituent of Embelia ribes Burm, using isoproterenol (ISO)-induced myocardial infarction model in rats. Rats were pretreated for three days with embelin (50mg/kg, p.o) before inducing myocardial injury by administration of ISO (85 mg/kg) subcutaneously at an interval of 24h for 2 consecutive days. Serum was analyzed for cardiac specific injury biomarkers, lipids and lipoprotein content. Heart tissues were isolated and were used for histopathology, antioxidant and mitochondrial respiratory enzyme activity assays and western blot analysis. Results showed that pretreatment with embelin significantly decreased the elevated levels of serum specific cardiac injury biomarkers (CK-MB, LDH and AST), serum levels of lipids and lipoproteins and histopathological changes when compared to ISO-induced controls. Exploration of the underlying mechanisms of embelin action revealed that embelin pretreatment restored the myocardial mitochondrial respiratory enzyme activities (NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity), strengthened antioxidant status and attenuated ISO-induced myocardial lipid peroxidation. Immunoblot analysis revealed that embelin interrupted mitochondria dependent apoptotic damage by increasing the myocardial expression of Bcl-2 and downregulating the expression of Bax, cytochrome c, cleaved-caspase-3 & 9 and PARP. Histopathology findings further strengthened the cardioprotective findings of embelin. Result suggested that embelin may have a potential benefit in preventing ischemic heart disease like myocardial infarction. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: possible involvement of the endocannabinoid system

    PubMed Central

    Seillier, Alexandre; Giuffrida, Andrea

    2015-01-01

    Previous studies have shown that social withdrawal in the phencyclidine (PCP) rat model of schizophrenia results from deficient endocannabinoid-induced activation of CB1 receptors. To understand the underlying cognitive mechanisms of the social deficit in PCP-treated rats, we examined the impact of pharmacological manipulation of the endocannabinoid system on sociability (i.e. social approach) and social novelty preference (which relies on social recognition). Control rats showed a clear preference for a “social” cage (i.e. unfamiliar stimulus rat placed under a wire mesh cage) versus an “empty” cage, and spent more time exploring a “novel” cage (i.e. new stimulus rat) versus a “familiar” cage. In contrast, rats receiving PCP (5 mg/kg, b.i.d. for 7 days, followed by a 7 day-washout period) showed intact sociability, but lacked social novelty preference. This PCP-induced deficit was due to increased activity at CB1 receptors as it was reversed by systemic administration of the CB1 antagonist AM251 (1 mg/kg). In agreement with this hypothesis, the cannabinoid agonist CP55,940 (0.003 – 0.03 mg/kg) dose-dependently suppressed social novelty preference in control animals without affecting sociability. Taken together, these data suggest that PCP-treated rats have a deficit in social cognition, possibly induced by increased stimulation of CB1 receptors. This deficit, however, is distinct from the social withdrawal previously observed in these animals, as the latter is due to deficient, rather than increased, CB1 stimulation. PMID:26706691

  6. Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: Possible involvement of the endocannabinoid system.

    PubMed

    Seillier, Alexandre; Giuffrida, Andrea

    2016-02-01

    Previous studies have shown that social withdrawal in the phencyclidine (PCP) rat model of schizophrenia results from deficient endocannabinoid-induced activation of CB1 receptors. To understand the underlying cognitive mechanisms of the social deficit in PCP-treated rats, we examined the impact of pharmacological manipulation of the endocannabinoid system on sociability (i.e. social approach) and social novelty preference (which relies on social recognition). Control rats showed a clear preference for a "social" cage (i.e. unfamiliar stimulus rat placed under a wire mesh cage) versus an "empty" cage, and spent more time exploring a "novel" cage (i.e. new stimulus rat) versus a "familiar" cage. In contrast, rats receiving PCP (5 mg/kg, b.i.d. for 7 days, followed by a 7 day-washout period) showed intact sociability, but lacked social novelty preference. This PCP-induced deficit was due to increased activity at CB1 receptors as it was reversed by systemic administration of the CB1 antagonist AM251 (1 mg/kg). In agreement with this hypothesis, the cannabinoid agonist CP55,940 (0.003-0.03 mg/kg) dose-dependently suppressed social novelty preference in control animals without affecting sociability. Taken together, these data suggest that PCP-treated rats have a deficit in social cognition, possibly induced by increased stimulation of CB1 receptors. This deficit, however, is distinct from the social withdrawal previously observed in these animals, as the latter is due to deficient, rather than increased, CB1 stimulation.

  7. DNase I and II present in avian oocytes: a possible involvement in sperm degradation at polyspermic fertilisation.

    PubMed

    Stepińska, Urszula; Olszańska, Bozenna

    2003-02-01

    During polyspermic fertilisation in birds numerous spermatozoa enter the eggs, in contrast to the situation in mammals where fertilisation is monospermic. However, in birds only one of the spermatozoa which have entered an egg participates in zygote nucleus formation, while the supernumerary spermatozoa degenerate at early embryogenesis. Our previous work has demonstrated the presence in preovulatory quail oocytes of DNase I and II activities able to digest naked lambdaDNA/HindIII substrate in vitro. In the present studies, the activities of both DNases in quail oocytes at different stages of oogenesis and in ovulated mouse oocytes were assayed in vitro using the same substrate. Degradation of quail spermatozoa by quail oocyte extracts was also checked. Digestion of the DNA substrate was evaluated by electrophoresis on agarose gels. The activities of DNase I and II in quail oocytes increased during oogenesis and were the highest in mature oocytes. The activities were present not only in germinal discs but also in a thin layer of cytoplasm adhering to the perivitelline layer surrounding the yolk. At all stages of oogenesis the activity of DNase II was much higher than that of DNase I. DNA contained in spermatozoa was also degraded by the quail oocyte extracts under conditions optimal for both DNases. In contrast to what is observed in quail oocytes, no DNase activities were detected in ovulated mouse eggs; this is logical as they would be useless or even harmful in monospermic fertilisation. The possible role of DNase activities in avian oocytes, in degradation of accessory spermatozoa during polyspermic fertilisation, is discussed.

  8. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders.

    PubMed

    Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi

    2016-10-01

    Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future

  9. Recombinant avian adeno-associated virus-mediated oviduct-specific expression of recombinant human tissue kallikrein.

    PubMed

    Wang, A P; Sun, H C; Wang, J Y; Wang, Y J; Yuan, W F

    2008-04-01

    Human tissue kallikrein (hK1) plays an important role in regulation of blood pressure, electrolyte and glucose transport, and renal function. To evaluate the feasibility of viral vector-mediated expression of recombinant human tissue kallikrein (rhK1) in the egg white of laying hens, human tissue kallikrein gene (hKLK1) cDNA-expression cassette was subcloned into avian adeno-associated virus (AAAV) transfer vector pAITR and transfected into AAV-293 cells with AAAV helper vector pcDNA-ARC and adenovirus helper vector pHelper. The recombinant viral particles with a typical AAAV morphology and relatively high titer were generated and identified by PCR and electron microscopy. After 1 intravenous injection of each laying hen with 2 x 10(10) viral particles, oviduct-specific expression of hKLK1 cDNA was demonstrated by reverse transcription-PCR. Secretion of rhK1 into the egg white was detected by enzymatic assay from d 2, reaching the highest level of 107 U/mL in wk 3, and lasted for more than 6 wk after injection. Western blotting showed that the oviduct-expressed rhK1 had the same molecular mass with the natural enzyme. These data suggest that rAAAV can mediate high level and long-lasting transgene expression in oviduct cells, and the established expression system is useful for production of other recombinant proteins.

  10. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein.

    PubMed

    Wang, Yunpeng; Xu, Wentao; Kou, Xiaohong; Luo, Yunbo; Zhang, Yanan; Ma, Biao; Wang, Mengsha; Huang, Kunlun

    2012-08-01

    Wheat germ cell-free protein synthesis systems have the potential to synthesize functional proteins safely and with high accuracy, but the poor energy supply and the instability of mRNA templates reduce the productivity of this system, which restricts its applications. In this report, phosphocreatine and pyruvate were added to the system to supply ATP as a secondary energy source. After comparing the protein yield, we found that phosphocreatine is more suitable for use in the wheat germ cell-free protein synthesis system. To stabilize the mRNA template, the plasmid vector, SP6 RNA polymerase, and Cu(2+) were optimized, and a wheat germ cell-free protein synthesis system with high yield and speed was established. When plasmid vector (30 ng/μl), SP6 RNA polymerase (15 U), phosphocreatine (25 mM), and Cu(2+) (5 mM) were added to the system and incubated at 26°C for 16 h, the yield of venom kallikrein increased from 0.13 to 0.74 mg/ml. The specific activity of the recombinant protein was 1.3 U/mg, which is only slightly lower than the crude venom kallikrein (1.74 U/mg) due to the lack of the sugar chain. In this study, the yield of venom kallikrein was improved by optimizing the system, and a good foundation has been laid for industrial applications and for further studies.

  11. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer.

    PubMed

    Borgoño, Carla A; Grass, Linda; Soosaipillai, Antoninus; Yousef, George M; Petraki, Constantina D; Howarth, David H C; Fracchioli, Stefano; Katsaros, Dionyssios; Diamandis, Eleftherios P

    2003-12-15

    Human kallikrein gene 14 (KLK14) is a recently discovered member of the tissue kallikrein family of secreted serine proteases, which includes hK3/prostate-specific antigen, the best cancer biomarker to date. Given that KLK14 is hormonally regulated, differentially expressed in endocrine-related cancers, and a prognostic marker for breast and ovarian cancer at the mRNA level, we hypothesize that its encoded protein, hK14, like hK3/prostate-specific antigen, may constitute a new biomarker for endocrine-related malignancies. The objective of this study was to generate immunological reagents for hK14, to develop an ELISA and immunohistochemical techniques to study its expression in normal and cancerous tissues and biological fluids. Recombinant hK14 was produced in Pichia pastoris, purified by affinity chromatography, and injected into mice and rabbits for polyclonal antibody generation. Using the mouse and rabbit antisera, a sandwich-type immunofluorometric ELISA and immunohistochemical methodologies were developed for hK14. The ELISA was sensitive (detection limit of 0.1 micro g/liter), specific for hK14, linear from 0 to 20 micro g/liter with between-run and within-run coefficients of variation of <10%. hK14 was quantified in human tissue extracts and biological fluids. Highest levels were observed in the breast, skin, prostate, seminal plasma, and amniotic fluid, with almost undetectable levels in normal serum. hK14 concentration was higher in 40% of ovarian cancer tissues compared with normal ovarian tissues. Serum hK14 levels were elevated in a proportion of patients with ovarian (65%) and breast (40%) cancers. Immunohistochemical analyses indicated strong cytoplasmic staining of hK14 by the epithelial cells of normal and malignant skin, ovary, breast, and testis. In conclusion, we report the first ELISA and immunohistochemical assays for hK14 and describe its distribution in tissues and biological fluids. Our preliminary data indicate that hK14 is a potential

  12. Thrombin, kallikrein and complement C5b-9 adsorption on hydrophilic and hydrophobic titanium and glass after short time exposure to whole blood.

    PubMed

    Yahyapour, Noushin; Eriksson, Cecilia; Malmberg, Per; Nygren, Håkan

    2004-07-01

    Hydrophilic and hydrophobic titanium and glass were exposed to capillary whole blood between 5s and 24h. The time-sequence for adsorption of thrombin, kallikrein and complement C5b-9, and their relationship with adherent platelets and polymorphonuclear granulocyte (PMN) activation were investigated. Adsorbed thrombin and kallikrein were measured by cleavage of specific chromogenic substances, S-2238 and S-2303, respectively. Complement C5b-9 and expression of CD11b, CD66b, CD62P and Pan-platelets were measured by immunofluorescence. Thrombin and kallikrein were present on the surfaces during the whole investigated periods. Platelet adhesion and PMN cell adhesion and activation on all surfaces and activation of platelets on hydrophobic surfaces showed a similar pattern to thrombin adsorption. Kallikrein adsorption had a different pattern on each surface. C5b-9 was detected between 32min and 24h of blood exposure and a varying pattern of C5b-9 coverage was observed on each surface. In conclusion, our results indicate that the interaction between material and blood coagulation and kinin-activating proteins regulate the adhesion and activation of blood cells, whereas after longer time the coagulation and kallikrein-kinin system play minor roles and the complement system is decisive for mediating and elongating the inflammatory process.

  13. [Effects of human tissue kallikrein gene transfer on the migration of vascular smooth muscule cells].

    PubMed

    Yu, Hui-zhen; Xie, Liang-di; Zhu, Peng-li; Xu, Chang-sheng

    2010-04-01

    To investigate the effects of adenovirus-mediated human tissue kallikrein (Ad-hKLK1) gene transfer on platelet-derived growth factor-BB (PDGF-BB)-induced migration of vascular smooth muscle cells from spontaneously hypertensive rats (VSMC(SHR)). A bicistronic recombinant adenovirus vector (Ad-hKLK1) carrying the target hKLK1 gene and the reporter gene EGFP was constructed. VSMCs isolated from the thoracic aorta of male SHR were passaged, and the quiescent VSMC(SHR) in passages 3-6 seeded in 6-well plates were treated with Ad-hKLK1 and control virus. Human PDGF-BB or icatibant Hoe140, a BK B2 antagonistat, was used as the chemoattractant and placed in the bottom chamber of the Boyden chamber. The mRNA expressions of bradykinin B1 receptor and B2 receptor were detected by RT-PCR in VSMC(SHR). hKLK1 gene transfer significantly inhibited PDGF-BB-induced migration of VSMC(SHR), with the peak inhibition rate of 34.6% (P<0.001). PDGF-BB significantly increased the mRNA expression of B2 receptor but not B1 receptor in VSMC(SHR). hKLK1 gene transfer can inhibit the migration of VSMC(SHR) induced by PDGF-BB, and the inhibitory effects may be not mediated by bradykinin B2 receptor.

  14. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil.

    PubMed

    Lizama, Alejandro J; Andrade, Yessica; Colivoro, Patricio; Sarmiento, Jose; Matus, Carola E; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela; Figueroa, Carlos D

    2015-08-01

    The family of kallikrein-related peptidases (KLKs) has been identified in a variety of immunolabeled human tissue sections, but no previous study has experimentally confirmed their presence in the human neutrophil. We have investigated the expression and bioregulation of particular KLKs in the human neutrophil and, in addition, examined whether stimulation by a kinin B(1) receptor (B1R) agonist or fMet-Leu-Phe (fMLP) induces their secretion. Western blot analysis of neutrophil homogenates indicated that the MM of the KLKs ranged from 27 to 50 kDa. RT-PCR showed that blood neutrophils expressed only KLK1, KLK4, KLK10, KLK13, KLK14 and KLK15 mRNAs, whereas the non-differentiated HL-60 cells expressed most of them, with exception of KLK3 and KLK7. Nevertheless, mRNAs for KLK2, KLK5, KLK6 and KLK9 that were previously undetectable appeared after challenging with a mixture of cytokines. Both kinin B(1)R agonist and fMLP induced secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the culture medium in similar amounts, whereas the B(1)R agonist caused the release of lower amounts of KLK2, KLK4 and KLK5. When secreted, the differing proteolytic activity of KLKs provides the human neutrophil with a multifunctional enzymatic capacity supporting a new dimension for its role in human disorders of diverse etiology. © The Author(s) 2015.

  15. Human kallikrein 10 expression in surgically removed human pituitary corticotroph adenomas: an immunohistochemical study.

    PubMed

    Di Meo, Ashley; Rotondo, Fabio; Kovacs, Kalman; Cusimano, Michael D; Syro, Luis V; Di Ieva, Antonio; Diamandis, Eleftheros P; Yousef, George M

    2015-07-01

    Human kallikrein 10 (hk10), a secreted serine protease, was reported to function as a tumor suppressor. hK10 immunoexpression has been demonstrated in lactrotrophs and corticotrophs of the nontumorous human adenohypophysis. In the present study, for the first time we report hK10 immunoexpression in various surgically removed corticotroph adenoma subtypes. Specimens were fixed in formalin and embedded in paraffin. Immunostaining was performed using the streptavidin-biotin-peroxidase complex method with an hK10-specific rabbit polyclonal antibody. Results showed that the endocrinologically active adrenocorticotropic hormone (ACTH)-producing pituitary tumors and the silent subtypes were immunopositve for hK10. Intensity of staining varied between the different subtypes. Intensity was lowest in the silent subtypes (silent corticotroph subtypes 1 and 2) compared with nontumorous human adenohypophysial corticotrophs, whereas the endocrinologically active subtypes (ACTH-secreting adenomas, corticotroph carcinomas, Crooke cell adenomas, Crooke cell carcinomas), showed the highest hK10 immunoexpression. Immunopositivity in the nuclei of the ACTH-secreting adenomas and carcinomas, as well as dual cytoplasmic and nuclear localization of hK10 in some of the secreting tumor types was an intriguing finding. Immunoexpression of hK10 in the ACTH-secreting tumors as well as in the Crooke cell tumors was significantly increased when compared with the nonfunctioning tumors and in the corticotrophs of nontumorous pituitaries.

  16. Interaction of Bacteroides fragilis and Bacteroides thetaiotaomicron with the kallikrein-kinin system.

    PubMed

    Murphy, Elizabeth C; Mörgelin, Matthias; Cooney, Jakki C; Frick, Inga-Maria

    2011-07-01

    Many bacterial pathogens interfere with the contact system (kallikrein-kinin system) in human plasma. Activation of this system has two consequences: cleavage of high-molecular-mass kininogen (HK) resulting in release of the potent proinflammatory peptide bradykinin, and initiation of the intrinsic pathway of coagulation. In this study, two species of the Gram-negative anaerobic commensal organism Bacteroides, namely Bacteroides fragilis and Bacteroides thetaiotaomicron, were found to bind HK and fibrinogen, the major clotting protein, from human plasma as shown by immunoelectron microscopy and Western blot analysis. In addition, these Bacteroides species were capable of activating the contact system at its surface leading to a significant prolongation of the intrinsic coagulation time and also to the release of bradykinin. Members of the genus Bacteroides have been known to act as opportunistic pathogens outside the gut, with B. fragilis being the most common isolate from clinical infections, such as intra-abdominal abscesses and bacteraemia. The present results thus provide more insight into how Bacteroides species cause infection.

  17. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome

    PubMed Central

    Furio, Laetitia; de Veer, Simon; Jaillet, Madeleine; Briot, Anais; Robin, Aurelie; Deraison, Celine

    2014-01-01

    Netherton syndrome (NS) is a severe genetic skin disease in which absence of a key protease inhibitor causes congenital exfoliative erythroderma, eczematous-like lesions, and atopic manifestations. Several proteases are overactive in NS, including kallikrein-related peptidase (KLK) 5, KLK7, and elastase-2 (ELA2), which are suggested to be part of a proteolytic cascade initiated by KLK5. To address the role of KLK5 in NS, we have generated a new transgenic murine model expressing human KLK5 in the granular layer of the epidermis (Tg-KLK5). Transgene expression resulted in increased proteolytic activity attributable to KLK5 and its downstream targets KLK7, KLK14, and ELA2. Tg-KLK5 mice developed an exfoliative erythroderma with scaling, growth delay, and hair abnormalities. The skin barrier was defective and the stratum corneum was detached through desmosomal cleavage. Importantly, Tg-KLK5 mice displayed cutaneous and systemic hallmarks of severe inflammation and allergy with pruritus. The skin showed enhanced expression of inflammatory cytokines and chemokines, infiltration of immune cells, and markers of Th2/Th17/Th22 T cell responses. Moreover, serum IgE and Tslp levels were elevated. Our study identifies KLK5 as an important contributor to the NS proteolytic cascade and provides a new and viable model for the evaluation of future targeted therapies for NS or related diseases such as atopic dermatitis. PMID:24534191

  18. [Study of possible involvement of MEK mitogen-activated protein kinase and TGF-β receptor in planarian regeneration processes using pharmacological inhibition analysis].

    PubMed

    Ermakov, A M; Ermakova, O N; Ermolaeva, S A

    2014-01-01

    Possible involvement of MEK mitogen-activated protein kinase and TGF-β receptor in the processes of regeneration and morphogenesis in freshwater planarian flatworms Schmidtea mediterranea was studied using a pharmacological inhibitor analysis. It was found that pharmacological inhibitors of these kinases significantly inhibit the regeneration of the head end of the animals and that this effect is realized due to inhibition of proliferative activity of neoblasts, planarian stem cells. It is shown that that the inhibition of the studied protein kinases in regenerating planarians markedly disturbs stem cell differentiation and morphogenesis.

  19. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    PubMed Central

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal_2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress. PMID:20944214

  20. Helicobacter pylori Induces Hypermethylation of CpG Islands Through Upregulation of DNA Methyltransferase: Possible Involvement of Reactive Oxygen/Nitrogen Species

    PubMed Central

    Na, Hye-Kyung; Woo, Jeong-Hwa

    2014-01-01

    Helicobacter pylori infection has been considered to be one of the major factors implicated in etiology of gastric cancer. Aberrant DNA methylation accounts for epigenetic modifications induced by H. pylori. H. pylori-induced hypermethylation has been linked to enhancement of the rates of metastasis and recurrence in gastric cancer patients. H. pylori-induced gene hypermethylation has been known to be associated with inflammation. However, the molecular mechanisms underlying H. pylori-induced hypermethylation remain largely unknown. This review highlights possible involvement of reactive oxygen/nitrogen species in H. pylori-induced hypermethylation and gastric carcinogenesis. PMID:25574460

  1. Cardiac function and remodeling is attenuated in transgenic rats expressing the human kallikrein-1 gene after myocardial infarction.

    PubMed

    Koch, Matthias; Spillmann, Frank; Dendorfer, Andreas; Westermann, Dirk; Altmann, Christine; Sahabi, Merdad; Linthout, Sophie Van; Bader, Michael; Walther, Thomas; Schultheiss, Heinz-Peter; Tschöpe, Carsten

    2006-11-21

    Bradykinin coronary outflow, left ventricular performance and left ventricular dimensions of transgenic rats harboring the human tissue kallikrein-1 gene TGR(hKLK1) were investigated under basal and ischemic conditions. Bradykinin content in the coronary outflow of buffer-perfused, isolated hearts of controls and TGR(hKLK1) was measured by specific radioimmunoassay before and after global ischemia. Left ventricular function and left ventricular dimensions were determined in vivo using a tip catheter and echocardiography 6 days and 3 weeks after induction of myocardial infarction. Left ventricular type I collagen mRNA expression was analyzed by RNase protection assay. Compared to controls, basal bradykinin outflow was 3.5 fold increased in TGR(hKLK1). Ischemia induced an increase of bradykinin coronary outflow in controls but did not induce a further increase in TGR(hKLK1). However, despite similar unchanged infarction sizes, left ventricular function and remodeling improved in TGR(hKLK1) after myocardial infarction, indicated by an increase in left ventricular pressure (+34%; P<0.05), contractility (dp/dt max. +25%; P<0.05), and in ejection fraction (+20%; P<0.05) as well as by a reduction in left ventricular enddiastolic pressure (-49%, P<0.05), left ventricular enddiastolic diameter (-20%, P<0.05), and collagen mRNA expression (-15%, P<0.05) compared to controls. A chronically activated transgenic kallikrein kinin system with expression of human kallikrein-1 gene counteracts the progression of left ventricular contractile dysfunction after experimental myocardial infarction. Further studies have to show whether these results can be caused by other therapeutically options. Long acting bradykinin receptor agonists might be an alternative option to improve ischemic heart disease.

  2. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2013-05-01

    Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by

  3. Discovery of a new isomannide-based peptidomimetic synthetized by Ugi multicomponent reaction as human tissue kallikrein 1 inhibitor.

    PubMed

    Barros, Thalita G; Santos, Jorge A N; de Souza, Bruno E G; Sodero, Ana Carolina R; de Souza, Alessandra M T; da Silva, Dayane P; Rodrigues, Carlos Rangel; Pinheiro, Sergio; Dias, Luiza R S; Abrahim-Vieira, Bárbara; Puzer, Luciano; Muri, Estela M F

    2017-01-15

    Human kallikrein 1 (KLK1) is the most extensively studied member of this family and plays a major role in inflammation processes. From Ugi multicomponent reactions, isomannide-based peptidomimetic 10 and 13 where synthesized and showed low micromolar values of IC50 for KLK1 The most active compound (10) presented competitive mechanism, with three structural modifications important to interact with active site residues which corroborates its KLK1 inhibition. Finally, the most active compound also showed good ADMET profile, which indicates compound 10 as a potential hit in the search for new KLK1 inhibitors with low side effects.

  4. Human Tissue Kallikrein Activity in Angiographically Documented Chronic Stable Coronary Artery Disease

    PubMed Central

    Figueiredo, Estêvão Lanna; Magalhães, Carolina Antunes; Belli, Karlyse Claudino; Mandil, Ari; Garcia, José Carlos Faria; Araújo, Rosanã Aparecida; Figueiredo, Amintas Fabiano de Souza; Pellanda, Lucia Campos

    2015-01-01

    Background Human tissue kallikrein (hK1) is a key enzyme in the kallikrein–kinin system (KKS). hK1-specific amidase activity is reduced in urine samples from hypertensive and heart failure (HF) patients. The pathophysiologic role of hK1 in coronary artery disease (CAD) remains unclear. Objective To evaluate hK1-specific amidase activity in the urine of CAD patients Methods Sixty-five individuals (18–75 years) who underwent cardiac catheterism (CATH) were included. Random midstream urine samples were collected immediately before CATH. Patients were classified in two groups according to the presence of coronary lesions: CAD (43 patients) and non-CAD (22 patients). hK1 amidase activity was estimated using the chromogenic substrate D-Val-Leu-Arg-Nan. Creatinine was determined using Jaffé’s method. Urinary hK1-specific amidase activity was expressed as µM/(min · mg creatinine) to correct for differences in urine flow rates. Results Urinary hK1-specific amidase activity levels were similar between CAD [0.146 µM/(min ·mg creatinine)] and non-CAD [0.189 µM/(min . mg creatinine)] patients (p = 0.803) and remained similar to values previously reported for hypertensive patients [0.210 µM/(min . mg creatinine)] and HF patients [0.104 µM/(min . mg creatinine)]. CAD severity and hypertension were not observed to significantly affect urinary hK1-specific amidase activity. Conclusion CAD patients had low levels of urinary hK1-specific amidase activity, suggesting that renal KKS activity may be reduced in patients with this disease. PMID:26351984

  5. Kallikrein 4 and matrix metalloproteinase-20 immunoexpression in malignant, benign and infiltrative odontogenic tumors

    PubMed Central

    Crivelini, Marcelo Macedo; Oliveira, Denise Tostes; de Mesquita, Ricardo Alves; de Sousa, Suzana Cantanhede Orsini Machado; Loyola, Adriano Motta

    2016-01-01

    Context: Matrix metalloproteinase-20 (MMP20) (enamelysin) and kallikrein 4 (KLK4) are enzymes secreted by ameloblasts that play an important role in enamel matrix degradation during amelogenesis. However, studies have shown that neoplastic cells can produce such enzymes, which may affect the tumor infiltrative and metastatic behaviors. Aims: The aim of this study is to assess the biological role of MMP20 and KLK4 in odontogenic tumors. Materials and Methods: The enzymes were analyzed immunohistochemically in ameloblastoma, adenomatoid odontogenic tumor (AOT), calcifying epithelial odontogenic tumor, keratocystic odontogenic tumor with or without recurrence and odontogenic carcinoma. Statistical Analysis Used: Clinicopathological parameters were statistically correlated with protein expression using the Fisher's exact test. Kruskal–Wallis and Wilcoxon-independent methods were used to evaluate the differences in median values. Results: Positive Immunoexpression was detected in all benign lesions, with a prevalence of 75–100% immunolabeled cells. Patients were predominantly young, Caucasian, female, with slow-growing tumors located in the mandible causing asymptomatic swelling. No KLK4 expression was seen in carcinomas, and the amount of MMP20-positive cells varied between 20% and 80%. Rapid evolution, recurrence and age >60 years characterized the malignant nature of these lesions. Conclusions: Data showed that KLK4 and MMP20 enzymes may not be crucial to tumoral infiltrative capacity, especially in malignant tumors, considering the diversity and peculiarity of these lesions. The significant immunoexpression in benign lesions, remarkably in AOT, is likely associated with differentiated tumor cells that can produce and degrade enamel matrix-like substances. This would be expected since the histogenesis of odontogenic tumors commonly comes from epithelium that recently performed a secretory activity in tooth formation. PMID:27601817

  6. Highly sensitive automated chemiluminometric assay for measuring free human glandular kallikrein-2.

    PubMed

    Klee, G G; Goodmanson, M K; Jacobsen, S J; Young, C Y; Finlay, J A; Rittenhouse, H G; Wolfert, R L; Tindall, D J

    1999-06-01

    Human glandular kallikrein (hK2) is a serine protease that has 79% amino acid identity with prostate-specific antigen (PSA). Both free hK2 and hK2 complexed to alpha1-antichymotrypsin (ACT) are present in the blood in low concentrations. We wished to measure hK2 in serum with limited contribution from hK2-ACT for the results. We developed an automated assay for hK2 with use of a select pair of monoclonal antibodies. The prototype assay was implemented on a Beckman Coulter ACCESS(R) analyzer. The detection limit of the assay was 1.5 ng/L, the "functional sensitivity" (day-to-day CV <15%) was <4 ng/L, cross-reactivity with PSA and PSA-ACT was negligible, and cross-reactivity with hK2-ACT was 2%. After surgical removal of prostate glands, serum hK2 was <7 ng/L and was <15 ng/L in most healthy women. The median serum concentration of hK2 in healthy men without prostate cancer was 26 ng/L. The median concentration of hK2 was 72 ng/L for men having prostate cancer with lower Gleason scores compared with 116 ng/L for men with more advanced cancer. The concentration of hK2 correlated weakly with PSA, with the mean hK2 concentrations generally 30- to 80-fold lower than PSA concentrations. The availability of a robust, high sensitivity automated assay for hK2 should facilitate further investigations of the role of hK2 measurements in the management of patients with prostate disease.

  7. Kallikrein-kinin system in the plasma of the snake Bothrops jararaca.

    PubMed Central

    Abdalla, F. M.; Hiraichi, E.; Picarelli, Z. P.; Prezoto, B. C.

    1989-01-01

    1. Bothrops jararaca venom (BJV) caused a fall in the carotid artery blood pressure of the anaesthetized snake. This effect was tachyphylactic and was potentiated by captopril, a kininase II inhibitor; it was partially antagonized by promethazine plus cimetidine and was not affected by atropine. 2. Similar hypotensive effects were obtained by administration of trypsin or a partially purified BJV kininogenase to the snake. 3. Incubation of Bothrops jararaca plasma (BJP) with trypsin released a substance (or substances) that produced hypotension in the snake but not in the rat; this hypotensive effect was also potentiated by captopril. 4. The trypsinised plasma contracted Bothrops jararaca isolated uterus, a pharmacological preparation weakly sensitive to bradykinin. Trypsinised plasma was inactive on pigeon oviduct and rat uterus and displayed a weak action on the guinea-pig ileum. Similar effects were observed with incubates of a fraction of BJP, containing globulins, with a partially purified BJV kininogenase. 5. Like mammalian kinins, the substance(s) was(were) dialysable, thermostable in acid but not in alkaline pH, and inactivated by chymotrypsin but not by trypsin. Its(their) inactivation by BJP or BJP kininase II was inhibited by captopril. 6. These findings strongly suggest that, besides releasing histamine, BJV or trypsin release a kininlike substance (or substances) from the snake plasma. 7. Since BJV and other kininogenases active on mammalian plasma were shown to be unable to release kinins from BJP, in experiments conducted on pharmacological preparations suitable for the assay of mammalian kinins, these data also suggest that the snake Bothrops jararaca, like birds, may have developed its own kallikrein-kinin system. PMID:2804549

  8. Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity.

    PubMed

    Tanaka, Reiko J; Ono, Masahiro; Harrington, Heather A

    2011-01-01

    Atopic dermatitis (AD) is a widely spread cutaneous chronic disease characterised by sensitive reactions (eg. eczema) to normally innocuous elements. Although relatively little is understood about its underlying mechanisms due to its complexity, skin barrier dysfunction has been recognised as a key factor in the development of AD. Skin barrier homeostasis requires tight control of the activity of proteases, called kallikreins (KLKs), whose activity is regulated by a complex network of protein interactions that remains poorly understood despite its pathological importance. Characteristic symptoms of AD include the outbreak of inflammation triggered by external (eg. mechanical and chemical) stimulus and the persistence and aggravation of inflammation even if the initial stimulus disappears. These characteristic symptoms, together with some experimental data, suggest the presence of positive feedback regulation for KLK activity by inflammatory signals. We developed simple mathematical models for the KLK activation system to study the effects of feedback loops and carried out bifurcation analysis to investigate the model behaviours corresponding to inflammation caused by external stimulus. The model analysis confirmed that the hypothesised core model mechanisms capture the essence of inflammation outbreak by a defective skin barrier. Our models predicted the outbreaks of inflammation at weaker stimulus and its longer persistence in AD patients compared to healthy control. We also proposed a novel quantitative indicator for inflammation level by applying principal component analysis to microarray data. The model analysis reproduced qualitative AD characteristics revealed by this indicator. Our results strongly implicate the presence and importance of feedback mechanisms in KLK activity regulation. We further proposed future experiments that may provide informative data to enhance the system-level understanding on the regulatory mechanisms of skin barrier in AD and

  9. Study the Antinociceptive Effect of Intracerebroventricular Injection of Aqueous Extract of Origanum Vulgare Leaves in Rat: Possible Involvement of Opioid System

    PubMed Central

    Pahlavan, Yasaman; Sepehri, Gholamreza; Sheibani, Vahid; Afarinesh khaki, Mohammadreza; Gojazadeh, Morteza; Pahlavan, Bahare; Pahlavan, Fereshteh

    2013-01-01

    Objective(s): The aim of study was to investigate the antinociceptive effect of intracerebroventricular (ICV) microinjection of Origanum vulgare (ORG) extract and possible involvement of opioid receptors. Materials and Methods: Cannula was inserted into left ventricle of male rats. Five days after surgery Tail Flick Latency (TFL) was measured after ICV microinjection of, ORG (1, 3 and 6 µg / rat). Effective dose of ORG was injected ICV in concomitant with morphine (2 mg/kg, IP), naloxone (2 mg / kg, IP) and saline (0.5 µl/rat) and TFL was recorded. Results: The co- administration of ORG extract with morphine showed a significant increase in TFL and naloxone, pretreatment significantly inhibited the antinociceptive activity of ORG and morphine. Conclusion: The aqueous extract of ORG possesses antinociceptive activities in the tail-flick test in a dose dependent manner. ORG - induced antinociception may have been mediated by opioid systems. PMID:24379969

  10. Altered Gene Expression of RNF34 and PACAP Possibly Involved in Mechanism of Exercise-Induced Analgesia for Neuropathic Pain in Rats.

    PubMed

    Yamaoka, Shintaro; Oshima, Yusuke; Horiuchi, Hideki; Morino, Tadao; Hino, Masayuki; Miura, Hiromasa; Ogata, Tadanori

    2017-09-13

    Despite the availability of several modalities of treatment, including surgery, pharmacological agents, and nerve blocks, neuropathic pain is often unresponsive and sometimes progresses to intractable chronic pain. Although exercise therapy is a candidate for treatment of neuropathic pain, the mechanism underlying its efficacy has not been elucidated. To clarify the molecular mechanism for pain relief induced by exercise, we measured Rnf34 and Pacap mRNA levels in the spinal cord dorsal horn of SNL rats, a model of neuropathic pain. SNL model rats exhibited stable mechanical hyperalgesia for at least 6 weeks. When the rats were forced to exercise on a treadmill, mechanical and thermal hyperalgesia were significantly ameliorated compared with the non-exercise group. Accordingly, gene expression level of Rnf34 and Pacap were also significantly altered in the time course analysis after surgery. These results suggest that exercise therapy possibly involves pain relief in SNL rats by suppressing Rnf34 and Pacap expression in the spinal cord.

  11. The structure of the first representative of Pfam family PF06475 reveals a new fold with possible involvement in glycolipid metabolism

    PubMed Central

    Bakolitsa, Constantina; Kumar, Abhinav; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Carlton, Dennis; Najmanovich, Rafael; Abdubek, Polat; Astakhova, Tamara; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of PA1994 from Pseudomonas aeruginosa, a member of the Pfam PF06475 family classified as a domain of unknown function (DUF1089), reveals a novel fold comprising a 15-stranded β-sheet wrapped around a single α-helix that assembles into a tight dimeric arrangement. The remote structural similarity to lipoprotein localization factors, in addition to the presence of an acidic pocket that is conserved in DUF1089 homologs, phospholipid-binding and sugar-binding proteins, indicate a role for PA1994 and the DUF1089 family in glycolipid metabolism. Genome-context analysis lends further support to the involvement of this family of proteins in glycolipid metabolism and indicates possible activation of DUF1089 homologs under conditions of bacterial cell-wall stress or host–pathogen interactions. PMID:20944213

  12. Pain mechanisms involved and outcome in advanced cancer patients with possible indications for celiac plexus block and superior hypogastric plexus block.

    PubMed

    Mercadante, Sebastiano; Fulfaro, Fabio; Casuccio, Alessandra

    2002-01-01

    There is controversy about the role of neurolytic sympathetic blocks in advanced cancer, when pain syndromes may assume other characteristics, with a possible involvement of structures other than visceral. The aim of the present study was to assess the pain characteristics and the analgesic response of a consecutive sample of home care patients with pancreatic and pelvic pain, which would have possible indications for a celiac plexus block and a superior hypogastric block, respectively. From January 1999 to December 1999, 400 consecutive advanced cancer patients were surveyed for a prospective longitudinal survey. We considered only patients who had pancreatic cancer or pelvic cancer with pain. Thirty-six patients were surveyed: 22 patients had pelvic cancers and 14 had pancreatic cancer. Patients with pelvic cancers showed a longer survival than those with pancreatic cancer (P = 0.019). Patients with pelvic cancers more frequently showed a neuropathic component associated with a visceral or somatic mechanism than patients with pain due to pancreatic cancer (P = 0.019). When the pain mechanism was taken into consideration, patients with pelvic cancers with a neuropathic component showed worse pain relief than patients with pain due to pancreatic cancer (P = 0.040). Sympathetic procedures for pain conditions due to pancreatic and pelvic cancers should be intended as adjuvant techniques to reduce the analgesic consumption, and not as a panacea, given that multiple pain mechanisms are often involved because progression of disease is able to change the underlying pain mechanisms. Pancreatic pain seems to maintain visceral characteristics amenable to sympathetic block more than pain due to pelvic cancer.

  13. Tissue Kallikrein Inhibitors Based on the Sunflower Trypsin Inhibitor Scaffold – A Potential Therapeutic Intervention for Skin Diseases

    PubMed Central

    Chen, Wenjie; Kinsler, Veronica A.

    2016-01-01

    Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS. PMID:27824929

  14. Human kallikrein 4 signal peptide induces cytotoxic T cell responses in healthy donors and prostate cancer patients.

    PubMed

    Wilkinson, Ray; Woods, Katherine; D'Rozario, Rachael; Prue, Rebecca; Vari, Frank; Hardy, Melinda Y; Dong, Ying; Clements, Judith A; Hart, Derek N J; Radford, Kristen J

    2012-02-01

    Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.

  15. Kallikrein 1 is overexpressed by astrocytes in the hippocampus of patients with refractory temporal lobe epilepsy, associated with hippocampal sclerosis.

    PubMed

    Simões, Priscila Santos Rodrigues; Perosa, Sandra Regina; Arganãraz, Gustavo Adolfo; Yacubian, Elza Márcia; Carrete, Henrique; Centeno, Ricardo Silva; Varella, Pedro Paulo Vasconcellos; Santiago, Joselita Ferreira Carvalho; Canzian, Mauro; Silva, Jose Antonio; Mortara, Renato Arruda; Amado, Débora; Cavalheiro, Esper Abrão; Mazzacoratti, Maria da Graça Naffah

    2011-03-01

    Kallikrein 1 (hK1) is a tissue enzyme responsible for kinin release in inflammatory cascade. This study was delineated to study the distribution and the co-localization of hK1 and kinin B1 and B2 receptors with glial and/or neuronal proteins markers, in the hippocampus of patients with refractory temporal lobe epilepsy, associated with hippocampal sclerosis (TLE-HS), comparing with control tissues. Hippocampal levels of KLK1 mRNA were also measured. hK1, kinin B1 and B2 receptors, NeuN and GFAP were analyzed using immunohistochemistry and confocal microscopy and KLK1 mRNA was quantified with real time PCR. Increased expression of hK1 by astrocytes co-localized with GFAP was found, contrasting with kinin B1 and B2 receptors, which were co-localized with NeuN in the sclerotic hippocampus. In addition, KLK1 mRNA was also up-regulated in same tissues. These data suggest an overexpression of kallikrein-kinin system and a neuron-glia interaction in the inflammatory process present in refractory TLE-HS.

  16. Tissue Kallikrein Inhibitors Based on the Sunflower Trypsin Inhibitor Scaffold - A Potential Therapeutic Intervention for Skin Diseases.

    PubMed

    Chen, Wenjie; Kinsler, Veronica A; Macmillan, Derek; Di, Wei-Li

    2016-01-01

    Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.

  17. In Vivo and In Vitro Studies Suggest a Possible Involvement of HPV Infection in the Early Stage of Breast Carcinogenesis via APOBEC3B Induction

    PubMed Central

    Ohba, Kenji; Ichiyama, Koji; Yajima, Misako; Gemma, Nobuhiro; Nikaido, Masaru; Wu, Qingqing; Chong, PeiPei; Mori, Seiichiro; Yamamoto, Rain; Wong, John Eu Li; Yamamoto, Naoki

    2014-01-01

    High prevalence of infection with high-risk human papilloma virus (HPV) ranging from 25 to 100% (average 31%) was observed in breast cancer (BC) patients in Singapore using novel DNA chip technology. Early stage of BC demonstrated higher HPV positivity, and BC positive for estrogen receptor (ER) showed significantly higher HPV infection rate. This unique association of HPV with BC in vivo prompted us to investigate a possible involvement of HPV in early stages of breast carcinogenesis. Using normal breast epithelial cells stably transfected with HPV-18, we showed apparent upregulation of mRNA for the cytidine deaminase, APOBEC3B (A3B) which is reported to be a source of mutations in BC. HPV-induced A3B overexpression caused significant γH2AX focus formation, and DNA breaks which were cancelled by shRNA to HPV18 E6, E7 and A3B. These results strongly suggest an active involvement of HPV in the early stage of BC carcinogenesis via A3B induction. PMID:24858917

  18. Cellular basis for the automorphic curvature of rice coleoptiles on a three-dimensional clinostat: possible involvement of reorientation of cortical microtubules.

    PubMed

    Saiki, Mizue; Fujita, Hiroshi; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Yamashita, Masamichi; Hoson, Takayuki

    2005-06-01

    Coleoptiles of rice (Oryza sativa L.) show a spontaneous (automorphic) curvature toward the caryopsis under microgravity conditions. The possible involvement of the reorientation of cortical microtubules in automorphic curvature was studied in rice coleoptiles grown on a three-dimensional clinostat. When rice seedlings that had been grown in the normal gravitational field were transferred to the clinostat in the dark, cortical microtubules of epidermal cells in the dorsal side of the coleoptiles oriented more transversely than the ventral side within 0.5 h. The rotation on the clinostat also increased the cell wall extensibility in the dorsal side and decreased the extensibility in the ventral side, and induced automorphic curvature. The reorientation of cortical microtubules preceded the changes in the cell wall extensibility and the curvature. The irradiation of rice seedlings with white light from above inhibited microtubule reorientation and changes in the cell wall extensibility, as well as curvature of coleoptiles. Also, colchicine, applied to the bending region of coleoptiles, partially inhibited the automorphic curvature. These results suggest that reorientation of cortical microtubules is involved in causing automorphic curvature in rice coleoptiles on the clinostat.

  19. Impairment of telomeric quadruple helix formation - A possible event involved in the carcinogenicity of aromatic amines from the thermodynamic point of view?

    PubMed

    Gunia, Sven

    2010-07-01

    Occupational exposure to aromatic amines (in particular, benzidine, 2-naphthylamine, and possibly 1-naphthylamine) has been linked to the development of bladder cancer due to the "carcinogenicity" of these compounds. However, little detailed knowledge is currently available concerning the interaction between these molecules and human DNA which might explain subsequent neoplastic transformation. Telomeres are protective DNA-protein complexes at the ends of human chromosomes which are functionally implicated in the maintenance of the chromosomal structural integrity. Telomeric DNA is composed of noncoding guanine-rich tandem sequences. Since covalent adduction of modified aromatic amines (protonated nitrenium ions) basically involves the nucleobase guanine, it appears reasonable to assume that telomeres represent the "hot spot" of the human DNA at which pertinent molecular interactions are likely to take place. Therefore, the present hypothesis focusses on thermodynamical aspects of possible molecular interactions between aromatic amines and telomeric DNA suggesting unfolding and destabilization of intramolecular telomeric quadruple helices inevitably accompanied by a loss of telomeric protective functions. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein*

    PubMed Central

    Tsutsui, Shigeyuki; Okamoto, Masaki; Ono, Miyuki; Suetake, Hiroaki; Kikuchi, Kiyoshi; Nakamura, Osamu; Suzuki, Yuzuru; Watanabe, Tasuku

    2011-01-01

    A skin mucus lectin exhibiting a homodimeric structure and an S–S bond between subunits of ∼40 kDa was purified from flathead Platycephalus indicus (Scorpaeniformes). This lectin, named FHL (FlatHead Lectin), exhibited mannose-specific activity in a Ca2+-dependent manner. Although FHL showed no homology to any previously reported lectins, it did exhibit ∼20% identity to previously discovered plasma kallikreins and coagulation factor XIs of mammals and Xenopus laevis. These known proteins are serine proteases and play pivotal roles in the kinin-generating system or the blood coagulation pathway. However, alignment analysis revealed that while FHL lacked a serine protease domain, it was homologous to the heavy-chain domain of plasma kallikreins and coagulation factor XI therefore suggesting that FHL is not an enzyme but rather a novel animal lectin. On the basis of this finding, we investigated the lectin activity of human plasma kallikrein and revealed that it could indeed act as a lectin. Other genes homologous to FHL were also found in the genome databases of some fish species, but not in mammals. In contrast, plasma kallikreins and coagulation factor XI have yet to be identified in fish. The present findings suggest that these mammalian enzymes may have originally emerged as a lectin and may have evolved into molecules with protease activity after separation from common ancestors. PMID:21613239

  1. The role of glandular kallikrein in the formation of a salivary proline-rich protein A by cleavage of a single bond in salivary protein C.

    PubMed Central

    Wong, R S; Madapallimattam, G; Bennick, A

    1983-01-01

    An enzyme was purified from human parotid saliva that can cleave a single arginine-glycine peptide bond between residues 106 and 107 in human salivary proline-rich protein C, hereby giving rise to another proline-rich protein A, which is also found in saliva. The enzyme was purified 2400-fold. It cleaved salivary protein C at the rate of 59 micrograms of protein/h per microgram of enzyme and had amino acid composition, molecular weight and inhibition characteristics similar to those reported for human salivary kallikrein. Confirmation that the enzyme was kallikrein was demonstrated by its kinin-generating ability. Histochemical evidence indicates that a post-synthetic cleavage of protein C by kallikrein would have to take place during passage of saliva through the secretory ducts. In secreted saliva, cleavage of salivary protein C can only be observed after 72 h incubation. In addition, there is no effect of salivary flow rate on the relative amounts of proteins A and C in saliva. On the basis of the experimental observations, it is proposed that in vivo it is unlikely that kallikrein secreted from ductal cells plays a significant role in converting protein C into protein A. PMID:6553499

  2. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    PubMed

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  3. Identification and characterization of KLK14, a novel kallikrein serine protease gene located on human chromosome 19q13.4 and expressed in prostate and skeletal muscle.

    PubMed

    Hooper, J D; Bui, L T; Rae, F K; Harvey, T J; Myers, S A; Ashworth, L K; Clements, J A

    2001-04-01

    The kallikreins are a subfamily of serine proteases encoded in human, mouse, and rat by highly conserved tightly clustered multigene families. Here we report the identification and characterization of KLK14, a novel kallikrein gene located within the human kallikrein locus at 19q13.4. KLK14 is approximately 5.4 kb in length spanning seven exons and, by Northern blot analysis, transcribes two alternative transcripts present only in prostate (1.5 kb) and skeletal muscle (1.9 kb). The protein product, K14, predicted to be a 251-amino-acid secreted serine protease with trypsin-like substrate specificity, is translated in vitro with a molecular mass of approximately 31 kDa. In situ hybridization revealed that, in prostate, KLK14 is expressed by both benign and malignant glandular epithelial cells, thus exhibiting an expression pattern similar to that of two other prostatic kallikreins, KLK2 and KLK3, which encode K2 and prostate-specific antigen, respectively. Copyright 2001 Academic Press.

  4. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer

    PubMed Central

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-01-01

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10−4 to 102 ng/mL). PMID:26007739

  5. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer.

    PubMed

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-05-22

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10(-4) to 10(2) ng/mL).

  6. High kallikrein-related peptidase 6 in non-small cell lung cancer cells: an indicator of tumour proliferation and poor prognosis

    PubMed Central

    Nathalie, Heuzé-Vourc’h; Chris, Planque; Serge, Guyetant; Catherine, Coco; Benjamin, Brillet; Claire, Blechet; Christelle, Parent; Briollais, Laurent; Pascale, Reverdiau; Marie-Lise, Jourdan; Yves, Courty

    2009-01-01

    The human kallikrein-related peptidases (KLK) are serine proteases whose concentrations are often abnormal in common human malignancies and contribute to neoplastic progression through multifaceted roles. However, little attention has been paid to their synthesis and involvement in the development and dissemination of lung cancer, the leading cause of cancer mortality worldwide. We have analysed the production of KLK6 in normal lung and tumour tissues from patients with non-small cell lung cancer (NSCLC). KLK6 immunoreactivity was restricted to epithelial cells of the normal bronchi, but most of the cancer samples were moderately or highly immunoreactive, regardless of the histological subtype. In contrast, little or no KLK6 was detected in NSCLC cells. We have developed NSCLC lines expressing wild-type KLK6 in order to investigate the role of KLK6 in lung cancer biology, and analysed its impact on proliferation. Ectopic KLK6 dramatically enhanced NSCLC cell growth and KLK6-producing NSCLC cells had accelerated cell cycles, between the G1 and S phases. This was accompanied by a marked increase in cyclin E and decrease in p21. KLK6 production was also associated with enhanced synthesis of c-Myc, which is known to promote cell-cycle progression. Finally, examination of specimens from patients with NSCLC revealed that KLK6 mRNA is overexpressed in tumour tissue, and high KLK6 concentrations were associated with lower survival rates. We conclude that a high concentration of KLK6 is an indicator of tumour proliferation and an independent predictive factor in NSCLC. PMID:19426157

  7. High kallikrein-related peptidase 6 in non-small cell lung cancer cells: an indicator of tumour proliferation and poor prognosis.

    PubMed

    Nathalie, Heuzé-Vourc'h; Chris, Planque; Serge, Guyetant; Catherine, Coco; Benjamin, Brillet; Claire, Blechet; Christelle, Parent; Briollais, Laurent; Pascale, Reverdiau; Marie-Lise, Jourdan; Yves, Courty

    2009-09-01

    The human kallikrein-related peptidases (KLK) are serine proteases whose concentrations are often abnormal in common human malignancies and contribute to neoplastic progression through multifaceted roles. However, little attention has been paid to their synthesis and involvement in the development and dissemination of lung cancer, the leading cause of cancer mortality worldwide. We have analysed the production of KLK6 in normal lung and tumour tissues from patients with non-small cell lung cancer (NSCLC). KLK6 immunoreactivity was restricted to epithelial cells of the normal bronchi, but most of the cancer samples were moderately or highly immunoreactive, regardless of the histological subtype. In contrast, little or no KLK6 was detected in NSCLC cells. We have developed NSCLC lines expressing wild-type KLK6 in order to investigate the role of KLK6 in lung cancer biology, and analysed its impact on proliferation. Ectopic KLK6 dramatically enhanced NSCLC cell growth and KLK6-producing NSCLC cells had accelerated cell cycles, between the G1 and S phases. This was accompanied by a marked increase in cyclin E and decrease in p21. KLK6 production was also associated with enhanced synthesis of c-Myc, which is known to promote cell-cycle progression. Finally, examination of specimens from patients with NSCLC revealed that KLK6 mRNA is overexpressed in tumour tissue, and high KLK6 concentrations were associated with lower survival rates. We conclude that a high concentration of KLK6 is an indicator of tumour proliferation and an independent predictive factor in NSCLC.

  8. Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1

    PubMed Central

    Cui, Kai; Luan, Yang; Wang, Tao; Zhuan, Li; Rao, Ke; Wang, Shao-Gang; Ye, Zhang-Qun; Liu, Ji-Hong; Wang, Dao-Wen

    2017-01-01

    Our previous studies have demonstrated that erectile function was preserved in aged transgenic rats (TGR) harboring the human tissue kallikrein 1 (hKLK1), while the molecular level of hKLK1 on corporal fibrosis to inhibit age-related erectile dysfunction (ED) is poorly understood. Male wild-type Sprague-Dawley rats (WTR) and TGR harboring the hKLK1 gene were fed to 4- or 18-month-old and divided into three groups: young WTR (yWTR) as the control, aged WTR (aWTR), and aged TGR (aTGR). Erectile function of all rats was assessed by cavernous nerve electrostimulation method. Masson's trichrome staining was used to evaluate corporal fibrosis in the corpus cavernosum. We found that the erectile function of rats in the aWTR group was significantly lower than that of other two groups. Masson's trichrome staining revealed that compared with those of the yWTR and aTGR groups, the ratio of smooth muscle cell (SMC)/collagen (C) was significantly lower in the aWTR group. Immunohistochemistry and Western blotting analysis were performed, and results demonstrated that expression of α-SMA was lower, while expressions of transforming growth factor-β 1 (TGF-β1), RhoA, ROCK1, p-MYPT1, p-LIMK2, and p-cofilin were higher in the aWTR group compared with those in other two groups. However, LIMK2 and cofilin expressions did not differ among three groups. Taken together, these results indicated that the RhoA/ROCK1/LIMK/cofilin pathway may be involved in the corporal fibrosis caused by advanced age, and hKLK1 may reduce this corporal fibrosis by inhibiting the activation of this pathway to ameliorate age-related ED. PMID:27678468

  9. The kallikrein-related peptidase 13 (KLK13) gene is substantially up-regulated after exposure of gastric cancer cells to antineoplastic agents.

    PubMed

    Florou, Dimitra; Mavridis, Konstantinos; Scorilas, Andreas

    2012-12-01

    Gastric cancer constitutes one of the most common neoplasms globally. Kallikrein-related peptidases have attracted interest as potential tumor markers and future targets for novel cancer therapeutics. We have recently reported KLK13 clinical importance as a favorable prognostic biomarker for gastric cancer patients' survival. By aiming to explore how the molecular profile of KLK13 is modified in stomach cancer cells treated with antineoplastic drugs, we examined, for the first time, the mRNA alterations of this gene following gastric cancer cells' exposure to the prominent chemotherapeutic substances epirubicin, oxaliplatin, or methotrexate. The antiproliferative effects of these agents, on AGS cells' growth, were determined by the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide and trypan blue assays. Total RNA, isolated from the harvested cells, was reverse-transcribed to cDNA. KLK13 levels were quantified via real-time PCR using the SYBR Green chemistry. The relative changes of KLK13 expression were calculated with the comparative C (t) (2(-ddCt)) method. Distinct KLK13 profiles resulted from AGS cells' incubation with epirubicin or methotrexate for 24, 36, and 48 h. KLK13 expression increased in a time-dependent manner up to 5.70 times (for epirubicin) or 5.76 times (for methotrexate) at 48 h compared with the corresponding untreated cells. According to our results, KLK13 expression is implicated in the molecular pathways that are triggered after administration of anticancer agents on gastric cancer cells. Moreover, our data support the possibility that KLK13 may be exploited as a future molecular predictor of gastric cancer cells' response to chemotherapy.

  10. Human kallikrein 5 as a novel prognostic biomarker for triple-negative breast cancer: tissue expression analysis and relationship with disease course.

    PubMed

    Yang, F; Li, J Y; Yin, Q N; Yang, K; Dong, S N; Bai, L J; Liu, P; Tong, X W

    2015-08-14

    The purposes of this study were to analyze the expression and distribution of human kallikrein 5 (hK5) in triple-negative breast cancer (TNBC) tissues, to establish a standard operating procedure (SOP) for its immunohistochemical assay, and to evaluate the possibility of hK5 being a prognostic biomarker for TNBC. Recombinant hK5 protein and specific antibody were prepared, and the expression and distribution of hK5 in TNBC tissues were detected using immunohistochemistry. An SOP for immunohistochemical staining of hK5 in TNBC tissues was established to allow automatic staining under optimized conditions. The resulting images were digitized for evaluation and statistical analysis via a human scoring system. Our results showed that expression of hK5 protein could predict the progression of TNBC. Pearson's chi-square test results showed that high hK5 expression in tumor stromal cells was significantly correlated with distal metastasis (P = 0.039). A high staining score for lymphocyte infiltration in tumor stroma was significantly correlated with low histological grade of tumor (P = 0.025). Univariate and multivariate Cox regression analyses verified that the staining score for hK5 in tumor stromal cells may be a biomarker for poor prognosis in TNBC patients (univariate HR = 2.289, 95%CI = 1.362-3.848, P = 0.002; multivariate HR = 2.105, 95%CI = 1.189-3.727, P = 0.011). In conclusion, the expression level of hK5 in tumor stromal cells is a promising biomarker for poor prognosis in TNBC. Patients with high histological grade are more prone to distal metastasis and aggressive tumor progression.

  11. Gingipains of Porphyromonas gingivalis Affect the Stability and Function of Serine Protease Inhibitor of Kazal-type 6 (SPINK6), a Tissue Inhibitor of Human Kallikreins.

    PubMed

    Plaza, Karolina; Kalinska, Magdalena; Bochenska, Oliwia; Meyer-Hoffert, Ulf; Wu, Zhihong; Fischer, Jan; Falkowski, Katherine; Sasiadek, Laura; Bielecka, Ewa; Potempa, Barbara; Kozik, Andrzej; Potempa, Jan; Kantyka, Tomasz

    2016-09-02

    Periodontitis, a chronic inflammation driven by dysbiotic subgingival bacterial flora, is linked on clinical levels to the development of a number of systemic diseases and to the development of oral and gastric tract tumors. A key pathogen, Porphyromonas gingivalis, secretes gingipains, cysteine proteases implicated as the main factors in the development of periodontitis. Here we hypothesize that gingipains may be linked to systemic pathologies through the deregulation of kallikrein-like proteinase (KLK) family members. KLKs are implicated in cancer development and are clinically utilized as tumor progression markers. In tissues, KLK activity is strictly controlled by a limited number of tissue-specific inhibitors, including SPINK6, an inhibitor of these proteases in skin and oral epithelium. Here we identify gingipains as the only P. gingivalis proteases responsible for SPINK6 degradation. We further show that gingipains, even at low nanomolar concentrations, cleaved SPINK6 in concentration- and time-dependent manner. The proteolysis was accompanied by loss of inhibition against KLK13. We also mapped the cleavage by Arg-specific gingipains to the reactive site loop of the SPINK6 inhibitor. Moreover, we identified a significant fraction of SPINK6-sensitive proteases in healthy saliva and confirmed the ability of gingipains to inactivate SPINK6 under ex vivo conditions. Finally, we demonstrate the double-edge action of gingipains, which, in addition, can activate KLKs because of gingipain K-mediated proteolytic processing of the zymogenic proform of KLK13. Altogether, the results indicate the potential of P. gingivalis to disrupt the control system of KLKs, providing a possible mechanistic link between periodontal disease and tumor development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.

    PubMed

    Kolte, D; Bryant, J W; Gibson, G W; Wang, J; Shariat-Madar, Z

    2012-06-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases.

  13. Differences in substrate and inhibitor sequence specificity of human, mouse and rat tissue kallikreins.

    PubMed Central

    Fogaça, Sandro E; Melo, Robson L; Pimenta, Daniel C; Hosoi, Kazuo; Juliano, Luiz; Juliano, Maria A

    2004-01-01

    The kininogenase activities of mouse (mK1), rat (rK1) and human (hK1) tissue kallikreins were assayed with the bradykinin-containing synthetic peptides Abz-MTEMARRPPGFSPFRSVTVQNH2 (where Abz stands for o-aminobenzoyl) and Abz-MTSVIRRPPGFSPFRAPRV-NH2, which correspond to fragments Met374-Gln393 and Met375-Val393 of mouse and rat LMWKs (low-molecular-mass kininogens) with the addition of Abz. Bradykinin was released from these peptides by the mK1- and rK1-mediated hydrolysis of Arg-Arg and Arg-Ser (or Arg-Ala) peptide bonds. However, owing to preferential hydrolysis of Phe-Arg compared with the Arg-Ala bond in the peptide derived from rat LMWK, hK1 released bradykinin only from the mouse LMWK fragment and preferentially released des-[Arg9]bradykinin from the rat LMWK fragment (Abz-MTSVIRRPPGFSPFRAPRV-NH2). The formation of these hydrolysis products was examined in more detail by determining the kinetic parameters for the hydrolysis of synthetic, internally quenched fluorescent peptides containing six N- or C-terminal amino acids of bradykinin added to the five downstream or upstream residues of mouse and rat kininogens respectively. One of these peptides, Abz-GFSPFRAPRVQ-EDDnp (where EDDnp stands for ethylenediamine 2,4-dinitrophenyl), was preferentially hydrolysed at the Phe-Arg bond, confirming the potential des-[Arg9]bradykinin-releasing activity of hK1 on rat kininogen. The proline residue that is two residues upstream of bradykinin in rat kininogen is, in part, responsible for this pattern of hydrolysis, since the peptide Abz-GFSPFRASRVQ-EDDnp was preferentially cleaved at the Arg-Ala bond by hK1. Since this peptidase accepts the arginine or phenylalanine residue at its S1 subsite, this preference seems to be determined by the prime site of the substrates. These findings also suggested that the effects observed in rats overexpressing hK1 should consider the activation of B1 receptors by des-[Arg9]bradykinin. For further comparison, two short internally quenched

  14. Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration.

    PubMed Central

    Zheng, M. H.; Fan, Y.; Wysocki, S. J.; Lau, A. T.; Robertson, T.; Beilharz, M.; Wood, D. J.; Papadimitriou, J. M.

    1994-01-01

    Giant cell tumor of bone (GCT) is a relatively rare skeletal neoplasm characterized by multinuclear giant cells (osteoclast-like cells) scattered in a mass of mononuclear cells. The currently favored hypothesis for the origin of cells within GCT is that the multinuclear giant cells are reactive osteoclasts, whereas the truly neoplastic cells are the major component of the mononuclear population. However, the pathological significance and the precise relationship of tumor cells and osteoclast-like cells in GCT have not been fully established. In this study, we evaluated two GCTs for the presence of transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta type II receptor gene transcripts and attempted to establish a possible role for TGF-beta 1 in the interaction between tumor cells and osteoclast-like cells. By using in situ hybridization and Northern blot analysis, we have demonstrated that TGF-beta 1 mRNA transcript is consistently detected in both tumor mononuclear cells and osteoclast-like cells, whereas TGF-beta type II receptor gene transcript is only present in osteoclast-like cells. Moreover, isolated rat osteoclasts were tested for their ability to migrate in response to GCT-conditioned medium (GCTCM) in an in vitro chemotactic assay. Our results showed that GCTCM stimulates the migration of osteoclasts in a dose-dependent manner. Interestingly, only osteoclasts containing less than three nuclei can migrate through 12-mu pore filters. Addition of monoclonal antibody against TGF-beta significantly reduced but did not abolish the chemotactic activity of GCTCM. Moreover, TGF-beta type II receptor mRNA has been demonstrated in the normal rat osteoclasts and may be involved in the chemotactic action of TGF-beta 1. We concluded that TGF-beta 1, possibly in concert with other cytokines, is involved in the recruitment of osteoclast-like cells in GCT by acting in an autocrine or paracrine fashion. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

  15. Blue-light regulation of ZmPHOT1 and ZmPHOT2 gene expression and the possible involvement of Zmphot1 in phototropism in maize coleoptiles.

    PubMed

    Suzuki, Hiromi; Okamoto, Ai; Kojima, Akane; Nishimura, Takeshi; Takano, Makoto; Kagawa, Takatoshi; Kadota, Akeo; Kanegae, Takeshi; Koshiba, Tomokazu

    2014-08-01

    ZmPHOT1 and ZmPHOT2 are expressed differentially in maize coleoptiles and leaves, with Zmphot1 possibly involved in first-positive phototropic curvature of red-light-adapted maize coleoptiles exposed to pulsed low-fluence blue light. Unilateral blue-light perception by phototropin(s) is the first event of phototropism, with the subsequent signal causing lateral transport of auxin at the coleoptile tip region of monocots. In this study, we analyzed the behavior of two maize phototropin genes: ZmPHOT1 and ZmPHOT2, the latter identified from the maize genome database and newly characterized. Quantitative real-time PCR analysis demonstrated that ZmPHOT1 was abundantly expressed in etiolated coleoptiles, while lower expressions of both ZmPHOT1 and ZmPHOT2 were observed in young leaves. Interestingly, these genes were not specifically expressed in the coleoptile tip region, a key position for photoperception in phototropism. Exposure to pulsed low-fluence blue light (LBL) (0.33 µmol m(-2) s(-1) × 8 s) and continuous high-fluence blue light (HBL) (10 µmol m(-2) s(-1)) rapidly decreased ZmPHOT1 gene expression in coleoptiles, with levels of ZmPHOT2 not significantly altered in that tissue. In young leaves, no drastic expression changes were induced in either ZmPHOT1 or ZmPHOT2 by LBL or HBL irradiation. The Zmphot1 protein was investigated by Western blot analysis with anti-Osphot1 antibodies. Zmphot1 was detected in microsomal fractions, with higher levels in coleoptiles than in leaves. HBL caused rapid phosphorylation of the protein, whereas no phot1 phosphorylation was induced by LBL. The involvement of Zmphot1 in LBL-induced phototropic curvature of maize coleoptiles is discussed.

  16. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved.

    PubMed

    Longhin, Eleonora; Holme, Jørn A; Gutzkow, Kristine B; Arlt, Volker M; Kucab, Jill E; Camatini, Marina; Gualtieri, Maurizio

    2013-12-19

    This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. The cells were exposed to a low dose (7.5 μg/cm(2)) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by (32)P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P450-dependent reaction. Milan

  17. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved

    PubMed Central

    2013-01-01

    Background This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. Methods The cells were exposed to a low dose (7.5 μg/cm2) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by 32P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Results Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P

  18. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation.

    PubMed

    Song, Feifei; Chen, Chen; Wu, Songqing; Shao, Ensi; Li, Mengnan; Guan, Xiong; Huang, Zhipeng

    2016-03-30

    Vip proteins, a new group of insecticidal toxins produced by Bacillus thuringiensis, are effective against specific pests including Spodoptera litura. Here, we report construction of a transcriptome database of S. litura by de novo assembly along with detection of the transcriptional response of S. litura larvae to Vip3Aa toxin. In total, 56,498 unigenes with an N50 value of 1,853 bp were obtained. Results of transcriptome abundance showed that Vip3Aa toxin provoked a wide transcriptional response of the S. litura midgut. The differentially expressed genes were enriched for immunity-related, metabolic-related and Bt-related genes. Twenty-nine immunity-related genes, 102 metabolic-related genes and 62 Bt-related genes with differential expression were found. On the basis of transcriptional profiling analysis, we focus on the functional validation of trypsin which potentially participated in the activation of Vip3Aa protoxin. Zymogram analysis indicated that the presence of many proteases, including trypsin, in S. litura larvae midgut. Results of enzymolysis in vitro of Vip3Aa by trypsin, and bioassay and histopathology of the trypsin-digested Vip3Aa toxin showed that trypsin was possibly involved in the Vip3Aa activation. This study provides a transcriptome foundation for the identification and functional validation of the differentially expressed genes in an agricultural important pest, S. litura.

  19. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation.

    PubMed

    Chanana, Priyanka; Kumar, Anil

    2016-04-01

    Sleep deprivation (SD) is an experience of inadequate or poor quality of sleep that may produce significant alterations in multiple neural systems. Centella asiatica (CA) is a psychoactive medicinal herb with immense therapeutic potential. The present study was designed to explore the possible nitric oxide (NO) modulatory mechanism in the neuroprotective effect of CA against SD induced anxiety like behaviour, oxidative damage and neuroinflammation. Male laca mice were sleep deprived for 72 h, and CA (150 and 300 mg/kg) was administered alone and in combination with NO modulators for 8 days, starting five days before 72-h SD exposure. Various behavioural (locomotor activity, elevated plus maze) and biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels and superoxide dismutase activity), neuroinflammation marker (TNF-alpha) were assessed subsequently. CA (150 and 300 mg/kg) treatment for 8 days significantly improved locomotor activity, anti-anxiety like effect and attenuated oxidative damage and TNF α level as compared to sleep-deprived 72-h group. Also while the neuroprotective effect of CA was increased by NO antagonists, it was diminished by NO agonists. The present study suggests that NO modulatory mechanism could be involved in the protective effect of CA against SD-induced anxiety-like behaviour, oxidative damage and neuroinflammation in mice. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Altered Gene Expression of RNF34 and PACAP Possibly Involved in Mechanism of Exercise-Induced Analgesia for Neuropathic Pain in Rats

    PubMed Central

    Yamaoka, Shintaro; Oshima, Yusuke; Horiuchi, Hideki; Morino, Tadao; Hino, Masayuki; Miura, Hiromasa; Ogata, Tadanori

    2017-01-01

    Despite the availability of several modalities of treatment, including surgery, pharmacological agents, and nerve blocks, neuropathic pain is often unresponsive and sometimes progresses to intractable chronic pain. Although exercise therapy is a candidate for treatment of neuropathic pain, the mechanism underlying its efficacy has not been elucidated. To clarify the molecular mechanism for pain relief induced by exercise, we measured Rnf34 and Pacap mRNA levels in the spinal cord dorsal horn of SNL rats, a model of neuropathic pain. SNL model rats exhibited stable mechanical hyperalgesia for at least 6 weeks. When the rats were forced to exercise on a treadmill, mechanical and thermal hyperalgesia were significantly ameliorated compared with the non-exercise group. Accordingly, gene expression level of Rnf34 and Pacap were also significantly altered in the time course analysis after surgery. These results suggest that exercise therapy possibly involves pain relief in SNL rats by suppressing Rnf34 and Pacap expression in the spinal cord. PMID:28902127

  1. Possible involvement of atrial natriuretic factor in the antihypertensive action of a high-calcium diet in spontaneously hypertensive and Wistar-Kyoto rats.

    PubMed

    Kohno, M; Murakawa, K; Yasunari, K; Yokokawa, K; Kurihara, N; Takeda, T

    1989-10-01

    The present study was designed to determine the possible involvement of atrial natriuretic factor (ANF) in the hypotensive action of a high-calcium diet. The effects of increased dietary calcium (2.9% calcium, HCa) on blood pressure, urinary sodium excretion, and ANF were examined in 30 spontaneously hypertensive rats (SHR) and 30 Wistar-Kyoto rats (WKY). Control groups of 30 SHR and 30 WKY were fed normal calcium lab chow (0.4% calcium, NCa). The HCa diet reduced blood pressure and serum phosphorus concentration and increased urinary excretion of sodium and calcium in SHR and WKY. The HCa diet also caused a sustained increase in plasma ANF concentration and, finally, a decrease in atrial ANF concentration in both groups. A significant inverse correlation was observed between ANF concentrations in plasma and atria of the four experimental groups. Plasma ANF concentration was positively correlated with daily calcium consumption, and blood pressure was inversely correlated with daily calcium consumption in HCa- and NCa-SHR groups and in HCa- and NCa-WKY groups, respectively. Furthermore, a significant inverse correlation between blood pressure and plasma ANF concentration was observed in SHR groups and in WKY groups, respectively. The observed sustained increment in endogenous plasma ANF concentration, which is probably caused by increased secretion from the atrium, may contribute, in part, to the blood-pressure-lowering effects of the HCa diet.

  2. Anatomy of the antennal dorsal organ in female of Neodryinus typhlocybae (Hymenoptera: Dryinidae): A peculiar sensory structure possibly involved in perception of host vibration.

    PubMed

    Riolo, Paola; Isidoro, Nunzio; Ruschioni, Sara; Minuz, Roxana L; Bin, Ferdinando; Romani, Roberto

    2016-01-01

    Neodryinus typhlocybae (Hymenoptera: Dryinidae) is a natural enemy of the planthopper Metcalfa pruinosa, which was introduced from North America into Europe and has become established in various regions as a pest species. Vibrational signals play a crucial role in the communication of M. pruinosa, which appears to be exploited by N. typhlocybae. Scanning and transmission electron microscopy have shown that the antennae of N. typhlocybae females have peculiar and complex sensory structures: deep longitudinal grooves that house long sensilla trichodea, termed here "Antennal Dorsal Organs." Such structures were not present on male antennae. These sensilla extend for the length of the grooves, without contact with the groove cuticle. Their hair shaft is empty and aporous, and inserted into a specialized socket, underneath which there is a cuticular ampulla-like chamber. Each sensillum is associated with two sensory neurons: one terminates at the proximal end of the dendritic sheath; the other continues into the sensillum sinus and is enclosed in the dendritic sheath. This second sensory neuron then enters the ampulla-like chamber through the circular opening, and then terminates with a conspicuous tubular body at the shaft base. The possible involvement of this peculiar structure in the context of host recognition mechanism is discussed.

  3. Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation

    PubMed Central

    Song, Feifei; Chen, Chen; Wu, Songqing; Shao, Ensi; Li, Mengnan; Guan, Xiong; Huang, Zhipeng

    2016-01-01

    Vip proteins, a new group of insecticidal toxins produced by Bacillus thuringiensis, are effective against specific pests including Spodoptera litura. Here, we report construction of a transcriptome database of S. litura by de novo assembly along with detection of the transcriptional response of S. litura larvae to Vip3Aa toxin. In total, 56,498 unigenes with an N50 value of 1,853 bp were obtained. Results of transcriptome abundance showed that Vip3Aa toxin provoked a wide transcriptional response of the S. litura midgut. The differentially expressed genes were enriched for immunity-related, metabolic-related and Bt-related genes. Twenty-nine immunity-related genes, 102 metabolic-related genes and 62 Bt-related genes with differential expression were found. On the basis of transcriptional profiling analysis, we focus on the functional validation of trypsin which potentially participated in the activation of Vip3Aa protoxin. Zymogram analysis indicated that the presence of many proteases, including trypsin, in S. litura larvae midgut. Results of enzymolysis in vitro of Vip3Aa by trypsin, and bioassay and histopathology of the trypsin-digested Vip3Aa toxin showed that trypsin was possibly involved in the Vip3Aa activation. This study provides a transcriptome foundation for the identification and functional validation of the differentially expressed genes in an agricultural important pest, S. litura. PMID:27025647

  4. Diclofenac-Induced Apoptosis in the Neuroblastoma Cell Line SH-SY5Y: Possible Involvement of the Mitochondrial Superoxide Dismutase

    PubMed Central

    Cecere, Francesca; Iuliano, Annarita; Albano, Francesco; Zappelli, Claudia; Castellano, Immacolata; Grimaldi, Pasquale; Masullo, Mariorosario; De Vendittis, Emmanuele; Ruocco, Maria Rosaria

    2010-01-01

    Diclofenac, a nonsteroidal anti-inflammatory drug, induces apoptosis on the neuroblastoma cell line SH-SY5Y through a mitochondrial dysfunction, affecting some antioxidant mechanisms. Indeed, the time- and dose-dependent increase of apoptosis is associated to an early enhancement of the reactive oxygen species (ROS). Mitochondrial superoxide dismutase (SOD2) plays a crucial role in the defence against ROS, thus protecting against several apoptotic stimuli. Diclofenac decreased the protein levels and the enzymatic activity of SOD2, without any significant impairment of the corresponding mRNA levels in the SH-SY5Y extracts. When cells were incubated with an archaeal exogenous thioredoxin, an attenuation of the diclofenac-induced apoptosis was observed, together with an increase of SOD2 protein levels. Furthermore, diclofenac impaired the mitochondrial membrane potential, leading to a release of cytochrome c. These data suggest that mitochondria are involved in the diclofenac-induced apoptosis of SH-SY5Y cells and point to a possible role of SOD2 in this process. PMID:20625417

  5. Delayed liver regeneration in C3H/HeJ mice: possible involvement of haemodynamic and structural changes in the hepatic microcirculation.

    PubMed

    Marlini, Muhamad; Mabuchi, Ayako; Mallard, Beth L; Hairulhisyam, Ngatiman; Akashi-Takamura, Sachiko; Harper, Jacquie L; Wheatley, Antony M

    2016-12-01

    What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4(-/-) ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4(-/-) ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4(-/-) mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4(-/-) than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared

  6. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation-induced behaviour modification and oxidative damage in mice.

    PubMed

    Kumar, Anil; Singh, Anant

    2009-08-01

    Sleep is an important physiological process responsible for the maintenance of physical, mental and emotional health of a living being. Sleep deprivation is considered risky for several pathological diseases such as anxiety and motor and cognitive dysfunctions. Sleep deprivation has recently been reported to cause oxidative damage. This study has been designed to explore the possible involvement of the GABAergic mechanism in protective effects of melatonin against 72-h sleep deprivation-induced behaviour modification and oxidative damage in mice. Mice were sleep-deprived for a period of 72 h using the grid over water suspended method. Animals were divided into groups of 6-8 animals each. Melatonin (5 and 10 mg/kg), flumazenil (0.5 mg/kg), picrotoxin (0.5 mg/kg) and muscimol (0.05 mg/kg) were administered for 5 days starting 2 days before 72-h sleep deprivation. Various behavioural tests (plus maze, zero maze, mirror chamber, actophotometer) and body weight assessment followed by oxidative stress parameters (malondialdehyde level, glutathione, catalase, nitrite and protein) were carried out. The 72-h sleep deprivation caused significant anxiety-like behaviour, weight loss, impaired locomotor activity and oxidative damage as compared with naïve (without sleep deprivation). Treatment with melatonin (5 mg/kg and 10 mg/kg, ip) significantly improved locomotor activity, weight loss and antianxiety effect as compared with control (sleep-deprived). Biochemically, melatonin treatment significantly restored reduced glutathione, catalase activity, attenuated lipid peroxidation and nitrite level as compared with control animals (72-h sleep-deprived). Flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) pretreatments with a lower dose of melatonin (5 mg/kg) significantly antagonized the protective effect of melatonin. However, muscimol (0.05 mg/kg) pretreatment with melatonin (5 mg/kg, ip) potentiated the protective effect of melatonin which was significant as compared with their

  7. Possible involvement of brain prostaglandin E2 and prostanoid EP3 receptors in prostaglandin E2 glycerol ester-induced activation of central sympathetic outflow in the rat.

    PubMed

    Shimizu, Takahiro; Tanaka, Kenjiro; Nakamura, Kumiko; Taniuchi, Keisuke; Yawata, Toshio; Higashi, Youichirou; Ueba, Tetsuya; Dimitriadis, Fotios; Shimizu, Shogo; Yokotani, Kunihiko; Saito, Motoaki

    2014-07-01

    We recently reported that intracerebroventricularly administered 2-arachidonoylglycerol elevated plasma noradrenaline and adrenaline by brain monoacylglycerol lipase- (MGL) and cyclooxygenase-mediated mechanisms in the rat. These results suggest that 2-arachidonoylglycerol is hydrolyzed by MGL to free arachidonic acid, which is further metabolized to prostaglandins (PGs) by cyclooxygenase in the brain, thereby elevating plasma noradrenaline and adrenaline. On the other hand, 2-arachidonoylglycerol can be also metabolized by cyclooxygenase to PG glycerol esters (PG-Gs), which seems to be hydrolyzed by MGL to free PGs. Here, we examined the involvement of brain PG-Gs in the elevation of plasma noradrenaline and adrenaline regarding PGE2-G and prostanoid EP receptors using anesthetized male Wistar rats. Intracerebroventricularly administered PGE2-G (1.5 and 3 nmol/animal) dose-dependently elevated plasma noradrenaline but not adrenaline. PGE2-G also elevated systolic, mean and diastolic blood pressure and heart rate. The PGE2-G-induced elevation of plasma noradrenaline was attenuated by JZL184 (MGL inhibitor). Intracerebroventricularly administered PGE2 (0.3 and 1.5 nmol/animal) and sulprostone (0.1 and 0.3 nmol/animal) (EP1/EP3 agonist) also elevated plasma noradrenaline but not adrenaline in a dose-dependent manner. The sulprostone-induced elevation was attenuated by L-798,106 (EP3 antagonist), but not by SC-51322 (EP1 antagonist). L-798,106 also attenuated the PGE2-G- and PGE2-induced elevation of plasma noradrenaline, while PF-04418948 (EP2 antagonist) and L-161,982 (EP4 antagonist) had no effect on the PGE2-G-induced response. These results suggest a possibility that brain PGE2-G produced from 2-arachidonoylglycerol can be hydrolyzed to free PGE2, thereby activating central sympathetic outflow by brain prostanoid EP3 receptor-mediated mechanisms in the rat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: possible involvement of angiotensin-converting enzyme-2.

    PubMed

    Han, Su-Xia; He, Guang-Ming; Wang, Tao; Chen, Lei; Ning, Yun-Ye; Luo, Feng; An, Jin; Yang, Ting; Dong, Jia-Jia; Liao, Zeng-Lin; Xu, Dan; Wen, Fu-Qiang

    2010-05-15

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  9. Profiling of MicroRNAs under Wound Treatment in Aquilaria sinensis to Identify Possible MicroRNAs Involved in Agarwood Formation

    PubMed Central

    Gao, Zhi-Hui; Yang, Yun; Zhang, Zheng; Zhao, Wen-Ting; Meng, Hui; Jin, Yue; Huang, Jun-Qing; Xu, Yan-Hong; Zhao, Li-Zi; Liu, Juan; Wei, Jian-He

    2014-01-01

    Agarwood, a kind of highly valued non-timber product across Asia, is formed only when its resource trees -- the endangered genus Aquilaria are wounded or infected by some microbes. To promote the efficiency of agarwood production and protect the wild resource of Aquilaria species, we urgently need to reveal the regulation mechanism of agarwood formation. MicroRNAs (miRNAs) are a group of gene expression regulators with overwhelming effects on a large spectrum of biological processes. However, their roles in agarwood formation remain unknown. This work aimed at identifying possible miRNAs involved in the wound induced agarwood formation. In this study, the high-throughput sequencing was adopted to identify miRNAs and monitor their expression under wound treatment in the stems of A. sinensis. The miR171, miR390, miR394, miR2111, and miR3954 families remained at the reduced level two days after the treatment. 131 homologous miRNAs in the 0.5 h library showed over three-fold variation of read number compared with the control library, of which 12 exhibiting strong expression alterations were further confirmed by real-time quantitative PCR. Target prediction and annotation of the miRNAs demonstrated that the binding, metabolic process, catalytic activity, and cellular process are the most common functions of the predicted targets of these newly identified miRNAs in A.sinensis. The cleaveage sites of three newly predicted targets were verified by 5'RACE. PMID:24795531

  10. Profiling of microRNAs under wound treatment in Aquilaria sinensis to identify possible microRNAs involved in agarwood formation.

    PubMed

    Gao, Zhi-Hui; Yang, Yun; Zhang, Zheng; Zhao, Wen-Ting; Meng, Hui; Jin, Yue; Huang, Jun-Qing; Xu, Yan-Hong; Zhao, Li-Zi; Liu, Juan; Wei, Jian-He

    2014-01-01

    Agarwood, a kind of highly valued non-timber product across Asia, is formed only when its resource trees--the endangered genus Aquilaria are wounded or infected by some microbes. To promote the efficiency of agarwood production and protect the wild resource of Aquilaria species, we urgently need to reveal the regulation mechanism of agarwood formation. MicroRNAs (miRNAs) are a group of gene expression regulators with overwhelming effects on a large spectrum of biological processes. However, their roles in agarwood formation remain unknown. This work aimed at identifying possible miRNAs involved in the wound induced agarwood formation. In this study, the high-throughput sequencing was adopted to identify miRNAs and monitor their expression under wound treatment in the stems of A. sinensis. The miR171, miR390, miR394, miR2111, and miR3954 families remained at the reduced level two days after the treatment. 131 homologous miRNAs in the 0.5 h library showed over three-fold variation of read number compared with the control library, of which 12 exhibiting strong expression alterations were further confirmed by real-time quantitative PCR. Target prediction and annotation of the miRNAs demonstrated that the binding, metabolic process, catalytic activity, and cellular process are the most common functions of the predicted targets of these newly identified miRNAs in A.sinensis. The cleaveage sites of three newly predicted targets were verified by 5'RACE.

  11. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    SciTech Connect

    Han Suxia; He Guangming; Wang Tao; Chen Lei; Ning Yunye; Luo Feng; An Jin; Yang Ting; Dong Jiajia; Liao Zenglin; Xu Dan; Wen Fuqiang

    2010-05-15

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  12. In vitro screening of major neurotransmitter systems possibly involved in the mechanism of action of antibodies to S100 protein in released-active form

    PubMed Central

    Gorbunov, Evgeniy A; Ertuzun, Irina A; Kachaeva, Evgeniya V; Tarasov, Sergey A; Epstein, Oleg I

    2015-01-01

    Experimentally and clinically, it was shown that released-active form of antibodies to S100 protein (RAF of Abs to S100) exerts a wide range of pharmacological activities: anxiolytic, antiasthenic, antiaggressive, stress-protective, antihypoxic, antiischemic, neuroprotective, and nootropic. The purpose of this study was to determine the influence of RAF of Abs to S100 on major neurotransmitter systems (serotoninergic, GABAergic, dopaminergic, and on sigma receptors as well) which are possibly involved in its mechanism of pharmacological activity. Radioligand binding assays were used for assessment of the drug influence on ligand–receptor interaction. [35S]GTPγS binding assay, cyclic adenosine monophosphate HTRF™, cellular dielectric spectroscopy assays, and assays based on measurement of intracellular concentration of Ca2+ ions were used for assessment of agonist or antagonist properties of the drug toward receptors. RAF of Abs to S100 increased radioligand binding to 5-HT1F, 5-HT2B, 5-HT2Cedited, 5-HT3, and to D3 receptors by 142.0%, 131.9%, 149.3%, 120.7%, and 126.3%, respectively. Also, the drug significantly inhibited specific binding of radioligands to GABAB1A/B2 receptors by 25.8%, and to both native and recombinant human sigma1 receptors by 75.3% and 40.32%, respectively. In the functional assays, it was shown that the drug exerted antagonism at 5-HT1B, D3, and GABAB1A/B2 receptors inhibiting agonist-induced responses by 23.24%, 32.76%, and 30.2%, respectively. On the contrary, the drug exerted an agonist effect at 5-HT1A receptors enhancing receptor functional activity by 28.0%. The pharmacological profiling of RAF of Abs to S100 among 27 receptor provides evidence for drug-related modification of major neurotransmitter systems. PMID:26604768

  13. Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation.

    PubMed

    Peng, Ting; Saito, Takanori; Honda, Chikako; Ban, Yusuke; Kondo, Satoru; Liu, Ji-Hong; Hatsuyama, Yoshimichi; Moriguchi, Takaya

    2013-07-01

    Suppression subtractive hybridization (SSH) was employed to identify candidate genes involved in red coloration in apple peel with the ultraviolet (UV)-B-treated 'Mutsu'. After reverse Northern blotting verification, nearly 80 clones were successfully sequenced. Large portions of the expressed sequence tags (ESTs) are well characterized anthocyanin biosynthesis-related genes, such as chalcone synthase (11A5), flavonol synthase (12F3), anthocyanidin synthase (11H5) and UDP-glycosyl transferase (14A12) whose presence proved the success of SSH. Eight ESTs were selected for quantitative real-time polymerase chain reaction analysis and their expressions were all elevated in 'Induction', further confirming the reliability of the SSH library. One EST, 11F4 (CONSTITUTIVE PHOTOMORPHOGENIC 1: COP1) with putative function in light signal relay was further analyzed in 'Mutsu' and 'Tsugaru', along with MdHY5 (ELONGATED HYPOCOTYL 5: the downstream target of COP1), MdMYB22 (a possible flavonol-specific activator under the regulation of HY5, belonging to the SG7/PRODUCTION OF FLAVONOL GLYCOSIDES family) and MdMYBA. Results showed that MdCOP1, MdHY5, MdMYB22 and MdMYBA were all UV-B inducible genes and anthocyanin accumulation occurred after their increased expressions. Moreover, their expressions and anthocyanin content were enhanced under UV-B plus 17°C treatment. The presence of G box, a known consensus binding site of HY5, in the MdMYBA promoter region implicated that it could be regulated by MdHY5, which was verified by the result of the yeast one-hybrid analysis. Our data suggested that UV-B irradiation would induce the utmost upstream light signaling factor, MdCOP1, which activates MdHY5 signaling by binding to the promoter regions of MdMYBs, and finally leads to the red coloration of apple peels.

  14. Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus.

    PubMed

    Xu, Chang-Geng; Yang, Yan-Bei; Zhou, Yong-Hui; Hao, Mei-Qi; Ren, Yong-Zhi; Wang, Xiao-Ting; Chen, Jian-Qing; Muhammad, Ishfaq; Wang, Shuai; Liu, Di; Li, Xiu-Bo; Li, Yan-Hua

    2017-01-01

    Staphylococcus xylosus is an opportunistic pathogen that causes infection in humans and cow mastitis. And S. xylosus possesses a strong ability to form biofilms in vitro. As biofilm formation facilitates resistance to antimicrobial agents, the discovery of new medicinal properties for classic drugs is highly desired. Aspirin, which is the most common active component of non-steroidal anti-inflammatory compounds, affects the biofilm-forming capacity of various bacterial species. We have found that aspirin effectively inhibits biofilm formation of S. xylosus by Crystal violet (CV) staining and scanning electron microscopy analyses. The present study sought to elucidate possible targets of aspirin in suppressing S. xylosus biofilm formation. Based on an isobaric tag for relative and absolute quantitation (iTRAQ) fold-change of >1.2 or <0.8 (P-value < 0.05), 178 differentially expressed proteins, 111 down-regulated and 67 up-regulated, were identified after application of aspirin to cells at a 1/2 minimal inhibitory concentration. Gene ontology analysis indicated enrichment in metabolic processes for the majority of the differentially expressed proteins. We then used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database to analyze a large number of differentially expressed proteins and identified genes involved in biosynthesis of amino acids pathway, carbon metabolism (pentose phosphate and glycolytic pathways, tricarboxylic acid cycle) and nitrogen metabolism (histidine metabolism). These novel proteins represent candidate targets in aspirin-mediated inhibition of S. xylosus biofilm formation at sub-MIC levels. The findings lay the foundation for further studies to identify potential aspirin targets.

  15. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity.

    PubMed

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-08

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology.

  16. Polymorphisms and haplotypes of the interleukin 2 gene are associated with an increased risk of gastric cancer. The possible involvement of Helicobacter pylori.

    PubMed

    Melchiades, Jessica L; Zabaglia, Luanna M; Sallas, Mayara L; Orcini, Wilson A; Chen, Elizabeth; Smith, Marilia A C; Payão, Spencer L M; Rasmussen, Lucas T

    2017-08-01

    Interleukin 2 (IL-2) is a pro-inflammatory cytokine that is mainly synthesized by immunoregulatory T helper cells and which plays an important role in antitumor immunity. Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric mucosa and induces the production of IL-2. This process increases the magnitude of inflammation and may influence the development of gastric pathologies. In light of the possible involvement of IL-2 and the presence of H. pylori in gastric diseases, this study investigated possible associations between the IL-2 polymorphisms +114 T>G (rs2069763) and -330 T>G (rs2069762) and the development of gastric cancer; these associations were then correlated with the presence of H. pylori. Gastric biopsies were obtained from 294 dyspeptic patients (173♀/123♂). Of these samples, 181 were chronic gastritis samples (102♀/79), 62 were samples of intact gastric mucosa (47♀/15♂), and 51 were samples of gastric cancer (22♀/29♂). PCR-RFLP was used to characterize the +114 T>G and -330 T>G polymorphisms. Considering the genetic characteristics of the study population and based on the codominant model, a high risk of gastric cancer among patients with normal gastric tissue and patients with gastric cancer was found in subjects with the IL-2-330 GG genotype (OR=6.43, 95% CI: 1.47-28.10, p=0.044). The data was adjusted for the presence of H. pylori. Among patients with gastritis and patients with gastric cancer, a high risk was found among subjects with the IL-2-330 GG genotype (OR=4.47, 95% CI: 1.84-10.84, p=0.0022). When the IL-2 +114 polymorphism was analyzed, similar results were found. Among the patients with normal gastric tissue and the patients with gastric cancer, subjects carrying the +114 TT genotype were found to be at a high risk of gastric cancer (OR=5.97, 95% CI: 1.60-22.27, p=0.013). This data was also adjusted for the presence of H. pylori. Among patients with gastritis and patients with gastric cancer

  17. Role of the kallikrein-kinin system in Ang-(1-7)-induced vasodilation in mesenteric arterioles of Wistar rats studied in vivo-in situ.

    PubMed

    Marangoni, Rossana Anderson; Carmona, Adriana Karaoglanovic; Passaglia, Rita Cássia A Tostes; Nigro, Dorothy; Fortes, Zuleica Bruno; de Carvalho, Maria Helena Catelli

    2006-07-01

    Angiotensin-(1-7) [Ang-(1-7)], exerts a variety of actions in the cardiovascular system, with an important effect being vasodilation. In this work, we investigated the relationship between the vasodilatory activity of Ang-(1-7) and the kallikrein-kinin system. Intravital microscopy was used to study the vasodilation caused by Ang-(1-7) in the mesenteric vascular bed of anesthetized Wistar rats. The topical application of Ang-(1-7) caused vasodilation of mesenteric arterioles that was reduced by A-779, JE 049 and peptidase inhibitors (aprotinin, SBTI, PKSI 527, E-64, PMSF). These results indicated that the vasodilation induced by Ang-(1-7) in the mesenteric arterioles of Wistar rats was heavily dependent on the activation of kallikrein and subsequent kinin formation.

  18. Androgens act synergistically to enhance estrogen-induced upregulation of human tissue kallikreins 10, 11, and 14 in breast cancer cells via a membrane bound androgen receptor.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2008-04-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well as in the pathogenesis of endocrine-related cancers, especially breast cancer. However, clinical data suggest that combined testosterone and estrogen treatments on post-menopausal women increase the risk of breast cancer. Experiments have shown that many, if not all kallikreins are under steroid hormone regulation in breast cancer cell lines. Their implication as prognostic and diagnostic markers has also been well-documented. Thus, we investigated the effect of combined hormone stimulation with androgens and 17beta-estradiol on the ductal caricinoma cell line BT474. This cell line has been shown to be sensitive to both, androgens (secreting PSA) and estrogens (secreting a number of kallikreins including KLK10, 11, and KLK14). We found that PSA expression was downregulated upon combined hormone stimulation, confirming reports that estrogen can antagonize and block the activity of the androgen receptor. Upon analysis of estrogen-sensitive kallikreins 10, 11, and 14, all showed to be synergistically enhanced in their expression three- to fourfold, upon joint hormone treatment versus individual hormone stimulation. The enhancement is dependent upon the action of androgens as treatment with the androgen receptor antagonist cyproterone actetate normalized the expression of KLK10, 11, and KLK14 to estrogen-stimulation levels. The synergistic effects between estrogens and androgens on estrogen-sensitive genes may have implications on the role of the kallikreins in associated risk of breast cancer and progression.

  19. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia

    PubMed Central

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2017-01-01

    High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P<0.01 and FDR <0.01). In particular, the kallikrein gene cluster (KLK1/3/7/8/12) was upregulated >17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3–13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases. PMID:28000848

  20. Kallikrein-related peptidase-6 (KLK6) mRNA expression is an independent prognostic tissue biomarker of poor disease-free and overall survival in colorectal adenocarcinoma.

    PubMed

    Christodoulou, Spyridon; Alexopoulou, Dimitra K; Kontos, Christos K; Scorilas, Andreas; Papadopoulos, Iordanis N

    2014-05-01

    Members of the family of tissue kallikrein and kallikrein-related peptidases possess important prognostic value in cancer. Moreover, the oncogenic role of kallikrein-related peptidase-6 (KLK6) in colorectal cancer has been well documented so far. This study investigated the prognostic value of KLK6 mRNA expression as a molecular tissue biomarker in colorectal adenocarcinoma. For this purpose, KLK6 mRNA expression was studied in 110 primary colorectal adenocarcinomas and 39 paired noncancerous colorectal specimens. A dramatic upregulation of KLK6 mRNA expression was observed in colorectal tumors. KLK6 mRNA overexpression was associated with high depth of tumor invasion, presence of distant metastases, and tumor-node-metastasis (TNM) stage of patients. Furthermore, KLK6 mRNA expression was shown to predict poor disease-free and overall survival independently of patient gender, age, tumor size, location, histological subtype, grade, venous invasion, lymphatic invasion, TNM stage, radiotherapy, and chemotherapy treatment. Moreover, Kaplan-Meier survival analysis revealed that colorectal adenocarcinoma patients with negative regional lymph nodes (N0) and those without distant metastases (M0) harboring KLK6 mRNA-positive colorectal tumors tended to relapse and die earlier than N0 and M0 patients with KLK6 mRNA-negative colorectal adenocarcinoma. Thus, KLK6 mRNA expression could be considered as an independent, unfavorable molecular prognostic biomarker in colorectal adenocarcinoma, with additional prognostic value in patients without regional or distant metastases.

  1. Skin pH Is the Master Switch of Kallikrein 5-Mediated Skin Barrier Destruction in a Murine Atopic Dermatitis Model.

    PubMed

    Jang, Hyosun; Matsuda, Akira; Jung, Kyungsook; Karasawa, Kaoru; Matsuda, Kenshiro; Oida, Kumiko; Ishizaka, Saori; Ahn, Ginnae; Amagai, Yosuke; Moon, Changjong; Kim, Sung-Ho; Arkwright, Peter D; Takamori, Kenji; Matsuda, Hiroshi; Tanaka, Akane

    2016-01-01

    Elevated skin surface pH has been reported in patients with atopic dermatitis. In this study, we explored the role of skin pH in the pathogenesis of atopic dermatitis using the NC/Tnd murine atopic dermatitis model. Alkalinization of the skin of asymptomatic NC/Tnd mice housed in specific pathogen-free conditions induced kallikrein 5 and activated protease-activated receptor 2, resulting in thymic stromal lymphopoietin secretion and a cutaneous T-helper 2 allergic response. This was associated with increased transepidermal water loss and development of eczematous lesions in these specific pathogen-free NC/Tnd mice, which normally do not suffer from atopic dermatitis. Injection of recombinant thymic stromal lymphopoietin also induced scratching behavior in the specific pathogen-free NC/Tnd mice. Thymic stromal lymphopoietin production and dermatitis induced by alkalinization of the skin could be blocked by the protease-activated receptor 2 antagonist ENMD-1068. In contrast, weak acidification of eczematous skin in conventionally housed NC/Tnd mice reduced kallikrein 5 activity and ameliorated the dermatitis. Onset of the dermatitis was associated with increased epidermal filaggrin expression and impaired activity of the sodium/hydrogen exchanger 1, a known regulator of skin pH. We conclude that alterations in skin pH directly modulate kallikrein 5 activity leading to skin barrier dysfunction, itch, and dermatitis via the protease-activated receptor 2-thymic stromal lymphopoietin pathway.

  2. Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins.

    PubMed

    Bieczynski, Flavia; De Anna, Julieta S; Pirez, Macarena; Brena, Beatríz M; Villanueva, Silvina S M; Luquet, Carlos M

    2014-09-01

    We studied Abcc mediated-transport in middle and posterior intestine of the rainbow trout, Oncorhynchus mykiss. Luminal and serosal transport were evaluated in everted and non-everted intestinal sacs, respectively, incubated with 1-chloro-2,4-dinitrobenzene (CDNB; 200 μM). CDNB enters the cells and is conjugated with glutathione via glutathione S-transferase (GST) to form 2,4-dinitrophenyl-S-glutathione (DNP-SG), a known Abcc substrate. DNP-SG concentration in the bath was recorded every 10 min, in order to calculate the mass-specific transport rate. For evaluating the possible involvement of Abcc proteins in microcystin-LR (MCLR) transport, 1.135 μM MCLR was added to the bath or inside the sacs, in everted or non-everted preparations, respectively. Both luminal and serosal DNP-SG efflux were significantly inhibited by MCLR. A concentration-response curve obtained using strips from middle intestine yielded an IC50 value of 1.33 μM MCLR. The Abcc inhibitor, MK571 produced concentration-dependent inhibition of DNP-SG similar to that produced by MCLR. Since competition of MCLR and CDNB as GST substrates could bias the DNP-SG transport results, we evaluated the effects of MCLR on calcein efflux, which does not depend on GST activity. We applied the non-fluorescent, cell-permeant compound calcein-AM (0.25 μM) to middle intestinal strips and recorded the efflux of its hydrolysis product, the fluorescent Abcc substrate calcein. 2.27 μM MCLR and 3 μM MK571 inhibited calcein efflux (17.39 and 20.2%, respectively). Finally, MCLR interaction with Abcc transporters was evaluated by measuring its toxic intracellular effects. Middle intestinal segments were incubated in saline solution with 1.135 μM MCLR (MC1), 2.27 μM MCLR (MC2), 3 μM MK571 (MK) or 1.135 μM MCLR+3 μM MK571 (MC1/MK). After 1h, GSH concentration, protein phosphatase 1 and 2A (PP1, PP2A) and GST activities were measured in each segment. MC1did not produce significant effect while MC1/MK and MC2

  3. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism.

    PubMed

    Smith, Jacqueline; Sadeyen, Jean-Remy; Paton, Ian R; Hocking, Paul M; Salmon, Nigel; Fife, Mark; Nair, Venugopal; Burt, David W; Kaiser, Pete

    2011-11-01

    Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.

  4. IgG4-related epididymo-orchitis associated with bladder cancer: possible involvement of BAFF/BAFF-R interaction in IgG4-related urogenital disease.

    PubMed

    Migita, Kiyoshi; Miyashita, Taiichiro; Mizuno, Aya; Jiuchi, Yuka; Ito, Masahiro; Matsuo, Manabu; Izumi, Yasumori; Takeoka, Atsushi; Nishino, Ayako; Hayashi, Mikio

    2014-01-01

    We describe herein a patient who presented with immunoglobulin G4-related disease (IgG4-RD) involving the testis and prostate as well as the submandibular glands. Massive infiltration of IgG4-expressing plasma cells was observed in testis and prostate tissues. Serum concentrations of B cell activating factor belonging to the tumor necrosis factor family (BAFF) were elevated in parallel with serum IgG4 concentrations, and infiltration of BAFF-receptor (BAFF-R)-expressing B cells and BAFF-expressing lymphoid cells was observed around the ectopic lymphoid foci in the affected urogenital tissues. To date, testicular involvement in a patient diagnosed with IgG4-RD had not been reported, making this the first reported case of IgG4-related epididymo-orchitis. These findings suggest that the immune mechanism underlying ectopic lymphoneogenesis in IgG4-RD may involve enhanced BAFF/BAFF-R interactions among lymphoid cells.

  5. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.).

    PubMed

    Gahlaut, Vijay; Jaiswal, Vandana; Kumar, Anuj; Gupta, Pushpendra Kumar

    2016-11-01

    TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.

  6. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (KATP), in the present study we investigated the involvement of KATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of KATP channels, mice were pretreated with KATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of KATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of KATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the KATP channels.

  7. Osteoarthritis of the hip joint in elderly patients is most commonly atrophic, with low parameters of acetabular dysplasia and possible involvement of osteoporosis.

    PubMed

    Ishidou, Yasuhiro; Matsuyama, Kanehiro; Sakuma, Daisuke; Setoguchi, Takao; Nagano, Satoshi; Kawamura, Ichiro; Maeda, Shingo; Komiya, Setsuro

    2017-12-01

    As elderly patients with hip osteoarthritis aged, acetabular dysplasia parameters decreased (Sharp's angle, acetabular roof obliquity angle, and acetabular head index) and the incidence of the atrophic type increased. Vertebral body fracture was more frequent in the atrophic type, suggesting the involvement of osteoporosis at the onset of hip osteoarthritis. Osteoarthritis (OA) is associated with increased bone formation at a local site. However, excessive bone resorption has also been found to occur in the early stages of OA. Osteoporosis may be involved in the onset of OA in elderly patients. We conducted a cross-sectional radiographic study of patients with hip OA and examined the association between age and factors of acetabular dysplasia (Sharp's angle, acetabular roof obliquity angle, and acetabular head index) as well as the osteoblastic response to determine the potential involvement of osteoporosis. This study included 366 patients (58 men, 308 women) who had undergone total hip arthroplasty for the diagnosis of hip OA. We measured the parameters of acetabular dysplasia using preoperative frontal X-ray images and evaluated each patient according to Bombelli classification of OA (hypertrophic, normotrophic, or atrophic type). As the patients aged, the parameters of acetabular dysplasia decreased. The incidence of the atrophic type of OA was significantly higher in older patients. Vertebral body fractures were more frequent in the atrophic type than in the other types. Additionally, the index of acetabular dysplasia was lower in the atrophic type. By contrast, the hypertrophic type was present in relatively younger patients and was associated with an increased index of acetabular dysplasia. In elderly patients with hip OA, the parameters of acetabular dysplasia decreased and the incidence of the atrophic type increased as the patients aged. The frequency of vertebral body fracture was high in patients with the atrophic type, suggesting the involvement of

  8. Possible involvement of nitric oxide (NO) signaling pathway in the antidepressant-like effect of MK-801(dizocilpine), a NMDA receptor antagonist in mouse forced swim test.

    PubMed

    Dhir, Ashish; Kulkarni, S K

    2008-03-01

    L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.

  9. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel.

    PubMed

    Coda, Alvin B; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C; Del Rosso, James Q; Gallo, Richard L

    2013-10-01

    Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  10. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel

    PubMed Central

    Coda, Alvin B.; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C.; Del Rosso, James Q.; Gallo, Richard L.

    2014-01-01

    Background Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. Objective We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Methods Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. Results AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Limitations Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. Conclusions These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. PMID:23871720

  11. Regulation of acid-sensing ion channel 1a function by tissue kallikrein may be through channel cleavage.

    PubMed

    Su, Jingjing; Tang, Yuping; Liu, Ling; Zhou, Houguang; Dong, Qiang

    2011-02-18

    Recently, we have demonstrated that serine protease tissue kallikrein (TK) can protect cortical neurons against ischemia-acidosis/reperfusion-induced injury, and that this effect might be mediated by acid-sensing ion channels (ASICs). However, little is known about how TK regulates the function of ASICs. Here we provided evidence that the regulation of ASIC1a function by TK was probably correlated with its cleavage. High concentration of TK (3μM) partially cleaved the extracellular loop of ASIC1a, followed by a marked decrease of LDH release and an increase of cell survival at pH 6.2. Pretreatment with a protease inhibitor aprotinin inhibited the cleavage of ASIC1a and prevented functional regulation by TK. However, the cleavage of ASIC2a, which was not functionally modified by TK, was not observed. Therefore, we propose that the limited proteolysis of extracellular loop within ASIC1a might be one of the potential regulatory mechanisms of ASIC1a function by TK. © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Kallikrein 6 Signals through PAR1 and PAR2 to Promote Neuron Injury and Exacerbate Glutamate Neurotoxicity

    PubMed Central

    Yoon, Hyesook; Radulovic, Maja; Wu, Jianmin; Blaber, Sachiko I.; Blaber, Michael; Fehlings, Michael G.; Scarisbrick, Isobel A.

    2014-01-01

    CNS trauma generates a proteolytic imbalance contributing to secondary injury, including axonopathy and neuron degeneration. Kallikrein 6 (Klk6) is a serine protease implicated in neurodegeneration and here we investigate the role of protease activated receptors 1 (PAR1) and PAR2 in mediating these effects. First we demonstrate Klk6 and the prototypical activator of PAR1, thrombin, as well as PAR1 and PAR2, are each elevated in murine experimental traumatic spinal cord injury (SCI) at acute or subacute time points. Recombinant Klk6 triggered ERK1/2 signaling in cerebellar granule neurons and in the NSC34 spinal cord motoneuron cell line, in a PI3K and MEK-dependent fashion. Importantly, lipopeptide inhibitors of PAR1 or PAR2, and PAR1 genetic deletion, each reduced Klk6-ERK1/2 activation. In addition, Klk6 and thrombin promoted degeneration of cerebellar neurons and exacerbated glutamate neurotoxicity. Moreover, genetic deletion of PAR1 blocked thrombin-mediated cerebellar neurotoxicity and reduced the neurotoxic effects of Klk6. Klk6 also increased glutamate-mediated Bim signaling, PARP cleavage and lactate dehydrogenase (LDH) release in NSC34 motoneurons and these effects were blocked by PAR1 and PAR2 lipopeptide inhibitors. Taken together these data point to a novel Klk6-signaling axis in CNS neurons that is mediated by PAR1 and PAR2 and is positioned to contribute to neurodegeneration. PMID:23647384

  13. Emerging clinical importance of the cancer biomarkers kallikrein-related peptidases (KLK) in female and male reproductive organ malignancies

    PubMed Central

    Schmitt, Manfred; Magdolen, Viktor; Yang, Feng; Kiechle, Marion; Bayani, Jane; Yousef, George M.; Scorilas, Andreas; Diamandis, Eleftherios P.; Dorn, Julia

    2013-01-01

    Background Tumor tissue-associated KLKs (kallikrein-related peptidases) are clinically important biomarkers that may allow prognosis of the cancer disease and/or prediction of response/failure of cancer patients to cancer-directed drugs. Regarding the female/male reproductive tract, remarkably, all of the fifteen KLKs are expressed in the normal prostate, breast, cervix uteri, and the testis, whereas the uterus/endometrium and the ovary are expressing a limited number of KLKs only. Conclusions Most of the information regarding elevated expression of KLKs in tumor-affected organs is available for ovarian cancer; depicting them as valuable biomarkers in the cancerous phenotype. In contrast, for breast cancer, a series of KLKs was found to be downregulated. However, in breast cancer, KLK4 is elevated which is also true for ovarian and prostate cancer. In such cases, selective synthetic KLK inhibitors that aim at blocking the proteolytic activities of certain KLKs may serve as future candidate therapeutic drugs to interfere with tumor progression and metastasis. PMID:24294176

  14. A Novel Antithrombotic Mechanism Mediated by the Receptors of the Kallikrein/Kinin and Renin–Angiotensin Systems

    PubMed Central

    Schmaier, Alvin H.

    2016-01-01

    The contact activation (CAS) and kallikrein/kinin (KKS) systems regulate thrombosis risk in two ways. First, the CAS influences contact activation-induced factor XI activation and thrombin formation through the hemostatic cascade. Second, prekallikrein (PK) and bradykinin of the KKS regulate expression of three vessel wall G-protein-coupled receptors, the bradykinin B2 receptor (B2R), angiotensin receptor 2, and Mas to influence prostacyclin formation. The degree of intravascular prostacyclin formation inversely regulates intravascular thrombosis risk. A 1.5- to 2-fold increase in prostacyclin, as seen in PK deficiency, increases vessel wall Sirt1 and KLF4 to downregulate vessel wall tissue factor which alone is sufficient to lengthen induced thrombosis times. A twofold to threefold increase in prostacyclin, as seen the B2R-deficient mouse, delays thrombosis and produces a selective platelet function defect of reduced GPVI activation and platelet spreading. Regulation of CAS and KKS protein expression has a profound influence on thrombosis-generating mechanisms in the intravascular compartment. PMID:27965959

  15. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice

    PubMed Central

    Martins-Olivera, Bruno Tadeu; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment. PMID:27528793

  16. Identification and functional analysis of the BIM interactome; new clues on its possible involvement in Epstein-Barr Virus-associated diseases.

    PubMed

    Rouka, Erasmia; Kyriakou, Despoina

    2015-12-01

    Epigenetic deregulation is a common feature in the pathogenesis of Epstein-Barr Virus (EBV)-related lymphomas and carcinomas. Previous studies have demonstrated a strong association between EBV latency in B-cells and epigenetic silencing of the tumor suppressor gene BIM. This study aimed to the construction and functional analysis of the BIM interactome in order to identify novel host genes that may be targeted by EBV. Fifty-nine unique interactors were found to compose the BIM gene network. Ontological analysis at the pathway level highlighted infectious diseases along with neuropathologies. These results underline the possible interplay between the BIM interactome and EBV-associated disorders.

  17. Possible involvement of HSP90-HSF1 multichaperone complex in impairment of HSP72 induction in the failing heart following myocardial infarction in rats.

    PubMed

    Marunouchi, Tetsuro; Araki, Masato; Murata, Mao; Takagi, Norio; Tanonaka, Kouichi

    2013-01-01

    It is generally accepted that an increase in the myocardial level of heat-shock protein 72 (HSP72) protects viable cardiac tissue against myocardial infarction (MI)-induced stress. However, the induction of HSP72 after exposure to heat shock (HS) is blunted in the failing rat heart following MI. The mechanisms underlying this impairment in the HSP72 induction ability of the failing heart are not yet clearly defined. In the present study, we examined the involvement in heat-shock factor 1 (HSF1), a transcription factor of HSPs, in decreased ability for HSP72 induction in the failing rat heart following MI. In the failing heart, nuclear translocation of the HSF1 after exposure to hyperthermia was markedly reduced, whereas HSF1 in the cytosolic fraction and the HSP90 chaperone complex containing HSF1, a repressor of HSF1, were increased. Treatment with an HSP90 inhibitor, 17-allylamino-17-demethoxygel-danamycin, appeared to dissociate the interaction of HSF1 with HSP90, and then induced HSP72 in the failing heart after exposure to hyperthermia. These results suggest that an increase in the multichaperone complex, especially the HSF1-HSP90 interaction, associated with attenuation of HSF1 translocation into the nucleus, was involved in the impairment of HS-induced HSP72 induction in the failing heart following MI.

  18. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  19. Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer's disease: possible involvement of HRD1, a novel molecule related to endoplasmic reticulum stress, in Alzheimer's disease.

    PubMed

    Kaneko, Masayuki; Okuma, Yasunobu; Nomura, Yasuyuki

    2012-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protective mechanism against ER stress in which unfolded proteins accumulated in the ER are selectively transported to the cytosol for degradation by the ubiquitin-proteasome system. We cloned the novel ubiquitin ligase HRD1, which is involved in ERAD, and showed that HRD1 promoted amyloid precursor protein (APP) ubiquitination and degradation, resulting in decreased generation of amyloid β (Aβ). In addition, suppression of HRD1 expression caused APP accumulation and promoted Aβ generation associated with ER stress and apoptosis. Interestingly, HRD1 levels were significantly decreased in the cerebral cortex of patients with Alzheimer's disease (AD), and the brains of these patients experienced ER stress. Our recent study revealed that this decrease in HRD1 was due to its insolubilization; however, controversy persists about whether the decrease in HRD1 protein promotes Aβ generation or whether Aβ neurotoxicity causes the decrease in HRD1 protein levels. Here, we review current findings on the mechanism of HRD1 protein loss in the AD brain and the involvement of HRD1 in the pathogenesis of AD. Furthermore, we propose that HRD1 may be a target for novel AD therapeutics.

  20. Serum angiopoietin-like protein 3 levels: possible correlation with progressive skin sclerosis, digital ulcers and pulmonary vascular involvement in patients with systemic sclerosis.

    PubMed

    Ichimura, Yohei; Asano, Yoshihide; Akamata, Kaname; Aozasa, Naohiko; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Toyama, Tetsuo; Sumida, Hayakazu; Kuwano, Yosihiro; Yanaba, Koichi; Tada, Yayoi; Sugaya, Makoto; Sato, Shinichi; Kadono, Takafumi

    2014-03-01

    Angiopoietin-like protein 3 (ANGPTL3), which is part of a family of secreted glycoproteins that are structurally similar to angiopoietins, is principally expressed in the liver and is involved in lipid metabolism and angiogenesis. The aim of this study was to determine the clinical significance of serum ANGPTL3 levels, measured with a specific enzyme-linked immunosorbent assay, in patients with systemic sclerosis. Serum ANGPTL3 levels correlated positively with skin score in diffuse cutaneous systemic sclerosis with a disease duration ≤ 6 years. Furthermore, the prevalence of digital ulcers was significantly higher in patients with elevated serum ANGPTL3 levels than in other patients. Moreover, among patients excluding diffuse cutaneous systemic sclerosis with disease duration ≤ 6 years, serum ANGPTL3 levels correlated positively with estimated right ventricular systolic pressure. In conclusion, ANGPTL3 may contribute to the development of progressive skin sclerosis and proliferative obliterative vasculopathy, such as digital ulcers and pulmonary vascular involvement leading to pulmonary arterial hypertension, in systemic sclerosis.

  1. Regulation of osteoclastogenesis through Tim-3: possible involvement of the Tim-3/galectin-9 system in the modulation of inflammatory bone destruction.

    PubMed

    Moriyama, Kanako; Kukita, Akiko; Li, Yin-Ji; Uehara, Norihisa; Zhang, Jing-Qi; Takahashi, Ichiro; Kukita, Toshio

    2014-11-01

    Galectins are a unique family of lectins bearing one or two carbohydrate recognition domains (CRDs) that have the ability to bind molecules with β-galactoside-containing carbohydrates. It has been shown that galectins regulate not only cell growth and differentiation but also immune responses, as well as inflammation. Galectin-9, a tandem repeat type of galectin, was originally identified as a chemotactic factor for eosinophils, and is also involved in the regulatory process of inflammation. Here, we examined the involvement of galectin-9 and its receptor, T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3), in the control of osteoclastogenesis and inflammatory bone destruction. Expression of Tim-3 was detected in osteoclasts and its mononuclear precursors in vivo and in vitro. Galectin-9 markedly inhibited osteoclastogenesis as evaluated in osteoclast precursor cell line RAW-D cells and primary bone marrow cells of mice and rats. The inhibitory effects of galectin-9 on osteoclastogenesis was negated by the addition of β-lactose, an antagonist for galectin binding, suggesting that the inhibitory effect of galectin-9 was mediated through CRD. When galectin-9 was injected into rats with adjuvant-induced arthritis, marked suppression of bone destruction was observed. Inflammatory bone destruction could be efficiently ameliorated by controlling the Tim-3/galectin-9 system in rheumatoid arthritis.

  2. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide.

    PubMed

    Singh, Vijay Pratap; Singh, Samiksha; Kumar, Jitendra; Prasad, Sheo Mohan

    2015-06-01

    In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Anoxia pretreatment protects soybean cells against H(2)O(2)-induced cell death: possible involvement of peroxidases and of alternative oxidase.

    PubMed

    Amora, Y; Chevionb, M; Levinea, A

    2000-07-21

    Anoxia followed by reoxygenation causes extensive damage to cellular components through generation of reactive oxygen intermediates. We examined cellular responses to oxidative stress after anoxia in cultured soybean or human fibroblast cells. Anoxia pretreatment protected soybean but not fibroblasts against H(2)O(2) concentrations that induced programmed cell death in normoxic cells. H(2)O(2) removal in anoxia-pretreated soybean cultures was faster. Protection was associated with increased action of alternative oxidase (AOX) and peroxidases. AOX inhibitors abolished the protective effect, while induction of AOX protected normoxic cells against H(2)O(2). We propose that during anoxia, plant cells can prepare for reoxygenation injury by up-regulating their antioxidant capacity, and that AOX is involved in this process.

  4. Mindfulness and meditation as an adjunctive treatment for adolescents involved in the juvenile justice system: Is repairing the brain and nervous system possible?

    PubMed

    Winters, Drew E; Beerbower, Emily

    2017-08-01

    Adolescents involved in the juvenile justice system are prone to more traumatic events than other adolescents, leaving them in danger of developmental difficulties. Trauma exposure is predictive of poor outcomes including mental and physical health issues as well as criminal activity. Current treatment approaches either have a nominal effect on recidivism rates or increase the likelihood of future criminal offenses. This article explores adolescent brain development, the unique difficulties that juvenile justice youth face, and mindfulness meditation as an adjunctive treatment to system-based treatment. Mindfulness meditation may be a way to redress damage to the brain and facilitate healthy brain development, thus impacting prosocial behavior. Practice implications include integrating mindfulness meditation as an important part of rehabilitative efforts with juvenile justice youth.

  5. An investigation into possible xenobiotic-endobiotic inter-relationships involving the amino acid analogue drug, S-carboxymethyl-L-cysteine and plasma amino acids in humans.

    PubMed

    Steventon, Glyn B; Mitchell, Stephen C; Angulo, Santigo; Barbas, Coral

    2012-05-01

    The amino acid derivative, S-carboxymethyl-L-cysteine, is an anti-oxidant agent extensively employed as adjunctive therapy in the treatment of human pulmonary conditions. A major biotransformation route of this drug, which displays considerable variation in capacity in man, involves the oxidation of the sulfide moiety to the inactive S-oxide metabolite. Previous observations have indicated that fasted plasma L-cysteine concentrations and fasted plasma L-cysteine/free inorganic sulfate ratios were correlated with the degree of sulfoxidation of this drug and that these particular parameters may be used as endobiotic biomarkers for this xenobiotic metabolism. It has been proposed also that the enzyme, cysteine dioxygenase, was responsible for the drug sulfoxidation. Further in this theme, the degree of S-oxidation of S-carboxymethyl-L-cysteine in 100 human volunteers was investigated with respect to it potential correlation with fasted plasma amino acid concentrations. Extensive statistical analyses showed no significant associations or relationships between the degree of drug S-oxidation and fasted plasma amino acid concentrations, especially with respect to the sulfur-containing compounds, methionine, L-cysteine, L-cysteine sulfinic acid, taurine and free inorganic sulfate, also the derived ratios of L-cysteine/L-cysteine sulfinic acid and L-cysteine/free inorganic sulfate. It was concluded that plasma amino acid levels or derived ratios cannot be employed to predict the degree of S-oxidation of S-carboxymethyl-L-cysteine (or vice versa) and that it is doubtful if the enzyme, cysteine dioxygenase, has any involvement in the metabolism of this drug.

  6. Refractory angina cell therapy (ReACT) involving autologous bone marrow cells in patients without left ventricular dysfunction: a possible role for monocytes.

    PubMed

    Hossne, Nelson Americo; Invitti, Adriana Luckow; Buffolo, Enio; Azevedo, Silvia; Rodrigues de Oliveira, José Salvador; Stolf, Noedir Groppo; Cruz, L Eduardo; Sanberg, Paul R

    2009-01-01

    Autologous bone marrow mononuclear cell (BMMC) transplantation has emerged as a potential therapeutic option for refractory angina patients. Previous studies have shown conflicting myocardium reperfusion results. The present study evaluated safety and efficacy of CellPraxis Refractory Angina Cell Therapy Protocol (ReACT), in which a specific BMMC formulation was administered as the sole therapy for these patients. The phase I/IIa noncontrolled, open label, clinical trial, involved eight patients with refractory angina and viable ischemic myocardium, without left ventricular dysfunction and who were not suitable for conventional myocardial revascularization. ReACT is a surgical procedure involving a single series of multiple injections (40-90 injections, 0.2 ml each) into ischemic areas of the left ventricle. Primary endpoints were Canadian Cardiovascular Society Angina Classification (CCSAC) improvement at 18 months follow-up and myocardium ischemic area reduction (assessed by scintigraphic analysis) at 12 months follow-up, in correlation with a specific BMMC formulation. Almost all patients presented progressive improvement in angina classification beginning 3 months (p = 0.008) postprocedure, which was sustained at 18 months follow-up (p = 0.004), as well as objective myocardium ischemic area reduction at 12 months (decrease of 84.4%, p < 0.004). A positive correlation was found between monocyte concentration and CCSAC improvement (r = -0.759, p < 0.05). Improvement in CCSAC, followed by correlated reduction in scintigraphic myocardium ischemic area, strongly suggests neoangiogenesis as the main stem cell action mechanism. The significant correlation between number of monocytes and improvement strongly supports a cell-related effect of ReACT. ReACT appeared safe and effective.

  7. Possible effect of lysophosphatidic acid on cell proliferation and involvement of lysophosphatidic acid and lysophosphatidic acid receptors in mechanical stretch-induced mitogen-activated protein kinase.

    PubMed

    Kawashima, Yohei; Kushida, Nobuhiro; Kokubun, Shuko; Ogawa, Soichiro; Shiomi, Homare; Ishibashi, Kei; Aikawa, Ken; Ikegami, Kentaro; Nomiya, Masanori; Yamaguchi, Osamu

    2015-08-01

    To determine whether lysophosphatidic acid activates the mitogen-activated protein kinase and increases DNA synthesis in human bladder smooth muscle cells, and to examine the involvement of lysophosphatidic acid and lysophosphatidic acid receptor in mechanical stretch-induced mitogen-activated protein kinase activation in cultured human bladder smooth muscle cells. TaqMan reverse transcription polymerase chain reaction was used to determine the mRNA expression levels of six lysophosphatidic acid receptor subtypes. Mitogen-activated protein kinase activity enhanced by either lysophosphatidic acid or mechanical stretch was measured by western blotting. The effect of lysophosphatidic acid on DNA synthesis was assessed by 5-bromo-2'-deoxy-uridine incorporation assay. Lysophosphatidic acid 1 subtype mRNA was predominantly expressed (96%). Lysophosphatidic acid activated the mitogen-activated protein kinase in a concentration-dependent manner. C-jun NH2 -terminal kinase showed the highest activity among the three subsets of the mitogen-activated protein kinase family members (c-jun NH2 -terminal kinase, extracellular signal-regulated kinases, p38). Lysophosphatidic acid also increased incorporation of 5-bromo-2'-deoxy-uridine. These responses were suppressed by Ki16425 (lysophosphatidic acid receptor antagonist). Mechanical stretch mainly induced c-jun NH2 -terminal kinase activation. This activation was partially inhibited by Ki16425. Lysophosphatidic acid might activate the c-jun NH2 -terminal kinase component of the mitogen-activated protein kinase family and DNA synthesis through lysophosphatidic acid receptors (presumably, through lysophosphatidic acid 1) in human bladder smooth muscle cells. The present study also implicates the involvement of lysophosphatidic acid and lysophosphatidic acid receptors in mechanical stretch-induced c-jun NH2 -terminal kinase activation. Lysophosphatidic acid receptor can be partially activated by mechanical stretching through

  8. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila.

    PubMed Central

    Waters, L C; Zelhof, A C; Shaw, B J; Ch'ang, L Y

    1992-01-01

    P450-A and P450-B are electrophoretically defined subsets of cytochrome P450 enzymes in Drosophila melanogaster. P450-A is present among all strains tested, whereas expression of P450-B is associated with resistance to insecticides. Monoclonal antibodies were used to obtain cDNA clones for an enzyme from each P450 subset (i.e., P450-A1 and P450-B1). The P450-B1 cDNA was sequenced and shown to code for a P450 of 507 amino acids. Its gene has been named CYP6A2. Comparative molecular analyses of a pair of susceptible, 91-C, and resistant, 91-R, Drosophila strains were made. There was 20-30 times more P450-B1 mRNA in 91-R than in 91-C, and the small amount of P450-B1 mRNA in 91-C was significantly larger in size than that in 91-R. The P450-B1 gene in 91-R was structurally different from that in 91-C but was not amplified. The P450-B1 gene in 91-C contained a solitary long terminal repeat of transposable element 17.6 in its 3' untranslated region. It was absent in the P450-B1 gene of 91-R. On the basis of features of the long terminal repeat and its location in the gene of the susceptible fly, we propose that a posttranscriptional mechanism involving mRNA stability could be involved in regulating P450-B1 gene expression. Images PMID:1317576

  9. Possible involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress induced anxiety like behaviour, oxidative damage in mice.

    PubMed

    Machawal, Lalit; Kumar, Anil

    2014-02-01

    Dietary supplements are widely used to manage stress and related consequences. However, the exact pathological mechanism and cellular cascades involved in the action of these supplements are not properly understood so far. Therefore, the present study has been designed to explore the neuroprotective mechanism of rutin against immobilization stress-induced anxiety-like behavioural and oxidative damage in mice. Laboratory Animal Centre A-strain (laca) mice were used in the present study. Rutin (20, 40, and 80 mg/kg), l-arginine (100 mg/kg), l-nitroarginine methyl ester (l-NAME) (5 mg/kg) and vitamin-E (50 mg/kg) were administered for 5 days before 6h immobilization stress on 6th day. Various behavioural parameters (mirror chamber test, locomotor activity) followed by biochemical parameters (lipid peroxidation, nitrite concentration, reduced glutathione and catalase) in brain and then serum corticosterone level were assessed. 6 h immobilization stress produced anxiety-like behavioural in mirror chamber test, raised corticosterone level and oxidative stress (as evidenced by rise in lipid peroxidation, nitrite concentration, depletion of reduced glutathione and catalase activity) significantly as compared to naive group. 5 days pre-treatment with rutin (40 and 80 mg/kg) causes a significant attenuation of locomotor activity, corticosterone level, oxidative stress as compared to control. Further, l-arginine (100 mg/kg) pre-treatment significantly reversed the protective effect of rutin (40 mg/kg) in 6 h immobilized animals. However, l-NAME (5 mg/kg) pre-treatment with rutin (40 mg/kg) potentiated their protective effect which was significant as compared to their effect per se. The present study suggests the involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress-induced anxiety-like behaviour and oxidative damage in mice.

  10. Involvement of endothelial progenitor cells in the formation of plexiform lesions in broiler chickens: possible role of local immune/inflammatory response*

    PubMed Central

    Tan, Xun; Juan, Fan-guo; Shah, Ali Q.

    2017-01-01

    Plexiform lesions (PLs), which are often accompanied by perivascular infiltrates of mononuclear cells, represent the hallmark lesions of pulmonary arteries in humans suffering from severe pulmonary arterial hypertension (PAH). Endothelial progenitor cells (EPCs) have been recently implicated in the formation of PLs in human patients. PLs rarely develop in rodent animal models of PAH but can develop spontaneously in broiler chickens. The aim of the present study was to confirm the presence of EPCs in the PLs in broilers. The immune mechanisms involved in EPC dysfunction were also evaluated. Lungs were collected from commercial broilers at 1 to 4 weeks of age. The right/total ventricle ratios indicated normal pulmonary arterial pressures for all sampled birds. Immunohistochemistry was performed to determine the expressions of EPC markers (CD133 and VEGFR-2) and proangiogenic molecule hepatocyte growth factor (HGF) in the lung samples. An EPC/lymphocyte co-culture system was used to investigate the functional changes of EPCs under the challenge of immune cells. PLs with different cellular composition were detected in the lungs of broilers regardless of age, and they were commonly surrounded by moderate to dense perivascular mononuclear cell infiltrates. Immunohistochemical analyses revealed the presence of CD133+ and VEGFR-2+ cells in PLs. These structures also exhibited a strong expression of HGF. Lymphocyte co-culture enhanced EPC apoptosis and completely blocked HGF-stimulated EPC survival and in vitro tube formation. Taken together, this work provides evidence for the involvement of EPCs in the development of PLs in broilers. It is suggested that the local immune cell infiltrate might serve as a contributor to EPC dysfunction by inducing EPC death and limiting their response to angiogenic stimuli. Broiler chickens may be valuable for investigating reversibility of plexogenic arteriopathy using gene-modified inflammation-resistant EPCs. PMID:28070997

  11. Involvement of endothelial progenitor cells in the formation of plexiform lesions in broiler chickens: possible role of local immune/inflammatory response.

    PubMed

    Tan, Xun; Juan, Fan-Guo; Shah, Ali Q

    Plexiform lesions (PLs), which are often accompanied by perivascular infiltrates of mononuclear cells, represent the hallmark lesions of pulmonary arteries in humans suffering from severe pulmonary arterial hypertension (PAH). Endothelial progenitor cells (EPCs) have been recently implicated in the formation of PLs in human patients. PLs rarely develop in rodent animal models of PAH but can develop spontaneously in broiler chickens. The aim of the present study was to confirm the presence of EPCs in the PLs in broilers. The immune mechanisms involved in EPC dysfunction were also evaluated. Lungs were collected from commercial broilers at 1 to 4 weeks of age. The right/total ventricle ratios indicated normal pulmonary arterial pressures for all sampled birds. Immunohistochemistry was performed to determine the expressions of EPC markers (CD133 and VEGFR-2) and proangiogenic molecule hepatocyte growth factor (HGF) in the lung samples. An EPC/lymphocyte co-culture system was used to investigate the functional changes of EPCs under the challenge of immune cells. PLs with different cellular composition were detected in the lungs of broilers regardless of age, and they were commonly surrounded by moderate to dense perivascular mononuclear cell infiltrates. Immunohistochemical analyses revealed the presence of CD133(+) and VEGFR-2(+) cells in PLs. These structures also exhibited a strong expression of HGF. Lymphocyte co-culture enhanced EPC apoptosis and completely blocked HGF-stimulated EPC survival and in vitro tube formation. Taken together, this work provides evidence for the involvement of EPCs in the development of PLs in broilers. It is suggested that the local immune cell infiltrate might serve as a contributor to EPC dysfunction by inducing EPC death and limiting their response to angiogenic stimuli. Broiler chickens may be valuable for investigating reversibility of plexogenic arteriopathy using gene-modified inflammation-resistant EPCs.

  12. Increased chromosomal breakage in Tourette syndrome predicts the possibility of variable multiple gene involvement in spectrum phenotypes: Preliminary findings and hypothesis

    SciTech Connect

    Gericke, G.S.; Simonic, I.; Cloete, E.; Buckle, C.

    1995-10-09

    Increased chromosomal breakage was found in 12 patients with DSM-IV Tourette syndrome (TS) as compared with 10 non-TS control individuals with respect to untreated, modified RPM1-, and BrdU treated lymphocyte cultures (P < 0.001 in each category). A hypothesis is proposed that a major TS gene is probably connected to genetic instability, and associated chromosomal marker sites may be indicative of the localization of secondary genes whose altered expression could be responsible for associated comorbid conditions. This concept implies that genes influencing higher brain functions may be situated at or near highly recombigenic areas allowing enhanced amplification, duplication and recombination following chromosomal strand breakage. Further studies on a larger sample size are required to confirm the findings relating to chromosomal breakage and to analyze the possible implications for a paradigmatic shift in linkage strategy for complex disorders by focusing on areas at or near unstable chromosomal marker sites. 32 refs., 1 tab.

  13. Banana fruit pulp and peel involved in antianxiety and antidepressant effects while invigorate memory performance in male mice: Possible role of potential antioxidants.

    PubMed

    Samad, Noreen; Muneer, Aqsa; Ullah, Najeeb; Zaman, Aqal; Ayaz, M Mazhar; Ahmad, Ijaz

    2017-05-01

    The present study was aimed to investigate the anti-stress and memory enhancing effects of banana (Musa sapientum L.) fruit pulp and peel extract in male mice. Locally bred albino Wistar mice were divided into control and 2 test groups (n=10). Control rats received drinking water while test groups were treated with banana fruit pulp (600 mg/kg; oral administration) and extract of banana peel (400mg/kg; oral administration). Behavioral activities of animals were monitored 14 days post administration of banana pulp and peel extract. Depression-like symptoms were measured by forced swimming test (FST). Anxiety like behavior was monitored using light-dark activity (LDA) test and plus maze activity (PMA) test and memory functions of rats were assessed by morris water maze (MWM) test. Following 2 weeks animals were decapitated and brain was removed for estimation of antioxidant enzymes such as catalase (CAT), super oxide dismutase (SOD) and reduced glutathione (GSH). In the present study both banana peel and pulp increased the time spent in light box and open arm, suggesting anxiolytic effects. A significant decrease in immobility time was observed in FST in both banana pulp and peel treated animals suggesting antidepressant like effects. Moreover, learning and memory assessed by MWM showed decrease in time to reach platform in both short term and long term memory test suggested increased memory function in both banana pulp and peel treated animals as compared to control animals. The activities of all antioxidant enzymes were significantly (p<0.05) greater in banana pulp and peel treated animals than control. It is concluded that both banana pulp and peel have anti-anxiety, antidepressant effect as well as strengthen the memory possibly via its antioxidant mechanism. Therefore, it is recommended that supplementation of banana could be taken a vital role in stress (anxiety and depression) relief and increased in memory function possibly by phyto-antioxidants.

  14. Activated Rho kinase mediates diabetes-induced elevation of vascular arginase activation and contributes to impaired corpora cavernosa relaxation: possible involvement of p38 MAPK activation.

    PubMed

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Liao, James K; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-06-01

    Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1(Thr850), MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2(+/-) knockout (KO), and ROCK 2(+/-) KO + D mice. The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1(Thr850) and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Diabetes significantly reduced maximum relaxation (Emax ) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1(Thr850), phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2(+/-) KO + D mice for acetylcholine (Emax : 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2(+/-) KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented impairment of ACh- and nitrergic nerve

  15. Identification of a Novel Aminopeptidase P-Like Gene (OnAPP) Possibly Involved in Bt Toxicity and Resistance in a Major Corn Pest (Ostrinia nubilalis)

    PubMed Central

    Khajuria, Chitvan; Buschman, Lawrent L.; Chen, Ming-Shun; Siegfried, Blair D.; Zhu, Kun Yan

    2011-01-01

    Studies to understand the Bacillus thuringiensis (Bt) resistance mechanism in European corn borer (ECB, Ostrinia nubilalis) suggest that resistance may be due to changes in the midgut-specific Bt toxin receptor. In this study, we identified 10 aminopeptidase-like genes, which have previously been identified as putative Bt toxin receptors in other insects and examined their expression in relation to Cry1Ab toxicity and resistance. Expression analysis for the 10 aminopeptidase-like genes revealed that most of these genes were expressed predominantly in the larval midgut, but there was no difference in the expression of these genes in Cry1Ab resistant and susceptible strains. This suggested that altered expression of these genes was unlikely to be responsible for resistance in these ECB strains. However, we found that there were changes in two amino acid residues of the aminopeptidase-P like gene (OnAPP) involving Glu305 to Lys305 and Arg307 to Leu307 in the two Cry1Ab-resistant strains as compared with three Cry1Ab-susceptible strains. The mature OnAPP contains 682 amino acid residues and has a putative signal peptide at the N-terminus, a predicted glycosylphosphatidyl-inositol (GPI)-anchor signal at the C-terminal, three predicted N-glycosylation sites at residues N178, N278 and N417, and an O-glycosylation site at residue T653. We used a feeding based-RNA interference assay to examine the role of the OnAPP gene in Cry1Ab toxicity and resistance. Bioassays of Cry1Ab in larvae fed diet containing OnAPP dsRNA resulted in a 38% reduction in the transcript level of OnAPP and a 25% reduction in the susceptibility to Cry1Ab as compared with larvae fed GFP dsRNA or water. These results strongly suggest that the OnAPP gene could be involved in binding the Cry1Ab toxin in the ECB larval midgut and that mutations in this gene may be associated with Bt resistance in these two ECB strains. PMID:21887358

  16. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented

  17. Improvement of Tissue Survival of Skin Flaps by 5α-Reductase Inhibitors: Possible Involvement of Nitric Oxide and Inducible Nitric Oxide Synthase

    PubMed Central

    Karimi, Ali Asghar; Ajami, Marjan; Asadi, Yasin; Aboutaleb, Nahid; Gorjipour, Fazel; Malekloo, Roya; Pazoki-Toroudi, Hamidreza

    2015-01-01

    Background: Skin flap grafting is a popular approach for reconstruction of critical skin and underlying soft tissue injuries. In a previous study, we demonstrated the beneficial effects of two 5α-reductase inhibitors, azelaic acid and finasteride, on tissue survival in a rat model of skin flap grafting. In the current study, we investigated the involvement of nitric oxide and inducible nitric oxide synthase (iNOS) in graft survival mediated by these agents. Methods: A number of 42 male rats were randomly allocated into six groups: 1, normal saline topical application; 2, azelaic acid (100 mg/flap); 3, finasteride (1 mg/flap); 4, injection of L-NG-nitroarginine methyl ester (L-NAME) (i.p., 20 mg/kg); 5, L-NAME (20 mg/kg, i.p.) + azelaic acid (100 mg/flap, topical); 6, L-NAME (20 mg/kg, i.p.) + finasteride (1 mg/flap, topical). Tissue survival, level of nitric oxide, and iNOS expression in groups were measured. Results: Our data revealed that azelaic acid and finasteride significantly increased the expression of iNOS protein and nitric oxide (NO) levels in graft tissue (P < 0.05). These increases in iNOS expression and NO level were associated with higher survival of the graft tissue. Conclusion: It appears that alterations of the NO metabolism are implicated in the azelaic acid- and finasteride-mediated survival of the skin flaps. PMID:25864816

  18. Possible involvement of CD10 in the development of endometriosis due to its inhibitory effects on CD44-dependent cell adhesion.

    PubMed

    Iwase, Akira; Kotani, Tomomi; Goto, Maki; Kobayashi, Hiroharu; Takikawa, Sachiko; Nakahara, Tatsuo; Nakamura, Tomoko; Kondo, Mika; Bayasula; Nagatomo, Yoshinari; Kikkawa, Fumitaka

    2014-01-01

    A reduced response to progesterone in the eutopic endometrium with endometriosis and in endometriotic tissues is considered to be the underlying factor for endometriosis. CD10 is known to be expressed by endometrial and endometriotic stromal cells and may be induced by progestins, although the function of CD10 is not fully revealed in endometrial or endometriotic tissues. In the current study, the expression of CD10 was significantly increased by treatment of the cells with progesterone, 17β-estradiol, and dibutyryl cyclic adenosine monophosphate (cAMP) in the endometrial stromal cells. On the other hand, the expression of CD10 following treatment with progesterone, 17β-estradiol, and dibutyryl cAMP was not significantly increased in endometriotic stromal cells. The adhesion assay for endometrial and endometriotic stromal cells to hyaluronan using 5- or 6-(N-succinimidyloxycarbonyl)-fluorescein 3', 6'-diacetate-labeled cells demonstrated that the CD44-dependent adhesion of stromal cells was inhibited by CD10. As far as the induction of CD10 is concerned, the effect of progesterone was different between endometrial stromal cells and endometriotic stromal cells. CD10 might be involved in the development of endometriosis due to its influence on CD44-dependent cell adhesion.

  19. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    PubMed

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL.

  20. Aging decreases collagen IV expression in vivo in the dermo-epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF-β1.

    PubMed

    Feru, Jezabel; Delobbe, Etienne; Ramont, Laurent; Brassart, Bertrand; Terryn, Christine; Dupont-Deshorgue, Aurelie; Garbar, Christian; Monboisse, Jean-Claude; Maquart, Francois-Xavier; Brassart-Pasco, Sylvie

    2016-08-01

    Collagen IV is a major component of the dermo-epidermal junction (DEJ). To study expression of collagen IV upon aging in the DEJ and dermal fibroblasts isolated from the same patients. A model of senescent fibroblasts was developed in order to identify biological compounds that might restore the level of collagen IV. Skin fragments of women (30 to 70 years old) were collected. Localisation of collagen IV expression in the DEJ was studied by immunofluorescence. Fibroblast collagen IV expression was studied by real-time PCR, ELISA, and western blotting. Premature senescence was simulated by exposing fibroblasts to subcytotoxic H2O2 concentrations. Collagen IV decreased in the DEJ and fibroblasts relative to age. TGF-β1 treatment significantly increased collagen IV gene and protein expression in fibroblasts and restored expression in the model of senescence. Addition of TGF-β1-neutralizing antibody to fibroblast cultures decreased collagen IV expression. Taken together, the results suggest that the decrease in collagen IV in the DEJ, relative to age, could be due to a decrease in collagen IV expression by senescent dermal fibroblasts and may involve TGF-β1 signalling.

  1. Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: characterization of the process and possible mechanisms involved.

    PubMed

    Wang, Pu; Zhang, Hao; Hou, Haoli; Wang, Qing; Li, Yingnan; Huang, Yan; Xie, Liangfu; Gao, Fei; He, Shibin; Li, Lijia

    2016-07-01

    Epigenetic modifications play crucial roles in the regulation of chromatin architecture and are involved in cell cycle progression, including mitosis and meiosis. To explore the relationship between epigenetic modifications and the cell cycle, we treated maize (Zea mays) seedlings with six different epigenetic modification-related inhibitors and identified the postsynthetic phase (G2 ) arrest via flow cytometry analysis. Total H4K5ac levels were significantly increased and the distribution of H3S10ph signalling was obviously changed in mitosis under various treatments. Further statistics of the cells in different periods of mitosis confirmed that the cell cycle was arrested at preprophase. Concentrations of hydrogen peroxide were relatively higher in the treated plants and the antioxidant thiourea could negate the influence of the inhibitors. Moreover, all of the treated plants displayed negative results in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and γ-H2AX immunostaining assays after exposure for 3 d. Additionally, the expression level of topoisomerase genes in the treated plants was relatively lower than that in the untreated plants. These results suggest that these inhibitors of epigenetic modifications could cause preprophase arrest via reactive oxygen species formation inhibiting the expression of DNA topoisomerase genes, accompanied by changes in the H4K5ac and H3S10ph histone modifications.

  2. Metabolic response in liver and Brockmann bodies of rainbow trout to inhibition of lipolysis; possible involvement of the hypothalamus-pituitary-interrenal (HPI) axis.

    PubMed

    Librán-Pérez, Marta; Velasco, Cristina; Otero-Rodiño, Cristina; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2015-05-01

    We previously demonstrated in rainbow trout that the decrease in circulating levels of fatty acid (FA) induced by treating fish with SDZ WAG 994 (SDZ) induced a counter-regulatory response in which the activation of the hypothalamus-pituitary-interrenal (HPI, equivalent to mammalian hypothalamus-pituitary-adrenal) axis was likely involved. This activation, probably not related to the control of food intake through FA sensor systems but to the modulation of lipolysis in peripheral tissues, liver and Brockmann bodies (BB, the main site of pancreatic endocrine cells in fish), would target the restoration of FA levels in plasma. To assess this hypothesis, we lowered circulating FA levels by treating fish with SDZ alone, or SDZ in the presence of metyrapone (an inhibitor of cortisol synthesis). In liver, the changes observed were not compatible with a direct FA-sensing response but with a stress response, which allows us to suggest that the detection of a FA decrease in the hypothalamus elicits a counter-regulatory response in liver, resulting in an activation of lipolysis to restore FA levels in plasma. The activation of these metabolic changes in liver could be attributable to the activation of the HPI axis and/or to the action of sympathetic pathways. In contrast, in BB, changes in circulating FA levels induce changes in several parameters compatible with the function of FA-sensing systems informing about the decrease in circulating FA levels.

  3. LPS induces pro-inflammatory response in mastitis mice and mammary epithelial cells: Possible involvement of NF-κB signaling and OPN.

    PubMed

    Xiao, H-B; Wang, C-R; Liu, Z-K; Wang, J-Y

    2015-02-01

    Lipopolysaccharide (LPS) has pro-inflammatory properties. This study was conducted to determine whether the LPS induced pro-inflammatory response in a model of mastitis and in mouse mammary epithelial cells (MEC). To investigate the effects of LPS in vivo, 50 μL of a solution of LPS (20 ng/μL) were infused into the mammary glands of mice. To study the effects of LPS in vitro, MEC were exposed to LPS (20 μg/mL) for 24h. Activation of nuclear factor kB (NF-κB) and myeloperoxidase (MPO) were studied. Production of pro-inflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-alpha], interleukin-1 beta [IL-1 beta]) and expression of osteopontin (OPN) were also evaluated. After LPS administration, route of NF-κB signaling is activated and the activity of MPO is increased. Furthermore, LPS increases the expression of OPN and production of TNF-alpha, IL-6 and IL-1 beta. Present results demonstrate that LPS induces a pro-inflammatory response in a murine model of mastitis and suggest the involvement of the NF-κB pathway and OPN. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Purification of pectate lyase produced by Colletotrichum gloeosporioides and its inhibition by epicatechin: a possible factor involved in the resistance of unripe avocado fruits to anthracnose.

    PubMed

    Wattad, C; Dinoor, A; Prusky, D

    1994-01-01

    Pectate lyase (PL) from Colletotrichum gloeosporioides was purified to apparent homogeneity by hydrophobic interaction chromatography followed by isoelectric focusing. The purified preparation showed one band corresponding to 40 kD on sodium dodecyl sulfate-polyacrylamide gels. The isoelectric point of the enzyme was 7.9, and the optimum pH for activity was 8.9. The purified PL efficiently macerated unripe avocado fruit wedges. In vitro translation of mRNA from an induced fungal culture revealed a 36-kD precursor polypeptide, which was precipitated with PL antibodies. The antibodies inhibited enzymatic activity and maceration ability on avocado wedges. Epicatechin, a flavan 3-ol present in the peel of unripe avocado fruit, had a Ki of 3.4 microM for inhibition of PL activity in vitro. At 20 micrograms/ml (68 microM), epicatechin reduced the enzyme's macerating ability by 64%. Since the flavan is present in unripe fruit at much higher concentrations (about 350 micrograms/g fresh weight) than the inhibitory concentrations, epicatechin may be involved in the resistance of unripe avocado fruits by inhibiting the PL activity of C. gloeosporioides.

  5. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation-induced behavior modification and oxidative damage in mice.

    PubMed

    Kumar, Anil; Singh, Anant; Kumar, Puneet

    2011-03-01

    Sleep deprivation for 72 h caused anxiety like behavior, weight loss, impaired locomotor activity and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep deprived mice brain. Treatment with melatonin (5 and 10 mg/kg, ip) significantly improved locomotor activity, weight loss and antianxiety effect as compared to control (sleep deprived). Biochemically, melatonin treatment significantly restored depleted reduced glutathione, catalase activity, attenuated lipid peroxidation and nitrite level as compared to control (72 h sleep-deprived) animals. A combination of flumazenil (0.5 mg/kg, ip) and picrotoxin (0.5 mg/kg, ip) with lower dose of melatonin (5 mg/kg, ip) significantly antagonized the protective effect of melatonin. However, combination of muscimol (0.05 mg/kg, ip) with melatonin (5 mg/kg, ip) potentiated protective effect of melatonin as compared to their effect per se. The results suggest that melatonin may produce its protective effect by involving GABAergic system against sleep deprivation-induced anxiety like behavior and related oxidative damage.

  6. Endo-β-N-acetylglucosamidases (ENGases) in the fungus Trichoderma atroviride: possible involvement of the filamentous fungi-specific cytosolic ENGase in the ERAD process.

    PubMed

    Tzelepis, Georgios; Hosomi, Akira; Hossain, Tanim Jabid; Hirayama, Hiroto; Dubey, Mukesh; Jensen, Dan Funck; Suzuki, Tadashi; Karlsson, Magnus

    2014-06-27

    N-Glycosylation is an important post-translational modification of proteins, which mainly occurs in the endoplasmic reticulum (ER). Glycoproteins that are unable to fold properly are exported to the cytosol for degradation by a cellular system called ER-associated degradation (ERAD). Once misfolded glycoproteins are exported to the cytosol, they are subjected to deglycosylation by peptide:N-glycanase (PNGase) to facilitate the efficient degradation of misfolded proteins by the proteasome. Interestingly, the ortholog of PNGase in some filamentous fungi was found to be an inactive deglycosylating enzyme. On the other hand, it has been shown that in filamentous fungi genomes, usually two different fungi-specific endo-β-N-acetylglucosamidases (ENGases) can be found; one is predicted to be localized in the cytosol and the other to have a signal sequence, while the functional importance of these enzymes remains to be clarified. In this study the ENGases of the filamentous fungus Trichoderma atroviride was characterized. By heterologous expression of the ENGases Eng18A and Eng18B in Saccharomyces cerevisiae, it was found that both ENGases are active deglycosylating enzymes. Interestingly, only Eng18B was able to enhance the efficient degradation of the RTL protein, a PNGase-dependent ERAD substrate, implying the involvement of this enzyme in the ERAD process. These results indicate that T. atroviride Eng18B may deglycosylate misfolded glycoproteins, substituting the function of the cytoplasmic PNGase in the ERAD process.

  7. Mitofusin 2 expression dominates over mitofusin 1 exclusively in mouse dorsal root ganglia - a possible explanation for peripheral nervous system involvement in Charcot-Marie-Tooth 2A.

    PubMed

    Kawalec, Maria; Zabłocka, Barbara; Kabzińska, Dagmara; Neska, Jacek; Beręsewicz, Małgorzata

    2014-01-01

    Mitofusin 2 (Mfn2), a protein of the mitochondrial outer membrane, is essential for mitochondrial fusion and contributes to the maintenance and operation of the mitochondrial network. Mutations in the mitofusin 2 gene cause axonal Charcot-Marie-Tooth type 2A (CMT2A), an inherited disease affecting peripheral nerve axons. The precise mechanism by which mutations in MFN2 selectively cause the degeneration of long peripheral axons is not known. There is a hypothesis suggesting the involvement of reduced expression of a homologous protein, mitofusin 1 (Mfn1), in the peripheral nervous system, and less effective compensation of defective mitofusin 2 by mitofusin 1. We therefore aimed to perform an analysis of the mitofusin 1 and mitofusin 2 mRNA and protein expression profiles in different mouse tissues, with special attention paid to dorsal root ganglia (DRGs), as parts of the peripheral nervous system. Quantitative measurement relating to mRNA revealed that expression of the Mfn2 gene dominates over Mfn1 mainly in mouse DRG, as opposed to other nervous system samples and other tissues studied. This result was further supported by Western blot evaluation. Both these sets of data confirm the hypothesis that the cellular consequences of mutations in the mitofusin 2 gene can mostly be manifested in the peripheral nervous system.

  8. Inhibitory Effects of Scolopendra Pharmacopuncture on the Development and Maintenance of Neuropathic Pain in Rats: Possible Involvement of Spinal Glial Cells.

    PubMed

    Li, Chengjin; Ji, Byeong Uk; Lee, Ji Eun; Park, Min Young; Kim, Sungchul; Kim, Seung Tae; Koo, Sungtae

    2015-10-01

    Scolopendra extracts were used for pharmacopuncture at the Kidney 1 acupoint to investigate the role of Scolopendra pharmacopuncture (SPP) in both the development and maintenance of neuropathic pain induced by L5 spinal nerve ligation in rats and the contribution of spinal glial cells. A single treatment and five once-daily treatments with SPP were given to evaluate its effects on the development and maintenance stages of neuropathic pain, respectively, which was followed by behavioral tests. Immunohistochemistry and Western blotting tests were also carried out. A single treatment of SPP delayed spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia and induced a profound decrease in the expression of ionized calcium binding adaptor protein in the lumbar spinal cord. Repeated SPP treatments reliably suppressed mechanical allodynia and thermal hyperalgesia at later time points, and these results correlated mainly with decreases in glial fibrillary acidic protein. Intriguingly, ionized calcium binding adaptor protein expression was also reduced after repeated SPP. These results illustrate that neuropathic pain in the development and maintenance stages is alleviated by SPP treatment, which may be ascribed principally to deactivations of microglia and astroglia, respectively. Additionally, microglial inactivation seems to be partially involved in preventing neuropathic pain in the maintenance stage.

  9. Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain.

    PubMed

    Tanaka, Takahiro; Minami, Masabumi; Nakagawa, Takayuki; Satoh, Masamichi

    2004-04-01

    Chemokines are a family of peptides originally identified as the factors regulating the migration of leukocytes in inflammatory and immune responses. Recently, they have been shown to be produced in the central and peripheral nervous systems under various pathological conditions and act on neuronal and glial cells. In this study, we examined the production of monocyte chemoattractant protein-1 (MCP-1), a well-characterized chemokine, in dorsal root ganglia (DRG) in a rat model of neuropathic pain. Partial ligation of the sciatic nerve induced mechanical allodynia in the ipsilateral hindpaw with weaker allodynia in the contralateral one. Immunohistochemical analyses revealed that the number of MCP-1 immunoreactivity (ir)-positive cells was increased in the ipsilateral DRG. The increase started by 4h after the ligation, peaked at 24h and continued to at least 48 h. The weaker but significant increase was observed in the contralateral DRG. Double immunofluorescent staining demonstrated that almost all of the MCP-1ir-positive cells were neuronal cells. In situ hybridization histochemistry showed that MCP-1 mRNA expression was markedly upregulated in the ipsilateral DRG with weaker increase in the contralateral one at 24 h after the ligation, indicating that the elevation in MCP-1ir detected by immunohistochemistry was due to an upregulation of MCP-1 production by the DRG neurons themselves. Furthermore, intrathecal administration of MCP-1 induced mechanical allodynia. These results suggest that MCP-1 produced in the DRG neurons is involved in the development of mechanical allodynia induced by nerve injury.

  10. Possible involvement of NO/NOS signaling in hippocampal amyloid-beta production induced by transient focal cerebral ischemia in aged rats.

    PubMed

    Li, Song; Wang, Wei; Wang, Che; Tang, Yi-Yuan

    2010-02-12

    In the present study, to define the roles of nitric oxide (NO) signaling in amyloid-beta (A beta) production after transient cerebral ischemia, extracellular levels of NO and A beta were monitored by intracerebral microdialysis in the hippocampus of aged rats exposed to transient middle cerebral artery occlusion and reperfusion (MCAO/R). The results indicated that 1-h MCAO significantly upregulated hippocampal NO and A beta levels. In addition, the NO elevation preceded the A beta changes. The Western blotting suggested that acute hypoperfusion could increase the expression of beta-secretase 1 (BACE1) but not BACE2. The enhanced NO concentration in acute stage of MCAO/R was coincident with increased eNOS expression, while in subacute stage was coincident with increased iNOS and nNOS. Our results also indicated that pretreatment of L-NAME, one non-selective NOS inhibitor could decrease the BACE1 expression, reverse both NO and A beta changes and rescue the delayed neuronal death. These preliminary findings indicated that activation of NOS/NO signaling system could trigger A beta production through BACE1 pathway during acute ischemic episode. The present data may be important in understanding, at least in part, the pathological role of NO/NOS system involved in hippocampal A beta production and neuronal damage induced by transient cerebral ischemia.

  11. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    PubMed Central

    Wang, Fu-rong; Qiao, Ming-qi; Xue, Ling; Wei, Sheng

    2015-01-01

    Recently μ opioid receptor (MOR) has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants. PMID:25821488

  12. The anxiogenic-like effects of dehydration in a semi-desert rodent Meriones shawi indicating the possible involvement of the serotoninergic system.

    PubMed

    Elgot, Abdeljalil; El hiba, Omar; Gamrani, Halima

    2012-10-01

    Dehydration is a powerful stimulus causing disequilibrium in homeostasis of water and electrolytes resulting from depletion in total body water. Most studies have focused on domestic and laboratory animals; however, the study of desert animals allows improved understanding about water balance and resistance to dehydration and associated behavioral changes, including those related to mood disorders. Meriones shawi (Shaw's Jird) is a desert rodent characterized by its resistance to long periods of thirst that can extend for several months. In the present study, M. shawi were subjected to water deprivation for 1 and 3 months. We used 5-HT immunohistochemistry to evaluate the effects of prolonged dehydration on the serotoninergic system in both dorsal and median raphe nuclei (DRN, MRN), which are the main sources of 5-HT input to several brain areas. In addition, a dark/light box was used to evaluate the anxiolytic-like or anxiogenic-like effects of dehydration on M. shawi. The results showed a reduction in the 5-HT immunolabelling in both DRN and MRN following 1 and 3 months of dehydration. This diminution of serotonin immunoreactivity was accompanied by noticeable changes in anxiety behavior of Meriones, with animals spending more time in the light box, suggesting anxiogenic-like effects caused by dehydration. Overall, the results indicate that dehydration is able to reduce serotoninergic neurotransmission, which might be involved in generating anxiety behavior in this desert animal.

  13. The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites

    PubMed Central

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-01-01

    18F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules. PMID:26582591

  14. Possible involvement of auxin-induced ethylene in an apoptotic cell death during temperature-sensitive lethality expressed by hybrid between Nicotiana glutinosa and N. repanda.

    PubMed

    Yamada, T; Marubashi, W; Nakamura, T; Niwa, M

    2001-09-01

    Interspecific hybrids of Nicotiana glutinosa L. x N. repanda Willd. express temperature-sensitive lethality induced by apoptotic cell death. Hybrid seedlings cultured at 28 degrees C began to exhibit lethal symptoms during early growth stages, and then they showed a high level of endogenous auxin compared with those of parental seedlings. Meanwhile, the level of auxin in hybrid seedlings cultured at 32 degrees C, which is a condition suppressing the lethality of this cross combination, was equal to or lower than those of parental seedlings. Administration of 2,3,5-triiodobenzoic acid (TIBA) as an auxin transport inhibitor into the hybrid seedlings suppressed lethal symptoms and had a life-extending effect. Additionally, TIBA has an effect to suppress DNA fragmentation, which is one of characteristics of apoptosis and has been detected in the hybrid seedlings expressing the lethality. Administration of aminooxyacetic acid (AOA) as an ethylene synthesis inhibitor, which could inhibit ethylene production, also showed the same effects as TIBA for the lethality. From these results, we suggested that auxin and ethylene were involved in an apoptotic cell death during the lethality, and the abnormal increase of endogenous auxin may lead to the ethylene production in hybrid seedlings during early growth stages.

  15. Possible involvement of genes on the Q chromosome of Nicotiana tabacum in expression of hybrid lethality and programmed cell death during interspecific hybridization to Nicotiana debneyi.

    PubMed

    Tezuka, Takahiro; Kuboyama, Tsutomu; Matsuda, Toshiaki; Marubashi, Wataru

    2007-08-01

    Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi x N. sylvestris, but not in hybrid seedlings from the cross N. debneyi x N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum x N. debneyi.

  16. Possible involvement of Toll-Like Receptor 4/MD-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences

    PubMed Central

    Hutchinson, Mark R.; Lewis, Susannah S.; Coats, Benjamen D.; Rezvani, Niloofar; Zhang, Yingning; Wieseler, Julie L.; Somogyi, Andrew A.; Yin, Hang; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2010-01-01

    Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of classical, stereoselective opioid receptors. Here, a structurally disparate range of opioids cause activation of signaling by the innate immune receptor Toll Like Receptor 4 (TLR4), resulting in proinflammatory glial activation. In the present series of studies, we demonstrate that the (+)-isomers of methadone and morphine, which bind with negligible affinity to classical opioid receptors, induced upregulation of proinflammatory cytokine and chemokine production in rat isolated dorsal spinal cord. Chronic intrathecal (+)-methadone produced hyperalgesia and allodynia, which were associated with significantly increased spinal glial activation (TLR4 mRNA and protein) and the expression of multiple chemokines and cytokines. Statistical analysis suggests that a cluster of cytokines and chemokines may contribute to these nociceptive behavioral changes. Acute intrathecal (+)-methadone and (+)-morphine were also found to induce microglial, interleukin-1 and TLR4/MD-2 dependent enhancement of pain responsivity. In silico docking analysis demonstrated (+)-naloxone sensitive docking of (+)-methadone and (+)-morphine to human MD-2. Collectively, these data provide the first evidence of the pro-nociceptive consequences of small molecule xenobiotic activation of spinal TLR4 signaling independent of classical opioid receptor involvement. PMID:20178837

  17. Possible Involvement of F1F0-ATP synthase and Intracellular ATP in Keratinocyte Differentiation in normal skin and skin lesions

    PubMed Central

    Xiaoyun, Xie; Chaofei, Han; Weiqi, Zeng; Chen, Chen; Lixia, Lu; Queping, Liu; Cong, Peng; Shuang, Zhao; Juan, Su; Xiang, Chen

    2017-01-01

    The F1F0-ATP synthase, an enzyme complex, is mainly located on the mitochondrial inner membrane or sometimes cytomembrane to generate or hydrolyze ATP, play a role in cell proliferation. This study focused on the role of F1F0-ATP synthase in keratinocyte differentiation, and its relationship with intracellular and extracellular ATP (InATP and ExATP). The F1F0-ATP synthase β subunit (ATP5B) expression in various skin tissues and confluence-dependent HaCaT differentiation models was detected. ATP5B expression increased with keratinocyte and HaCaT cell differentiation in normal skin, some epidermis hyper-proliferative diseases, squamous cell carcinoma, and the HaCaT cell differentiation model. The impact of InATP and ExATP content on HaCaT differentiation was reflected by the expression of the differentiation marker involucrin. Inhibition of F1F0-ATP synthase blocked HaCaT cell differentiation, which was associated with a decrease of InATP content, but not with changes of ExATP. Our results revealed that F1F0-ATP synthase expression is associated with the process of keratinocyte differentiation which may possibly be related to InATP synthesis. PMID:28209970

  18. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERβ/Nrf2/HO-1 signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Rabiee, Nafiseh; Zabihnejad, Sedigheh; Roghani, Mehrdad

    2017-02-23

    Parkinson's disease (PD) is a prevalent movement disorder in the elderly with progressive loss of mesencephalic dopaminergic neurons and incapacitating motor and non-motor complications. Ellagic acid is a natural phenolic compound with potent antioxidant and anti-inflammatory properties. In this study, we investigated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with ellagic acid at a dose of 50 mg/kg/day for 1 week. Results showed that ellagic acid attenuates apomorphine-induced rotational bias and lowers the latency to initiate and the total time in the narrow beam task and this beneficial effect was partially abrogated following intracerebroventricular microinjection of estrogen receptor β (ERβ) antagonist. Furthermore, ellagic acid reduced striatal malondialdehyde (MDA), reactive oxygen species (ROS), and DNA fragmentation, and improved monoamine oxidase B (MAO-B), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1). Meanwhile, ellagic acid prevented loss of tyrosine hydroxylase (TH)-positive neurons within substantia nigra pars compacta (SNC). These findings indicate neuroprotective potential of ellagic acid in 6-OHDA rat model of PD via amelioration of apoptosis and oxidative stress, suppression of MAO-B, and its favorable influence is partly reliant on ERβ/Nrf2/HO-1 signaling cascade.

  19. Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: possible involvement of the dopaminergic system in the ventral tegmental area.

    PubMed

    Lee, Bombi; Han, Seung-Moo; Shim, Insop

    2009-01-09

    Acupuncture is widely used for the treatment of many functional disorders, such as substance abuse, and has the suppressive effect on the central nervous system. Many studies have suggested that behavioral sensitization by repeated injections of cocaine produce an increase in locomotor activity and an increase in the expression of tyrosine hydroxylase (TH), in the central dopaminergic system. In order to investigate the effects of acupuncture on the repeated cocaine-induced neuronal and behavioral sensitization alternations, we examined the influence of acupuncture on the repeated cocaine-induced locomotor activity and the expression of TH in the brain using immunohistochemistry. Male SD rats were given repeated injections of cocaine hydrochloride (15 mg/kg, i.p. for 10 consecutive days) followed by one challenge injection on the 4th day after the last daily injection. Cocaine challenge produced a large increase in the locomotor activity and the expression of TH in the ventral tegmental area (VTA). Treatment with acupuncture bilaterally at the Shenman (HT7) points for 1 min significantly inhibited the increase of locomotor activity as well as the TH expression in the VTA. Our data demonstrated that the inhibitory effects of acupuncture on cocaine-induced expression of behavioral sensitization were closely associated with the reduction of dopamine (DA) biosynthesis and the postsynaptic neuronal activity. These results provide evidence that acupuncture may be effective for inhibiting the behavioral effects of cocaine by possible modulation of the central dopaminergic system.

  20. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson's disease: Possible involvement of PI3K/ERβ signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Jamali-Raeufy, Nida; Zabihnejad, Sedigheh; Rabiee, Nafiseh; Roghani, Mehrdad

    2017-04-15

    Parkinson's disease (PD) is a neurodegenerative disease with progressive loss of mesencephalic dopaminergic neurons of the substantia nigra and with multiple incapacitating motor and non-motor symptoms. Troxerutin is a natural bioflavonoid with nephro- and hepato-protective, antioxidant, and anti-inflammatory properties. In this study, we evaluated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with troxerutin at a dose of 150mg/kg/day for 1 week. Results showed that troxerutin mitigates apomorphine-induced motor asymmetry and lowered the latency to initiate and the total time in the narrow beam task and this beneficial effect was lost following central application of estrogen receptor β (ERβ) antagonist or phosphatidylinositol 3-kinase (PI3K) inhibitor. In addition, troxerutin reduced striatal malondialdehyde (MDA) as an index of lipid peroxidation, reactive oxygen species, glial fibrillary acid protein (GFAP) as a marker of astrogliosis, and DNA fragmentation as an apoptotic marker with no significant alteration of catalase activity and nitrite level. Meanwhile, troxerutin was capable to prevent loss of nigral tyrosine hydroxylase (TH)-positive neurons. These findings indicate neuroprotective potential of troxerutin in 6-OHDA rat model of PD through mitigation of apoptosis, astrogliosis, and oxidative stress and part of its effect is dependent on PI3K/ERβ signaling.

  1. [Difference in urine concentration according to gender and ethnicity: possible involvement in the different susceptibility to various renal and cardiovascular diseases].

    PubMed

    Perucca, Julie; Bouby, Nadine; Valeix, Pierre; Jungers, Paul; Bankir, Lise

    2008-06-01

    Men and African-Americans are known to be at greater risk of urolithiasis and cardiovascular and renal diseases than women and Caucasians. Previous studies suggest that the antidiuretic effects of vasopressin and/or a greater urine concentration are associated with the rate of progression of these diseases. The present review addresses possible sex and ethnic-related differences in urine volume and osmolality which could participate in this male and black higher predominance. We reanalyzed 24h-urine data collected previously by different investigators for other purposes. In studies concerning healthy subjects (six studies) or patients with chronic kidney disease or Diabetes mellitus (three studies), men excreted a larger osmolar load than women, with a 15 to 30% higher urinary osmolality (or another index of urine concentration based on the urine/plasma creatinine concentration ratio) and a similar 24h urine volume than in women. In two American studies, African-Americans showed a significantly higher urinary concentration than Caucasians and a lower 24h-urine volume. Sex and ethnic differences in thirst threshold, vasopressin level, or other regulatory mediators may contribute to the higher urinary concentration of men and of African Americans. These differences could play a role in the greater susceptibility of these subjects to these pathologies. New prospective studies should take into account the antidiuretic effects of vasopressin as a potential risk factor in the initiation and progression of cardiovascular and renal diseases.

  2. Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals.

    PubMed

    Bates, Brian; Hirt, Lorenz; Thomas, Sunu S; Akbarian, Schahram; Le, Dean; Amin-Hanjani, Sepideh; Whalen, Michael; Jaenisch, Rudolf; Moskowitz, Michael A

    2002-02-01

    To explore the role of neurotrophin-3 (NT-3) during cerebral ischemia, NT-3-deficient brains were subjected to transient focal ischemia. Conditional mutant brains produced undetectable amounts of NT-3 mRNA, whereas the expression of the neurotrophin, BDNF, the NT-3 receptor, TrkC, and the nonselective, low-affinity neurotrophin receptor p75NTR, were comparable to wild-type. Baseline absolute blood flow, vascular and neuroanatomical features, as well as physiological measurements were also indistinguishable from wild-type. Interestingly, the absence of NT-3 led to a significantly decreased infarct volume 23 h after middle cerebral artery occlusion. Consistent with this, the addition of NT-3 to primary cortical cell cultures exacerbated neuronal death caused by oxygen-glucose deprivation. Coincubation with the oxygen free radical chelator, trolox, diminished potentiation of neuronal death. NT-3 also enhanced neuronal cell death and the production of reactive oxygen species caused by oxidative damage inducing agents. We conclude that endogenous NT-3 enhanced neuronal injury during acute stroke, possible by increasing oxygen-radical mediated cell death.

  3. Increase in telencephalic dopamine and cerebellar norepinephrine contents by hydrostatic pressure in goldfish: the possible involvement in hydrostatic pressure-related locomotion.

    PubMed

    Ikegami, Taro; Takemura, Akihiro; Choi, Eunjung; Suda, Atsushi; Tomonaga, Shozo; Badruzzaman, Muhammad; Furuse, Mitsuhiro

    2015-10-01

    Fish are faced with a wide range of hydrostatic pressure (HP) in their natural habitats. Additionally, freshwater fish are occasionally exposed to rapid changes in HP due to heavy rainfall, flood and/or dam release. Accordingly, variations in HP are one of the most important environmental cues for fish. However, little information is available on how HP information is perceived and transmitted in the central nervous system of fish. The present study examined the effect of HP (water depth of 1.3 m) on the quantities of monoamines and their metabolites in the telencephalon, optic tectum, diencephalon, cerebellum (including partial mesencephalon) and vagal lobe (including medulla oblongata) of the goldfish, Carassius auratus, using high-performance liquid chromatography. HP affected monoamine and metabolite contents in restricted brain regions, including the telencephalon, cerebellum and vagal lobe. In particular, HP significantly increased the levels of dopamine (DA) in the telencephalon at 15 min and that of norepinephrine (NE) in the cerebellum at 30 min. In addition, HP also significantly increased locomotor activity at 15 and 30 min after HP treatment. It is possible that HP indirectly induces locomotion in goldfish via telencephalic DA and cerebellar NE neuronal activity.

  4. Possible Involvement of the Double-Stranded RNA-Binding Core Protein ςA in the Resistance of Avian Reovirus to Interferon

    PubMed Central

    Martínez-Costas, José; González-López, Claudia; Vakharia, Vikram N.; Benavente, Javier

    2000-01-01

    Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein ςA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein ςA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins. PMID:10627522

  5. Increased production of 4 kDa amyloid beta peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis.

    PubMed

    LeBlanc, A

    1995-12-01

    The etiology of the amyloid beta peptide in sporadic Alzheimer's disease (AD) is not known. Amyloid beta peptide (A beta), a proteolytic product of the amyloid precursor protein (APP), is deposited in the senile plaques and cerebrovascular tissues of individuals with either sporadic or familial AD (FAD). Increased A beta production from mutant APPs in FAD fosters the hypothesis that overexpression of A beta plays a primary role in the pathogenesis of AD. The absence of APP mutations in sporadic AD which displays identical pathological features than FAD such as synapse and neuronal loss, senile plaques and neurofibrillary tangles, suggests other causes for overexpression and/or deposition of A beta. To investigate the effect of neuronal death on APP metabolism and A beta secretion, human primary neuron cultures were induced to undergo apoptosis by serum deprivation. Serum deprived neurons display shrunken and rounded morphology, contain condensed chromatine and fragmented DNA, which are characteristic of apoptosis. In serum deprived neurons, metabolism of APP through the nonamyloidogenic secretory pathway is decreased to 20% from 40% in control cultures whereas 4kDa A beta is increased three- to fourfold. The results suggest that human neurons undergoing apoptosis generate excess A beta and indicates a possible mechanism for increased A beta in the absence of APP mutations.

  6. Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis).

    PubMed

    Umeda, Shinsuke; Suzuki, Michihiro T; Okamoto, Haru; Ono, Fumiko; Mizota, Atsushi; Terao, Keiji; Yoshikawa, Yasuhiro; Tanaka, Yasuhiko; Iwata, Takeshi

    2005-10-01

    We have previously reported a cynomolgus monkey (Macaca fascicularis) pedigree with early onset macular degeneration that develops drusen at 2 yr after birth. In this study, the molecular composition of drusen in monkeys affected with late onset and early onset macular degeneration was both characterized. Involvement of anti-retinalautoimmunity in the deposition of drusen and the pathogenesis of the disease was also evaluated. Funduscopic and histological examinations were performed on 278 adult monkeys (mean age=16.94 yr) for late onset macular degeneration. The molecular composition of drusen was analyzed by immunohistochemistry and/or direct proteome analysis using liquid chromatography tandem mass spectroscopy (LC-MS/MS). Anti-retinal autoantibodies in sera were screened in 20 affected and 10 age-matched control monkeys by Western blot techniques. Immunogenic molecules were identified by 2D electrophoresis and LC-MS/MS. Relative antibody titer against each antigen was determined by ELISA in sera from 42 affected (late onset) and 41 normal monkeys. Yellowish-white spots in the macular region were observed in 90 (32%) of the late onset monkeys that were examined. Histological examination demonstrated that drusen or degenerative retinal pigment epithelium (RPE) cells were associated with the pigmentary abnormalities. Drusen in both late and early onset monkeys showed immunoreactivities for apolipoprotein E, amyloid P component, complement component C5, the terminal C5b-9 complement complex, vitronectin, and membrane cofactor protein. LC-MS/MS analyses identified 60 proteins as constituents of drusen, including a number of common components in drusen of human age-related macular degeneration (AMD), such as annexins, crystallins, immunoglobulins, and complement components. Half of the affected monkeys had single or multiple autoantibodies against 38, 40, 50, and 60 kDa retinal proteins. The reacting antigens of 38 and 40 kDa were identified as annexin II and mu

  7. Interleukin-17A correlates with interleukin-6 production in human cystic echinococcosis: a possible involvement of IL-17A in immunoprotection against Echinococcus granulosus infection.

    PubMed

    Mezioug, Dalila; Touil-Boukoffa, Chafia

    2012-01-01

    Hydatidosis is a parasitic disease caused by the development, in humans and other mammals, of the larval form of Taenia, Echinococcus granulosus. It is one of the world's major zoonotic infections. This study aimed to examine interleukin-6 (IL-6), interferon-γ (IFN-γ) and interleukin-17A (IL-17A) production in patients with cystic echinococcosis (CE), and the role of IL-17A in the modulation of the immune response against the extracellular parasite, E. granulosus. A relationship between IL-6, IL-17A production and C reactive Protein (CRP) levels was also assessed. IL-6, IFN-γ, IL-17A and CRP production were determined in serum from Algerian hydatid patients. Cytokine production was also measured in supernatants from cultures of peripheral blood mononuclear cells (PBMCs) from hydatid patients stimulated by a major parasitic antigen (antigen-5). The increased activity of IL-6, IFN-γ and IL-17A were observed in most serum samples from patients. In contrast, healthy controls showed only minor levels. Similarly, high levels of CRP were detected. Our in vitro results indicate a positive correlation between IL-6, IFN-γ and IL-17A production in PBMC culture supernatants. However, IL-6, IFN-γ and IL-17A activity was low in serum and supernatants of PBMC cultures from relapsing patients, and there was no evidence of an immune response against parasitic antigen. Collectively, our results show that IL-17A was produced during human cystic echinococcosis, and was involved in the host defense mechanisms against the extracellular parasite E. granulosus. Our data suggest that IL-17A plays an immunoprotective role in this parasitic, helminth infection.

  8. Interaction of Phospholipase A/Acyltransferase-3 with Pex19p: A POSSIBLE INVOLVEMENT IN THE DOWN-REGULATION OF PEROXISOMES.

    PubMed

    Uyama, Toru; Kawai, Katsuhisa; Kono, Nozomu; Watanabe, Masahiro; Tsuboi, Kazuhito; Inoue, Tomohito; Araki, Nobukazu; Arai, Hiroyuki; Ueda, Natsuo

    2015-07-10

    Phospholipase A/acyltransferase (PLA/AT)-3 (also known as H-rev107 or AdPLA) was originally isolated as a tumor suppressor and was later shown to have phospholipase A1/A2 activity. We have also found that the overexpression of PLA/AT-3 in mammalian cells results in specific disappearance of peroxisomes. However, its molecular mechanism remained unclear. In the present study, we first established a HEK293 cell line, which stably expresses a fluorescent peroxisome marker protein (DsRed2-Peroxi) and expresses PLA/AT-3 in a tetracycline-dependent manner. The treatment with tetracycline, as expected, caused disappearance of peroxisomes within 24 h, as revealed by diffuse signals of DsRed2-Peroxi and a remarkable decrease in a peroxisomal membrane protein, PMP70. A time-dependent decrease in ether-type lipid levels was also seen. Because the activation of LC3, a marker of autophagy, was not observed, the involvement of autophagy was unlikely. Among various peroxins responsible for peroxisome biogenesis, Pex19p functions as a chaperone protein for the transportation of peroxisomal membrane proteins. Immunoprecipitation analysis showed that PLA/AT-3 binds to Pex19p through its N-terminal proline-rich and C-terminal hydrophobic domains. The protein level and enzyme activity of PLA/AT-3 were increased by its coexpression with Pex19p. Moreover, PLA/AT-3 inhibited the binding of Pex19 to peroxisomal membrane proteins, such as Pex3p and Pex11βp. A catalytically inactive point mutant of PLA/AT-3 could bind to Pex19p but did not inhibit the chaperone activity of Pex19p. Altogether, these results suggest a novel regulatory mechanism for peroxisome biogenesis through the interaction between Pex19p and PLA/AT-3. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Impaired orexin receptor expression in the Kölliker-Fuse nucleus in sudden infant death syndrome: possible involvement of this nucleus in arousal pathophysiology.

    PubMed

    Lavezzi, Anna Maria; Ferrero, Stefano; Roncati, Luca; Matturri, Luigi; Pusiol, Teresa

    2016-08-01

    As well known, the sudden infant death syndrome (SIDS) is characterized by the sudden death of a seemingly healthy infant during sleep, frequently resulted from a deficit in arousal phase. Awakening from sleep requires a fully developed and functioning neuronal respiratory network to modulate the ventilation as needed. The pontine Kölliker-Fuse nucleus (KFN) plays a pivotal role in breathing control, thanks to its interconnections with the widespread serotonin and noradrenaline neurons in the brainstem. Numerous studies to date have focused on the implication of orexin, a neuropeptide synthesized by neurons of the lateral hypothalamus, with major projections to the brainstem raphé nuclei and locus coeruleus, in arousal, a neurobiological process closely linked to breathing modifications. The aim of our research has been to demonstrate that also the KFN is a fundamental component of the orexin system, actively involved in arousal. We have evaluated the expression and distribution of the orexin receptors (orexin-1 and orexin-2 receptors) particularly in the rostral pons, where the KFN is located, of 25 SIDS cases and 18 controls. An intense orexin-1 innervation around the KF neurons has been detected in almost all the controls and only in 20% of SIDS cases. On the basis of these results, we believe that: (1) the KFN plays a leading role not only in providing a regular breathing rhythm but also in the coordination of the sleep-to-wake transition; (2) a defective orexin expression in the KFN could prevent arousal, thus assuming a crucial importance in causing SIDS.

  10. Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: Possible involvement of TRPM2 channels.

    PubMed

    Yürüker, Vehbi; Nazıroğlu, Mustafa; Şenol, Nilgün

    2015-02-01

    Melatonin, which is a very effective reactive oxygen species (ROS) scavenger, acts through a direct reaction with free radicals. Ca(2+) entry induced by traumatic brain injury (TBI) has deleterious effects on human hippocampal function. TRPM2 is a Ca(2+) permeable non-selective channel in hippocampal neurons, and its activation of during oxidative stress has been linked to cell death. Despite the importance of oxidative stress in TBI, its role in apoptosis and Ca(2+) entry in TBI is poorly understood. Therefore, we tested the effects of melatonin on apoptosis, oxidative stress, and Ca(2+) entry through the TRPM2 channel in the hippocampal neurons of TBI-induced rats. Thirty-two rats were divided into the following four groups: control, melatonin, TBI, and TBI + melatonin groups. Melatonin (5 mg/kg body weight) was intraperitoneally given to animals in the melatonin group and the TBI + melatonin group after 1 h of brain trauma. Hippocampal neurons were freshly isolated from the four groups, incubated with a nonspecific TRPM2 blocker (2-aminoethyl diphenylborinate, 2-APB), and then stimulated with cumene hydroperoxide. Apoptosis, caspase-3, caspase-9, intracellular ROS production, mitochondrial membrane depolarization and intracellular free Ca(2+) ([Ca(2+)]i) values were high in the TBI group, and low in the TBI + melatonin group. The [Ca(2+)]i concentration was decreased in the four groups by 2-APB. In our TBI experimental model, TRPM2 channels were involved in Ca(2+) entry-induced neuronal death, and the negative modulation of the activity of this channel by melatonin pretreatment may account for the neuroprotective activity of TRPM2 channels against oxidative stress, apoptosis, and Ca(2+) entry.

  11. Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10- or 100-fold light increment and the possible involvement of retrograde signals

    PubMed Central

    Oelze, Marie-Luise; Vogel, Marc Oliver; Alsharafa, Khalid; Kahmann, Uwe; Viehhauser, Andrea; Maurino, Veronica G.; Dietz, Karl-Josef

    2012-01-01

    Chloroplasts are equipped with a nuclear-encoded antioxidant defence system the components of which are usually expressed at high transcript and activity levels. To significantly challenge the chloroplast antioxidant system, Arabidopsis thaliana plants, acclimated to extremely low light slightly above the light compensation point or to normal growth chamber light, were moved to high light corresponding to a 100- and 10-fold light jump, for 6 h and 24 h in order to observe the responses of the water–water cycle at the transcript, protein, enzyme activity, and metabolite levels. The plants coped efficiently with the high light regime and the photoinhibition was fully reversible. Reactive oxygen species (ROS), glutathione and ascorbate levels as well as redox states, respectively, revealed no particular oxidative stress in low-light-acclimated plants transferred to 100-fold excess light. Strong regulation of the water–water cycle enzymes at the transcript level was only partly reflected at the protein and activity levels. In general, low light plants had higher stromal (sAPX) and thylakoid ascorbate peroxidase (tAPX), dehydroascorbate reductase (DHAR), and CuZn superoxide dismutase (CuZnSOD) protein contents than normal light-grown plants. Mutants defective in components relevant for retrograde signalling, namely stn7, ex1, tpt1, and a mutant expressing E .coli catalase in the chloroplast showed unaltered transcriptional responses of water–water cycle enzymes. These findings, together with the response of marker transcripts, indicate that abscisic acid is not involved and that the plastoquinone redox state and reactive oxygen species do not play a major role in regulating the transcriptional response at t=6 h, while other marker transcripts suggest a major role for reductive power, metabolites, and lipids as signals for the response of the water–water cycle. PMID:22131159

  12. Possible involvement of suppression of Th2 differentiation in the anti-allergic effect of Sho-seiryu-to in mice.

    PubMed

    Ikeda, Yoshiki; Kaneko, Atsushi; Yamamoto, Masahiro; Ishige, Atsushi; Sasaki, Hiroshi

    2002-12-01

    The clinical effectiveness of the Kampo medicine Sho-seiryu-to (SST) has recently been demonstrated in a double-blind randomized study of allergic asthma and rhinitis. We investigated the effect of SST on a type 1 allergic model in mice. Ovalbumin (OVA)-induced sneezing and the total and OVA-specific IgE levels were significantly suppressed with SST at 1.0 g/kg, but that of OVA-specific IgG(2a) was not. In the splenocytes isolated from SST-administered mice, OVA-induced interleukin (IL)-4 production decreased while interferon (IFN)-gamma production was not. The co-culture experiments using purified CD4(+)T cells and antigen-presenting cells (APCs) suggested that SST influenced both cell types. Flow-cytometric analysis showed that SST suppressed the number of IL-4 producing CD4(+)T cells but not the number of IFN-gamma producing CD4(+)T cells. The CD86(+) major histocompatibility complex class II(+) (MHC II)(+) cells and CD28(+)CD4(+)T cells were decreased by SST treatment, while CD80(+)MHC II(+) cells, CD40(+)MHC II(+) cells and CD154(+)CD4(+)T cells showed no change. These data suggested that SST may suppress IL-4 production in CD4(+)T cells via influencing CD28-CD86 interaction. In addition to the previously reported inhibitory activity on histamine release, suppression of Th2 differentiation at the stage of APC-CD4(+)T cell interaction may be involved in the anti-allergic effects of SST.

  13. The Ca(2+) -binding protein PCaP2 located on the plasma membrane is involved in root hair development as a possible signal transducer.

    PubMed

    Kato, Mariko; Aoyama, Takashi; Maeshima, Masayoshi

    2013-05-01

    Plasma membrane-associated Ca(2+) -binding protein-2 (PCaP2) of Arabidopsis thaliana is a novel-type protein that binds to the Ca(2+) /calmodulin complex and phosphatidylinositol phosphates (PtdInsPs) as well as free Ca(2+) . Although the PCaP2 gene is predominantly expressed in root hair cells, it remains unknown how PCaP2 functions in root hair cells via binding to ligands. From biochemical analyses using purified PCaP2 and its variants, we found that the N-terminal basic domain with 23 amino acids (N23) is necessary and sufficient for binding to PtdInsPs and the Ca(2+) /calmodulin complex, and that the residual domain of PCaP2 binds to free Ca(2+) . In mutant analysis, a pcap2 knockdown line displayed longer root hairs than the wild-type. To examine the function of each domain in root hair cells, we over-expressed PCaP2 and its variants using the root hair cell-specific EXPANSIN A7 promoter. Transgenic lines over-expressing PCaP2, PCaP2(G2A) (second glycine substituted by alanine) and ∆23PCaP2 (lacking the N23 domain) exhibited abnormal branched and bulbous root hair cells, while over-expression of the N23 domain suppressed root hair emergence and elongation. The N23 domain was necessary and sufficient for the plasma membrane localization of GFP-tagged PCaP2. These results suggest that the N23 domain of PCaP2 negatively regulates root hair tip growth via processing Ca(2+) and PtdInsP signals on the plasma membrane, while the residual domain is involved in the polarization of cell expansion.

  14. The time-dependent effect of lipopolysaccharide on kainic acid-induced neuronal death in hippocampal CA3 region: possible involvement of cytokines via glucocorticoid.

    PubMed

    Kwon, M-S; Seo, Y-J; Choi, S-M; Won, M-H; Lee, J-K; Park, S-H; Jung, J-S; Sim, Y-B; Suh, H-W

    2010-02-17

    It has been reported that glucocorticoid (Gc) can induce neuronal cell toxicity in the hippocampus. In addition, we examined that serum Gc increased by restraint stress aggravated kainic acid (KA)-induced neuronal death in hippocampal CA3 region. However, the effect of other stressful stimulus like lipopolysaccharide (LPS) increasing serum Gc on KA-induced neuronal death was not elucidated until now. Thus, we examined the time course effect of LPS on KA-induced neuronal death in the hippocampal CA3 region of mice, especially to address the role of Gc and inflammatory mediators. In the present study, we found that an aggravating effect of LPS on KA-induced neuronal death was correlated with an alteration of hippocampal IL-1beta mRNA level at all time points, and the serum Gc and hippocampal IL-1beta mRNA level was peak at 90 min after LPS treatment (LPS 90 min) when the aggravating effect of LPS on KA-induced neuronal death was maximum. In addition, RU38486 (glucocorticoid receptor antagonist) decreased the hippocampal IL-1beta mRNA level and abolished the aggravating effect of LPS on KA-induced neuronal death at LPS 90 min and 24 h. In the immunohistochemical study, we found activated and ramified microglia (OX-42) and astrocyte (GFAP) at 24 h after LPS treatment (LPS 24 h) in the hippocampus. These results suggest that Gc itself, cytokines triggered by Gc, or both appears to be involved in the LPS effect depending on LPS pretreatment time.

  15. Expression of E-cadherin and N-cadherin in perinatal hamster ovary: possible involvement in primordial follicle formation and regulation by follicle-stimulating hormone.

    PubMed

    Wang, Cheng; Roy, Shyamal K

    2010-05-01

    We examined the expression and hormonal regulation of E-cadherin (CDH1) and N-cadherin (CDH2) with respect to primordial follicle formation. Hamster Cdh1 and Cdh2 cDNA and amino acid sequences were more than 90% similar to those of the mouse, rat, and human. Although CDH1 expression remained exclusively in the oocytes during neonatal ovary development, CDH2 expression shifted from the oocytes to granulosa cells of primordial follicles on postnatal day (P)8. Subsequently, strong CDH2 expression was restricted to granulosa cells of growing follicles. Cdh2 mRNA levels in the ovary decreased from embryonic d 13 through P10 with a transient increase on P7, which was the day before the appearance of primordial follicles. Cdh1 mRNA levels decreased from embryonic d 13 through P3 and then showed a transient increase on P8, coinciding with the formation of primordial follicles. CDH1 and CDH2 expression were consistent with that of mRNA. Neutralization of FSH in utero impaired primordial follicle formation with an associated decrease in Cdh2 mRNA and CDH2, but an increase in Cdh1 mRNA and CDH1 expression. The altered expression was reversed by equine chorionic gonadotropin treatment on P1. Whereas a CDH2 antibody significantly reduced the formation of primordial and primary follicles in vitro, a CDH1 antibody had the opposite effect. This is the first evidence to suggest that primordial follicle formation requires a differential spatiotemporal expression and action of CDH1 and CDH2. Further, FSH regulation of primordial follicle formation may involve the action of CDH1 and CDH2.

  16. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5.

    PubMed

    Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-03-15

    Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013