Science.gov

Sample records for post irradiation effect

  1. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.

    2013-08-01

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively.

  2. Post irradiation effects (PIE) in integrated circuits

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Lowry, L.; Barnes, C.; Zakharia, M.; Agarwal, S.; Rax, B.

    1991-01-01

    Post-irradiation effects (PIE) ranging from normal recovery to catastrophic failure have been observed in integrated circuits during the PIE period. Data presented show failure due to rebound after a 10 krad(Si) dose. In particular, five device types are investigated with varying PIE response. Special attention has been given to the HI1-507A analog multiplexer because its PIE response is extreme. X-ray diffraction has been uniquely employed to measure physical stress in the HI1-507A metallization. An attempt has been made to show a relationship between stress relaxation and radiation effects. All data presented support the current MIL-STD Method 1019.4 but demonstrate the importance of performing PIE measurements, even when mission doses are as low as 10 krad(Si).

  3. Post irradiation effects (PIE) in integrated circuits

    NASA Technical Reports Server (NTRS)

    Shaw, D. C.; Lowry, L.; Barnes, C.; Zakharia, M.; Agarwal, S.; Rax, B.

    1991-01-01

    Post-irradiation effects (PIE) ranging from normal recovery to catastrophic failure have been observed in integrated circuits during the PIE period. Data presented show failure due to rebound after a 10 krad(Si) dose. In particular, five device types are investigated with varying PIE response. Special attention has been given to the HI1-507A analog multiplexer because its PIE response is extreme. X-ray diffraction has been uniquely employed to measure physical stress in the HI1-507A metallization. An attempt has been made to show a relationship between stress relaxation and radiation effects. All data presented support the current MIL-STD Method 1019.4 but demonstrate the importance of performing PIE measurements, even when mission doses are as low as 10 krad(Si).

  4. Effects of presurgical and post-surgical irradiation on the healing process of Medpor in dogs.

    PubMed

    Kim, S G; Kim, Y U; Park, J C; Oh, Y K

    2001-10-01

    The purpose of this study was to determine the effect of irradiation on the healing process and the effect on the contact surface of Medpor and bone. Eighteen dogs were studied. The animals were divided into three groups. Six non-irradiated dogs served as controls (Group 1). Twelve dogs irradiated on the left femur, before and after implantation of Medpor, were studied. The dogs were euthanized 4 and 8 weeks after Medpor was implanted in presurgical irradiation subgroup animals (Group 2) and after the completion of irradiation in post-surgical irradiation subgroup animals (Group 3). Light microscopic and scanning electron microscopic examinations were performed. The appearance of osteoblasts and bone matrix formation were remarkably late and manifest slight reactions in post-surgical irradiation group compared to the control group presenting the osteoblasts at 4 weeks, and those osteoblasts were not visible in presurgical irradiation group in both the 4-week and 8-week observation. We concluded that the bone remodeling was delayed in the irradiated bone, especially in the presurgical group.

  5. Effects of salts and temperatures on post-irradiation growth of Penicillium exposed to ultraviolet

    SciTech Connect

    Valdez, R.; Siegel, B.Z.; Siegel, S.M.

    1981-01-01

    The growth of Penicillium notatum colonies after uv irradiation of dried mycelium or spores was studied in relation to post-irradiation temperature and salt environment. Dried mycelium and spores behaved differently with respect to sensitivity to temperature, salts and uv, especially the latter. Threshold inhibitory doses for spores were modified markedly either at 4 C or in magnesium and calcium chlorides. It is suggested that these temperature and salt effects are related to prevention of photochemical membrane damage.

  6. Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper

    NASA Astrophysics Data System (ADS)

    Singh, B. N.; Edwards, D. J.; Toft, P.

    2001-12-01

    Specimens of oxygen-free high conductivity (OFHC) copper were irradiated in the DR-3 reactor at Risø at 100 °C to doses in the range 0.01-0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 °C whereas others were given a post-irradiation annealing treatment at 300 °C for 50 h and subsequently tested at 100 °C. The microstructure of specimens was characterized in the as-irradiated as well as irradiated and annealed conditions both before and after tensile deformation. While the interstitial loop microstructure coarsens with irradiation dose, no significant changes were observed in the population of stacking fault tetrahedra (SFT). The post-irradiation annealing leads to only a partial recovery and the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade-induced source hardening (CISH) model.

  7. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters.

    PubMed

    Mattea, Facundo; Romero, Marcelo R; Vedelago, José; Quiroga, Andrés; Valente, Mauro; Strumia, Miriam C

    2015-06-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    PubMed Central

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). Results: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Conclusions: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group. PMID:25713488

  9. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement.

    PubMed

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.

  10. The effect of electron irradiation and post-irradiation annealing on α-Al2O3 coating prepared by MOD method

    NASA Astrophysics Data System (ADS)

    Wang, Long; Zhang, Ling Dan; Wang, Jia Heng; Feng, Yong Jin; Feng, Kai Ming; Yang, Ji Jun; Liao, Jia Li; Yang, Yuan You; Liu, Ning

    2017-09-01

    α-Al2O3 ceramic coatings were prepared by a novel metal organic decomposition (MOD) method on 316L stainless steel. Effects of electron irradiation and post-irradiation annealing process on the surface morphology, composition, phases and corrosion resistance of the coating were studied by using AFM, FESEM, EDS, XRD and electrochemical workstation. The results show that the surface of α-Al2O3 ceramic coating was roughened after irradiation and then smoothed after subsequent annealing. The oxygen content of the coating was highly decreased after electron irradiation and then increased after subsequent annealing. The FeO phase of the coating was disappeared after irradiation and re-formed with the disappearance of AlFeCr phase after subsequent annealing. Both the irradiated and post-irradiated annealed coatings behaved superior corrosion resistance and protective ability compared to the original counterpart due to microstructure modification induced by irradiation. Meanwhile, two electrical circuit models were proposed to simulate the EIS results to explain the corrosion mechanism of the coatings.

  11. Stability of uncapped gold nanoparticles produced by laser ablation in deionized water: The effect of post-irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Kuk Ki; Kwon, Hye Jin; Shin, Seung Keun; Song, Jae Kyu; Park, Seung Min

    2013-11-01

    Gold nanoparticle (AuNP) solution prepared by laser ablation in liquid (LAL) was irradiated by ns laser pulses to investigate the wavelength dependence on the size distribution of AuNPs and long-term stability of post-irradiated AuNP solutions. We have employed 266, 355, 532, and 1064 nm lasers for post-irradiation source and found considerable wavelength dependence in the size distribution and stability of laser-generated AuNPs. Post-irradiation at 355 nm was most effective to reduce the size distribution and to enhance the stability. The classical Derjaguin-Landau-Verwey-Overbeek theory was employed to explain the anomalous stability at 355 nm.

  12. AGR-1 Post Irradiation Examination Final Report

    SciTech Connect

    Demkowicz, Paul Andrew

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  13. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    SciTech Connect

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10{sup 13} n/cm {sup 2} and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  14. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  15. Effect of ultraviolet light irradiation period on bond strengths between fiber-reinforced composite post and core build-up composite resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of the present study was to characterize the effects of the ultraviolet light (UV) irradiation period on the bond strength of fiber-reinforced composite (FRC) posts to core build-up resin. Three types of FRC posts were prepared using polymethyl methacrylate, urethane dimethacrylate, and epoxy resin. The surfaces of these posts were treated using UV irradiation at a distance of 15 mm for 0 to 600 s. The pull-out bond strength was measured and analyzed with the Dunnett's comparison test (α=0.05). The bond strengths of the post surfaces without irradiation were 6.9 to 7.4 MPa; those after irradiation were 4.2 to 26.1 MPa. The bond strengths significantly increased after 15 to 120-s irradiation. UV irradiation on the FRC posts improved the bond strengths between the FRC posts and core build-up resin regardless of the type of matrix resin.

  16. The effect of pre- and post-electron beam irradiation on the properties of NR/rCR blends

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Zuliana; Ismail, Hanafi; Ahmad, Zulkifli

    2017-07-01

    The reutilize of rubber waste in the virgin rubber blends is arise as a solution for disposal problem. However, the disadvantage of the rubber waste addition is deteriorates the properties of the rubber blends. In this work, the effect of electron beam irradiation on different states of the natural rubber/recycled chloroprene rubber blends; uncured and cured states were investigated. Various rubber blends ratios were prepared using two-roll mill and then constant irradiated doses was used at 20kGy. From the result obtained, the tensile strength of the pre-cured rubber blends was higher than that post-cured. Similar observation can be obtained in the elongation at break and swelling percentage. The tensile modulus and crosslink density in post-cured blends are higher. The crosslink density calculation from swelling measurement supports the observations in the mechanical properties.

  17. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Guillén, G. García; Shaji, S.; Palma, M. I. Mendivil; Avellaneda, D.; Castillo, G. A.; Roy, T. K. Das; Gutiérrez, D. I. García; Krishnan, B.

    2017-05-01

    Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  18. Acute and long-term effects of irradiation on pine (Pinus silvestris) strands post-Chernobyl.

    PubMed

    Arkhipov, N P; Kuchma, N D; Askbrant, S; Pasternak, P S; Musica, V V

    1994-12-11

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.

  19. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation

    PubMed Central

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-01-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm−1, respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. PMID:25717060

  1. Effect of Irradiation on Incidence of Post-Transplant Lymphoproliferative Disorder after Hematopoietic Cell Transplantation in Miniature Swine.

    PubMed

    Matar, Abraham J; Patil, Aarti R; Al-Musa, Ahmad; Hanekamp, Isabel; Sachs, David H; Huang, Christene A; Duran-Struuck, Raimon

    2015-10-01

    Post-transplant lymphoproliferative disease (PTLD) is a major complication of clinical organ and cell transplantation. Conditioning and immunosuppressive regimens that significantly impair T cell immunity, including depleting antibodies and calcineurin inhibitors, increase the risk of PTLD after transplantation. Swine PTLD has been shown to closely resemble human PTLD in morphology, histology, and viral-driven reactivation of B cells. Previously, we reported high incidences of PTLD after hematopoietic cell transplantation (HCT) in miniature swine recipients conditioned with thymic irradiation (TI) in addition to T cell depletion and cyclosporine A monotherapy after transplantation. Replacement of TI with 100 cGy of total body irradiation resulted in similar numbers of B cells early post-transplantation, greater numbers of T cells at day 0, and markedly decreased incidence of PTLD, suggesting that a threshold number of T cells may be necessary to prevent subsequent B cell proliferation and development of overt PTLD. Results from this large cohort of animals provide insight into the important effect of irradiation and T cell immunity on the incidence of PTLD after HCT and reinforce the pig model as a valuable tool for the study of PTLD and HCT. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.

    2016-10-01

    Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.

  3. Post-irradiation stability of polyvinyl chloride at sterilizing doses

    NASA Astrophysics Data System (ADS)

    Naimian, F.; Katbab, A. A.; Nazokdast, H.

    1994-12-01

    Post-irradiation stability of plasticized PVC irradiated by 60Co gamma ray at sterilizing doses has been studied. Effects of irradiation upon chemical structure, mechanical properties and rheological behaviour of samples contained different amounts of Di(2-ethylhexyl)phthalate as plasticizer have been investigated. Formation of conjugated double bonds, carbonyl and hydroxyl groups have been followed by UV and FTIR spectrometers up to 6 months after irradiation. FTIR spectra of irradiated samples showed no significant changes in carbonyl and hydroxyl groups even 6 months after irradiation. However, changes in UV-visible spectra was observed for the irradiated samples up to 6 months post-irradiation. This has been attributed to the formation of polyenes which leads to the discoloration of this polymer. Despite a certain degree of discoloration, it appears that the mechanical properties of PVC are not affected by irradiation at sterilizing doses. No change in the melt viscosity of the irradiated PVC samples with post-irradiation was observed, which is in consistent with the IR results.

  4. Effect of antihistamines, disodium cromoglycate (DSCG) or methysergide on post-irradiation cerebral blood flow and mean systemic arterial blood pressure in primates after 25 Gy, whole-body, gamma irradiation.

    PubMed

    Cockerham, L G; Forcino, C D

    1995-06-01

    Exposure to ionizing radiation causes hypotension, cerebral ischemia and release of histamine (HA) and serotonin (5-HT). To investigate the relationship among these responses, rhesus monkeys (Macaca mulatta) received physiological saline (i.v.), disodium cromoglycate (DSCG), antihistamines (AH, mepyramine and cimetidine), or methysergide (METH), then were given 25 Gy whole-body irradiation. Monkeys receiving DSCG, AH or METH had higher post-irradiation mean arterial blood pressure (MBP) than saline-treated controls. Compared to levels in controls, post-irradiation hippocampal blood flow (rCBF) levels were higher in monkeys receiving DSCG, AH or METH. Treatment with the 5-HT2 receptor antagonist methysergide was the most effective in maintaining both rCBF and MBP after irradiation. Results support the hypothesis that the irradiation-induced cerebral ischemia and, to some extent, the hypotension is mediated by serotonin through 5-HT2 receptor sites.

  5. Effect of ozonation and γ-irradiation on post-harvest decontamination of mussels (Mytillus galloprovincialis) containing diarrhetic shellfish toxins.

    PubMed

    Louppis, A P; Katikou, P; Georgantelis, D; Badeka, A V; Kontominas, M G

    2011-12-01

    Contamination of shellfish with diarrhetic shellfish poisoning (DSP) toxins readily occurs during algal blooms. Such phenomena raise important public health concerns and thus comprise a constant challenge to shellfish farmers, the seafood industry and health services, considering the increasing occurrence of toxic episodes around the world. To avoid the detrimental effects of such episodes, research has focused on the use of various detoxification methodologies that should be rapid, efficient, easy to apply, and will not alter the quality and sensory properties of shellfish. In the present study, both ozonation (15 mg kg(-1) for 6 h) and γ-irradiation (6 kGy) were utilised in order to reduce the toxin content of contaminated shucked mussels, collected during the DSP episodes of 2007 and 2009 in Greece. DSP toxicity was monitored using the mouse bioassay (MBA) whilst the determination of toxin content of the okadaic acid (OA) group (both free and esterified forms) was carried out by LC/MS/MS analysis. Toxin reduction using γ-irradiation was in the range of 12-36%, 8-53% and 10-41% for free OA, OA esters and total OA, respectively. The appearance and texture of irradiated mussels deteriorated, pointing to a low potential for commercial use of this method. Ozonation of mussels resulted in toxin reduction in the range of 6-100%, 25-83% and 21-66% for free OA, OA esters and total OA, respectively. Reduction of OA content was substantially higher in homogenised mussel tissue compared with that of whole shucked mussels. In addition, differences detected with regard to quality parameters (TBA, sensory attributes) between ozonated and control mussels were not considerable. Even though varying percentage reductions in OA and its derivatives were achieved using ozonation under specific experimental conditions tested, it is postulated that upon optimisation ozonation may have the potential for post-harvest commercial DSP detoxification of shucked mussels.

  6. Effect of the hydrolytic state of dietary protein on post-irradiation morbidity and mucosal cell regeneration

    SciTech Connect

    Beitler, M.K.; Mahler, P.A.; Yamanaka, W.K.; Guy, D.G.; Hutchinson, M.L.

    1987-03-01

    Diets containing hydrolyzed casein have been observed to enhance post-irradiation intestinal mucosal recovery. The intake and the composition of such diets were not carefully controlled. This study attempted to do so. Male specific pathogen-free Sprague-Dawley rats were randomized to receive either an enzymatically hydrolyzed casein semi-purified diet (EHC), a whole casein semi-purified diet (WC), or powdered lab chow (C). All diets were isonitrogenous, and the WC and C rats were pair-fed to the ad libitum fed EHC rats. Seven days after initiation of feeding, the rats were abdominally irradiated with a single 9.0 Gy dose of 137Cs gamma rays. The rats were continued on the diets for another 5 days. Intestinal mucosa from transverse segments at the duodenum, jejunum, proximal ileum, and distal ileum were measured for incorporation of (/sup 3/H methyl) thymidine 1 hour after intraperitoneal injection. Incorporation reached a maximum by day 4 post-irradiation regardless of diet or segment. Incorporation in the duodenum was enhanced by the EHC diet compared to the C diet, while the incorporation in the jejunum was initially suppressed by the EHC diet compared to the WC diet. In the jejunum, the number of mitoses per crypt of 25 anti-mesenteric crypts post-irradiation was increased by the EHC diet. Prior to irradiation, all groups gained similar amounts of weight. After irradiation, the C rats lost weight, while the EHC and WC rats remained the same or gained weight. Guaiac tests for occult blood were negative prior to irradiation, but positive for all rats on days 1-5 postirradiation. When calorie and protein intakes were controlled, different areas of the small intestine responded differently to EHC.

  7. New facility for post irradiation examination of neutron irradiated beryllium

    SciTech Connect

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  8. Post-annealing effects on EPR response of irradiated nano-structure hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dowlatshah, F.; Ziaie, F.; Hajiloo, N.; Amraie, R.; Fathollahi, H.

    2012-12-01

    In this work, the nano-structure hydroxyapatite was synthesized via the hydrolysis method. The produced powders were thermally treatment at different temperatures from 400 to 1200°C. The morphological and chemical analyses were carried out using the Fourier transmission infrared spectroscopy, transmission electron microscopy, and X-ray diffraction system. Then, the samples were irradiated at different absorbed doses from 1 to 80 kGy using 60Co γ -ray. Electron paramagnetic resonance (EPR) responses of the samples were measured at room temperature in air. Subsequently, the variations of EPR signal intensities were constructed as the peak-to-peak signal amplitude and results were compared with those of non-annealed samples. The results show that the EPR responses of non-annealed samples are higher rather than other samples and also are saturated at higher doses in comparison with the others.

  9. AGC-2 Specimen Post Irradiation Data Package Report

    SciTech Connect

    Windes, William Enoch; Swank, W. David; Rohrbaugh, David T.; Cottle, David L.

    2015-08-01

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens were subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between

  10. AGC-1 Post Irradiation Examination Status

    SciTech Connect

    David Swank

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

  11. High dose neutron irradiation of MgAl2O4 spinel: effects of post-irradiation thermal annealing on EPR and optical absorption

    SciTech Connect

    Ibarra, A.; Bravo, D.; Lopez, F J.; Garner, Francis A.

    2005-01-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra were measured during thermal annealing for stoichiometric MgAl2O4 spinel that was previously irradiated in FFTF-MOTA at {approx}405 C to {approx}50 dpa. Both F and F+ centres are to persist up to very high temperatures (over 700C), suggesting the operation of an annealing mechanism based on evaporation from extended defects Using x-ray irradiation following the different annealing steps it was shown that the optical absorption band is related to a sharp EPR band at g=2.0005 and that the defect causing these effects is the F+ centre.

  12. The effect of a 980 nm diode laser with different parameters of irradiation on the bond strength of fiberglass posts.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Naves, Lucas Zago; Farina, Ana Paula; Walker, Cristiane Mezzena; Consani, Simonides; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2011-01-01

    The aim of this study was to assess bond strength of fiberglass posts to root canal dentin irradiated with a 980 nm diode laser at different parameters of power and frequency. Fifty human maxillary canines were separated into five groups (n = 10) according to the following parameters of laser power and frequency: Group 1 (1.5 W/100 Hz), Group 2 (1.5 W/continuous wave [CW]), Group 3 (3.0 W/100 Hz), Group 4 (3.0 W/CW), and Group 5 (no irradiation). Following post cementation, samples underwent a push-out test (0.5 mm/min); next, fracture analysis was performed with a light microscope at 50x and 100x magnification. All of the irradiated groups had increased bond strength values compared to the nonirradiated group. Groups 1 and 2 demonstrated the highest bond strength values; however, statistically significant differences were observed for only the cervical third of Group 4 and the cervical/apical thirds of Group 5. Fracture analysis showed a predominance of mixed failures for Groups 1 and 2 and adhesive failures between dentin and cement for the other groups.

  13. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    SciTech Connect

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  14. Gamma irradiation of Tetrapleura tetraptera fruit as a post-harvest technique and its subsequent effect on some phytochemicals, free scavenging activity and physicochemical properties

    NASA Astrophysics Data System (ADS)

    Darfour, B.; Agbenyegah, S.; Ofosu, D. O.; Okyere, A. A.; Asare, I. K.

    2014-09-01

    Herbs, spices and medicinal plants have been cherished by many ancient cultures for their use in curing common ailments and promoting good health. The dry fruit of Tetrapleura tetraptera has a pleasant aroma and hence used as a spice for seasoning in many parts of Ghana. Contamination of the fruit can occur at any stage during harvesting, drying, processing, transportation and storage. T. tetraptera is prone to microbial contamination and insect infestation resulting in quality deterioration and economic loss. The study aimed at establishing the effect of gamma irradiation as a post-harvest processing technique on T. tetraptera fruit and the subsequent effect of the gamma irradiation on some phytochemicals, free radical scavenging activity and physicochemical properties. The T. tetraptera powder was packed in polythene bags and gamma irradiated with Cobalt 60 source at 5 kGy and 10 kGy at room temperature at a dose rate of 2 kGy/h. The total phenolic content, total flavonoid and DPPH free radical scavenging activity, pH, lactic acid, vitamin C, moisture, carbohydrate, protein and trace element content of the samples were analysed. The antioxidant potential of the T. tetraptera extract was observed to be enhanced in the solvent used for the extraction after the irradiation but not the radiation dose used. Irradiation only had substantial impacts on carbohydrate and protein, Cu, Mg, and Mn. The T. tetraptera studied was safe for human consumption as far as trace metal levels are concerned. This study therefore suggest that gamma irradiation up to 10 kGy could be used as a post-harvest technique in T. tetraptera as a spice or herb.

  15. Post irradiation examination of thermal reactor fuels

    NASA Astrophysics Data System (ADS)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  16. [Effects of damage and post-radiation reparation of cornea epithelium cells chromosomal apparatus in mice following irradiation by protons with the energy of 25 MeV].

    PubMed

    2012-01-01

    Damage and post-radiation reparation processes were studied in cornea epithelium cells of mice irradiated by protons with the energy of 25 MeV and 60Co gamma-rays singly and in 2 fractions. Protons linear energy transfer (LET) was equal to 2.1 keV/microm, dose rate - 0.5 cGy/s. Animals were irradiated singly by 25 and 750 cGy and doubly (25 + 25; 50 + 50; 125 + 125; 250 + 250 cGy) with a 24-hr interval. Investigations were performed in 24, 72 and 120 hrs. after single and in 24 hrs. after double irradiation. Preparations were analyzed with the anaphase technique. 25 MeV protons were shown to cause more severe damages to the chromosomal apparatus in mammal cells including dramatic suppression of cell division and profuse formation of cells with aberrant mitoses as compared with gamma-induced damages. Exchange-type aberrations were more frequent. There was a reliable decrease of the aberrant mitosis rate in consequence of fractionated irradiation by 25 MeV protons and gamma-rays. On passing 24, 72 and 120 hours, coefficients of relative biological effectiveness (RBE) of 25 MeV protons were equal to 1.4 +/- 0.2; 1.3 +/- 0.1; 1.2 +/- 0.1 for the mitotic index and 1.5 +/- 0.1; 1.3 +/- 0.2; 1.1 +/- 0.1 for aberrant mitosis, respectively.

  17. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    SciTech Connect

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J.

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  18. Towards evaluating post-irradiation tissue alterations

    NASA Astrophysics Data System (ADS)

    Daar, Eman; Bradley, D. A.; Alkhorayef, M.; Al-Mugren, K. S.; Abdallat, R. G.; Al-Dousari, H.

    2017-08-01

    There is apaucity of data concerning irradiation effects on the extracellular matrix and on organised tissues. Examples of such research are cited as are some of the limiting factors towards obtaining meaningful results. This would engender a range of research towards further improving the quality of life, most pointedly of those receiving radiotherapy. As cancer survivor rates increase, survivors are more likely to experience side effects of radiotherapy. This study examines the effects of radiotherapy doses on the extracellular matrix as hyaluronic acid (HA) and pericardium.

  19. Effects of post-irradiation annealing and re-irradiation on microstructure in surveillance test specimens of the Loviisa-1 reactor studied by atom probe tomography and positron annihilation

    NASA Astrophysics Data System (ADS)

    Toyama, T.; Kuramoto, A.; Nagai, Y.; Inoue, K.; Nozawa, Y.; Shimizu, Y.; Matsukawa, Y.; Hasegawa, M.; Valo, M.

    2014-06-01

    This paper presents a microstructural study of a surveillance test specimen from the Loviisa-1 reactor in Finland, which is a Russian-type pressurized water reactor (VVER-440), after initial irradiation to a neutron fluence of 2.5 × 1019 n/cm2 (E > 1 MeV), post-irradiation annealing at 475 °C for 100 h and re-irradiation to three different fluences up to 2.7 × 1019 n/cm2. Atom probe tomography (APT) and positron annihilation spectroscopy (PAS) were used to characterize the test specimens. APT results showed the formation of Cu-rich solute clusters (SCs) during the initial irradiation and their subsequent coarsening during annealing. After re-irradiation, a small number of SCs formed once again. The hardening due to the SCs was estimated using the Russell-Brown model based on the APT results, and was in good agreement with the measured hardening after the initial irradiation and post-irradiation annealing. In contrast, during the first-step of re-irradiation, the estimated hardening due to the SCs was smaller than the measured hardening. This suggested that the hardening after re-irradiation was due to some microstructure other than the observed SCs. This difference was attributed to newly-formed matrix defects during re-irradiation, which was supported by the PAS results. However in subsequent steps of re-irradiation, the hardening was almost constant.

  20. Theoretical and practical implications of the effects of temperature during irradiation and during pre- and post-irradiation storage on the response of thermoluminescence dosimeters

    SciTech Connect

    Gail de Planque, E.

    1984-01-01

    Experiments have been conducted to determine the applicability of the Randall-Wilkins theory for describing the behavior of CaF/sub 2/:Mn thermoluminescence dosimeters (Harshaw TLD-400 chips). Results were obtained for four different conditions: irradiation followed by storage, irradiation after storage, irradiation both preceded and followed by storage, and continuous simultaneous irradiation and storage. The experiments were performed for storage intervals of approximately 1, 2, 3, 5, 6 and 7 days at five different storage temperatures: -25, +20, +65, +150 and +175/sup 0/C. The results indicate fading that is described not by the Randall-Wilkins theory but rather as a linear function of the logarithm of the storage time. While the results suggest that the trapping efficiency is independent of temperature, they do demonstrate a small decrease in TL response with storage time prior to irradiation which is independent of temperature and time (>17 hours) and hence probably not dosimetric in origin but perhaps optically related. Glow curve analyses support the concept of a band of traps rather than a single trap. The overall results are compared to other data available in the literature most of which is for room-temperature storage. These data, for storage periods ranging from minutes to one year, can also be described as a linear function of the logarithm of the storage time and are remarkably consistent when uniformly normalized. Although peripheral experiments revealed problems associated with self-irradiation as well as a decline in sensitivity with use, the stability experiment results verify the highly favorable stability properties of CaF/sub 2/:Mn for widespread application.

  1. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  2. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  3. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Jurkin, Tanja; Pucić, Irina

    2006-09-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  4. Effect of Processing, Post-Harvest Irradiation, and Production System on the Cytotoxicity and Mutagenicity of Vitis labrusca L. Juices in HTC Cells

    PubMed Central

    Düsman, Elisângela; de Almeida, Igor Vivian; Lucchetta, Luciano; Vicentini, Veronica Elisa Pimenta

    2014-01-01

    The juices of grapes (Vitis labrusca L.) are similar to the fruit itself because the main constituents of the fruit are present in the juice. However, their quality characteristics may be modified by the harsh technological processes used for the production of integral food, such as production systems of raw materials and post-harvest treatment of grapes with ultraviolet (UV) irradiation. Therefore, the present study analyzed juices produced naturally (by liquefying the fruit) or by the technological process of extraction by steam distillation (90°C) of grapes from organic and conventional production systems that were untreated or treated with UV type C (65.6 J/m2 for 10 minutes). Using cultures of Rattus norvegicus hepatoma cells (HTC) in vitro, cytotoxic effects were assayed by the MTT test and by calculating the cytokinesis blocked proliferation index (CBPI), and mutagenic effects were measured by the cytokinesis block micronucleus assay. The results of the MTT assay and the CBPIs indicated that none of the juices were cytotoxic, including those that induced cell proliferation. The results of the micronucleus assay showed that none of the juices were mutagenic. However, the average number of micronuclei was lower in the juices produced from organic grapes, and cell proliferation, soluble acids and phenolic compounds were significantly higher. Compared with the natural juices, the integral juices of conventional grapes showed a higher average number of micronuclei as well as lower stimulation of cell proliferation and lower levels of bioactive compounds. The results demonstrate a beneficial effect of UV-C irradiation of post-harvest grapes in stimulating the synthesis of nutraceutical compounds without generating cytotoxic or mutagenic substances. Taken together, our findings support the consumption of grape juice and the application of food production techniques that enhance its nutritional value and promote its production, marketing and consumption. PMID

  5. Effect of processing, post-harvest irradiation, and production system on the cytotoxicity and mutagenicity of Vitis labrusca L. juices in HTC cells.

    PubMed

    Düsman, Elisângela; de Almeida, Igor Vivian; Lucchetta, Luciano; Vicentini, Veronica Elisa Pimenta

    2014-01-01

    The juices of grapes (Vitis labrusca L.) are similar to the fruit itself because the main constituents of the fruit are present in the juice. However, their quality characteristics may be modified by the harsh technological processes used for the production of integral food, such as production systems of raw materials and post-harvest treatment of grapes with ultraviolet (UV) irradiation. Therefore, the present study analyzed juices produced naturally (by liquefying the fruit) or by the technological process of extraction by steam distillation (90°C) of grapes from organic and conventional production systems that were untreated or treated with UV type C (65.6 J/m² for 10 minutes). Using cultures of Rattus norvegicus hepatoma cells (HTC) in vitro, cytotoxic effects were assayed by the MTT test and by calculating the cytokinesis blocked proliferation index (CBPI), and mutagenic effects were measured by the cytokinesis block micronucleus assay. The results of the MTT assay and the CBPIs indicated that none of the juices were cytotoxic, including those that induced cell proliferation. The results of the micronucleus assay showed that none of the juices were mutagenic. However, the average number of micronuclei was lower in the juices produced from organic grapes, and cell proliferation, soluble acids and phenolic compounds were significantly higher. Compared with the natural juices, the integral juices of conventional grapes showed a higher average number of micronuclei as well as lower stimulation of cell proliferation and lower levels of bioactive compounds. The results demonstrate a beneficial effect of UV-C irradiation of post-harvest grapes in stimulating the synthesis of nutraceutical compounds without generating cytotoxic or mutagenic substances. Taken together, our findings support the consumption of grape juice and the application of food production techniques that enhance its nutritional value and promote its production, marketing and consumption.

  6. Pre- and post-irradiation fading effect for LiF:Mg,Ti and LiF:Mg,Cu,P materials used in routine monitoring.

    PubMed

    Carinou, E; Askounis, P; Dimitropoulou, F; Kiranos, G; Kyrgiakou, H; Nirgianaki, E; Papadomarkaki, E; Kamenopoulou, V

    2011-03-01

    LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Department of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ± 5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months.

  7. Post-Irradiation Polymerization of a Silorane Composite

    DTIC Science & Technology

    2013-04-26

    Post-Irradiation Polymerization of a Silorane Composite A THESIS Presented to the Faculty of The Air Force Postgraduate Dental School...Oral Biology By Bryan Michael Wilson, BS, MS, DDS Dunn Dental Clinic JBSA-Lackland, TX 26 Apr 2013 2 ii Poet-Irradiation...Postgraduate Dental School (AFPDS) 4. Phone: 210-671-9822 5. Type of clearance: _Paper _Article_ Book _x_Poster _Presentation _Other 6. Title: Post

  8. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    SciTech Connect

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    2016-09-29

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonable matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, To, in alloys irradiated to 7 dpa and higher.

  9. Effect of Whole-abdominal Irradiation on Penetration Depth of Doxorubicin in Normal Tissue After Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) in a Post-mortem Swine Model.

    PubMed

    Khosrawipour, Veria; Khosrawipour, Tanja; Hedayat-Pour, Yousef; Diaz-Carballo, David; Bellendorf, Alexander; Böse-Ribeiro, Hugo; Mücke, Ralph; Mohanaraja, Nirushika; Adamietz, Irenäus Anton; Fakhrian, Khashayar

    2017-04-01

    This study was performed to evaluate the impact of whole-abdominal irradiation on local penetration of doxorubicin into the peritoneum and the abdominal organs in a post-mortem swine model. Doxorubicin was aerosolized into the abdominal cavity of swine at a pressure of 12 mmHg CO2 at room temperature (25°). One swine was subjected to pressurized intraperitoneal aerosol chemotherapy (PIPAC) using Micropump(©) without irradiation; the second one received 2 Gy and the third one 7 Gy whole-abdominal irradiation, 15 min prior to PIPAC application. Samples of the peritoneal surface were extracted at different positions from within the abdominal cavity. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. The depth of penetration of doxorubicin was found to be wide-ranging, between 17 μm on the surface of the stomach and 348 μm in the small intestine. The penetration depth into the small intestine was 348 μm, 312 μm and 265 μm for PIPAC alone, PIPAC with 2 Gy irradiation and PIPAC with 7 Gy irradiation, respectively (p<0.05). The penetration into the liver was 64 μm, 55 μm and 40 μm, respectively (p=0.05). Irradiation was not found to increase the depth of doxorubicin penetration into normal tissue in the post-mortem swine model. A reduction of doxorubicin penetration was observed after application of higher irradiation doses. Further studies are warranted to determine if irradiation can be used safely as chemopotentiating agent for patients with peritoneal metastases treated with PIPAC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Post-irradiation effect of Broncho-Vaxom, OM-85 BV, and its relationship to anti-oxidant activities.

    PubMed

    Saada, H N; Azab, K S; Zahran, A M

    2001-08-01

    This study was conducted to test the efficacy of Broncho-Vaxom (OM-85 BV) in rats after exposure to radiation-induced oxidative stress. Daily administration of Broncho-Vaxom (2.5 mg/kg/day) to rats for a period of 28 days produced a progressive significant increase in the activities of superoxide dismutase (SOD) and catalase in lungs and erythrocytes. No changes were recorded in reduced glutathione (GSH) content in lungs, while an increase was recorded in erythrocytes. Significant increase was also observed in serum gamma-globulin content. Intraperitoneal administration of Broncho-Vaxom to rats for 11 days before gamma-irradiation and daily during the period of irradiation, delivered as 1 Gy every other day to reach 9 Gy, significantly reduced radiation-induced lipid peroxidation (LPO) measured as thiobarbituric acid-reactive substances (TBARS) in the lungs and erythrocytes. Treatment with Broncho-Vaxom modified the radiation-induced decrease of serum gamma-globulins contents. It is postulated that Broncho-Vaxom, by enhancing the antioxidant system and increasing serum gamma-globulin content, could play an important role in modifying radiation-induced oxidative stress.

  11. Effects of Aminoguanidine on Pre- and Post-Irradiation Regional Cerebral Blood Flow, Systemic Blood Pressure and Plasma Histamine Levels in the Primate,

    DTIC Science & Technology

    1991-01-01

    alone had a slight but significant hypotensive effect. 4Introduction ated the effects of HA released after irradiation Studies have shown elevated...ndued The metabolic pathways of HA in nonhuman pri- hypotension 12) and in postirradiation reduced mates have been studied less extensively than...of AG treatment on metric method that has been successfully employed these three parameters in irradiated and sham-irra- in similar studies 13, 4. 15

  12. Effect of Ar+ ion post-irradiation on crystal structure, magnetic behavior and optical band gap of Co-implanted ZnO wafers

    NASA Astrophysics Data System (ADS)

    Xu, N. N.; Li, G. P.; Lin, Q. L.; Liu, H.; Bao, L. M.

    2016-12-01

    Single crystals wurtzite ZnO with (001) orientation were implanted with Co+ ions at room temperature (RT). To tune their magnetic behavior as well as the band gap of the implanted wafers, Ar+ ion post-irradiation (PI) was performed using the calculated energy and ion dose. The formed Co clusters present in the high dose Co-implanted ZnO wafer were observed to be absent after the PI, which is quite different from the low dose doped one. It is found that all the implanted samples showed a giant magnetic moment and a narrowing optical band gap, and that the post-irradiated ones exhibited an even further redshifted absorption edge and ferromagnetic behavior but with saturation magnetization (MS) drastically decreased.

  13. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    SciTech Connect

    A. B. Robinson; D. M. Wachs; D. E. Burkes; D. D. Keiser

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  14. Progress In Developing Laser Based Post Irradiation Examination Infrastructure

    SciTech Connect

    Smith, James A.; Scott, Clark L.; Benefiel, Brad C.

    2016-09-01

    To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiated materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an

  15. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep

  16. Effect of deposition condition and post growth irradiation treatment on the physical properties of diamond-like carbon films

    SciTech Connect

    Semenovich, V.A.; Dub, S.N.; Klyui, N.I.

    1995-12-31

    Effect of the RF (13.56 MHz) amplitude (Usa) bias voltage on the physical properties of the films has been examined. Relation between the properties of the films and growth conditions were obtained. Bias voltage and gas composition have a marked influence on the properties of prepared films. Nitrogen implantation of diamond-like carbon (DLC) films improves essentially mechanical properties (increasing of the hardness and Young`s modulus more than two times), which correlates with changes of the optical properties, namely, decreasing of optical band gap and increasing of refractive index of the implanted layer.

  17. Post-irradiation polymerization of composites containing bis-GMA and TEGDMA.

    PubMed

    Tarumi, H; Imazato, S; Ehara, A; Kato, S; Ebi, N; Ebisu, S

    1999-07-01

    This study was conducted to evaluate the effect of the amount of TEGDMA on post-irradiation polymerization of bis-GMA based composites. Four experimental composites containing bis-GMA and TEGDMA at the ratios (w/w) of 75/25, 70/30, 67/33, and 50/50 were prepared. The degree of conversion of each composite was measured by Fourier transformation infrared spectroscopy immediately after being cured and after 24 h of storage, and the post-irradiation polymerization was determined. In addition, the change in respective amounts of residual bis-GMA and TEGDMA in cured specimens over 24 h was determined by high performance liquid chromatography. Data were analyzed by means of ANOVA, followed by a Fisher's PLSD test at a significance level of 0.05. At both stages of as-cured and after 24 h-sotrage, the composites containing greater amounts of TEGDMA showed a greater degree of conversion. The amount of post-irradiation polymerization decreased as the content of the incorporated TEGDMA increased. The reduction in the amount of TEGDMA remaining unreacted during post-irradiation polymerization also decreased as the content of TEGDMA increased, while the amount of unreacted bis-GMA showed almost constant values. An increase in the amount of TEGDMA-incorporation in bis-GMA based composites resulted in less post-irradiation polymerization. As the change in the amount of residual unreacted TEGDMA in cured specimens showed the same trend as the results of the post-irradiation polymerization. TEGDMA is considered to be the main contributor to post-irradiation polymerization of bis-GMA based composites.

  18. UV irradiation improves the bond strength of resin cement to fiber posts.

    PubMed

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (p<0.05). UV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  19. A new integrated test structure for on-chip post-irradiation annealing in MOS devices

    SciTech Connect

    Chabrerie, C.; Flament, O.; Boudenot, J.C.

    1998-06-01

    The authors have developed a prototype test structure (named THERMOS) demonstrating the feasibility and the interest of the on-chip heating in a Silicon-On-Insulator technology. This circuit has been specially designed for the study of post-irradiation effects in a radiation-hardened CMOS technology. Preliminary results are presented here for the on-chip annealing of irradiated n-channel transistors.

  20. Nondestructive post-irradiation examination of Loop-1, S1 and B1 rods

    SciTech Connect

    Bratton, R.L.

    1997-05-01

    As a part of the Pacific Northwest National Laboratory`s Tritium Target Development Program, eleven tritium target rods were irradiated in the Advanced Test Reactor located at the Idaho National Engineering and Environmental Laboratory during 1991. Both nondestructive and destructive post-irradiation examination on all eleven rods was planned under the Tritium Target Development Program. Funding for the program was reduced in 1991 resulting in the early removal of the program experiments before reaching their irradiation goals. Post-irradiation examination was only performed on one of the irradiated rods at the Pacific Northwest National Laboratory before the program was terminated in 1992. On December 6, 1995, the Secretary of Energy announced the pursuit of the Commercial Light-Water Reactor option for producing tritium establishing the Tritium Target Qualification Program at the Pacific Northwest National Laboratory. This program decided to pursue nondestructive and destructive post-irradiation examination of the ten remaining rods from the previous program. The ten rods comprise three experiments. The Loop-1 experiment irradiated eight target rods in a loop configuration for 217 irradiation days. The other two rods were irradiated in two separate irradiation experiments, designated as S1 and B1 for 143 effective full-power days, but at different power levels. After the ten rods were transferred from the ATR Canal to the Hot Fuels Examination Facility, the following examinations were performed: (1) visual examination and photography; (2) neutron radiography; (3) axial gamma scanning; (4) contact profilometry measurement; (5) bow and length measurements; (6) rod puncture and plenum gas analysis/measurement of plenum gas quantity; (7) void volume determination; and (8) internal pressure determination. This report presents the data collected during these examinations.

  1. Effect of post-harvest calcium chloride dip treatment and gamma irradiation on storage quality and shelf-life extension of Red delicious apple.

    PubMed

    Hussain, P R; Meena, R S; Dar, M A; Wani, A M

    2012-08-01

    Freshly harvested Red delicious apples were dipped in calcium chloride solution of varying concentrations (0.5-2.0% w/v) for 1 h prior to irradiation at dose level of 0.4 kGy. Fruits after radiation treatment were stored at 2 ± 1°C, RH 90% and evaluated at intervals of 30 days for various quality parameters. Results revealed significant (p ≤ 0.05) retention in firmness, juice yield and ascorbic acid content in samples treated with combination of calcium chloride at 2.0% w/v and gamma irradiation (0.4 kGy) during storage. Water soluble pectin was inversely correlated with firmness (r = 0.88) and was significantly (p ≤ 0.05) lower in samples subjected to combination treatment of 2.0% w/v CaCl2 and 0.4 kGy irradiation throughout the storage. The combination treatment of 2.0% CaCl2 and 0.4 kGy irradiation gave about 4.3 log reduction in yeast and mold count of apple samples. Results of the post refrigeration weight loss, firmness and overall acceptability revealed that combination treatment was helpful in extending the shelf-life of Red Delicious apples by around 20-25 days at 17 ± 2°C, RH 75% following 90 days of refrigeration.

  2. Combined therapy for post-irradiation infection

    SciTech Connect

    Elliott, T.B.; Madonna, G.S.; Ledney, G.D.; Brook, I.

    1989-01-01

    Increased susceptibility to bacterial infection, probably by translocation from the intestinal flora, can be a lethal complication for 2-3 weeks after exposure to ionizing radiation. Antibiotics alone do not provide adequate therapy for induced infections in neutropenic mice. Because some substances that are derived from bacterial cell walls activate macrophages and stimulate nonspecific resistance to infection, such agents might be used to prevent or treat postirradiation infections. In this study, a cell-wall glycolipid, trehalose dimycolate (TDM), was evaluated together with a third-generation cephalosporin, ceftriaxone, for their separate and combined effects on survival of B6D2F1 female mice that were exposed to the sublethal dose of 7.0 Gy Co radiation and challenged s.c. with lethal doses of Klebsiella pneumoniae. A single injection of TDM inoculated i.p. 1 hr postirradiation increased 30-day survival to 80% after a lethal challenge by K. pneumoniae 4 days later. When the challenge dose of K. pneumoniae was increased to 5000 Ld 50/30 on Day 4, all mice died.

  3. Post-Irradiation Study of the Alanine Dosimeter

    PubMed Central

    Desrosiers, Marc F.

    2014-01-01

    Post-irradiation stability of high-dose dosimeters has traditionally been an important measurement influence quantity. Though the exceptional stability of the alanine dosimeter response with time has rendered this factor a non-issue for routine work, the archival quality of the alanine dosimeter has not been characterized. Here the alanine pellet dosimeter response is measured up to seven years post-irradiation for a range of absorbed doses. This long-term study is accompanied by an examination of the environmental influence quantities (e.g., ambient light) on the relatively short-term (3–4 month) stability of both pellet and film commercial dosimeters. Both dosimeter types demonstrated exceptional stability in the short term and proved to be relatively insensitive to common influence quantities. The long-term data revealed a complex dose-dependent response trend. PMID:26601033

  4. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  5. Effects of dentin surface treatments including Er,Cr:YSGG laser irradiation with different intensities on the push-out bond strength of the glass fiber posts to root dentin.

    PubMed

    Kirmali, Omer; Kustarci, Alper; Kapdan, Alper; Er, Kursat

    2015-07-01

    Intra-canal post systems are commonly used to restore root-filled teeth. Bond strengths of the posts can be affected by various surface treatments of the post or the dentin. The aim of this study was to evaluate the effects of dentin surface treatments including erbium-chromium; yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation with different intensities on the push-out bond strength of the glass fiber posts to root dentin. Forty single-rooted human maxillary incisors were filled and post spaces were prepared. After these procedures, the specimens were divided randomly into four groups according to the dentin surface treatments, as follows: (i) untreated surface (control), (ii) 1W Er,Cr:YSGG laser application, (iii) 2W Er,Cr:YSGG laser application and (iv) 3W Er,Cr:YSGG laser application. Then the posts were cemented into the root canals using dual-cured resin cement. Bonded specimens were cut into 1-mm-thick slices and push-out tests were performed using a universal testing device. All specimens were loaded until fracture and the failure modes were evaluated with a stereomicroscope at 32× magnification. Representative specimens were analyzed by scanning electron microscopy. Data were analyzed using a one-way ANOVA, Tukey and Wilcoxon tests. The bond strength values ranged from 3.22-4.68 MPa. There were no statistically significant differences among the groups, regardless of the different levels. The coronal and middle levels of the post space had significantly higher bond strength values compared with the apical level (p < 0.05). Er,Cr:YSGG laser irradiation with different intensities did not increase the bond strength of the fiber posts to the root canal dentin walls.

  6. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  7. High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys

    DOEpatents

    Laidler, James J.; Borisch, Ronald R.; Korenko, Michael K.

    1982-01-01

    A method for improving the post-irradiation ductility is described which prises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

  8. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo

    2007-05-01

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.

  9. METAPHIX-1 non destructive post irradiation examinations in the irradiated elements cell at Phenix

    SciTech Connect

    Breton, Laurent; Masson, M.; Garces, E.; Desjardins, S.; Fontaine, B.; Lacroix, B.; Martella, T.; Loubet, L.; Ohta, H.; Yokoo, T.; Ougier, M.; Glatz, J.P.

    2007-07-01

    Central Research Institute of Electric Power Industry (CRIEPI) has been developing minor actinide (MA) transmutation technology in homogeneous loading mode by use of metal fuel fast reactors in cooperation with Institute for Transuranium Elements (ITU) and Commissariat a l'Energie Atomique (CEA). Fast reactor metal fuel pins of Uranium- Plutonium-Zirconium (U-Pu-Zr) alloy containing 2 wt% MAs and 2 wt% rare earth elements (REs), 5 wt% MAs, and 5 wt% MAs and 5 wt% REs were irradiated in the PHENIX French fast reactor as METAPHIX experiments. In these METAPHIX experiments, three rigs each consisting of three metal fuel experimental pins and sixteen oxide fuel driver pins were irradiated. The target burnup of the three rigs is 2.4 at%, 7 at% and 11 at% which corresponds to 120, 360 and 600 equivalent full power days (EFPD) in terms of irradiation periods, respectively. The low burnup rig of 2.4 at%, METAPHIX-1, was discharged from the core in August 2004. After cooling, the non-destructive post irradiation examinations (PIEs) of the rig (visual examination, measurement of rig length and deformation) and of the metal fuel pins (visual examination, measurement of pin length and deformation, {gamma}-spectrometry and neutron radiography) were conducted in the Irradiated Elements Cell (IEC) at PHENIX. (authors)

  10. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect

    J. L. Schulthess; K. E. Rosenberg

    2011-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  11. RERTR-12 Post-irradiation Examination Summary Report

    SciTech Connect

    Rice, Francine; Williams, Walter; Robinson, Adam; Harp, Jason; Meyer, Mitch; Rabin, Barry

    2015-02-01

    The following report contains the results and conclusions for the post irradiation examinations performed on RERTR-12 Insertion 2 experiment plates. These exams include eddy-current testing to measure oxide growth; neutron radiography for evaluating the condition of the fuel prior to sectioning and determination of fuel relocation and geometry changes; gamma scanning to provide relative measurements for burnup and indication of fuel- and fission-product relocation; profilometry to measure dimensional changes of the fuel plate; analytical chemistry to benchmark the physics burnup calculations; metallography to examine the microstructural changes in the fuel, interlayer and cladding; and microhardness testing to determine the material-property changes of the fuel and cladding.

  12. Enhanced cued fear memory following post-training whole body irradiation of 3-month-old mice.

    PubMed

    Olsen, Reid H J; Weber, Sydney J; Akinyeke, Tunde; Raber, Jacob

    2017-02-15

    Typically, in studies designed to assess effects of irradiation on cognitive performance the animals are trained and tested for cognitive function following irradiation. Little is known about post-training effects of irradiation on cognitive performance. In the current study, 3-month-old male mice were irradiated with X-rays 24h following training in a fear conditioning paradigm and cognitively tested starting two weeks later. Average motion during the extinction trials, measures of anxiety in the elevated zero maze, and body weight changes over the course of the study were assessed as well. Exposure to whole body irradiation 24h following training in a fear conditioning resulted in greater freezing levels 2 weeks after training. In addition, motion during both contextual and cued extinction trials was lower in irradiated than sham-irradiated mice. In mice trained for cued fear conditioning, activity levels in the elevated zero maze 12days after sham-irradiation or irradiation were also lower in irradiated than sham-irradiated mice. Finally, the trajectory of body weight changes was affected by irradiation, with lower body weights in irradiated than sham-irradiated mice, with the most profound effect 7days after training. These effects were associated with reduced c-Myc protein levels in the amygdala of the irradiated mice. These data indicate that whole body X ray irradiation of mice at 3 months of age causes persistent alterations in the fear response and activity levels in a novel environment, while the effects on body weight seem more transient.

  13. Post irradiation examination of irradiated americium oxide and uranium dioxide in magnesium aluminate spinel

    NASA Astrophysics Data System (ADS)

    Klaassen, F. C.; Bakker, K.; Schram, R. P. C.; Klein Meulekamp, R.; Conrad, R.; Somers, J.; Konings, R. J. M.

    2003-06-01

    To study MgAl 2O 4 spinel as inert matrix material for the transmutation of minor actinides, two capsules were irradiated at the high flux reactor in Petten, containing 12.5 wt% micro-dispersed 241AmO x in spinel and 25 wt% micro-dispersed enriched UO 2 in spinel. During irradiation, the initially present 241Am was converted for 99.8% to fission products (50%), plutonium (30%), curium (16%) and 243Am (4%). The UO 2 spinel target experienced a burn-up of 32% fission per initial metal atom. The post irradiation examination of the AmO x inert matrix target showed swelling of 27 vol.%, and a gas release of 48% for He and 16% for Xe and Kr. The UO 2 inert matrix target also showed a large volumetric swelling of 11%, directed mainly radially. Ceramography on the UO 2 inert matrix target revealed a complete restructuring of the spinel grains upon irradiation and the absence of porosity, suggesting that amorphisation is the main cause of the swelling.

  14. Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Chernobaeva, A. A.; Shtrombakh, Y. I.; Russell, K. F.; Nanstad, R. K.; Erak, D. Y.; Zabusov, O. O.

    2009-04-01

    A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 × 10 23 m -2 ( E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 × 10 23 m -2 ( E > 0.5 MeV). High number densities of ˜2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the ΔT 41 J ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiation anneal of 2 h at 450 °C, but had dissolved into the matrix after 24 h at 450 °C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

  15. Evolution of the nanostructure OF VVER-1000 RPV materials under neutron irradiation and post irradiation annealing

    SciTech Connect

    Miller, Michael K; Chernobaeva, A. A.; Shtrombakh, Ya.; Erak, D.; Zabusov, Oleg O.; Russell, Kaye F; Nanstad, Randy K

    2009-01-01

    A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 x 10{sup 23} m{sup -2} (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 x 10{sup 23} m{sup -2} (E > 0.5 MeV). High number densities of 2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the {Delta}T{sub 41 J} ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiOffice of Science (US)C, but had dissolved into the matrix after 24 h at 450 C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

  16. Laser irradiation effects on gold

    NASA Astrophysics Data System (ADS)

    Khaleeq-Ur-Rahman, M.; Bhatti, K. A.; Rafique, M. S.; Latif, A.; Lee, P.; Mahmood, S.

    2007-12-01

    Investigations on the laser irradiation effects on gold are explored in terms of plasma-plume dynamics and morphological and crystallographic changes. Annealed 4N gold samples were irradiated with a Q-switched Nd:YAG laser (53 mJ, 21 MW, 532 nm, and pulse width 6-8 ns) for plume dynamics using 10-ns gated fast photography. A Q-switched pulsed Nd:YAG laser (10 mJ, 1.1 MW, 1064 nm, and pulse width 9 ns) was used to irradiate the surface of the samples for morphological and crystallographic studies of laser-irradiated gold in a vacuum ˜10-3 Torr. The annealed samples were exposed to 50 shots of a Nd:YAG laser (10 mJ, 1.1 MW, 1064 nm, and pulse width 9 ns). The investigation on the plume was done by using an intensified charged-couple device ICCD-5760/IR-UV camera. The morphological investigation of the irradiated surface was carried out by analyzing micrographs obtained using an Hitachi S 3000 H scanning-electron microscope (SEM). The crystallographic studies of the irradiated samples were performed by analyzing the XRD patterns obtained using an X’ Pert Pro Pan Analytical X-ray diffractometer. The investigation on gated ICCD images of the plume reveal that, at very earlier times, the plasma-plume expansion has a linear trend, whereas, at later times, the plasma-plume expansion is nonuniform. SEM micrographs exhibit the primary mechanisms of pulsed-laser ablation (PLA), such as hydrodynamic sputtering, thermal sputtering, exfoliation sputtering, and splashing. The surface morphology was explained in terms of crater formation, swelling, burning, nucleation, grain growth, and nonsymmetric heat conduction. The nonuniform thermal expansion of gold due to thermal-energy transfer is also studied by SEM micrographs, which was supported by XRD analysis. The structural analysis on the basis of XRD shows that the composition of the irradiated samples is not disturbed even after laser irradiation. The grain sizes also changed due to laser irradiation.

  17. Post-irradiation Examination of the AGR-1 Experiment: Plans and Preliminary Results

    SciTech Connect

    Paul Demkowicz

    2001-10-01

    Abstract – The AGR-1 irradiation experiment contains seventy-two individual cylindrical fuel compacts (25 mm long x 12.5 mm diameter) each containing approximately 4100 TRISO-coated uranium oxycarbide fuel particles. The experiment accumulated 620 effective full power days in the Advanced Test Reactor at the Idaho National Laboratory with peak burnups exceeding 19% FIMA. An extensive post-irradiation examination campaign will be performed on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature accident testing. PIE experiments will include dimensional measurements of fuel and irradiated graphite, burnup measurements, assessment of fission metals release during irradiation, evaluation of coating integrity using the leach-burn-leach technique, microscopic examination of kernel and coating microstructures, and accident testing of the fuel in helium at temperatures up to 1800°C. Activities completed to date include opening of the irradiated capsules, measurement of fuel dimensions, and gamma spectrometry of selected fuel compacts.

  18. Irradiation and post-irradiation examination of uranium-free nitride fuel

    NASA Astrophysics Data System (ADS)

    Hania, P. R.; Klaassen, F. C.; Wernli, B.; Streit, M.; Restani, R.; Ingold, F.; Fedorov, A. V.; Wallenius, J.

    2015-11-01

    Two identical Phénix-type 15-15Ti steel pinlets each containing a 70 mm Pu0.3Zr0.7N fuel stack in a 1-bar helium atmosphere have been irradiated in the HFR Petten at medium high linear power (46-47 kW/m at BOL) and an average cladding temperature of 505 °C. The pins were irradiated to a plutonium burn-up of 9.7% (88 MWd/kgHM) in 170 full power days. Both pins remained fully intact. Post-irradiation examination performed at NRG and PSI showed that the overall swelling rate of the fuel was 0.92 vol-%/%FIHMA. Fission gas release was 5-6%, while helium release was larger than 50%. No fuel restructuring was observed, and only mild cracking. EPMA measurements show a burn-up increase toward the pellet edge of up to 4 times. All investigated fission products except to some extent the noble metals were found to be evenly distributed over the matrix, indicating good solubility. Local formation of a secondary phase with high Pu content and hardly any Zr was observed. A general conclusion of this investigation is that ZrN is a suitable inert matrix for burning plutonium at high destruction rates.

  19. Effect of disodium cromoglycate (DSCG) and antihistamines on post-irradiation cerebral blood flow and plasma levels of histamine and neurotensin

    SciTech Connect

    Cockerham, L.G.; Pautler, E.L.; Carraway, R.E.; Cochrane, D.E.; Hampton, J.D.

    1988-01-01

    In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and visual cortical blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100-Gy, whole-body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Systemic arterial plasma histamine and neurotensin levels were determined preirradiation and postirradiation. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 23% of the preirradiation level within 10-min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10-min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The cortical blood flow for the same animals showed a steady decrease to 29% of the preirradiation levels by 60-min postirradiation. Animals given the mast-cell stabilizer disodium cromoglycate and the antihistamines mepyramine and cimetidine before irradiation did not exhibit an abrupt decline in blood pressure but displayed a gradual decrease to a level 33% below preirradiation levels by 60 min postirradiation. Also, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. The plasma neurotensin levels in the irradiated animals, treated and untreated, indicated a nonsignificant postirradiation increase above control levels.

  20. NET-1.2 post-irradiation examination report

    SciTech Connect

    Rightley, M.; Ales, M.; Bourcier, S.

    1997-06-01

    The post-irradiation examination (PIE) of the NET-1.2 fuel element was completed in December, 1993. The goal of the PIE work was to gather data regarding the fracture of the hot frit during the experiment. Five cracks were observed in the hot frit at various locations although only two were believed to have initiated the overall component failure. These two cracks were complete circumferential failures and were located near the open and closed ends of the frit within the active flow region. The location and orientation of these fractures suggested that failure was the result of thermally-induced stresses that exceeded pre-test predictions. The cause of the failure was the temperature difference between the coolant flowing through the hot frit and the thermally massive end fittings. The resulting axial temperature gradients in the hot frit imposed thermal stresses that exceeded failure in the frit coating material. This coating fracture then propagated through the graphite substrate. Post-test analyses of the frit response based on measured data from the experiment verified that the frit coating failure stresses were exceeded. Additionally, the cold frit behaved unexpectedly. The PIE inspection of this component showed that a majority of the compliant panels were permanently deformed against the cold frit inner wall even though the transients that the bed was exposed to were not thought to be capable of creating this magnitude of bed expansion. No evidence of bed locking was observed. A calculational error in the prediction of the total bed expansion was found (post-PIE) which certainly contributed to the underestimation of the bed displacement. Additionally, temperature differences between the bulk of the frit and the panels created a bowing force which may have allowed some amount of bed settling at relatively low temperatures while particle thermal expansion was minimal.

  1. Gamma-tocopherol-N,N-dimethylglycine ester as a potent post-irradiation mitigator against whole body X-irradiation-induced bone marrow death in mice.

    PubMed

    Anzai, Kazunori; Ueno, Megumi; Matsumoto, Ken-Ichiro; Ikota, Nobuo; Takata, Jiro

    2014-01-01

    We examined the radioprotective and mitigative effects of gamma-tocopherol-N,N-dimethylglycine ester (GTDMG), a novel water-soluble gamma-tocopherol derivative, against X-irradiation-induced bone marrow death in mice. Mice (C3H, 10 weeks, male) were injected intraperitoneally with GTDMG suspended in a 0.5% methyl cellulose solution before or after receiving of 7.5-Gy whole body X-irradiation. GTDMG significantly enhanced the 30-day survival rate when given 30 min before or immediately after the irradiation. Its mitigative activity (administered after exposure) was examined further in detail. The optimal concentration of GTDMG given immediately after irradiation was around 100 mg/kg body weight (bw) and the 30-day survival rate was 97.6 ± 2.4%. When GTDMG was administered 1, 10 and 24 h post-irradiation, the survival rate was 85.7 ± 7.6, 75.0 ± 9.7 and 36.7 ± 8.8%, respectively, showing significant mitigation even at 24 h after irradiation (P < 0.05). The value of the dose reduction factor (100 mg/kg bw, given intraperitoneally (i.p.) immediately after irradiation) was 1.25. GTDMG enhanced the recovery of red blood cell-, white blood cell-, and platelet-counts after irradiation and significantly increased the number of endogenous spleen colonies (P < 0.05). Subcutaneous (s.c.) administration also had mitigative effects. In conclusion, GTDMG is a potent radiation mitigator.

  2. Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules

    SciTech Connect

    J M Harp; P D Demkowicz; S A Ploger

    2012-10-01

    The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

  3. The irradiation effects on zirconium alloys

    NASA Astrophysics Data System (ADS)

    Negut, Gh.; Ancuta, M.; Radu, V.; Ionescu, S.; Stefan, V.; Uta, O.; Prisecaru, I.; Danila, N.

    2007-05-01

    Pressure tube samples were irradiated under helium atmosphere in the TRIGA Steady State Research and Material Test Reactor of the Romanian Institute for Nuclear Research (INR). These samples are made of the Zr-2.5%Nb alloy used as structural material for the CANDU Romanian power reactors. After irradiation, mechanical tests were performed in the Post Irradiation Examination Laboratory (PIEL) to study the influence of irradiation on zirconium alloys mechanical behaviour. The tensile test results were used for structural integrity assessment. Results of the tests are presented. The paper presents, also, pressure tube structural integrity assessment.

  4. Effects of irradiation on PVC compounds

    NASA Astrophysics Data System (ADS)

    Bataille, P.; Ulkem, I.; Schreiber, H. P.

    1995-11-01

    PVC compounds containing CaCO 3 filler and plasticizers were prepared with or without a trifunctional acrylic crosslinking agent and irradiated by 60Co γ-rays under air or nitrogen atmosphere. The samples without crosslinking agent did not respond to irradiation. The mechanical properties of the other samples such as tensile strength, yield strength and % elongation showed a great sensitivity to irradiation. Lower values of Young's modulus were observed for samples irradiated in air compared with samples irradiated in nitrogen indicating the effect of atmosphere in the range of irradiation studied.

  5. Effects of growth irradiance, nitrogen nutrition and watering regime on photosynthesis, leaf conductance and isoprene emission in leaves of Post Oak, Quercus stellata

    SciTech Connect

    Harley, P.; Archer, S.; Guenther, A. Texas A M Univ., College Station )

    1994-06-01

    Seedlings of Post Oak (Quercus stellata), the dominant woody species of oak savannas of east-central Texas, were grown outside in College Station, TX from April to November 1993. Plants were randomly placed in one cell of a 3 [times] 2 [times] 2 factorial experiment, employing 3 nitrogen fertilization (25, 100 and 225 ppm NH[sub 4]NO[sub 23]), 2 light levels (70% and 20% of full sun) and 2 watering regimes (to maintain 80-100% or 30-50% of field capacity). In November, net photosynthesis, leaf conductance and leaf isoprene emission rates at 30[degrees]C and PPFD=1000 [mu]mol m[sup [minus]2]s[sup [minus]1] were determined for two mature leaves on each of four plants from eight growth treatments and data were analyzed stastically. For plants grown under the lower watering regime, photosynthesis and isoprene emission increased with both increasing PPFD and nitrogen (effects significant at p<0.01). For plants grown at 70% full sun, effects of nitrogen treatment on photosynthesis, conductance and isoprene emission were significant (p<0.0001) while effects of watering treatment were not significant (p<0.2). Although watering treatment did not lead to significant differences between treatments, in a short-term drying experiment conducted on four plants, isoprene emissions increased through the drying period in previously well-watered plants, but decreased in previously droughted plants. Measurements were also made on two leaves to determine the effects of varying PPFD and temperature on rates of isoprene emission.

  6. Neutron irradiation effects on plasma facing materials

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  7. Post-irradiation hypoxic incubation of X-irradiated MOLT-4 cells reduces apoptotic cell death by changing the intracellular redox state and modulating SAPK/JNK pathways.

    PubMed

    Hamasu, T; Inanami, O; Tsujitani, M; Yokoyama, K; Takahashi, E; Kashiwakura, I; Kuwabara, M

    2005-05-01

    To elucidate radiobiological effects of hypoxia on X-ray-induced apoptosis, MOLT-4 cells were treated under four set of conditions: (1) both X irradiation and incubation under normoxia, (2) X irradiation under hypoxia and subsequent incubation under normoxia, (3) X irradiation under normoxia and subsequent incubation under hypoxia, and (4) both X irradiation and incubation under hypoxia, and the induction of apoptosis was examined by fluorescence microscopy. About 28-33% apoptosis was observed in cells treated under conditions 1 and 2, but this value was significantly reduced to around 18-20% in cells treated under conditions 3 and 4, suggesting that post-irradiation hypoxic incubation rather than hypoxic irradiation mainly caused the reduction of apoptosis. The activation and expression of apoptosis signal-related molecules SAPK/JNK, Fas and caspase-3 were also suppressed by hypoxic incubation. Effects of hypoxic incubation were canceled when cells were treated under conditions 3 and 4 with an oxygen-mimicking hypoxic cell radiosensitizer, whereas the addition of N-acetyl-L-cysteine again reduced the induction of apoptosis. From these results it was concluded that hypoxia reduced the induction of apoptosis by changing the intracellular redox state, followed by the regulation of apoptotic signals in X-irradiated MOLT-4 cells.

  8. Recovery from Hematopoietic Injury by Modulating Prostaglandin E2 Signaling Post-Irradiation

    PubMed Central

    Hoggatt, Jonathan; Singh, Pratibha; Stilger, Kayla N.; Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Orschell, Christie M.; Pelus, Louis M.

    2012-01-01

    While high dose total body irradiation (TBI) is used therapeutically, the proliferation of nuclear weapons, increasing use of nuclear power, and worldwide radical terrorism underscore the need to develop countermeasures to a radiological mass casualty event. The hematopoietic syndrome of the acute radiation syndrome (HS-ARS) results from severe compromise to the hematopoietic system, including lymphocytopenia, neutropenia, thrombocytopenia, and possible death from infection and/or hemorrhage. Given adequate time to recover, expand, and appropriately differentiate, bone marrow hematopoietic stem cells (HSC) and progenitor cells (HPC) may overcome HS-ARS and restore homeostasis of the hematopoietic system. Prostaglandin E2 (PGE2) has been shown to have pleiotropic effects on hematopoiesis, acting to inhibit apoptosis and promote self-renewal of HSC, while inhibiting HPC proliferation. We assessed the radio-mitigating potential of modulating PGE2 signaling in a mouse model of HS-ARS. Treatment with the PGE2 analog 16,16 dimethyl PGE2 (dmPGE2) 6 hours post-irradiation or inhibition of PGE2 synthesis via delayed administration of the non-steroidal anti-inflammatory drug (NSAID) Meloxicam resulted in increased survival of lethally irradiated mice. Both early dmPGE2 and delayed Meloxicam treatment were associated with increased HPC activity 35 days following irradiation, demonstrating enhanced recovery of hematopoiesis. Our results define two different treatment modalities that are highly effective and safe to administer, and can be readily available. PMID:23206586

  9. Stimulation of post-traumatic regeneration of skeletal muscles of old rats after x-ray irradiation

    SciTech Connect

    Bulyakova, N.V.; Popova, M.F.

    1987-09-01

    The authors seek a method of stimulating restorative processes in irradiated muscles of old animals. Rats were used in the experiments. Different series of experiments were performed, including complete transverse section of the gastrocnemius muscle after local x-ray irradiation, and laser therapy of the transversly divided gastrocnemius muscle. Post-traumatic regeneration of the gastrocnemius muscle of old rats is illustrated schematically. The experimental data showed that pulsed laser therapy or grafting of minced unirradiated muscle tissue can largely restore the regenerative capacity of the gastrocnemius muscle of old rats when depressed by x-ray irradiation, but the method of grafting minced unirradiated muscle tissue was more effective.

  10. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis

    PubMed Central

    Zhang, Zhengxiang; Yu, Yang; Cheng, Jin; Gong, Yanping; Li, Chuan-Yuan; Huang, Qian

    2015-01-01

    Cytotoxic radiotherapy unfavorably induces tumor cells to generate various proangiogenic substances, promoting post-irradiation angiogenesis (PIA), which is one of major causes of radiotherapy failure. Though several studies have reported some mechanisms behind PIA, they have not yet described the beginning proangiogenic motivator buried in the irradiated microenvironment. In this work, we revealed that dying tumor cells induced by irradiation prompted PIA via a caspase 3 dependent mechanism. Proteolytic inactivation of caspase 3 in dying tumor cells by transducing a dominant-negative version weakened proangiogenic effects in vitro and in vivo. In addition, inhibition of caspase 3 activity suppressed tumor angiogenesis and tumorigenesis in xenograft mouse model. Importantly, we identified vascular endothelial growth factor (VEGF)-A as a downstream proangiogenic factor regulated by caspase 3 possibly through Akt signaling. Collectively, these findings indicated that besides acting as a key executioner in apoptosis, caspase 3 in dying tumor cells may play a central role in driving proangiogenic response after irradiation. Thus, radiotherapy in combination with caspase 3 inhibitors may be a novel promising therapeutic strategy to reduce tumor recurrence due to restrained PIA. PMID:26431328

  11. Post-radiation changes in oral tissues - An analysis of cancer irradiation cases.

    PubMed

    Pandya, Jay Ashokkumar; Srikant, N; Boaz, Karen; Manaktala, Nidhi; Kapila, Supriya Nikita; Yinti, Shanmukha Raviteja

    2014-07-01

    Radiation, commonly employed as neoadjuvant, primary, and adjuvant therapy for head and neck cancer causes numerous epithelial and stromal changes, prominent among which is fibrosis with its early and late consequences. Very little is known about the true nature of the fibrosed tissue and the type of fibers accumulated. Radiotherapy affects the supporting tumor stroma often resulting in a worsening grade of tumor post-radiation. To study epithelial, neoplastic, stromal, and glandular changes in oral cavity induced by radiation therapy for oral squamous cell carcinoma (OSCC) using special stains. The study included 27 samples of recurrent OSCC following completion of radiotherapy (recurrence within an average span of 11 months), and 26 non-irradiated cases of OSCC. Patients with a history of combined radiotherapy and chemotherapy were not included in the study. The epithelial changes assessed included epithelial atrophy, apoptosis, necrosis, dysplasia, and neoplasia. The connective tissue was evaluated for amount of fibrosis, quality of fibers (using picrosirius red staining), fibrinous exudate, necrosis, pattern of invasion, vessel wall thickening, and salivary gland changes. The aforementioned changes were assessed using light and polarizing microscopy and tabulated. Epithelial and connective tissue parameters were compared between the irradiated and non-irradiated cases using chi square and t-tests. Epithelial and connective tissue parameters were found to be increased in irradiated patients. Pattern of invasion by tumor cells varied from strands and  cords between the two groups studied. The effect of radiation was seen to reflect on the maturity of fibers and the regularity of their distribution.

  12. Accumulation efficiency of cancer stem-like cells post γ-ray and proton irradiation

    NASA Astrophysics Data System (ADS)

    Quan, Yi; Wang, Weikang; Fu, Qibin; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Wang, Yugang

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with γ-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133+ protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with γ-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and γ-rays can significantly accumulate the CD133+ CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  13. Proton irradiation effects on beryllium – A macroscopic assessment

    SciTech Connect

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  14. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  15. Proton irradiation effects on beryllium – A macroscopic assessment

    DOE PAGES

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less

  16. Proton irradiation effects on beryllium – A macroscopic assessment

    SciTech Connect

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  17. Subcutaneous administration of rhIGF-I post irradiation exposure enhances hematopoietic recovery and survival in BALB/c mice

    PubMed Central

    Chen, Shilei; Xu, Yang; Wang, Song; Shen, Mingqiang; Chen, Fang; Chen, Mo; Wang, Aiping; Cheng, Tianmin; Su, Yongping; Wang, Junping

    2012-01-01

    It is unclear how to effectively mitigate against irradiation injury. In this study, we studied the capacity of recombinant human insulin-like growth factor-I (rhIGF-I) on hematologic recovery in irradiated BALB/c mice and its possible mechanism. BALB/c mice were injected with rhIGF-I subcutaneously at a dose of 100 μg/kg twice daily for 7 days after total body irradiation. Compared with a saline control group, treatment with rhIGF-I significantly improved the survival of mice after lethal irradiation (7.5 Gy). It was found that treatment with rhIGF-I not only could increase the frequency of Sca-1+ cells in bone marrow harvested at Day 14 after irradiation, but also it could decrease the apoptosis of mononuclear cells induced by irradiation as measured by flow cytometry, suggesting that rhIGF-I may mediate its effects primarily through promoting hematopoietic stem cell/progenitor survival and protecting mononuclear cells from apoptosis after irradiation exposure. Moreover, we have found that rhIGF-I might facilitate thrombopoiesis in an indirect way. Our data demonstrated that rhIGF-I could promote overall hematopoietic recovery after ionizing radiation and reduce the mortality when administered immediately post lethal irradiation exposure. PMID:22843623

  18. Pre- and post-irradiation characterization and properties measurements of ZrC coated surrogate TRISO particles

    SciTech Connect

    Vasudevamurthy, Gokul; Katoh, Yutai; Hunn, John D; Snead, Lance Lewis

    2010-09-01

    Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometric compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size

  19. Post-irradiation angiosarcoma of the greater omentum.

    PubMed

    Westenberg, A H; Wiggers, T; Henzen-Logmans, S C; Verweij, J; Meerwaldt, J A; van Geel, A N

    1989-04-01

    A case of angiosarcoma of the greater omentum is reported. This angiosarcoma developed 8 years after irradiation for cervical carcinoma and presented with an intra-abdominal hemorrhage. We describe her clinical course, treatment and follow-up. Although several other locations of irradiation-induced sarcomas have been published, this is the first report in literature of a postirradiation angiosarcoma in the greater omentum.

  20. Peculiarities of post-irradiation annealing of MgO crystals

    NASA Astrophysics Data System (ADS)

    Kvatchadze, V. G.; Kalabegishvili, T. L.; Abramishvili, M. G.; Akhvlediani, Z. G.; Galustashvili, M. V.; Garibashvili, K. I.

    The influence of high-temperature annealing on absorption spectra of nominally pure and impure MgO crystals irradiated in a nuclear reactor has been investigated. In nominally pure crystals, as a whole, the accumulation of defect aggregates of non-monotonous character takes place during the whole cycle of the action of radiation plus post-irradiation annealing: the creation of defects in the process of irradiation, their destruction by annealing at 700 °C and repeated creation at higher annealing temperature. In irradiated impure crystals, where the mentioned defects exist in larger quantities, their thermal reanimation is not observed after the decay at 700 °C.

  1. Antimicrobials in the Management of Post-Irradiation Infection

    DTIC Science & Technology

    2005-01-01

    infection due to Gram-negative bacteria in the immunocompromised host generally in- volves the use of an aminoglycoside in combination with a beta ...pefloxacin in irradiated C3H/HeN mice: Correction with glucan therapy. Antimicrob Agents Chemother; 37:1882–9, 1993. [Rozenberg-Arska 1985] Rozenberg

  2. Modeling the post-yield flow behavior after neutron and electron irradiation of steels and iron-base alloys.

    SciTech Connect

    Dimelfi, R. J.

    1999-01-13

    Irradiation hardening is an issue of practical importance as it relates to the remanent life and the nature of failure of reactor components exposed to displacement-producing radiation. For example, irradiation-induced yield strength increases in pressure vessel steels are directly related to increases in the ductile-to-brittle-transition-temperature of these materials. Other issues associated with hardening, such as reductions in ductility, toughness and fatigue life of structural steels are also of concern. Understanding these phenomena requires studies of fundamental microstructural mechanisms of hardening. Because of the limited supply of neutron-irradiated surveillance material, difficulties posed by the radioactivity of neutron-exposed samples and the uncertainty of irradiation conditions in this case, fundamental studies are often conducted using well-controlled experiments involving irradiation by electrons instead of neutrons. Also, in such studies, simple model alloys are used in place of steels to focus on the influence of specific alloy constituents. It is, therefore, important to understand the relationship between the results of this kind of experiment and the effects of in-reactor neutron exposure in order to use them to make predictions of significance to reactor component life. In this paper, we analyze the tensile behavior of pressure vessel steels (A212B and A350) irradiated by neutrons and electrons. The results show that the post-yield true stress/true strain behavior can provide fingerprints of the different hardening effects that result from irradiation by the two particles, which also reflect the influence of alloy content. Microstructurally-based models for irradiation-induced yield strength increases, combined with a model for strain hardening, are used to make predictions of the different effects of irradiation by the two particles on the entire flow curve that agree well with data.

  3. Post-irradiation otitis media, rhinosinusitis, and their interrelationship in nasopharyngeal carcinoma patients treated by IMRT.

    PubMed

    Hsin, Chung-Han; Tseng, Hsien-Chun; Lin, Huang-Pin; Chen, Tsai-Hsin

    2016-02-01

    This study aimed to investigate the occurrences of post-irradiation chronic suppurative otitis media (CSOM), otitis media with effusion (OME), chronic rhinosinusitis (CRS), and their interrelationship in nasopharyngeal carcinoma (NPC) patients treated by intensity-modulated radiotherapy (IMRT). A retrospective review of medical records and magnetic resonance imaging for NPC patients across a 5-year follow-up was conducted. Rhinosinusitis was diagnosed and staged by Lund-Mackay system. A total of 102 patients were enrolled in the study. On the 5th year following IMRT, 8 patients (7.8 %), 30 patients (29.4 %), and 17 patients (16.7 %) suffered from IMRT-induced CSOM, post-irradiation OME, and CRS, respectively. Analysis by logistic regression showed a lack of association between the occurrence of post-irradiation OME and CRS (P = 0.06). These observations indicated that the modern radiotherapy technique exhibits capability in decreasing the incidences of CSOM and CRS comparing to the data of traditional radiotherapy. But post-irradiation OME was still encountered in more than one-quarter of long-term survivors of NPC. Of note, rhinosinusitis in NPC survivors does not predispose to the development of post-irradiation OME, suggesting nasal irrigation might be unnecessary for the management of OME following radiotherapy.

  4. Post-Irradiation Examination of Array Targets - Part I

    SciTech Connect

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.

  5. Effect of Laser Irradiation on Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Murakami, Satoshi; Kashii, Masafumi; Kitano, Hiroshi; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Doi, Masaaki; Sugamoto, Kazuomi; Yoshikawa, Hideki; Sasaki, Takatomo

    2005-11-01

    We previously developed a protein crystallization technique using a femtosecond laser and protein crystal processing and detaching techniques using a pulsed UV laser. In this study, we examine the effect of laser irradiation on protein integrity. After several kinds of laser were irradiated on part of a solution of glycerol-6-phosphate dehydrogenase from Leuconostoc mesenteroides, we measured the enzyme activity. Femtosecond and deep-UV laser irradiations have little influence on the whole enzyme activity, whereas the enzyme lost its activity upon high-power near-infrared laser irradiation at a wavelength of 1547 nm. These results suggest that suitable laser irradiation has no remarkable destructive influence on protein crystallization or crystal processing.

  6. Post-irradiation-examination of irradiated fuel outside the hot cell

    SciTech Connect

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran; R. Paul Lind; Marc Babcock; Laurence C. Brower; Julie Jacobs; Pamela K. Hoggan

    2007-09-01

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  7. Post Irradiation Examination for Advanced Materials at Burnups Exceeding the Current Limit

    SciTech Connect

    John H. Strumpell

    2004-12-31

    Permitting fuel to be irradiated to higher burnups limits can reduce the amount of spent nuclear fuel (SNF) requiring storage and/or disposal and enable plants to operate with longer more economical cycle lengths and/or at higher power levels. Therefore, Framatome ANP (FANP) and the B&W Owner's Group (BWOG) have introduced a new fuel rod design with an advanced M5 cladding material and have irradiated several test fuel rods through four cycles. The U.S. Department of Energy (DOE) joined FANP and the BWOG in supporting this project during its final phase of collecting and evaluating high burnup data through post irradiation examination (PIE).

  8. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    SciTech Connect

    Paul Demkowicz; Jason Harp; Phil Winston; Scott A. Ploger

    2016-12-01

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.

  9. Moyamoya Syndrome: Post Cranial Irradiation of Pineal Gland Tumor

    PubMed Central

    Chiewvit, P.; Janyavanich, V.; Soonthonpong, N.; Churoj, A.; Chawalparit, O.; Suthipongchai, S.

    2001-01-01

    Summary A right-handed eight-year-old boy, with headache, vomiting and positive parinaud (s sign was diagnosed as having a pineal gland tumor which histopathological section from surgical biopsy revealed to be a germinoma. The patient underwent ventriculoperitoneal shunt for obstructive hydrocephalus. Thereafter; he received cranial irradiation as definitive treatment. He was well and went back to school until five years later he developed a transient ischemic attack. Cranial magnetic resonance imaging showed a complete cure of the pineal tumor without any other specific abnormality. Eight months later he had an episode of stroke which was demonstrated by cranial computed tomography as acute left cerebral infarction in the middle cerebral artery territory. Cerebral angiography showed Moyamoya syndrome. PMID:20663345

  10. Post-irradiation examinations of a Zr2.5Nb pressure tube of the Karachi nuclear power plant (KANUPP)

    NASA Astrophysics Data System (ADS)

    Zaheer, Mohammed Sajjad; Akhtar, Javed Iqbal; Ahmad, Ejaz; Saleem, Muhammad; Hussain, Syed Mukarrum; Qureshi, Masroor Ahmad; Khan, Azmatullah; Ali, Rafaqat; Zafarullah, Muhammad

    1996-09-01

    The results of post-irradiation examinations of a pressure tube of fuel channel No. G-12 of KANUPP have been described. A detailed study was made in Canada by AECL. A parallel investigation on its seven rings of about 50 mm length each was also carried out at PINSTECH. Visual inspection showed normal oxidation effects. Gamma spectrometry showed the presence of 95Zr and 95Nb. Microstructural study revealed the characteristic alpha plus a transformed beta phase structure.

  11. Effect of crystal orientation on hardness of He+ ion irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Huang, Shilin; Ran, Guang; Lei, Penghui; Chen, Nanjun; Wu, Shenghua; Li, Ning; Shen, Qiang

    2017-09-01

    The effect of crystal orientation on hardness in the as-received, irradiated and post-irradiation annealed tungsten samples was investigated using a nanoindenter. An effective irradiation method of He+ ions with a series of energy degraded from 200 keV to 20 keV was used to continuously irradiate polycrystalline tungsten at room temperature in order to obtain a relatively homogenous displacement damage and helium concentration from sample surface to a desired depth at a NEC 400 kV ion implanter. Some irradiated samples were then annealed at 900 °C. He+ ion irradiation induced hardness increase, oppositely for the post-irradiation annealing effect. Meanwhile, the hardness of the irradiated samples was decreased sharply in the initial stage of annealing from 0 to 1 h, and then slowed down in the latter stage from 1 h to 3 h. Crystal orientation had an obvious effect on the nanoindentation hardness. The (0 0 1)-oriented grains had highest hardness at the as-received and irradiated samples. During the annealing process, the hardness in the irradiated grains with (1 1 1) crystal orientation decreased more quickly than that in the (0 0 1)-oriented grains. The mechanism of the effect of crystal orientation on hardness was analyzed and discussed.

  12. Microstructure analysis of Kr+ irradiation and post-irradiation corrosion of modified N36 zirconium alloy

    NASA Astrophysics Data System (ADS)

    Lei, Penghui; Ran, Guang; Liu, Chenwei; Shen, Qiang; Zhang, Ruiqian; Ye, Chao; Li, Ning; Yang, Peihua; Yang, Yungchun

    2017-09-01

    The irradiation behaviors and corrosion properties of a modified N36 zirconium alloy with the composition of Zr-0.8Sn-1Nb-0.3Fe, developed by Nuclear Power Institute of China, were investigated by transmission electron microscopy and focused ion beam. The polished samples were irradiated by 400 keV Kr+ ions up to 25 dpa at 360 °C using a NEC 400 kV ion implanter. The as-received and irradiated samples were corroded for 14 days at the water-vapor environment with 10.3 MPa and 400 °C. The krypton gas bubbles were formed in zirconium matrix and their size was increased with increasing ion dose. Meanwhile, a model that related with gas bubble size and displacement damage had been established. After the corrosion, a layer composed of zircona with different stoichiometric composition was formed on the sample surface. The higher the displacement damage was, the thicker the corrosion layer would be. An empirical equation between oxide thickness and displacement damage was provided. From sample surface to matrix inner, the oxygen content was decreased with increasing corrosion depth. Correspondingly, the zircona was changed from ZrO2 with monoclinic structure on the sample surface to the mixtures of ZrO2 with tetragonal structure and ZrO2 with monoclinic structure in the middle of corrosion layer, and then to ZrO2 with tetragonal structure near alloy matrix.

  13. [Effect of infrared laser irradiation on the arterial blood pressure in liquidators of the accident at the Chernobyl power plant].

    PubMed

    Korkushko, O O

    2003-01-01

    Liquidators of Tchernobyl accident with discirculatory post-irradiation encephalopathy were treated with infra-red lazer irradiation together with a half doze of pharmacological agents usually used. Infra-red lazer irradiation has been shown to result in a significant reduce in the arterial pressure level, so it can be effective in correcting the disturbances in haemodynamics.

  14. Post-irradiation examination of capsule P13T

    SciTech Connect

    Scheffel, W.J.

    1981-08-01

    Postirradiation examination revealed excellent performance of the H-451 and TS-1240 graphite bodies and fuel rods irraidated to a peak fluence of 8.0 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/ and to a peak volume-average fuel rod temperature of 1215/sup 0/C. A range of fuel rod variables was tested matrix filler graphite, shim particles, compositions; no variable was detrimental to the rod integrity. Particle batches with coating designs representative of the LHTGR (Large HTGR) design requirements exhibited fair irradiation performance to full fast neutron exposure ((8.0 x 10/sup 25/ n/m/sup 2/) (E > 29 fJ)/sub HTGR/) and burnups of 75%. True in-service particle failures were concluded to be <0.3% for all P13T particles. The observed failure was attributed to the outer pyrolytic carbons (OPyC) layer. The failure fraction for 32 P13T fuel rods are greater than predicted, but the mean observed value is less than predicted up to fast fluences of approx. 6.0 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGT/ at 50% confidence. Incipient degradation of the SiC coating due to palladium attack was observed in the HEU UC/sub 2/-TRISO and the UCO (oxygen/uranium ratio (O/U) = 0.64) fuel rods.

  15. Bacterial brain abscess formation in post-irradiated patients: What is the possible pathogenesis?

    PubMed

    Chuang, Jimmy Ming-Jung; Lin, Wei-Che; Fang, Fu-Min; Huang, Yu-Jie; Ho, Jih-Tsun; Lu, Cheng-Hsien

    2015-09-01

    Until recently, post-radiotherapy brain abscess was considered rare, but it has become an increasingly important aetiology. Discussions of the relationship between bacterial brain abscess and radiotherapy (RT) are rare in the literature. Our clinical study was conducted to analyse the role of RT in the pathogenesis of bacterial brain abscess. For our retrospective study, 146 patients with bacterial brain abscess were recruited. Ten patients with a history of RT before brain abscess formation were reviewed. Eight of these patients underwent RT treatment for nasopharyngeal carcinoma, one for olfactory neuroblastoma, and another for nasal plasmacytoma. Three showed presence of temporal lobe radiation necrosis neighbouring abscess. Eight patients were shown to have the evidence of tumour invasion. Seven had evidence of nasal infection or otitis media. Statistically significant differences between the RT and non-RT patients were observed for radionecrosis, bone defects between the middle fossa/sphenoid sinus, and the presence of nasal infection/otitis media. The mortality rate was 30%. This study shows possible pathogenesis of bacterial brain abscess formation in post-irradiated patients, which is complicated by both radiation effects and tumour effects. Skull base deficits (either from tumour erosion or osteonecrosis) and nasal/ear infection were significantly different in patients who received radiation vs. those who did not. Radiation-related temporal lobe necrosis was also a predisposing factor. Further study based on a proper patient cohort is warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evaluation of Intra Root Canal Er,Cr:YSGG Laser Irradiation on Prosthetic Post Adherence.

    PubMed

    Quinto, Jose; Amaral, Marcello Magri; Francci, Carlos Eduardo; Ana, Patricia Aparecida; Moritz, Andreas; Zezell, Denise Maria

    2017-03-03

    In clinical prosthetics procedures, including endodontics and post fixation, the presence of a smear layer can reduce the post bond strength. An Er,Cr:YSGG laser, which emits at 2780 nm, can promote a smear-layer-free surface due to the ablation process. Considering these aspects, the purpose of this work was to evaluate the influence of Er,Cr:YSGG laser irradiation using either a radial or an axial fiber tip on the bond strength of three resin cements to the fiber-reinforced composite posts. Ninety recently extracted single rooted human teeth had their root canal instrumented and were randomly distributed into nine experimental groups, in which three resin cements (total-etching Variolink II, self-etching Panavia F, and self-adhesive RelyX Unicem Aplicap) and three root canal treatments (no treatment, laser irradiation using the radial fiber tip, laser irradiation using the axial fiber tip) were used. Specimens were then sectioned into three sections (cervical, middle, and apical thirds) with two slices on each section. A push-out test was performed on each slice, and the values were recorded as MPa. The push-out data were analyzed by a Ryan-Joiner normality test followed by a two-way ANOVA test and Tukey pairwise comparison. The statistical analysis was performed on each third section separately, with a 5% significance level. Laser irradiation with axial fiber tip significantly increased the post bond strength of RelyX Unicem Aplicap on middle third of specimens (p < 0.001) when compared to other root canal treatments (unlased or irradiated with radial tip). Considering the Panavia resin cement, laser irradiation with either axial or radial tips promoted a significant increase on the post bond strength of middle third when compared to unlased specimens (p < 0.001); however, laser irradiation did not influence the post bond strength of Variolink resin cement. The use of the Er,Cr:YSGG laser for clinical prosthetics procedures enhances the post bond strength of

  17. Nuclear fuel post-irradiation examination equipment package

    SciTech Connect

    DeCooman, W.J.; Spellman, D.J.

    2007-07-01

    Hot cell capabilities in the U.S. are being reviewed and revived to meet today's demand for fuel reliability, tomorrow's demands for higher burnup fuel and future demand for fuel recycling. Fuel reliability, zero tolerance for failure, is more than an industry buzz. It is becoming a requirement to meet the rapidly escalating demands for the impending renaissance of nuclear power generation, fuel development, and management of new waste forms that will need to be dealt with from programs such as the Global Nuclear Energy Partnership (GNEP). Fuel performance data is required to license fuel for higher burnup; to verify recycled fuel performance, such as MOX, for wide-scale use in commercial reactors; and, possibly, to license fuel for a new generation of fast reactors. Additionally, fuel isotopic analysis and recycling technologies will be critical factors in the goal to eventually close the fuel cycle. This focus on fuel reliability coupled with the renewed interest in recycling puts a major spotlight on existing hot cell capabilities in the U.S. and their ability to provide the baseline analysis to achieve a closed fuel cycle. Hot cell examination equipment is necessary to determine the characteristics and performance of irradiated materials that are subjected to nuclear reactor environments. The equipment within the hot cells is typically operated via master-slave manipulators and is typically manually operated. The Oak Ridge National Laboratory is modernizing their hot cell nuclear fuel examination equipment, installing automated examination equipment and data gathering capabilities. Currently, the equipment has the capability to perform fuel rod visual examinations, length and diametrical measurements, eddy current examination, profilometry, gamma scanning, fission gas collection and void fraction measurement, and fuel rod segmentation. The used fuel postirradiation examination equipment was designed to examine full-length fuel rods for both Boiling Water

  18. Evaluation of irradiation effects on concrete structure

    SciTech Connect

    Kontani, O.; Ishizawa, A.; Maruyama, I.; Takizawa, M.; Sato, O.

    2012-07-01

    In assessing the soundness of irradiated concrete of nuclear power plants operated for more than 30 years, reference levels are employed: 1x10{sup 20} n/cm{sup 2} for fast neutrons and 2x10{sup 10} rad (2x10{sup 5} kGy) for gamma rays. Concrete structures are regarded as sound when the estimated irradiance levels after 60 years of operation are less than the reference levels. The reference levels were obtained from a paper by Hilsdorf. It was found, however, that the test conditions in which data were obtained by the researchers referred in that paper are very different from the irradiation and heat conditions usually found in a Light Water Reactor (LWR), and therefore aren't appropriate for assessing the soundness of irradiated concrete of an LWR. This paper investigates the interactions between radiation and concrete and presents the results of gamma ray irradiation tests on cement paste samples in order to provide a better understanding of the irradiation effects on concrete. (authors)

  19. Detailed Destructive Post-Irradiation Examinations of Mixed Uranium and Plutonium Oxide Fuel

    SciTech Connect

    Delashmitt, Jeffrey {Jeff} S; Keever, Tamara {Tammy} Jo; Smith, Rob R; Hexel, Cole R; Ilgner, Ralph H

    2010-01-01

    The United States Department of Energy (DOE) Fissile Materials Disposition Program (FMDP) is pursuing disposal of surplus weapons-usable plutonium by reactor irradiation as the fissile constituent of MOX fuel. Lead test assemblies (LTAs) have been irradiated for approximately 36 months in Duke Energy's Catawba-1 nuclear power plant (NPP). Per the mixed oxide (MOX) fuel topical report, approved by the U.S. Nuclear Regulatory Commission (NRC), destructive post-irradiation examinations (PIEs) are to be performed on second cycle rods (irradiated to an average burnup of approximately 45 GWd/MTHM). The Radiochemical Analysis Group (RAG) at Oak Ridge National Laboratory (ORNL) is currently performing the detailed destructive post-irradiation examinations (PIE) on four of the mixed uranium and plutonium oxide fuel rods. The analytical process involves dissolution of designated fuel segments in a shielded hot cell for high precision quantification of select fission products and actinide isotopes employing isotope dilution mass spectrometry (IDMS) among other analyses. The hot cell dissolution protocol to include the collection and subsequent alkaline fusion digestion of the fuel's acid resistant metallic particulates will be presented. Although the IDMS measurements of the fission products and actinide isotopes will not be completed by the time of the 51st INMM meeting, the setup and testing of the HPLC chromatographic separations in preparation for these measurements will be discussed.

  20. The volume effect in irradiated mouse colorectum

    NASA Astrophysics Data System (ADS)

    Skwarchuk, Mark William

    1997-11-01

    Damage of the colorectum is the dose-limiting normal tissue complication following radiotherapy of prostate and cervical cancers. One approach for decreasing complications is to physically reduce the treatment volume. Mathematical models have been previously developed to describe the change in associated toxicity with a change in irradiated volume, i.e. the 'volume effect', for serial-type normal tissues including the colorectum. The first goal of this thesis was to test the hypothesis that there would not be a threshold length in the development of obstruction after irradiation of mouse colorectum, as predicted by the Probability model of the volume effect. The second goal was to examine if there were differences in the threshold and in the incidence of colorectal obstruction after irradiation of two mouse strains, C57B1/6 (C57) and C3Hf/Kam (C3H), previously found to be fibrosis-prone and-resistant, respectively, after lung irradiation due, in part, to genetic differences. The hypothesis examined was that differences in incidence between strains were due to the differential expression of the fibrogenic cytokines TGF/beta and TNF/alpha. Various lengths of C57 and C3H mouse colorectum were irradiated and the incidence of colorectal obstruction was followed up to 15 months. A threshold length was observed for both mouse strains, in contradiction of model predictions. The mechanism of the threshold was epithelial regeneration after irradiation. C57 mice had significantly higher incidence of colorectal obstruction compared to C3H mice, especially at smaller irradiated lengths. Colorectal tissue was obtained at various times after irradiation and prepared for histology, immunohistochemistry and RNase protection assay for measurement of TGF/beta 1, 2, 3 and TNF/alpha mRNA. Distinct strain differences in the histological time of appearance and spatial locations of fibrosis were observed. However, there were no consistent strain difference in mRNA levels or

  1. Short-Term Peripheral Auditory Effects of Cranial Irradiation: A Mouse Model

    PubMed Central

    Gasser Rutledge, Krysta L.; Prasad, Kumar G.; Emery, Kara R.; Mikulec, Anthony A.; Varvares, Mark; Gratton, Michael Anne

    2015-01-01

    Objectives Assess post-cranial irradiation short-term threshold shift short-term peripheral auditory histopathology the mouse as an experimental model Methods Adult mice were exposed to single-dose radiation of 10 – 60 Gy. Pre- and post-irradiation (baseline, 2 – 8 days) audiometric brainstem response data were recorded with analysis of cochlear ultrastructure. Results Significant threshold shift occurred at all test frequencies in mice exposed to ≥ 20 Gy at 4 – 6 days post-irradiation. Ultrastructurally in Rosenthal’s canal and the spiral lamina, neuronal density and extracellular matrix decreased dramatically. There was overall preservation of hair cells, stria vascularis, and vasculature. No difference within Gy group was noted in the frequency or severity of pathology along the length of the cochlea. Conclusions The initial impact of radiation in the first week post-exposure focuses on spiral ganglion cell bodies and peripheral projections, resulting in significant threshold shift for irradiation dosages ≥ 20 Gy. This study demonstrates that the mouse is a viable model for study of short-term peripheral auditory effects using single-dose cranial irradiation. Additionally, with access to a precise animal irradiator, the mouse may be used as an experimental model for a fractionated irradiation dosage of 10 Gy, simulating stereotactic therapeutic cranial irradiation. PMID:26085370

  2. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    SciTech Connect

    Demkowicz, Paul Andrew

    2016-12-01

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A series of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).

  3. Green laser irradiation effects on buffalo semen.

    PubMed

    Abdel-Salam, Z; Dessouki, S H M; Abdel-Salam, S A M; Ibrahim, M A M; Harith, M A

    2011-04-01

    The overall objective of this paper is to develop a more sensitive and less costly technique of laser irradiation of spermatozoa at certain wavelengths and exposure times suitable for improvement of buffalo semen quality. A 532 nm continuous wave (CW) DPSS laser light has been used to irradiate buffalo semen for different time intervals. Three semen pools from three different bulls (Bubalus bubalis) were used in the experiment, each pool was divided into six groups : control (not irradiated), and the other five were exposed to laser light for 1, 2, 3, 4 and 5 minutes with fluencies of 0.076, 0.15, 0.23, 0.31, and 0.38 Joule/cm² respectively at an output power 1mW. The results show that the semen quality parameters increase under the effect of laser irradiation. Maximum improvement in the semen quality has been reached after 4 minutes of exposure. Such results indicate the possibility of adopting laser irradiation as an easy and straightforward technique for in situ improvement of the semen quality to optimize the artificial insemination conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  5. Effects of irradiation on platelet function

    SciTech Connect

    Rock, G.; Adams, G.A.; Labow, R.S.

    1988-09-01

    Current medical practice involves the irradiation of blood components, including platelet concentrates, before their administration to patients with severe immunosuppression. The authors studied the effect of irradiation on in vitro platelet function and the leaching of plasticizers from the bag, both immediately and after 5 days of storage. The platelet count, white cell count, pH, glucose, lactate, platelet aggregation and release reaction, and serotonin uptake were not altered by the irradiation of random-donor or apheresis units with 2000 rads carried out at 0 and 24 hours and 5 days after collection. The leaching of di(2-ethylhexyl)phthalate from the plastic bags followed by the conversion to mono(2-ethylhexyl)phthalate was not increased by irradiation. Therefore, it is possible to irradiate platelet concentrates on the day of collection and subsequently store them for at least 5 days while maintaining in vitro function. This procedure could have considerable benefit for blood banks involved in the provision of many platelet products.

  6. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-08-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  7. Effects of gamma irradiation on deteriorated paper

    NASA Astrophysics Data System (ADS)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  8. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect

    Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2012-10-01

    As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

  9. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect

    Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2014-05-01

    As part of the High Temperature Reactors (HTR) R&D program, a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. While not possible to obtain by direct measurements in the tests, crucial fuel conditions (e.g., temperature, neutron fast fluence, and burnup) are calculated using core physics and thermal modeling codes. This paper is focused on AGR test fuel temperature predicted by the ABAQUS code's finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for qualification of AGR-1 thermocouple data. Abnormal trends in measured data revealed by the statistical analysis are traced to either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. The main thrust of this work is to exploit the variety of data obtained in irradiation and post-irradiation examination (PIE) for assessment of modeling assumptions. As an example, the uneven reduction of the control gas gap in Capsule 5 found in the capsule metrology measurements in PIE helps identify mechanisms other than TC drift causing the decrease in TC readings. This suggests a more physics-based modification of the thermal model that leads to a better fit with experimental data, thus reducing model uncertainty and increasing confidence in the calculated fuel temperatures of the AGR-1 test.

  10. Post-curing conversion kinetics as functions of the irradiation time and increment thickness

    PubMed Central

    SCOTTI, Nicola; VENTURELLO, Alberto; BORGA, Francesco Andrea Coero; PASQUALINI, Damiano; PAOLINO, Davide Salvatore; GEOBALDO, Francesco; BERUTTI, Elio

    2013-01-01

    Objective: This study evaluated the variation of conversion degree (DC) in the 12 hours following initial photoactivation of a low-shrinkage composite resin (Venus Diamond). Material and Methods: The conversion degree was monitored for 12 hours using Attenuated Total Reflection (ATR) F-TIR Spectroscopy. The composite was placed in 1 or 2 mm rings and cured for 10 or 20 seconds with a LED lamp. ATR spectra were acquired from the bottom surface of each sample immediately after the initial photoactivation (P=0), 30 minutes (P=0.5) and 12 hours after photoactivation (P=12) in order to obtain the DC progression during the post-curing period. Interactions between thickness (T), irradiation time (I) and post-curing (P) on the DC were calculated through ANOVA testing. Results: All the first order interactions were statistically significant, with the exception of the T-P interaction. Furthermore, the shift from P=0 to P=0.5 had a statistically higher influence than the shift from P=0.5 to P=12. The post-curing period played a fundamental role in reaching higher DC values with the low-shrinkage composite resin tested in this study. Moreover, both the irradiation time and the composite thickness strongly influenced the DC. Conclusions: Increased irradiation time may be useful in obtaining a high conversion degree (DC) with a low-shrinkage nano-hybrid composite resin, particularly with 2 mm composite layers. PMID:23739861

  11. Long-term effects of orbital irradiation

    SciTech Connect

    Guyuron, B.; Dagys, A.P.; Munro, I.R.

    1987-11-01

    This retrospective study is a review of 18 patients who received radiotherapy to the orbit between the ages of 1 month and 10 years. Patients were followed for 7-21 years in an attempt to define the effects of orbital irradiation on a growing child. None of the patients in the study was spared injurious effects on soft tissue or bone, but soft tissue appeared to be more vulnerable to radiation than bone. Orbital irradiation caused soft tissue deficits of the upper face in 100% of the patients. Sixty-seven percent of patients had soft tissue deformities of the midface, and 13% had soft tissue deformities of the lower face. Bony deficits were found in the upper face in 67% of the patients, the midface in 50%, and the lower face in 6%. This study found no correlation between age and time of radiotherapy on the effects of facial growth.

  12. Post-irradiation examination of the Spallation Neutron Source target module

    NASA Astrophysics Data System (ADS)

    McClintock, D. A.; Ferguson, P. D.; Mansur, L. K.

    2010-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of the target module. Though cavitation erosion and radiation damage to the target vessel are expected to dictate its lifetime, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post-irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  13. The Effect of Neutron Irradiation on the Fracture Toughness of Graphite

    SciTech Connect

    Burchell, Timothy D; Strizak, Joe P

    2012-01-01

    As part of our irradiated graphite recycle program a small quantity of PCEA grade graphite was irradiated in the High Flux Isotope Reactor (HFIR) at ORNL. The graphite will provide the raw material for future recycle experiments. The geometry of the irradiated graphite allowed us to study the effects of neutron irradiation on the Critical Stress Intensity Factor, KIc, of graphite. The specimens where irradiated in two groups of 6 at an irradiation temperature of 900 C in rabbit capsules to doses of 6.6 and 10.2 DPA, respectively. Following a full suite of pre-and post-irradiation examination, which included dimensions, mass, electrical resistivity, elastic constants, and thermal expansion (to 800 C) the samples were notched and tested to determine their KIc using the newly approved ATSM test method for SENB fracture toughness of graphite. Here we report the irradiation induced changes in the dimensions, elastic constants, resistivity, and coefficient of thermal expansion of PCEA graphite. Moreover, irradiation induced changes in the Critical Stress Intensity Factor, KIc, or fracture toughness, are reported and discussed. Very little work on the effect of neutron irradiation on the fracture toughness of graphite has previously be performed or reported.

  14. Quantification of biologically effective environmental UV irradiance

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance: (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb; (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve; and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.

  15. Impairment in extinction of contextual and cued fear following post-training whole-body irradiation.

    PubMed

    Olsen, Reid H J; Marzulla, Tessa; Raber, Jacob

    2014-01-01

    Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.

  16. Impairment in Extinction of Contextual and Cued Fear Following Post-Training Whole-Body Irradiation

    PubMed Central

    Olsen, Reid H. J.; Marzulla, Tessa; Raber, Jacob

    2014-01-01

    Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall. PMID:25071488

  17. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation.

    PubMed

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2010-10-06

    We report on post-synthesis carbon doping of individual boron nitride nanotubes (BNNTs) via in situ electron-beam irradiation inside an energy-filtering 300 keV high-resolution transmission electron microscope. The substitution of C for B and N atoms in the honeycomb lattice was demonstrated through electron energy loss spectroscopy, spatially resolved energy-filtered elemental mapping, and in situ electrical measurements. Substitutional C doping transformed BNNTs from electrical insulators to conductors. In comparison with the existing post-synthesis doping methods for nanoscale materials (e.g., ion implantation and diffusion), the discovered electron-beam-induced doping is a well-controlled, little-damaging, room-temperature, and simple strategy that is expected to demonstrate great promise for post-synthesis doping of diverse nanomaterials in the future.

  18. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  19. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  20. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    SciTech Connect

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-30

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  1. Modeling plastic deformation of post-irradiated copper micro-pillars

    NASA Astrophysics Data System (ADS)

    Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.

    2014-12-01

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  2. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  3. Calibrated photostimulated luminescence is an effective approach to identify irradiated orange during storage

    NASA Astrophysics Data System (ADS)

    Jo, Yunhee; Sanyal, Bhaskar; Chung, Namhyeok; Lee, Hyun-Gyu; Park, Yunji; Park, Hae-Jun; Kwon, Joong-Ho

    2015-06-01

    Photostimulated luminescence (PSL) has been employed as a fast screening method for various irradiated foods. In this study the potential use of PSL was evaluated to identify oranges irradiated with gamma ray, electron beam and X-ray (0-2 kGy) and stored under different conditions for 6 weeks. The effects of light conditions (natural light, artificial light, and dark) and storage temperatures (4 and 20 °C) on PSL photon counts (PCs) during post-irradiation periods were studied. Non-irradiated samples always showed negative values of PCs, while irradiated oranges exhibited intermediate results after first PSL measurements. However, the irradiated samples had much higher PCs. The PCs of all the samples declined as the storage time increased. Calibrated second PSL measurements showed PSL ratio <10 for the irradiated samples after 3 weeks of irradiation confirming their irradiation status in all the storage conditions. Calibrated PSL and sample storage in dark at 4 °C were found out to be most suitable approaches to identify irradiated oranges during storage.

  4. Breast Cancer Patients' Preferences for Adjuvant Radiotherapy Post Lumpectomy: Whole Breast Irradiation vs. Partial Breast Irradiation-Single Institutional Study.

    PubMed

    Bonin, Katija; McGuffin, Merrylee; Presutti, Roseanna; Harth, Tamara; Mesci, Aruz; Feldman-Stewart, Deb; Chow, Edward; Di Prospero, Lisa; Vesprini, Danny; Rakovitch, Eileen; Lee, Justin; Paszat, Lawrence; Doherty, Mary; Soliman, Hany; Ackerman, Ida; Cao, Xingshan; Kiss, Alex; Szumacher, Ewa

    2016-03-15

    This study was conducted to elucidate patients with early breast cancer preference for standard whole breast irradiation (WBI) or partial breast irradiation (PBI) following lumpectomy, as well as identify important factors for patients when making their treatment decisions. Based on relevant literature and ASTRO consensus statement guidelines, an educational tool and questionnaire were developed. Consenting, eligible women reviewed the educational tool and completed the trade-off questionnaire. Descriptive statistics were calculated, as well as chi-squares and a logistic regression model. Of the 90 patients who completed the study, 62 % preferred WBI, 30 % preferred PBI, 4 % required more information, and 3 % had no preferences. Of the patients who chose WBI, 58 % preferred hypofractionated RT, whereas 25 % preferred the conventional RT regimen. The majority of patients rated recurrence rate [WBI = 55/55 (100 %), PBI = 26/26 (100 %)] and survival [WBI = 54/55 (98 %), PBI = 26/26 (100 %)] as important factors contributing to their choice of treatment preference. Financial factors [WBI = 21/55 (38 %), PBI = 14/26 (53 %)] and convenience [WBI = 36/54 (67 %), PBI = 18/26 (69 %)] were rated as important less frequently. Significantly, more patients who preferred WBI also rated standard method of treatment as important when compared to patients who preferred PBI [WBI = 52/54 (96 %), PBI = 16/26 (61 %), χ (2) = 16.63, p = 0.001]. The majority of patients with early breast cancer who were surveyed for this study preferred WBI as an adjuvant treatment post lumpectomy, yet there was a sizeable minority who preferred PBI. This was associated with the importance patients place on standard treatment. These results will help medical professionals treat patients according to patient values.

  5. An animal model of prophylactic cranial irradiation: Histologic effects at acute, early and delayed stages

    SciTech Connect

    Mildenberger, M.; Beach, T.G.; McGeer, E.G.; Ludgate, C.M. )

    1990-05-01

    Wistar rats (body wt. 200 g) were subjected to a fractionated course of radiation similar to that used in prophylactic brain irradiation for small cell carcinoma of the lung (2000 cGy in 5 fractions over 5 days with {sup 60}Co). Effects of this regimen were assessed by histologic examination of brain sections at 1 week, 1 month and 6 months post-irradiation. With conventional stains there were no apparent differences between control and irradiated brains at any of the post-irradiation intervals. Immunohistochemistry for neurotransmitter synthetic enzymes tyrosine hydroxylase and glutamate decarboxylase, as well as histochemistry for acetylcholinesterase, failed to uncover any changes in the irradiated animals. Immunohistochemistry for glial fibrillary acidic protein, an astrocyte marker, also showed no differences in the irradiated groups. However, an antibody against a major histocompatibility complex, class II antigen (OX-6) revealed a microglial response in grey and white matter beginning at 1 month and increasing up to the 6 month post-irradiation interval. The neuroanatomical basis for this microglial response was suggested by the results of silver stains for nerve axons, which revealed axonal loss in striatal white matter bundles in a pattern implicating vascular insufficiency.

  6. Summary of Post Irradiation Examination Results of the AFIP-6 Failure

    SciTech Connect

    Adam Robinson; Daniel M. Wachs; Francine Rice; Danielle Perez

    2011-10-01

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contain a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, flow restriction resulted in low heat transfer coefficients and the failure of the fuel plates. The results from the post irradiation examinations and some observations of the failure mechanisms are outlined herein.

  7. IRRADIATION EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SEWAGE SLUDGE

    SciTech Connect

    Lee, M-J.; Lee, J-K.; Yoo, D-H.; Ho, K.

    2004-10-05

    The radiation effects on the physical characteristic of the sewage sludge were studied in order to obtain information which will be used for study on the enhancement of the sludge's dewaterability. Water contents, capillary suction time, zeta potential, irradiation dose, sludge acidity, total solid concentration, sludge particle size and microbiology before and after irradiation were investigated. Irradiation gave an effect on physical characteristics sludge. Water content in sludge cake could be reduced by irradiation at the dose of 10kGy.

  8. Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats.

    PubMed

    Wiegman, Erwin M; van Gameren, Mieke M; Kampinga, Harm H; Szabó, Ben G; Coppes, Rob P

    2004-07-01

    The purpose of this study was to investigate whether application of post-irradiation vitamin E, an anti-oxidant, could prevent the development of radiation induced lung damage. Wistar rats were given vitamin E enriched or vitamin E deprived food starting from 4 weeks after 18Gy single dose irradiation of the right thorax. Neither breathing frequencies nor CT density measurements revealed differences between the groups. It is concluded that post-irradiation vitamin E does not influence radiation-induced fibrosis to the lung.

  9. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    SciTech Connect

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment were different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.

  10. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGES

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment weremore » different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  11. The effect of gamma irradiation on injectable human amnion collagen

    SciTech Connect

    Liu, B.C.; Harrell, R.; Davis, R.H.; Dresden, M.H.; Spira, M. )

    1989-08-01

    The effect of gamma irradiation on the physicochemical properties of injectable human amnion collagen was investigated. Pepsin-extracted human amnion collagen was purified, reconstituted, and irradiated with varying doses of gamma irradiation (0.25 Mrads to 2.5 Mrads). Gamma irradiation had a significant impact on the physical characteristics of the collagen. The neutral solubility of collagen in PBS at 45{degrees}C was decreased from 100% for the nonirradiated control sample to 16% for the 2.5 Mrads irradiated sample. SDS polyacrylamide gel electrophoresis also demonstrated the dose-dependent effect of gamma irradiation on collagen cross-links. Electron microscopic observation revealed that even at low irradiation dose (0.25 Mrads), collagen fibril diameter increased. The average diameter was 50 nm for nonirradiated control fibrils, while 4.4% of the irradiated collagen fibrils had a diameter greater than 100 nm. Irradiated collagen showed little evidence of damage. Well-preserved cross-striations were found in collagen fibrils at all doses of irradiation. Native amnion collagen irradiated with gamma rays demonstrated a slight increase in resistance to collagenase degradation compared with nonirradiated native collagen samples. Increased resistance to collagenase did not correlate with increasing irradiation dose. After 30 min of incubation at 37{degrees}C, both irradiated and nonirradiated collagen was completely digested by collagenase. However, gamma-irradiated collagen did become more sensitive to hydrolysis by trypsin. The higher the irradiation doses used, the greater sensitivity to trypsin was observed. At 0.25 Mrads irradiation only a slight increase was found. No marked differences in amino acid composition were noted among the high dose irradiated, low dose irradiated and control amnion collagen.

  12. The effect of gamma radiation on the lipid profile of irradiated red blood cells.

    PubMed

    Maia, Grazielle Aparecida Silva; Renó, Cristiane de Oliveira; Medina, Jorge Mansur; Silveira, Alan Barbosa da; Mignaco, Julio Alberto; Atella, Georgia Correa; Cortes, Vanessa Faria; Barbosa, Leandro Augusto; Santos, Hérica de Lima

    2014-05-01

    An investigation into the effects of irradiation and of the storage time on aging and quality are a relevant issue to ensure the safety and the efficiency of irradiation in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). In this work, the biochemical properties and alterations presented by erythrocyte membranes, up to 28-days post-irradiation, with a dose of 25 Gy, were studied as a function of storage and post-irradiation time. There was a considerable variation in the total of phospholipid content, when comparing the control and irradiated samples, mostly from the third day onwards; and at the same time, the effect occurred as a function on the storage time of blood bags. The levels of total cholesterol decreased 3-9 days after irradiation. TBARS levels were increased after irradiation and 7 days of storage, but no increment of catalase activity was observed after the irradiation. Furthermore, the protein profile was maintained throughout the irradiation and storage time, until the 21st day, with the presence of a protein fragmentation band of around 28 kDa on the 28th day. In conclusion, although gamma irradiation is the main agent for the prevention of TA-GVHD, a better understanding of the physical and biochemical properties of erythrocytes are necessary to better assess their viability, and to be able to issue more secure recommendations on the shelf life of blood bags, and the safe use of the irradiated red cells therein.

  13. DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation.

    PubMed

    Takabatake, Masaru; Blyth, Benjamin J; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Mayumi; Fukushi, Masahiro; Shimada, Yoshiya

    2016-01-01

    Several lines of evidence indicate one's age at exposure to radiation strongly modifies the risk of radiation-induced breast cancer. We previously reported that rat mammary carcinomas induced by pre- and post-pubertal irradiation have distinct gene expression patterns, but the changes underlying these differences have not yet been characterized. The aim of this investigation was to see if differences in CpG DNA methylation were responsible for the differences in gene expression between age at exposure groups observed in our previous study. DNA was obtained from the mammary carcinomas arising in female Sprague-Dawley rats that were either untreated or irradiated (γ-rays, 2 Gy) during the pre- or post-pubertal period (3 or 7 weeks old). The DNA methylation was analyzed using CpG island microarrays and the results compared to the gene expression data from the original study. Global DNA hypomethylation in tumors was accompanied by gene-specific hypermethylation, and occasionally, by unique tumor-specific patterns. We identified methylation-regulated gene expression candidates that distinguished the pre- and post-pubertal irradiation tumors, but these represented only 2 percent of the differentially expressed genes, suggesting that methylation is not a major or primary mechanism underlying the phenotypes. Functional analysis revealed that the candidate methylation-regulated genes were enriched for stem cell differentiation roles, which may be important in mammary cancer development and worth further investigation. However, the heterogeneity of human breast cancer means that the interpretation of molecular and phenotypic differences should be cautious, and take into account the co-variates such as hormone receptor status and cell-of-origin that may influence the associations.

  14. DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation

    PubMed Central

    Takabatake, Masaru; Blyth, Benjamin J.; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Mayumi; Fukushi, Masahiro; Shimada, Yoshiya

    2016-01-01

    Several lines of evidence indicate one’s age at exposure to radiation strongly modifies the risk of radiation-induced breast cancer. We previously reported that rat mammary carcinomas induced by pre- and post-pubertal irradiation have distinct gene expression patterns, but the changes underlying these differences have not yet been characterized. The aim of this investigation was to see if differences in CpG DNA methylation were responsible for the differences in gene expression between age at exposure groups observed in our previous study. DNA was obtained from the mammary carcinomas arising in female Sprague-Dawley rats that were either untreated or irradiated (γ-rays, 2 Gy) during the pre- or post-pubertal period (3 or 7 weeks old). The DNA methylation was analyzed using CpG island microarrays and the results compared to the gene expression data from the original study. Global DNA hypomethylation in tumors was accompanied by gene-specific hypermethylation, and occasionally, by unique tumor-specific patterns. We identified methylation-regulated gene expression candidates that distinguished the pre- and post-pubertal irradiation tumors, but these represented only 2 percent of the differentially expressed genes, suggesting that methylation is not a major or primary mechanism underlying the phenotypes. Functional analysis revealed that the candidate methylation-regulated genes were enriched for stem cell differentiation roles, which may be important in mammary cancer development and worth further investigation. However, the heterogeneity of human breast cancer means that the interpretation of molecular and phenotypic differences should be cautious, and take into account the co-variates such as hormone receptor status and cell-of-origin that may influence the associations. PMID:27711132

  15. Identification and location of 14C-bearing species in thermally treated neutron irradiated graphites NBG-18 and NBG-25: Pre- and post-thermal treatment

    NASA Astrophysics Data System (ADS)

    LaBrier, Daniel; Dunzik-Gougar, Mary Lou

    2015-05-01

    Recent studies have been performed to determine the effectiveness of thermal treatment as a method for removing 14C contamination from irradiated graphite surfaces. Samples of two grades of irradiated nuclear graphite (NBG-18 and NBG-25) were thermally treated to determine the amount of 14C contamination on irradiated graphite surfaces. The results of these analyses indicate that specific chemical forms of 14C (namely, 14CO and 14CO2) may be selectively removed based on the temperature used during thermal treatment. Characterization studies utilizing various surface analysis techniques (XPS, SIMS, SEM/EDS) were employed to investigate the chemical speciation, bond structure, and morphology of the surfaces of pre- and post-thermally treated irradiated graphite.

  16. Post irradiation examination of tight fit garter springs from Indian PHWR

    NASA Astrophysics Data System (ADS)

    Dubey, J. S.; Shriwastaw, R. S.; Kumar, Ashwini; Shah, Priti Kotak; Rath, B. N.; Kumar, Sunil; Mishra, Prerna; Alur, V. D.; Mallik, G. K.; Anantharaman, S.

    2015-07-01

    Garter springs play an important role in maintaining the annulus gap between hot pressure tubes and cold calandria tubes of PHWRs. Post irradiation examination (PIE) was carried out on the garter springs removed from Indian PHWR after around 8 and 15 Hot Operating Years (HOY). PIE studies included visual examination, dimensional measurements, metallographic examination and relevant mechanical tests. The girdle wires of these garter springs were also examined and subjected to the tension and bend tests. This paper gives the results of the PIE investigations and discusses its relevance for continued performance of garter springs in PHWRs.

  17. Post-Deposition Induced Conductivity in Pulsed Laser Irradiated Metal Doped Zinc Oxide Films

    SciTech Connect

    Wang, Lisa J; Exarhos, Gregory J

    2009-12-03

    The optical and electrical properties of doped solution-deposited and rf sputter-deposited thin metal oxide films were investigated following post deposition pulsed laser irradiation. Solution deposited films were annealed at 450 ºC. Following the heating regiment, the transparent metal oxide films were subjected to 355 nm pulsed Nd:YAG laser irradiation (4 nsec pulsewidth) at fluences between 5 and 150 mJ/cm2. Irradiation times at pulse frequencies of 30 Hz ranged from seconds to tens of minutes. Film densification, index change and a marked increase in conductivity were observed following irradiation in air and under vacuum of Al:ZnO (AZO), Ga:ZnO (GZO), and In:ZnO (IZO) films deposited on silica substrates. Despite the measured increase in conductivity, all films continued to show high transparency on the order of 90% at wavelengths from the band edge well into the near infrared region of the spectrum. Laser energies required for turning on the conductivity of these films varied depending upon the dopant. Irradiations in air yielded resistivity measurements on the order of 16.cm. Resistivities of films irradiated under vacuum were on the order of 0.1.cm. The increase in conductivity can be attributed to the formation of oxygen vacancies and subsequent promotion of free carriers into the conduction band. All irradiated films become insulating after around 24 hours. Oxygen atoms in air become reduced by electrons in the metal conduction band and diffuse into the vacancies in the lattice. The rate of this reduction process depends on the type of dopant. This work also sheds light on the damage threshold, correlating the optical properties with the presence of free carriers that have been introduced into the conduction band. All films were characterized by means of UV-VIS-NIR transmission spectroscopy, visible and UV Raman spectroscopy and Hall measurements. Analysis of interference fringes in measured transmission spectra allowed film density and refractive index

  18. Phytosanitary irradiation and fresh fruit quality: Cultivar and maturity effects

    USDA-ARS?s Scientific Manuscript database

    Irradiation is an effective quarantine treatment for global trade of fresh produce. Variation in cultivars and maturity stages can impact the tolerance of fresh fruits to irradiation for the purposes of quarantine security. Tolerance thresholds for irradiated fruit are lacking for a large number of ...

  19. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    SciTech Connect

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  20. SU-E-T-222: Investigation of Pre and Post Irradiation Fading of the TLD100 Thermoluminescence Dosimetry for Photon Beams

    SciTech Connect

    Sina, S; Sadeghi, M; Faghihi, R

    2014-06-01

    Purpose: The pre-irradiation and post-irradiation fading of the Thermoluminescense dosimeter signals were investigated in this study. Methods: Two groups of TLD chips with pre-determined ECC values were used in this study. The two groups were divided into 6 series, each composing of 5 TLD chips.The first group was used for pre-irradiation fading. 5 TLDs were exposed to a known amount of radiation from Cs-137 source, and were read out the next day. After seven days, the other 5 TLDs were exposed to the same amount of radiation and were read out after a day. The other series of 5 TLDs were also exposed after 7,19,28, 59, and 90 days, and were read out a day after irradiation. The loss in TLD signal were obtained for all the above cases. The second group, was used for postirradiation fading. All the TLDs of this group were exposed to a known amount of radiation from Cs-137 source. The 6 series composed of 5 TLDs were read out after 1,7,19,28,59, and 90 days. The above-mentioned procedures for obtaining pre-irradiation, and post-irradiation fading were performed for three storage temperatures (25°C, 4°C, and −18°C). Results: According to the results obtained in this study, in case of pre-irradiation fading study, the signal losses after 90 days are 12%, 24%, and 17% for 25°C, 4°C, and −18°C respectively. In case of post-irradiation fading study, the sensitivity losses after 90 days are 25%, 216%, and 20% for 25°C, 4°C, and −18°C respectively. Conclusion: The results indicate that the optimized time between exposing and reading out, and also the optimized time between annealing and exposing is 1 day.The reduction of Storage temperature will reduce the post-irradiation fading, While temperature reduction does not have any effect on pre-irradiation fading.

  1. Antiapoptotic effect of L-carnitine on testicular irradiation in rats.

    PubMed

    Kanter, Mehmet; Topcu-Tarladacalisir, Yeter; Parlar, Sule

    2010-04-01

    We evaluated the effects of L-carnitine on apoptosis of germ cells in the rat testis following irradiation. Male Wistar rats were divided into three groups. Control group received sham irradiation plus physiological saline. Radiotherapy group received scrotal gamma-irradiation of 10 Gy as a single dose plus physiological saline. Radiotherapy + L-carnitine group received scrotal irradiation plus 200 mg/kg intraperitoneally L-carnitine. Twenty-four hours post-irradiation, the rats were sacrificed and testes were harvested. Testicular damage was examined by light and electron microscopy, and germ cell apoptosis was determined by terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate in situ nick end-labeling (TUNEL) technique. Morphologically, examination of irradiated testis revealed presence of disorganization and desquamation of germinal cells and the reduction in sperm count in seminiferous tubule lumen. Under electron microscopy, the morphological signs of apoptosis were frequently detected in spermatogonia. Apoptotic spermatogonia showed the marginal condensation of chromatin onto the nuclear lamina, nucleus and cytoplasm shrinkage and still functioning cell organelles. TUNEL-positive cells were significantly more numerous in irradiated rats than in control rats. L-carnitine treatment significantly attenuated the radiation-induced morphological changes and germ cell apoptosis in the irradiated rat testis. In conclusion, these results suggested that L-carnitine supplementation during the radiotherapy may be beneficial for spermatogenesis following testicular irradiation by decreasing germ cell apoptosis.

  2. Post-Irradiation Fracture Toughness of Unalloyed Molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244C to 507C

    SciTech Connect

    Cockeram, Brian V; Byun, Thak Sang; Leonard, Keith J; Snead, Lance Lewis

    2013-01-01

    Commercially available unalloyed molybdenum (Low Carbon Arc Cast (LCAC)), Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum were neutron irradiated at temperatures of nominally 244 C, 407 C, and 509 C to neutron fluences between 1.0 to 4.6x1025 n/m2 (E>0.1 MeV). Post-irradiation fracture toughness testing was performed. All alloys exhibited a Ductile to Brittle Transition Temperature that was defined to occur at 30 4 MPa-m1/2. The highest post-irradiated fracture toughness values (26-107 MPa-m1/2) and lowest DBTT (100-150 C) was observed for ODS molybdenum in the L-T orientation. The finer grain size for ODS molybdenum results in fine laminates that improve the ductile laminate toughening. The results for ODS molybdenum are anisotropic with lower post-irradiated toughness values (20-30 MPa-m1/2) and higher DBTT (450-600 C) in the T-L orientation. The results for T-L ODS molybdenum are consistent or slightly better than those for LCAC molybdenum (21-71 MPa-m1/2 and 450-800 C DBTT). The fracture toughness values measured for LCAC and T-L ODS molybdenum at temperatures below the DBTT were determined to be 8-18 MPa-m1/2. Lower non-irradiated fracture toughness values were measured for TZM molybdenum that are attributed to the large carbide precipitates serving as preferential fracture initiation sites. The role of microstructure and grain size on post-irradiated fracture toughness was evaluated by comparing the results for LCAC molybdenum and ODS molybdenum.

  3. Biological effects of ultraviolet irradiation on bees

    SciTech Connect

    Es`kov, E.K.

    1995-09-01

    The influence of natural solar and artificial ultraviolet irradiation on developing bees was studied. Lethal exposures to irradiation at different stages of development were determined. The influence of irradiation on the variability of the morphometric features of bees was revealed. 5 refs., 1 fig.

  4. Effectiveness of helium-neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells.

    PubMed

    Houreld, N N; Abrahamse, H

    2007-12-01

    This study investigated the effectiveness of helium-neon (He-Ne) laser irradiation at increasing intervals on diabetic-induced wounded human skin fibroblast cells (WS1) at a morphological, cellular, and molecular level. The controversies over light therapy can be explained by the differing exposure regimens and models used. No therapeutic window for dosimetry and mechanism of action has been determined at the level of individual cell types, particularly in diabetic cells in vitro. WS1 cells were used to simulate an in vitro wounded diabetic model. The effect of the frequency of He-Ne irradiation (632.8 nm) at a fluence of 5 J/cm(2) was determined by analysis of cell morphology, viability, cytotoxicity, and DNA damage. Cells were irradiated using three different protocols: they were irradiated at 30 min only; irradiated twice, at 30 min and at 24 h; or irradiated twice, at 30 min and at 72 h post-wound induction. A single exposure to 5 J/cm(2) 30 min post-wound induction increased cellular damage. Irradiation of cells at 30 min and at 24 h post-wound induction decreased cellular viability, cytotoxicity, and DNA damage. However, complete wound closure as well as an increase in viability and a decrease in cytotoxicity and DNA damage occurs when cells were irradiated at 30 min and at 72 h post-wound induction. Wounded diabetic WS1 cells irradiated to 5 J/cm(2) showed increased cellular repair when irradiated with adequate time between irradiations, allowing time for cellular response mechanisms to take effect. Therefore, the irradiation interval was shown to play an important role in wound healing in vitro and should be taken into account.

  5. Simple SE Methods Deployed in Revitalizing the Nuclear Post- Irradiation Examination Capability for the Idaho National Laboratory

    SciTech Connect

    Larry R. Zirker; R. Douglas Hamelin; Lori Braase

    2010-07-01

    The “crown jewels” of nuclear energy research facilities (i.e., hot cells, analysis systems, and scientists) have been centered at the Idaho National Laboratory for over 40 years, but in recent years, emphasis and funding for nuclear fuel research and development have declined to adversely affect the readiness and effectiveness of research facilities and equipment. Conversely, the current national nuclear renaissance forces the need for immediate enhancements in facilities, equipment, capabilities, and staff for the post-irradiation examination (PIE) of nuclear fuel. PIE characterizes the “burn-up” and structural integrity of fuel elements and defines the effectiveness of new fuels/alloys in search for optimum fuel burn-up and alloys for current and next generation nuclear reactors. This paper details how a team of system engineers adapted simple system engineering tools and techniques for a customer unfamiliar with the power and effectiveness of system engineering, to achieve project success.

  6. Rat Models of Post-Irradiation Recovery of Spermatogenesis: Interstrain Differences

    PubMed Central

    Abuelhija, Mahmoud; Weng, Connie C.; Shetty, Gunapala; Meistrich, Marvin L.

    2012-01-01

    Recently we reported large differences between rat strains in spermatogenesis recovery at 10 weeks after 5-Gy irradiation suggesting that there are interstrain as well as interspecies differences in testicular radiation response. To determine whether these interstrain differences in sensitivity might be a result of the particular dose and time-point chosen, we performed dose-response and time-course studies on sensitive Brown-Norway (BN) and more resistant spontaneously hypertensive (SHR) and Sprague-Dawley (SD) rats. Type A spermatogonia were observed in atrophic tubules at 10 weeks after irradiation in all strains indicating that tubular atrophy was caused by a block in their differentiation, but the doses to produce the block ranged from 4.0 Gy in BN to 10 Gy in SD rats. Although the numbers of type A spermatogonial were unaffected at doses below 6 Gy, higher doses reduced their number, indicating that stem cell killing also contributed to the failure of recovery. After 10 weeks, there was no further recovery and even a decline in spermatogonial differentiation in BN rats, but in SHR rats, sperm production returned to control levels by 20 weeks after 5.0 Gy and, after 7.5 Gy, differentiation resumed in 60% of tubules by 30 weeks. Suppression of testosterone and gonadotropins after irradiation restored production of differentiated cells in nearly all tubules in BN rats and in all tubules in SHR rats. Thus the differences in recovery of spermatogenesis between strains were a result of both quantitative differences in their sensitivities to a radiation-induced, hormone-dependent block of spermatogonial differentiation and qualitative interstrain differences in the progression of post-irradiation recovery. The progression of recovery in SHR rats was similar to the prolonged delays in recovery of human spermatogenesis after cytotoxic agent exposure and thus may be a system for investigating a phenomenon also observed in men. PMID:23413134

  7. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    SciTech Connect

    Heintz, P; Heintz, B; Sandoval, D; Weber, W; Melo, D; Guilmette, R

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  8. Effect of microwave irradiation on TATB explosive.

    PubMed

    Yu, Weifei; Zhang, Tonglai; Huang, Yigang; Yang, Li; Li, Gang; Li, Haibo; Li, Jinshan; Huang, Hui

    2009-09-15

    Finished TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosive safety under 800W microwave irradiation was experimented. No burning, deflagration and detonation were observed during 30-min continuous irradiation and no remarkable change were observed after irradiation according to HPLC, particles size analysis, and differential thermal analysis. Wet TATB sampled from synthesis line was irradiated with microwave vacuum method and irradiated TATB was measured to accord with military standard specifications including appearance, moisture and volatile, chloride content, HPLC, mean particle size, DTA exothermic peak, ash, acetone soluble content, PH value, etc. Microwave vacuum desiccation was deemed laborsaving, energy-efficient, and practicable compared to conventional processing method.

  9. External beam irradiation in angioplasted arteries of hypercholesterolemic rabbits The dose and time effect

    SciTech Connect

    Kalef-Ezra, J.; Michalis, L.K.; Malamou-Mitsi, V.; Tsekeris, P.; Katsouras, C.; Boziari, A.; Toumpoulis, I.; Bozios, G.; Charchanti, A.; Sideris, D.A

    2002-03-01

    Purpose: To study the dose and time effect of external beam irradiation on the morphometry of both angioplasted and nonangioplasted arteries in a hypercholesterolemic rabbit model. Methods and materials: Eight groups of rabbit femoral arteries were studied: arteries (a) with no intervention, (b) irradiated with a 12-Gy 6 MV X-ray dose, (c) with a 18-Gy, (d) treated with balloon angioplasty, (e) dosed with 12-Gy half an hour post-angioplasty, (f) dosed with 18-Gy half an hour post-angioplasty, (g) dosed with 12-Gy 48 h post angioplasty, (g) dosed with 18-Gy 48 h post angioplasty. Results: External irradiation at either 12 or 18 Gy was not found to change vessel morphometry in noninjured arteries. The 12-Gy dose given soon after angioplasty further increased percentage stenosis (63% on the average), despite the preservation of the lumen cross-sectional area. Positive remodeling was not observed in arteries given 18-Gy half an hour post angioplasty to counterbalance the increased neointimal formation. Therefore, this treatment resulted in a drastic reduction in lumen area and in enhancement of percentage stenosis (84% on the average). On the contrary, the delayed irradiation of the angioplasted arteries at either 12 or 18 Gy was not found to influence any of the studied morphometric parameters 5 weeks after angioplasty. Conclusions: Uniform external beam irradiation up to 18 Gy was well tolerated by intact femoral arteries. Prompt 12- or 18-Gy irradiations accentuated percentage stenosis. However the lumen cross-sectional area was preserved only at the lower dose point. Delayed irradiation at any dose did not influence the restenosis process.

  10. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells.

    PubMed

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01-0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.

  11. Effect of low-level laser irradiating point on immunity

    NASA Astrophysics Data System (ADS)

    Cai, ChangSong; Qi, Qiong-fang; Xin, Jiang

    1993-03-01

    This paper reports that cellular immune function was observed when He-Ne laser was used to irradiate `zusanli' point in rats using various power, time, and periods. The indicator was a lymphocyte transformation test (LTT) by MTT colorimetric analysis. The best irradiating condition was determined, the effect and both virtues and defects of the laser were compared with those of electropuncture. The results show (1) LTT was enhanced in the group of laser irradiating point, but LTT was not enhanced in non-point (t' test, P < 0.01). (2) Lower power -- 2 mW or 5 mW of irradiating for 15 - 20 min, was better; 10 mW or 20 mW of irradiating for 10 - 15 min was suitable. Prolonged irradiating time did not enhance the immune function of the rats. On the contrary, immune function was inhibited. (3) A 7-day period of irradiating was best (once a day, 10 mW for 10 min). Enhanced LTT was not seen when irradiation days were added (SNK, P > 0.05). (4) Laser irradiation point and electropuncture were compared with vehicle control, LTT in the former two groups was enhanced significantly (ANOVA, P < 0.01), and laser irradiating point and electropuncture had the same effect (SNK, P > 0.05). The data suggest that laser irradiating point was able to enhance cell immunity and the enhancement of LTT had a point specific characteristic. The best condition of laser irradiating point was 2 mW for 15 - 20 min, and 10 mW or 20 mW for 10 - 15 min. The best period was 7-day irradiation. The results show laser irradiating the point may activate the main and collateral channels system, then modify the immune function of the body. Our observations provide experimental evidence for proper clinical application of laser irradiating points. The paper theoretically discusses and analyzes the experiment results in detail.

  12. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    SciTech Connect

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; Hunn, John D.; Reber, Edward L.

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating

  13. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    SciTech Connect

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; Hunn, John D.; Reber, Edward L.

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating

  14. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE PAGES

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; ...

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers

  15. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  16. Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics.

    PubMed

    Yoshida, Keiichi; Atsuta, Mitsuru

    2006-10-01

    To evaluate the surface hardness (Knoop Hardness Number) of the thin layer in three light-cured and dual-cured resin cements irradiated through or not through 2.0 mm thick machinable ceramics. A piece of adhesive polyethylene tape with a circular hole was positioned on the surface of the ceramic plate to control the cement layer (approximately 50 microm). The cement paste was placed on the ceramic surface within the circle. The ceramic plate with resin cement paste was placed on a clear micro cover glass over a zirconia ceramic block to obtain a flat surface, and the material was polymerized using a visible-light-curing unit. The surface hardness was recorded at a series of time intervals up to 5 days, starting from the end of a light-irradiation period. The hardness steadily increased with post-irradiation time and tended towards a maximum, usually reached after 1 or 2 days. In all cases, the increase in hardness was relatively rapid over the first 30 minutes and continued at a lower rate thereafter. The dual-cured resin cement for each material showed a significantly higher hardness value than the light-cured resin cement irradiated either through or not through ceramics at all post-irradiation times. The resin cements cured through ceramic for each material were significantly less hard compared with those cured not through ceramics at all post-irradiation times.

  17. Effects of irradiation of skin flaps

    SciTech Connect

    Sumi, Y.; Ueda, M.; Oka, T.; Torii, S.

    1984-07-01

    The reaction of skin flaps to irradiation and the optimum postoperative time for irradiation was studied in the rat. Flaps showed different reactions depending on the time of irradiation. There was a correlation between the radiosensitivity and the vascularity of the flap. Those flaps in the marginal hypovascular stage of revascularization showed reactions similar to normal skin. However, severe adverse reactions were observed in the marginal hypervascular stage.

  18. Effects of HZE irradiation on chemical neurotransmission in rodent hippocampus

    NASA Astrophysics Data System (ADS)

    Machida, Mayumi

    Space radiation represents a significant risk to the CNS (central nervous system) during space missions. Most harmful are the HZE (high mass, highly charged (Z), high energy) particles, e.g. 56Fe, which possess high ionizing ability, dense energy deposition pattern, and high penetrance. Accumulating evidence suggests that radiation has significant impact on cognitive functions. In ground-base experiments, HZE radiation induces pronounced deficits in hippocampus dependent learning and memory in rodents. However, the mechanisms underlying these impairments are mostly unknown. Exposure to HZE radiation elevates the level of oxidation, resulting in cell loss, tissue damage and functional deficits through direct ionization and generation of reactive oxygen species (ROS). When hippocampal slices were exposed to ROS, neuronal excitability was reduced. My preliminary results showed enhanced radio-vulnerability of the hippocampus and reduction in basal and depolarization-evoked [3H]-norepinephrine release after HZE exposure. These results raised the possibility that HZE radiation deteriorates cognitive function through radiation-induced impairments in hippocampal chemical neurotransmission, the hypothesis of this dissertation. In Aim 1 I have focused on the effects of HZE radiation on release of major neurotransmitter systems in the hippocampus. I have further extended my research on the levels of receptors of these systems in Aim 2. In Aim 3, I have studied the level of oxidation in membranes of my samples. My research reveals that HZE radiation significantly reduces hyperosmotic sucrose evoked [3H]-glutamate and [14C]-GABA release both three and six months post irradiation. The same radiation regimen also significantly enhances oxidative stress as indicated by increased levels of lipid peroxidation in the hippocampus, suggesting that increased levels of lipid peroxidation may play a role in reduction of neurotransmitter release. HZE radiation also significantly reduces

  19. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  20. Cost effective alternative to low irradiance measurements

    NASA Technical Reports Server (NTRS)

    Oleary, Scott T.

    1988-01-01

    Martin Marietta's Space Simulation Laboratory (SSL) has a Thermal Environment Simulator (TES) with 56 individually controlled heater zones. The TES has a temperature range of approximately minus 129 C to plus 149 C. Because of the ability of TES to provide complex irradiance distributions, it is necessary to be able to measure a wide range of irradiance levels. SSL currently uses ambient temperature controlled radiometers with the capacity to measure sink irradiance levels of approximately 42.6 mw/sq cm, sink temperature equals 21 C and up. These radiometers could not be used to accurately measure the lower irradiance levels of the TES. Therefore, it was necessary to obtain a radiometer or develop techniques which could be used to measure lower irradiance levels.

  1. Effect of gamma irradiation on Korean traditional multicolored paintwork

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  2. Post-focus expansion of ion beams for low fluence and large area MeV ion irradiation: Application to human brain tissue and electronics devices

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc

    2017-08-01

    Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.

  3. AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results

    SciTech Connect

    Paul demkowicz; jason Harp; Scott Ploger

    2012-12-01

    Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy. A single particle with a defective SiC layer was identified during deconsolidation-leach-burn-leach analysis, which is in agreement with previous measurements showing elevated cesium in the Capsule 6 graphite fuel holder associated with this fuel compact. The fraction of the compact europium inventory released from the particles and retained in the matrix was relatively high (approximately 6E-3), indicating release from intact particle coatings. The Ag-110m inventory in individual particles exhibited a very broad distribution, with some particles retaining =80% of the predicted inventory and others retaining less than 25%. The average degree of Ag-110m retention in 60 gamma counted particles was approximately 50%. This elevated silver release is in agreement with analysis of silver on the Capsule 6 components, which indicated an average release of 38% of the Capsule 6 inventory from the fuel compacts. In spite of the relatively high degree of silver release from the particles, virtually none of the Ag-110m released was found in the compact matrix, and presumably migrated out of the compact and was deposited on the irradiation capsule components. Release of all other fission products from the particles appears to be less than a single

  4. Effects of pellet microstructure on irradiation behavior of UO 2 fuel

    NASA Astrophysics Data System (ADS)

    Yuda, R.; Harada, H.; Hirai, M.; Hosokawa, T.; Une, K.; Kashibe, S.; Shimizu, S.; Kubo, T.

    1997-09-01

    In-reactor tests and post-irradiation examinations (PIEs) were performed for standard and large-grained pellets with and without additives being soluble in a matrix and/or precipitated in a grain boundary, to confirm the effects of large grain structure on decreasing fission gas release (FGR) and swelling and to evaluate the influence of the additives in the matrix/grain boundary on them. The standard and large-grained pellets were loaded into small-diameter rods equipped with a pressure gauge. These rods were irradiated to about 60 GWd/t U at a linear heat rate of about 30-40 kW/m in the Halden reactor and then subjected to PIEs. Large-grained pellets showed a smaller FGR compared with standard pellets. Post-irradiation annealing tests suggested that swelling during transient power was decreased for large-grained pellets, except for those with additive enhancing cation diffusion.

  5. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation.

    PubMed

    Sadat, M A; Dirscherl, S; Sastry, L; Dantzer, J; Pech, N; Griffin, S; Hawkins, T; Zhao, Y; Barese, C N; Cross, S; Orazi, A; An, C; Goebel, W S; Yoder, M C; Li, X; Grez, M; Cornetta, K; Mooney, S D; Dinauer, M C

    2009-12-01

    X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91(phox). Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a gamma-retroviral vector for gp91(phox) expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.

  6. Thermal effects in IR-laser-irradiated living cells

    NASA Astrophysics Data System (ADS)

    Meier, Thomas H.; Rueck, Angelika C.; Scalfi-Happ, Claudia; Hug, Hubert; Schneider, Marion E.

    2003-10-01

    Irradiation of cell-layers with focussed 2.8 μm ir-laser allows to control the cell temperature from room temperature up to 100°C. Temperatures were calculated for a cell culture model and verified experimentally by thermal mapping of the cell-surrounding medium by means of thermochromic liquid crystals (TLC). Irradiation power and time were varied and associated biological effects like necrosis and apoptosis were observed with respect to the irradiation dosis.

  7. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    SciTech Connect

    Odette, G.R.; Lucas, G.E.; Wirth, B.; Liu, C.L.

    1997-02-01

    Radiation enhanced diffusion at RPV operating temperatures around 290{degrees}C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper, nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools.

  8. The post-thaw irradiation of avian spermatozoa with He-Ne laser differently affects chicken, pheasant and turkey sperm quality.

    PubMed

    Iaffaldano, N; Paventi, G; Pizzuto, R; Passarella, S; Cerolini, S; Zaniboni, L; Marzoni, M; Castillo, A; Rosato, M P

    2013-11-30

    The effects of post-thaw Helium-Neon (He-Ne) laser irradiation on mobility and functional integrity of frozen/thawed chicken, pheasant and turkey spermatozoa were investigated. Cytochrome C oxidase (COX) activity was also determined as a measure of the effect of irradiation on mitochondrial bioenergetics. Semen samples from each species were collected, processed and frozen according to the pellet procedure. After thawing, each semen sample was divided into two subsamples: the first one was the control; the second one was irradiated with a single mode continuous He-Ne laser wave (wavelength 632.8 nm; 6 mW; 3.96 J/cm(2)). Then the samples were assessed for sperm mobility (Accudenz(®) swim-down test), viability (SYBR-14/PI staining), osmotic-resistance (HOS test) and COX activity. The irradiation was effective P<0.05 increasing sperm motility in the turkey semen (0.228 ± 0.01 compared with 0.294 ± 0.02). The irradiation also caused an increase (P<0.05) of the COX activity in pheasant (+135 ± 4%) and turkey (+116 ± 4%) sperm, without affecting viability and osmotic-resistance. The COX was positively correlated (P<0.05) with the viability of chicken sperm, however no significant interactions were found between mobility and COX activity in the three avian species. Due to the difference in energetic metabolism among avian species used in this study, the He-Ne laser irradiation has a differential action on bio-stimulation of turkey, chicken and pheasant spermatozoa. The present results are the first to elucidate the possibility for restoration of motility of cryopreserved avian spermatozoa by bio-stimulation provided via He-Ne laser irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Ultrahigh dose-rate, "flash" irradiation minimizes the side-effects of radiotherapy].

    PubMed

    Favaudon, V; Fouillade, C; Vozenin, M-C

    2015-10-01

    Pencil beam scanning and filter free techniques may involve dose-rates considerably higher than those used in conventional external-beam radiotherapy. Our purpose was to investigate normal tissue and tumour responses in vivo to short pulses of radiation. C57BL/6J mice were exposed to bilateral thorax irradiation using pulsed (at least 40 Gy/s, flash) or conventional dose-rate irradiation (0.03 Gy/s or less) in single dose. Immunohistochemical and histological methods were used to compare early radio-induced apoptosis and the development of lung fibrosis in the two situations. The response of two human (HBCx-12A, HEp-2) tumour xenografts in nude mice and one syngeneic, orthotopic lung carcinoma in C57BL/6J mice (TC-1 Luc+), was monitored in both radiation modes. A 17 Gy conventional irradiation induced pulmonary fibrosis and activation of the TGF-beta cascade in 100% of the animals 24-36 weeks post-treatment, as expected, whereas no animal developed complications below 23 Gy flash irradiation, and a 30 Gy flash irradiation was required to induce the same extent of fibrosis as 17 Gy conventional irradiation. Cutaneous lesions were also reduced in severity. Flash irradiation protected vascular and bronchial smooth muscle cells as well as epithelial cells of bronchi against acute apoptosis as shown by analysis of caspase-3 activation and TUNEL staining. In contrast, the antitumour effectiveness of flash irradiation was maintained and not different from that of conventional irradiation. Flash irradiation shifted by a large factor the threshold dose required to initiate lung fibrosis without loss of the antitumour efficiency, suggesting that the method might be used to advantage to minimize the complications of radiotherapy. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Gamma irradiation effects in W films

    SciTech Connect

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  11. Morphologic and morphometric analysis of the early effects of x-ray and heavy-ion irradiation of hamster lung.

    PubMed Central

    Woodruff, K. H.; Leith, J. T.; Lyman, J. T.; Tobias, C. A.

    1976-01-01

    Morphometric methods were to used to compare the early effects of graded single doses of x-rays with accelerated heavy particle (helium or neon) irradiation of hamster lung. Increased values in the volume densities of both capillary lumina and inflammatory cells at 2 weeks postirradiation were observed. Neon-ion irradiation wes statisically different from x-irradiation at all dose levels, while helium-ion irradiation showed significant increases only at higher doses (1000 to 1500 rads). At 1 month post-irradiation, the volume densities of capillary lumina after heavy particle irradiation began to return to control values, while those in x=irradiated lungs continued to be elevated. The volume density of inflammatory cells remained increased for all types of irradiation, and the highest values were obtained in neon-ion irradiated lungs. Accelerated heavy particle irradiation would therefore appear to elicit a more intense early radiation than does x-irradiation but the chronic significance of these findings is not yet known. Images Figure 2 Figure 1 PMID:1251887

  12. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos.

    PubMed

    Hurem, Selma; Gomes, Tânia; Brede, Dag A; Lindbo Hansen, Elisabeth; Mutoloki, Stephen; Fernandez, Cristian; Mothersill, Carmel; Salbu, Brit; Kassaye, Yetneberk A; Olsen, Ann-Karin; Oughton, Deborah; Aleström, Peter; Lyche, Jan L

    2017-09-08

    Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to (60)Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca(2+) ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were

  13. Effect of laser irradiation of donor blood on erythrocyte shape.

    PubMed

    Baibekov, I M; Ibragimov, A F; Baibekov, A I

    2012-04-01

    Changes in erythrocyte shape in donor blood during storage and after irradiation with He-Ne laser and infrared laser were studied by scanning electron microscopy, thick drop express-method, and morphometry. It was found that laser irradiation delayed the appearance of erythrocytes of pathological shapes (echinocytes, stomatocytes, etc.) in the blood; He-Ne laser produced a more pronounced effect.

  14. Effect of. gamma. -ray irradiation on alcohol production from corn

    SciTech Connect

    Han, Y.W.; Cho, Y.K.; Ciegler, A.

    1983-11-01

    Cracked corn was irradiated with ..gamma.. rays at 0-100 Mrad and the effects of the irradiation on sugar yield, susceptibility to enzymatic hydrolysis of starch, yeast growth, and alcohol production were studied. Gamma irradiation at 50 Mrad or greater produced a considerable amount of reducing sugar but little glucose. At lower dosages, ..gamma.. irradiation significantly increased the susceptibility of corn starch to enzymatic hydrolysis, but dosages of 50 Mrad or greater decomposed the starch molecules as indicated by the reduction in iodine uptake. About 12.5% reducing sugar was produced by amylase treatment of uncooked, irradiated corn. This amount exceeded the level of sugar produced from cooked (gelatinized) corn by the same enzyme treatment. The yeast numbers in submerged cultivation were lower on a corn substrate that was irradiated at 50 Mrad or greater compared to that on an unirradiated control. About the same level of alcohol was produced on uncooked, irradiated (10/sup 5/ - 10/sup 6/ rad) corn as from cooked (121 degrees C for 30 min) corn. Therefore, the conventional cooking process for gelatinization of starch prior to its saccharification can be eliminated by irradiation. Irradiation also eliminated the necessity of sterilization of the medium and reduced the viscosity of high levels of substrate in the fermentation broth. (Refs. 10).

  15. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    PubMed Central

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  16. Effect of irradiation on testicular cells of opossum.

    PubMed

    Prasad, N; Prasad, R; Bushong, S C; North, L B

    1977-07-01

    Five months old male opossums were exposed to 5000 rd wholebody 60Co gamma-radiation. Testes tissues from animals sacrificed at 16, 40 and 90 hours post-irradiation and from nonirradiated animales were used for enzymatic and histological studies. Electrophoretic pattern of lactate dehydrogenase and glucose-6-phosphate dehydrogenase was slightly disturbed in early hours in irradiated animals, but it did not persist beyond 40 hours postirradiation. Histological study indicates 31% survival of type A spermatogonia suggesting high radioresistance of testes tissue in comparison to other animals.

  17. Irradiation effects of displacement damage and gas atoms in Yttria-stabilized zirconia irradiated by Au and helium ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Zhao, Ziqiang; Guo, Gang

    2017-07-01

    Single and sequential ion beam irradiated Yttria-stabilized zirconia (YSZ) was carried out to study the irradiation effects of vacancies and helium gas atoms. The results show that the displacement damage value of sequential ion beam irradiation is less than that of single He ion irradiation and larger than that of single Au ion irradiation. The irradiation effects of displacement damage (mainly vacancies) and gas atoms may lead to a strong reduction of the interstitial helium atoms. Sequential ion beam irradiation generates more vacancies-helium bubbles than single helium ion irradiation. The results are important for fundamental understanding of interaction between vacancy and helium bubbles, and it also plays a guiding role in the practical industrial applications in the nuclear reactor.

  18. The effects of sunspots on solar irradiance

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.

    1982-01-01

    It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.

  19. Post-irradiation Examination Plan for ORNL and University of California Santa Barbara Assessment of UCSB ATR-2 Irradiation Experiment

    SciTech Connect

    Nanstad, R. K.; Yamamoto, T.; Sokolov, M. A.

    2014-01-25

    New and existing databases will be combined to support development of physically based models of transition temperature shifts (TTS) for high fluence-low flux (φ < 10{sup 11}n/cm{sup 2}-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1×10{sup 20} n/cm{sup 2} (>1 MeV). All references to neutron flux and fluence in this report are for fast neutrons (>1 MeV). The reactor pressure vessel (RPV) task of the Light Water Reactor Sustainability (LWRS) Program is working with various organizations to obtain archival surveillance materials from commercial nuclear power plants to allow for comparisons of the irradiation-induced microstructural features from reactor surveillance materials with those from similar materials irradiated under high flux conditions in test reactors

  20. The pre- and post-accretion irradiation history of cometary ices

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1989-01-01

    Comets Halley and Wilson exhibited similar 3.4 micron emission features at approx. 1 AU from the Sun. A simple model of thermal emission from organic grains fits the feature, provides optical depths in good agreement with spacecraft measurements, and explains the absence of longer-wavelength organic features as due to spectral heliocentric evolution (Chyba and Sagan, 1987). The model utilizes transmission spectra of organics synthesized in the laboratory by irradiation of candidate cometary ices; the authors have long noted that related gas-phase syntheses yield polycyclic aromatic hydrocarbons, among other organic residues (Sagan et al., 1967). The authors previously concluded (Chyba and Sagan, 1987) that Halley's loss of several meters' depth with each perihelion passage, combined with the good fit of the Halley 3.4 micron feature to that of comet Wilson (Allen and Wickramasinghe, 1987), argues for the primordial - but not necessarily interstellar - origin of cometary organics. The authors examine the relative importance to the formation of organics of the variety of radiation environments experienced by comets. They conclude that there is at present no compelling reason to choose any of three contributing mechanisms (pre-accretion UV, pre-accretion cosmic ray, and post-accretion radionuclide processing) as the most important.

  1. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  2. Positron irradiation effect on positronium formation in gamma-irradiated LDPE and unplasticized PVC

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zang, P.; Cao, X. Z.; Yu, R. S.; Wang, B. Y.

    2017-06-01

    Positron irradiation effects on positronium formation in low-density polyethylene (LDPE), gamma-irradiated LDPE and unplasticized PVC (UPVC) are studied. At least in one of the three different measurements, i.e., prolonged positron annihilation measurement at room temperature, low temperature in darkness and subsequent measurement under light, changes in o-Ps intensity are observed in non-irradiated LDPE and gamma-irradiated LDPE. While in UPVC, change in o-Ps intensity is hardly observable in all the above-mentioned three measurements. Reduction of o-Ps intensity by light indicates that positronium formation via the recombination of a positron and a trapped electron exists in LDPE and gamma-irradiated LDPE. The absence of light bleaching effect, together with the fact that the value of o-Ps intensity in heating and cooling process of a thermal circle is nearly the same, indicates that in UPVC, positronium can not be formed through trapped electron mechanism. This study highlights the speciality of positronium formation in UPVC, positronium is formed exclusively by the recombination of electron-positron pairs with short separations.

  3. Effects of irradiation on Planococcus minor (Hemiptera: Pseudococcidae).

    PubMed

    Ravuiwasa, Kaliova Tavou; Lu, Kuang-Hui; Shen, Tse-Chi; Hwang, Shaw-Yhi

    2009-10-01

    Irradiation has been recognized and endorsed as a potential phytosanitary measure that could be an alternative to current quarantine treatments. Dosages of 50, 100, 150, 200, and 250 Gy were used to irradiate three different life stages (eggs, immatures, and adults) of Planococcus minor (Maskell) (Hemiptera: Pseudococcidae), focusing on females due to its parthenogenesis ability, with an aim to find the most tolerant stage and the most optimal dose to control P. minor. Cobalt 60 was the source of irradiation used. Irradiation of 150-250 Gy has a significant effect on all life stages of P. minor, decreasing its survival rate, percentage of adult reproduction, oviposition, and fertility rate. The adult was the most tolerant life stage in both mortality and fertility rate. All the different irradiated target life stage groups oviposited eggs, but none of the F2 eggs hatched at the most optimal dosage of 150-250 Gy.

  4. Post-Irradiation Properties of Candidate Materials for High-Power Targets

    SciTech Connect

    Kirk, H.G.; Ludewig, H.; Mausner, L.F.; Simos, N.; Thieberger, P.; Hayato, Y.; Yoshimura, K.; McDonald, K.T.; Sheppard, J.; Trung, L.P.; /SUNY, Stony Brook

    2006-03-15

    The desire of the high-energy-physics community for more intense secondary particle beams motivates the development of multi-megawatt, pulsed proton sources. The targets needed to produce these secondary particle beams must be sufficiently robust to withstand the intense pressure waves arising from the high peak-energy deposition which an intense pulsed beam will deliver. In addition, the materials used for the targets must continue to perform in a severe radiation environment. The effect of the beam induced pressure waves can be mitigated by use of target materials with high-yield strength and/or low coefficient of thermal expansion (CTE). We report here first results of an expanded study of the effects of irradiation on several additional candidate materials with high strength (AlBeMet, beryllium, Ti-V6-Al4) or low CTE (a carbon-carbon composite, a new Toyota ''gum'' metal alloy, Super-Invar).

  5. Diffraction effects on broadband radiation: formulation for computing total irradiance.

    PubMed

    Shirley, Eric L

    2004-05-01

    I present a formulation for treating diffraction effects on total irradiance in the case of a Planck source; earlier work generally depended on calculating diffraction effects on spectral irradiance followed by summation over spectral components. The formulation is derived and demonstrated for Fraunhofer diffraction by circular apertures, rectangular apertures and slits, and Fresnel diffraction by circular apertures. The prospects for treating other sources and optical systems are also discussed.

  6. Effects of Ultrasonic Irradiation on Phenolic Compounds in Wine

    NASA Astrophysics Data System (ADS)

    Masuzawa, Nobuyoshi; Ohdaira, Etsuzo; Ide, Masao

    2000-05-01

    Red wine has been of interest recently because many poly-phenols, that are considered to be good for health, are contained therein. Since ultrasonic irradiation accelerates maturation, its effects on phenolic compounds in wine were investigated in this study. Effects were evaluated using the indices developed by Glories. It was found that weak ultrasonic irradiation promotes an increase in the amount of phenolic compounds in red wine.

  7. Phenomenon of PDT-induced post-irradiation apoptosis in biological liquids cancer cells using sulphonated phthalocyanine aluminum photosensitizer

    NASA Astrophysics Data System (ADS)

    Douplik, Alexandre Y.; Loschenov, Victor B.; Vorozhtsov, Georgy N.; Kogan, Eugenia A.; Kusin, Michael; Ablitsov, Y.; Ilyina, O. S.

    1997-12-01

    Discovered during last year's phenomenon of PDT-induced apoptosis (programmed cell destruction) in cell culture immediately after light irradiation using phthalocyanine photosensitizers can be used for treatment of cancer. Experiments were carried out on mice with ascites. Ascitic liquid with the added photosensitizer was irradiated by light source with wavelength 660 - 680 nm and used according to ex vivo procedure. Actuation and development of apoptosis process in ascitic liquid were estimated by cytomorphological tests. It has been observed the phenomenon of growth of relative fraction of cells damage level expressed mainly as apoptosis after PDT procedure ex vivo. We suggest to call this phenomenon as PDT-induced post-irradiation apoptosis (PIP- apoptosis). Dependence between level of expressing of PIP- apoptosis and sulphonated phthalocyanine aluminum photosensitizer (Photosense) concentration at used photosensitizer concentrations has not been found out.

  8. MOX capsule post-irradiation examination. Volume 2: Test plan for 30-GWd/MT burnup fuel

    SciTech Connect

    Morris, R.N.

    1997-12-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The planned post-irradiation examination (PIE) work to be performed on the mixed uranium and plutonium oxide fuel capsules that have received burnups of approximately 30 GWd/MT is described. The major emphasis of this PIE task will be material interactions, particularly indications of gallium transport and interactions. This PIE will include gamma scanning, ceramography, metallography, pellet radial gallium analysis, and clad gallium analysis. A preliminary PIE report will be generated before all the work is completed so that the progress of the fuel irradiation may be known in a timely manner.

  9. Preliminary analysis of irradiation effects on CLAM after low dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Peng, Lei; Huang, Qunying; Li, Chunjing; Liu, Shaojun

    2009-04-01

    To investigate the irradiation effects on a new version of reduced activation ferritic/martensitic steels (RAFMs) i.e. China Low Activation Martensitic steel (CLAM), neutron irradiation experiments has been being carried out under wide collaboration in China and overseas. In this paper, the mechanical properties of CLAM heats 0603A, 0408B, and 0408D were investigated before and after neutron irradiation to ˜0.02 dpa at 250 °C. The test results showed that ultimate strength and yield stress of CLAM HEAT 0603A increased about 10-30 MPa and ductile to brittle transition temperature (DBTT) shift was about 5 °C. For CLAM heats 0408B and 0408D, ultimate strength and yield stress increased about 80-150 MPa.

  10. Post mastectomy chest wall irradiation using mixed electron-photon beams with or without isocentric technique.

    PubMed

    Hamdy, H K; Zikry, M S

    2008-01-01

    To describe our technique in delivering post mastectomy radiotherapy to chest wall using electron-photon mixed beam with or without isocentric application of the tangential photon portals, and to evaluate the associated acute and delayed morbidities. Twenty-two females with invasive breast cancer were subjected to modified radical mastectomy with adequate axillary dissection. All the patients have either tumour > or = 5 cm and/ or positive axillary nodes > 3. Chest wall was irradiated by a mixed beam of 6-Mev electrons (10Gy) and opposed tangential fields using 6 Mev-photons (36 Gy) followed by 6-Mev electrons boost to the scar of mastectomy for 4 Gy/2 fractions. We randomly allocated our patients to receive the photon beam with or without the isocentric technique. The mean dose to the planned target volume (PTV) by mixed beam was 44 Gy (96%) with a mean dose of 42 Gy (91%) to the overlying skin for the whole study group. In cases with right breast disease (17 cases), the mean right lung tissue volume within the PTV was 220 ml (15%). It was relatively higher with the non-iscocentric technique, 281 ml (19%), compared to the isocentric technique of 159 ml (10.5%). In cases with left breast disease (5 cases), the mean left lung volume within the PTV was 175 ml (14%). Larger volume of the lung tissue was included with the non-isocentric technique, 197 ml (16%) compared to the isocentric technique of 153 ml (12%). The mean scattered doses to the rest of the lung tissue, the rest of the heart in left breast cases, and the contra-lateral breast for the whole study group were 2.8 Gy, 1.8 Gy, and 1.4 Gy respectively and was comparable in both treatment arms. None of the cases developed any element of acute radiation related pneumonitis. Delayed radiation induced pneumonitis was seen in 2 cases (18%), with the chest wall treated with radiation with the non-isocentric technique. This study clearly demonstrated the utility of mixed beam in irradiating the chest wall after

  11. A Multi-stage Carcinogenesis Model to Investigate Caloric Restriction as a Potential Tool for Post-irradiation Mitigation of Cancer Risk

    PubMed Central

    Tani, Shusuke; Blyth, Benjamin John; Shang, Yi; Morioka, Takamitsu; Kakinuma, Shizuko; Shimada, Yoshiya

    2016-01-01

    The risk of radiation-induced cancer adds to anxiety in low-dose exposed populations. Safe and effective lifestyle changes which can help mitigate excess cancer risk might provide exposed individuals the opportunity to pro-actively reduce their cancer risk, and improve mental health and well-being. Here, we applied a mathematical multi-stage carcinogenesis model to the mouse lifespan data using adult-onset caloric restriction following irradiation in early life. We re-evaluated autopsy records with a veterinary pathologist to determine which tumors were the probable causes of death in order to calculate age-specific mortality. The model revealed that in both irradiated and unirradiated mice, caloric restriction reduced the age-specific mortality of all solid tumors and hepatocellular carcinomas across most of the lifespan, with the mortality rate dependent more on age owing to an increase in the number of predicted rate-limiting steps. Conversely, irradiation did not significantly alter the number of steps, but did increase the overall transition rate between the steps. We show that the extent of the protective effect of caloric restriction is independent of the induction of cancer from radiation exposure, and discuss future avenues of research to explore the utility of caloric restriction as an example of a potential post-irradiation mitigation strategy. PMID:27390741

  12. Materials for cold neutron sources: Cryogenic and irradiation effects

    SciTech Connect

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab.

  13. Effect of pulsed irradiation on void swelling in nickel

    SciTech Connect

    Brimhall, J.L.; Charlot, L.A.; Simonen, E.P.

    1981-07-01

    This study has compared the void microstructure in nickel induced by a pulsed ion bombardment to that induced by a steady-state irradiation. Pulse cycles of 10 seconds on and 10 seconds off produced no measurable difference in the void growth and swelling in the temperature range 775 to 975/sup 0/K compared to continuous irradiation at the same instantaneous dose rate. Void annealing during the pulse annealing period was minimal due to the large void sizes which were obtained in these irradiations. Hence no measurable effect of pulsing on void growth was observed.

  14. Effect of gamma irradiation on cefotaxime in the solid state

    NASA Astrophysics Data System (ADS)

    Żegota, Henryk; Koprowski, Marek; Zegota, Alicja

    1995-02-01

    The effect of γ-irradiation on cefotaxime, a member of the third generation of cephalosporins, has been investigated by using different spectroscopic, chromatographic and microbiological analytical methods. Cefotaxime sodium salt was irradiated in dry state in the range of sterilization doses from 5.85 to 46.8 kGy. According to the results obtained, the degree of cefotaxime alteration was lower than 1%, even for the higher radiation dose used. Trace amounts of antibiotic radiolysis products have been found by HPLC. The microbiological assay carried out using E. coli test strain reveal that the activity of irradiated cefotaxime did not decrease.

  15. Characterization of microstructure in hydrogen ion irradiated vanadium at room temperature and the microstructural evolution during post-irradiation annealing

    SciTech Connect

    Gao, Jin; Cui, Lijuan; Wan, Farong

    2016-01-15

    The microstructure of pure vanadium after hydrogen ion irradiation at room temperature to a fluence of 1 × 10{sup 17} ions/cm{sup 2} (and 5 × 10{sup 16} ions/cm{sup 2}) was investigated by transmission electron microscopy (TEM). Small dislocation loops (black spots) and cavities are formed after the irradiation. The nature and Burgers vector of dislocation loops formed in vanadium was characterized using g·b technique and inside–outside method. Interstitial dislocation loops with Burgers vector of 1/2 < 111 > predominantly formed with less than 10% of 1/2 < 110 > type. No < 100 > type or vacancy type dislocation loop formed. The microstructural evolution during the annealing process was also studied. Density and size of dislocation loops changed sharply when the annealing temperature was lifted up to 450 °C. When the annealing temperature was higher than 500 °C, bubble coalescence occurred with some large hydrogen bubbles formed. - Highlights: • Interstitial dislocation loops with Burgers vector of 1/2<111> were predominant. • Less than 10% of 1/2<110> dislocation loops were present in pure vanadium. • No <100> or vacancy type loops were present in pure vanadium. • Density and size of dislocation loops changed sharply at temperature above 450 °C. • Bubble coalescence occurred when annealing temperature was higher than 500 °C.

  16. AGR-1 Compact 4-1-1 Post-Irradiation Examination Results

    SciTech Connect

    Demkowicz, Paul Andrew; Harp, Jason M.; Winston, Philip L.; Ploger, Scott A.; van Rooyen, Isabella J.

    2016-02-01

    Destructive post-irradiation examination was performed on AGR-1 fuel Compact 4-1-1, which was irradiated to a final compact-average burnup of 19.4% FIMA (fissions per initial metal atom) and a time-average, volume-average temperature of 1072°C. The analysis of this compact focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy, electron microscopy, and elemental analysis. Deconsolidation-leach-burn-leach (DLBL) analysis revealed no particles with failed TRISO or failed SiC layers (as indicated by very low uranium inventory in all of the leach solutions). The total fractions of the predicted compact inventories of fission products Ce-144, Cs-134, Cs-137, and Sr-90 that were present in the compact outside of the SiC layers were <2×10-6, based on DLBL data. The Ag-110m fraction in the compact outside the SiC layers was 3.3×10-2, indicating appreciable release of silver through the intact coatings and subsequent retention in the OPyC layers or matrix. The Eu-154 fraction was 2.4×10-4, which is equivalent to the inventory in one average particle, and indicates a small but measurable level of release from the intact coatings. Gamma counting of 61 individual particles indicated no particles with anomalously low fission product retention. The average ratio of measured inventory to calculated inventory was close to a value of 1.0 for several fission product isotopes (Ce-144, Cs-134, and Cs-137), indicating good retention and reasonably good agreement with the predicted inventories. Measured-to-calculated (M/C) activity ratios for fission products Eu-154, Eu-155, Ru-106, Sb

  17. Electron Conformal Radiotherapy for Post-Mastectomy Irradiation: A Bolus-Free, Multi-Energy, Multi-Segmented Field Algorithm

    DTIC Science & Technology

    2005-08-01

    that compared to customized electron bolu s radiotherapy for post-mastectomy irradiation, ECT with multi-energy, multi-segmente d treatment fields has...PTV dos e homogeneity was quite good . Use of the treatment plan modification techniques improved dose sparin g for the non-target portion of the...phantom . For the patient treatment plans, the algorithm provided acceptable results for PTV conformality and dose homogeneity, in comparison to the bolus

  18. An Assessment of ORNL PIE Capabilities for the AGR Program Capsule Post Irradiation Examination

    SciTech Connect

    Morris, Robert Noel

    2006-09-01

    ORNL has facilities and experienced staff that can execute +the Advanced Gas Reactor (AGR) Post Irradiation Examination (PIE) task. While the specific PIE breakdown needs to be more formally defined, the basic outline is clear and the existing capabilities can be assessed within the needs of the tasks defined in the program plan. A one-to-one correspondence between the program plan tasks and the current ORNL PIE status was conducted and while some shortcomings were identified, the general capability is available. Specific upgrade needs were identified and reviewed. A path forward was formulated. Building 3525 is available for this work and this building is currently receiving renewed attention from management so that it will be in good working order prior to the expected PIE start date. This building is equipped with the tools necessary for PIEs of this nature, but the long hiatus in coated particle fuel work has left it with aging analysis tools. This report identified several of these tools and rough estimates of what would be required to update and replace them. In addition, other ORNL buildings are available to support Building 3525 in specialized tasks along with the normal laboratory infrastructure. Before the AGR management embarks on any equipment development effort, the PIE tasks should be updated against current program (modeling and data) needs and better defined so that the items to be measured, their measurement uncertainties, and thru-put needs can be reviewed. A Data Task Matrix (DTM) should be prepared so that the program data needs can be compared against the identified PIE tasks and what is practical in the hot cell environment to make sure nothing is overlooked. Finally, thought should be given to the development of standardized equipment designs between sites to avoid redundant design efforts and different measurement techniques. This is a potentially cost saving effort that can also avoid data inconsistencies.

  19. The study of gamma irradiation effects on poly (glycolic acid)

    NASA Astrophysics Data System (ADS)

    Rao Nakka, Rajeswara; Rao Thumu, Venkatappa; Reddy SVS, Ramana; Rao Buddhiraju, Sanjeeva

    2015-05-01

    We have investigated the effects of gamma irradiation on chemical structure, thermal and morphological properties of biodegradable semi-crystalline poly (glycolic acid) (PGA). PGA samples were subjected to irradiation treatment using a 60Co gamma source with a delivered dose of 30, 60 and 90 kGy, respectively. Gamma irradiation induces cleavage of PGA main chains forming ∼OĊH2 and ĊH2COO∼ radicals in both amorphous and crystalline regions. The free radicals formed in the amorphous region abstract atmospheric oxygen and convert them to peroxy radicals. The peroxy radical causes chain scission at the crystal interface through hydrogen abstraction from methylene groups forming the ∼ĊHCOO∼ (I) radical. Consequently, the observed electron spin resonance (ESR) doublet of irradiated PGA is assigned to (I). The disappearance of the ESR signal above 190°C indicates that free radicals are formed in the amorphous region and decay below the melting temperature of PGA. Fourier transform infrared and optical absorption studies confirm that the ? groups are not influenced by gamma irradiation. Differential scanning calorimetry (DSC) studies showed that the melting temperature of PGA decreased from 212°C to 202°C upon irradiation. Degree of crystallinity increased initially and then decreased with an increase in radiation as per DSC and X-ray diffraction studies. Irradiation produced changes in the physical properties of PGA as well as affecting the morphology of the material.

  20. Effect of gamma irradiation on transport of charge carriers in Cu nanowires

    NASA Astrophysics Data System (ADS)

    Gehlawat, Devender; Chauhan, R. P.; Sonkawade, R. G.; Chakarvarti, S. K.

    2012-01-01

    In this paper, we report the effect of gamma ray photons on the electrical conductivity of 100 nm Cu nanowires prepared by the technique of electrodeposition using track-etched membranes. Different fluences of photons have been used to observe the effect and in each case of post-irradiation, electrical conductivity is found to increase in a linear manner with increase in applied potential difference; however the rate of increase of conductivity is different in different cases of radiation fluence. Grain boundary scattering is of significance for the post-irradiation parabolic nature of the I-V characteristics (IVC), which are of a linear pattern following Ohm's law before irradiation. Increase or decrease in the number of charge carriers during their transport through the nanowires is the result of two competitive processes—specular and diffusive scattering of charge carriers (electrons) from grain boundaries, which are itself a region of high resistance rather than inter-grain regions. The results have been discussed in light of the Mayadas and Shatzkes (MS) model with a slight modification for irradiated nanowires.

  1. Effect of open ultraviolet germicidal irradiation lamps on functionality of excimer lasers used in cornea surgery.

    PubMed

    Belovickis, Jaroslavas; Kurylenka, Aliaksei; Murashko, Vadim

    2017-01-01

    We report on the impact of direct ultraviolet germicidal irradiation (UVGI) on reflective optics, used in the excimer laser system Allegretto Eye-Q. The aim of our work was to confirm our hypothesis based on long-rate observations of obtained anomalies in post-operative results that are attributed to degradation of reflective optics upon ultraviolet radiation. The presence of direct UVGI coupled with humidity in the operating environment caused merging anomalies and unwanted post-operative correction values. Ultraviolet-A radiation caused a similar effect on the reflective cover of the mirrors.

  2. Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines.

    PubMed

    Scattino, Claudia; Castagna, Antonella; Neugart, Susanne; Chan, Helen M; Schreiner, Monika; Crisosto, Carlos H; Tonutti, Pietro; Ranieri, Annamaria

    2014-11-15

    In the present study the possibility of enhancing phenolic compound contents in peaches and nectarines by post-harvest irradiation with UV-B was assessed. Fruits of 'Suncrest' and 'Babygold 7' peach and 'Big Top' nectarine cultivars were irradiated with UV-B for 12 h, 24 h and 36 h. Control fruits underwent the same conditions but UV-B lamps were screened by benzophenone-treated polyethylene film. The effectiveness of the UV-B treatment in modulating the concentration of phenolic compounds and the expression of the phenylpropanoid biosynthetic genes, was genotype-dependent. 'Big Top' and 'Suncrest' fruits were affected by increasing health-promoting phenolics whereas in 'Babygold 7' phenolics decreased after UV-B irradiation. A corresponding trend was exhibited by most of tested phenylpropanoid biosynthesis genes. Based on these results UV-B irradiation can be considered a promising technique to increase the health-promoting potential of peach fruits and indirectly to ameliorate the aesthetic value due to the higher anthocyanin content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Efficacy of post-storage irradiation to reduce Salmonella on sliced tomatoes

    USDA-ARS?s Scientific Manuscript database

    Contamination of tomatoes with Salmonella is a recurring food safety concern. Irradiation is a nonthermal intervention that can inactivate pathogens on fresh produce. The best practices for implementing irradiation for fresh produce have yet to be determined. Roma tomatoes were sliced and inoculated...

  4. The effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 100 C

    SciTech Connect

    Edwards, D.J.; Singh, B.N.; Toft, P.; Eldrup, M.

    1998-03-01

    This report describes the final irradiation experiment in a series of screening experiments aimed at investigating the effects of bonding and bakeout thermal cycles on irradiated copper alloys. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing and bonding thermal treatment. The post-irradiation tests at 100 C revealed the greatest loss of ductility occurred in the CuCrZr alloys, irrespective of the pre-irradiation heat treatment, with the uniform elongation dropping to levels of less than 1.5%. The yield and ultimate strengths for all of the individual heat treated samples increased substantially after irradiation. The same trend was observed for the CuNiBe alloys, which overall exhibited a factor of 3 higher uniform elongation after irradiation with almost double the strength. In both alloys irradiation-induced precipitation lead to a large increase in the strength of the solution annealed specimens with a noticeable decrease in uniform elongation. The Al25 alloy also experienced an increase in the overall strength of the alloy after irradiation, accompanied by approximately a 50% decrease in the uniform and total elongation. The additional bakeout treatments given to the CuCrZr and CuNiBe before irradiation served to increase the strength, but in terms of the ductility no improvement or degradation resulted from the additional thermal exposure. The results of this experiment confirm that the al25 possesses the most resistant microstructure to thermal and irradiation-induced changes, while the competing effects of ballistic dissolution and reprecipitation lead to important changes in the two precipitation strengthened alloys. This study and others have repeatedly shown that these materials can only be used if the very low uniform elongation (1% or less) can be accounted for in the design since pre-irradiation thermal processing cannot mitigate the irradiation embrittlement.

  5. Effect of gamma irradiation and cooking on cowpea bean grains ( Vigna unguiculata L. Walp)

    NASA Astrophysics Data System (ADS)

    Lima, Keila dos Santos Cople; Souza, Luciana Boher e.; Godoy, Ronoel Luiz de Oliveira; França, Tanos Celmar Costa; Lima, Antônio Luís dos Santos

    2011-09-01

    Leguminous plants are important sources of proteins, vitamins, carbohydrates, fibers and minerals. However, some of their non-nutritive elements can present undesirable side effects like flatulence provoked by the anaerobic fermentation of oligosaccharides, such as raffinose and stachyose, in the gut. A way to avoid this inconvenience, without any change in the nutritional value and post-harvesting losses, is an irradiation process. Here, we evaluated the effects of gamma irradiation on the amino acids, thiamine and oligosaccharide contents and on the fungi and their toxin percentages in cowpea bean ( Vigna unguiculata L. Walp) samples. For irradiation doses of 0.0, 0.5, 1.0, 2.5, 5.0 and 10.0 kGy the results showed no significant differences in content for the uncooked samples. However, the combination of irradiation and cooking processes reduced the non-nutritive factors responsible for flatulence. Irradiation also significantly reduced the presence of Aspergillus, Penicilium, Rhizopus and Fusarium fungi and was shown to be efficient in grain conservation for a storage time of 6 months.

  6. Proton and neutron irradiation effect of Ti: Sapphires

    SciTech Connect

    Wang, G.; Zhang, J.; Yang, J.

    1999-07-01

    Various effects of proton and neutron irradiated Ti: sapphires were studied. Proton irradiation induced F, F{sup +} and V center in Ti: sapphires and 3310 cm{sup -1} infrared absorption, and made ultraviolet absorption edge shift to short wave. Neutron irradiation produced a number of F, F{sup +} and F{sub 2} centers and larger defects in Ti: sapphires, and changed Ti{sup 4+}into Ti{sup 3+} ions. Such valence state variation enhanced characteristic luminescence of Ti: sapphires, and no singular variances of intrinsic fluorescence spectra of Ti: sapphires took place with neutron flux of 1 x 10{sup 17}n/cm{sup 2}, but the fluorescence vanished with neutron flux of 1 x 10{sup 18}n/cm{sup 2} which means the threshold for the concentration of improving Ti{sup 3+} ions by neutron irradiation.

  7. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    SciTech Connect

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  8. Effect of irradiation on Brazilian honeys' consistency and their acceptability

    NASA Astrophysics Data System (ADS)

    Matsuda, A. H.; Sabato, S. F.

    2004-09-01

    Contamination of bee products may occur during packing or even during the process of collection. Gamma irradiation was found to decrease the number of bacteria and fungi. However, little information is available on the effects of gamma irradiation on viscosity which is an important property of honey. In this work the viscosity of two varieties of Brazilian honey was measured when they were irradiated at 5 and 10 kGy. The viscosity was measured at four temperatures (25°C, 30°C, 35°C and 40°C) for both samples and compared with control and within the doses. The sensory evaluation was carried on for the parameters color, odor, taste and consistency, using a 9-point hedonic scale. All the data were treated with a statistical tool (Statistica 5.1, StatSoft, 1998). The viscosity was not impaired significantly by gamma irradiation in doses 5 and 10 kGy ( p<0.05). The effect of gamma irradiation on sensorial characteristics (odor, color, taste and consistency) is presented. The taste for Parana type indicated a significant difference among irradiation doses ( p<0.05) but the higher value was for 5 kGy dose, demonstrating the acceptability for this case. The Organic honey presented the taste parameter for 10 kGy, significantly lower than the control mean but it did not differ significantly from the 5 kGy value.

  9. Effects of Irradiation on Albite's Chemical Durability.

    PubMed

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-04

    Albite (NaAlSi3O8), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar(+)-implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  10. Survival after total body irradiation: Effects of irradiation of exteriorized small intestine. (Reannouncement with new availability information)

    SciTech Connect

    Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.; Pelky, T.; Taylor, P.

    1993-12-31

    Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes in small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.

  11. Effect of acute and fractionated irradiation on hippocampal neurogenesis.

    PubMed

    Park, Min-Kyoung; Kim, Seolhwa; Jung, Uhee; Kim, Insub; Kim, Jin Kyu; Roh, Changhyun

    2012-08-08

    Ionizing radiation has become an inevitable health concern emanating from natural sources like space travel and from artificial sources like medical therapies. In general, exposure to ionizing radiation such as γ-rays is one of the methods currently used to stress specific model systems. In this study, we elucidated the long-term effect of acute and fractionated irradiation on DCX-positive cells in hippocampal neurogenesis. Groups of two-month-old C57BL/6 female mice were exposed to whole-body irradiation at acute dose (5 Gy) or fractional doses (1 Gy × 5 times and 0.5 Gy × 10 times). Six months after exposure to γ-irradiation, the hippocampus was analyzed. Doublecortin (DCX) immunohistochemistry was used to measure changes of neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). The number of DCX-positive cells was significantly decreased in all acute and fractionally irradiation groups. The long-term changes in DCX-positive cells triggered by radiation exposure showed a very different pattern to the short-term changes which tended to return to the control level in previous studies. Furthermore, the number of DCX-positive cells was relatively lower in the acute irradiation group than the fractional irradiation groups (approximately 3.6-fold), suggesting the biological change on hippocampal neurogenesis was more susceptible to being damaged by acute than fractional irradiation. These results suggest that the exposure to γ-irradiation as a long-term effect can trigger biological responses resulting in the inhibition of hippocampal neurogenesis.

  12. Uniform annealing effect of electron irradiation on ferromagnetic GaMnAs thin films

    NASA Astrophysics Data System (ADS)

    Luo, Jia; Xiang, Gang; Gu, Gangxu; Zhang, Xi; Wang, Hailong; Zhao, Jianhua

    2017-01-01

    For more than a decade, researchers have been searching for means to improve the Curie temperature of ferromagnetic GaMnAs samples, among which post-growth annealing in furnace has been treated as the most important one. In this work, we demonstrate that the Curie temperature can be improved by electron irradiation for the first time. Different doses of electron irradiation (1 × 1014, 1 × 1015 and 1 × 1016 electrons/cm2) at 1.7 MeV were applied, the enhancement of magnetic and electrical properties of ferromagnetic GaMnAs films was experimentally confirmed by HR-XRD, SQUID and Magneto-transport measurements. Further SIMS characterizations and analyses reveal that electron irradiation causes bi-directional out-diffusion and redistribution of compensating Mn interstitials towards both the upper surface and the lower interface, a newly found uniform effect clearly different from that of conventional post-growth annealing. The technique of electron irradiation annealing may provide an alternative way to improve the properties of electronic and magnetic compounds such as GaMnAs films.

  13. Influence of alpha irradiation on pre and post solar exposed PM-355 polymeric nuclear track detector sheets

    NASA Astrophysics Data System (ADS)

    Alsalhi, M. S.; Baig, M. R.; Alfaramawi, K.; Alrasheedi, Mariam G.

    2017-01-01

    The effect of alpha irradiation before and after solar exposed PM-355 polymeric SSNTDs films was investigated. The absorption spectra for both non-irradiated and irradiated samples at different solar exposure time in different months showed a shift in the absorption edge towards lower wavelengths as the solar exposure time increases. This is probably ascribed to the presence of conjugate bonds. The fluorescence spectra indicated three distinguished peaks at approximately 330, 415 and 465 nm respectively. The first peak is attributed to the band gap while the other two peaks due to a probable formation of solid defects. The structure analysis using X-ray diffraction (XRD) proved the partial crystalline nature of the polymer with dominant amorphous phase. There was a slight increase in the XRD peak intensity for the sample irradiated by alpha particles indicating that the polymeric detector structure becomes more crystalline with a change in the crystallite size.

  14. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    PubMed Central

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  15. Comparison of structural properties of pristine and gamma irradiated single-wall carbon nanotubes: Effects of medium and irradiation dose

    SciTech Connect

    Kleut, D.; Jovanovic, S.; Markovic, Z.; Kepic, D.; Tosic, D.; Romcevic, N.; Marinovic-Cincovic, M.; Dramicanin, M.; Holclajtner-Antunovic, I.; Pavlovic, V.; Drazic, G.; Milosavljevic, M.; Todorovic Markovic, B.

    2012-10-15

    A systematic study of the gamma irradiation effects on single wall carbon nanotube (SWCNT) structure was conducted. Nanotubes were exposed to different doses of gamma irradiation in three media. Irradiation was carried out in air, water and aqueous ammonia. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and Raman spectroscopy confirmed the changes in the SWCNT structure. TGA measurements showed the highest percentage of introduced groups for the SWCNTs irradiated with 100 kGy. FTIR spectroscopy provided evidence for the attachment of hydroxyl, carboxyl and nitrile functional groups to the SWCNT sidewalls. Those groups were confirmed by EA. All irradiated SWCNTs had hydroxyl and carboxyl groups irrelevant to media used for irradiation, but nitrile functional groups were only identified in SWCNTs irradiated in aqueous ammonia. Raman spectroscopy indicated that the degree of disorder in the carbon nanotube structure correlates with the irradiation dose. For the nanotubes irradiated with the dose of 100 kGy, the Raman I{sub D}/I{sub G} ratio was three times higher than for the pristine ones. Atomic force microscopy showed a 50% decrease in nanotube length at a radiation dose of 100 kGy. Scanning and transmission electron microscopies showed significant changes in the morphology and structure of gamma irradiated SWCNTs. - Highlights: Black-Right-Pointing-Pointer Gamma irradiation causes SWCNT covalent functionalization. Black-Right-Pointing-Pointer Type of covalently attached groups to SWCNT surface depends on irradiation medium. Black-Right-Pointing-Pointer The SWCNT shortening level increases with applied irradiation dose. Black-Right-Pointing-Pointer The average length of carbon nanotubes decreased by 50% at the highest dose. Black-Right-Pointing-Pointer The diameter of SWCNT bundles becomes small as irradiation dose rises.

  16. Postnatal neurophysiologic effects of prenatal X-irradiation.

    PubMed

    Jensh, R P; Eisenman, L M; Brent, R L

    1995-02-01

    Histological and neurophysiological effects of in utero irradiation were examined following exposure of pregnant Wistar rat to 2.0 Gy X-irradiation or sham-irradiated on the 17th day of gestation. The 234 newborns were monitored for the age of appearance of four selected physiologic markers and the age of acquisition of five selected reflexes. Offspring were evaluated as young adults using selected behavioural tests. Postnatal growth was monitored weekly. Selected offspring were autopsied to determine the presence of morphologic central nervous system alterations. The results indicated that 2.0 Gy X-irradiation during the foetal period in rat gestation caused permanent alterations in the mature adult organism, which include non-recuperable growth retardation, morphologic changes in the brain such as microcephaly, abnormal cerebellar cortical cellular patterns, and alterations in the cell architecture of the hippocampus; diminished attainment of selected reflexes; alterations in the appearance of selected physiologic markers; and changes in adult test performance indicating significant hyperactivity among the irradiated offspring. Such exposure to X-irradiation during this period results in behavioural and morphologic alterations, which persist throughout life.

  17. Low-energy irradiation effects in cellulose

    SciTech Connect

    Polvi, Jussi; Nordlund, Kai

    2014-01-14

    Using molecular dynamics simulations, we determined the threshold energy for creating defects as a function of the incident angle for all carbon and oxygen atoms in the cellulose monomer. Our analysis shows that the damage threshold energy is strongly dependent on the initial recoil direction and on average slightly higher for oxygen atoms than for carbon atoms in cellulose chain. We also performed cumulative bombardment simulations mimicking low-energy electron irradiation (such as TEM imaging) on cellulose. Analyzing the results, we found that formation of free molecules and broken glucose rings were the most common forms of damage, whereas cross-linking and chain scission were less common. Pre-existing damage was found to increase the probability of cross-linking.

  18. Post-irradiation mechanical tests on F82H EB and TIG welds

    NASA Astrophysics Data System (ADS)

    Rensman, J.; van Osch, E. V.; Horsten, M. G.; d'Hulst, D. S.

    2000-12-01

    The irradiation behaviour of electron beam (EB) and tungsten inert gas (TIG) welded joints of the reduced-activation martensitic steel IEA heat F82H-mod. was investigated by neutron irradiation experiments in the high flux reactor (HFR) in Petten. Mechanical test specimens, such as tensile specimens and KLST-type Charpy impact specimens, were neutron irradiated up to a dose level of 2-3 dpa at a temperature of 300°C in the HFR reactor in Petten. The tensile results for TIG and EB welds are as expected with practically no strain hardening capacity left. Considering impact properties, there is a large variation in impact properties for the TIG weld. The irradiation tends to shift the DBTT of particularly the EB welds to very high values, some cases even above +250°C. PWHT of EB-welded material gives a significant improvement of the DBTT and USE compared to the as-welded condition.

  19. THE INFLUENCE OF PRE- AND POST-IRRADIATION ANNEALING ON LiF:Mg,Cu,P STABILITY.

    PubMed

    Matusiak, Katarzyna; Patora, Aneta; Jung, Aleksandra

    2016-11-01

    The influence of pre- and post-irradiation annealing procedures on LiF:Mg,Cu,P (trade name MCP-N) thermoluminescent detector stability was investigated. The detectors were processed in four groups, undergoing complete or incomplete preparation cycles (containing pre- and/or post-irradiation annealing in various combinations). Each cycle was repeated 10 times. The decrease in the stability was observed in groups with pre-irradiation annealing procedure, and not observed in other groups that were found to be apparently stable. The influence of the thermal history on the properties of the detectors was also investigated by swapping the chosen groups of detectors with respect to the annealing cycles. Changes in the properties of the detectors were observed after next 10 cycles of measurements too. Exponential model was proposed to describe the trends observed at two parts of the experiment. Its application for the dose corrections related to the cycle number of the readout improves the accuracy of final dose determination. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effect of helium on irradiation creep behavior of B-doped F82H irradiated in HFIR

    SciTech Connect

    Ando, M.; Nozawa, Takashi; Hirose, Takanori; Tanigawa, H.; Wakai, E.; Stoller, Roger E; Myers, Janie

    2015-07-30

    The diameter of pressurized tubes of F82H and B-doped F82H irradiated up to similar to 6 dpa have been measured by a non-contacting laser profilometer. The irradiation creep strains of F82H irradiated at 573 and 673K were almost linearly dependent on the effective stress level for stresses below 260 MPa and 170 MPa, respectively. The creep strain of (BN)-B-10-F82H was similar to that of F82H IEA at each effective stress level except 294 MPa at 573K irradiation. For 673K irradiation, the creep strain of some (BN)-B-10-F82H tubes was larger than that of F82H tubes. However, the generation of similar to 300 appm He did not cause a large difference in the irradiation creep behavior at 6 dpa.

  1. Effect of helium on irradiation creep behavior of B-doped F82H irradiated in HFIR

    DOE PAGES

    Ando, M.; Nozawa, Takashi; Hirose, Takanori; ...

    2015-07-30

    The diameter of pressurized tubes of F82H and B-doped F82H irradiated up to similar to 6 dpa have been measured by a non-contacting laser profilometer. The irradiation creep strains of F82H irradiated at 573 and 673K were almost linearly dependent on the effective stress level for stresses below 260 MPa and 170 MPa, respectively. The creep strain of (BN)-B-10-F82H was similar to that of F82H IEA at each effective stress level except 294 MPa at 573K irradiation. For 673K irradiation, the creep strain of some (BN)-B-10-F82H tubes was larger than that of F82H tubes. However, the generation of similar tomore » 300 appm He did not cause a large difference in the irradiation creep behavior at 6 dpa.« less

  2. Comparative effects of neutron irradiation and X irradiation on the embryonic development of the rat

    SciTech Connect

    Solomon, H.M. ); Beckman, D.A.; Buck, S.J.; Brent, R.L. Thomas Jefferson Univ., Philadelphia, PA ); Gorson, R.O. ); Mills, R.E. )

    1994-02-01

    Our aim was to compare the dose-response relationship for the embryotoxic effects of 0.43 MeV neutrons with those of 240 kVp X rays after in utero exposures during early organogenesis in the rat. At 9.5 days after conception, pregnant rats were exposed to 0.025 to 0.35 Gy 0.43 MeV neutrons at a dose rate of 0.04 to 0.07 Gy/h. Comparable biological effects were produced using 0.50 to 2.05 Gy 240 kVp X rays. Neutron irradiation produced a greater proportion of offspring with very low body weight than with malformations when compared to X rays. There were no embryotoxic effects observed at neutron exposures of 0.025, 0.049, 0.079, 0.10, 0.15, and 0.20 Gy or X-ray exposures of 0.50 and 0.96 Gy. Taken together, the results suggest that the mechanisms by which neutron irradiation affects embryonic development may, in part, be both quantitatively and qualitatively different from those by which X irradiation affects development. These results support the generalization that the embryo exhibits a nonlinear response to increasing doses of ionizing radiations during the period of early organogenesis. 25 refs., 3 tabs.

  3. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    SciTech Connect

    Zinkle, S.J.

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  4. Nature of nontargeted radiation effects observed during fractionated irradiation-induced thymic lymphomagenesis in mice.

    PubMed

    Tsuji, Hideo; Ishii-Ohba, Hiroko; Shiomi, Tadahiro; Shiomi, Naoko; Katsube, Takanori; Mori, Masahiko; Nenoi, Mitsuru; Ohno, Mizuki; Yoshimura, Daisuke; Oka, Sugako; Nakabeppu, Yusaku; Tatsumi, Kouichi; Muto, Masahiro; Sado, Toshihiko

    2013-05-01

    Changes in the thymic microenvironment lead to radiation-induced thymic lymphomagenesis, but the phenomena are not fully understood. Here we show that radiation-induced chromosomal instability and bystander effects occur in thymocytes and are involved in lymphomagenesis in C57BL/6 mice that have been irradiated four times with 1.8-Gy γ-rays. Reactive oxygen species (ROS) were generated in descendants of irradiated thymocytes during recovery from radiation-induced thymic atrophy. Concomitantly, descendants of irradiated thymocytes manifested DNA lesions as revealed by γ-H2AX foci, chromosomal instability, aneuploidy with trisomy 15 and bystander effects on chromosomal aberration induction in co-cultured ROS-sensitive mutant cells, suggesting that the delayed generation of ROS is a primary cause of these phenomena. Abolishing the bystander effect of post-irradiation thymocytes by superoxide dismutase and catalase supports ROS involvement. Chromosomal instability in thymocytes resulted in the generation of abnormal cell clones bearing trisomy 15 and aberrant karyotypes in the thymus. The emergence of thymic lymphomas from the thymocyte population containing abnormal cell clones indicated that clones with trisomy 15 and altered karyotypes were prelymphoma cells with the potential to develop into thymic lymphomas. The oncogene Notch1 was rearranged after the prelymphoma cells were established. Thus, delayed nontargeted radiation effects drive thymic lymphomagenesis through the induction of characteristic changes in intrathymic immature T cells and the generation of prelymphoma cells.

  5. Comparison in the effect of linear polarized near-infrared light irradiation and light exercise on shoulder joint flexibility.

    PubMed

    Demura, Shinichi; Noguchi, Takanori; Matsuzawa, Jinzaburo

    2006-07-01

    This study aimed at comparing the effect of linear polarized near-infrared light irradiation (PL irradiation) and bicycle exercise with 50%HRreserve on the flexibility of the shoulder joint. Placebo-controlled trial. Twenty-four healthy young adults (10 males: mean+/-SD, age 20.9+/-3.1 y, height 171.0+/-3.9 cm, body mass 63.4+/-3.5 kg and 14 females: age 21.2+/-1.7 y, height 162.0+/-7.8 cm, body mass 56.2+/-7.2 kg). PL-irradiation (100%, 1800 mW), placebo-irradiation (10%,180 mW), and light exercise (50%HRreserve) for 10 minutes. OUTCOME MEASUREMENTS AND RESULTS: The shoulder joint angles were measured twice-before and after each intervention. We measured the angles when the right shoulder joint extended forward and flexed backward maximally without support, and analyzed these shoulder joints and range of motion. Trial-to-trial reliability (intraclass correlations) of each joint angle was very high, over 0.98. All joint angles showed significant changes, and values in post-PL-irradiation and postlight exercise were significantly greater than that in postplacebo-irradiation. Shoulder forward flexion and backward extension angles had significantly greater change rates in PL-irradiation and light exercise than placebo-irradiation, and their range of motion angle was in the order of PL-irradiation, light exercise, and placebo-irradiation. It is suggested that PL-irradiation produces almost the same effect on shoulder joint range of motion as light exercise.

  6. Rescue Effects: Irradiated Cells Helped by Unirradiated Bystander Cells

    PubMed Central

    Lam, R. K. K.; Fung, Y. K.; Han, W.; Yu, K. N.

    2015-01-01

    The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed. PMID:25625514

  7. Teratogenic effect of californium-252 irradiation in rats.

    PubMed

    Satow, Y; Lee, J Y; Hori, H; Okuda, H; Tsuchimoto, S; Sawada, S; Yokoro, K

    1989-06-01

    The teratogenicity of californium-252 (Cf-252) irradiation which generates approximately 70% 2.3 MeV fast neutron and 30% gamma rays was evaluated. A single whole body exposure of Cf-252 at various doses was given to pregnant rats on day 8 or 9 of pregnancy, followed by microscopic autopsy of the fetuses at the terminal stage of pregnancy to search for external and internal malformations. For comparison, pregnant rats were irradiated with various doses of cobalt-60 (Co-60) standard gamma rays at the same dose rate (1 rad/min.). The doses were 20-120 rad of Cf-252 and 80-220 rad of Co-60. Using frequency of radiation induced malformations observed on day 8 of pregnancy as an index, relative biological effectiveness (RBE) of 2.3-2.7 was obtained from the straight line obtained by modifying by the least squares method the frequency curves of malformed fetuses in total implants and in surviving fetuses. The types of malformations induced by Cf-252 and Co-60 irradiation were alike. Using fetal LD50 as an index, 2.4 was obtained as RBE when irradiated on day 8 of pregnancy and 3.1 as that when irradiated on day 9. The results showed that Cf-252 had stronger a teratogenic effect than Co-60 gamma rays.

  8. Phytotherapeutic effects of Echinacea purpurea in gamma-irradiated mice

    PubMed Central

    Abouelella, Amira M. K.; Tawfik, Sameh S.; Zahran, Ahmed M.

    2007-01-01

    Echinacea (E.) purpurea herb is commonly known as the purple coneflower, red sunflower and rudbeckia. In this paper, we report the curative efficacy of an Echinacea extract in γ-irradiated mice. E. purpurea was given to male mice that were divided into five groups (control, treated, irradiated, treated before irradiation & treated after irradiation) at a dose of 30 mg/kg body weight for 2 weeks before and after irradiation with 3 Gy of γ-rays. The results reflected the detrimental reduction effects of γ-rays on peripheral blood hemoglobin and the levels of red blood cells, differential white blood cells, and bone marrow cells. The thiobarbituric acid-reactive substances (TBARs) level, Superoxide dismutase (SOD) and glutathione peroxidase (GSPx) activities and DNA fragmentation were also investigated. FT-Raman spectroscopy was used to explore the structural changes in liver tissues. Significant changes were observed in the microenvironment of the major constituents, including tyrosine and protein secondary structures. E. purpurea administration significantly ameliorated all estimated parameters. The radio-protection effectiveness was similar to the radio-recovery curativeness in comparison to the control group in most of the tested parameters. The radio-protection efficiency was greater than the radio-recovery in hemoglobin level during the first two weeks, in lymphoid cell count and TBARs level at the fourth week and in SOD activity during the first two weeks, as compared to the levels of these parameters in the control group. PMID:17993747

  9. Effect of extracorporeal ultraviolet blood irradiation on blood cholesterol level

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.; Mitkovskaya, N. P.; Kirkovsky, V. V.

    2012-07-01

    We have studied the effect of extracorporeal ultraviolet blood irradiation on cholesterol metabolism in patients with cardiovascular diseases. We have carried out a comprehensive analysis of the spectral characteristics of blood and plasma, gas-exchange and oximetry parameters, and the results of a complete blood count and chemistry panel before and after UV blood irradiation. We have assessed the changes in concentrations of cholesterols (total cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides) in the blood of the patients in response to a five-day course of UV blood irradiation. The changes in the spectral characteristics of blood and plasma, the chemistry panel, the gas composition, and the fractional hemoglobin composition initiated by absorption of UV radiation are used to discuss the molecular mechanisms for the effect of therapeutic doses of UV radiation on blood cholesterols.

  10. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  11. Gastroprotective effect of kefir on ulcer induced in irradiated rats.

    PubMed

    Fahmy, Hanan A; Ismail, Amel F M

    2015-03-01

    The current study was designed to investigate the protective effect of kefir milk on ethanol-induced gastric ulcers in γ-irradiated rats. The results of the present study revealed that treatment with γ-irradiation and/or ethanol showed a significant increase in ulcers number, total acidity, peptic, H(+)K(+)ATPase, MMP-2 and MMP-9 activities and MDA level, which were accompanied by a significant decrease in the mucus content, the stomach GSH level, the GSH-Px activity and DNA damage. Pre-treatment with kefir milk exert significant improvement in all the tested parameters. Kefir milk exerts comparable effect to that of the antiulcer drug ranitidine. In conclusion, the present study revealed that oral administration of kefir milk prevents ethanol-induced gastric ulcer in γ-irradiated rats that could attribute to its antioxidant, anti-apoptotic and radio-protective activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  13. [Effect of irradiation on the degradation of rat thymocyte chromatin].

    PubMed

    Tsudzevich, B O; Parkhomets', Iu P; Andriĭchuk, T R; Iurkina, V V

    1998-01-01

    Genome instability of adaptive nature is formed under the experimental influence on a cell. Under critical conditions, strategy of organism is to damage the cells that cannot be restored and controlled by including the program of apoptosis. The ordered internucleosomal DNA degradation is considered to be one of the proof attributes of immunocompetent cell apoptosis. We investigated the effects of various doses of irradiation on the thymocytes chromatine fragmentation in 1,2,3 hours after a single X-ray exposure or after chronic influence in conditions of Chernobyl research base. By the means of electrophoresis in agarose and judging by polydeoxyribonucleotides accumulation we observed the "ladder pattern" of degradation in 3 hr after single 1 Gr irradiation (the smallest dose displaying the effect). We suppose that the influence of both chronic low-intensity irradiation taking place in Chernobyl and single X-ray exposure result in intensifying of DNA fragmentation in the cells of immunocompetent organs.

  14. An in vitro evaluation of effect of ionizing radiotherapy on push-out strength of fiber posts under cyclic loading.

    PubMed

    Aggarwal, Vivek

    2009-05-01

    Ionizing radiotherapy has a deleterious effect on all vital cells and thus might affect the collagen fibril network of dentin and formation of hybrid layer of composite resins. The present study evaluated the effect of ionizing x-ray radiotherapy on push-out bond strength of fiber posts. Sixty mandibular premolar roots were divided into 4 groups: group I, control group with no irradiation, restored with a quartz fiber post system with cyclic loading; group II, samples were exposed to 60 Gy radiation dosage and than restored; group III, samples were restored and then irradiated; and group IV, samples were restored during irradiation. A push-out bond strength test was done. Radiotherapy significantly reduced the push-out bond strength of fiber posts. Patients undergoing ionizing radiotherapy might have a less than ideal prognosis of fiber posts luted with dual cure resin cement with total etch bonding system, if restorations are done after radiotherapy.

  15. Light-Water Reactor Microstructural Characterization from Post-Irradiation Annealing Behavior

    SciTech Connect

    Simonen, Edward P.; Edwards, Danny J.; Bruemmer, Stephen M.; Busby, Jeremy T.; Was, Gary S.

    2002-01-01

    A measurement and modeling approach has been used to interpret the character and stability of fine-scale microstructure in neutron irradiated stainless steel near 300 degrees C. The primary form of vacancy-type damage is concluded to reside in the detectable Frank loop population of the microstructure. Annealing behavior of hardness as well as microstructure indicate that more than one microstructural component contributes to measured irradiation-induced hardness. This includes a component very susceptible to short-term annealing, a component with expected dissolution behavior of Frank loops and a component that is very resistant to long-term annealing. The hardness recovery exhibits distinct differences in heat to heat variability that depends on irradiation dose. The character and stability of fine-scale microstructure is being investigated to better understand irradiation strengthening mechanisms, microstructures induced by neutron compared to proton irradiation, and predictions of transitions in microstructure from Frank loop dominance to void swelling dominance at temperatures greater than 300 degrees C.

  16. The hematological effects of irradiation on the Indian desert gerbil (Meriones hurrianae Jerdon).

    PubMed

    Malhotra, N; Srivastava, P N

    1975-09-01

    Male adult gerbils were irradiated with a whole-body dose of 600 R with gamma-rays. The animals were studied for their hematological response on days, 1, 2, 3, 7, 14, and 28 post irradiation. No significant change was noted in erythrocyte number after irradiation. There was a slight fall in hemoglobin and hematocrit values in the early post-irradiation periods. A transient leukocytosis was observed on day 1 after irradiation followed by a sharp fall on day 2 which continued up to day 3. A recovery in leukocyte value was noted after a week of irradiation. Abnormal leukocytes were noted in the peripheral blood on day 2 after irradiation. The results show that the gerbil is radioresistent and is comparable to the rabbit at this dose-level.

  17. Irradiation effects on magnetic properties in neutron and proton irradiated reactor pressure vessel steel

    SciTech Connect

    Park, D.G.; Hong, J.H.; Kim, I.S.; Kim, H.C.

    1999-09-01

    The effects of neutron and proton dose on the magnetic properties of a reactor pressure vessel (RPV) steel were investigated. The coercivity and maximum induction increased in two stages with respect to neutron dose, being nearly constant up to a dose of 1.5 x 10{sup {minus}7} dpa, followed by a rapid increase up to a dose of 1.5 x 10{sup {minus}5} dpa. The coercivity and maximum induction in the proton irradiated specimens also showed a two stage variation with respect to proton dose, namely a rapid increase up to a dose of 0.2 x 10{sup {minus}2} dpa, then a decrease up to 1.2 x 10{sup {minus}2} dpa. The Barkhausen noise (BN) amplitude in neutron irradiated specimens also varied in two stages in a reverse manner, the transition at the same dose of 1.5 x 10{sup {minus}7} dpa. The BN amplitude in proton irradiated specimens decreased by 60% up to 0.2 x 10{sup {minus}2} dpa followed by an increase up to 1.2 x 10{sup {minus}2} dpa. The results were in good accord with the one dimensional domain wall model considering the density of defects and wall energy.

  18. Interim report on the post irradiation examination of capsules 2 and 3 of the HFR-B1 experiment

    SciTech Connect

    Myers, B.F.; Pott, G.; Schenk, W.; Schroeder, R.; Kuehlein, W.; Buecker, H.J.; Dahmen, H.; Landsgesell, K.; Nieveler, F.

    1994-09-01

    This is an interim report on the post irradiation examination (PIE) of capsules 2 and 3 of the HFR-B1 experiment The PIE has been conducted by the Forschungszentrum Juelich and is nearing completion. After disassembly of the capsules, the examination focused on capsule components including fuel compacts, inert compacts fired in different media, graphite cylinders of different grades, unbonded coated fuel particles and unfueled graphite; in addition, heating experiments with intermittent injections of water vapor were conducted using fuel compacts and the kernels of uranium oxycarbide. Measurement involved gamma scanning and counting, photography, metallography, dimensional and weight changes, burnup determination and fission product release.

  19. BARKHAUSEN EFFECT IN IRRADIATED PURE IRON AND NICKEL.

    DTIC Science & Technology

    The effect of electron and neutron irradiation on the Barkhausen effect and coercive force of pure iron and nickel were investigated. The...investigation was designed to establish whether (l) the Barkhausen effect can provide a sensitive indication of the presence of large radiation-induced defect...clusters and whether (2) study of the Barkhausen effect could provide meaningful information about behavior of such defects. (These aims were based on

  20. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2015-10-01

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.

  1. Construction of a Post-Irradiated Fuel Examination Shielded Enclosure Facility

    SciTech Connect

    Michael A. Lehto, Ph.D.; Boyd D. Christensen

    2008-05-01

    The U.S. Department of Energy (DOE) has committed to provide funding to the Idaho National Laboratory (INL) for new post-irradiation examination (PIE) equipment in support of advanced fuels development. This equipment will allow researchers at the INL to accurately characterize the behavior of experimental test fuels after they are removed from an experimental reactor also located at the INL. The accurate and detailed characterization of the fuel from the reactor, when used in conjunction with computer modeling, will allow DOE to more quickly understand the behavior of the fuel and to guide further development activities consistent with the missions of the INL and DOE. Due to the highly radioactive nature of the specimen samples that will be prepared and analyzed by the PIE equipment, shielded enclosures are required. The shielded cells will be located in the existing Analytical Laboratory (AL) basement (Rooms B-50 and B-51) at the INL Material and Fuels Complex (MFC). AL Rooms B-50 and B-51 will be modified to establish an area where sample containment and shielding will be provided for the analysis of radioactive fuels and materials while providing adequate protection for personnel and the environment. The area is comprised of three separate shielded cells for PIE instrumentation. Each cell contains an atmosphere interface enclosure (AIE) for contamination containment. The shielding will provide a work area consistent with the as-low-as-reasonably-achievable (ALARA) concept, assuming a source term of 10 samples in each of the three shielded areas. Source strength is assumed to be a maximum of 3 Ci at 0.75 MeV gamma for each sample. Each instrument listed below will be installed in an individual shielded enclosure: Shielded electron probe micro-analyzer (EPMA) Focused ion beam instrument (FIB) Micro-scale x-ray diffractometer (MXRD). The project is designed and expected to be built incrementally as funds are allocated. The initial phase will be to fund the

  2. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  3. Effects of self-irradiation in plutonium alloys

    DOE PAGES

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  4. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  5. Helium effects on irradiation dmage in V alloys

    SciTech Connect

    Doraiswamy, N.; Alexander, D.

    1996-10-01

    Preliminary investigations were performed on V-4Cr-4Ti samples to observe the effects of He on the irradiation induced microstructural changes by subjecting 3 mm electropolished V-4Cr-4Ti TEM disks, with and without prior He implantation, to 200 keV He irradiation at room temperature and monitoring, in-situ, the microstructural evolution as a function of total dose with an intermediate voltage electron microscope directly connected to an ion implanter. A high density of black dot defects were formed at very low doses in both He pre-implanted and unimplanted samples.

  6. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Xie, J.; Komvopoulos, K.

    2016-03-01

    Carbon films synthesized by plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) exhibit a layered structure consisting of a bottom (interface) and a top (surface) layer rich in sp2 atomic carbon bonding and a middle (bulk) layer of much higher sp3 content. Because of significant differences in the composition, structure, and thickness of these layers, decreasing the film thickness may negatively affect its properties. In this study, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to examine the effect of Ar+ ion irradiation on the structure and thickness of ultrathin films of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) deposited by PECVD and FCVA, respectively. The TEM and EELS results show that 2-min ion irradiation decreases the film thickness without markedly changing the film structure and composition, whereas 4-min ion irradiation results in significant film thinning and a moderate decrease of the sp3 content of the bulk layer. This study demonstrates that Ar+ ion irradiation is an effective post-deposition process for reducing the thickness and tuning the structure of ultrathin carbon films. This capability has direct implications in the synthesis of ultrathin protective carbon overcoats for extremely high-density magnetic recording applications.

  7. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films

    SciTech Connect

    Xie, J.; Komvopoulos, K.

    2016-03-07

    Carbon films synthesized by plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) exhibit a layered structure consisting of a bottom (interface) and a top (surface) layer rich in sp{sup 2} atomic carbon bonding and a middle (bulk) layer of much higher sp{sup 3} content. Because of significant differences in the composition, structure, and thickness of these layers, decreasing the film thickness may negatively affect its properties. In this study, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to examine the effect of Ar{sup +} ion irradiation on the structure and thickness of ultrathin films of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) deposited by PECVD and FCVA, respectively. The TEM and EELS results show that 2-min ion irradiation decreases the film thickness without markedly changing the film structure and composition, whereas 4-min ion irradiation results in significant film thinning and a moderate decrease of the sp{sup 3} content of the bulk layer. This study demonstrates that Ar{sup +} ion irradiation is an effective post-deposition process for reducing the thickness and tuning the structure of ultrathin carbon films. This capability has direct implications in the synthesis of ultrathin protective carbon overcoats for extremely high-density magnetic recording applications.

  8. Effects of irradiation on alaryngeal voice of totally laryngectomized patients

    SciTech Connect

    Izdebski, K.; Fontanesi, J.; Ross, J.C.; Hetzler, D.

    1988-06-01

    The effects of radiation therapy on the ability of totally laryngectomized patients to produce voice and speech were examined using objective non-invasive methods. Moderate to severe losses were noted in patients producing voice with all types of alaryngeal modalities: tracheoesophageal, esophageal, and electrolaryngeal. Voice and speech losses were related to the impaired motility and vibratory capability of the esophageal wall and mucosa, to fibrosis of the submandibular region and to trismus. Tracheoesophageal and esophageal voice was recovered some weeks after completion of irradiation. No voice losses were observed in alaryngeal speakers who did not undergo voice restoration until after irradiation. All irradiated patients also showed various degrees of dysphagia during the treatment.

  9. Effects of laser irradiation on the morphology of Cu(110)

    SciTech Connect

    Brandstetter, T.; Draxler, M.; Hohage, M.; Zeppenfeld, P.; Stehrer, T.; Heitz, J.; Georgiev, N.; Martinotti, D.; Ernst, H.-J.

    2008-07-15

    The effects of pulsed laser irradiation on the morphology of the Cu(110) surface were investigated by means of reflectance difference spectroscopy (RDS) and spot profile analysis low-energy electron diffraction (SPA-LEED). The laser light induces surface defects (adatoms and islands) as well as subsurface dislocation lines. The high surface mobility leads to efficient annealing of the surface defects even at room temperature, whereas the subsurface dislocation lines persist up to temperatures T>800 K. SPA-LEED profiles of the (00) diffraction spot from the laser irradiated surface suggest an anisotropic distribution of the subsurface line defects related to the geometry of the fcc easy glide system, which is corroborated by STM measurements. Comparative experiments using conventional Ar ion bombardment point out the distinctiveness of the morphological changes induced by laser irradiation.

  10. An SEM Approach for the Evaluation of Intervention Effects Using Pre-Post-Post Designs

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; White, Helene R.

    2009-01-01

    This study analyzes latent change scores using latent curve models (LCMs) for evaluation research with pre-post-post designs. The article extends a recent article by Willoughby, Vandergrift, Blair, and Granger (2007) on the use of LCMs for studies with pre-post-post designs, and demonstrates that intervention effects can be better tested using…

  11. The NMR investigation of the electromagnetic irradiation effects on bacteria

    NASA Astrophysics Data System (ADS)

    Drokina, T. V.; Lisin, V. V.; Popova, L. U.; Balandina, A. N.; Bitekhtina, M. A.

    2006-12-01

    The luminous marine bacteria (Photobacterium leiognathi, strain 54) are influenced by a nonthermal-intensity millimeter electromagnetic field, which was studied by nuclear magnetic resonance (NMR). It is shown that the proton spectrum of luminous bacteria depends on the electromagnetic irradiation effect (v = 42.2 GHz).

  12. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  13. Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages.

    PubMed

    Rondanini, Deborah P; del Pilar Vilariño, Maria; Roberts, Marcos E; Polosa, Marina A; Botto, Javier F

    2014-12-01

    Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level. © 2014 Scandinavian Plant Physiology Society.

  14. ECRIX-H experiment: Synthesis of post-irradiation examinations and simulations

    NASA Astrophysics Data System (ADS)

    Béjaoui, S.; Lamontagne, J.; Esbelin, E.; Bonnerot, J. M.; Brunon, E.; Bourdot, P.

    2011-08-01

    The purpose of the ECRIX-H experiment is to study the behaviour of a composite ceramic target made of AmO 1.62 microdispersed in an MgO matrix irradiated for 318 EFPD in the Phenix sodium-cooled fast reactor (SFR), in a specific carrier sub-assembly equipped with annular blocks of CaH x acting as a neutron moderator. Results indicate that magnesia-based inert matrix targets display satisfactory behaviour and moderate swelling under irradiation, even for significant quantities of helium produced and a high burn-up. On this basis, the design of transmutation fuel pins for recycling of minor actinides (MA) in accelerator-driven systems (ADS) or in fast neutron reactors (FR) could be optimised so as to increase their performance level (initial MA content, burn-up, etc.). The measured Am fission rate (25 at.%) was found to be lower than that predicted by neutronic simulations probably due to the inaccuracies linked to the complexity of neutron modelling and the uncertainties on nuclear data related to moderated neutron spectrum. In addition, as most of the initial Am transmuted into Pu under irradiation, a PuO x-type phase was created within the initial AmO 1.62 particles, leading to the incomplete dissolution of the irradiated targets under standard reprocessing conditions. This issue will have to be considered and investigated in greater detail for all transmutation fuels and targets devoted to the multi-recycling of MA.

  15. Effects of low-power laser irradiation on the mitosis rate of the corneal epithelium

    NASA Astrophysics Data System (ADS)

    Chen, Varda; Landshman, Nahum; Belkin, Michael

    1995-05-01

    The effect of repeated low power He-Ne laser on rabbit's corneal epithelium was studied after 3 daily sessions. Under certain irradiation parameters, low power He-Ne laser irradiation was found to change the mitotic rate in the basal layer of intact corneal epithelium. Three daily irradiations for 3 or 10 minutes increased the mitotic index while 30 minutes irradiations decreased it.

  16. Directional effect on post-stroke motor overflow characteristics.

    PubMed

    Tung, Li-Cheng; Yang, Jeng-Feng; Wang, Chun-Hou; Hwang, Ing-Shiou

    2011-12-31

    Motor overflow (MO) is an involuntary muscle activation associated with strenuous contralateral movement and may become manifested after stroke. The study was undertaken to investigate physiological correlation underlying atypical directional effect of joint movement on post-stroke MO in the affected upper limb. Thirty patients with unilateral post-stroke hemiparesis and fifteen age-matched healthy controls participated in this study. According to motor function assessed with the Fugl-Meyer arm scale, the patients were categorized into two groups of equal number with better (CVA_G; n = 15) or poorer motor functions (CVA_P; n = 15). Surface electromyography (EMG) was used to record irradiated muscle activation from eight muscles of the affected upper limb when the subjects performed maximal isometric contractions in different directions with the unaffected shoulder, elbow and wrist joints. The results showed that only MO amplitude of the CVA_G and the control groups was more sensitive to variations in direction of joint movement in the unaffected arm than the CVA_P group. The CVA_G group exhibited larger amplitudes of MO than the control analog, whereas this tendency was reversed for the CVA_P group. In terms of EMG polar plots, spatial representations of post-stroke MO were insensitive to direction of contralateral movement. The spatial representations of the CVA_G and CVA_P groups were predominated by potent flexion-abduction synergy, contrary to the typical extension adduction synergy seen in the control analog. In conclusion, post-stroke MO amplitude was subject to contralateral movement direction for healthy controls and stroke patients with better motor recovery. However, alterations in MO spatial pattern due to directional effect were not strictly related to the degree of motor deficits of the stroke victims.

  17. Bystander Effects Induced by Medium From Irradiated Cells: Similar Transcriptome Responses in Irradiated and Bystander K562 Cells

    SciTech Connect

    Herok, Robert; Konopacka, Maria; Polanska, Joanna; Swierniak, Andrzej; Rogolinski, Jacek; Jaksik, Roman; Hancock, Ronald; Rzeszowska-Wolny, Joanna

    2010-05-01

    Purpose: Cells exposed to ionizing radiation release factors that induce deoxyribonucleic acid damage, chromosomal instability, apoptosis, and changes in the proliferation rate of neighboring unexposed cells, phenomena known as bystander effects. This work analyzes and compares changes in global transcript levels induced by direct irradiation and by bystander effects in K562 (human erythroleukemia) cells. Methods and Materials: Cells were X-irradiated with 4 Gy or transferred into culture medium collected from cells 1 h after irradiation (irradiation-conditioned medium). Global transcript profiles were assessed after 36 h of growth by use of Affymetrix microarrays (Affymetrix, Santa Clara, CA) and the kinetics of change of selected transcripts by quantitative reverse transcriptase-polymerase chain reaction. Results: The level of the majority (72%) of transcripts changed similarly (increase, decrease, or no change) in cells grown in irradiation-conditioned medium or irradiated, whereas only 0.6% showed an opposite response. Transcript level changes in bystander and irradiated cells were significantly different from those in untreated cells grown for the same amount of time and were confirmed by quantitative reverse transcriptase-polymerase chain reaction for selected genes. Signaling pathways in which the highest number of transcripts changed in both conditions were found in the following groups: neuroactive ligand-receptor, cytokine-cytokine receptor interaction, Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) and Mitogen-Activated Protein Kinase (MAPK) In control cells more transcripts were downregulated than in irradiated and bystander cells with transcription factors YBX1 and STAT5B, heat shock protein HSPA1A, and ribonucleic acid helicase DDX3X as examples. Conclusions: The transcriptomes of cells grown in medium from X-irradiated cells or directly irradiated show very similar changes. Signals released by irradiated cells may cause

  18. Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing

    PubMed Central

    Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning

    2017-01-01

    The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He+ ions with 1 × 1017 ions/cm2 fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800–1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed. PMID:28772459

  19. Post-malignancy irradiation ulcers with exposed alloplastic materials can be salvaged with topical negative pressure therapy (TNP).

    PubMed

    Loos, B; Kopp, J; Hohenberger, W; Horch, R E

    2007-09-01

    The aim of this study was to salvage or to integrate exposed alloplastic meshes in post malignancy irradiated chronic wounds by using topical negative pressure (TNP) therapy together with staged debridement. Three patients with secondarily exposed alloplastic meshes in irradiated non-healing wounds were treated by serial debridement and repeated topical negative pressure therapy until clean and vital wounds were achieved, followed by ultimate plastic coverage by a myocutaneous flap or split-thickness skin graft. The range of the follow-up period was from 18 to 36 months. After staged serial debridement and repeated vacuum treatment periods wounds were preconditioned in an acceptable fashion for ultimate plastic coverage. After the treatment with a myocutaneous flap or split-thickness skin graft all three patients achieved long-term stable wounds with no alloplastic mesh complication within the follow-up period. Computer-controlled TNP therapy (vacuum-assisted closure therapy) together with staged debridement can help to induce granulation tissue formation in irradiated wounds and allows integration of alloplastic materials into regenerating wounds after ablative oncologic surgery.

  20. Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing.

    PubMed

    Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning

    2017-01-24

    The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He⁺ ions with 1 × 10(17) ions/cm² fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800-1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.

  1. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  2. Microbial community in the soil determines the forest recovery post-exposure to gamma irradiation.

    PubMed

    Shah, Vishal; Shah, Shreya; Mackey, Herman; Kambhampati, Murty; Collins, Daniel; Dowd, Scot E; Colichio, Robert; McDonnell, Kevin T; Green, Timothy

    2013-10-15

    Exposure of an ecosystem to ionizing radiation remains a possibility either due to accidents involving nuclear fuel rods or contamination with high-level radioactive wastes. While the short and long-term effect of ionizing radiation on higher eukaryotes has been well documented, we do not have an understanding on the recovery of the microbial community post radiation. Here we report that at a site within Brookhaven National Laboratory that was radiated from 1961 to 1978 with γ rays (Gamma Forest), the ecosystem has not yet fully recovered from the effects of radiation. The current vegetation type in the Gamma Forest varies as one goes away from the source of ionizing radiation, with the region closest to the source having no vegetation. The microbial tag-encoded FLX amplicon pyrosequencing analysis of the soil from different regions suggests that the current microbial community structure is identical in all the Zones. When soil samples from each vegetation zone of the Gamma Forest were radiated with 1.8 kGy γ radiation and survival microbial community analyzed, clear difference in the microbial communities were observed. It is evident based on the experimental data that the colonization of soil with Nitrosomonadaceae is critical for the higher plants in pine barrens to reestablish and grow after the area had been exposed to ionizing radiation.

  3. Effect of irradiation on stored vacuum packaged Wiltshire bacon

    NASA Astrophysics Data System (ADS)

    Dempster, JF; Halls, NA

    Wiltshire cured 'middle-cut' bacon (NaCl, 4.87%; 40 mg/kg NO 2; 53 mg/kg NO 3) was boned, sliced and vacuum packaged. It was irradiated (25 kGy: 10 kGy) and stored aerobically (5 0 : 15 0). At weekly intervals the bacon was evaluated bacteriologically and organoleptically (appearance, odour, colour of lean and fat) against unirradiated (control) samples). Results indicated that irradiation (10 kGy) did not permanently inhibit bacterial growth. After initial reductions in count of 0.99 g -1-1(15 0C) and log 3.61 g -1 (5 0C), maximum numbers were reached in 28 days at 15 0C (log 10.32 g -1) and in 35 days at 5 0C (log 8.05 g -1). However viability was significantly affected by 25 kGy irradiation: final numbers reached being log 2.22 g -1 (15 0C) at 35 days and log 3.38 g -1 (5 0C) at 42 days. Appearance and colour (fat and lean) were not significantly impaired by irradiation. However the interaction of storage temperature (5 0 : 15 0C), irradiation (10 kGy: 25 kGy): duration of storage (42 days) and initial count (log 7.24 g -1) had pronounced adverse effects on odour judgements. Evaluation of odour changes in bacon due to irradiation require further investigation. This is especially so since it is often possible to detect odour changes in raw meat after doses as low as 0.5 kGy (Coleby 1959).

  4. Post-Irradiation Examination of 237Np Targets for 238Pu Production

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hobbs, Randy W; Schmidlin, Joshua E

    2015-01-01

    Oak Ridge National Laboratory is recovering the US 238Pu production capability and the first step in the process has been to evaluate the performance of a 237Np target cermet pellet encased in an aluminum clad. The process proceeded in 3 steps; the first step was to irradiate capsules of single pellets composed of NpO2 and aluminum power to examine their shrinkage and gas release. These pellets were formed by compressing sintered NpO2 and aluminum powder in a die at high pressure followed by sintering in a vacuum furnace. Three temperatures were chosen for sintering the solution precipitated NpO2 power used for pellet fabrication. The second step was to irradiate partial targets composed of 8 pellets in a semi-prototypical arrangement at the two best performing sintering temperatures to determine which temperature gave a pellet that performed the best under the actual planned irradiation conditions. The third step was to irradiate ~50 pellets in an actual target configuration at design irradiation conditions to assess pellet shrinkage and gas release, target heat transfer, and dimensional stability. The higher sintering temperature appeared to offer the best performance after one cycle of irradiation by having the least shrinkage, thus keeping the heat transfer gap between the pellets and clad small minimizing the pellet operating temperature. The final result of the testing was a target that can meet the initial production goals, satisfy the reactor safety requirements, and can be fabricated in production quantities. The current focus of the program is to verify that the target can be remotely dissembled, the pellets dissolved, and the 238Pu recovered. Tests are being conducted to examine these concerns and to compare results to code predictions. Once the performance of the full length targets has been quantified, the pellet 237Np loading will be revisited to determine if it can be

  5. Radioprotective effect of Ganoderma lucidum (Leyss. ex. Fr. ) Karst after X-ray irradiation in mice

    SciTech Connect

    Hsu, H.Y.; Lian, S.L.; Lin, C.C. )

    1990-01-01

    Six to seven week old male mice of ICR strain were exposed to 500 or 650 cGy of X-ray during experiments to determine if Ganoderma lucidum could be a factor in modification of radiation damage. Continuous intraperitoneal injection of the extract from Ganoderma lucidum before or after irradiation of 500 and 650 cGy of X-ray was found to improve the 30-day survival fractions of ICR mice, but wasn't significant by statistical analysis. The administration also enhanced the recoveries of the body weights and increased the recovery of hemograms of irradiated mice from radiation damage by injecting before or after radiation exposure, especially for the treatment of 500 cGy irradiation. The 10-day CFUs was significantly higher for Ganoderma lucidum treated groups than for untreated groups. However, the differences of radioprotective effect between the X-ray irradiated groups with Ganoderma lucidum pretreated and post-treated were not significant (p greater than 0.05).

  6. Investigation on the effects of beta and gamma irradiation on conducting polymers for sensor applications

    NASA Astrophysics Data System (ADS)

    Kane, Marie C.; Lascola, Robert J.; Clark, Elliot A.

    2010-12-01

    Two conductive polymers were evaluated to be the active materials in a sensor device for the detection of beta radiation. This was accomplished by characterizing the changes in conductivity of electrically conducting polymer films caused by exposure to tritium gas for varying lengths of time. The behavior of these materials when exposed to gamma radiation was also studied to gain further insight into the mechanism of conductivity degradation by ionizing radiation. Two types of conductive polymer, polyaniline (PANi) and poly(3,4-ethylenedioxythiophene) (PEDOT), were chosen as candidate materials for their widespread commercial use. The change of surface resistance (conductivity) of PANi and PEDOT films when exposed to gamma radiation in both air and deuterium environments was evaluated as well as tritium exposures in 10 4 and 10 5 Pa gas. Raman and absorbance spectra of gamma irradiated samples were obtained to determine the mechanism of conductivity degradation in both polymers. Post-irradiation gas analysis of the samples contained in deuterium revealed very little (or no) hydrogen in the containment vessel, indicating that hydrogen-deuterium isotopic exchange was not responsible for the decrease in surface conductivity due to gamma exposure. The effects of irradiation-induced oxidation were also studied for both conductive polymers during gamma irradiation. It was concluded that chain scission via free radical formation and chain cross-linking are most likely the two dominant mechanisms for conductivity change and not de-protonation of the polymer.

  7. Post-irradiation viability and cytotoxicity of natural killer cells isolated from human peripheral blood using different methods.

    PubMed

    Hietanen, Tenho; Pitkänen, Maunu; Kapanen, Mika; Kellokumpu-Lehtinen, Pirkko-Liisa

    2016-01-01

    Purpose We compared the pre- and post-irradiation viability and cytotoxicity of human peripheral natural killer cell (NK) populations obtained using different isolation methods. Material and methods Three methods were used to enrich total NK cells from buffy coats: (I) a Ficoll-Paque gradient, plastic adherence and a nylon wool column; (II) a discontinuous Percoll gradient; or (III) the Dynal NK cell isolation kit. Subsequently, CD16(+) and CD56(+) NK cell subsets were collected using (IV) flow cytometry or (V) magnetic-activated cell sorting (MACS) NK cell isolation kits. The yield, viability, purity and cytotoxicity of the NK cell populations were measured using trypan blue exclusion, flow cytometry using propidium iodide and (51)Cr release assays after enrichments as well as viability and cytotoxicity after a single radiation dose. Results The purity of the preparations, as measured by the CD16(+) and CD56(+) cell content, was equally good between methods I-III (p = 0.323), but the content of CD16(+) and CD56(+) cells using these methods was significantly lower than that using methods IV and V (p = 0.005). The viability of the cell population enriched via flow cytometry (85.5%) was significantly lower than that enriched via other methods (99.4-98.0%, p = 0.003). The cytotoxicity of NK cells enriched using methods I-III was significantly higher than that of NK cells enriched using methods IV and V (p = 0.000). In vitro the NK cells did not recover cytotoxic activity following irradiation. In addition, we detected considerable inter-individual variation in yield, cytotoxicity and radiation sensitivity between the NK cells collected from different human donors. Conclusions The selection of the appropriate NK cell enrichment method is very important for NK cell irradiation studies. According to our results, the Dynal and MACS NK isolation kits best retained the killing capacity and the viability of irradiated NK cells.

  8. Light irradiance and spectral distribution effects on cyanobacterial hydrogen production

    NASA Astrophysics Data System (ADS)

    Fatihah Salleh, Siti; Kamaruddin, Azlina; Hekarl Uzir, Mohamad; Rahman Mohamed, Abdul; Halim Shamsuddin, Abdul

    2016-03-01

    Light is an essential energy source for photosynthetic cyanobacteria. Changes in both light irradiance and spectral distribution will affect their photosynthetic productivity. Compared to the light irradiance, little investigations have been carried out on the effect of light spectra towards cyanobacterial hydrogen production. Hence, this work aims to investigate the effects of both light quantity and quality on biohydrogen productivity of heterocystous cyanobacterium, A.variabilis. Under white light condition, the highest hydrogen production rate of 31 µmol H2 mg chl a -1 h-1 was achieved at 70 µE m-2 s-1. When the experiment was repeated at the same light irradiance but different light spectra of blue, red and green, the accumulations of hydrogen were significantly lower than the white light except for blue light. As the light irradiance was increased to 350 µE m-2 s-1, the accumulated hydrogen under the blue light doubled that of the white light. Besides that, an unusual prolongation of the hydrogen production up to 120 h was observed. The results obtained suggest that blue light could be the most desirable light spectrum for cyanobacterial hydrogen production.

  9. Micromechanisms of Twin Nucleation in TiAl: Effects of Neutron Irradiation

    SciTech Connect

    Hishinuma, A.; Yoo, M.H.

    1999-01-28

    The so-called radiation-induced ductility (RID) reported in neutron-irradiated 47at%Al alloys is attributed to the formation of effective twin embryos in the presence of interstitial-type Frank loops in {gamma}-TiAl and the subsequent nucleation and growth of microtwins during post-irradiation tensile deformation. The stability of large faulted Frank loops is explained in terms of the repulsive interaction between Shockley and Frank partials. Interaction of only six ordinary slip dislocations with a Frank loop can facilitate a pole mechanism for twin formation to work. The relative ease of heterogeneous twin nucleation is the reason for the RID and the lack of changes in yield strength and work hardening.

  10. The effects of professional irradiation, fields of research, results

    SciTech Connect

    Okladnikova, N.D.; Pesternikova, V.S.; Sumina, M.V.

    1993-12-31

    Main results of research of after effects of professional irradiation of the personnel of the first atomic power industry enterprise in the country ({open_quotes}Mayak{close_quotes}) are presented. The earliest determinated effects (chronic and acute radiation sickness, local radiation traumae, plutonium pneumosclerosis) and the late effects of external gamma-irradiation and combined (pu-239, tritium) radiation effect in a wide range of doses have been studied. The basis of the paper are the results of a complex medical research of the personnel: the state of haemopoietic, nerve, cardiovascular systems, alimentary canal, other organs and systems, immunity, somatic cells genome and the frequency of tumor and non-tumor diseases. The observation and research period covered is 40 years from the first contact with the ionized radiation source.

  11. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    SciTech Connect

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.; Miller, B. D.; Gan, J.; Madden, J. W.; Keiser, D. D.; Palancher, H.; Hofman, G. L.; Breitkreuz, H.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beam milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.

  12. Behavior of nitrogen in Si crystal during irradiation and post-annealing

    SciTech Connect

    Inoue, Naohisa; Oyama, Hidenori; Watanabe, Kaori; Seki, Hirofumi; Kawamura, Yuichi

    2014-02-21

    Radiation induced complexes in nitrogen (N) -doped silicon crystal was investigated by highly sensitive infrared absorption spectroscopy. The absorption by N{sub 2} pair was reduced by the electron irradiation in FZ crystals. The absorptions appeared on both sides of N{sub 2} line at 766 cm{sup −1}, at about 725 and 778 cm{sup −1}. By the annealing, N{sub 2} lines recovered a little at 600 °C and mostly at 800 °C. The above new absorption lines reduced by the annealing at lower temperatures and other absorption appeared. In CZ silicon, N{sub 2} lines did not change by the irradiation. Dominant absorption in low carbon FZ silicon was that of C-rich type complexes, VO and I{sub n}C{sub i}O{sub im}(n=0–3, m=0,1). Dominant absorption in the irradiated low carbon CZ silicon was that of C-lean type complexes I{sub n}O{sub 2+mi}(n=1, 2, m=0, 1), and the decrease of C-lean type O{sub 2i} and TDD was observed. By the annealing of CZ Si, VO{sub n} (n=2–4) formation and annihilation was observed.

  13. Neutron irradiation effects on high Nicalon silicon carbide fibers

    SciTech Connect

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  14. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².

  15. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES

    Shimada, Masashi; Cao, G.; Otsuka, T.; ...

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  16. Irradiation damage effects on helium migration in sintered uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Sabathier, C.; Carlot, G.; Desgardin, P.; Raepsaet, C.; Sauvage, T.; Khodja, H.; Garcia, P.

    2012-02-01

    In this study, the effects of radiation on helium migration are investigated through the analysis of polycrystalline uranium dioxide samples irradiated at fluences up to 5 × 10 15 at. cm -2 with 8 MeV iodine ions. Following irradiation, samples are implanted with 500 keV 3He + ions at fluences in the range of 10 16 at. cm -2. Three nuclear reaction analysis (NRA) techniques are subsequently implemented using the 3He( 2H, 1H) 4He reaction. The influence of temperature using NRA was first studied based upon 3He depth profile changes and the on-line monitoring of helium release. The effect of the sample microstructure was also investigated at the grain scale by performing analyses of the helium spatial distribution with a nuclear microprobe. Neither substantial helium release nor depth profile changes are observed at temperatures below 900 °C in irradiated samples. Following annealing at temperatures above 1000 °C, a substantial proportion of the implanted helium is released from the samples. From this temperature upwards, the two dimensional He cartographies reveal that the gas has been preferentially released in the vicinity of grain boundaries. These results can be interpreted in the light of previous studies in terms of gas precipitation and re-solution. Helium precipitation is enhanced in irradiated samples up to 900 °C because of the presence of irradiation induced defects. At temperatures in excess of 1000 °C, the precipitated helium is partly returned to the matrix hence it is preferentially released in regions adjacent to grain boundaries, which appear to act as defect sinks.

  17. Numerical simulation of piezoelectric effect of bone under ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2015-07-01

    The piezoelectric effect of bone under ultrasound irradiation was numerically simulated using an elastic finite-difference time-domain method with piezoelectric constitutive equations (PE-FDTD method). First, to demonstrate the validity of the PE-FDTD method, the ultrasound propagation in piezoelectric ceramics was simulated and then compared with the experimental results. The simulated and experimental waveforms propagating through the ceramics were in good agreement. Next, the piezoelectric effect of human cortical bone on the ultrasound propagation was investigated by PE-FDTD simulation. The simulated result showed that the difference between the waveforms propagating through the bone without and with piezoelectricity was negligible. Finally, the spatial distributions of the electric fields in a human femur induced by ultrasound irradiation were simulated. The electric fields were changed by a bone fracture, which depended on piezoelectric anisotropy. In conclusion, the PE-FDTD method is considered to be useful for investigating the piezoelectric effect of bone.

  18. Effects of heavy-ion irradiation on FeSe

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Park, Akiyoshi; Pyon, Sunseng; Tamegai, Tsuyoshi; Kambara, Tadashi; Ichinose, Ataru

    2017-03-01

    We report the effects of heavy-ion irradiation on FeSe single crystals by irradiating uranium up to a dose-equivalent matching field of Bϕ=16 T. Almost continuous columnar defects along the c axis with a diameter of ˜10 nm are confirmed by high-resolution transmission electron microscopy. Tc is found to be suppressed by introducing columnar defects at a rate of d Tc/d Bϕ˜-0.29 K/T, which is much larger than those observed in iron pnictides. This unexpected large suppression of Tc in FeSe is discussed in relation to the large diameter of the columnar defects as well as its unique band structure with a remarkably small Fermi energy. The critical current density is first dramatically enhanced with irradiation reaching a value over ˜2 ×105A /cm2 (˜5 times larger than that of the pristine sample) at 2 K (self-field) with Bϕ=2 T, then gradually suppressed with increasing Bϕ. The δ l pinning associated with charge-carrier mean-free-path fluctuations and the δ Tc pinning associated with spatial fluctuations of the transition temperature are found to coexist in the pristine FeSe, while the irradiation increases the contribution from δ l pinning and makes it dominant over Bϕ=4 T.

  19. Sterile, injectable cyclodextrin nanoparticles: effects of gamma irradiation and autoclaving.

    PubMed

    Memisoglu-Bilensoy, Erem; Hincal, A Atilla

    2006-03-27

    Sterility is required as stated by compendial requirements and registration authorities worldwide for an injectable drug carrier system. In this study, injectable nanospheres and nanocapsules prepared from amphiphilic beta-cyclodextrin, beta-CDC6, were assessed for their in vitro properties such as particle size distribution, zeta potential, nanoparticle yield (%), drug entrapment efficiency and in vitro drug release profiles. Different sterilization techniques such as gamma irradiation and autoclaving were evaluated for their feasibility regarding the maintenance of the above mentioned nanoparticle properties after sterilization. It was found that amount these techniques, sterilization with gamma irradiation seemed to be the most appropriate technique with no effect on particle size, drug loading and drug release properties. Gamma irradiation causes some chemical changes on beta-CDC6 observed as changes in zeta potential but this does not lead to any significant changes for nanoparticle properties. Autoclaving caused massive aggregation for the nanoparticles followed by precipitation, which led to the conclusion that excessive heat disrupted nanoparticle integrity. Sterile filtration was not feasible since nanoparticle sizes were larger than the filter pore size and the yield after sterilization was very low. Thus, it can be concluded that blank and drug loaded beta-CDC6 nanospheres and nanocapsules are capable of being sterilized by gamma irradiation.

  20. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  1. Push-out bond strength of oval versus circular fiber posts irradiated by erbium-doped yttrium aluminum garnet laser.

    PubMed

    Uzun, Ismail; Keskin, Cangül; Özsu, Damla; Güler, Buğra; Aydemir, Hikmet

    2016-09-01

    Fiber posts in conjunction with resin cements are widely used to provide retention in endodontically treated teeth. The bond strength of restorative materials to root canal dentin is an important issue for the long-term success of restorative procedures. The push-out test is widely used to measure the bonding between the post and radicular dentin. The purpose of this in vitro study was to evaluate the effect of erbium-doped yttrium aluminum garnet (Er-YAG) laser treatment of dentinal walls on the bond strength of circular and oval fiber posts luted in oval root canals. Forty mandibular premolar teeth were endodontically treated and restored with 2 different intracanal post systems. Push-out tests were performed and data were analyzed by using 2-way analysis of variance and post hoc Bonferroni tests. Laser pretreatment of dentinal walls resulted in higher push-out bond strength than that of the nonlasered groups (P<.05). Oval fiber posts showed significantly higher push-out bond strength values than those of circular fiber posts in the coronal region (P<.05). In the apical region, no statistically significant difference was noted among the groups regarding push-out bond strength (P>.05). The laser pretreatment with an oval ultrasonic tip of an oval fiber post system improved bonding to root canal dentin when compared with a circular post system with conventional preparation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Characterization of stochastic noise and post-irradiation density growth for reflective-type radiochromic film in therapeutic photon beam dosimetry.

    PubMed

    Kamomae, Takeshi; Oita, Masataka; Hayashi, Naoki; Sasaki, Motoharu; Aoyama, Hideki; Oguchi, Hiroshi; Kawamura, Mariko; Monzen, Hajime; Itoh, Yoshiyuki; Naganawa, Shinji

    2016-10-01

    The aim of this study is to investigate the dosimetric uncertainty of stochastic noise and the post-irradiation density growth for reflective-type radiochromic film to obtain the appropriate dose from the exactly controlled film density. Film pieces were irradiated with 6-MV photon beams ranging from 0 to 400cGy. The pixel values (PVs) of these films were obtained using a flatbed scanner at elapsed times of 1min to 120h between the end of irradiation and the film scan. The means and standard deviations (SDs) of the PVs were calculated. The SDs of the converted dose scale, usd, and the dose increases resulting from the PV increases per ±29min at each elapsed time, utime, were computed. The combined dose uncertainties from these two factors, uc, were then calculated. A sharp increase in the PV occurred within the first 3h after irradiation, and a slight increase continued from 3h to 120h. usd was independent of post-irradiation elapsed time. Sharp decreases in utime were obtained within 1h after irradiation, and slight decreases in utime were observed from 1 to 24h after irradiation. uc first decreased 1h after irradiation and remained constant afterward. Assuming that the post-irradiation elapsed times of all of the related measurements are synchronized within ±29min, the elapsed time should be at least 1h in our system. It is important to optimize the scanning protocol for each institution with consideration of the required measurement uncertainty and acceptable latency time.

  3. Electron microscopy of irradiation effects in space

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Price, P. B.

    1975-01-01

    The paper discusses several discoveries made in the study of lunar material. In the examination of the effects of solar wind implantations the topics covered include (1) solar wind radiation damage parameters and their aging characteristics, (2) the theory of the ancient solar wind, (3) the solar wind sputtering erosion rate, (4) the physicochemical properties of amorphous coatings, (5) maturity indexes and the macroscopic properties of the lunar regolith, (6) solar wind gas bubbles, (7) the composition of very heavy nuclei in the contemporary solar wind, and (8) track aging processes. Conclusions are drawn from the results about other extraterrestrial features such as the parent bodies of the meteorites, early solar nebulas, and interstellar clouds.

  4. Electron microscopy of irradiation effects in space

    NASA Technical Reports Server (NTRS)

    Maurette, M.; Price, P. B.

    1975-01-01

    The paper discusses several discoveries made in the study of lunar material. In the examination of the effects of solar wind implantations the topics covered include (1) solar wind radiation damage parameters and their aging characteristics, (2) the theory of the ancient solar wind, (3) the solar wind sputtering erosion rate, (4) the physicochemical properties of amorphous coatings, (5) maturity indexes and the macroscopic properties of the lunar regolith, (6) solar wind gas bubbles, (7) the composition of very heavy nuclei in the contemporary solar wind, and (8) track aging processes. Conclusions are drawn from the results about other extraterrestrial features such as the parent bodies of the meteorites, early solar nebulas, and interstellar clouds.

  5. Comparison of the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation

    PubMed Central

    Vaishnavi, C; Kavitha, S; Narayanan, L Lakshmi

    2010-01-01

    Aim: To compare the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation. Materials and Methods: Forty specimens were randomly assigned into four groups of ten each and were subjected to various post curing methods. Fracture toughness and wear resistance tests were performed and the results were tabulated and analyzed statistically using Kruskal Wallis and Mann-Whitney U test. Results: It was found that Inlay system showed higher values followed by electron beam irradiation. Conclusion: Electron beam irradiation of dental composites gives comparable mechanical properties to other post curing systems. It can be concluded that further studies with increased radiation dose should be performed to improve the mechanical properties of indirect composites. PMID:21116390

  6. Comparison of the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation.

    PubMed

    Vaishnavi, C; Kavitha, S; Narayanan, L Lakshmi

    2010-07-01

    To compare the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation. Forty specimens were randomly assigned into four groups of ten each and were subjected to various post curing methods. Fracture toughness and wear resistance tests were performed and the results were tabulated and analyzed statistically using Kruskal Wallis and Mann-Whitney U test. It was found that Inlay system showed higher values followed by electron beam irradiation. Electron beam irradiation of dental composites gives comparable mechanical properties to other post curing systems. It can be concluded that further studies with increased radiation dose should be performed to improve the mechanical properties of indirect composites.

  7. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    PubMed

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  8. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and {gamma}-rays

    SciTech Connect

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep . E-mail: rakwal-68@aist.go.jp; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma ({gamma})-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and {gamma}-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and {gamma}-rays). Similarly, for X- and {gamma}-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and {gamma}-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-a-vis their energy levels.

  9. Effect of irradiated pork on physicochemical properties of meat emulsions

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Sang; Sung, Jung-Min; Jeong, Tae-Jun; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2016-02-01

    The effect of pork irradiated with doses up to 10 kGy on meat emulsions formulated with carboxy methyl cellulose (CMC) was investigated. Raw pork was vacuums packaged at a thickness of 2.0 cm and irradiated by X-ray linear accelerator (15 kW, 5 MeV). The emulsion had higher lightness, myofibrillar protein solubility, total protein solubility, and apparent viscosity with increasing doses, whereas cooking loss, total expressible fluid separation, and hardness decreased. There were no significant differences in fat separation, sarcoplasmic protein solubility, springiness, and cohesiveness. Our results indicated that it is treatment by ionizing radiation which causes the effects the physicochemical properties of the final raw meat product.

  10. [Radiobiological effects of total mice irradiation with Bragg's peak protons].

    PubMed

    Ivanov, A A; Molokanov, A G; Ushakov, I B; Bulynina, T M; Vorozhtsova, S V; Abrosimova, A N; Kryuchkova, D M; Gaevsky, V N

    2013-01-01

    Outbred CD-1 female mice were irradiated in a proton beam (171 MeV, 5 Gy) on the phasotron at the Joint Institute of Nuclear Research (Dubna, Russia). Radiation was delivered in two points of the depth dose distribution: at the beam entry and on Bragg's peak. Technical requirements for studying the effects of Bragg's peak protons on organism of experimental animals were specified. It was recognized that protons with high linear energy transfer (mean LET = 1.6 keV/microm) cause a more severe damaging effect to the hemopoietic system and cytogenetic apparatus in bone marrow cells as compared with entry protons and 60Co gamma-quanta. It was shown that recovery of the main hemopoietic organs and immunity as well as elimination of chromosomal aberrations take more time following irradiation with Bragg's peak protons but not protons with the energy of 171 MeV.

  11. Investigation of irradiation effect on npn BJT electrical properties

    NASA Astrophysics Data System (ADS)

    Assaf, J.

    2016-10-01

    The irradiation effects of neutrons and gamma rays on a commercial type of npn Bipolar Junction Transistors (BJTs) are reported. The decrease of the current gain factor hFE for increasing dose was analyzed. Reduction ratio for hFE between 84% and 98% at the saturated reduction level have been obtained. This is due to a small decreasing in the collector current IC and a large increasing in the base current IB, where hFE=IC/IB. Reduction ratio per dose indicates the higher influence of the neutrons than that of gamma for the same equivalent dose. Moreover, the voltage gain as a function of the frequency decremented after irradiation, and the collector saturated voltage (VCEsat) was increased. These effects illustrate the damage in the function of BJTs.

  12. Effective ultraviolet irradiance measurements from artificial tanning devices in Greece.

    PubMed

    Petri, Aspasia; Karabetsos, Efthymios

    2015-12-01

    Artificial tanning remains very popular worldwide, despite the International Agency for Research on Cancer classification of ultraviolet (UV) radiation from sunbeds as 'carcinogenic to humans'. Greek Atomic Energy Commission has initiated a surveillance action of the artificial tanning devices in Greece in order to record the effective irradiance levels from the sunbeds and to inform and synchronise the domestic artificial tanning business sector with the requirements of the European Standard EN 60335-2-27:2010. In this direction, in situ measurements of UV emissions from sunbeds in solaria businesses all over Greece were performed from October 2013 until July 2014, with a radiometer and a portable single-monochromator spectrophotometer. Analysis of the measurements' results revealed that effective irradiance in ∼60 % of the measured sunbeds exceeded the 0.3 W m(-2) limit value set by EN 60335-2-27:2010 and only 20 % of the devices could be categorised as UV type 3.

  13. Effects of combined neutron and gamma irradiation upon silicone foam

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Pu-Cheng; Ao, Yin-Yong; Zhao, Yan; An, You; Chen, Hong-Bing; Huang, Wei

    2017-04-01

    The total dose effect of combined fast-neutron beam and 60Co γ-ray radiation on silicone foam in air and nitrogen were investigated, respectively. The results show that foam hardening occurs and crystallization of polymer matrix decreases with increasing dose. Gas chromatograph was used to identify the kinetics of volatile products generating, which generally increase with increasing total dose. The study indicates that combined neutron and gamma irradiation would influence silicone foam property obviously during the investigated dose range.

  14. Results of Uranium Dioxide-Tungsten Irradiation Test and Post-Test Examination

    NASA Technical Reports Server (NTRS)

    Collins, J. F.; Debogdan, C. E.; Diianni, D. C.

    1973-01-01

    A uranium dioxide (UO2) fueled capsule was fabricated and irradiated in the NASA Plum Brook Reactor Facility. The capsule consisted of two bulk UO2 specimens clad with chemically vapor deposited tungsten (CVD W) 0.762 and 0.1016 cm (0.030-and 0.040-in.) thick, respectively. The second specimen with 0.1016-cm (0.040-in.) thick cladding was irradiated at temperature for 2607 hours, corresponding to an average burnup of 1.516 x 10 to the 20th power fissions/cu cm. Postirradiation examination showed distortion in the bottom end cap, failure of the weld joint, and fracture of the central vent tube. Diametral growth was 1.3 percent. No evidence of gross interaction between CVD tungsten or arc-cast tungsten cladding and the UO2 fuel was observed. Some of the fission gases passed from the fuel cavity to the gas surrounding the fuel specimen via the vent tube and possibly the end-cap weld failure. Whether the UO2 loss rates through the vent tube were within acceptable limits could not be determined in view of the end-cap weld failure.

  15. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  16. Effect of irradiation temperature on microstructural changes in self-ion irradiated austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun

    2017-09-01

    We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.

  17. Biomodulatory effects of laser irradiation on dental pulp cells in vitro

    NASA Astrophysics Data System (ADS)

    Milward, Michael R.; Hadis, Mohammed A.; Cooper, Paul R.; Gorecki, Patricia; Carroll, James D.; Palin, William M.

    2015-03-01

    Low level laser/light therapy (LLLT) or photobiomodulation is a biophysical approach that can be used to reduce pain, inflammation and modulate tissue healing and repair. However, its application has yet to be fully realized for dental disease treatment. The aim of this study was to assess the modulation of dental pulp cell (DPC) responses using two LLLT lasers with wavelengths of 660nm and 810nm. Human DPCs were isolated and cultured in phenol-red-free α- MEM/10%-FCS at 37°C in 5% CO2. Central wells of transparent-based black walled 96-microplates were seeded with DPCs (passages 2-4; 150μL; 25,000 cell/ml). At 24h post-seeding, cultures were irradiated using a Thor Photomedicine LLLT device (THOR Photomedicine, UK) at 660nm (3, 6 or 13s to give 2, 5 and 10J/cm2) or 810nm (for 1, 2 or 5s to deliver 5, 10 and 20J/cm2). Metabolic activity was assessed via a modified MTT assay 24h post-irradiation. Statistical differences were identified using analysis of variance and post-hoc Tukey tests (P=0.05) and compared with nonirradiated controls. Significantly higher MTT activity was obtained for both lasers (P<0.05) using the high and intermediate radiant exposure (5-20J/cm2). The MTT response significantly decreased (P<0.05) at lower radiant exposures with no statistical significance from control (P>0.05). Consequently, enhanced irradiation parameters was apparent for both lasers. These parameters should be further optimised to identify the most effective for therapeutic application.

  18. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  19. An algorithm for pre- and post-irradiation fade in the Thermo 8802 LiF:Mg,Ti thermoluminescent dosimeter.

    PubMed

    Hill, Carolyn D

    2005-05-01

    The diminished response of thermoluminescent phosphors over time is a well-documented challenge to thermoluminescent dosimetry. Wide ranges in fading rates for various phosphor types have been reported, making it necessary for many external dosimetry programs to perform individual studies on thermoluminescent fade. Sandia National Laboratories currently uses the Thermo 8802 LiF:Mg,Ti thermoluminescent dosimeter (TLD) in its personnel external dosimetry program. Doses received in the field are calculated by applying a fade algorithm published by the manufacturer to TLD readings. Since the algorithm was established by characterizing the diminished response of a TLD similar to the 8802, Sandia chose to model its fade study after the analysis done by Thermo. As a result, the parameters of each experiment were comparable, and data from the two studies were compared to determine whether or not the current algorithm should be modified specifically for use at Sandia. Cards were irradiated using an internal Sr/Y source, and pre- and post-irradiation fading rates were monitored over a period of 18 wk. While significant fading was demonstrated, results closely matched those found in the original Thermo study.

  20. Effect of post harvest radiation processing and storage on the volatile oil composition and glucosinolate profile of cabbage.

    PubMed

    Banerjee, Aparajita; Variyar, Prasad S; Chatterjee, Suchandra; Sharma, Arun

    2014-05-15

    Effect of radiation processing (0.5-2 kGy) and storage on the volatile oil constituents and glucosinolate profile of cabbage was investigated. Among the volatile oil constituents, an enhancement in trans-hex-2-enal was noted on irradiation that was attributed to the increased liberation of precursor linolenic acid mainly from monogalactosyl diacyl glycerol (MGDG). Irradiation also enhanced sinigrin, the major glucosinolate of cabbage that accounted for the enhanced allyl isothiocyanate (AITC) in the volatile oils of the irradiated vegetable. During storage the content of trans-hex-2-enal increased immediately after irradiation and then returned to the basal value within 24h while the content of sinigrin and AITC increased post irradiation and thereafter remained constant during storage. Our findings on the enhancement in potentially important health promoting compounds such as sinigrin and AITC demonstrates that besides extending shelf life and safety, radiation processing can have an additional advantage in improving the nutritional quality of cabbage.

  1. Effect of monoenergetic neutron irradiation on the postnatal development of the cochlea in C3H/HeN mice.

    PubMed

    Nitta, Yumiko; Araki, Nobukazu; Nitta, Kohsaku; Harada, Toshihide; Ishizaki, Fumiko; Cheng, Weiping; Ando, Juko

    2005-06-01

    To investigate the toxic effect of neutrons at energies of approximately 1MeV on the ear, we exposed 7-day-old mice to 1.0 Gy of monoenergetic neutrons (1.026 MeV) or (137)Cs gamma rays, and assessed subsequent morphological changes in the inner ear by light and scanning electron microscopy. Monoenergetic neutrons, but not gamma rays, caused acute changes in the ear. The epithelium of the greater epithelial ridge in the organ of Corti had disappeared by 72 hr post-irradiation, as a result of epithelial apoptosis observed 6 hr post-irradiation. Radiation could induce apoptotic cell death of the epithelium of the greater epithelial ridge at 3 or 4 days of age. Protruding structures were detected on the surface of the hair cells by 72 hr post-irradiation. The neutron-irradiation also caused the apoptotic cell death of epithelial cells at the nasal conchae, and subsequent acute otitis media continued until 10 weeks of age.

  2. Effects of self-irradiation in plutonium alloys

    SciTech Connect

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  3. Effects on focused ion beam irradiation on MOS transistors

    SciTech Connect

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-04-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 {mu}m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga{sup +} focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.

  4. Effects of CO/sub 2/ laser irradiation on gingiva

    SciTech Connect

    Rossmann, J.A.; Gottlieb, S.; Koudelka, B.M.; McQuade, M.J.

    1987-06-01

    A CO/sub 2/ laser (Coherent Medical Model 400) was used to irradiate the gingival tissue of a cynomolgous monkey to determine laser effects on the epithelium and underlying connective tissue. A focal length of 400 mm and a 10-watt power setting at 0.2- and 0.5-second exposure was used. Biopsy results indicated that a 0.2-second duration of CO/sub 2/ laser irradiation was inadequate to completely de-epithelialize the gingival tissue. A 0.5-second exposure exhibited complete epithelial destruction with little or no disturbance of the underlying connective tissue layer and viable connective tissue 1.0 mm below the impact site.

  5. Effects of. gamma. irradiation on cartilage matrix calcification

    SciTech Connect

    Nijweide, P.J.; Burger, E.H.; van Delft, J.L.; Kawilarange-de Haas, E.W.M.; Wassenaar, A.M.; Mellink, J.H.

    1980-10-01

    The effect of ..gamma.. irradiation on cartilage matrix calcification was studied in vitro. Metatarsal bones of 14- to 17-day-old embryonic mice were dissected and cultured under various conditions. Prior to culture, half of the metatarsal bones received absorbed doses of 1.0 to 30.0 Gy ..gamma.. radiation. Their paired counterparts served as controls. Irradiation inhibited longitudinal growth and calcification of the cartilage matrix during culture. In addition, a number of histological changes were noted. The inhibition of matrix calcification appeared to be due to an inhibition of the intracellular calcium accumulation. The formation of extracellular calcification foci and the growth of the calcified area already present at the moment of explanation were not inhibited during culture.

  6. Irradiation Effects on RIA Fragmentation CU Beam Dump

    SciTech Connect

    Reyes, S; Boles, J L; Ahle, L E; Stein, W; Wirth, B D

    2005-05-09

    Within the scope of conceptual research and development (R&D) activities in support of the Rare Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be insignificant. Preliminary radiation transport simulations show significant damage (in displacements per atom, DPA) in the vicinity of the Bragg peak of the uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 DPA, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 400 appm are produced in the beam dump after several weeks of continuous operation and He embrittlement may be a concern. Recommendations are made for further investigation of Cu irradiation effects for RIA-relevant conditions.

  7. Irradiation Effects on RIA Fragmentation CU Beam Dump

    SciTech Connect

    Reyes, S; Boles, J L; Ahle, L E; Stein, W; Wirth, B D

    2005-05-20

    Within the scope of conceptual research and development (R&D) activities in support of the Rare Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be insignificant. Preliminary radiation transport simulations show significant damage (in displacements per atom, DPA) in the vicinity of the Bragg peak of the uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 DPA, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 400 appm are produced in the beam dump after several weeks of continuous operation and He embrittlement may be a concern. Recommendations are made for further investigation of Cu irradiation effects for RIA-relevant conditions.

  8. [CYTOGENETIC EFFECTS IN MICE BONE MARROW AFTER IRRADIATION BY FAST NEUTRONS].

    PubMed

    Vorozhtsova, S V; Bulynina, T M; Ivanov, A A

    2016-01-01

    Mechanisms of damaging mice bone marrow cells by 1.5 MeV neutrons at the dose of 25-250 cGy, dose rate of 23.9 cGy/s and γ-quants ⁶⁰Co as a standard radiation were studied. The mitotic index and aberrant mitoses in marrow preparations were counted in 24 and 72 hours after irradiation. Coefficients of relative biological effectiveness (RBE) of fast neutrons 24 and 72 hours post irradiation calculated from mitotic index reduction and aberrant mitoses formation were within the range from 4.1 ± 0.1 to 7.3 ± 0.1. Mean time of the existence of chromosomal aberrations in marrow cells was determined. For the specified doses from γ-rays, the period of aberrations existence was 1.4-1.1 cycles and for neutrons, 1.0-0.6 cycles. Morphologic analysis of neutron-induced damages and ratio of the most common breaks demonstrated a high production of bridges, which outnumbered cells with fragments in 3 to 4 times suggesting a more destructive effect on the genetic structures of cells. RBE of fast neutrons is a variable that grows with a radiation dose. Moreover, RBE estimated after 72 hours exceeded values it had 24 hours after irradiation.

  9. Progress Report on Disassembly and Post-Irradiation Experiments for UCSB ATR-2 Experiment

    SciTech Connect

    Nanstad, Randy K; Odette, G. R.; Robertson, Janet Pawel; Yamamoto, T

    2015-09-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  10. Post irradiation examination of simulated fission product doped hyperstoichiometric mixed oxide fuel pins*1

    NASA Astrophysics Data System (ADS)

    Götzmann, O.; Kleykamp, H.

    1980-03-01

    Two miniature fuel pins containing uranium-plutonium oxide with a hyperstoichiometric oxygen-to-metal ratio and selective fission product elements have been irradiated in the BR 2 reactor at Mol, Belgium, for two reactor cycles (46 days). One of the pins had a niobium metal coating on the inner cladding surface to act as oxygen getter. Both pins were subjected to a detailed examination by ceramography and electronprobe microanalysis. The results have been interpreted in the light of a recently published thermochemical model for the cladding attack. The very different oxygen potential environments in the two pins produced entirely different clad corrosion phenomena probably due to different cladding attack mechanisms. The niobium coating worked well in reducing the oxygen potential. However, there exists a draw back with niobium due to the formation of relatively stable intermetallic phases with noble metal fission products.

  11. Nonuniform irradiation of the canine intestine. I. Effects

    SciTech Connect

    Vigneulle, R.M.; Herrera, J.; Gage, T.; MacVittie, T.J.; Taylor, P.; Zeman, G.; Nold, J.B.; Dubois, A. )

    1990-01-01

    To investigate the effects of nonuniform irradiation on the small intestine, we prepared 24 dogs for continent isoperistaltic ileostomies under aseptic surgical conditions and general anesthesia. After a 3-week recovery period, the ileum was catheterized with a fiberoptic endoscope to observe the intestinal mucosa and to harvest mucosal biopsies. The baseline macroscopic and microscopic appearance of the intestinal mucosa was determined. Two weeks later, the ileum was catheterized with a 100-cm soft tube containing 40 groups of three thermoluminescent dosimeters placed at equally spaced intervals, and a dose of either 4.5, 8, 10, 11, or 15 Gy 60Co gamma rays was delivered to the right abdomen (nonuniform exposure). This method allowed a direct and precise assessment of the dose received at 40 sites located in the 100-cm intestinal segment. The intestinal mucosa was again evaluated 1, 4, and 6 days after irradiation. All animals exposed to 4.5 and 8 Gy survived, whereas none survived after 11 and 15 Gy. After exposure to 10 Gy, 60% of the animals died within 4-6 days and 40% survived with symptoms associated with both the intestinal and the hematopoietic syndromes. Crypt cell necrosis, blunting of villi, and reduction of the mucosal lining increased between 1 and 4 days after irradiation, and mucosal damage was correlated with intraintestinal dosimetry at Day 6. The granulocyte counts at Day 4 were significantly lower than baseline level in animals that died within 4-6 days but not in survivors. The present model appears to be realistic and clinically relevant, allowing the concurrent study of the intestinal and hematopoietic effects of high-dose nonuniform irradiation similar to that received by patients during radiation therapy as well as by radiation accident victims.

  12. [Effect of rhG-CSF on blood coagulation in beagles irradiated by 2.3 Gy neutron].

    PubMed

    Li, Ming; Han, Qin-Fang; Liu, Xiao-Lan; Xing, Shuang; Xiong, Guo-Lin; Xie, Ling; Zhao, Yan-Fang; Yu, Zu-Yin; Ding, Yi-Bo; Zhao, Zhen-Hu; Cong, Yu-Wen; Luo, Qing-Liang

    2010-12-01

    The aim of this study was to investigate the effect of recombinant human granulocyte stimulating factor (rhG-CSF) on blood coagulation of beagles irradiated by 2.3 Gy neutron so as to provide new therapy for blood coagulation disorder after neutron irradiation. 10 beagles were exposed to 2.3 Gy neutron, and then randomly assigned into supportive care group and rhG-CSF-treated group. The rhG-CSF-treated cohorts were injected subcutaneously with rhG-CSF (10 µg/kg·d) beginning at the day of exposure for 21 consecutive days. Peripheral blood platelet counts were examined once every two days. In vitro platelet aggregation test, thromboelastography and blood clotting tetrachoric tests were also performed. The results indicated that the blood clotting system of irradiated dogs was in hypercoagulable state in the early days after 2.3 Gy neutron irradiation, and became hypocoagulable at crisis later and were mainly on intrinsic coagulation pathway. Blood fibrinogen increased markedly during the course of disease, while platelet counts and aggregation function were decreased remarkably. rhG-CSF administered daily could correct hypercoagulable state induced by 2.3 Gy neutron irradiation at the early time post exposure, shortened the thromboplastin generation time and clotting formation, down-regulated the abnormal high fibrinogen in blood, and improved platelet aggregation function. It is concluded that rhG-CSF can improve coagulation disorders of irradiated dogs.

  13. Effect of gamma irradiation on quality of kiwifruit ( Actinidia deliciosa var. deliciosa cv. Hayward)

    NASA Astrophysics Data System (ADS)

    kim, Kyoung-Hee; Yook, Hong-Sun

    2009-06-01

    Ionizing radiation is able to inactivate the three pathogens of Botrytis cinerea, Diaporthe actinidiae, and Botryosphaeria dothidea in kiwifruit. Irradiated kiwifruits appeared softer compared to non-irradiated kiwifruits. The color and organic acid content of kiwifruits were minimally affected by the irradiation. Irradiated fruits showed a decrease in the total soluble solids content with increasing irradiation dose. Irradiation of kiwifruit up to 3 kGy had negative effects on vitamin C content and antioxidant activity, but it contributed to improving sensory quality.

  14. INL Initial Input to the Mission Need for Advanced Post-Irradiation Examination Capability A Non-Major System Acquisition Project

    SciTech Connect

    Vince Tonc

    2010-04-01

    Consolidated and comprehensive post-irradiation examination (PIE) capabilities will enable the science and engineering understanding needed to develop the innovative nuclear fuels and materials that are critical to the success of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) programs. Existing PIE capabilities at DOE Laboratories, universities, and in the private sector are widely distributed, largely antiquated, and insufficient to support the long-range mission needs. In addition, DOE’s aging nuclear infrastructure was not designed to accommodate modern, state-of-the-art equipment and instrumentation. Currently, the U.S. does not have the capability to make use of state-of-the-art technology in a remote, hot cell environment to characterize irradiated fuels and materials on the micro, nano, and atomic scale. This “advanced PIE capability” to make use of state-of-the-art scientific instruments in a consolidated nuclear operating environment will enable comprehensive characterization and investigation that is essential for effectively implementing the nuclear fuels and materials development programs in support of achieving the U.S. DOE-NE Mission.

  15. Post-antibacterial effect of thymol.

    PubMed

    Zarrini, Gholamreza; Delgosha, Zahra Bahari; Moghaddam, Kamyar Mollazadeh; Shahverdi, Ahmad Reza

    2010-06-01

    The antibacterial activity of thymol has been well established and reported in the scientific literature. Continued suppression of bacterial growth following limited exposure to antimicrobial compounds at different concentrations greater than or equal to the minimum inhibitory concentration level (MIC) and at concentrations less than the MIC can be used as an indicator of biological activity, and are respectively referred to as a post-antibacterial effect (PAE) and a post-antibiotic sub-MIC effect (PA-SME). In this study, the PAE and the PA-SME of thymol against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus were investigated. A spectrophotometric method was used to determine the PAE and the PA-SME of thymol against the selected test strains. Thymol exhibited a considerable PAE and PA-SME at MIC and sub-MIC concentrations against test strains. The greatest duration of both the PAE and the PA-SME was observed for thymol against E. coli and P. aeruginosa. The PAE and PA-SME times for E. coli were 12 and 8 h, respectively, and for P. aeruginosa were 11 and 7.5 h, respectively. The duration of the PAE and PA-SME observed for S. aureus and B. cereus was shorter than for Gram-negative strains.

  16. Commercial sunscreen formulations: UVB irradiation stability and effect on UVB irradiation-induced skin oxidative stress and inflammation.

    PubMed

    Vilela, Fernanda M P; Oliveira, Franciane M; Vicentini, Fabiana T M C; Casagrande, Rubia; Verri, Waldiceu A; Cunha, Thiago M; Fonseca, Maria J V

    2016-10-01

    Evidence shows that sunscreens undergo degradation processes induced by UV irradiation forming free radicals, which reduces skin protection. In this regard, the biological effects of three commercial sunscreen formulations upon UVB irradiation in the skin were investigated. The three formulations had in common the presence of benzophenone-3 added with octyl methoxycinnamate or octyl salycilate or both, which are regular UV filters in sunscreens. The results show that formulations F1 and F2 presented partial degradation upon UVB irradiation. Formulations F1 and F2 presented higher skin penetration profiles than F3. None of the formulations avoided UVB irradiation-induced GSH depletion, but inhibited reduction of SOD activity, suggesting the tested formulations did not present as a major mechanism inhibiting all UVB irradiation-triggered oxidative stress pathways. The formulations avoided the increase of myeloperoxidase activity and cytokine production (IL-1β and TNF-α), but with different levels of protection in relation to the IL-1β release. Concluding, UVB irradiation can reduce the stability of sunscreens, which in turn, present the undesirable properties of reaching viable skin. Additionally, the same SPF does not mean that different sunscreens will present the same biological effects as SPF is solely based on a skin erythema response. This found opens up perspectives to consider additional studies to reach highly safe sunscreens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Temperature Effects on the Mechanical Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation

    SciTech Connect

    Byun, T.S.

    2001-11-09

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54 to 2.53 dpa. Irradiation temperatures were in the range 30 to 100 C. Tensile testing was performed at room temperature (20 C) and 164 C to study the effects of test temperature on the tensile properties. Test materials displayed significant radiation-induced hardening and loss of ductility due to irradiation. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative strain hardening. In the EC316LN stainless steel, increasing the test temperature from 20 C to 164 C decreased the strength by 13 to 18% and the ductility by 8 to 36%. The tensile data for the EC316LN stainless steel irradiated in spallation conditions were in line with the values in a database for 316 stainless steels for doses up to 1 dpa irradiated in fission reactors at temperatures below 200 C. However, extra strengthening induced by helium and hydrogen contents is evident in some specimens irradiated to above about 1 dpa. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. It was estimated that the 316 stainless steels would retain more than 1% true stains to necking at 164 C after irradiation to 5 dpa. A calculation using reduction of area (RA) measurements and stress-strain data predicted positive strain hardening during plastic instability.

  18. Effect of gamma irradiation on antinutritional factors in broad bean

    NASA Astrophysics Data System (ADS)

    Al-Kaisey, Mahdi T.; Alwan, Abdul-Kader H.; Mohammad, Manal H.; Saeed, Amjed H.

    2003-06-01

    The effect of gamma irradiation on the level of antinutritional factors (trypsin inhibitor (TI), phytic acid and oligosaccharides) of broad bean was investigated. The seeds were subjected to gamma irradiation at 0, 2.5, 5, 7.5 and 10 kGy, respectively using cobalt-60 gamma radiation with a dose rate 2.37 kGy/h. TI activity was reduced by 4.5%, 6.7%, 8.5% and 9.2% at 2.5, 5, 7.5 and 10 kGy, respectively. Meanwhile, irradiation at 10.2, 12.3, 15.4 and 18.2 kGy reduced the phytic acid content. The flatulence causing oligosaccharides were decreased as the radiation dose increased. The chemical composition (protein, oil, ash and total carbohydrates) of the tested seeds was determined. Gamma radiation seems to be a good procedure to improve the quality of broad bean from the nutritional point of view.

  19. Impurities effect on the swelling of neutron irradiated beryllium

    SciTech Connect

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  20. Effects of neutron irradiation on polycrystalline Mg11B2

    NASA Astrophysics Data System (ADS)

    Tarantini, C.; Aebersold, H. U.; Braccini, V.; Celentano, G.; Ferdeghini, C.; Ferrando, V.; Gambardella, U.; Gatti, F.; Lehmann, E.; Manfrinetti, P.; Marré, D.; Palenzona, A.; Pallecchi, I.; Sheikin, I.; Siri, A. S.; Putti, M.

    2006-04-01

    We studied the influence of the disorder introduced in polycrystalline MgB2 samples by neutron irradiation. To circumvent self-shielding effects due to the strong interaction between thermal neutrons and B10 we employed isotopically enriched B11 which contains 40 times less B10 than natural B. The comparison of electrical and structural properties of different series of samples irradiated in different neutron sources, also using Cd shields, allowed us to conclude that, despite the low B10 content, the main damage mechanisms are caused by thermal neutrons, whereas fast neutrons play a minor role. Irradiation leads to an improvement in both upper critical field and critical current density for an exposure level in the range 1-2×1018cm-2 . With increasing fluence the superconducting properties are depressed. An in-depth analysis of the critical field and current density behavior has been carried out to identify what scattering and pinning mechanisms come into play. Finally, the correlation between some characteristic lengths and the transition widths is analyzed.

  1. Irradiation effects in close binaries in an electron scattering medium

    NASA Astrophysics Data System (ADS)

    Varghese, B. A.; Srinivasa Rao, M.

    2016-03-01

    In a close binary system, the effects of irradiation are studied from an extended surface of the secondary component on the atmosphere of the primary. Primary and the secondary components are assumed to have equal radii and the thickness of the atmosphere is assumed to be twice that of the stellar radius of the primary component. Self radiation of the primary component (Ss) is calculated through a numerical solution of line transfer equation in the comoving frame with Compton broadening due to electron scattering. The solution is developed through discrete space theory to deal with different velocities in a spherically expanding medium. The irradiation from the secondary (SI) is calculated using one dimensional rod model. It is assumed to be one, five and ten times the self radiation. The total source function (S=Ss+SI) is the sum of the source functions due to self radiation and that due to irradiation. The line fluxes are computed along the line of sight by using the above source functions. Line profiles are also computed for different line center optical depths along the line of sight of the observer at infinity.

  2. Effects of Ga ion-beam irradiation on monolayer graphene

    SciTech Connect

    Wang, Quan; Mao, Wei; Zhang, Yanmin; Shao, Ying; Ren, Naifei; Ge, Daohan

    2013-08-12

    The effects of Ga ion on the single layer graphene (SLG) have been studied by Raman spectroscopy (RS), SEM, and field-effect characterization. Under vacuum conditions, Ga ion-irradiation can induce disorders and cause red shift of 2D band of RS, rather than lattice damage in high quality SLG. The compressive strain induced by Ga ion decreases the crystalline size in SLG, which is responsible for the variation of Raman scattering and electrical properties. Nonlinear out-put characteristic and resistance increased are also found in the I-V measurement. The results have important implications during CVD graphene characterization and related device fabrication.

  3. Effects of red light-emitting diode irradiation on dental pulp cells.

    PubMed

    Holder, M J; Milward, M R; Palin, W M; Hadis, M A; Cooper, P R

    2012-10-01

    Light irradiation activates a range of cellular processes in a variety of cell types, including stem cells, and can promote tissue repair. This study investigated the effects of light-emitting diode (LED) exposure on dental pulp cells (DPCs). Dose response analysis at 20-second intervals up to 120 seconds demonstrated that a LED array emitting 653-nm red light stimulated significantly increased cell growth at 3 and 7 days post-irradiation with 40 (149 mJ/cm(2)) and 60 (224 mJ/cm(2)) seconds of radiant exposure. Double-dosing cells at days 1 and 4 of a 7-day culture period with 60-second (224 mJ/cm(2)) LED exposure significantly increased cell growth compared with a single dosing regime. BrdU analysis demonstrated significantly increased proliferation rates associated with significantly increased ATP, nitric oxide (NO), and mitochondrial metabolic activity. LED-stimulated NO levels were not reduced by inhibition of NO-synthase activity. Light exposure also rescued the inhibition of mitochondrial dysfunction and increased levels of in vitro mineralization compared with control. Media exchange experiments indicated that autocrine signaling was not likely responsible for red-light-induced DPC activity. In conclusion, data analysis indicated that 653-nm LED irradiation promoted DPC responses relevant to tissue repair, and this is likely mediated by increased mitochondrial activity.

  4. Strain-Rate Effects on Microstructural Deformation in Irradiated 316 SS

    SciTech Connect

    James I. Cole; Todd R. Allen; Naoaki Akasaka; Hanchung Tsai; Tsunemitsu Yoshitake; Ichiro Yamagata; Yasuo Nakamura

    2005-02-01

    A series of studies have been performed to investigate the post-irradiation deformation and failure behavior of 12% cold-worked 316 stainless steel following irradiation to variety of doses and temperatures in the outer rows of the experimental breeder reactor II (EBR-II). In the current phase of these studies, three sets of samples with different radiation induced microstructures have been characterized with transmission electron microscopy (TEM) following tensile testing to failure at a ‘fast’ strain-rate (1 x 10-3 s-1) and a ‘slow’ strain-rate (1 x 10-7 s-1). The samples were irradiated to doses between 9 and 41 dpa at temperatures between 383 and 443 degrees C. Tensile tests were conducted at a temperature of 430 degrees C and only regions outside of the necked region were examined. Over the parameters tested, strain-rate had a negligible effect on the deformation microstructure. In addition, there was no clear evidence of localized deformation behavior and the deformation appeared relatively homogeneous, characterized by unfaulting and incorporation of faulted dislocation loops into the general dislocation network structure. The influence of the defect microstructures and strain-rate on deformation behavior is discussed.

  5. Preliminary results of post-irradiation examination of the AGR-1 TRISO fuel compacts

    SciTech Connect

    Paul Demkowicz; John Hunn; Robert Morris; Jason Harp; Philip Winston; Charles Baldwin; Fred Montgomery; Scott Ploger; Isabella van Rooyen

    2012-10-01

    Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compact ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4—1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was <2×10-5 when all coatings remained intact, indicating good cesium retention. Approximately 1% of the palladium inventory was found in the compact matrix for two of the compacts, indicating significant release through intact coatings.

  6. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and

  7. Ion irradiation-induced swelling and hardening effect of Hastelloy N alloy

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Li, D. H.; Chen, H. C.; Lei, G. H.; Huang, H. F.; Zhang, W.; Wang, C. B.; Yan, L.; Fu, D. J.; Tang, M.

    2017-06-01

    The volumetric swelling and hardening effect of irradiated Hastelloy N alloy were investigated in this paper. 7 MeV and 1 MeV Xe ions irradiations were performed at room temperature (RT) with irradiation dose ranging from 0.5 to 27 dpa. The volumetric swelling increases with increasing irradiation dose, and reaches up to 3.2% at 27 dpa. And the irradiation induced lattice expansion is also observed. The irradiation induced hardening initiates at low ion dose (≤1dpa) then saturates with higher ion dose. The irradiation induced volumetric swelling may be ascribed to excess atomic volume of defects. The irradiation induced hardening may be explained by the pinning effect where the defects can act as obstacles for the free movement of dislocation lines. And the evolution of the defects' size and number density could be responsible for the saturation of hardness.

  8. Non-grey thermal effects in irradiated planets atmospheres

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Guillot, Tristan; Fortney, Jonathan J.; Marley, Mark S.

    2016-01-01

    The large diversity of exoplanets in terms of irradiation temperature, gravity and chemical composition discovered around stars with different properties call for the development of fast, accurate and versatile atmospheric models. We derive a new, non-grey analytical model for the thermal structure of irradiated exoplanets. Using two different opacity bands in the thermal frequency range, we highlight the dual role of thermal non-grey opacities in shaping the temperature profile of the atmosphere. Opacities dominated by lines enable the upper atmosphere to cool down significantly compared to a grey atmosphere whereas opacities dominated by bands lead both to a significant cooling of the upper atmosphere and a significant heating of the deep atmosphere.We compare our analytical model to a grid of temperature-pressure profiles for solar composition atmospheres obtained with a state-of-the-art numerical model taking into account the full wavelength, temperature and pressure dependence of the opacities. We demonstrate the importance of thermal non-grey opacities in setting the deep temperature of irradiated giant planets atmospheres. In the particular case of highly irradiated planets we show that the presence of TiO in their atmospheres alters both the optical and the thermal opacities. The greenhouse effect - a semi-grey effect - and the "blanketing effect" - an intrisically non-grey effect - contribute equally to set the deep temperature profile of the planet atmosphere. We conclude that non-grey thermal effects are fundamental to understand the deep temperature profile of hot Jupiters.Our calibrated analytical model matches the numerical model within 10% over a wide range of effective temperature, internal temperature and gravities and properly predict the depth of the radiative/convective boundary, an important quantity to understand the cooling history of a giant planet. Such a fast and accurate model can be of great use when numerous temperature profiles need to

  9. Effect of X-ray irradiation on CdS 1- xSe x quantum dots optical absorption

    NASA Astrophysics Data System (ADS)

    Gomonnai, A. V.; Azhniuk, Yu. M.; Kranjčec, M.; Solomon, A. M.; Lopushansky, V. V.; Megela, I. G.

    2001-08-01

    Optical absorption spectra of X-ray irradiated CdS 1- xSe x quantum dots embedded in a borosilicate matrix are studied. As the irradiation dose is increased up to 3240 Gy, the quantum-size-related maxima are smeared and the absorption edge is blue shifted. The observed effects are related to the X-ray ionization of the quantum dots with charge-carrier transfer between the nanocrystals and the host matrix as well as to the additional hydrostatic pressure upon the quantum dots due to the radiation-induced swelling of the glass matrix. The radiation-induced changes vanish completely at post-irradiation annealing up to 575 K.

  10. Comparison of Pre-and Post-Irradiation Low-Frequency Noise Spectra of Midwave Infrared nBn Detectors With Superlattice Absorbers

    NASA Astrophysics Data System (ADS)

    Garduño, Eli A.; Cowan, Vincent M.; Jenkins, Geoffrey D.; Morath, Christian P.; Steenbergen, Elizabeth H.

    2017-04-01

    Noise spectra of type-II strained layer superlattice midwave infrared photodetectors were compared preand postirradiation by a proton fluence of 7.5 × 1011 cm-2 [total ionizing dose equivalent of 100 krad (Si)] and related to the shot noise limit at biases ranging from +200 to -800 mV and temperatures of 130 and 160 K. Pre-irradiation dark current at 130 K was 7.5X Rule '07 and increased to 59X Rule '07 after irradiation. The pre-irradiation noise spectra were within one order of magnitude of the shot noise prediction, while post-irradiation noise spectra were close to two orders higher, indicating the introduction of nonshot-like noise sources.

  11. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    PubMed Central

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-01-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for white blood cell (WBC) loss, which are the body’s main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved white blood cell (WBC), specifically neutrophil, loss in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses. PMID:25909052

  12. Effects of aging and irradiation time on the properties of a highly translucent resin-based composite.

    PubMed

    Bauer, Henrik; Ilie, Nicoleta

    2013-01-01

    This study investigated the effects of aging and irradiation time on the macro- and micro-mechanical properties of a highly translucent nanohybrid composite (IPS Empress Direct, Trans Opal shade, Ivoclar Vivadent). Flexural strength, flexural modulus, indentation modulus, Vickers hardness, and creep were measured after being irradiated with different durations (5, 10, 20, and 40 s) and aged under different conditions (24 h at 37°C in water; 5,000 times of thermocycling between 5°C and 55°C followed by 4-week storage in artificial saliva or alcohol). Rate of cure was also measured for these four irradiation times at composite specimen surface and at 2 mm depth. Effects of aging and irradiation time were statistically analyzed using one-way ANOVA with Tukey's HSD post hoc test (α=0.05), partial eta-squared statistic, and Weibull analysis. Alcohol aging significantly reduced the mechanical properties. Aging in saliva produced a positive effect on micro-mechanical properties. Irradiation time should be at least 20 s to yield favorable mechanical properties.

  13. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-04-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved WBC loss, specifically neutrophils, in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated, irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well as internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses.

  14. Effects of post surface treatments including Er:YAG laser with different parameters on the pull-out bond strength of the fiber posts.

    PubMed

    Arslan, Hakan; Kurklu, Duygu; Ayrancı, Leyla Benan; Barutcigil, Cagatay; Yılmaz, Cenk Burak; Karatas, Ertugrul; Topçuoğlu, Hüseyin Sinan

    2014-09-01

    This study aims to evaluate the effects of Er:YAG laser irradiation under different power settings on the pull-out bond strengths of fiber-reinforced composite posts. The crowns of single-rooted 60 teeth were removed by separation and the root canals were cleaned and shaped. Root canals were filled and post spaces were prepared. Sixty fiber posts were divided into five groups according to surface treatment methods as follows: an untreated control group, a sandblasting-coated group, and three groups undergoing surface preparation with Er:YAG laser under three different power settings (150, 300, and 450 mJ at 10 Hz for 60 s at 100-μs pulse duration). After root canal procedures, fiber posts were cemented to the root canal. After all of the specimens were set, pull-out tests were performed using a universal testing machine at a crosshead speed of 2 mm/min. The data were analyzed using one-way ANOVA and Tukey post-hoc test (p < 0.05). The pull-out strength values ranged between 5.26 and 6.76 Mpa. The lowest values were observed in the groups without surface treatment. Surface treatment applied by 4.5-W Er:YAG laser increased the pull-out bond strength compared to the control group (p < 0.05). 4.5-W Er:YAG laser irradiation increased the pull-out bond strength of fiber posts to resin cement.

  15. Grain boundary effects on defect production and mechanical properties of irradiated nanocrystalline SiC

    SciTech Connect

    Jin Enze; Niu Lisha; Lin Enqiang; Song Xiaoxiong

    2012-05-15

    Grain boundaries (GBs) are known to play an important role in determining the mechanical and functional properties of nanocrystalline materials. In this study, we used molecular dynamics simulations to investigate the effects of damaged GBs on the mechanical properties of SiC that is irradiated by 10 keV Si atoms. The results reveal that irradiation promotes GB sliding and reduces the ability of GBs to block dislocations, which improves the deformation ability of nanocrystalline SiC. However, irradiation causes local rearrangements in disordered clusters and pinning of dislocations in the grain region, which restrains its deformation. These two mechanisms arise from the irradiation effects on GBs and grains, and these mechanisms compete in nanocrystalline SiC during irradiation. The irradiation effects on GBs dominate at low irradiation doses, and the effects on grains dominate at high doses; the result of these combined effects is a peak ductility of 0.09 dpa in nanocrystalline SiC.

  16. Effect of hepatic irradiation on the toxicity and pharmacokinetics of adriamycin in children

    SciTech Connect

    Holcenberg, J.S.; Kun, L.E.; Ring, B.J.; Evans, W.E.

    1981-07-01

    The effect of hepatic irradiation on adriamycin toxicity and pharmacokinetics was studied in 10 children who received adriamycin with concurrent abdominal irradiation for Wilms' tumor. Hepatic irradiation to 2400 to 2700 rad at 100 to 150 rad per fraction did not alter the clinical toxicity or plasma pharmacokinetics of adriamycin.

  17. Irradiation-Induced Thermal Effects in Alloyed Metal Fuel of Fast Reactors

    NASA Astrophysics Data System (ADS)

    Kryukov, F. N.; Nikitin, O. N.; Kuzmin, S. V.; Belyaeva, A. V.; Gilmutdinov, I. F.; Grin, P. I.; Zhemkov, I. Yu

    2017-01-01

    The paper presents the results of studying alloyed metal fuel after irradiation in a fast reactor. Determined is the mechanism of fuel irradiation swelling, mechanical interaction between fuel and cladding, and distribution of fission products. Experience gained in fuel properties and behavior under irradiation as well as in irradiation-induced thermal effects occurred in alloyed metal fuel provides for a fuel pin design to have a burnup not less than 20% h. a.

  18. Protective effects of the fermented milk Kefir on X-ray irradiation-induced intestinal damage in B6C3F1 mice.

    PubMed

    Teruya, Kiichiro; Myojin-Maekawa, Yuki; Shimamoto, Fumio; Watanabe, Hiromitsu; Nakamichi, Noboru; Tokumaru, Koichiro; Tokumaru, Sennosuke; Shirahata, Sanetaka

    2013-01-01

    Gastrointestinal damage associated with radiation therapy is currently an inevitable outcome. The protective effect of Kefir was assessed for its usefulness against radiation-induced gastrointestinal damage. A Kefir supernatant was diluted by 2- or 10-fold and administered for 1 week prior to 8 Gray (Gy) X-ray irradiation at a dose rate of 2 Gy/min, with an additional 15 d of administration post-irradiation. The survival rate of control mice with normal drinking water dropped to 70% on days 4 through 9 post-irradiation. On the other hand, 100% of mice in the 10- and 2-fold-diluted Kefir groups survived up to day 9 post-irradiation (p<0.05 and p<0.01, respectively). Examinations for crypt regeneration against 8, 10 and 12 Gy irradiation at a dose rate of 4 Gy/min revealed that the crypt number was significantly increased in the mice administered both diluted Kefir solutions (p<0.01 for each). Histological and immunohistochemical examinations revealed that the diluted Kefir solutions protected the crypts from radiation, and promoted crypt regeneration. In addition, lyophilized Kefir powder was found to significantly recover the testis weights (p<0.05), but had no effects on the body and spleen weights, after 8 Gy irradiation. These findings suggest that Kefir could be a promising candidate as a radiation-protective agent.

  19. Bleaching effect of a 405-nm diode laser irradiation used with titanium dioxide and 3.5% hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Kato, J.; Nakazawa, T.; Hirai, Y.

    2007-09-01

    A 405-nm diode laser has recently been developed for soft tissue problems in dentistry. A new in-office bleaching agent consisting of a titanium dioxide photocatalyst and 3.5% hydrogen peroxide has proven to react well with light irradiated at a wavelength of around 400 nm. In this study, we evaluated the bleaching efficacy of a newly developed 405-nm diode laser on bovine teeth treated with a bleaching agent composed of titanium dioxide and 3.5% hydrogen peroxide. Sixteen bovine incisors were randomly divided into two groups: Group A, irradiated by the 405-nm diode laser at 200 mW; Group B, irradiated by the 405-nm diode laser at 400 mW. The bleaching agent with titanium dioxide and 3.5% hydrogen peroxide was applied to bovine enamel and irradiated for 1 min. The specimens were then washed and dried, and the same procedure was repeated nine more times. After irradiation, we assessed the effects of bleaching on the enamel by measuring the color of the specimens with a spectrophotometer and examining the enamel surfaces with a scanning electron microscope. L* rose to a high score, reaching a significantly higher post-treatment level in comparison to pretreatment. In a comparison of the color difference (Δ E) between Group A and Group B, the specimens in Group B showed significantly higher values after 10 min of irradiation for the post-treatment. No remarkable differences in the enamel surface morphology were found between the unbleached and bleached enamel. The use of a 405-nm diode laser in combination with a bleaching agent of titanium dioxide and 3.5% hydrogen peroxide may be an effective method for bleaching teeth without the risk of tooth damage.

  20. Electric field and temperature effects in irradiated MOSFETs

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  1. Electric field and temperature effects in irradiated MOSFETs

    SciTech Connect

    Silveira, M. A. G. Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  2. Radiation effects in x-irradiated hydroxy compounds

    SciTech Connect

    Budzinski, E.E.; Potter, W.R.; Box, H.C.

    1980-01-15

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 /sup 0/K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  3. Radiation effects in x-irradiated hydroxy compounds

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  4. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents

    PubMed Central

    Little, Mark P.; Goodhead, Dudley T.; Bridges, Bryn A.; Bouffler, Simon D.

    2013-01-01

    In this article we review health effects in offspring of human populations exposed as a result of radiotherapy and some groups exposed to chemotherapy. We also assess risks in offspring of other radiation-exposed groups, in particular those of the Japanese atomic bomb survivors and occupationally and environmentally exposed groups. Experimental findings are also briefly surveyed. Animal and cellular studies tend to suggest that the irradiation of males, at least at high doses (mostly 1 Gy and above), can lead to observable effects (including both genetic and epigenetic) in the somatic cells of their offspring over several generations that are not attributable to the inheritance of a simple mutation through the parental germ line. However, studies of disease in the offspring of irradiated humans have not identified any effects on health. The available evidence therefore suggests that human health has not been significantly affected by transgenerational effects of radiation. It is possible that transgenerational effects are restricted to relatively short times post-exposure and in humans conception at short times after exposure is likely to be rare. Further research that may help resolve the apparent discrepancies between cellular/animal studies and studies of human health are outlined. PMID:23648355

  5. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos.

    PubMed

    Zhou, Rong; Song, Jing'e; Si, Jing; Zhang, Hong; Liu, Bin; Gan, Lu; Zhou, Xin; Wang, Yupei; Yan, Junfang; Zhang, Qianjing

    The inhibitory effects of carbon monoxide (CO), generated by Ru(CO)3Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA damage, and thus inhibiting the activation of P53 and the mitochondrial apoptotic pathway, leading to the attenuation of cell apoptosis and consequently alleviating X-ray irradiation-induced developmental toxicity at lethal and sub-lethal levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neutron irradiation of Am-241 effectively produces curium

    NASA Technical Reports Server (NTRS)

    Anderson, R. W.; Milstead, J.; Stewart, D. C.

    1967-01-01

    Computer study was made on the production of multicurie amounts of highly alpha-active curium 242 from americium 241 irradiation. The information available includes curium 242 yields, curium composition, irradiation data, and production techniques and safeguards.

  7. Effects of hydrogen isotopes in the irradiation damage of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, M. Z.; Liu, P. P.; Zhu, Y. M.; Wan, F. R.; He, Z. B.; Zhan, Q.

    2015-11-01

    The isotope effect of hydrogen in irradiation damage plays an important role in the development of reduced activation Ferritic/Martensitic steels in nuclear reactors. The evolutions of microstructures and mechanical properties of China low active martensitic (CLAM) steel subjected to hydrogen and deuterium ions irradiation are studied comparatively. Under the same irradiation conditions, larger size and smaller density of dislocation loops are generated by deuterium ion than by hydrogen ion. Irradiation hardening occurs under the ion irradiation and the hardening induced by hydrogen ion is higher than by deuterium ion. Moreover, the coarsening of M23C6 precipitates is observed, which can be explained by the solute drag mechanisms. It turns out that the coarsening induced by deuterium ion irradiation is more distinct than by hydrogen ion irradiation. No distinct variations for the compositions of M23C6 precipitates are found by a large number of statistical data after hydrogen isotopes irradiation.

  8. Effect of polarized light emitting diode irradiation on wound healing.

    PubMed

    Tada, Kaoru; Ikeda, Kazuo; Tomita, Katsuro

    2009-11-01

    We propose a new phototherapy using polarized light from light emitting diode (LED). The purpose of this study is to clarify the effect of polarized LED irradiation on wound healing. Five groups were classified: control (C), unpolarized (U), linearly polarized (L), right circularly polarized (RC), and left circularly polarized (LC) LED irradiation. In vitro study, fibroblast cell cultures were irradiated, and cellular proliferation was evaluated with a WST-8 assay. In vivo study, full-thickness skin defect of 20 mm diameter was created on the dorsal side of rats. The ratio of the residual wound area was measured, and expression of type 1 and type 3 procollagen mRNA in granulation tissue was determined by real-time reverse transcription polymerase chain reaction method. The cellular proliferation rates of group RC and L were significantly higher than other groups. The ratio of the residual wound area of group RC and L was significantly reduced than group C and U. Expression of type 1 procollagen mRNA in group RC was found to be significantly increased about 1.5-fold in comparison with the group C. There were no significant differences for type 3 procollagen. The right circularly polarized light and linearly polarized light promoted the process of wound healing by increasing the proliferation of fibroblasts, and the right circularly polarized light increased the expression of type 1 procollagen mRNA. The effectiveness of right circularly polarized light suggests that some optical active material, which has a circular dichroic spectrum, takes part in a biochemical reaction.

  9. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The effect of irradiation at low doses on human embryos and fetuses

    SciTech Connect

    Romanova, L.K.; Zhorova, E.S.

    1994-05-01

    Data about the biological effect of irradiation at low dose on prenatal human development have been reviewed. The effect of irradiation is observed either immediately after it or in the progeny, as consequences of irradiation affecting the embryo or fetus. Human embryos and fetuses are most sensitive to ionizing irradiation during the peaks of proliferative activity and cell differentiation. The concept has been formulated that any dose of irradiation, however low, can inflict damage to the embryo or fetus. Problems and perspectives of studies in this field are discussed.

  11. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, K. W.; Choi, D. M.; Noh, S. J.; Kim, H. S.; Lee, Cheol Eui

    2016-02-01

    Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  12. The effect of simultaneous electron and Kr/sup +/ irradiation on amorphization of CuTi

    SciTech Connect

    Koike, J.; Okamoto, P.R.; Rehn, L.E.; Meshii, M.

    1989-01-01

    CuTi was irradiated with 1-MeV electrons and Kr/sup +/ ions simultaneously at temperatures from 10 to 423 K. Retardation of Kr/sup +/-induced amorphization was observed with simultaneous electron irradiation at 295 and 423 K. The retardation effect increased with increasing irradiation temperature and relative electron-to-Kr dose rate. In contrast, simultaneous irradiation below 100 K showed an additive effect of electron- and Kr/sup +/-induced amorphization. The results can be explained by the mobility point defects introduced by electron irradiation interacting with Kr/sup +/-induced displacement cascades. 6 refs., 6 figs.

  13. The effects of irradiation on Beijing roast duck

    NASA Astrophysics Data System (ADS)

    Weiguo, Wang; Yongbao, Gu; Fengmei, Li; Ruiying, Zhou

    The irradiation technique combined with freezing has been used to control the microorganisms in Beijing roast duck. 60Co was chosen as the γ-ray source. The average absorbed dose was 2 kGy. After irradiation, the microbe counts reached the tolerable level. Compared with untreated ducks, the irradiated ones showed no remarkable change in nutrition, chemistry, vitamins etc. Preliminary indications are that irradiated frozen Beijing roast duck is wholesome.

  14. Crystallization of sputter-deposited amorphous Ge films by electron irradiation: Effect of low-flux pre-irradiation

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Yasuda, H.; Numakura, H.

    2016-10-01

    We investigated the effect of low-flux electron irradiation with 125 keV to sputter-deposited amorphous germanium on the amorphous structure and electron-induced crystallization microstructure by TEM following our previous study on the effect of aging at room temperature. In samples aged for 3 days, coarse, spherical particles about 100 nm in diameter appear dominantly. By low-flux pre-irradiation to the samples, a reduction in the size and number of coarse particles, embedded in the matrix with fine nanograins of the diamond cubic structure, was noted with the increase in fluence. The crystal structure of these coarse particles was found to be not cubic but hexagonal. In samples aged for 4 months, a similar tendency was observed. In samples aged for 7 months, on the other hand, the homogeneous diamond cubic structured nanograins were unchanged by pre-irradiation. These results indicate that pre-irradiation as well as aging modifies the amorphous structure, preventing the appearance of a hexagonal phase. The elimination of a certain amount of medium-range ordered clusters by pre-irradiation, included in as-deposited samples and the samples aged for 4 months, apparently gives rise to a reduction in the size and number of coarse particles with a metastable hexagonal structure.

  15. Selective use of post-mastectomy flap irradiation in high-risk breast cancer patients.

    PubMed

    Asgeirsson, Kristjan S; Holroyd, Ben; Morgan, David A L; Robertson, John F R; Blamey, Roger W; Pinder, Sarah E; Macmillan, R Douglas

    2005-08-01

    The incidence of local recurrence after mastectomy can be reduced by chest wall radiotherapy. However, only a minority of patients are at substantial risk. No UK national guidelines exist for the use of mastectomy flap radiotherapy. This study evaluated a protocol, whereby only high-risk patients were treated with post-mastectomy flap radiotherapy; identified histologically by grade, vascular invasion and nodal status. All women treated by simple mastectomy for invasive breast cancer at the Nottingham Breast Unit from January 1993 to December 1995 were studied (n=292). Postoperative flap radiotherapy was given to 147 high-risk women (50.3%). Median follow-up was 76 months. Overall, 12 women (4.1%) developed a chest wall recurrence; six were single spot recurrences and the remaining six were either multiple spot (n=3) or field change (field change dermal invasion, n=3). The chest wall recurrence rate was 2.7% in those treated with radiotherapy. A low rate of local recurrence has been achieved with selective use of mastectomy flap radiotherapy.

  16. Microbiological effects of an antiseptic mouthrinse in irradiated cancer patients.

    PubMed

    Lanzós, Isabel; Herrera, David; Santos, Sagrario; O'Connor, Ana; Peña, Carmen; Lanzós, Eduardo; Sanz, Mariano

    2011-11-01

    To assess the microbiological effects of an antiseptic, non-alcohol based mouth-rinse containing chlorhexidine and cetylpyridinium chloride, in patients undergoing radiation therapy for head-and-neck cancer. This was a parallel, double-blind, prospective, randomized clinical trial, including patients irradiated as part of the therapy of head-and-neck cancer, aged 18-75, with at least 10 teeth, and willing to sign an informed consent. Cancer patients were randomly assigned to one of the two treatments (test mouth-rinse or a placebo). Three visits were scheduled (baseline, 14 and 28 days). Microbiological findings were evaluated in tongue, mucosa and subgingival samples, by means of culture. Microbiological variables were assessed by means of the Mann-Whitney, Wilcoxon and chi-square tests. 70 patients were screened and 36 were included. The detection of Candida species in mucosa and tongue samples showed significant reductions in the test group. Total bacterial counts decreased in both groups from baseline to the 2-week visit, while minor changes occurred between 2 and 4 weeks (effects on P. gingivalis, P. intermedia, C. rectus, E. corrodens). Within the limitations of the small sample size, this study suggests that the use of the tested mouth-rinse may lead to improvements in microbiological parameters in patients irradiated for head-and-neck cancer.

  17. The effect of irradiation on BWR core shroud cracking

    NASA Astrophysics Data System (ADS)

    Kwon, Junhyun

    A multi-scale model was developed to estimate the effect of radiation hardening on stress corrosion cracking (SCC) in boiling water reactor (BWR) core shroud welds. The model combines the point defect cluster (PDC) model with Ford-Andresen's slip-dissolution model to evaluate the changes in the crack propagation rate resulting from radiation hardening. To evaluate the relative contribution of neutron and gamma irradiation to the material damage, we developed the displacement cross section for gamma ray and calculated both the displacements per atom (dpa) and the freely migrating defect (FMD) production. While the displacements produced by gamma radiation are essentially 100% FMD, of the total displacements produced by neutrons only about 2˜4% are FMD. To evaluate the irradiated material weldability we also calculate helium production from both one-step and two-step thermal neutron reactions with nickel using ENDF/B-VI cross section data. The increase in yield strength of irradiated stainless steels under normal BWR operating conditions is estimated using the PDC model. In the core shroud region, the contribution of gamma ray to the hardening is not significant although the FMD production from gamma ray represents fully 10˜40% of the total FMD production. The amount of radiation hardening varies with the location of the core shroud, that is, higher dpa levels lead to more hardening. To calculate the crack propagation rate in the core shroud weld region, we determined the crack tip strain rate which is proportional to the yield strength of material and a stress intensity factor under constant loading. Based on linear elastic fracture mechanics, the stress intensity factor is calculated with the weld residual stress and the model is used to predict the crack growth rates of Susquehanna BWR core shroud. The comparison of the results with crack measurements made at Susquehanna units I and II shows good agreement. The model calculations show that radiation hardening

  18. Effectiveness of microwave irradiation on the disinfection of complete dentures.

    PubMed

    Silva, Mariana Montenegro; Vergani, Carlos Eduardo; Giampaolo, Eunice Teresinha; Neppelenbroek, Karin Hermana; Spolidorio, Denise Madalena Palomari; Machado, Ana Lúcia

    2006-01-01

    The purpose of this study was to evaluate the effectiveness of microwave irradiation on the disinfection of simulated complete dentures. Eighty dentures were fabricated in a standardized procedure and subjected to ethylene oxide sterilization. The dentures were individually inoculated (10(7) cfu/mL) with tryptic soy broth (TSB) media containing one of the tested microorganisms (Candida albicans, Streptoccus aureus, Bacillus subtilis, and Pseudomonas aeruginosa). After 48 hours of incubation at 37 degrees C, 40 dentures were individually immersed in 200 mL of water and submitted to microwave irradiation at 650 W for 6 minutes. Forty nonirradiated dentures were used as positive controls. Replicate aliquots (25 microL) of suspensions were plated at dilutions of 10(-3) to 10(-6) on plates of selective media appropriate for each organism. All plates were incubated at 37 degrees C for 48 hours. TSB beakers with the microwaved dentures were incubated at 37 degrees C for 7 more days. After incubation, the number of colony-forming units was counted and the data were statistically analyzed by Kruskal-Wallis test (alpha = .05). No evidence of growth was observed at 48 hours for S. aureus, B. subtilis, and C. albicans. Dentures contaminated with P. aeruginosa showed small growth on 2 plates. After 7 days incubation at 37 degrees C, no growth was visible in the TSB beakers of S. aureus and C. albicans. Turbidity was observed in 3 broth beakers, 2 from P. aeruginosa and 1 from B. subtilis. Microwave irradiation for 6 minutes at 650 W produced sterilization of complete dentures contaminated with S. aureus and C. albicans and disinfection of those contaminated with P. aeruginosa and B. subtilis.

  19. Effects of mass loss for highly-irradiated giant planets

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Hattori, M. F.; Burrows, A.; Hubeny, I.; Sudarsky, D.

    2007-04-01

    We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. [Baraffe, I., Selsis, F., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H., Lammer, H., 2004. Astron. Astrophys. 419, L13-L16] predict the highest rate, based on the theory of Lammer et al. [Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W., 2003. Astrophys. J. 598, L121-L124]. Scaling the theory of Watson et al. [Watson, A.J., Donahue, T.M., Walker, J.C.G., 1981. Icarus 48, 150-166] to parameters for a highly-irradiated exoplanet, we find an escape rate ˜10 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes ⩾0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.

  20. The effect of friction in the hold down post spherical bearings on hold down post loads

    NASA Technical Reports Server (NTRS)

    Richardson, James A.

    1990-01-01

    The effect of friction at the connection of the Solid Rocket Booster (SRB) aft skirt and the mobile launch platform (MLP) hold down posts was analyzed. A simplified model of the shuttle response during the Space Shuttle Main Engine (SSME) buildup was constructed. The model included the effect of stick-slip friction for the rotation of the skirt about the spherical bearing. Current finite element models assume the joint is completely frictionless in rotation and therefore no moment is transferred between the skirt and the hold down posts. The model was partially verified against test data and preliminary parameter studies were performed. The parameter studies indicated that the coefficient of friction strongly influenced the moment on the hold down posts. The coefficient of friction had little effect on hold down post vertical loads, however. Further calibration of the model is necessary before the effect of friction on the hold down post horizontal loads can be analyzed.

  1. Modulation of graphene field effect by heavy charged particle irradiation

    NASA Astrophysics Data System (ADS)

    Cazalas, Edward; Sarker, Biddut K.; Childres, Isaac; Chen, Yong P.; Jovanovic, Igor

    2016-12-01

    Device architectures based on the two-dimensional material graphene can be used for sensing of electromagnetic and particle radiation. The sensing mechanism may be direct, by absorbance of radiation by the graphene or the immediately adjacent material, and indirect, via the field effect principle, whereby the change in conductivity within a semiconducting absorber substrate induces electric field change at graphene. Here, we report on a graphene field effect transistor (GFET) sensitive to heavy charged particle radiation (α particles) at MeV energies by use of the indirect sensing mechanism. Both the continuous and discrete changes of graphene are observed, and the latter are attributed to single α particle interactions with the GFET. While this study provides the basis for understanding of the irradiation effects, it also opens prospects for the use of GFETs as heavy charged particle detectors.

  2. Effective ultraviolet irradiation of platelet concentrates in teflon bags

    SciTech Connect

    Capon, S.M.; Sacher, R.A.; Deeg, H.J. )

    1990-10-01

    Several plastic materials used in blood storage were evaluated for their ability to transmit ultraviolet B (UVB) light. A plastic bag manufactured from sheets of transparent Teflon efficiently (78-86%) transmitted UVB light and was employed in subsequent functional studies of lymphocytes and platelets exposed to UVB light while contained in these bags. In vitro experiments showed a UVB dose-dependent abrogation of lymphocyte responder and stimulator functions, with concurrent preservation of platelet aggregation responses. In a phase I pilot study, UVB-treated platelet concentrates were administered to four bone marrow transplant recipients. Adverse effects attributable to the transfusions were not observed, and patients showed clinically effective transfusion responses. No patient developed lymphocytotoxic HLA or platelet antibodies. These studies suggest that platelets can be effectively irradiated with UVB light in a closed system. However, numerous variables, including container material, volume and composition of contents, steady exposure versus agitation, and exact UV wavelength, must be considered.

  3. Spectrally selective UV bactericidal effect for curative treatment of post-surgical intra-abdominal abscesses and other infections

    NASA Astrophysics Data System (ADS)

    Dudelzak, Alexander E.; Miller, Mark A.; Babichenko, Sergey M.

    2004-07-01

    Results of in-vitro studies of bactericidal effects of ultraviolet (UV) irradiation on strains causing drug-resistant endo-cavital infections (Enterococcus, Staphylococcus aureus, Pseudomonas aeruginosa, and others) are presented. An original technique to measure effects of UV-irradiation on bacterial growth at different wavelengths has been developed. Spectral dependences of the bactericidal effect have been observed, and spectral maxima of bactericidal efficiency have been found. Applications to curative treatments of wounds, post-surgical intra-abdominal abscesses and other diseases are discussed.

  4. Effects of proton beam irradiation on uveal melanomas: a comparative study of Ki-67 expression in irradiated versus non-irradiated melanomas

    PubMed Central

    Chiquet, C.; Grange, J.; Ayzac, L.; Chauvel, P.; Patricot, L.; Devouassoux-Shish..., M.

    2000-01-01

    AIMS—To assess the cellular proliferation using the monoclonal antibody Ki-67, in paraffin embedded uveal melanomas irradiated by proton beam, as well as in non-irradiated uveal melanomas.
METHODS—30 enucleated eyes were included for histopathological study and Ki-67 immunostaining. Patients were enucleated between 1991 and 1996 for uveal melanoma, 14 after proton beam irradiation and 16 without treatment (control group). The mean follow up period was 2.5 years after diagnosis and 1 year after enucleation.
RESULTS—A significant relation was found between Ki-67 score and mitotic index (r = 0.56, p = 0.001), histological largest tumour diameter (r = 0.38, p = 0.03), fibrosis (r = −0.35, p = 0.05), absence of tumoral pigmentation (p = 0.05), and presence of vascular thrombosis (p = 0.03). The Ki-67 score was significantly higher in the non-irradiated group (p = 0.01) and in the group of patients whose cause of enucleation was tumoral evolution (p = 0.005) compared with the group of patients enucleated after neovascular glaucoma. The Ki-67 score was very high in a case of orbital recurrence of uveal melanoma and metastatic death. 70% of metastasised tumours showed a Ki-67 score higher than the median value.
CONCLUSION—Ki-67 labelling is a reliable method of estimating the proliferative activity in uveal melanomas after proton beam irradiation. The Ki-67 score is significantly correlated with prognostic variables (mitotic index and histological largest tumour diameter), and with radiation effects after proton beam irradiation.

 PMID:10611107

  5. AFC-1 Transmutation Fuels Post-Irradiation Hot Cell Examination 4-8 at.% - Final Report (Irradiation Experiments AFC-1B, -1F and -1Æ)

    SciTech Connect

    Bruce Hilton; Douglas Porter; Steven Hayes

    2006-09-01

    The AFC-1B, AFC-1F and AFC-1Æ irradiation tests are part of a series of test irradiations designed to evaluate the feasibility of the use of actinide bearing fuel forms in advanced fuel cycles for the transmutation of transuranic elements from nuclear waste. The tests were irradiated in the Idaho National Laboratory’s (INL) Advanced Test Reactor (ATR) to an intermediate burnup of 4 to 8 at% (2.7 - 6.8 x 1020 fiss/cm3). The tests contain metallic and nitride fuel forms with non-fertile (i.e., no uranium) and low-fertile (i.e., uranium bearing) compositions. Results of postirradiation hot cell examinations of AFC-1 irradiation tests are reported for eleven metallic alloy transmutation fuel rodlets and five nitride transmutation fuel rodlets. Non-destructive examinations included visual examination, dimensional inspection, gamma scan analysis, and neutron radiography. Detailed examinations, including fission gas puncture and analysis, metallography / ceramography and isotopics and burnup analyses, were performed on five metallic alloy and three nitride transmutation fuels. Fuel performance of both metallic alloy and nitride fuel forms was best correlated with fission density as a burnup metric rather than at.% depletion. The actinide bearing transmutation metallic alloy compositions exhibit irradiation performance very similar to U-xPu-10Zr fuel at equivalent fission densities. The irradiation performance of nitride transmutation fuels was comparable to limited data published on mixed nitride systems.

  6. Modification of the genetic effect of gamma irradiation by electric current

    SciTech Connect

    Grigor'eva, N.N.; Shakbazov, V.G.

    1985-09-01

    The authors study the effect of direct current of varying strength and polarity on the genetic damage due to gamma irradiation of Vicia faba seedlings. The modificational effect of direct current observed earlier is confirmed here. The extent and nature of this effect depends on the strength and polarity of the current as well as interval between irradiation and exposure to the electric field. Conditions having no effect on the irradiated seedlings, those protecting the cells from damage and enhancing the irradiation effect, are identified.

  7. Combined effects of γ-irradiation and cadmium exposures on osteoblasts in vitro.

    PubMed

    Qiu, Jing; Zhu, Guoying; Chen, Xiao; Shao, Chunlin; Gu, Shuzhu

    2012-03-01

    The combined effects of γ-irradiation and cadmium (Cd) exposures on osteoblasts were observed in the present study. Osteoblasts were exposed to γ-irradiation (0.5 Gy) and Cd (0-0.5 μmol/L). Cell viability, alkaline phosphatase (ALP) activity, mineralization ability, cell apoptosis and genes expression of ALP, osteocalcin (OC) and caspase 3 were observed. Low concentrations of Cd exposure had no obvious influence on cell viability, ALP activity and apoptosis. However, low levels of Cd exposure combined with γ-irradiation induced more toxic effects on osteoblasts than those treated with Cd or irradiation alone. High concentrations of Cd combined with irradiation exposure induced more significant inhibition in cell viability, ALP activity and mineralization ability than those exposed to Cd or irradiation alone. Meanwhile, OC and ALP mRNA expression of cells treated with Cd combined with irradiation were down-regulated more significantly than those treated with Cd or irradiation alone. Cd combined with γ-irradiation could obviously enhance osteoblast apoptosis and up-regulated caspase 3 mRNA expression compared with those treated with Cd or irradiation alone. This study indicated that ionizing irradiation can enhance Cd toxic effects on osteoblast viability and differentiation and apoptosis may play an important role in this progress. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effect of preliminary irradiation on the bond strength between a veneering composite and alloy.

    PubMed

    Matsumoto, Yoshifumi; Furuchi, Mika; Oshima, Akiko; Tanoue, Naomi; Koizumi, Hiroyasu; Matsumura, Hideo

    2010-01-01

    The shear bond strength of a veneering composite (Solidex) and silver-palladium-copper-gold alloy (Castwell M.C.12) was evaluated for different duration times and irradiance for preliminary photo-polymerization. A veneering composite was applied onto a cast disk. Preliminary photo irradiation was performed using different duration times or irradiance. After final polymerization, the bond strength and the spectral distribution of each curing unit were determined. Shear bond strength was significantly higher for 90 s (12.4 MPa), than that for 0 s (8.3 MPa). With regard to the effect of irradiance, that from Solidilite (11.4 MPa) was significantly higher than that from Sublite S at 3 cm (8.7 MPa). The irradiance of Hyper LII and Sublite S at 3 cm was higher than Sublite S at 15 cm or Solidilite unit. Long time irradiation and low intensity is effective for preliminary irradiation in order to enhance the bond strength.

  9. Assessment of the neutralizing potency of antisera raised against native and γ-irradiated Naja nigricollis (black-necked spitting cobra) venom in rabbits, concerning its cardiotoxic effect.

    PubMed

    Abdou, F; Denshary, E E; Shaaban, E; Mohamed, M

    2017-01-01

    The present study was designed to prepare a specific safe antiserum for Naja nigricollis using γ-irradiated (1.5KGy and3KGy) venoms. Rabbits were used for active immunization using irradiated venoms (1.5 and 3 kGy) as a toxoid, mice were used for determination of LD50 post immunization and the rats were used for neutralization of the cardiotoxic effect of venom. Results of the immunodiffusion test indicated that the sera of rabbits raised against non-irradiated, 1.5- and 3-kGy γ-irradiated venom, had the same results of precipitin bands. A significant inhibition of phospholipase A2 activities was obtained when neutralized with native, γ-irradiated (1.5KGy and3KGy) venoms. On the other hand, preincubation of the venom ½ LD50 (0.154 mg/kg i.p.) with each antiserum (non-irradiated or irradiated venom) at 37°C for 1 h in a ratio (1:4) produced a significant reduction in the values of creatine kinase and creatine kinase isoenzyme-MB. However, significant elevation in aspartate aminotransferase level and no change in lactate dehydrogenase level were observed. So the results of this study indicated that the irradiated venom treatment reduces the cardiotoxic effect of venom in immunized immunization animals for preparing vaccines.

  10. Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU

    SciTech Connect

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D.

    1997-08-01

    Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.

  11. Post-irradiation annealing behavior of microstructure and hardening of a reactor pressure vessel steel studied by positron annihilation and atom probe tomography

    NASA Astrophysics Data System (ADS)

    Kuramoto, A.; Toyama, T.; Takeuchi, T.; Nagai, Y.; Hasegawa, M.; Yoshiie, T.; Nishiyama, Y.

    2012-06-01

    Post-irradiation annealing (PIA) behavior of irradiation-induced microstructural changes and hardening of an A533B (0.16 wt.% Cu) steel after neutron-irradiation of 3.9 × 1019 n cm-2 (0.061 displacement per atom (dpa)) at 290 °C was studied by positron annihilation spectroscopy (PAS), atom probe tomography (APT) and Vickers microhardness measurements. Coincidence Doppler broadening and positron lifetime measurements clearly reveal two recovery stages; (i) as-irradiated state to annealing at 450 °C and (ii) annealing from 450 to 600 °C. The first stage is due to annealing out of the most of irradiation-induced vacancy-related defects, while the second stage corresponds to dissolving of irradiation-induced solute nanoclusters (SCs). APT observations reveal that the SCs are enriched with Cu, Mn, Ni and Si and that their number densities decrease with increasing annealing temperature without coarsening to give almost complete recovery at 550 °C. The experimental hardening is almost twice the SC hardening estimated by the Russell-Brown model below 350 °C, whereas it is almost the same as that estimated in the range 400-550 °C.

  12. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  13. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  14. Silicon/HfO{sub 2} interface: Effects of gamma irradiation

    SciTech Connect

    Maurya, Savita

    2016-05-23

    Quality of MOS devices is a strong function of substrate and oxide interface. In this work we have studied how gamma photon irradiation affects the interface of a 13 nm thick, atomic layer deposited hafnium dioxide deposited on silicon wafer. CV and GV measurements have been done for pristine and irradiated samples to quantify the effect of gamma photon irradiation. Gamma photon irradiation not only introduces positive charge in the oxide and at the interface of Si/HfO{sub 2} interface but also induce phase change of oxide layer. Maximum oxide capacitances are affected by gamma photon irradiation.

  15. Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement

    SciTech Connect

    Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin; Nho, Young-Chang; Kang, Phil-Hyun

    2010-06-02

    In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250 deg. C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the related crosslinking of the PA 12.

  16. Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement

    NASA Astrophysics Data System (ADS)

    Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin; Nho, Young-Chang; Kang, Phil-Hyun

    2010-06-01

    In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250° C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the related crosslinking of the PA 12.

  17. Radioprotective Effect of Aminothiol PrC-210 on Irradiated Inner Ear of Guinea Pig

    PubMed Central

    Choo, Daniel I.; Riazuddin, Saima; Ahmed, Zubair M.

    2015-01-01

    Radiotherapy of individuals suffering with head & neck or brain tumors subserve the risk of sensorineural hearing loss. Here, we evaluated the protective effect of Aminothiol PrC-210 (3-(methyl-amino)-2-((methylamino)methyl)propane-1-thiol) on the irradiated inner ear of guinea pigs. An intra-peritoneal or intra-tympanic dose of PrC-210 was administered prior to receiving a dose of gamma radiation (3000 cGy) to each ear. Auditory Brainstem Responses (ABRs) were recorded one week and two weeks after the radiation and compared with the sham animal group. ABR thresholds of guinea pigs that received an intra-peritoneal dose of PrC-210 were significantly better compared to the non-treated, control animals at one week post-radiation. Morphologic analysis of the inner ear revealed significant inflammation and degeneration of the spiral ganglion in the irradiated animals not treated with PrC-210. In contrast, when treated with PrC-210 the radiation effect and injury to the spiral ganglion was significantly alleviated. PrC-210 had no apparent cytotoxic effect in vivo and did not affect the morphology or count of cochlear hair cells. These findings suggest that aminothiol PrC-210 attenuated radiation-induced cochlea damage for at least one week and protected hearing. PMID:26599238

  18. EFFECT OF IRRADIATION ON MICROVASCULAR ENDOTHELIAL CELLS OF PAROTID GLANDS IN THE MINIATURE PIG

    PubMed Central

    Xu, Junji; Yan, Xing; Gao, Runtao; Mao, Lisha; Cotrim, Ana P.; Zheng, Changyu; Zhang, Chunmei; Baum, Bruce J.; Wang, Songlin

    2013-01-01

    Purpose To evaluate the effect of irradiation on microvascular endothelial cells in miniature pig parotid glands. Methods and Materials A single 25-Gy dose of irradiation (IR) was delivered to parotid glands of 6 miniature pigs. Three other animals served as non-IR controls. Local blood flow rate in glands was measured pre- and post-IR with an ultrasonic Doppler analyzer. Samples of parotid gland tissue were taken at 4 h, 24 h, 1 week, and 2 weeks after IR for microvascular density (MVD) analysis and sphingomyelinase (SMase) assay. Histopathology and immunohistochemical staining (anti-CD31 and anti-AQP1) were used to assess morphological changes. MVD was determined by calculating the number of CD31- or AQP1-stained cells per field. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay was used to detect apoptotic cells. The activity of acid and neutral Mg2+-dependent SMase (ASMase and NSMase, respectively) was also assayed. Results Local parotid gland blood flow rate decreased rapidly at 4 h post-IR and remained below control levels throughout the 14-day observation period. Parotid MVD also declined from 4 to 24 hours and remained below control levels thereafter. The activity levels of ASMase and NSMase in parotid glands increased rapidly from 4 to 24 h post-IR and then declined gradually. The frequency of detecting apoptotic nuclei in the glands followed similar kinetics. Conclusions Single-dose IR led to a significant reduction of MVD and local blood flow rate, indicating marked damage to microvascular endothelial cells in miniature pig parotid glands. The significant and rapid increases of ASMase and NSMase activity levels may be important in this IR-induced damage. PMID:20832188

  19. Effect of Irradiation on Microvascular Endothelial Cells of Parotid Glands in the Miniature Pig

    SciTech Connect

    Xu Junji; Yan Xing; Gao Runtao; Mao Lisha; Cotrim, Ana P.; Zheng Changyu; Zhang Chunmei; Baum, Bruce J.; Wang Songlin

    2010-11-01

    Purpose: To evaluate the effect of irradiation on microvascular endothelial cells in miniature pig parotid glands. Methods and Materials: A single 25-Gy dose of irradiation (IR) was delivered to parotid glands of 6 miniature pigs. Three other animals served as non-IR controls. Local blood flow rate in glands was measured pre- and post-IR with an ultrasonic Doppler analyzer. Samples of parotid gland tissue were taken at 4 h, 24 h, 1 week, and 2 weeks after IR for microvascular density (MVD) analysis and sphingomyelinase (SMase) assay. Histopathology and immunohistochemical staining (anti-CD31 and anti-AQP1) were used to assess morphological changes. MVD was determined by calculating the number of CD31- or AQP1-stained cells per field. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay was used to detect apoptotic cells. The activity of acid and neutral Mg{sup 2+}-dependent SMase (ASMase and NSMase, respectively) was also assayed. Results: Local parotid gland blood flow rate decreased rapidly at 4 h post-IR and remained below control levels throughout the 14-day observation period. Parotid MVD also declined from 4 to 24 hours and remained below control levels thereafter. The activity levels of ASMase and NSMase in parotid glands increased rapidly from 4 to 24 h post-IR and then declined gradually. The frequency of detecting apoptotic nuclei in the glands followed similar kinetics. Conclusions: Single-dose IR led to a significant reduction of MVD and local blood flow rate, indicating marked damage to microvascular endothelial cells in miniature pig parotid glands. The significant and rapid increases of ASMase and NSMase activity levels may be important in this IR-induced damage.

  20. [Investigation of the processes of post-radiation reparation of the corneal epithelium cells of mice irradiated by helium ions with various LET values].

    PubMed

    Vorozhtsova, S V; Fedorenko, S B; Shafirkin, A V; Chikhladze, Ts A

    2008-01-01

    Biological effectiveness and post-radiation recovery of corneal epithelium cells of mice were studied. Mice were exposed to a broad range of doses from accelerated helium ions with the energy of 4 MeV/nucleon and 4 GeV/nucleon once and twice with a 24-hr. interval. LET values for these energies were 120 and 0.88 keV/microm, respectively. Gamma-source 137Cs (LET = 0.3 keV/microm) was used as a radiation standard. Animals irradiated by 25-400 sGy were sacrificed in 24 and 72 hrs. by way of cervical dislocation. Total corneal preparations made from enucleated eyeballs were analyzed for the mitotic index and aberrant mitoses using the anaphase method. High damaging properties of accelerated helium ions with the energy of 4 MeV/nucleon were manifested by a considerable reduction of the mitotic index and a more marked rise in the number of aberrant mitoses following the single and repeated exposure. Fractional irradiation by helium ions with the energy of 4 MeV/nucleon resulted in inhibition and even arrest of reparation suggesting additivity of separate radiation fractions. From the dose values that produced the double reduction of the mitotic index, coefficients of the relative biological effectiveness (RBE) for helium ions with the energy of 4 MeV/nucleon and 4 GeV/nucleon were estimated to be 5.3-8.6 and 1.3-1.8, respectively. In the context of the number of aberrant mitoses, RBE coefficients were significantly lower ranging 2.3-3.5 and 1.1-1.3 for these energies, respectively.

  1. Effect of irradiation parameters on defect aggregation during thermal annealing of LiF irradiated with swift ions and electrons

    SciTech Connect

    Schwartz, K.; Neumann, R.; Trautmann, C.; Volkov, A. E.; Sorokin, M. V.

    2010-10-01

    Absorption spectroscopy were performed to study the effects of thermal annealing on the aggregation of color centers in LiF crystals irradiated with different ions between carbon and uranium of megaelectron volt-gigaelectron volt energy. The beam parameters such as energy, energy loss, and fluence have a pronounced influence on the initial defect composition and concentration as well as their evolution upon thermal annealing. A distinct phenomenon was observed, viz., the enhancement of F{sub n} centers for annealing temperatures between 500 and 700 K, followed by Li colloid formation above 700 K. The phenomenon requires specific irradiation conditions whereas the formation of Mg colloids from Mg impurities occurs in all irradiated crystals. The mechanisms of annealing and colloid formation are discussed.

  2. Ion irradiation effects on sooting flames by-products

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Pino, T.; Dartois, E.; Cao, A. T.; D'Hendecourt, L.; Strazzulla, G.; Bréchignac, Ph.

    2008-10-01

    Carbonaceous extraterrestrial matter is observed in a wide variety of astrophysical environments. Spectroscopic signatures reveal a large variety of chemical structure illustrating the rich carbon chemistry that occurs in space. In order to produce laboratory analogues of the carbonaceous cosmic dust, a new chemical reactor has been built in the Laboratoire de Photophysique Moléculaire. It is a low pressure flat burner providing flames of premixed hydrocarbon/oxygen gas mixtures, closely following the model system used by the combustion community. In such a device the flame is a one-dimensional chemical reactor offering a broad range of combustion conditions and sampling which allows production of many and various by-products. In the present work, we have studied the effect of ion irradiation (200-400 keV), at the Laboratorio di Astrofisica Sperimentale in Catania, on several samples, ranging from strongly aromatic to strongly aliphatic materials. Infrared and Raman spectra were monitored to follow the evolution of the films under study, and characterize the irradiation process-induced modifications.

  3. Mutagenic effects of heavy ion irradiation on rice seeds

    NASA Astrophysics Data System (ADS)

    Xu, Xue; Liu, Binmei; Zhang, Lili; Wu, Yuejin

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M2 plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  4. Effect of microplasma irradiation on skin barrier function

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Tran, Nhat An; Blajan, Marius

    2015-09-01

    This study investigates the feasibility of atmospheric-pressure argon microplasma irradiation (AAMI) to promote drug delivery through skin. Yucatan micropig skin was used as a biological object for evaluation of in vitro percutaneous absorption. The changes in lipids, proteins and water content of the pig stratum corneum (SC) after AAMI were compared to those of a tape stripping test (TST) and plasma jet irradiation (PJI) using attenuated total reflection-Fourier transform infrared spectroscopy analysis. The significant reduction in the methylene stretching modes absorbance resulted in the disturbance in the SC lipids caused by AAMI was observed at 2850 and 2920 cm-1. Moreover, as the result of TST, trans-epidermal water loss (TEWL) after both AAMI and PJI were also increased, that could lead to a decrease of barrier function of SC, and could enhance the transdermal absorption of drugs. Under the conditions of this study, TEWL value of 5 minutes AAMI (35.92 +/- 3.48 g/m2h) was approximately the same as that value of 10 times TST (34.30 +/- 3.54 g/m2h), that makes the effect of these manipulations on the surfaces is considered to be at the same levels. Furthermore, unlike the obtained microscopic observation from PJI, there was no thermal damage observed on the skins after AAMI.

  5. The effect of neutron irradiation on silicon carbide fibers

    SciTech Connect

    Newsome, G.A.

    1997-01-01

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon{trademark} CG, Tyranno, Hi-Nicalon{trademark}, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers.

  6. [The effect of ultraviolet irradiation on the biocompatibility of Medpor].

    PubMed

    Chen, Bo; Ma, Xiu-lan

    2009-11-01

    To investigate the effect of ultraviolet ( UV) irradiation on the biocompatibility of Medpor. The Medpor implant, 2 mm in thickness, was divided into several pieces with the size of 1 cm x 1 cm. 12 Japanese big ear rabbits were divided into experimental (n=6) and control group (n=6). The 1 cm x 1 cm auricular cartilage defects were made in each rabbit ear. Then the defects were repaired with UV-treated Medpor implants in experimental group, and Medpor implants in control group. The levels of the total hemolytic complement (CH50) were measured 3 d hefore operation, and 1, 3, 7, 14, 21, 30, 60, 90 d after operation. The wound healing was observed. 90 d after operation, the animals were killed to get the specimens for gross observation and histologic examination. The change of CH50 level after operation was significantly different between the two groups ( P < 0.05) . The CH50 level was comparatively stable in experimental group. Compared with control group, the local inflammatory reaction was not obvious in experimental group. A great amount of tissue, including big vessels was growing into the mini-pores of Medpor, resulting a close combination between the implant and surrounding tissue. It suggests that ultraviolet irradiation can improve the biocompatibility of Medpor and promote the wound recovery.

  7. Effects of gamma irradiation, modified atmosphere packaging and delay of irradiation on quality of fresh-cut iceberg letuce

    USDA-ARS?s Scientific Manuscript database

    The study was conducted to investigate the effect of modified atmosphere packaging (MAP) and delay of irradiation application on the quality of cut Iceberg lettuce. Overall visual quality and tissue browning of cut lettuce were evaluated using a scale of 9-1 while texture was analyzed instrumentally...

  8. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  9. Proton irradiation effects on tensile and bend-fatigue properties of welded F82H specimens

    NASA Astrophysics Data System (ADS)

    Saito, S.; Kikuchi, K.; Hamaguchi, D.; Usami, K.; Ishikawa, A.; Nishino, Y.; Endo, S.; Kawai, M.; Dai, Y.

    2010-03-01

    In several institutes, research and development for an accelerator-driven transmutation system (ADS) have been progressed. Ferritic/martensitic (FM) steels are the candidate materials for the beam window of ADS. To evaluate of the mechanical properties of the irradiated materials, the post irradiation examination (PIE) work of the SINQ (Swiss spallation neutron source) target irradiation program (STIP) specimens was carried out at JAEA. In present study, the results of PIE on FM steel F82H and its welded joint have been reported. The present irradiation conditions of the specimens were as follows: proton energy was 580 MeV. Irradiation temperatures were ranged from 130 to 380 °C, and displacement damage level was ranged from 5.7 to 11.8 dpa. The results of tensile tests performed at 22 °C indicated that the irradiation hardening occurred with increasing the displacement damage up to 10.1 dpa at 320 °C irradiation. At higher dose (11.8 dpa) and higher temperature (380 °C), irradiation hardening was observed, but degradation of ductility was relaxed in F82H welded joint. In present study, all specimens kept its ductility after irradiation and fractured in ductile manner. The results on bend-fatigue tests showed that the fatigue life ( Nf) of F82H base metal irradiated up to 6.3 dpa was almost the same with that of unirradiated specimens. The Nf of the specimens irradiated up to 9.1 dpa was smaller than that of unirradiated specimens. Though the number of specimen was limited, the Nf of F82H EB (15 mm) and EB (3.3 mm) welded joints seemed to increase after irradiation and the fracture surfaces of the specimens showed transgranular morphology. While F82H TIG welded specimens were not fractured by 10 7 cycles.

  10. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  11. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  12. Detection of gamma-irradiation effect on DNA and protein using magnetic sensor and cyclic voltammetry.

    PubMed

    Park, Duck-Gun; Song, Hoon; Kishore, M B; Vértesy, G; Lee, Duk-Hyun

    2013-11-01

    In this study, a magnetic sensor utilizing Planar Hall Resistance (PHR) and cyclic Voltammetry (CV) for detecting the radiation effect was fabricated. Specifically, we applied in parallel a PHR sensor and CV device to monitor the irradiation effect on DNA and protein respectively. Through parallel measurements, we demonstrated that the PHR sensor and CV are sensitive enough to measure irradiation effect. The PHR voltage decreased by magnetic nanobead labeled DNA was slightly recovered after gamma ray irradiation. The behavior of cdk inhibitor protein p21 having a sandwich structure of Au/protein G/Ab/Ag/Ab was checked by monitoring the cyclic Voltammetry signal in analyzing the gamma ray irradiation effect.

  13. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.

    PubMed

    El-Ghazaly, M A; Fadel, N; Rashed, E; El-Batal, A; Kenawy, S A

    2017-02-01

    Selenium (Se) has been reported to possess anti-inflammatory properties, but its bioavailability and toxicity are considerable limiting factors. The present study aimed to investigate the possible anti-inflammatory and analgesic effects of selenium nanoparticles (Nano-Se) on inflammation induced in irradiated rats. Paw volume and nociceptive threshold were measured in carrageenan-induced paw edema and hyperalgesia model. Leukocytic count, tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBAR), and total nitrate/nitrite (NOx) were estimated in the exudate collected from 6 day old air pouch model. Irradiated rats were exposed to 6 Gy gamma (γ)-irradiation. Nano-Se were administered orally in a dose of 2.55 mg/kg once before carrageenan injection in the first model and twice in the second model. The paw volume but not the nociceptive response produced by carrageenan in irradiated rats was higher than that induced in non-irradiated rats. Nano-Se were effective in reducing the paw volume in non-irradiated and irradiated rats but it did not alter the nociceptive threshold. The inflammation induced in irradiated rats increased all the estimated parameters in the exudate whereas; Nano-Se decreased their elevation in non-irradiated and irradiated rats. Nano-Se possess a potential anti-inflammatory activity on inflammation induced in irradiated rats.

  14. Modified atmosphere packaging and post-packaging irradiation of Rumex induratus leaves: a comparative study of postharvest quality changes.

    PubMed

    Pinela, José; Barreira, João C M; Barros, Lillian; Verde, Sandra Cabo; Antonio, Amilcar L; Oliveira, M Beatriz P P; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2016-07-01

    The effects of conventional and inert-gas enriched atmospheres, as well as those caused by different γ-irradiation doses, on buckler sorrel (Rumex induratus) leaves quality were evaluated and compared after 12 days of storage at 4 °C. The green colour of the abaxial surface of the leaves was relatively stable, as well as the carbohydrates content and the calorific value. The storage time decreased the amounts of fructose, glucose, trehalose, α-tocopherol, and β-tocopherol and increased the levels of total organic acids and δ-tocopherol. The total tocopherols content was higher in air-packaged non-irradiated leaves, antioxidant compounds that may have contributed to the preservation of polyunsaturated fatty acids (PUFA). Some antioxidant properties were also favoured during storage. It was found that the overall postharvest quality of buckler sorrel leaves is better maintained with the argon-enriched atmospheres, while the 6 kGy dose was a suitable option to preserve PUF+A during cold storage. This study highlights the suitability of the applied postharvest treatments and the interest to include buckler sorrel leaves in contemporary diets.

  15. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells.

    PubMed

    Puspitasari, Irma M; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2017-01-01

    The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0

  16. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells

    PubMed Central

    Puspitasari, Irma M.; Yamazaki, Chiho; Abdulah, Rizky; Putri, Mirasari; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2017-01-01

    The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0

  17. Effects of post placement on endodontically treated teeth.

    PubMed

    Hunter, A J; Feiglin, B; Williams, J F

    1989-08-01

    The effect of endodontic therapy, post-hole preparation, and post placement on tooth models of maxillary central incisors was investigated. Two-dimensional photoelastic analysis of birefringent models, under load in a polariscope, indicated the relative stress magnitudes and concentrations at the cervical and apical regions. Within the limits of the method, the results suggest that enlargement of the canal increases cervical stresses and that post placement will decrease stresses in this region. Nevertheless, conservative enlargement of the root canal may render post placement unnecessary for largely intact teeth. Post length appeared more important than post diameter in determining relative stresses at the cervical region. However, short wide posts led to elevated stress concentrations in this region. Post placement beyond two thirds of the root depth did not further decrease cervical stresses but usually increased stresses in the apical region.

  18. Risk of Eye Damage from the Wavelength-Dependent Biologically Effective UVB Spectrum Irradiances

    PubMed Central

    Wang, Fang; Gao, Qian; Hu, Liwen; Gao, Na; Ge, Tiantian; Yu, Jiaming; Liu, Yang

    2012-01-01

    A number of previous studies have discussed the risk of eye damage from broadband ultraviolet (UV) radiation. As the biologically damaging effectiveness of UV irradiation on the human body is known to be wavelength-dependent, it is necessary to study the distribution of the UV spectral irradiance. In order to quantify the ocular biologically effective UV (UVBE) irradiance exposure of different wavelengths and assess the risk of eye damage, UV exposure values were measured at Sanya, China (18.4° N, 109.7°E, altitude 18 m), using a manikin and a dual-detector spectrometer to measure simultaneously the ocular exposure and ambient UV spectral irradiance data and solar elevation angle (SEA) range (approximately 7°–85°). The present study uses the ocular UV spectral irradiance exposure weighted with the action spectra for photokeratitis, photoconjunctivitis and cataracts to calculate the ocular UVBE irradiance exposure for photokeratitis (UVBEpker), photoconjunctivitis (UVBEpcon) and cataracts (UVBEcat). We found that the ocular exposure to UV irradiance is strongest in the 30°–60° SEA range when ∼50% of ocular exposure to UV irradiance on a summer’s day is received. In the 7°–30° SEA range, all the biologically highly effective wavelengths of UVBEpker, UVBEpcon and UVBEcat irradiances are at 300 nm. However, in other SEA ranges the biologically highly effective wavelengths of UVBEpker, UVBEpcon and UVBEcat irradiances are different, corresponding to 311 nm, 300 nm and 307 nm, respectively. PMID:23284960

  19. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3

    PubMed Central

    LI, JIANGUO; ZHANG, GUOWEI; MENG, ZHUANGZHI; WANG, LINGZHAN; LIU, HAIYING; LIU, QIANG; BUREN, BATU

    2016-01-01

    Neuronal cell apoptosis is associated with various factors that induce neurological damage, including radiation exposure. When administered prior to exposure to radiation, a protective agent may prevent cellular and molecular injury. The present study aimed to investigate whether melatonin exerts a neuroprotective effect by inhibiting the caspase cell death pathway. Male Sprague-Dawley rats were administered melatonin (100 mg/kg body weight) 30 min prior to radiation exposure in red light during the evening. In order to elucidate whether melatonin has a neuroprotective role, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling, Nissl staining, reverse transcription-quantitative polymerase chain reaction, reactive oxygen species analysis and western blotting were performed. At 24 h post-melatonin treatment, caspase-3 mRNA and protein expression levels were significantly decreased. These results demonstrated that melatonin may protect hippocampal neurons via the inhibition of caspase-3 when exposed to irradiation. Therefore, caspase-3 inhibition serves a neuroprotective and antioxidant role in the interventional treatment of melatonin. The results of the present study suggested that melatonin may have a potential therapeutic effect against irradiation; however, further studies are required in order to elucidate the underlying antioxidant mechanisms. PMID:27313671

  20. The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams

    NASA Astrophysics Data System (ADS)

    Wongsuban, Benchamaporn; Muhammad, Kharidah; Ghazali, Zulkafli; Hashim, Kamaruddin; Ali Hassan, Muhammad

    2003-10-01

    Blends of sago starch (SS)/polyvinyl alcohol (PVA) were irradiated with doses ranging from 10 to 30 kGy. Foams were then produced from these irradiated blends using a microwave. Changes in the degree of crosslinking, gel strength, thermal stability morphology of blends and linear expansion of foam with increasing irradiation doses were subsequently investigated. It was observed that the degree of crosslinking was important in maximizing the positive effect on foams produced. The gel strength of SS/PVA blends was affected by the irradiation. The crosslinking by the irradiation enhanced the thermal stability of SS/PVA blends. The results also revealed that the highest linear expansion of foams could be produced by irradiation blends at 15 kGy. Changes in blend morphology were observed upon irradiation.

  1. Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification.

    PubMed

    Wan, Hui-da; Sun, Shi-yu; Hu, Xue-yi; Xia, Yong-mei

    2012-03-01

    Microwave has nonthermal effects on enzymatic reactions, mainly caused by the polarities of the solvents and substrates. In this experiment, a model reaction with caprylic acid and butanol that was catalyzed by lipase from Mucor miehei in alkanes or arenes was employed to investigate the nonthermal effect in nonaqueous enzymatic esterification. With the comparison of the esterification carried by conventional heating and consecutive microwave irradiation, the positive nonthermal effect on the initial reaction rates was found substrate concentration-dependent and could be vanished ostensibly when the substrate concentration was over 2.0 mol L(-1). The polar parameter log P well correlates the solvent polarity with the microwave effect, comparing to dielectric constant and assayed solvatochromic solvent polarity parameters. The log P rule presented in conventional heating-enzymatic esterification still fits in the microwaved enzymatic esterification. Alkanes or arenes with higher log P provided positive nonthermal effect in the range of 2 ≤ log P ≤ 4, but yielded a dramatic decrement after log P = 4. Isomers of same log P with higher dielectric constant received stronger positive nonthermal effect. With lower substrate concentration, the total log P of the reaction mixture has no obvious functional relation with the microwave effect.

  2. Evaluation of the effect of a gamma irradiated DBM-pluronic F127 composite on bone regeneration in Wistar rat.

    PubMed

    Al Kayal, Tamer; Panetta, Daniele; Canciani, Barbara; Losi, Paola; Tripodi, Maria; Burchielli, Silvia; Ottoni, Priscilla; Salvadori, Piero Antonio; Soldani, Giorgio

    2015-01-01

    Demineralized bone matrix (DBM) is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling. In this study we evaluated the effect of gamma irradiation on the physical-chemical properties of Pluronic and on bone morphogenetic proteins (BMPs) amount in DBM samples. In vivo studies were carried out to investigate the effect on bone regeneration of a gamma irradiated DBM-Pluronic F127 (DBM-PF127) composite implanted in the femur of rats. Gamma irradiation effects (25 kGy) on physical-chemical properties of Pluronic F127 were investigated by rheological and infrared analysis. The BMP-2/BMP-7 amount after DBM irradiation was evaluated by ELISA. Bone regeneration capacity of DBM-PF127 containing 40% (w/w) of DBM was investigated in transcortical holes created in the femoral diaphysis of Wistar rat. Bone porosity, repaired bone volume and tissue organization were evaluated at 15, 30 and 90 days by Micro-CT and histological analysis. The results showed that gamma irradiation did not induce significant modification on physical-chemical properties of Pluronic, while a decrease in BMP-2/BMP-7 amount was evidenced in sterilized DBM. Micro-CT and histological evaluation at day 15 post-implantation revealed an interconnected trabeculae network in medullar cavity and cellular infiltration and vascularization of DBM-PF127 residue. In contrast a large rate of not connected trabeculae was observed in Pluronic filled and unfilled defects. At 30 and 90 days the DBM-PF127 samples shown comparable results in term of density and thickness of the new formed tissue respect to unfilled defect. In conclusion a gamma irradiated DBM-PF127 composite, although it may have undergone a significant decrease in the concentration of BMPs, was able to maintains bone regeneration capability.

  3. Evaluation of the Effect of a Gamma Irradiated DBM-Pluronic F127 Composite on Bone Regeneration in Wistar Rat

    PubMed Central

    Canciani, Barbara; Losi, Paola; Tripodi, Maria; Burchielli, Silvia; Ottoni, Priscilla; Salvadori, Piero Antonio; Soldani, Giorgio

    2015-01-01

    Demineralized bone matrix (DBM) is widely used for bone regeneration. Since DBM is prepared in powder form its handling properties are not optimal and limit the clinical use of this material. Various synthetic and biological carriers have been used to enhance the DBM handling. In this study we evaluated the effect of gamma irradiation on the physical-chemical properties of Pluronic and on bone morphogenetic proteins (BMPs) amount in DBM samples. In vivo studies were carried out to investigate the effect on bone regeneration of a gamma irradiated DBM-Pluronic F127 (DBM-PF127) composite implanted in the femur of rats. Gamma irradiation effects (25 kGy) on physical-chemical properties of Pluronic F127 were investigated by rheological and infrared analysis. The BMP-2/BMP-7 amount after DBM irradiation was evaluated by ELISA. Bone regeneration capacity of DBM-PF127 containing 40% (w/w) of DBM was investigated in transcortical holes created in the femoral diaphysis of Wistar rat. Bone porosity, repaired bone volume and tissue organization were evaluated at 15, 30 and 90 days by Micro-CT and histological analysis. The results showed that gamma irradiation did not induce significant modification on physical-chemical properties of Pluronic, while a decrease in BMP-2/BMP-7 amount was evidenced in sterilized DBM. Micro-CT and histological evaluation at day 15 post-implantation revealed an interconnected trabeculae network in medullar cavity and cellular infiltration and vascularization of DBM-PF127 residue. In contrast a large rate of not connected trabeculae was observed in Pluronic filled and unfilled defects. At 30 and 90 days the DBM-PF127 samples shown comparable results in term of density and thickness of the new formed tissue respect to unfilled defect. In conclusion a gamma irradiated DBM-PF127 composite, although it may have undergone a significant decrease in the concentration of BMPs, was able to maintains bone regeneration capability. PMID:25897753

  4. Irradiation of rainbow trout at early life stages results in trans-generational effects including the induction of a bystander effect in non-irradiated fish.

    PubMed

    Smith, Richard W; Seymour, Colin B; Moccia, Richard D; Mothersill, Carmel E

    2016-02-01

    The bystander effect, a non-targeted effect (NTE) of radiation, which describes the response by non-irradiated organisms to signals emitted by irradiated organisms, has been documented in a number of fish species. However transgenerational effects of radiation (including NTE) have yet to be studied in fish. Therefore rainbow trout, which were irradiated as eggs at 48h after fertilisation, eyed eggs, yolk sac larvae or first feeders, were bred to generate a F1 generation and these F1 fish were bred to generate a F2 generation. F1 and F2 fish were swam with non-irradiated bystander fish. Media from explants of F1 eyed eggs, F1 one year old fish gill and F1 two year old fish gill and spleen samples, and F2 two year old gill and spleen samples, as well as from bystander eggs/fish, was used to treat a reporter cell line, which was then assayed for changes in cellular survival/growth. The results were complex and dependent on irradiation history, age (in the case of the F1 generation), and were tissue specific. For example, irradiation of one parent often resulted in effects not seen with irradiation of both parents. This suggests that, unlike mammals, in certain circumstances maternal and paternal irradiation may be equally important. This study also showed that trout can induce a bystander effect 2 generations after irradiation, which further emphasises the importance of the bystander effect in aquatic radiobiology. Given the complex community structure in aquatic ecosystems, these results may have significant implications for environmental radiological protection.

  5. SU-E-T-628: Predicted Risk of Post-Irradiation Cerebral Necrosis in Pediatric Brain Cancer Patients: A Treatment Planning Comparison of Proton Vs. Photon Therapy

    SciTech Connect

    Freund, D; Zhang, R; Sanders, M; Newhauser, W

    2015-06-15

    Purpose: Post-irradiation cerebral necrosis (PICN) is a severe late effect that can Result from brain cancers treatment using radiation therapy. The purpose of this study was to compare the treatment plans and predicted risk of PICN after volumetric modulated arc therapy (VMAT) to the risk after passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT) in a cohort of pediatric patients. Methods: Thirteen pediatric patients with varying age and sex were selected for this study. A clinical treatment volume (CTV) was constructed for 8 glioma patients and 5 ependymoma patients. Prescribed dose was 54 Gy over 30 fractions to the planning volume. Dosimetric endpoints were compared between VMAT and proton plans. The normal tissue complication probability (NTCP) following VMAT and proton therapy planning was also calculated using PICN as the biological endpoint. Sensitivity tests were performed to determine if predicted risk of PICN was sensitive to positional errors, proton range errors and selection of risk models. Results: Both PSPT and IMPT plans resulted in a significant increase in the maximum dose and reduction in the total brain volume irradiated to low doses compared with the VMAT plans. The average ratios of NTCP between PSPT and VMAT were 0.56 and 0.38 for glioma and ependymoma patients respectively and the average ratios of NTCP between IMPT and VMAT were 0.67 and 0.68 for glioma and ependymoma plans respectively. Sensitivity test revealed that predicted ratios of risk were insensitive to range and positional errors but varied with risk model selection. Conclusion: Both PSPT and IMPT plans resulted in a decrease in the predictive risk of necrosis for the pediatric plans studied in this work. Sensitivity analysis upheld the qualitative findings of the risk models used in this study, however more accurate models that take into account dose and volume are needed.

  6. Post-Irradiation Bladder Syndrome After Radiotherapy of Malignant Neoplasm of Small Pelvis Organs: An Observational, Non-Interventional Clinical Study Assessing VESIcare®/Solifenacin Treatment Results.

    PubMed

    Jaszczyński, Janusz; Kojs, Zbigniew; Stelmach, Andrzej; Wohadło, Łukasz; Łuczyńska, Elzbieta; Heinze, Sylwia; Rys, Janusz; Jakubowicz, Jerzy; Chłosta, Piotr

    2016-07-30

    BACKGROUND Radiotherapy is explicitly indicated as one of the excluding factors in diagnosing overactive bladder syndrome (OAB). Nevertheless, symptoms of OAB such as urgent episodes, incontinence, pollakiuria, and nocturia, which are consequences of irradiation, led us to test the effectiveness of VESIcare®/Solifenacin in patients demonstrating these symptoms after radiation therapy of small pelvis organs due to malignant neoplasm. MATERIAL AND METHODS We conducted an observatory clinical study including 300 consecutive patients with symptoms of post-irradiation bladder; 271 of those patients completed the study. The observation time was 6 months and consisted of 3 consecutive visits taking place at 12-week intervals. We used VESIcare® at a dose of 5 mg a day. Every sixth patient was examined urodynamically at the beginning and at the end of the observation period, with an inflow speed of 50 ml/s. RESULTS We noticed improvement and decline in the average number of episodes a day in the following parameters: number of micturitions a day (-36%, P<0.01), nocturia (-50%, P<0.01), urgent episodes (-41%, P<0.03), and episodes of incontinence (-43%, P<0.01). The patients' quality of life improved. The average maximal cystometric volume increased by 34 ml (21%, p<0.01), average bladder volume of "first desire" increased by 42 ml (49%, P<0.01), and average detrusor muscle pressure at maximal cystometric volume diminished by 9 cmH2O (-36%, P<0.03). CONCLUSIONS The substance is well-tolerated. Solifenacin administered long-term to patients with symptoms of OAB after radiotherapy of a malignant neoplasm of the small pelvis organs has a daily impact in decreasing number of urgent episodes, incontinence, pollakiuria, and nocturia.

  7. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  8. Post-Irradiation Bladder Syndrome After Radiotherapy of Malignant Neoplasm of Small Pelvis Organs: An Observational, Non-Interventional Clinical Study Assessing VESIcare®/Solifenacin Treatment Results

    PubMed Central

    Jaszczyński, Janusz; Kojs, Zbigniew; Stelmach, Andrzej; Wohadło, Łukasz; Łuczyńska, Elżbieta; Heinze, Sylwia; Rys, Janusz; Jakubowicz, Jerzy; Chłosta, Piotr

    2016-01-01

    Background Radiotherapy is explicitly indicated as one of the excluding factors in diagnosing overactive bladder syndrome (OAB). Nevertheless, symptoms of OAB such as urgent episodes, incontinence, pollakiuria, and nocturia, which are consequences of irradiation, led us to test the effectiveness of VESIcare®/Solifenacin in patients demonstrating these symptoms after radiation therapy of small pelvis organs due to malignant neoplasm. Material/Methods We conducted an observatory clinical study including 300 consecutive patients with symptoms of post-irradiation bladder; 271 of those patients completed the study. The observation time was 6 months and consisted of 3 consecutive visits taking place at 12-week intervals. We used VESIcare® at a dose of 5 mg a day. Every sixth patient was examined urodynamically at the beginning and at the end of the observation period, with an inflow speed of 50 ml/s. Results We noticed improvement and decline in the average number of episodes a day in the following parameters: number of micturitions a day (−36%, P<0.01), nocturia (−50%, P<0.01), urgent episodes (−41%, P<0.03), and episodes of incontinence (−43%, P<0.01). The patients’ quality of life improved. The average maximal cystometric volume increased by 34 ml (21%, p<0.01), average bladder volume of “first desire” increased by 42 ml (49%, P<0.01), and average detrusor muscle pressure at maximal cystometric volume diminished by 9 cmH2O (−36%, P<0.03). Conclusions The substance is well-tolerated. Solifenacin administered long-term to patients with symptoms of OAB after radiotherapy of a malignant neoplasm of the small pelvis organs has a daily impact in decreasing number of urgent episodes, incontinence, pollakiuria, and nocturia. PMID:27474270

  9. Toward Improved Solar Irradiance Forecasts: Introduction of Post-Processing to Correct the Direct Normal Irradiance from the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Clarkson, Matthew

    2016-05-01

    Solar electricity production is highly dependent on atmospheric conditions. This study focuses on comparing model forecasts with observations for the period of May-December, 2011. The Weather Research and Forecasting model was run for two nested domains centered on Arizona in order to better capture the complex terrain driven dynamics of the region. The modeling performance from the simulation with the Global Forecast System model output as initial and boundary condition was better, with respect to both direct normal irradiance and global horizontal irradiance, than that with the North American Mesoscale model output. The observed aerosol optical depth is correlated with the water vapor, soil moisture and wind-blown dust and therefore, the aerosol optical depth is parameterized by the modeling outputs for these variables. The aerosol correction factor reduces the relative root mean square error from 12 to 6 %. In cases where dust was transported at high altitude, our algorithm did not correct the bias of direct normal irradiance.

  10. Thermal effects of transcranial near-infrared laser irradiation on rabbit cortex.

    PubMed

    Chen, Yongmei; De Taboada, Luis; O'Connor, Michael; Delapp, Scott; Zivin, Justin A

    2013-10-11

    Transcranial near-infrared laser therapy (TLT) improves stroke outcome in animal models. Adequate laser doses are necessary to exert therapeutic effects. However, applying higher laser energy may cause cortical tissue heating and exacerbate stroke injury. The objective of this study is to examine the thermal effect and safety of transcranial near-infrared laser therapy. Diode laser with a wavelength of 808 nm was used to deliver different power densities to the brain cortex of rabbits. Cortical temperature was monitored and measured using a thermal probe during the 2 min transcranial laser irradiation. Neuro-pathological changes were examined with histological staining 24 h after laser treatment. Transcranial laser irradiation for 2 min at cortical power densities of 22.2 and 55.6 mW/cm(2) with continuous wave (CW) did not increase cortical temperature in rabbits. With the same treatment regime, cortical power density at 111.1 mW/cm(2) increased brain temperature gradually by 0.5 °C over the 2 min exposure and returned to baseline values within 1-2 min post-irradiation. Separately, histological staining was evaluated after triple laser exposure of 22.2 mW/cm(2) CW and 111.1 mW/cm(2) pulse wave (PW) and showed normal neural cell morphology. The present study demonstrated that the TLT powers currently utilized in animal stroke studies do not cause cortical tissue heating and histopathological damage. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  12. Comparison of the effects of photon versus carbon ion irradiation when combined with chemotherapy in vitro.

    PubMed

    Schlaich, Fabian; Brons, Stephan; Haberer, Thomas; Debus, Jürgen; Combs, Stephanie E; Weber, Klaus-Josef

    2013-11-06

    Characterization of combination effects of chemotherapy drugs with carbon ions in comparison to photons in vitro. The human colon adenocarcinoma cell line WiDr was tested for combinations with camptothecin, cisplatin, gemcitabine and paclitaxel. In addition three other human tumour cell lines (A549: lung, LN-229: glioblastoma, PANC-1: pancreas) were tested for the combination with camptothecin. Cells were irradiated with photon doses of 2, 4, 6 and 8 Gy or carbon ion doses of 0.5, 1, 2 and 3 Gy. Cell survival was assessed using the clonogenic growth assay. Treatment dependent changes in cell cycle distribution (up to 12 hours post-treatment) were measured by FACS analysis after propidium-iodide staining. Apoptosis was monitored for up to 36 hours post-treatment by Nicoletti-assay (with qualitative verification using DAPI staining). All cell lines exhibited the well-known increase of killing efficacy per unit dose of carbon ion exposure, with relative biological efficiencies at 10% survival (RBE10) ranging from 2.3 to 3.7 for the different cell lines. In combination with chemotherapy additive toxicity was the prevailing effect. Only in combination with gemcitabine or cisplatin (WiDr) or camptothecin (all cell lines) the photon sensitivity was slightly enhanced, whereas purely independent toxicities were found with the carbon ion irradiation, in all cases. Radiation-induced cell cycle changes displayed the generally observed dose-dependent G2-arrest with little effect on S-phase fraction for all cell lines for photons and for carbon ions. Only paclitaxel showed a significant induction of apoptosis in WiDr cell line but independent of the used radiation quality. Combined effects of different chemotherapeutics with photons or with carbon ions do neither display qualitative nor substantial quantitative differences. Small radiosensitizing effects, when observed with photons are decreased with carbon ions. The data support the idea that a radiochemotherapy with common

  13. Effects produced by iodine irradiation on high resistivity silicon

    SciTech Connect

    Lazanu, S.; Slav, A.; Lepadatu, A.-M.; Stavarache, I.; Palade, C.; Iordache, G.; Ciurea, M. L.

    2012-12-10

    The effects of 5 Multiplication-Sign 10{sup 11} cm{sup -26+}I{sup 127} ions of 28 MeV kinetic energy on high resistivity (100) Si were studied. The profile of primary defects was simulated. The defects produced by irradiation which act as traps were investigated. Thermally stimulated current measurements without externally applied bias were used, and for this the traps were charged by illuminating samples with 1000, 800, and 400 nm wavelengths. The discharge currents were recorded and modeled, and therefore the parameters of the traps were determined. The presence of I ions, heavier than Si, stopped into the target was modeled as a temperature independent electric field.

  14. γ irradiation induced effects on the TCO thin films

    NASA Astrophysics Data System (ADS)

    Kabacelik, Ismail; Kutaruk, Hakan; Yaltkaya, Serafettin; Sahin, Ramazan

    2017-05-01

    We report on gamma irradiation induced changes both in the optical and electrical properties of the Transparent Conductive Oxide (TCO) thin films. We used Co-60 radioisotope as a natural source of γ in our experiments. Applied total irradiation doses to the prepared samples change from 1 to 4 kGy. The dose rate is kept finely constant at 200 Gy/min. Optical transmissions in VIS-NIR region of electromagnetic spectrum and electrical conductivity (I-V) measurements on irradiated samples are conducted with respect to the total dose. Results show that regardless of the irradiation dose, there is no change in the current flow through the contacts on the TCO thin films after the irradiation. On the other hand, based on the on-line measurements, the current increases with the gamma irradiation and a threshold irradiation is detected in the optical properties of irradiated samples. Also, thin films are seen to preserve their initial amorphous structures at such a low irradiation doses according to XRD measurements. We propose that these thin films can be used in gamma sensors for both optical and electrical applications.

  15. Effects of Electron Beam and Microwave Irradiation on Human Blood Proteins

    NASA Astrophysics Data System (ADS)

    Martin, Diana I.; Stan, Dana E.; Radu, Roxana R.; Cinca, Sabin A.; Margaritescu, Irina D.; Chirita, Doru I.; Craciun, Gabriela D.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.

    2007-04-01

    The effects of separated and combined accelerated electron beam (EB) of 6.23 MeV and microwave (MW) of 2.45GHz irradiation on proteins in samples of human serum, human plasma and human integral blood are presented. Also, it was studied the effect of separate and combined EB and MW irradiation on proteins irradiated in samples of human integral blood, without and in the presence of a synthetic compound solution (S.C.S.) which is expected to exhibit various biological actions, such as to diminish or to increase the irradiation effects.

  16. Effects of Electron Beam and Microwave Irradiation on Human Blood Proteins

    SciTech Connect

    Martin, Diana I.; Craciun, Gabriela D.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.; Stan, Dana E.; Radu, Roxana R.; Margaritescu, Irina D.; Chirita, Doru I.

    2007-04-23

    The effects of separated and combined accelerated electron beam (EB) of 6.23 MeV and microwave (MW) of 2.45GHz irradiation on proteins in samples of human serum, human plasma and human integral blood are presented. Also, it was studied the effect of separate and combined EB and MW irradiation on proteins irradiated in samples of human integral blood, without and in the presence of a synthetic compound solution (S.C.S.) which is expected to exhibit various biological actions, such as to diminish or to increase the irradiation effects.

  17. Information channel effects on women intention to purchase irradiated food in Korea

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Oh, Sang-Hee; Kim, Jae-Hun; Yoon, Yohan; Park, Seong-Cheol; Kim, Hak-Soo; Kim, Soon-Bok; Han, Sang-Bae; Lee, Ju-Woon

    2009-07-01

    Since the first irradiated food was approved and commercialized in 1987, most of Koreans still do not accept the irradiated food until now. It is reasoned that there are the ambiguous fear of nuclear technology and the confusion between irradiated food and radioactive-contaminated food. This investigation was carried out to examine the acknowledgement of irradiated food in Korean housewives and to study how to enhance the intention of purchasing the irradiated food. About 600 Korean housewives participated in the survey on the irradiated food in 2007, more than two-thirds of them were not aware of irradiated food. One hundred and fifty-four women who had known of irradiated food were subjected to an experiment for the source of information about irradiated food (e.g., lecture by an expert, video-watching and book-reading) in order to explore which type of information channel is the most effective in eliciting purchase intention. The result showed that the women group who had heard the lecture by an expert indicated the highest intention to purchase irradiated food, followed by the video-watching and the book-reading groups. In addition, the acceptance of the irradiated food had shown to lead the support for nuclear industry.

  18. The effects of annealing a 2-dimensional array of ion-irradiated Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cho, E. Y.; Kouperine, K.; Zhuo, Y.; Dynes, R. C.; Cybart, S. A.

    2016-09-01

    We have fabricated the two-dimensional arrays of superconducting quantum interference devices (SQUIDs) using YBa2Cu3O7-δ ion-irradiated Josephson junctions, and we have studied the effects of post-annealing the arrays at 100 ◦C in oxygen. The maximum voltage modulation, V B, in a magnetic field for DC biased arrays at 50 K is initially 1.2 mV, but increases to 3 mV after annealing. Furthermore, the temperature where the largest V B occurs increases from 45 K to 48.5 K after annealing. We present and simulate a model where annealing causes diffusion and recombination of the low-energy oxygen defects that narrows the barrier, resulting in an increase in the Josephson binding energy. We show that this process stabilizes after 40 minutes of annealing and leads to a significant improvement in the properties of the array.

  19. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    SciTech Connect

    Woods, D.H.; Hardy, K.A.; Cox, A.B.; Salmon, Y.L.; Yochmowitz, M.G.; Cordts, R.E. )

    1989-05-15

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  20. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    NASA Astrophysics Data System (ADS)

    Woods, D. H.; Hardy, K. A.; Cox, A. B.; Salmon, Y. L.; Yochmowitz, M. G.; Cordts, R. E.

    1989-05-01

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  1. Cellular immunological effects of laser irradiation and immunoadjuvant application

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Mohamed, Abdiwahab; Naylor, Mark F.; Bartels, Kenneth E.; Ritchey, Jerry W.; Liu, Hong; Nordquist, Robert E.

    2007-02-01

    Immune system is critical in the fight against cancer. Particular important is the responses through immune cells that regulate immunological functions. Certain cytokines enhance cancer immunity (such as IL12 and interferon gamma) and others interfere or impede cancer immunity (such as IL10). The clinical outcome can be linked to the balance of these cytokines, such as IL10 to IL12 ratio. Effective treatments often reduce the IL10:IL12 ratio, indicating higher levels of the cancer fighting IL12. To enhance immune responses, a combination of laser irradiation and concurrent use of immunostimulants has been applied for the treatment of tumors. In a recent study, an 805-nm laser in conjunction with indocyanine green (ICG) has been used to treat EMT6 mammary tumors in mice. An immunoadjuvant, glycated chitosan (GC), was intratumoral injected after the laser irradiation. Our preliminary results showed that tumor-bearing mice treated either with the immunoadjuvant alone or with the combination of laser and immunoadjuvant had lower IL10:IL12 ratios than animals that received no treatment. This may play an important in the treatment to decrease tumor size and to increase survival times of mice. Cellular activities after laser-ICG-GC treatment of DBMA-4 mammary tumors in rats also showed infiltration of immune cells to the treatment sites, indicating a possible induced immunity. The combination of laser treatment and immunotherapy has been used to treat late-stage melanoma patients; the responses, both treated primary tumors and the metastases, to the treatment have been promising. The histology of two patients, before and after treatment, is presented to show the effects of this novel treatment method.

  2. Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice.

    PubMed

    Dayger, Catherine; Villasana, Laura; Pfankuch, Timothy; Davis, Matthew; Raber, Jacob

    2011-03-24

    Female mice are more susceptible to radiation-induced cognitive changes than male mice. Previously, we showed that, in female mice, androgens antagonize age-related cognitive decline in aged wild-type mice and androgens and selective androgen receptor modulators (SARMs) antagonize cognitive changes induced by human apolipoprotein E4, a risk factor for developing age-related cognitive decline. In this study, the potential effects of the SARM ACP-105 were assessed in female mice that were either sham-irradiated or irradiated with ¹³⁷Cesium at a dose of 10Gy. Behavioral testing started 2 weeks following irradiation. Irradiation impaired sensorimotor function in vehicle-treated mice but not in ACP-105-treated mice. Irradiation impaired cued fear conditioning and ACP-105 enhanced fear conditioning in sham-irradiated and irradiated mice. When immunoreactivity for microtubule-associated protein 2 was assessed in the cortex of sham-irradiated mice, there was a brain area × ACP-105 interaction. While ACP-105 reduced MAP-2 immunoreactivity in the sensorimotor cortex, there was a trend towards increased MAP-2 immunoreactivity in the enthorhinal cortex. No effect on MAP-2 immunoreactivity was seen in the irradiated cortex or sham-irradiated or irradiated hippocampus. Thus, there are relatively early radiation-induced behavioral changes in female mice and reduced MAP-2 levels in the sensorimotor cortex following ACP-105 treatment might contribute to enhanced rotorod performance.

  3. Effect of gamma irradiation on the conversion of ginsenoside Rb1 to Rg3

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Kwon, Sun-Kyu; Sung, Nak-Yun; Jung, Pil-Mun; Choi, Jong-il; Kim, Jae-Kyung; Sharma, Arun K.; Lee, Ju-Woon

    2012-08-01

    Ginsenosides, the most important secondary metabolites in ginseng, have various biological activities. Many studies have focused on the conversion of one of the major ginsenosides, Rb1, to the more active minor ginsenoside, Rg3. This study was carried out to investigate the effect of gamma irradiation on the conversion of Rb1 to Rg3. Rb1 solutions were gamma-irradiated at doses of 10 and 30 kGy and analyzed by high performance liquid chromatography (HPLC). HPLC chromatograms showed a decreased content of Rb1 with increasing irradiation dose, but the content of Rg3 was increased. The highest content of Rg3 was present in the 30 kGy-irradiated Rb1 sample. The cytotoxic effects tested in cancer cell lines were increased in the gamma-irradiated group. Therefore, these results suggest that gamma irradiation can be an effective method for the conversion of the ginsenoside Rb1 to Rg3.

  4. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches.

    PubMed

    Kong, Xiangli; Zhou, Xin; Sui, Zhongquan; Bao, Jinsong

    2016-10-01

    Effects of gamma irradiation on the physicochemical and crystalline properties of the native and acetylated wheat starches were investigated. Peak, hot paste, cool paste and setback viscosities of both native and acetylated wheat starches decreased continuously and significantly with the increase of the irradiation dose, whereas breakdown viscosity increased after irradiation. However, gamma irradiation only exerted slight effects on thermal and retrogradation properties of both native and acetylated wheat starches. X-ray diffraction and fourier transform infrared spectroscopy revealed that acetylation modification had considerable effects on the molecular structure of wheat starch, and the crystallinity of both untreated and acetylated starches increased slightly with the increase of irradiation dose. However, the V-type crystallinity of amylose-lipid complex was not affected by gamma irradiation treatments with doses up to 9kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Simultaneous irradiation with different wavelengths of ultraviolet light has synergistic bactericidal effect on Vibrio parahaemolyticus.

    PubMed

    Nakahashi, Mutsumi; Mawatari, Kazuaki; Hirata, Akiko; Maetani, Miki; Shimohata, Takaaki; Uebanso, Takashi; Hamada, Yasuhiro; Akutagawa, Masatake; Kinouchi, Yousuke; Takahashi, Akira

    2014-01-01

    Ultraviolet (UV) irradiation is an increasingly used method of water disinfection. UV rays can be classified by wavelength into UVA (320-400 nm), UVB (280-320 nm), and UVC (<280 nm). We previously developed UVA sterilization equipment with a UVA light-emitting diode (LED). The aim of this study was to establish a new water disinfection procedure using the combined irradiation of the UVA-LED and another UV wavelength. An oxidative DNA product, 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased after irradiation by UVA-LED alone, and the level of cyclobutane pyrimidine dimers (CPDs) was increased by UVC alone in Vibrio parahaemolyticus. Although sequential irradiation of UVA-LED and UVC-induced additional bactericidal effects, simultaneous irradiation with UVA-LED and UVC-induced bactericidal synergistic effects. The 8-OHdG and CPDs production showed no differences between sequential and simultaneous irradiation. Interestingly, the recovery of CPDs was delayed by simultaneous irradiation. The synergistic effect was absent in SOS response-deficient mutants, such as the recA and lexA strains. Because recA- and lexA-mediated SOS responses have crucial roles in a DNA repair pathway, the synergistic bactericidal effect produced by the simultaneous irradiation could depend on the suppression of the CPDs repair. The simultaneous irradiation of UVA-LED and UVC is a candidate new procedure for effective water disinfection.

  6. Radioprotective effect of Lyophyllum decastes and the effect on immunological functions in irradiated mice.

    PubMed

    Nakamura, Takashi; Itokawa, Yuka; Tajima, Masayuki; Ukawa, Yuuichi; Cho, Kwang-Ho; Choi, Jung-Sook; Ishid, Torao; Gu, Yeunhwa

    2007-03-01

    In this study, to explore the radiation protection effects of Lyophyllum Decastes Sing (LDS), a hot distilled-water extract of LDS was orally administered at a dosage of 250mg/kg every other day for a period of 2 weeks in irradiated mice. An automatic blood cell counter was used to measure white blood cells (lymphocytes, monocyte, and granulocytes) one day before X-ray irradiation, and 3 hours, 12 hours, 24 hours, 3 days, 7 days, 15 days and 30 days after irradiation. The Dunnett test was used to examine statistical significance of differences. The peripheral blood cell counts in the Lyophyllum-administered non-irradiation group revealed an increase in the numbers of leukocytes, lymphocytes and monocytes. For 2 Gy whole body radiation, a significant statistical difference was found between the X-ray group and the Lyophyllum plus X-ray group in the numbers of leukocytes, lymphocytes and monocytes. The results suggest that Lyophyllum restrains blood cell-count falling after irradiation, which is probably mediated at least in part by hemopoietic function, and NK and LAK activities seems to play a role in preventing secondary infections associated with irradiation.

  7. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites.

    PubMed

    Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick

    2015-02-01

    To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when

  8. Effects of thymus irradiation on the immune competence of T cells after total-lymphoid irradiation

    SciTech Connect

    Palathumpat, V.C.; Vandeputte, M.M.; Waer, M. )

    1990-07-01

    Spleen cells from mice receiving TLI, with or without thymus shielding, were investigated for in vitro and in vivo defects. At 4-6 weeks after irradiation spleen cells of both groups showed a normal number of Thy1 (T cells), L3T4 (CD4 positive T cells) cells, and an absence of natural suppressor cells. Splenocytes of the nonthymic shielded TLI group were not able to mount either a normal in vitro response (in MLR or PHA) or an in vivo graft-versus-host-disease reaction when injected into lethally irradiated adult allogeneic recipients or into neonatal F1 hybrids. This was in contrast to the normal immune capacity of spleen cells from the thymus shielded group that gave normal MLR and PHA tests in vitro and provoked GVHD in vivo. Thymuses recovered from mice receiving TLI with or without thymic shielding were however equally efficient in restoring the immune capacity after transplantation into neonatally thymectomized mice as measured by the PHA assay. Thymic irradiation is therefore necessary but not sufficient for creating long-lasting immune defects after TLI.

  9. Effects of Atmospheric Air Plasma Irradiation on pH of Water

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Koga, Kazunori; Kitazaki, Satoshi; Uchida, Giichirou; Hayashi, Nobuya; Shiratani, Masaharu

    We have studied the effects of atmospheric air plasma irradiation to water using a scalable dielectric barrier discharge device. Measurements of the pH of water treated by the plasmas have shown the pH decreases due to peroxide molecules generated by plasma irradiation and depends on material of water container. We also found this plasma treated water has little effect on the growth enhancement on Radish sprouts compare with plasma irradiation on dry seeds and the plasma irradiation can affect them through the water buffer of 0.2 mm in thickness.

  10. He ion irradiation effects on multiwalled carbon nanotubes structure

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, Nikolay G.; Makunin, Alexey V.; Shemukhin, Andrey A.; Motaweh, Hussien A.

    2017-03-01

    Samples of multi-walled carbon nanotubes (MWNTs) were irradiated with 80 keV He ions. Scanning electron microscopy (SEM) inspection showed that the average outer diameters of the tube decreased as a result of ion irradiation. The samples were also characterized using Raman spectrometry by analysis of the intensity of main bands in the spectra of virgin and irradiated MWNT samples. Modifications of the disorder mode (D-band) and the tangential mode (G-band) were studied as a function of irradiation fluences. Raman spectra showed that as the fluence increases, the MWNTs first show disorder due to the produced defects, and then amorphization under still higher fluence of ion irradiation. Thermal and athermal mechanisms of the radiation induced MWNTs modifications are discussed. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  11. Effect of Low-Dose Irradiation on Pregnant Mouse Hemopoiesis

    DTIC Science & Technology

    1980-07-10

    simiLhr for the nonirradiated 200 + ~ 180 *-4 9 IRRADIATED 180 16 ---.U)" IRRADIATED Z 160 --DAY 10.5 ’U~14O 2LU -- 140- - 21 120- 24? 100 -20 z 80 16...3 *%~ 60.~ "" ,,,," 40 V5 1 20 z 0 0 0 • -U 9 IRRADIATED 12 ’-" ’ PIRRADIATED M , DAY 10.S 20 10 4 - -0- 0 0.5 1.0 TOTAL BODY IRRADIATION (Gy) Fit S... plastia dot cultures taininag 50 000 bone marMrw or pe’mse Plier 0. 1 at. Irradiation and Haemopoiesis in Pregnancy 133 in 12 6 0. 8 4 M -2 m 6 0 IO

  12. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    SciTech Connect

    Shih, Chunghao; Katoh, Yutai; Snead, Lance Lewis; Steinbeck, John

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  13. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  14. Effects of preconceptional gamma irradiation on the development of rat brain.

    PubMed

    Sanová, Stefánia; Bálentová, Sona; Slovinská, Lucia; Misúrová, Eva

    2005-01-01

    We investigated the influence of irradiation of rat males with sublethal dose (3 Gy) of gamma radiation 25 or 80 days before mating with control females on brain development in F1 generation progeny in prenatal and postnatal period. We found out the decrease in mitotic activity and increase in occurrence of chromosomal aberrations (chromosomal bridges) in embryos and brain (hemispheres and little brain) of youngs. Effects transferred to progeny from irradiated spermatids (by irradiation of males of F0 generation 25 days before fertilization) were more marked as effects transferred from irradiated spermatogonia (by irradiation 80 days before fertilization). During embryonic development and early postnatal period, the changes of mitotic index (MI) were gradually less expressive. The incidence of cells with unrepaired DNA damage (chromosomal bridges), however, was high until the end of experiment. These findings we consider as a manifestation of increased genome instability induced in the progeny by paternal irradiation.

  15. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    NASA Astrophysics Data System (ADS)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-08-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (-54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  16. Effect of electron beam irradiation sterilization on the biomedical poly (octene-co-ethylene)/polypropylene films

    NASA Astrophysics Data System (ADS)

    Luan, Shifang; Shi, Hengchong; Yao, Zhanhai; Wang, Jianwei; Song, Yongxian; Yin, Jinghua

    2010-05-01

    The effect of electron beam irradiation with the dose ranging from 15 to 40 kGy on poly (octene-co-ethylene) (POE)/polypropylene (PP) films was investigated. Wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), yellowness index testing and mechanical performance measurement were applied to characterize the films. It demonstrated that crystalline structure exhibited little change, and degree of crystallinity slightly change under the irradiation treatment. Irradiation brought about oxidation of the films, forming hydroxyl groups of the peroxides and carbonyl groups. Tensile properties become worse as irradiation dose increased. Electron beam irradiation with the dose of 15-40 kGy has little effect on crystalline performance and a little influence for the POE/PP films, indicating a good irradiation resistance.

  17. Effect of phytosanitary irradiation on the postharvest quality of Seedless Kishu mandarins (Citrus kinokuni mukakukishu).

    PubMed

    Ornelas-Paz, José de Jesús; Meza, María Belén; Obenland, David; Rodríguez Friscia, Karina; Jain, Akanksha; Thornton, Shantaè; Prakash, Anuradha

    2017-09-01

    Transnational trade of 'Seedless Kishu' mandarins (Citrus kinokuni mukakukishu) would require them to be subjected to a suitable phytosanitary treatment. Irradiation is used as an effective treatment for many fruit, but the effect on quality of kishu mandarins is unknown. 'Seedless Kishu' mandarins were treated with gamma irradiation (150, 400, and 1000Gy) and stored for three weeks at 6°C and then for one week at 20°C. Irradiation at 400 and 1000Gy promoted browning of the calyx end and fungal infection. Irradiation caused immediate reductions in pulp firmness, vitamin E, individual sugars and carotenoids but increased the content of organic acids, except ascorbic acid, and phenolic compounds. The volatile profile of tested fruit was also differentially altered by irradiation. Most of these initial changes were dose dependent. 'Seedless Kishu' mandarins are significantly sensitive to irradiation and are not suitable for treatment at the studied doses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  19. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Li, Tiancui; Bi, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-10-01

    Effects of laser irradiation on photosystem II (PS II) photochemical efficiencies, growth, and other physiological responses of Microcystis aeruginosa were investigated in this study. Results indicate that laser irradiation (wavelengths 405, 450, 532, and 650 nm) could effectively inhibit maximal PS II quantum yield (Fv/Fm) and maximal electron transport rates (ETRmax) of M. aeruginosa, while saturating light levels (Ek) of M. aeruginosa did not change significantly. Among the four tested wavelengths, 650 nm laser (red light) showed the highest inhibitory efficiency. Following 650 nm laser irradiation, the growth of M. aeruginosa was significantly suppressed, and contents of cellular photosynthetic pigments (chlorophyll a, carotenoid, phycocyanin, and allophycocyanin) decreased as irradiation dose increased. Meanwhile, laser irradiation enhanced the enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) in M. aeruginosa cells. Lower irradiation doses did not change the intracellular microcystin contents, but higher dose irradiation (>1284 J cm(-2)) caused the release of microcystin into the culture medium. Transmission electron microscope examination showed that the ultrastructure of M. aeruginosa cells was destructed progressively following laser irradiation. Effects of laser irradiation on M. aeruginosa may be a combination of photochemical, electromagnetic, and thermal effects.

  20. Controversial effects of low level laser irradiation on the proliferation of human osteoblasts

    NASA Astrophysics Data System (ADS)

    Bölükbaşı Ateş, Gamze; Ak, Ayşe.; Garipcan, Bora; Yüksel, Šahru; Gülsoy, Murat

    2015-03-01

    Low level laser irradiation (LLLI) is the application of red or near infrared lasers irradiating between 600-1100 nm with an output power of 1-500 mW. Several researches indicate that LLLI modulates cellular mechanisms and leads to enhance proliferation. Although the biological mechanisms are not fully understood, it is known that the effects depend on several parameters such as wavelength, irradiation duration, energy level, beam type and energy density. The aim of this study is to investigate the effect of low level laser irradiation at varying energy densities with two different wavelengths (635 nm and 809 nm) on the proliferation of human osteoblasts in vitro. The cells are seeded on 96 well plates (105cells/well) and after 24 h incubation cells are irradiated at energy densities 0.5 J/cm2, 1 J/cm2 and 2 J/cm2. Cell viability test is applied after 24 h, 48 h and 72 h in order to examine effects of laser irradiation on osteoblast proliferation. 635 nm light irradiation did not appear to have significant effect on the proliferation of osteoblasts as compared to the control. On the other hand, 809 nm laser irradiation caused significant (p ≤ 0.01) biostimulation effect on the osteoblast cell cultures at 48 h and 72 h. In conclusion, irradiation of both wavelengths did not cause any cytotoxic effects. 809 nm light irradiation can promote proliferation of human osteoblasts in vitro. On the other hand, 635 nm light irradiation has no positive effect on osteoblast proliferation. As a result, LLLI applied using different wavelengths on the same cell type may lead to different biological effects.

  1. Changes to Tensile Strength and Electromagnetic Shielding Effectiveness in Neutron Irradiated Carbon Nanocomposites

    DTIC Science & Technology

    2013-03-01

    MCNP) Transport Code was used to simulate the number of neutron interactions in a carbon sample measuring 1 cm × 1 cm × 0.003 cm, where 0.003 cm...CHANGES TO TENSILE STRENGTH AND ELECTROMAGNETIC SHIELDING EFFECTIVENESS IN NEUTRON IRRADIATED...ELECTROMAGNETIC SHIELDING EFFECTIVENESS IN NEUTRON IRRADIATED CARBON NANOCOMPOSITES THESIS Presented to the Faculty Department of Engineering

  2. Effect of gamma irradiation in presence of ascorbic acid on microbial composition and TBARS concentration of ground beef coated with an edible active coating

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Ouattara, B.; Saucier, L.; Giroux, M.; Smoragiewicz, W.

    2004-09-01

    The present study was conducted to evaluate the combined effect of gamma irradiation in presence of ascorbic acid on the microbiological characteristics and thiobarbituric acid-reactive substances (TBARS) concentration of ground beef coated with an edible coating, crosslinked by gamma irradiation. The medium fat ground beef patties (23% fat ) were divided into two separate treatment groups: (i) control (ground beef without additive), (ii) ground beef with 0.5% (w/w) ascorbic acid. Meat samples were irradiated at doses of 0, 1, 2, and 3 kGy and stored at 4±2°C. The content of TBARS was evaluated. After 7 days of storage, Enterobacteriaceae, presumptive Staphylococcus aureus, presumptive Pseudomonas spp., Brochothrix thermosphacta and lactic acid bacteria were enumerated. Results showed that lactic acid bacteria and Br. thermosphacta were more resistant to irradiation than Enterobacteriaceae and Pseudomonas. The content in TBARS was stabilized during post-irradiation storage for samples containing ascorbic acid. Shelf life extension periods estimated on the basis of a limit level of 6 log CFU/g for APCs were 4, 7, and 10 days for samples irradiated at 1, 2, and 3 kGy, respectively. However, the incorporation of ascorbic acid in ground beef did not improve significantly ( p>0.05) the inhibitory effect of gamma irradiation.

  3. EFFECT OF RELINING ON FIBER POST RETENTION TO ROOT CANAL

    PubMed Central

    Faria-E-Silva, André Luís; Pedrosa, Celso de Freitas; Menezes, Murilo de Sousa; da Silveira, Daniele Machado; Martins, Luís Roberto Marcondes

    2009-01-01

    One of the clinically relevant problems dentists face when restoring endodontically treated teeth is the mismatch between fiber post and post space diameters, which results in an excessively thick resin cement layer. Fiber post relining appears as a solution for this problem. Objectives: The aim of this study was to evaluate the effect of fiber post relining with composite resin on push-out bond strength. Material and Methods: Twenty bovine incisors were selected to assess post retention. The crowns were removed below the cementoenamel junction and the root canals were treated endodontically and flared with diamond burs. The roots were allocated into two groups (n=10): G1: fiber posts without relining and G2: fiber posts relined with composite resin. The posts were cemented with a dual-cured resin cement and the specimens were sectioned transversally. Three 1.5-mm thick slabs were obtained per root and identified as cervical, medium and apical thirds. The push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. The failure mode of fractured specimens was analyzed under scanning electron microscopy. Data were analyzed by split-plot ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Results: Relined fiber posts presented higher retention values than non-relined post in all thirds. No statistically significant differences (p>0.05) were found among thirds for relined posts. All failures occurred at the interface between resin cement and root dentin. Conclusions: Relining with composite resin seems to be an effective method to improve the retention of fiber posts to flared root canals. PMID:20027434

  4. Effect of relining on fiber post retention to root canal.

    PubMed

    Faria-e-Silva, André Luís; Pedrosa-Filho, Celso de Freitas; Menezes, Murilo de Sousa; Silveira, Daniele Machado da; Martins, Luís Roberto Marcondes

    2009-01-01

    One of the clinically relevant problems dentists face when restoring endodontically treated teeth is the mismatch between fiber post and post space diameters, which results in an excessively thick resin cement layer. Fiber post relining appears as a solution for this problem. The aim of this study was to evaluate the effect of fiber post relining with composite resin on push-out bond strength. Twenty bovine incisors were selected to assess post retention. The crowns were removed below the cementoenamel junction and the root canals were treated endodontically and flared with diamond burs. The roots were allocated into two groups (n=10): G1: fiber posts without relining and G2: fiber posts relined with composite resin. The posts were cemented with a dual-cured resin cement and the specimens were sectioned transversally. Three 1.5-mm thick slabs were obtained per root and identified as cervical, medium and apical thirds. The push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. The failure mode of fractured specimens was analyzed under scanning electron microscopy. Data were analyzed by split-plot ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Relined fiber posts presented higher retention values than non-relined post in all thirds. No statistically significant differences (p>0.05) were found among thirds for relined posts. All failures occurred at the interface between resin cement and root dentin. Relining with composite resin seems to be an effective method to improve the retention of fiber posts to flared root canals.

  5. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    SciTech Connect

    Teysseyre, Sebastien Paul

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  6. Electron irradiation effect on bubble formation and growth in a sodium borosilicate glass

    SciTech Connect

    Chen, X.; Birtcher, R. C.; Donnelly, S. E.

    2000-02-08

    In this study, the authors studied simultaneous and intermittent electron irradiation effects on bubble growth in a simple sodium borosilicate glass during Xe ion implantation at 200 C. Simultaneous electron irradiation increases the average bubble size in the glass. This enhanced diffusion is also shown by the migration of Xe from bubbles into the matrix when the sample is irradiated by an electron beam after the Xe implantation.

  7. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Son, Jun-Ho; Yook, Hong-Sun; Jo, Cheorun; Kim, Dong-Ho

    2002-06-01

    Effects of gamma irradiation on the physiological activity of Korean soybean fermented foods were investigated. Chungkookjang, the whole cooked soybean product and Doenjang, soybean paste were purchased and irradiated at 5, 10 and 20 kGy of absorbed doses. The physiological activity was evaluated by angiotensin converting enzyme inhibition, xanthine oxidase inhibition, tyrosinase inhibition and radical scavenging ability and results indicated that at 10 kGy or below did not show any significant change on physiological activities by irradiation.

  8. High total dose proton irradiation effects on silicon NPN rf power transistors

    NASA Astrophysics Data System (ADS)

    Bharathi, M. N.; Praveen, K. C.; Pushpa, N.; Prakash, A. P. Gnana

    2014-04-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  9. High total dose proton irradiation effects on silicon NPN rf power transistors

    SciTech Connect

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  10. Effects of gamma irradiation on the yields of volatile extracts of Angelica gigas Nakai

    NASA Astrophysics Data System (ADS)

    Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kwon, Joog-Ho; Kim, Kyong-Su

    2007-11-01

    The study was carried out to determine the effects of gamma irradiation on the volatile flavor components including essential oils, of Angelica gigas Nakai. The volatile organic compounds from non- and irradiated A. gigas Nakai at doses of 1, 3, 5, 10 and 20 kGy were extracted by a simultaneous steam distillation and extraction (SDE) method and identified by GC/MS analysis. A total of 116 compounds were identified and quantified from non- and irradiated A. gigas Nakai. The major volatile compounds were identified 2,4,6-trimethyl heptane, α-pinene, camphene, α-limonene, β-eudesmol, α-murrolene and sphatulenol. Among these compounds, the amount of essential oils in non-irradiated sample were 77.13%, and the irradiated samples at doses of 1, 3, 5, 10 and 20 kGy were 84.98%, 83.70%, 83.94%, 82.84% and 82.58%, respectively. Oxygenated terpenes such as β-eudesmol, α-eudesmol, and verbenone were increased after irradiation but did not correlate with the irradiation dose. The yields of active substances such as essential oil were increased after irradiation; however, the yields of essential oils and the irradiation dose were not correlated. Thus, the profile of composition volatiles of A. gigas Nakai did not change with irradiation.

  11. Effects of gamma irradiation on chemical, microbial quality and shelf life of shrimp

    NASA Astrophysics Data System (ADS)

    Hocaoğlu, Aslı; Sükrü Demirci, Ahmet; Gümüs, Tuncay; Demirci, Mehmet

    2012-12-01

    In the present study the combined effect of gamma irradiation (1, 3 and 5 kGy) and storage at two temperatures: refrigeration (+4 °C) and frozen (-18 °C), on the shelf-life extension of fresh shrimp meat was investigated. The study was based on microbiological and physicochemical changes occuring in the shrimp samples. Total volatile base nitrogen values and trimethylamine values for irradiated shrimp samples were significantly lower than non-irradiated samples at both storage temperatures, and the rate of decrease was more pronounced in samples irradiated at the higher dose (p<0.05). Thiobarbituric acid values for irradiated shrimp samples were significantly higher than non-irradiated samples at both storage temperatures (p<0.05). pH values of shrimp samples were affected significantly by both irradiating dose and storage temperatures (p<0.05). Microbial counts for non-irradiated shrimp samples were higher than the respective irradiated samples at both storage temperatures (p<0.05). The results revealed that irradiation at high dose (5 kGy) might enhance lipid oxidation, although the growth of microorganisms and protein oxidation was inhibited.

  12. X-ray irradiation effects in top contact, pentacene based field effect transistors for space related applications

    SciTech Connect

    Devine, R.A.B.; Ling, M.-M.; Mallik, Abhijit Basu; Roberts, Mark; Bao, Zhenan

    2006-04-10

    Preliminary studies of the effect of x-ray irradiation, typically used to simulate radiation effects in space, on top contact, pentacene based field effect transistors have been carried out. Threshold voltage shifts in irradiated devices are consistent with positive charge trapping in the gate dielectric and a rebound effect is observed, independent of the sign of applied electric field during irradiation. Carrier mobility variations in positive electric field biased/irradiated devices are interpreted in terms of the effects of interface-state-like defects.

  13. Effect of gamma-ray irradiation on the unloaded animal model

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon

    During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.

  14. Effect of irradiation on the quality of turkey ham during storage.

    PubMed

    Zhu, M J; Lee, E J; Mendonca, A; Ahn, D U

    2004-01-01

    Effect of electron-beam irradiation on the quality of ready-to-eat (RTE) turkey ham was studied. Turkey hams were purchased from local stores and sliced into 0.5 cm-thick pieces and vacuum packaged. The ham samples were randomly separated into three groups and irradiated at 0, 1, or 2 kGy, and stored at 4 °C for up to 14 days. Volatiles, color, TBARS values and sensory characteristics were determined to compare the effect of irradiation and storage on the quality of RTE turkey ham. Irradiation had little effects on color and TBARS values of RTE turkey hams. Sensory analysis indicated that sulfury odor increased as irradiation dose increased, and the contents of sulfur compounds in irradiated RTE turkey hams were higher (P <0.05) than those in nonirradiated samples. Irradiation increased (P <0.05) the production of acetaldehyde, which could be related to a metal-like flavor in irradiated hams. However, overall quality changes in RTE turkey hams by irradiation up to 2 kGy were minor.

  15. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  16. Irradiation of Argentine (U,Pu)O 2 MOX fuels. Post-irradiation results and experimental analysis with the BACO code

    NASA Astrophysics Data System (ADS)

    Marino, Armando Carlos; Pérez, Edmundo; Adelfang, Pablo

    1996-04-01

    The irradiation of the first Argentine prototypes of pressurized heavy water reactor (PHWR) (U,Pu)O 2 MOX fuels began in 1986. These experiments were carried out in the High Flux Reactor (HFR)-Petten, Holland. The rods were prepared and controlled in the CNEA's α Facility. The postirradiation examinations were performed in the Kernforschungszentrum, Karlsruhe, Germany and in the Joint Research Center (JRC), Petten. The first rod has been used for destructive pre-irradiation analysis. The second one as a pathfinder to adjust systems in the HFR. Two additional rods including iodine doped pellets were intended to simulate 15 000 MWd/T(M) burnup. The remaining two rods were irradiated until 15 000 MWd/T(M). One of them underwent a final ramp with the aim of verifying fabrication processes and studying the behaviour under power transients. BACO (BArra COmbustible) code was used to define the power histories and to analyse the experiments. This paper presents a description of the different experiments and a comparison between the results of the postirradiation examinations and the BACO outputs.

  17. Effect of crossed beams irradiation on parametric instabilities

    SciTech Connect

    Labaune, C., Ecole Polytechnique, France

    1998-04-27

    Modification of the growth of scattering processes in the case of multiple beam irradiation compared to single beam irradiation has been investigated in a preformed plasma using Thomson scattrering of a short wavelength probe beam, and spectral and temporal analysis of reflected and transmitted light. First observations of the reduction of the amplitude of ion acoustic waves associated with stimulated Brillouin scattering, amplification of the amplitude of electron plasma waves associated with stimulated Raman scattering, and transfer of energy between crqssing beams with same frequency in a flowing plasma under crossed beam irradiation are reported.

  18. Effect of electron beam irradiation on PMMA films

    SciTech Connect

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.; Verma, Suveer; Upadhyay, Anuj; Sinha, A. K.; Ganguli, Tapas; Lodha, G. S.; Deb, S. K.

    2012-06-05

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  19. Nanometric size effects on irradiation of tin oxide powder

    NASA Astrophysics Data System (ADS)

    Berthelot, A.; Hémon, S.; Gourbilleau, F.; Dufour, C.; Dooryhée, E.; Paumier, E.

    1998-12-01

    A nanometric powder of tin oxide (SnO2) has been irradiated with lead ions. The same grains have been observed by Transmission Electron Microscopy (TEM) before and after irradiation at a fluence of 5×1012 Pb cm-2. The shape of largest grains strongly changes while the smallest ones disappear. This phenomenon has been explained by using the thermal spike model. It appears that the irradiation induces an increase of the internal pressure in the grains leading to their explosion. In the smallest grains, the calculated maximal temperatures exceed the boiling point so that these grains disappear.

  20. Effects of γ-irradiation on phenolics content, antioxidant activity and physicochemical properties of whole grainrice

    NASA Astrophysics Data System (ADS)

    Shao, Yafang; Tang, Fufu; Xu, Feifei; Wang, Yuefei; Bao, Jinsong

    2013-04-01

    Three rice genotypes with different color were gamma irradiated at a dose of 2, 4, 6, 8and 10 kGy. The aim of this study was to investigate the effect of gamma irradiation on the phenolics content and the antioxidant activity, as well as physicochemical properties of whole grain rice. The bound phenolics content in all the genotypes were significantly increased with the increase of dose of irradiation. Gamma irradiation at high dose significantly increased the free, bound and total antioxidant activities of three rice genotypes except for the free antioxidant activities of red rice. Though the color parameters were slightly changed, these changes could not be visibly identified. Rapid visco-analyzer (RVA) viscosities and gel hardness decreased continuously with the increase of the irradiation doses. It is suggested that gamma irradiation enhanced the antioxidant potential and eating quality of whole grainrice.

  1. Influence of electron beam and ultraviolet irradiations on graphene field effect transistors

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Siddique, Salma; Anwar, Nadia

    2017-10-01

    Electrical transport properties of grap