75 FR 81242 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of... personnel, with a special focus on the effects of traumatic brain injury (TBI) and Post-traumatic Stress... BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG-TERM QUALITY OF LIFE OUTCOMES IN INJURED TRI...
Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar
2017-08-22
The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.
78 FR 63452 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
...). SUPPLEMENTARY INFORMATION: Title; Associated Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress...-service U.S. military personnel, with a special focus on the effects of traumatic brain injury (TBI) and...) to carry out the research study ``TRAUMATIC BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG...
77 FR 25708 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of Life... effects of traumatic brain injury (TBI) and Post-traumatic Stress Disorder (PTSD). Information collected...
2009-01-01
A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822
2015-10-01
Award Number: W81XWH-10-1-1021 TITLE: Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury...traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...health, and quality of life of our soldiers. This project addresses multiple FY09 TBI/PH topic areas by validating an evidence-based, mind -body approach
Combat-related headache and traumatic brain injury.
Waung, Maggie W; Abrams, Gary M
2012-12-01
Post-traumatic headache is a commonly described complication of traumatic brain injury. Recent studies highlight differences between headache features of combat veterans who suffered traumatic brain injury compared to civilians. Not surprisingly, there is a higher rate of associated PTSD and sleep disturbances among veterans. Factors of lower socioeconomic status, rank, and multiple head injuries appear to have a similar effect on post-traumatic headache in combat-related traumatic brain injury. Areas of discordance in the literature include the effect of prolonged loss of consciousness and the prevalence of specific headache phenotypes following head trauma. To date, there have been no randomized trials of treatment for post-traumatic headache. This may be related to the variability of headache features and uncertainty of pathophysiologic mechanisms. Given this lack of data, many practitioners follow treatment guidelines for primary headaches. Additionally, because of mounting data linking PTSD to post-traumatic headache in combat veterans, it may be crucial to choose multimodal agents and take a multidisciplinary approach to combat-related headache.
Acute post-traumatic stress symptoms and age predict outcome in military blast concussion.
Mac Donald, Christine L; Adam, Octavian R; Johnson, Ann M; Nelson, Elliot C; Werner, Nicole J; Rivet, Dennis J; Brody, David L
2015-05-01
High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper
2013-09-01
To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.
Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury
Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken
2014-01-01
Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560
Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.
Nelson, David V; Esty, Mary Lee
2015-10-01
Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
2015-10-01
behaviors and anxieties among post- deployed SMs with and without traumatic brain injury (TBI), post-traumatic stress syndrome (PTSD) or TBI with...post- traumatic stress syndrome (TBI/PTSD). The goal was to compare SMs who were post-deployment to SMs who had not served in OEF/OIF/OND, however all...in situations when SM would typically drive (p=.02) with TBI/PTSD reporting this more common than TBI and 0Dx. • Move to middle of road or onto
Ruet, Alexis; Jourdan, Claire; Bayen, Eléonore; Darnoux, Emmanuelle; Sahridj, Dalila; Ghout, Idir; Azerad, Sylvie; Pradat Diehl, Pascale; Aegerter, Philippe; Charanton, James; Vallat Azouvi, Claire; Azouvi, Philippe
2017-05-18
To describe employment outcome four years after a severe traumatic brain injury by the assessment of individual patients' preinjury sociodemographic data, injury-related and postinjury factors. A prospective, multicenter inception cohort of 133 adult patients in the Paris area (France) who had received a severe traumatic brain injury were followed up postinjury at one and four years. Sociodemographic data, factors related to injury severity and one-year functional and cognitive outcomes were prospectively collected. The main outcome measure was employment status. Potential predictors of employment status were assessed by univariate and multivariate analysis. At the four-year follow-up, 38% of patients were in paid employment. The following factors were independent predictors of unemployment: being unemployed or studying before traumatic brain injury, traumatic brain injury severity (i.e., a lower Glasgow Coma Scale score upon admission and a longer stay in intensive care) and a lower one-year Glasgow Outcome Scale-Extended score. This study confirmed the low rate of long-term employment amongst patients after a severe traumatic brain injury. The results illustrated the multiple determinants of employment outcome and suggested that students who had received a traumatic brain injury were particularly likely to be unemployed, thus we propose that they may require specific support to help them find work. Implications for rehabilitation Traumatic brain injury is a leading cause of persistent disablity and can associate cognitive, emotional, physical and sensory impairments, which often result in quality-of-life reduction and job loss. Predictors of post-traumatic brain injury unemployment and job loss remains unclear in the particular population of severe traumatic brain injury patients. The present study highlights the post-traumatic brain injury student population require a close follow-up and vocational rehabilitation. The study suggests that return to work post-severe traumatic brain injury is frequently unstable and workers often experience difficulties that caregivers have to consider.
ERIC Educational Resources Information Center
Sinski, Jennifer Blevins
2012-01-01
Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…
The Spectrum of Disease in Chronic Traumatic Encephalopathy
ERIC Educational Resources Information Center
McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.
2013-01-01
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging…
Di Battista, Ashley; Godfrey, Celia; Soo, Cheryl; Catroppa, Cathy; Anderson, Vicki
2014-11-01
Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury. Adolescent survivors of traumatic brain injury. Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach. Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview. The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.
Khan, Shahbaz Ali; Bhatti, Sajid Nazir; Khan, Aftab Alam; Khan Afridi, Ehtisham Ahmed; Muhammad, Gul; Gul, Nasim; Zadran, Khalid Khan; Alam, Sudhair; Aurangzeb, Ahsan
2016-01-01
The incidence of early post-traumatic seizures after civilian traumatic brain injury ranges 4-25%. The control of early post-traumatic seizure is mandatory because these acute insults may add secondary damage to the already damaged brain with poor outcome. Prophylactic use of anti-epileptic drugs have been found to be have variable efficacy against early post-traumatic seizures. The objective of this study was to compare the efficacy of Phenytion and Levetiracetam in prevention of early post-traumatic seizures in moderate to severe traumatic brain injury. This randomized controlled trial was conducted in department of Neurosurgery, Ayub Medical College, Abbottabad from March, 2012 to March 2013. The patients with moderate to severe head injury were randomly allocated in two groups. Patients in group A were given phenytoin and patients in group B were given Levetiracetam. Patients were followed for one week to detect efficacy of drug in terms of early post traumatic seizures. The 154 patients included in the study were equally divided into two groups. Out of 154 patients 115 (74.7%) were male while 29 (25.3%) were females. Age of patients ranges from 7-48 (24.15±9.56) years. Ninety one (59.1%) patients had moderate head injury while 63 (40.9%) patients had severe head injury. Phenytoin was effective in preventing early post traumatic seizures in 73 (94.8%) patients whereas Levetiracetam effectively controlled seizures in 70 (90.95%) cases (p-value of .348). There is no statistically significant difference in the efficacy of Phenytoin and Levetiracetam in prophylaxis of early posttraumatic seizures in cases of moderate to severe traumatic brain injury.
Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.
Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi
2017-01-01
Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.
Rodgers, Krista M.; Bercum, Florencia M.; McCallum, Danielle L.; Rudy, Jerry W.; Frey, Lauren C.; Johnson, Kirk W.; Watkins, Linda R.
2012-01-01
Abstract Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans. PMID:22435644
Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R
2018-01-01
Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.
Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels
2011-01-01
The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.
Anti-epileptic drugs in pediatric traumatic brain injury.
Tanaka, Tomoko; Litofsky, N Scott
2016-10-01
Pediatric post-traumatic epilepsy incidence varies depending on reporting mechanism and injury severity; anti-epileptic drug (AEDs) use also varies with lack of quality evidence-based data. Adverse AED effects are not negligible; some may negatively affect functional outcome. This review focuses on clarifying available data. This review discusses seizures associated with traumatic brain injury in children, including seizure incidence, relationship to severity of injury, potential detrimental effects of seizures, potential benefits of AED, adverse effects of AED, new developments in preventing epileptogenesis, and suggested recommendations for patient management. English language papers were identified from PubMed using search terms including but not excluding the following: adverse drug effects, anti-epileptic drugs, children, electroencephalogram, epilepsy, epileptogenesis, head injury, levetiracetam, pediatrics, phenytoin, post-traumatic epilepsy, prevention, prophylaxis, seizures, and traumatic brain injury. Expert commentary: Identification of high-risk patients for post-traumatic seizures is a key goal. Levetiracetam may prevent epileptogenesis, as may other developments.
2015-10-01
TERMS traumatic brain injury, tbi, concussion , persistent post- concussive symptoms, cognition, cognitive function, cognitive rehabilitation...veterans and active duty military personnel suffering from persistent post- concussive symptoms (PPCS) following mild traumatic brain injury (mTBI) at
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Traumatic brain injury. (1) In a veteran who has a service-connected traumatic brain injury, the following shall be held to be the proximate result of the service-connected traumatic brain injury (TBI), in the.../mental state. PTA—Post-traumatic amnesia. GCS—Glasgow Coma Scale. (For purposes of injury stratification...
Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen
2018-05-03
Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.
Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.
Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard
2018-06-05
Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2018 Elsevier Inc. All rights reserved.
3 CFR 8969 - Proclamation 8969 of April 30, 2013. National Mental Health Awareness Month, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
... veterans suffering from traumatic brain injury and post-traumatic stress disorder. And we have proposed new... of a mental health problem. They shoulder conditions like depression and anxiety, post-traumatic...
Post-traumatic seizure susceptibility is attenuated by hypothermia therapy
Atkins, Coleen M.; Truettner, Jessie S.; Lotocki, George; Sanchez-Molano, Juliana; Kang, Yuan; Alonso, Ofelia F.; Sick, Thomas J.; Dietrich, W. Dalton; Bramlett, Helen M.
2010-01-01
Traumatic brain injury (TBI) is a major risk factor for the subsequent development of epilepsy. Currently, chronic seizures after brain injury are often poorly controlled by available anti-epileptic drugs. Hypothermia treatment, a modest reduction in brain temperature, reduces inflammation, activates pro-survival signaling pathways, and improves cognitive outcome after TBI. Given the well-known effect of therapeutic hypothermia to ameliorate pathological changes in the brain after TBI, we hypothesized that hypothermia therapy may attenuate the development of post-traumatic epilepsy and some of the pathomechanisms that underlie seizure formation. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury, and then were maintained at normothermic or moderate hypothermic temperatures for 4 hr. At 12 weeks after recovery, seizure susceptibility was assessed by challenging the animals with pentylenetetrazole (PTZ), a GABAA receptor antagonist. PTZ elicited a significant increase in seizure frequency in TBI normothermic animals as compared to sham surgery animals and this was significantly reduced in TBI hypothermic animals. Early hypothermia treatment did not rescue chronic dentate hilar neuronal loss, nor did it improve loss of doublecortin-labeled cells in the dentate gyrus post-seizure. However, mossy fiber sprouting was significantly attenuated by hypothermia therapy. These findings demonstrate that reductions in seizure susceptibility after TBI are improved with post-traumatic hypothermia and provide a new therapeutic avenue for the treatment of post-traumatic epilepsy. PMID:21044182
2017-10-01
AWARD NUMBER: W81XWH-15-2-0059 TITLE: Targeted Alteration of Dietary Omega-3 and Omega-6 Fatty Acids for the Treatment of Post -Traumatic...Acids for the Treatment of Post - 5b. GRANT NUMBER Traumatic Headaches 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Kimbra Kenney, M.D...SUPPLEMENTARY NOTES 14. ABSTRACT Post -traumatic headache (PTH) is a common problem in military personnel due to their high rate of traumatic brain
Vespa, Paul M; Miller, Chad; McArthur, David; Eliseo, Mathew; Etchepare, Maria; Hirt, Daniel; Glenn, Thomas C; Martin, Neil; Hovda, David
2007-12-01
To determine whether nonconvulsive electrographic post-traumatic seizures result in increases in intracranial pressure and microdialysis lactate/pyruvate ratio. Prospective monitoring with retrospective data analysis. Single center academic neurologic intensive care unit. Twenty moderate to severe traumatic brain injury patients (Glasgow Coma Score 3-13). Continuous electroencephalography and cerebral microdialysis were performed for 7 days after injury. Ten patients had seizures and were compared with a matched cohort of traumatic brain injury patients without seizures. The seizures were repetitive and constituted status epilepticus in seven of ten patients. Using a within-subject design, post-traumatic seizures resulted in episodic increases in intracranial pressure (22.4 +/- 7 vs. 12.8 +/- 4.3 mm Hg; p < .001) and an episodic increase in lactate/pyruvate ratio (49.4 +/- 16 vs. 23.8 +/- 7.6; p < .001) in the seizure group. Using a between-subjects comparison, the seizure group demonstrated a higher mean intracranial pressure (17.6 +/- 6.5 vs. 12.2 +/- 4.2 mm Hg; p < .001), a higher mean lactate/pyruvate ratio (38.6 +/- 18 vs. 27 +/- 9; p < .001) compared with nonseizure patients. The intracranial pressure and lactate/pyruvate ratio remained elevated beyond postinjury hour 100 in the seizure group but not the nonseizure group (p < .02). Post-traumatic seizures result in episodic as well as long-lasting increases in intracranial pressure and microdialysis lactate/pyruvate ratio. These data suggest that post-traumatic seizures represent a therapeutic target for patients with traumatic brain injury.
Dahm, Jane; Ponsford, Jennie
2015-11-01
To investigate the trajectory and predictors of employment over a period of 10 years following traumatic brain injury and traumatic orthopaedic injury. Prospective follow-up at 1, 2, 5 and 10 years post-injury. Seventy-nine individuals with traumatic brain injury and 79 with traumatic orthopaedic injury recruited from Epworth HealthCare in Melbourne, Australia during inpatient rehabilitation. Information was obtained from medical files and self-report questionnaires. Individuals with traumatic brain injury were less likely to be competitively employed during the period up to 10 years post-injury compared with individuals with traumatic orthopaedic injury, although there was evidence of increasing employment participation during that time. More severe traumatic brain injury, older age, pre-injury psychological treatment, and studying or having a blue-collar occupation at time of injury were associated with poorer employment outcomes. Individuals with traumatic brain injury had spent less time with their current employer and were less likely to have increased responsibility since the injury than those with traumatic orthopaedic injury. At least half of each group reported difficulty at work due to fatigue. Given the potential for gains in employment participation over an extended time-frame, there may be benefit in ongoing access to individualized vocational rehabilitation. Particular areas of focus would include managing fatigue and psychiatric disorders, and exploring supported occupational activity for all levels of injury severity.
Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol
2018-02-28
Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.
Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L
2018-01-15
To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors with observation, speed regulation, gap selection, and vehicle control and accordingly had difficulty executing a diverse range of common driving manoeuvres. Comprehensive, formal on-road assessments, incorporating a range of skills, and manoeuvres, are needed to evaluate readiness to return to driving following traumatic brain injury. Individually tailored driver rehabilitation programs need to address these heterogeneous skill deficits to best support individuals to make a successful return to driving post-traumatic brain injury.
2013-01-01
traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.
Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.
Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R
2013-12-01
Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.
2016-10-01
Award Number: W81XWH-10-1-0962 TITLE: Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury...164. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0962 Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced...month follow-up period post-hyperbaric oxygen treatment. 1 additional subject is scheduled to be screened in October 2016 and 3 are awaiting first
2014-03-01
military environments, affected in- dividuals (e.g. football players) often sustain additional mild injuries. mTBI symptoms are typically mild and... concussion andmild traumatic brain injury. PM R 3, S354–358; DOI:10.1016/j.pmrj.2011.07.017 (2011). 2. Hendricks, A. M. et al. Screening for mild traumatic...Mendez, M. F. et al. Mild traumatic brain injury from primary blast vs. blunt forces: post- concussion consequences and functional neuroimaging
Combat, Sexual Assault, and Post-Traumatic Stress in OIF/OEF Military Women
2013-01-01
Traumatic Stress in OIF/OEF Military Women PRINCIPAL INVESTIGATOR: Anne G. Sadler, R.N., Ph.D. CONTRACTING ORGANIZATION: Iowa City VA...NUMBER Combat, Sexual Assault, and Post-Traumatic Stress in OIF/OEF Military Women 5b. GRANT NUMBER W81XWH-08-2-0080 5c. PROGRAM ELEMENT NUMBER...endpoints (e.g., post-traumatic stress disorder, traumatic brain injury) in four subgroups: 1) women deployed to combat related regions once; 2) women
Inflammation and white matter degeneration persist for years after a single traumatic brain injury.
Johnson, Victoria E; Stewart, Janice E; Begbie, Finn D; Trojanowski, John Q; Smith, Douglas H; Stewart, William
2013-01-01
A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease, with traumatic brain injury patients serving as a model for longitudinal investigations, in particular with a view to identifying potential therapeutic interventions.
Central Pain Mechanisms and Novel Therapeutic Strategies in a Model of Closed Head Injury
2015-10-01
chronic migraine 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT...headache Post-traumatic migraine Chronic migraine Traumatic brain injury Quantitative EEG (QEEG) Analgesia Endocannabinoid Cannabinoid receptors...underlying post-traumatic headache. In addition, the use of non-invasive EEG combined with light stimuli in patients with post-traumatic migraine is novel
Movement disorders secondary to craniocerebral trauma.
Krauss, Joachim K
2015-01-01
Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant. © 2015 Elsevier B.V. All rights reserved.
Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi
2009-01-01
Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.
Post-traumatic stress disorder vs traumatic brain injury
Bryant, Richard
2011-01-01
Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) often coexist because brain injuries are often sustained in traumatic experiences. This review outlines the significant overlap between PTSD and TBI by commencing with a critical outline of the overlapping symptoms and problems of differential diagnosis. The impact of TBI on PTSD is then described, with increasing evidence suggesting that mild TBI can increase risk for PTSD. Several explanations are offered for this enhanced risk. Recent evidence suggests that impairment secondary to mild TBI is largely attributable to stress reactions after TBI, which challenges the long-held belief that postconcussive symptoms are a function of neurological insult This recent evidence is pointing to new directions for treatment of postconcussive symptoms that acknowledge that treating stress factors following TBI may be the optimal means to manage the effects of many TBIs, PMID:22034252
Pathophysiological links between traumatic brain injury and post-traumatic headaches
Ruff, Robert L.; Blake, Kayla
2016-01-01
This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228
Bremner, James Douglas; Mishra, Sanskriti; Campanella, Carolina; Shah, Majid; Kasher, Nicole; Evans, Sarah; Fani, Negar; Shah, Amit Jasvant; Reiff, Collin; Davis, Lori L; Vaccarino, Viola; Carmody, James
2017-01-01
Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with changes in brain regions that have been implicated in PTSD and are involved in extinction of fear responses to traumatic memories as well as regulation of the stress response.
Post-traumatic neurodegeneration and chronic traumatic encephalopathy.
Daneshvar, Daniel H; Goldstein, Lee E; Kiernan, Patrick T; Stein, Thor D; McKee, Ann C
2015-05-01
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity around the world. Concussive and subconcussive forms of closed-head injury due to impact or blast neurotrauma represent the most common types of TBI in civilian and military settings. It is becoming increasingly evident that TBI can lead to persistent, long-term debilitating effects, and in some cases, progressive neurodegeneration and chronic traumatic encephalopathy (CTE). The epidemiological literature suggests that a single moderate-to-severe TBI may be associated with accelerated neurodegeneration and increased risk of Alzheimer's disease, Parkinson's disease, or motor neuron disease. However, the pathologic phenotype of these post-traumatic neurodegenerations is largely unknown and there may be pathobiological differences between post-traumatic disease and the corresponding sporadic disorder. By contrast, the pathology of CTE is increasingly well known and is characterized by a distinctive pattern of progressive brain atrophy and accumulation of hyperphosphorylated tau neurofibrillary and glial tangles, dystrophic neurites, 43 kDa TAR DNA-binding protein (TDP-43) neuronal and glial aggregates, microvasculopathy, myelinated axonopathy, neuroinflammation, and white matter degeneration. Clinically, CTE is associated with behavioral changes, executive dysfunction, memory deficits, and cognitive impairments that begin insidiously and most often progress slowly over decades. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. Critical knowledge gaps include elucidation of pathogenic mechanisms, identification of genetic risk factors, and clarification of relevant variables-including age at exposure to trauma, history of prior and subsequent head trauma, substance use, gender, stress, and comorbidities-all of which may contribute to risk profiles and the development of post-traumatic neurodegeneration and CTE. This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Published by Elsevier Inc.
Acute and chronic efficacy of Bumetanide in an in vitro model of post-traumatic epileptogenesis
Dzhala, Volodymyr; Staley, Kevin
2014-01-01
Background Seizures triggered by acute injuries to the developing brain respond poorly to first-line medications that target the inhibitory chloride-permeable GABAA-receptor. Neuronal injury is associated with profound increases in cytoplasmic chloride ([Cl−]i) resulting in depolarizing GABA signaling, higher seizure propensity and limited efficacy of GABAergic anticonvulsants. The Na+-K+-2Cl− (NKCC1) co-transporter blocker bumetanide reduces [Cl−]i and causes more negative GABA equilibrium potential in injured neurons. We therefore tested both the acute and chronic efficacy of bumetanide on early post-traumatic ictal-like epileptiform discharges and epileptogenesis. Methods Acute hippocampal slices were used as a model of severe traumatic brain injury and post-traumatic epileptogenesis. Hippocampal slices were then incubated for three weeks. After a one week latent period slice cultures developed chronic spontaneous ictal-like discharges. The anticonvulsant and antiepileptogenic efficacy of bumetanide, phenobarbital and the combination of these drugs was studied. Results Bumetanide reduced the frequency and power of early post-traumatic ictal-like discharges in vitro and enhanced the anticonvulsant efficacy of phenobarbital. Continuous two-three week administration of bumetanide as well as phenobarbital in combination with bumetanide failed to prevent post-traumatic ictal-like discharges and epileptogenesis. Conclusions Our data demonstrate a persistent contribution of NKCC1 co-transport in post-traumatic ictal-like activity, presumably as a consequence of chronic alterations in neuronal chloride homeostasis and GABA-mediated inhibition. New strategies for more effective reduction in post-traumatic and seizure-induced [Cl−]i accumulation could provide the basis for effective treatments for post-traumatic epileptogenesis and the resultant seizures. PMID:25495911
A neurovascular perspective for long-term changes after brain trauma.
Pop, V; Badaut, J
2011-12-01
Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.
ERIC Educational Resources Information Center
Chesire, David J.; Buckley, Valerie A.; Leach, Susan L.; Scott, Rebecca A.; Scott, Kamela K.
2015-01-01
Data indicate children with traumatic brain injury (TBI), especially those with mild TBI (mTBI), represent a significant population within the U.S. school system. Yet, many school professionals report little or no formal coursework for training on the needs of children post-TBI, have minimal or no experience working with children post-TBI, and…
Badaut, J.; Bix, G.J.
2014-01-01
The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up and down stream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders [1]. This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood-flow, smooth muscle cells, matrix, BBB structures and function and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN as this may yield meaningful therapeutic targets to resolve post-traumatic dysfunction. PMID:24323723
Brenner, Lisa A.; Bahraini, Nazanin; Hernández, Theresa D.
2012-01-01
Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic), behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI) and/or post traumatic stress disorder (PTSD). Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast) traumatic brain injury can be used to facilitate the development of clinically relevant blast models. PMID:22408635
2015-10-01
hyperbaric oxygen therapy; TBI: traumatic brain injury; PPCS: persistent post- concussion syndrome 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...persistent post- concussion syndrome (PPCS). Evidence-based medicine exists for PTSD, but there is no effective treatment for the persistent post... concussion syndrome (PPCS) of mild-moderate TBI nor the combined diagnoses of PPCS and PTSD. Between the Fall of 2008 and end of 2010, the P.I
Surviving Traumatic Brain Injury: A Study of Post Acute Rehabilitation Services.
ERIC Educational Resources Information Center
Schuyler, Suellen
The problems facing a rehabilitation counselor in successfully working with survivors of brain trauma are myriad. This review examined evaluation techniques, rehabilitation therapies, and existing services that have proven effective with traumatic brain injury (TBI) clients. There is a gap in rehabilitation services that results in the TBI…
Giardino, Anthony E
2009-05-01
More than 1.5 million Americans have participated in combat operations in Iraq and Afghanistan over the past seven years. Some of these veterans have subsequently committed capital crimes and found themselves in our nation's criminal justice system. This Essay argues that combat veterans suffering from post-traumatic stress disorder or traumatic brain injury at the time of their offenses should not be subject to the death penalty.Offering mitigating evidence regarding military training, post-traumatic stress disorder, and traumatic brain injury presents one means that combat veterans may use to argue for their lives during the sentencing phase of their trials. Alternatively, Atkins v. Virginia and Roper v. Simmons offer a framework for establishing a legislatively or judicially created categorical exclusion for these offenders, exempting them from the death penalty as a matter of law. By understanding how combat service and service-related injuries affect the personal culpability of these offenders, the legal system can avoid the consequences of sentencing to death America's mentally wounded warriors, ensuring that only the worst offenders are subject to the ultimate punishment.
Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W
2017-03-01
Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance in individuals at genetic risk for Alzheimer's disease, with the caveat that the order of causal effects cannot be inferred from cross-sectional studies. These results underscore the importance of documenting head injuries even within the mild range as they may interact with genetic risk to produce negative long-term health consequences such as neurodegenerative disease. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.
Kaimal, Girija; Walker, Melissa S; Herres, Joanna; French, Louis M; DeGraba, Thomas J
2018-06-11
The study aimed tocompare recurring themes in the artistic expression of military service members (SMs) with post-traumatic stress disorder (PTSD), traumatic brain injury and psychological health (PH) conditions with measurable psychiatric diagnoses. Affective symptoms and struggles related to verbally expressing information can limit communication in individuals with symptoms of PTSD and deployment-related health conditions. Visual self-expression through art therapy is an alternative way for SMs with PTSD and other PH conditions to communicate their lived experiences. This study offers the first systematic examination of the associations between visual self-expression and standardised clinical self-report measures. Observational study of correlations between clinical symptoms of post-traumatic stress, depression and anxiety and visual themes in mask imagery. The National Intrepid Center of Excellence at the Walter Reed National Military Medical Center, Bethesda, Maryland, USA. Active-duty military SMs (n=370) with a history of traumatic brain injury, post-traumatic stress symptoms and related PH conditions. The masks used for analysis were created by the SMs during art therapy sessions in week 1 of a 4-week integrative treatment programme. Associations between scores on the PTSD Checklist-Military, Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale on visual themes in depictions of aspects of individual identity (psychological injury, military symbols, military identity and visual metaphors). Visual and clinical data comparisons indicate that SMs who depicted psychological injury had higher scores for post-traumatic stress and depression. The depiction of military unit identity, nature metaphors, sociocultural metaphors, and cultural and historical characters was associated with lower post-traumatic stress, depression and anxiety scores. Colour-related symbolism and fragmented military symbols were associated with higher anxiety, depression and post-traumatic stress scores. Emergent patterns of resilience and risk embedded in the use of images created by the participants could provide valuable information for patients, clinicians and caregivers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Shively, Sharon Baughman; Horkayne-Szakaly, Iren; Jones, Robert V; Kelly, James P; Armstrong, Regina C; Perl, Daniel P
2016-08-01
No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. Defense Health Program of the United States Department of Defense. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A
2007-01-01
To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.
JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis
2014-09-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a well-established inducer of temporal lobe epilepsy (TLE...INTRODUCTION: This research addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well- established etiology of temporal ... lobe epilepsy (TLE), a frequently medically intractable and often progressive epilepsy syndrome. Much evidence indicates that abnormalities in
The clinical spectrum of sport-related traumatic brain injury.
Jordan, Barry D
2013-04-01
Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.
Traumatic Brain Injury: An Overview of School Re-Entry.
ERIC Educational Resources Information Center
Tucker, Bonnie Foster; Colson, Steven E.
1992-01-01
This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)
High risk of hypogonadism after traumatic brain injury: clinical implications.
Agha, Amar; Thompson, Christopher J
2005-01-01
Several recent studies have convincingly documented a close association between traumatic brain injury (TBI) and pituitary dysfunction. Post-traumatic hypogonadism is very common in the acute post-TBI phase, though most cases recover within six to twelve months following trauma. The functional significance of early hypogonadism, which may reflect adaptation to acute illness, is not known. Hypogonadism persists, however, in 10-17% of long-term survivors. Sex steroid deficiency has implications beyond psychosexual function and fertility for survivors of TBI. Muscle weakness may impair functional recovery from trauma and osteoporosis may be exacerbated by immobility secondary to trauma. Identification and appropriate and timely management of post-traumatic hypogonadism is important in order to optimise patient recovery from head trauma, improve quality of life and avoid the long-term adverse consequences of untreated sex steroid deficiency.
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also
Post-traumatic hypopituitarism and fatigue.
Masel, Brent E; Zgaljardic, Dennis J; Forman, Jack
2017-10-01
Post-traumatic hypopituitarism (PTH) associated with chronic cognitive, psychiatric, and/or behavioural sequelae is common following moderate to severe traumatic brain injury (TBI). More specifically, due to a cascade of hormonal deficiencies secondary to PTH, individuals with TBI may experience debilitating fatigue that can negatively impact functional recovery, as it can limit participation in brain injury rehabilitation services and lead to an increase in maladaptive lifestyle practices. While the mechanisms underlying fatigue and TBI are not entirely understood, the current review will address the specific anatomy and physiology of the pituitary gland, as well as the association between pituitary dysfunction and fatigue in individuals with TBI.
Karagiorgou, Olga; Evans, Jonathan J; Cullen, Breda
2018-03-01
Post-traumatic growth (PTG) can occur following acquired brain injury (ABI). It has been proposed that people experiencing psychological distress following ABI may benefit from a positive psychotherapy intervention (PPT) aimed at increasing well-being; PPT may also influence PTG. We aimed to investigate PTG experiences in participants of a positive psychotherapy pilot trial. ABI survivors who had received PPT or treatment as usual (TAU) were interviewed individually after the end of the trial. Thematic analysis was conducted, to code transcripts for known themes from PTG literature as well as newly emerging themes. Four participants (age = 46-62; n = 3 male; months since injury = 11-20) from the PPT group and three (age = 58-74; n = 2 male; months since injury = 9-22) from the TAU group were interviewed. Six themes were shared across both groups: personal strength, appreciation of life, relating to others, optimism/positive attitude, feeling fortunate compared to others, and positive emotional/behavioral changes. Two themes were expressed by PPT participants only: lifestyle improvements and new possibilities. One TAU participant reported spiritual change. A greater understanding of the development of PTG following ABI may help rehabilitation clinicians to promote better adjustment by focusing on clients' potential for positive change and enhancing their capacity for growth. Implications for Rehabilitation Post-traumatic growth is "positive psychological change experienced as the result of the struggle with highly challenging life circumstances." This is the first qualitative investigation of post-traumatic growth in participants in a positive psychotherapy trial following acquired brain injury. Several post-traumatic growth themes were shared by participants from the positive psychotherapy and treatment as usual study arms, with additional themes evident only in positive psychotherapy participants. A greater understanding of post-traumatic growth among rehabilitation professionals may help to promote adjustment following brain injury.
McGhee, Hannah; Cornwell, Petrea; Addis, Paula; Jarman, Carly
2006-11-01
The aims of this preliminary study were to explore the suitability for and benefits of commencing dysarthria treatment for people with traumatic brain injury (TBI) while in post-traumatic amnesia (PTA). It was hypothesized that behaviours in PTA don't preclude participation and dysarthria characteristics would improve post-treatment. A series of comprehensive case analyses. Two participants with severe TBI received dysarthria treatment focused on motor speech deficits until emergence from PTA. A checklist of neurobehavioural sequelae of TBI was rated during therapy and perceptual and motor speech assessments were administered before and after therapy. Results revealed that certain behaviours affected the quality of therapy but didn't preclude the provision of therapy. Treatment resulted in physiological improvements in some speech sub-systems for both participants, with varying functional speech outcomes. These findings suggest that dysarthria treatment can begin and provide short-term benefits to speech production during the late stages of PTA post-TBI.
Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro
2016-10-30
Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Togher, Leanne; McDonald, Skye; Tate, Robyn; Power, Emma; Rietdijk, Rachael
2013-07-01
To determine effectiveness of communication training for partners of people with severe traumatic brain injury. Three arm non-randomized controlled trial comparing communication partner training (JOINT) with individual treatment (TBI SOLO) and a waitlist control group with 6 month follow-up. Forty-four outpatients with severe chronic traumatic brain injuries were recruited. Ten-week conversational skills treatment program encompassing weekly group and individual sessions for both treatment groups. The JOINT condition focused on both the partner and the person with traumatic brain injury while the TBI SOLO condition focused on the individual with TBI only. Primary outcomes were blind ratings of the person with traumatic brain injury's level of participation during conversation on the Measure of Participation in Communication Adapted Kagan scales. Communication partner training improved conversational performance relative to training the person with traumatic brain injury alone and a waitlist control group on the primary outcome measures. Results were maintained at six months post-training. Training communication partners of people with chronic severe traumatic brain injury was more efficacious than training the person with traumatic brain injury alone. The Adapted Kagan scales proved to be a robust and sensitive outcome measure for a conversational skills training program.
JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis
2014-09-01
NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a well-established inducer of temporal lobe epilepsy (TLE), a frequently medically intractable... epilepsy syndrome. The controlled cortical impact (CCI) model of posttraumatic epilepsy in mice is a well established animal model of TBI that results...reduce development of post-traumatic epilepsy , and did not significantly improve memory function, but did enhance the motor recovery. These findings
Evaluation of a Health Education Programme about Traumatic Brain Injury
ERIC Educational Resources Information Center
Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.
2014-01-01
Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…
Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin.
Kawa, Lizan; Arborelius, Ulf P; Yoshitake, Takashi; Kehr, Jan; Hökfelt, Tomas; Risling, Mårten; Agoston, Denes
2015-08-15
Exposure to improvised explosive devices can result in a unique form of traumatic brain injury--blast-induced traumatic brain injury (bTBI). At the mild end of the spectrum (mild bTBI [mbTBI]), there are cognitive and mood disturbances. Similar symptoms have been observed in post-traumatic stress disorder caused by exposure to extreme psychological stress without physical injury. A role of the monoaminergic system in mood regulation and stress is well established but its involvement in mbTBI is not well understood. To address this gap, we used a rodent model of mbTBI and detected a decrease in immobility behavior in the forced swim test at 1 d post-exposure, coupled with an increase in climbing behavior, but not after 14 d or later, possibly indicating a transient increase in anxiety-like behavior. Using in situ hybridization, we found elevated messenger ribonucleic acid levels of both tyrosine hydroxylase and tryptophan hydroxylase 2 in the locus coeruleus and the dorsal raphe nucleus, respectively, as early as 2 h post-exposure. High-performance liquid chromatography analysis 1 d post-exposure primarily showed elevated noradrenaline levels in several forebrain regions. Taken together, we report that exposure to mild blast results in transient changes in both anxiety-like behavior and brain region-specific molecular changes, implicating the monoaminergic system in the pathobiology of mbTBI.
Lequerica, Anthony H; Botticello, Amanda L; Lengenfelder, Jean; Chiaravalloti, Nancy; Bushnik, Tamara; Dijkers, Marcel P; Hammond, Flora M; Kolakowsky-Hayner, Stephanie A; Rosenthal, Joseph
2017-10-01
Post-traumatic brain injury fatigue (PTBIF) is a major problem in the years after traumatic brain injury (TBI), yet little is known about its persistence and resolution. The objective of the study was to identify factors related to PTBIF remission and resolution. TBI Model System registrants at five centres participated in interviews at either one and two years post-injury (Y1-2 Cohort), or two and five years post-injury (Y2-5 Cohort). Characteristics of participants with PTBIF remission were compared to those with PTBIF persistence. Variables studied included the presence of and changes in disability, sleep dysfunction, mood, and community participation. The Functional Independence Measure did not differ significantly between groups or over time. In the Y1-2 Cohort the Fatigue Resolved group scored significantly better on the Disability Rating Scale and Pittsburgh Sleep Quality Index. In the Y2-5 Cohort the Fatigue Resolved group scored significantly higher on a measure of community participation. It was concluded that fewer than half of the sample in each cohort experienced a remission of PTBIF between time points. Persistence of PTBIF 1-2 years post-injury is associated with disability, sleep disturbance, and depression while persistence of fatigue beyond 2 years post-injury appears to be related to participation level, underscoring the potential impact of effective surveillance, assessment, and treatment of this condition in optimising life after TBI. Differences in fatigue progression may point to the presence of different types of PTBIF.
[Mild traumatic brain injury and postconcussive syndrome: a re-emergent questioning].
Auxéméry, Y
2012-09-01
Blast injuries are psychologically and physically devastating. Notably, primary blast injury occurs as a direct effect of changes in atmospheric pressure caused by a blast wave. The combat-related traumatic brain injuries (TBI) resulting from exposure to explosions is highly prevalent among military personnel who have served in current wars. Traumatic brain injury is a common cause of neurological damage and disability among civilians and servicemen. Most patients with TBI suffer a mild traumatic brain injury with transient loss of consciousness. A controversial issue in the field of head injury is the outcome of concussion. Most individuals with such injuries are not admitted to emergency units and receive a variable degree of medical attention. Nevertheless, cranial traumas vary in their mechanisms (blast, fall, road accident, bullet-induced craniocerebral injury) and in their gravity (from minor to severe). The majority of subjects suffering concussion have been exposed to explosion or blast injuries, which have caused minor cranial trauma. Although some authors refuse to accept the reality of post-concussion syndrome (PCS) and confuse it with masked depression, somatic illnesses or post-traumatic stress, we have raised the question again of its existence, without denying the intricate links with other psychiatric or neurological disorders. Although the mortality rate is negligible, the traumatic sequel after mild traumatic brain injury is clear. A difference in initial somatic severity is noted between the serious somatic consequences of a severe cranial trauma compared with the apparently benign consequences of a minor cranial trauma. However, the long-term consequences of the two types of impacts are far from negligible: PCS is a source of morbidity. The prognosis for minor cranial traumas is benign at vital level but a number of patients will develop long-term complaints, which contrast with the negativity of the clinical examination and complementary explorations. The origin of these symptoms questions their organic and psychological aetiologies, which are potentially associated or intricately linked. After a cerebral concussion patients report a cluster of symptoms referred to as postconcussive. Post-concussion syndrome lies within the confines of somatic symptoms (headaches, dizziness, and fatigue), cognitive symptoms (memory and concentration problems) and affective symptoms (irritability, emotional lability, depression, anxiety, trouble sleeping). The nosographical entity of post-concussion syndrome is still in the process of elaboration following the input of new research intended to determine a cluster of specific symptoms. The persistent post-concussion syndrome is believed to be due to the psychological effects of the injury, biological factors, or a combination of both. Considered in isolation, the symptoms of post-concussion syndrome are non-specific and come together with other diagnostic frameworks such as characterised depressive episodes and post-traumatic stress. Post-concussion syndrome is not specific to concussion but can be present in subjects without any previous cranial trauma. Blast trauma can thus be understood as experiencing a shockwave on the brain and as a psycho-traumatic event. The major methodological problem of the studies is the quantification of the functional symptoms present in different nosographical frameworks, which are often co-morbid. Post-traumatic stress disorder is one of several psychiatric disorders that may increase suffering and disability among people with mild traumatic brain injury; in addition mood disorders also seem to be frequent psychiatric complications among these patients. Psychotic disorders after TBI have been associated with several brain regions. The establishment of a causative relationship between TBI and psychiatric disorders is interesting in terms of our understanding of these possible sequelae of TBI. The grey substance of the grey nuclei of the base can also be altered by a scissoring mechanism of the perforating arteries. A cortical contusion through impression of the cortex on the contours of the cranium is frequent. The most common type of injury is traumatic axonal injury. Cerebral lesions that are secondary to TBI associate cell deaths through the mechanisms of apoptosis and necrosis concerning the nerve and glial cells. The scientific objective is to discover an anatomoclinical correlation between the symptoms of post-concussion syndrome and objectifiable brain damage. The predictive value of serum concentrations of the specific serum markers S-100B and neurone specific enolase has been established. Cerebral imaging will allow the mechanisms concerned in cranial trauma to be better understood and thus may allow these mechanisms to be linked with co-morbid post-traumatic psychiatric disorders such as depression. The pyschopathological approach provides supplementary enlightenment where neuroimaging studies struggle to establish precise anatomoclinical correlations between neurotraumatic lesions, state of post-traumatic stress, and PCS. Moving away from a purely scientific view to focus on subjectivity, PCS can establish itself in subjects with no history of head trauma thus showing purely psychic suffering. Is the former name of "subjective post-head injury syndrome" no longer pertinent since the neurobiological affections can be objectified? Yet, the latter does not necessarily explain the somatic symptoms. Beyond any opposition of a psychic or somatic causality, it shows the complexity of this interaction. Admittedly, looking for a neuropathological affection is particularly cardinal to propose an aetiological model and objectify the lesions, which should be documented using a forensic approach. However, within the context of treatment, this theoretical division of the brain and the mind becomes less operative: the psychotherapeutic support will on the contrary back the indivisibility of the subject, he/she, who faced the "clatter". Copyright © 2011 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.
Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul
2013-09-01
Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.
The neuropathology of traumatic brain injury.
Mckee, Ann C; Daneshvar, Daniel H
2015-01-01
Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at autopsy; however, promising efforts to develop imaging, spinal fluid, and peripheral blood biomarkers are underway to diagnose and monitor the course of disease in living subjects. © 2015 Elsevier B.V. All rights reserved.
Nash, S; Luauté, J; Bar, J Y; Sancho, P O; Hours, M; Chossegros, L; Tournier, C; Charnay, P; Mazaux, J M; Boisson, D
2014-12-01
The variety and extent of impairments occurring after traumatic brain injury vary according to the nature and severity of the lesions. In order to better understand their interactions and long-term outcome, we have studied and compared the cognitive and neurobehavioral profile one year post onset of patients with and without traumatic brain injury in a cohort of motor vehicle accident victims. The study population is composed of 207 seriously injured persons from the ESPARR cohort. This cohort, which has been followed up in time, consists in 1168 motor vehicle accident victims (aged 16 years or more) with injuries with all degrees of severity. Inclusion criteria were: living in Rhone county, victim of a traffic accident having involved at least one wheel-conducted vehicle and having occurred in Rhone county, alive at the time of arrival in hospital and having presented in one of the different ER facilities of the county. The cohort's representativeness regarding social and geographic criteria and the specificities of the accidents were ensured by the specific targeting of recruitment. Deficits and impairments were assessed one year after the accident using the Neurobehavioral Rating Scale - Revised and the Trail-Making Test. Within our seriously injured group, based on the Glasgow Score, the presence of neurological deficits, aggravation of neurological condition in the first 72hours and/or abnormal cerebral imaging, we identified three categories: (i) moderate/severe traumatic brain injury (n=48), (ii) mild traumatic brain injury (n=89), and (iii) severely injured but without traumatic brain injury (n=70). The most frequently observed symptoms were anxiety, irritability, memory and attention impairments, depressive mood and emotional lability. While depressive mood and irritability were observed with similar frequency in all three groups, memory and attention impairments, anxiety and reduced initiative were more specific to traumatic brain injury whereas executive disorders were associated with moderate/severe traumatic brain injury. The presence and the initial severity of a traumatic brain injury condition the nature and frequency of residual effects after one year. Some impairments such as irritability, which is generally associated with traumatic brain injury, do not appear to be specific to this population, nor does depressive mood. Substantial interactions between cognitive, affective and neurobehavioral disorders have been highlighted. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen
2017-07-01
Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Persistent anosmia in a traumatic brain injury patient: role of orbitofrontal cortex.
Caminiti, Fabrizia; Ciurleo, Rosella; Bramanti, Placido; Marino, Silvia
2013-01-01
The olfactory loss due to traumatic brain injury is a common clinical condition. The understanding of the cortical areas involved in ability to detect, discriminate and identify the odours is still limited. However, it has been shown that the orbitofrontal cortex (OFC) is involved in the discrimination and recognition of odours and in particular the right OFC has a dominant role in the central processing of smell. This study used the Sniffin' Sticks Test to evaluate olfactory function of a 40-year-old female with persistent post-traumatic anosmia and to have a objective measure method for the follow-up. A marked decrease in the ability to identify and discriminate odours was found. On the other hand the ability to perceive the odours was little compromised. A cerebral Magnetic Resonance Imaging, performed 10 months after the trauma, showed the presence of a post-traumatic scarring in the right frontal lobe involving the OFC. In this case of post-traumatic anosmia, the ability to perceive and recognize odours does not seem to be compromised in the same measure. It is postulated that the post-traumatic outcomes, involving areas of multisensory integration such as the OFC, have an important pathogenetic role in the loss of ability to recognize and discriminate odours.
Acromegaly resolution after traumatic brain injury: a case report.
Cob, Alejandro
2014-09-02
Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likelihood of developing hypopituitarism following traumatic brain injury remain poorly understood. The incidence of a specific hormone deficiency is variable, with growth hormone deficiency reported in 18% to 23% of cases. A 23-year-old Hispanic man with a 2-year history of hypertension and diabetes presented with severe closed-head trauma producing diffuse axonal injury, subarachnoid hemorrhage and a brain concussion. A computed tomography scan showed a pituitary macroadenoma. The patient has clinical features of acromegaly and gigantism without other pituitary hyperfunctional manifestations or mass effect syndrome. A short-term post-traumatic laboratory test showed high levels of insulin like growth factor 1 and growth hormone, which are compatible with a growth hormone-producing pituitary tumor. At the third month post-trauma, the patient's levels of insulin like growth factor 1 had decreased to low normal levels, with basal low levels of growth hormone. A glucose tolerance test completely suppressed the growth hormone, which confirmed resolution of acromegaly. An insulin tolerance test showed lack of stimulation of growth hormone and cortisol, demonstrating hypopituitarism of both axes. Even though hypopituitarism is a frequent complication of traumatic brain injury, there are no reports in the literature, to the best of my knowledge, of patients with hyperfunctional pituitary adenomas, such as growth hormone-producing adenoma, that resolved after head trauma. A clear protocol has not yet been established to identify which patients should be screened for hypopituitarism. Predictive factors that might determine the likelihood of developing post-traumatic hypopituitarism have not been clearly established, but there is no evidence of the presence of pituitary adenomas as a risk factor in otherwise healthy patients.
2011-01-01
rotation soudaine , à la tête engendré par des forces externes. Des symptômes persistants tels que maux de tête, troubles du sommeil, problèmes...neuropsychological findings in veterans with traumatic brain injury and/or post traumatic stress disorder. Military Medicine. Brenner, L.A. et al . (2010
ERIC Educational Resources Information Center
Yeates, Keith Owen; Taylor, H. Gerry
2006-01-01
This study examined the emotional and behavioral adjustment of children with traumatic brain injury (TBI) in school and its relationship to post-injury academic performance and educational interventions. Teachers' ratings of child behavior and academic performance were collected during a prospective, longitudinal study of 53 children with severe…
Barriers to Meeting the Needs of Students with Traumatic Brain Injury
ERIC Educational Resources Information Center
Canto, Angela I.; Chesire, David J.; Buckley, Valerie A.; Andrews, Terrie W.; Roehrig, Alysia D.
2014-01-01
Many students with traumatic brain injury (TBI) are identified by the medical community each year and many more experience head injuries that are not examined by medical personnel. School psychologists and allied consultants have important liaison roles to identify and assist these students post-injury. In this study, 75 school psychologists (the…
Traumatic Brain Injury: Exploring the Role of Cooperative Extension in Kansas Communities
ERIC Educational Resources Information Center
Sellers, Debra M.; Garcia, Jane Mertz
2012-01-01
TBI"options" helps survivors of traumatic brain injury and their families identify, locate, and contact helpful organizations in their local communities to promote successful living. This article discusses the role of county agents in the program and the support offered by community partners. Results of pre- and post-surveys for both…
Academic and Language Outcomes in Children after Traumatic Brain Injury: A Meta-Analysis
ERIC Educational Resources Information Center
Vu, Jennifer A.; Babikian, Talin; Asarnow, Robert F .
2011-01-01
Expanding on Babikian and Asarnow's (2009) meta-analytic study examining neurocognitive domains, this current meta-analysis examined academic and language outcomes at different time points post-traumatic brain injury (TBI) in children and adolescents. Although children with mild TBI exhibited no significant deficits, studies indicate that children…
Tics after traumatic brain injury.
Ranjan, Nishant; Nair, Krishnan Padmakumari Sivaraman; Romanoski, Charles; Singh, Rajiv; Venketswara, Guruprasad
2011-01-01
Tics are involuntary non-rhythmic, stereotyped muscle contractions which can be suppressed temporarily. Tics usually start during childhood as part of Tourette syndrome. Adult onset tics are infrequent. This study reports on an adult man who developed tics 1 year after severe traumatic brain injury (TBI). Case report and review of literature. A 19-year-old man sustained TBI following a road traffic accident. He did not have tics or features of obsessive compulsive disorder before the brain injury. A year after injury he developed motor and vocal tics. Magnetic resonance image of the brain showed lesions in the basal ganglia. A search of databases Medline, EMBASE and CINHAL found only four publications on tics in adults with TBI. None of these reported cases had lesions in the basal ganglia. Tics are a rare complication of TBI. People with early onset post-traumatic tics may have had a previously unrecognized, mild tic disorder or a genetic predisposition for tics, which was unmasked by the TBI. In contrast, late post-traumatic tics could be due to delayed effects of injury on neural circuits connecting the frontal cortex and basal ganglia.
Johnson, Kirsten; Asher, Jana; Kisielewski, Michael; Lawry, Lynn
2012-05-01
To provide a better understanding of any associations between Disarmament, Demobilization, and Reintegration, previous head injury, and mental health symptoms among former combatants in Liberia. A cluster-sampled national survey of the adult household-based Liberian population. Former combatants with reported head injury were more likely to experience major depressive disorder symptoms, suicidal ideation and attempts, and current substance abuse. Former combatants with head injury are 2.83 times more likely to have major depressive disorder symptoms, and those with suspected traumatic brain injury are five times more likely to have post-traumatic stress disorder. The poor mental health of former combatants in Liberia, both child and adult, might be mitigated if Disarmament, Demobilization, and Reintegration programming assessed participants for head trauma and traumatic brain injury using simple screening methods. The specific health and mental health needs of ex-combatants--a highly vulnerable group--will need to be addressed by Liberia. If left untreated, ex-combatants with high rates of suicidal ideation and post-traumatic stress disorder might be susceptible to re-recruitment into new conflicts in the region.
Ngwenya, Laura B; Gardner, Raquel C; Yue, John K; Burke, John F; Ferguson, Adam R; Huang, Michael C; Winkler, Ethan A; Pirracchio, Romain; Satris, Gabriela G; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Okonkwo, David O; Manley, Geoffrey T
2018-06-04
To determine characteristics and concordance of subjective cognitive complaints (SCCs) 6 months following mild-traumatic brain injury (mTBI) as assessed by two different TBI common data elements (CDEs). The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study was a prospective observational study that utilized the NIH TBI CDEs, Version 1.0. We examined variables associated with SCC, performance on objective cognitive tests (Wechsler Adult Intelligence Scale, California Verbal Learning Test, and Trail Making Tests A and B), and agreement on self-report of SCCs as assessed by the acute concussion evaluation (ACE) versus the Rivermead Post Concussion Symptoms Questionnaire (RPQ). In total, 68% of 227 participants endorsed SCCs at 6 months. Factors associated with SCC included less education, psychiatric history, and being assaulted. Compared to participants without SCC, those with SCC defined by RPQ performed significantly worse on all cognitive tests. There was moderate agreement between the two measures of SCCs (kappa = 0.567 to 0.680). We show that the symptom questionnaires ACE and RPQ show good, but not excellent, agreement for SCCs in an mTBI study population. Our results support the retention of RPQ as a basic CDE for mTBI research. BSI-18: Brief Symptom Inventory; 18CDEs: common data elements; CT: computed tomography; CVLT: California Verbal Learning Test; ED: emergency department; GCS: Glasgow coma scale; LOC: loss of consciousnessm; TBI: mild-traumatic brain injury; PTA: post-traumatic amnesia; SCC: subjective cognitive complaints; TBI: traumatic brain injury; TRACK-TBI: Transforming Research and Clinical Knowledge in Traumatic Brain Injury; TMT: Trail Making Test; WAIS-PSI: Wechsler Adult Intelligence Scale, Fourth Edition, Processing Speed Index.
BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury
Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan
2011-01-01
Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305
Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain
O'Brien, Terence J.; Gimlin, Kayleen; Wright, David K.; Kim, Shi Eun; Casillas-Espinosa, Pablo M.; Webster, Kyria M.; Petrou, Steven; Noble-Haeusslein, Linda J.
2017-01-01
Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments. In this preclinical study, we first demonstrate that a mouse model of traumatic injury to the pediatric brain reproduces many neuropathological and seizure-like hallmarks characteristic of epilepsy. Second, we demonstrate that targeting the acute inflammatory response reduces cognitive impairments, the degree of neuropathology, and seizure susceptibility, after pediatric brain injury in mice. These findings provide evidence that inflammatory cytokine signaling is a key process underlying epilepsy development after an acquired brain insult, which represents a feasible therapeutic target to improve quality of life for survivors. PMID:28724747
Sonne, Charlotte; Carlsson, Jessica; Elklit, Ask; Mortensen, Erik Lykke; Ekstrøm, Morten
2013-05-11
Sufficient evidence is lacking to draw final conclusions on the efficiency of medical and psychological treatments of traumatized refugees with PTSD. The pharmacological treatments of choice today for post-traumatic stress disorder are antidepressants from the subgroup selective serotonin reuptake inhibitors, especially sertraline. The evidence for the use of selective serotonin reuptake inhibitors in the treatment of complex post-traumatic stress disorder in traumatized refugees is very limited. Venlafaxine is a dual-action antidepressant that works on several pathways in the brain. It influences areas in the brain which are responsible for the enhanced anxiety and hyper-arousal experienced by traumatized refugees and which some studies have found to be enlarged among patients suffering from post-traumatic stress disorder. This study will include approximately 150 patients, randomized into two different groups treated with either sertraline or venlafaxine. Patients in both groups will receive the same manual-based cognitive behavioral therapy, which has been especially adapted to this group of patients. The treatment period will be 6 to 7 months. The trial endpoints will be post-traumatic stress disorder and depressive symptoms and social functioning, all measured on validated ratings scales. Furthermore the study will examine the relation between a psycho-social resources and treatment outcome based on 15 different possible outcome predictors. This study is expected to bring forward new knowledge on treatment and clinical evaluation of traumatized refugees and the results are expected to be used in reference programs and clinical guidelines. ClinicalTrials.gov NCT01569685.
2013-01-01
Background Sufficient evidence is lacking to draw final conclusions on the efficiency of medical and psychological treatments of traumatized refugees with PTSD. The pharmacological treatments of choice today for post-traumatic stress disorder are antidepressants from the subgroup selective serotonin reuptake inhibitors, especially Sertraline. The evidence for the use of selective serotonin reuptake inhibitors in the treatment of complex post-traumatic stress disorder in traumatized refugees is very limited. Venlafaxine is a dual-action antidepressant that works on several pathways in the brain. It influences areas in the brain which are responsible for the enhanced anxiety and hyper-arousal experienced by traumatized refugees and which some studies have found to be enlarged among patients suffering from post-traumatic stress disorder. Design This study will include approximately 150 patients, randomized into two different groups treated with either Sertraline or Venlafaxine. Patients in both groups will receive the same manual-based cognitive behavioral therapy, which has been especially adapted to this group of patients. The treatment period will be 6 to 7 months. The trial endpoints will be post-traumatic stress disorder and depressive symptoms and social functioning, all measured on validated ratings scales. Furthermore the study will examine the relation between a psycho-social resources and treatment outcome based on 15 different possible outcome predictors. Discussion This study is expected to bring forward new knowledge on treatment and clinical evaluation of traumatized refugees and the results are expected to be used in reference programs and clinical guidelines. Trial registration ClinicalTrials.gov NCT01569685 PMID:23663588
Arciniegas, David B.
2011-01-01
Cognitive, emotional, behavioral, and sensorimotor disturbances are the principal clinical manifestations of traumatic brain injury (TBI) throughout the early postinjury period. These post-traumatic neuropsychiatric disturbances present substantial challenges to patients, their families, and clinicians providing their rehabilitative care, the optimal approaches to which remain incompletely developed. In this article, a neuropsychiairically informed, neurobiologically anchored approach to understanding and meeting challenges is described. The foundation for thai approach is laid, with a review of clinical case definitions of TBI and clarification of their intended referents. The differential diagnosis of event-related neuropsychiatric disturbances is considered next, after which the clinical and neurobiological heterogeneity within the diagnostic category of TBI are discussed. The clinical manifestations of biomechanical force-induced brain dysfunction are described as a state of post-traumatic encephalopathy (PTE) comprising several phenomenologically distinct stages, PTE is then used as a framework for understanding and clinically evaluating the neuropsychiatric sequelae of TBI encountered commonly during the early post-injury rehabilitation period, and for considering the types and timings of neurorehabilitative interventions. Finally, directions for future research that may address productively the challenges to TBI rehabilitation presented by neuropsychiatric disturbances are considered. PMID:22034400
76 FR 544 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... published a notice seeking comment on a new proposed public information collection: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of Life Outcomes in Injured Tri-Service U.S...
Levetiracetam-induced neutropenia following traumatic brain injury.
Bunnell, Kristen; Pucci, Francesco
2015-01-01
Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.
2017-11-06
Organic Brain Syndrome, Nonpsychotic; Neurocognitive Disorders; Mental Disorder, Organic; Delirium, Dementia, Amnestic, Cognitive Disorders; Nonpsychotic Organic Brain Syndrome; Organic Mental Disorder; Encephalopathy, Post-Traumatic, Chronic; Encephalopathy, Ischemic; Brain Ischemia
Ackerman, Rosalie J
2004-11-01
This article presents a case study of a 39-year-old European American married woman with a history of child and adolescent incest,marital rape, and physical abuse from her husband for more than 10 years. She was referred to a pain clinic for treatment of headaches and Tourette's syndrome. The client was evaluated with the Ackerman-Banks Neuropsychological Rehabilitation Battery to identify neuropsychological strengths and weaknesses. The Vulnerability to Stress Audit was used to identify life events that were positively and negatively influencing her life. The client was treated for mild traumatic brain injury, post-traumatic stress disorder,cognitive difficulties, impulsivity, confabulation, low frustration tolerance, and inability to evaluate and make decisions about socially appropriate behaviors. Treatment involved traditional psychotherapy, hypnosis, cognitive rehabilitation, biofeedback training, electromyography, finger temperature, and blood pressure.
Reid, Matthew W; Cooper, Douglas B; Lu, Lisa H; Iverson, Grant L; Kennedy, Jan E
2018-05-15
The objective of this study was to assess the associations between resilience, adversity, post-concussion symptoms, and post-traumatic stress symptom reporting after mild traumatic brain injury (mTBI). We hypothesized that resilience would be associated with less symptom reporting, and adversity would be associated with greater symptom reporting. This was a cross-sectional study of retrospective data collected for an ongoing TBI repository. United States military service members who screened positive for mTBI during a primary care visit completed the Trauma History Screen (THS), Connor-Davidson Resilience Scale (CD-RISC), Neurobehavioral Symptom Inventory (NSI), and post-traumatic stress disorder (PTSD) Checklist-Civilian Version (PCL-C). Data collected from February 2015 to August 2016 were used for the present study. Only participants with complete data for the above measures were included, yielding a sample size of 165 participants. Adversity (THS) and resilience (CD-RISC) scores were each correlated significantly with post-concussion (NSI) and traumatic stress (PCL-C) total and subscale scores in the hypothesized direction. Interactions between adversity and resilience were absent for all measures except the NSI sensory subscale. Four traumatic event types were significantly associated positively with most NSI and PCL-C total and subscale scores, but the age at which traumatic events were first experienced showed few and mixed significant associations. In conclusion, resilience and adversity were significantly associated with symptom endorsement after mTBI. Screening for cumulative adversity may identify individuals at greater risk of developing persistent post-concussion symptoms and/or PTSD, and interventions that increase resilience may reduce symptom severity.
Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G.; Campbell, Ashley M.; Saavedra, Juan M.; Shewmaker, Frank P.; Symes, Aviva J.
2016-01-01
Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. PMID:26435412
Medical Surveillance Monthly Report (MSMR). Volume 22, Number 12, December 2015
2015-12-01
veterans in whom chronic pain may be comorbid with, and exacerbated by, post-traumatic stress disorder (PTSD), depression, or traumatic brain...unspecifi ed 51 780.52 Insomnia , unspecifi ed 46 723.1 Cervicalgia Other chronic pain Chronic pain syndrome No. ICD-9code Description No. ICD-9 code...without myelopathy 982 719.45 Pain in joint involving pelvic region and thigh 205 309.81 Post-traumatic stress disorder 961 722.52 Degeneration of
2013-04-11
of loss of or a decreased level of consciousness (LOC) -Any loss of memory for events immediately before or after the injury [post-traumatic amnesia ...diagnosis and is unlikely to change within the medical community. Symptoms of PTSD and TBI Symptom ASD and PTSD TBI Dissociation Emotional... Amnesia Present Present Reexperiencing Recurrent images Present Present Nightmares Present NA Distress on reminders
Hadanny, Amir; Efrati, Shai
2016-08-01
Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.
The Cost of Treating Post Traumatic Stress Disorder and Mild Traumatic Brain Injuries
2010-03-01
and may increase the risk for Alzheimer‟ s disease and Parkinson ‟ s disease as the person ages (Traumatic Brain Injury: Hope Through Research, 2002...not injured and can be sent back into battle , when there could be an undetected internal injury. Due to the overlap in symptoms, many soldiers are...the constant support and advice from Major Shay Capehart was fundamental in moving this research along. Lt Col Eric Unger‟ s guidance and wisdom was
Iverson, Grant L; Langlois, Jean A; McCrea, Michael A; Kelly, James P
2009-11-01
There is ongoing debate regarding the epidemiology of mild traumatic brain injury (MTBI) in military personnel. Accurate and timely estimates of the incidence of brain injury and the prevalence of long-term problems associated with brain injuries among active duty service members and veterans are essential for (a) operational planning, and (b) to allocate sufficient resources for rehabilitation and ongoing services and supports. The purpose of this article is to discuss challenges associated with post-deployment screening for MTBI. Multiple screening methods have been used in military, Veterans Affairs, and independent studies, which complicate cross-study comparisons of the resulting epidemiological data. We believe that post-deployment screening is important and necessary--but no screening methodology will be flawless, and false positives and false negatives are inevitable. Additional research is necessary to refine the sequential screening methodology, with the goal of minimizing false negatives during initial post-deployment screening and minimizing false positives during follow-up evaluations.
Harch, Paul G.; Andrews, Susan R.; Fogarty, Edward F.; Lucarini, Juliette; Van Meter, Keith W.
2017-01-01
Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18–65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma (n = 6), transient deterioration in symptoms (n = 7), reversible bronchospasm (n = 1), and increased anxiety (n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis (n = 1), chest pain (n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and reduction in psychoactive medication use. PMID:29152209
Harch, Paul G; Andrews, Susan R; Fogarty, Edward F; Lucarini, Juliette; Van Meter, Keith W
2017-01-01
Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18-65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma ( n = 6), transient deterioration in symptoms ( n = 7), reversible bronchospasm ( n = 1), and increased anxiety ( n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis ( n = 1), chest pain ( n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and reduction in psychoactive medication use.
Feature: Post Traumatic Stres Disorder PTSD: Symptoms, Diagnosis, Treatment
... Navigation Bar Home Current Issue Past Issues Feature PTSD Symptoms, Diagnosis , Treatment Past Issues / Winter 2009 Table ... Symptoms As with mild traumatic brain injury (TBI), PTSD symptoms can be very subtle. "For example, some ...
Mierzwa, Amanda J.; Marion, Christina M.; Sullivan, Genevieve M.; McDaniel, Dennis P.; Armstrong, Regina C.
2015-01-01
Abstract White matter tracts are highly vulnerable to damage from impact-acceleration forces of traumatic brain injury (TBI). Mild TBI is characterized by a low density of traumatic axonal injury, whereas associated myelin pathology is relatively unexplored. We examined the progression of white matter pathology in mice after mild TBI with traumatic axonal injury localized in the corpus callosum. Adult mice received a closed-skull impact and were analyzed from 3 days to 6 weeks post-TBI/sham surgery. At all times post-TBI, electron microscopy revealed degenerating axons distributed among intact fibers in the corpus callosum. Intact axons exhibited significant demyelination at 3 days followed by evidence of remyelination at 1 week. Accordingly, bromodeoxyuridine pulse-chase labeling demonstrated the generation of new oligodendrocytes, identified by myelin proteolipid protein messenger RNA expression, at 3 days post-TBI. Overall oligodendrocyte populations, identified by immunohistochemical staining for CC1 and/or glutathione S-transferase pi, were similar between TBI and sham mice by 2 weeks. Excessively long myelin figures, similar to redundant myelin sheaths, were a significant feature at all post-TBI time points. At 6 weeks post-TBI, microglial activation and astrogliosis were localized to areas of axon and myelin pathology. These studies show that demyelination, remyelination, and excessive myelin are components of white matter degeneration and recovery in mild TBI with traumatic axonal injury. PMID:25668562
Predictors of cognitive and physical fatigue in post-acute mild-moderate traumatic brain injury.
Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Hanson, Karen L; Sorg, Scott F; Orff, Henry; Clark, Alexandra L
2017-10-01
Post-traumatic fatigue (PTF) is a common, disabling, and often chronic symptom following traumatic brain injury (TBI). Yet, the impact of chronic cognitive and physical fatigue and their associations with psychiatric, sleep, cognitive, and psychosocial sequelae in mild-moderate TBI remain poorly understood. Sixty Veterans with a history of mild-moderate TBI and 40 Veteran controls (VC) were administered the Modified Fatigue Impact Scale, a validated measure of TBI-related cognitive and physical fatigue as well as measures of neuropsychiatric, psychosocial, sleep, and objective cognitive functioning. Compared to VC, TBI Veterans endorsed significantly greater levels of cognitive and physical fatigue. In TBI, psychiatric symptoms, sleep disturbance, and post-traumatic amnesia (PTA) were associated with both cognitive and physical fatigue, while loss of consciousness (LOC) and poor attention/processing speed were related to elevations in cognitive fatigue only. In regression analyses, anxiety, sleep disturbance, and LOC significantly predicted cognitive fatigue, while only post-traumatic stress symptoms and PTA contributed to physical fatigue. Cognitive and physical fatigue are problematic symptoms following mild-moderate TBI that are differentially associated with specific injury and psychiatric sequelae. Findings provide potential symptom targets for interventions aimed at ameliorating fatigue, and further underscore the importance of assessing and treating fatigue as a multi-dimensional symptom following TBI.
ERIC Educational Resources Information Center
Graham, Carolyn W.; West, Michael D.; Bourdon, Jessica L.; Inge, Katherine J.; Seward, Hannah E.
2016-01-01
Individuals with traumatic brain injury (TBI) often struggle to obtain competitive employment after sustaining a TBI, commonly as a result of the post-injury difficulties they exhibit (Andelic, Stevens, Sigurdardottir, Arango-Lasprilla, & Roe, 2009; Mansfield et al., 2015). The currently reported unemployment rate for people with TBI is…
Traumatic stress: effects on the brain
Bremner, J. Douglas
2006-01-01
Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Traumatic stress can be associated with lasting changes in these brain areas. Traumatic stress is associated with increased cortisol and norepinephrine responses to subsequent stressors. Antidepressants have effets on the hippocampus that counteract the effects of stress. Findings from animal studies have been extended to patients with post-traumatic stress disorder (PTSD) showing smaller hippocampal and anterior cingulate volumes, increased amygdala function, and decreased medial prefrontal/anterior cingulate function. In addition, patients with PTSD show increased cortisol and norepinephrine responses to stress. Treatments that are efficacious for PTSD show a promotion of neurogenesis in animal studies, as well as promotion of memory and increased hippocampal volume in PTSD. PMID:17290802
The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.
Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie
2016-05-01
Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.
Rathbone, Alasdair Timothy Llewelyn; Tharmaradinam, Surejini; Jiang, Shucui; Rathbone, Michel P; Kumbhare, Dinesh A
2015-05-01
Post-concussion syndrome is an aggregate of symptoms that commonly present together after head injury. These symptoms, depending on definition, include headaches, dizziness, neuropsychiatric symptoms, and cognitive impairment. However, these symptoms are common, occurring frequently in non-head injured controls, leading some to question the existence of post-concussion syndrome as a unique syndrome. Therefore, some have attempted to explain post-concussion symptoms as post-traumatic stress disorder, as they share many similar symptoms and post-traumatic stress disorder does not require head injury. This explanation falls short as patients with post-concussion syndrome do not necessarily experience many key symptoms of post-traumatic stress disorder. Therefore, other explanations must be sought to explain the prevalence of post-concussion like symptoms in non-head injury patients. Many of the situations in which post-concussion syndrome like symptoms may be experienced such as infection and post-surgery are associated with systemic inflammatory responses, and even neuroinflammation. Post-concussion syndrome itself has a significant neuroinflammatory component. In this review we examine the evidence of neuroinflammation in post-concussion syndrome and the potential role systemic inflammation plays in post-concussion syndrome like symptoms. We conclude that given the overlap between these conditions and the role of inflammation in their etiologies, a new term, post-inflammatory brain syndromes (PIBS), is necessary to describe the common outcomes of many different inflammatory insults. The concept of post-concussion syndrome is in its evolution therefore, the new term post-inflammatory brain syndromes provides a better understanding of etiology of its wide-array of symptoms and the wide array of conditions they can be seen in. Copyright © 2015 Elsevier Inc. All rights reserved.
Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A
2010-09-01
"The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.
Klose, M; Juul, A; Struck, J; Morgenthaler, N G; Kosteljanetz, M; Feldt-Rasmussen, U
2007-10-01
To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations. A 12-month prospective study. Forty-six consecutive patients with TBI (mild: N = 22; moderate: N = 9; severe: N = 15). Baseline and stimulated hormone concentrations were assessed in the early phase (0-12 days post-traumatically), and at 3, 6 and 12 months postinjury. Pituitary tests included the Synacthen-test (acute +6 months) and the insulin tolerance test (ITT) or the GHRH + arginine test if the ITT was contraindicated (3 + 12 months). Insufficiencies were confirmed by retesting. Early post-traumatic hormone alterations mimicking central hypogonadism or hypothyroidism were present in 35 of the 46 (76%) patients. Three months post-traumatically, 6 of the 46 patients failed anterior pituitary testing. At 12 months, one patient had recovered, whereas none developed new insufficiencies. All insufficient patients had GH deficiency (5 out of 46), followed by ACTH- (3 out of 46), TSH- (1 out of 46), LH/FSH- (1 out of 46) and ADH deficiency (1 out of 46). Hypopituitary patients had more frequently been exposed to severe TBI (4 out of 15) than to mild or moderate TBI (1 out of 31) (P = 0.02). Early endocrine alterations including lowered thyroid and gonadal hormones, and increased total cortisol, free cortisol and copeptin were positively associated to TBI severity (P < 0.05), but not to long-term development of hypopituitarism (P > 0.1), although it was indicative in some. Long-term hypopituitarism was frequent only in severe TBI. During the 3-12 months follow-up, recovery but no new insufficiencies were recorded, indicating manifest hypothalamic or pituitary damage already a few months postinjury. Very early hormone alterations were not associated to long-term post-traumatic hypopituitarism. Clinicians should, nonetheless, be aware of potential ACTH deficiency in the early post-traumatic period.
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Williford, Joshua P.; Cota, Martin R.; MacLaren, Judy M.; Dardzinski, Bernard J.; Latour, Lawrence L.; Pham, Dzung L.; Butman, John A.
2016-03-01
Traumatic meningeal injury is a novel imaging marker of traumatic brain injury, which appears as enhancement of the dura on post-contrast T2-weighted FLAIR images, and is likely associated with inflammation of the meninges. Dynamic Contrast Enhanced MRI provides a better discrimination of abnormally perfused regions. A method to properly identify those regions is presented. Images of seventeen patients scanned within 96 hours of head injury with positive traumatic meningeal injury were normalized and aligned. The difference between the pre- and last post-contrast acquisitions was segmented and voxels in the higher class were spatially clustered. Spatial and morphological descriptors were used to identify the regions of enhancement: a) centroid; b) distance to the brain mask from external voxels; c) distance from internal voxels; d) size; e) shape. The method properly identified thirteen regions among all patients. The method failed in one case due to the presence of a large brain lesion that altered the mask boundaries. Most false detections were correctly rejected resulting in a sensitivity and specificity of 92.9% and 93.6%, respectively.
Diamond, David M.; Shinozuka, Kazutaka; Ishikawa, Hiroto; Hernandez, Diana G.; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesar V.
2013-01-01
Long-term consequences of traumatic brain injury (TBI) are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD), yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long-term inflammation and suppressed cell proliferation may evolve into more severe neurodegenerative diseases and psychiatric disorders currently being recognized in traumatized TBI patients. PMID:24349091
de Guise, E; LeBlanc, J; Feyz, M; Lamoureux, J; Greffou, S
2017-01-01
The goal of this study was to identify factors that would predict short-term neuropsychological outcome in patients with traumatic brain injury (TBI) hospitalized in an acute rehabilitation setting. Data was collected in the context of an acute early rehabilitation setting of a trauma centre. A brief neuropsychological assessment was carried out for 348 patients within a month following their trauma. Length of post-traumatic amnesia (PTA) was the best predictor of behavioural, memory and executive function variables within a month post TBI. The odds of being agitated, labile, irritable and disinhibited at one month post trauma were almost six times higher for those with PTA that lasted more than 7 days compared to those with a PTA of less than 24 hours. Also, the odds of having a higher mental manipulation score (less significant executive function impairment) were almost two times lower for those with frontal lesions, and three to six times lower for those with PTA of more than 24 hours. In addition, TBI severity, education and age were considered good predictors of some aspects of neuropsychological outcome. This model may help clinicians and administrators recognize the probable post-traumatic deficits as quickly as possible and to plan interventions as well as post-acute discharge orientation accordingly and early on.
Concussion and Mild Traumatic Brain Injury: An Annotated Bibliography
2013-08-01
GCS – Glasgow Coma Scale IED- improvised explosive device LOC - loss of consciousness mTBI- mild traumatic brain injury PCS- post-concussion...Journal of Sport Medicine, 9, 193-198. Hospital patients who experienced LOC following a concussion were compared to concussed individuals who did...not experience LOC . The neuropsychological test measures used by the hospital, found no significant differences between the two groups, suggesting
ERIC Educational Resources Information Center
Ryu, Won Hyung A.; Cullen, Nora K.; Bayley, Mark T.
2010-01-01
This study explored the relative strength of five neuropsychological tests in correlating with productivity 1 year after traumatic brain injury (TBI). Six moderate-to-severe TBI patients who returned to work at 1-year post-injury were matched with six controls who were unemployed after 1 year based on age, severity of injury, and Functional…
Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G; Campbell, Ashley M; Saavedra, Juan M; Shewmaker, Frank P; Symes, Aviva J
2015-10-01
Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment
Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann
2010-01-01
Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782
Traumatic Alterations in Consciousness: Traumatic Brain Injury
Blyth, Brian J.; Bazarian, Jeffrey J.
2010-01-01
Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244
Li, Ying; Korgaonkar, Akshata A; Swietek, Bogumila; Wang, Jianfeng; Elgammal, Fatima S; Elkabes, Stella; Santhakumar, Vijayalakshmi
2015-02-01
Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.
Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan
2014-09-01
Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient.
Treating post-traumatic tremor with deep brain stimulation: report of five cases.
Issar, Neil M; Hedera, Peter; Phibbs, Fenna T; Konrad, Peter E; Neimat, Joseph S
2013-12-01
Post-traumatic tremor is one of the most common movement disorders resulting from severe head trauma. However, literature regarding successful deep brain stimulation (DBS) treatment is scarce, resulting in ambiguity regarding the optimal lead location. Most cases support the ventral intermediate nucleus, but there is evidence to defend DBS of the zona incerta, ventral oralis anterior/posterior, and/or a combination of these targets. We report five patients with disabling post-traumatic tremor treated with DBS of the ventral intermediate nucleus and of the globus pallidus internus. Patients were referred to the Vanderbilt Movement Disorders Division, and surgical intervention was determined by a DBS Multidisciplinary Committee. Standard DBS procedure was followed. Patients 1-4 sustained severe diffuse axonal injuries. Patients 1-3 underwent unilateral ventral intermediate nucleus DBS for contralateral tremor, while Patient 4 underwent bilateral ventral intermediate nucleus DBS. Patients 1-3 experienced good tremor reduction, while Patient 4 experienced moderate tremor reduction with some dystonic posturing of the hands. Patient 5 had dystonic posturing of the right upper extremity with tremor of the left upper extremity. He was treated with bilateral DBS of the globus pallidus internus and showed good tremor reduction at follow-up. Unilateral or bilateral DBS of the ventral intermediate nucleus and bilateral DBS of the globus pallidus internus may be effective and safe treatment modalities for intractable post-traumatic tremor. Further studies are needed to clarify the optimal target for surgical treatment of post-traumatic tremor. Published by Elsevier Ltd.
Haarbauer-Krupa, Juliet; Taylor, Christopher A.; Yue, John K.; Winkler, Ethan A.; Pirracchio, Romain; Cooper, Shelly R.; Burke, John F.; Stein, Murray B.
2017-01-01
Abstract Post-traumatic stress disorder (PTSD) is a condition associated with traumatic brain injury (TBI). While the importance of PTSD and TBI among military personnel is widely recognized, there is less awareness of PTSD associated with civilian TBI. We examined the incidence and factors associated with PTSD 6 months post-injury in a civilian emergency department population using measures from the National Institute of Neurological Disorders and Stroke TBI Common Data Elements Outcome Battery. Participants with mild TBI (mTBI) from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with complete 6-month outcome batteries (n = 280) were analyzed. Screening for PTSD symptoms was conducted using the PTSD Checklist-Civilian Version. Descriptive measures are summarized and predictors for PTSD were examined using logistic regression. Incidence of screening positive for PTSD was 26.8% at 6 months following mTBI. Screening positive for PTSD was significantly associated with concurrent functional disability, post-concussive and psychiatric symptomatology, decreased satisfaction with life, and decreased performance in visual processing and mental flexibility. Multi-variable regression showed injury mechanism of assault (odds ratio [OR] 3.59; 95% confidence interval [CI] 1.69–7.63; p = 0.001) and prior psychiatric history (OR 2.56; 95% CI 1.42–4.61; p = 0.002) remained significant predictors of screening positive for PTSD, while education (per year OR 0.88; 95% CI 0.79–0.98; p = 0.021) was associated with decreased odds of PTSD. Standardized data collection and review of pre-injury education, psychiatric history, and injury mechanism during initial hospital presentation can aid in identifying patients with mTBI at risk for developing PTSD symptoms who may benefit from closer follow-up after initial injury care. PMID:26936513
Haarbauer-Krupa, Juliet; Taylor, Christopher A; Yue, John K; Winkler, Ethan A; Pirracchio, Romain; Cooper, Shelly R; Burke, John F; Stein, Murray B; Manley, Geoffrey T
2017-01-01
Post-traumatic stress disorder (PTSD) is a condition associated with traumatic brain injury (TBI). While the importance of PTSD and TBI among military personnel is widely recognized, there is less awareness of PTSD associated with civilian TBI. We examined the incidence and factors associated with PTSD 6 months post-injury in a civilian emergency department population using measures from the National Institute of Neurological Disorders and Stroke TBI Common Data Elements Outcome Battery. Participants with mild TBI (mTBI) from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with complete 6-month outcome batteries (n = 280) were analyzed. Screening for PTSD symptoms was conducted using the PTSD Checklist-Civilian Version. Descriptive measures are summarized and predictors for PTSD were examined using logistic regression. Incidence of screening positive for PTSD was 26.8% at 6 months following mTBI. Screening positive for PTSD was significantly associated with concurrent functional disability, post-concussive and psychiatric symptomatology, decreased satisfaction with life, and decreased performance in visual processing and mental flexibility. Multi-variable regression showed injury mechanism of assault (odds ratio [OR] 3.59; 95% confidence interval [CI] 1.69-7.63; p = 0.001) and prior psychiatric history (OR 2.56; 95% CI 1.42-4.61; p = 0.002) remained significant predictors of screening positive for PTSD, while education (per year OR 0.88; 95% CI 0.79-0.98; p = 0.021) was associated with decreased odds of PTSD. Standardized data collection and review of pre-injury education, psychiatric history, and injury mechanism during initial hospital presentation can aid in identifying patients with mTBI at risk for developing PTSD symptoms who may benefit from closer follow-up after initial injury care.
JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis
2013-07-01
temporal lobe epilepsy (TLE), a frequently medically intractable and permanent epilepsy syndrome. Unlike many TLE models, which cause global brain injury...addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well-established etiology of temporal lobe epilepsy (TLE), a...is one of the most common causes of temporal lobe epilepsy (TLE). Changes in inhibitory signaling after CCI include hilar inhibitory neuron loss
ERIC Educational Resources Information Center
Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary
2008-01-01
The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…
Inge, Katherine J; Graham, Carolyn W; McLaughlin, James W; Erickson, Doug; Wehman, Paul; Seward, Hannah E
2017-09-14
Individuals with traumatic brain injury (TBI) experience difficulty with obtaining and maintaining employment post-injury. Although vocational rehabilitation (VR) can be one option to provide individuals with TBI support and services to lead to successful employment outcomes, information about these services can be difficult and confusing to navigate. Providing information on evidence-based employment practices to individuals with TBI through social media could be an effective approach. The objective of this study was to compare the effect of a knowledge translation (KT) strategy and the use of a secret Facebook group, on the knowledge of evidence-based employment research by individuals with traumatic brain injury (TBI). The study used a randomized pretest-posttest control group design. Sixty individuals with TBI were recruited through clubhouse programs in the state where the authors resided as well as through support groups nationally for individuals with TBI, and were randomly assigned to one of two groups. Both groups received information on evidence-based employment practices for individuals with traumatic brain injury (TBI) over a three month period. One group received the information via participation in a secret Facebook group while the comparison group received information as an "e-news" email blast. Participants were assessed pre- and post-intervention with a Likert-scale instrument designed to measure knowledge of evidenced-based employment information for TBI. Both groups gained a significant amount of knowledge between baseline and post-intervention. However, there were no significant differences between groups in knowledge gained at post-intervention. While the study did not identify the most effective means of delivering information to individuals with TBI, it does provide some guidance for future KT research.
Campbell, John N; Gandhi, Anandh; Singh, Baljinderjit; Churn, Severn B
2014-01-01
Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later.
Campbell, John N.; Gandhi, Anandh; Singh, Baljinderjit; Churn, Severn B.
2014-01-01
Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later. PMID:25580467
Lange, Rael T; Brickell, Tracey; French, Louis M; Ivins, Brian; Bhagwat, Aditya; Pancholi, Sonal; Iverson, Grant L
2013-02-15
The purpose of this study was to identify factors that are predictive of, or associated with, postconcussion symptom reporting after traumatic brain injury (TBI) in the U.S. military. Participants were 125 U.S. military service members (age: M=29.6 years, standard deviation [SD]=8.9, range=18-56 years) who sustained a TBI, divided into two groups based on symptom criteria for postconcussional disorder (PCD): PCD-Present (n=65) and PCD-Absent (n=60). Participants completed a neuropsychological evaluation at Walter Reed Army Medical Center (M=9.4 months after injury, SD=9.9; range: 1.1 to 44.8). Factors examined included demographic characteristics, injury-related variables, psychological testing, and effort testing. There were no significant group differences for age, sex, education, race, estimated premorbid intelligence, number of deployments, combat versus non-combat related injury, or mechanism of injury (p>0.098 for all). There were significant main effects for severity of body injury, duration of loss of consciousness, duration of post-traumatic amnesia, intracranial abnormality, time tested post-injury, possible symptom exaggeration, poor effort, depression, and traumatic stress (p<0.044 for all). PCD symptom reporting was most strongly associated with possible symptom exaggeration, poor effort, depression, and traumatic stress. PCD rarely occurred in the absence of depression, traumatic stress, possible symptom exaggeration, or poor effort (n=7, 5.6%). Many factors unrelated to brain injury were influential in self-reported postconcussion symptoms in this sample. Clinicians cannot assume uncritically that endorsement of items on a postconcussion symptom checklist is indicative of residual effects from a brain injury.
Prasad, Kedar N; Bondy, Stephen C
2015-03-02
Post-traumatic stress disorder (PTSD) is a complex mental disorder with psychological and emotional components, caused by exposure to single or repeated extreme traumatic events found in war, terrorist attacks, natural or man-caused disasters, and by violent personal assaults and accidents. Mild traumatic brain injury (TBI) occurs when the brain is violently rocked back and forth within the skull following a blow to the head or neck as in contact sports, or when in close proximity to a blast pressure wave following detonation of explosives in the battlefield. Penetrating TBI occurs when an object penetrates the skull and damages the brain, and is caused by vehicle crashes, gunshot wound to the head, and exposure to solid fragments in the proximity of explosions, and other combat-related head injuries. Despite clinical studies and improved understanding of the mechanisms of cellular damage, prevention and treatment strategies for patients with PTSD and TBI remain unsatisfactory. To develop an improved plan for treating and impeding progression of PTSD and TBI, it is important to identify underlying biochemical changes that may play key role in the initiation and progression of these disorders. This review identifies three common biochemical events, namely oxidative stress, chronic inflammation and excitotoxicity that participate in the initiation and progression of these conditions. While these features are separately discussed, in many instances, they overlap. This review also addresses the goal of developing novel treatments and drug regimens, aimed at combating this triad of events common to, and underlying, injury to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.
Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit
2017-01-01
The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.
Impaired Pituitary Axes Following Traumatic Brain Injury
Scranton, Robert A.; Baskin, David S.
2015-01-01
Pituitary dysfunction following traumatic brain injury (TBI) is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed. PMID:26239686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle A.
This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection,more » chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.« less
2016-06-01
smartphone or tablet computer platforms, including both Google Android™ and Apple iOS based devices. Recruiting for the pilot study was very...framework design.. 15. SUBJECT TERMS PTSD, post-traumatic stress disorder, mobile health, self-help, iOS , Android, mindfulness, relaxation... study and subsequent randomized controlled trial (RCT) with post-deployed personnel; and (5) adapting the developed system for several popular
Pilot study of traumatic brain injury and alcohol misuse among service members.
Bogner, Jennifer; French, Louis M; Lange, Rael T; Corrigan, John D
2015-01-01
Explore relationships among traumatic brain injury (TBI), substance misuse and other mental health disorders in US service members and to identify risk factors for substance misuse. Service members (n = 93 in final sample) injured while deployed to Operation Enduring Freedom or Operation Iraqi Freedom. Longitudinal survey at 6 and 12 months post-intake. The following measures were used: problem substance use, Alcohol Expectancies Questionnaire-III, MINI International Neuropsychiatric Interview Substance Abuse Modules, Ohio State University TBI Identification Method, Neurobehavioural Symptom Inventory, Rivermead Post-Concussion Symptoms Questionnaire, Buss-Perry Aggression Questionnaire, Post-Traumatic Stress Disorder Checklist-Civilian Version, Beck Depression Inventory-II, Beck Anxiety Inventory. More severe TBI and post-traumatic stress disorder (PTSD) symptoms at 6 months post-enrolment were associated with decreased odds of substance misuse 12 months after study enrolment. Alcohol expectancies and incurring a TBI at a younger age increased the odds of substance misuse. While the ability to generalize the current findings to a larger population is limited, the results provide direction for future studies on the prevention and treatment of substance misuse following TBI. The unexpected protective effect of more severe TBI may result from prospective attention to the injury and its consequences. Greater preventive benefit may result from identifying more service members with elevated risk. Lifetime history of TBI and alcohol expectancies may be candidate indicators for greater attention.
Roy, Durga; Vaishnavi, Sandeep; Han, Dingfen; Rao, Vani
2017-01-01
Few studies have examined clinical correlates of aggression after first-time traumatic brain injury (TBI) within the first year after injury. The authors aimed to identify the rates of aggression at 6 and 12 months post-TBI and establish clinical and demographic correlates. A total of 103 subjects with first-time TBI were seen within 12 months postinjury and evaluated for aggression. Post-TBI social functioning and new-onset depression (within 3 months of the TBI) may serve as particularly important predictors for aggression within the first year of TBI, as these factors may afford intervention and subsequent decreased risk of aggression.
Management of post-traumatic headaches in children and adolescents.
Kacperski, Joanne; Arthur, Todd
2016-01-01
Traumatic brain injuries (TBI) occur in an estimated 475,000 children aged 0-14 each year. Worldwide, mild traumatic brain injuries (mTBI) represent around 75-90% of all hospital admissions for TBI. mTBI are a common occurrence in children and adolescents, particularly in those involved in athletic activities. An estimated 1.6-3.8 million sports-related TBIs occur each year, including those for which no medical care is sought. Headache is a common occurrence following TBI, reported in as many as 86% of high school and college athletes who have suffered from head trauma. As most clinicians who manage concussion and post-traumatic headaches (PTHs) can attest, these headaches may be difficult to treat. There are currently no established guidelines for the treatment of PTHs, especially when persistent, and practices can vary widely from one clinician to the next. Making medical management more challenging, there are currently no randomized controlled trials evaluating the efficacy of therapies for PTHs in children and adolescents. © 2015 American Headache Society.
Purines: forgotten mediators in traumatic brain injury.
Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M
2016-04-01
Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.
Mazza, Monica; Pino, Maria Chiara; Tempesta, Daniela; Catalucci, Alessia; Masciocchi, Carlo; Ferrara, Michele
2016-01-01
Post-Traumatic Stress Disorder (PTSD) is a chronic anxiety disorder. The continued efforts to control the distressing memories by traumatized individuals, together with the reduction of responsiveness to the outside world, are called Emotional Numbing (EN). The EN is one of the central symptoms in PTSD and it plays an integral role not only in the development and maintenance of post-traumatic symptomatology, but also in the disability of emotional regulation. This disorder shows an abnormal response of cortical and limbic regions which are normally involved in understanding emotions since the very earliest stages of the development of processing ability. Patients with PTSD exhibit exaggerated brain responses to emotionally negative stimuli. Identifying the neural correlates of emotion regulation in these subjects is important for elucidating the neural circuitry involved in emotional and empathic dysfunction. We showed that PTSD patients, all survivors of the L'Aquila 2009 earthquake, have a higher sensitivity to negative emotion and lower empathy levels. These emotional and empathic deficits are accompanied by neural brain functional correlates. Indeed PTSD subjects exhibit functional abnormalities in brain regions that are involved in stress regulation and emotional responses. The reduced activation of the frontal areas and a stronger activation of the limbic areas when responding to emotional stimuli could lead the subjects to enact coping strategies aimed at protecting themselves from the re-experience of pain related to traumatic events. This would result in a dysfunctional hyperactivation of subcortical areas, which may cause emotional distress and, consequently, impaired social relationships often reported by PTSD patients.
Risdall, Jane E.; Menon, David K.
2011-01-01
There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359
Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena
2008-01-01
In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the tested functions was observed in both groups. However, in patients with post-traumatic language processing deficits the degree of recovery of most language functions and some cognitive functions was higher. A significantly greater correlation was revealed within language and cognitive functions, as well as between language functions and other aspects of cognition in patients with post-traumatic language processing deficits than in patients with aphasia following a stroke. Our results show that patients with post-traumatic language processing deficits have a different recovery pattern and a different pattern of correlation between language and cognitive functions compared to patients with aphasia following a stroke. (1) Better understanding of the differences in recovery of language and cognitive functions in patients who have suffered strokes and those who have experienced traumatic brain injury. (2) Better understanding of the relationship between language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. (3) Better understanding of the factors influencing recovery.
Dissecting the Roles of Brain Injury and Combat-Related Stress in Post-Traumatic Headache
2015-10-01
were the major goals of the project? Post-traumatic headache (PTH) is an epidemic in our military personnel. It is a chronic, migraine -like...and affective processing that lead to PTH. Cortical spreading depression (CSD) is the physiological correlate of the migraine aura, but it also...paradigm. NTG infusion triggers migraine without aura in human migraineurs and reduced mechanical allodynia threshold in rodents. This enables 11
Antiepileptic prophylaxis following severe traumatic brain injury within a military cohort.
Cranley, Mark R; Craner, M; McGilloway, E
2016-04-01
Traumatic brain injury increases the risk of both early and late seizures. Antiepileptic prophylaxis reduces early seizures, but their use beyond 1 week does not prevent the development of post-traumatic epilepsy. Furthermore, prolonged prophylaxis exposes patients to side effects of the drugs and has occupational implications. The American Academy of Neurology recommends that antiepileptic prophylaxis should be started for patients with severe traumatic brain injury and discontinued after 1 week. An audit is presented here that investigates the use of prophylaxis in a cohort of military patients admitted to the UK Defence Medical Rehabilitation Centre (DMRC). Data were collected and analysed retrospectively from electronic and paper records between February 2009 and August 2012. The timing and duration of antiepileptic drug use and the incidence of seizures were recorded. During the study period, 52 patients with severe traumatic brain injury were admitted to the rehabilitation centre: 25 patients (48%) were commenced on prophylaxis during the first week following injury while 27 (52%) did not receive prophylaxis. Only one patient (2%) received prophylaxis for the recommended period of 1 week, 22 patients (42%) received prophylaxis for longer than 1 week with a mean duration of 6.2 months. Two patients (4%) had post-traumatic epilepsy and started on treatment at DMRC. The use of antiepileptic prophylaxis varies widely and is generally inconsistent with evidence-based guidance. This exposes some patients to a higher risk of early seizures and others to unnecessary use of antiepileptics. Better implementation of prophylaxis is required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury.
Statler, Kimberly D; Alexander, Henry; Vagni, Vincent; Holubkov, Richard; Dixon, C Edward; Clark, Robert S B; Jenkins, Larry; Kochanek, Patrick M
2006-03-03
Isoflurane improves outcome vs. fentanyl anesthesia, in experimental traumatic brain injury (TBI). We assessed the temporal profile of isoflurane neuroprotection and tested whether isoflurane confers benefit at the time of TBI. Adult, male rats were randomized to isoflurane (1%) or fentanyl (10 mcg/kg iv bolus then 50 mcg/kg/h) for 30 min pre-TBI. Anesthesia was discontinued, rats recovered to tail pinch, and TBI was delivered by controlled cortical impact. Immediately post-TBI, rats were randomized to 1 h of isoflurane, fentanyl, or no additional anesthesia, creating 6 anesthetic groups (isoflurane:isoflurane, isoflurane:fentanyl, isoflurane:none, fentanyl:isoflurane, fentanyl:fentanyl, fentanyl:none). Beam balance, beam walking, and Morris water maze (MWM) performances were assessed over post-trauma d1-20. Contusion volume and hippocampal survival were assessed on d21. Rats receiving isoflurane pre- and post-TBI exhibited better beam walking and MWM performances than rats treated with fentanyl pre- and any treatment post-TBI. All rats pretreated with isoflurane had better CA3 neuronal survival than rats receiving fentanyl pre- and post-TBI. In rats pretreated with fentanyl, post-traumatic isoflurane failed to affect function but improved CA3 neuronal survival vs. rats given fentanyl pre- and post-TBI. Post-traumatic isoflurane did not alter histopathological outcomes in rats pretreated with isoflurane. Rats receiving fentanyl pre- and post-TBI had the worst CA1 neuronal survival of all groups. Our data support isoflurane neuroprotection, even when used at the lowest feasible level before TBI (i.e., when discontinued with recovery to tail pinch immediately before injury). Investigators using isoflurane must consider its beneficial effects in the design and interpretation of experimental TBI research.
The Root Cause of Post-traumatic and Developmental Stress Disorder
2011-03-01
traumatic and Developmental Stress Disorder Keith A. Young, PhD 1 MAR 2010 - 28 FEB 2011Annual01-03-2011 Our overarching scientific hypothesis holds that...highly susceptible to the effects of severe stress . We are studying this question using both clinical and basic approaches. New findings from our...experience induce a variation of normal brain anatomy that makes the brain highly susceptible to the effects of severe stress . The new goal of Project 1 is
Frasca, Diana; Tomaszczyk, Jennifer; McFadyen, Bradford J.; Green, Robin E.
2013-01-01
Objectives: While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. Methods: We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. Results: One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. Conclusion: There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society. PMID:23616755
Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis
2017-10-01
subacute and chronic post -injury periods as a potential prognostic marker for PTE. The SNTF blood test is an electrochemiluminescence-based sandwich...contribution of each of these types of injury to epileptogenic brain activity and ultimately post traumatic epilepsy (PTE) is unclear, as are the mechanisms...nine months post injury, and blood biomarkers are being analyzed throughout in order to evaluate them as potential prognostic measures for the
Veterans in the College Classroom: Guidelines for Instructional Practices
ERIC Educational Resources Information Center
López, Omar S.; Springer, Stephen B.; Nelson, Jeffrey B.
2016-01-01
Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) remain central topics in institutions' efforts to address student veteran needs. From the authors' experiences with student veterans, they present the five principles of effective instructional practice identified by the National Research Council (NRC) within the context of…
Neuroprotective effects of collagen matrix in rats after traumatic brain injury.
Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward
2015-01-01
In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.
NASA Astrophysics Data System (ADS)
Zhan, Wang; Boreta, Lauren; Gauger, Grant
2010-03-01
The alterations of the fornix in mild traumatic brain injury (mTBI) were investigated using diffusion tensor imaging (DTI) and T1-weighetd anatomical imaging. The primary goal of this study was to test that hypothesis that the fornix might play a major role in the memory and learning dysfunctions in the post-concussion syndrome, which may related to the white matter (WM) degradations following mild traumatic brain injury. N=24 mTBI patients were longitudinally studied in two time points with 6-month intervals using a 4-Tesla MRI scanner to measure the WM integrity of fornix and the fornix-to-brain ratio (FBR), and compared with matched healthy controls. Our data show that the WM degradation in fornix onset in the acute stage after mild TBI when the post-injury time was less than 6 weeks, and that this WM degradation continued during the following 6-month period of recovery. In summary, using DTI and structural MRI together can effectively detect the fornix changes in both cross-sectional and longitudinal investigations. Further studies are warranted to exam the association between the fornix alterations and neurocognitive performance of TBI patients.
BPSD following traumatic brain injury.
Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis
2013-01-01
Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.
Fox, Douglas P.; Zoubroulis, Argie; Valente Mortensen, Ole; Raghupathi, Ramesh
2016-01-01
Abstract Traumatic brain injury (TBI) in humans and in animals leads to an acute and sustained increase in tissue glutamate concentrations within the brain, triggering glutamate-mediated excitotoxicity. Excitatory amino acid transporters (EAATs) are responsible for maintaining extracellular central nervous system glutamate concentrations below neurotoxic levels. Our results demonstrate that as early as 5 min and up to 2 h following brain trauma in brain-injured rats, the activity (Vmax) of EAAT2 in the cortex and the hippocampus was significantly decreased, compared with sham-injured animals. The affinity for glutamate (KM) and the expression of glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) were not altered by the injury. Administration of (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), a GLT-1 activator, beginning immediately after injury and continuing for 24 h, significantly decreased neurodegeneration, loss of microtubule-associated protein 2 and NeuN (+) immunoreactivities, and attenuated calpain activation in both the cortex and the hippocampus at 24 h after the injury; the reduction in neurodegeneration remained evident up to 14 days post-injury. In synaptosomal uptake assays, MS-153 up-regulated GLT-1 activity in the naïve rat brain but did not reverse the reduced activity of GLT-1 in traumatically-injured brains. This study demonstrates that administration of MS-153 in the acute post-traumatic period provides acute and long-term neuroprotection for TBI and suggests that the neuroprotective effects of MS-153 are related to mechanisms other than GLT-1 activation, such as the inhibition of voltage-gated calcium channels. PMID:26200170
Caspase 7: increased expression and activation after traumatic brain injury in rats.
Larner, Stephen F; McKinsey, Deborah M; Hayes, Ronald L; W Wang, Kevin K
2005-07-01
Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.
Post-traumatic growth following acquired brain injury: a systematic review and meta-analysis
Grace, Jenny J.; Kinsella, Elaine L.; Muldoon, Orla T.; Fortune, Dónal G.
2015-01-01
The idea that acquired brain injury (ABI) caused by stroke, hemorrhage, infection or traumatic insult to the brain can result in post-traumatic growth (PTG) for individuals is increasingly attracting psychological attention. However, PTG also attracts controversy as a result of ambiguous empirical findings. The extent that demographic variables, injury factors, subjective beliefs, and psychological health are associated with PTG following ABI is not clear. Consequently, this systematic review and meta-analysis explores the correlates of variables within these four broad areas and PTG. From a total of 744 published studies addressing PTG in people with ABI, eight studies met inclusion criteria for detailed examination. Meta-analysis of these studies indicated that growth was related to employment, longer education, subjective beliefs about change post-injury, relationship status, older age, longer time since injury, and lower levels of depression. Results from homogeneity analyses indicated significant inter-study heterogeneity across variables. There is general support for the idea that people with ABI can experience growth, and that various demographics, injury-related variables, subjective beliefs and psychological health are related to growth. The contribution of social integration and the forming of new identities post-ABI to the experience of PTG is explored. These meta-analytic findings are however constrained by methodological limitations prevalent in the literature. Clinical and research implications are discussed with specific reference to community and collective factors that enable PTG. PMID:26321983
Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F
2016-05-01
Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.
Ekmark-Lewén, Sara; Flygt, Johanna; Fridgeirsdottir, Gudrun A; Kiwanuka, Olivia; Hånell, Anders; Meyerson, Bengt J; Mir, Anis K; Gram, Hermann; Lewén, Anders; Clausen, Fredrik; Hillered, Lars; Marklund, Niklas
2016-04-01
Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Hall, Kelley D; Lifshitz, Jonathan
2010-04-06
Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All rights reserved.
Pituitary dysfunction following traumatic brain injury: clinical perspectives
Tanriverdi, Fatih; Kelestimur, Fahrettin
2015-01-01
Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600
Fotakopoulos, George; Makris, Demosthenes; Tsianaka, Eleni; Kotlia, Polikceni; Karakitsios, Paulos; Gatos, Charalabos; Tzannis, Alkiviadis; Fountas, Kostas
2018-01-01
To identify the risk factors for post-traumatic amnesia (PTA) and to document the incidence of PTA after mild traumatic brain injuries. This was a prospective study, affecting mild TBI (mTBI) (Glasgow Coma Scale 14-15) cases attending to the Emergency Department between January 2009 and April 2012 (40 months duration). Patients were divided into two groups (Group A: without PTA, and Group B: with PTA, and they were assessed according to the risk factors. A total of 1762 patients (males: 1002, 56.8%) were meeting study inclusion criteria [Group A: n = 1678 (83.8%), Group B: n = 84 (4.2%)]. Age, CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs, and skull base fractures), anticoagulation therapy and seizures were independent factors of PTA. There was no statistically significant correlation between PTA and sex, convexity fractures, stroke event, mechanism of mTBI (fall +/or beating), hypertension, coronary heart disease, chronic smokers and diabetes (p > 0.005). CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs and skull base fractures), age, seizures and anticoagulation/antiplatelet therapy, were independent factors of PTA and could be used as predictive factors after mTBI.
Hixson, Krista M; Allen, Alex N; Williams, Andrew S; McLeod, Tamara C Valovich
2017-11-01
Clinical Scenario: Mild traumatic brain injury, or concussion, has been associated with physical, cognitive, and emotional sequelae. Little is understood in regard to many characteristics, such as anxiety, and their effect on post-concussion symptoms. Is state anxiety, trait anxiety, or anxiety sensitivity a clinical predictor of symptoms in those presenting with mild traumatic brain injury or concussion? Summary of Key Findings: A literature search returned 3 possible studies; 3 studies met inclusion criteria and included. One study reported in athletes that greater social support was associated with decreased state-anxiety, lower state anxiety post-concussion was associated with increased social support, and that those with greater social support may experience reduced anxiety, regardless of injury type sustained. One study reported baseline trait anxiety in athletes was not significantly associated with post-concussion state anxiety, but that symptoms of depression at baseline was the strongest predictor for post-concussion state anxiety. Three studies reported that state and trait anxiety are not related to increased post-concussion symptom scores. One study reported that greater anxiety sensitivity is related to higher reported post-concussion symptom scores, which may manifest as somatic symptoms following concussion, and revealed that anxiety sensitivity may be a risk factor symptom development. Clinical Bottom Line: There is low-level to moderate evidence to support that anxiety sensitivity is linked to post-concussion symptoms. State and trait anxiety do not appear to be related to post-concussion symptoms alone. Post-concussion state anxiety may occur if post-concussion symptoms of depression are present or if baseline symptoms of depression are present. Better social support may improve state anxiety post-concussion. Strength of Recommendation: There is grade B evidence to support that state and trait anxiety are not risk factors for post-concussion symptom development. There is grade C evidence to support anxiety sensitivity as a risk factor for developing post-concussion symptoms.
A Blast Model of Traumatic Brain Injury in Swine
2011-02-01
the smaller gun had a slower recovery, was extubated 14 minutes post injury, was given 100 mg carprofen IM one hour post injury because of the slow...at 80 psi was extubated 12 minutes post injury, showed signs of pain by excessively grinding teeth and was given 100 mg carprofen one hour post
Tweedie, David; Rachmany, Lital; Rubovitch, Vardit; Li, Yazhou; Holloway, Harold W.; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Hoffer, Barry J.; Pick, Chaim G.; Greig, Nigel H.
2015-01-01
Background Blast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Methods Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. Results B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7–14 and attenuated genes regulated by blast at day 14 post-injury. Conclusions The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life. PMID:26327236
Dymowski, Alicia R; Ponsford, Jennie L; Owens, Jacqueline A; Olver, John H; Ponsford, Michael; Willmott, Catherine
2017-06-01
To investigate the feasibility, safety and efficacy of extended-release methylphenidate in enhancing processing speed, complex attentional functioning and everyday attentional behaviour after traumatic brain injury. Seven week randomised, placebo-controlled, double-blind, parallel pilot study. Inpatient and outpatient Acquired Brain Injury Rehabilitation Program. Eleven individuals with reduced processing speed and/or attention deficits following complicated mild to severe traumatic brain injury. Participants were allocated using a blocked randomisation schedule to receive daily extended-release methylphenidate (Ritalin ® LA at a dose of 0.6 mg/kg) or placebo (lactose) in identical capsules. Tests of processing speed and complex attention, and ratings of everyday attentional behaviour were completed at baseline, week 7 (on-drug), week 8 (off-drug) and 9 months follow-up. Vital signs and side effects were monitored from baseline to week 8. Three percent ( n = 11) of individuals screened participated (mean post-traumatic amnesia duration = 63.80 days, SD = 45.15). Results were analysed for six and four individuals on methylphenidate and placebo, respectively. Groups did not differ on attentional test performance or relative/therapist ratings of everyday attentional behaviour. One methylphenidate participant withdrew due to difficulty sleeping. Methylphenidate was associated with trends towards increased blood pressure and reported anxiety. Methylphenidate was not associated with enhanced processing speed, attentional functioning or everyday attentional behaviour after traumatic brain injury. Alternative treatments for attention deficits after traumatic brain injury should be explored given the limited feasibility of methylphenidate in this population.
2010-01-01
and treatment of traumatic brain injury ( TBI ) in service members returning from combat- deployment [1]. Several recent studies provide incidence...DVBlC) at Walter Reed Army between January 2003 and met criteria for mild TBI [3]. prevalence study of of the sample of over 22qCJltrjeSI)0...improvements in body armour, increased screening and diagnosis and greater knowledge and awareness of mild TBI arising from civilian sports-related
2015-10-01
imaging and 7T- MRI to the Australian Imaging Biomarkers and Lifestyle - Veterans study (AIBL-VETS) of post-traumatic stress disorder and...focal and widespread changes in white matter integrity. 4: 7T- MRI will reveal more extensive microhemorrhage than seen on 3T- MRI and this will relate to...PET imaging, and MRI as well as clinical and neuropsychological tools to identify war veterans at risk of Alzheimer’s disease (AD) and chronic
Tagge, Chad A; Fisher, Andrew M; Minaeva, Olga V; Gaudreau-Balderrama, Amanda; Moncaster, Juliet A; Zhang, Xiao-Lei; Wojnarowicz, Mark W; Casey, Noel; Lu, Haiyan; Kokiko-Cochran, Olga N; Saman, Sudad; Ericsson, Maria; Onos, Kristen D; Veksler, Ronel; Senatorov, Vladimir V; Kondo, Asami; Zhou, Xiao Z; Miry, Omid; Vose, Linnea R; Gopaul, Katisha R; Upreti, Chirag; Nowinski, Christopher J; Cantu, Robert C; Alvarez, Victor E; Hildebrandt, Audrey M; Franz, Erich S; Konrad, Janusz; Hamilton, James A; Hua, Ning; Tripodis, Yorghos; Anderson, Andrew T; Howell, Gareth R; Kaufer, Daniela; Hall, Garth F; Lu, Kun P; Ransohoff, Richard M; Cleveland, Robin O; Kowall, Neil W; Stein, Thor D; Lamb, Bruce T; Huber, Bertrand R; Moss, William C; Friedman, Alon; Stanton, Patric K; McKee, Ann C; Goldstein, Lee E
2018-01-01
Abstract The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood–brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood–brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath. PMID:29360998
Delayed activation of the primary orbitofrontal cortex in post-traumatic anosmia.
Lee, Vincent Kyu; Nardone, Raffaele; Wasco, Fern; Panigrahy, Ashok; Zuccoli, Giulio
2016-01-01
Functional magnetic resonance imaging may help in elucidating the pathophysiology of post-traumatic anosmia. Using an fMRI olfactory stimulus paradigm, this study compared BOLD activation of the brain in a 21-year old male research subject with post-traumatic anosmia and a 19-year old male normal healthy control participant. A delayed activation of the primary orbitofrontal cortex was found in the subject with traumatic anosmia, which may represent a crucial pathophysiological mechanism in the subject with traumatic anosmia due to axonal injury or traumatic transection at the lamina cribrosa level. In healthy subjects the activation of secondary cortical areas may be due to the habituation effect in the primary olfactory cortex. This raises the possibility that, in the absence of secondary activation areas-that may act as a feed-back habituation or desensitization in the patient-one of the primary response areas is activated over the longer period of stimulation. The failed activation of these secondary areas in the patient may cause a feed-back habituation or desensitization in the patient and could also play a role in the disturbed perception of odours.
MMPI-2 profiles 23 years after paediatric mild traumatic brain injury.
Hessen, Erik; Anderson, Vicki; Nestvold, Knut
2008-01-01
Research suggest that post-concussive syndrome after mild traumatic brain injury (mTBI) is more common than chronic cognitive impairment. The aim of this study was to investigate very long-term outcome of subjective complaints after paediatric mTBI. The study was a follow-up 23 years after a prospective head injury study at a general hospital in Norway. Forty-one patients were assessed with the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) 23 years after sustaining mTBI as children. A good overall outcome was found with scores close to the normative mean, average length of education and normal employment rate. However, the children that sustained complicated mTBI showed slightly more pathological scores, typical for mild post-concussive syndrome. The most important predictors of poor outcome were skull fracture and a combination of post-traumatic amnesia > 30 minutes and EEG pathology within 24 hours after TBI. No influence of pre- and post-injury risk factors on current MMPI-2 profiles was evident. The results give support for the notion of potentially differential impact of uncomplicated vs complicated mTBI. The findings suggest that children and adolescents sustaining complicated mTBI may be at risk of developing subtle chronic symptoms typical of post-concussive syndrome.
Serving Wounded Warriors in the Classroom
ERIC Educational Resources Information Center
Bennett, Dawn
2014-01-01
An influx of veterans is returning to the classroom; as many as a third are returning as wounded warriors with disabilities, such as Post-Traumatic Stress Disorder and Traumatic Brain Injury which affect classroom success. Research indicates that although many colleges and universities strive to support veterans by assisting with the GI Bill and…
Shear, Deborah A.; Potter, Brittney; Marcsisin, Sean R.; Sousa, Jason; Melendez, Victor; Tortella, Frank C.; Lu, Xi-Chun M.
2013-01-01
Abstract Acute seizures frequently occur following severe traumatic brain injury (TBI) and have been associated with poor patient prognosis. Silent or nonconvulsive seizures (NCS) manifest in the absence of motor convulsion, can only be detected via continuous electroencephalographic (EEG) recordings, and are often unidentified and untreated. Identification of effective anti-epileptic drugs (AED) against post-traumatic NCS remains crucial to improve neurological outcome. Here, we assessed the anti-seizure profile of ethosuximide (ETX, 12.5–187.5 mg/kg) and phenytoin (PHT, 5–30 mg/kg) in a spontaneously occurring NCS model associated with penetrating ballistic-like brain injury (PBBI). Rats were divided between two drug cohorts, PHT or ETX, and randomly assigned to one of four doses or vehicle within each cohort. Following PBBI, NCS were detected by continuous EEG monitoring for 72 h post-injury. Drug efficacy was evaluated on NCS parameters of incidence, frequency, episode duration, total duration, and onset latency. Both PHT and ETX attenuated NCS in a dose-dependent manner. In vehicle-treated animals, 69–73% experienced NCS (averaging 9–10 episodes/rat) with average onset of NCS occurring at 30 h post-injury. Compared with control treatment, the two highest PHT and ETX doses significantly reduced NCS incidence to 13–40%, reduced NCS frequency (1.8–6.2 episodes/rat), and delayed seizure onset: <20% of treated animals exhibited NCS within the first 48 h. NCS durations were also dose-dependently mitigated. For the first time, we demonstrate that ETX and PHT are effective against spontaneously occurring NCS following PBBI, and suggest that these AEDs may be effective at treating post-traumatic NCS. PMID:23822888
Liska, Grant M; Lee, Jea-Young; Xu, Kaya; Sanberg, Paul R; Borlongan, Cesario V
2018-05-21
An exaggerated acoustic startle reflex (ASR) is a clinical indicator of anxiety disorders, such as post-traumatic stress disorder (PTSD). Given the prevalence of PTSD following traumatic brain injury (TBI), we studied the effects of TBI on ASR. Adult Sprague Dawley rats exposed to moderate controlled cortical impact injury model of TBI displayed suppression of ASR intensity and sensitivity. As patients with PTSD have been shown to display hyperactive startle responses, the present discrepant observation of TBI-induced suppression of ASR has clinical implications, in that the reduced, instead of elevated, startle response in patients with comorbid TBI/PTSD could be owing to a masking effect of TBI.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Miller, Kelly J.; Lange, Rael T.; Cooper, Douglas B.; Tate, David F.; Bailie, Jason; Brickell, Tracey A.; French, Louis M.; Asmussen, Sarah; Kennedy, Jan E.
2014-01-01
Abstract Explosive devices have been the most frequent cause of traumatic brain injury (TBI) among deployed contemporary U.S. service members. The purpose of this study was to examine the influence of previous cumulative blast exposures (that did or did not result in TBI) on later post-concussion and post-traumatic symptom reporting after sustaining a mild TBI (MTBI). Participants were 573 service members who sustained MTBI divided into four groups by number of blast exposures (1, 2, 3, and 4–10) and a nonblast control group. Post-concussion symptoms were measured using the Neurobehavioral Symptom Inventory (NSI) and post-traumatic stress disorder (PTSD) symptoms using the Post-traumatic Checklist-Civilian version (PCL-C). Results show groups significantly differed on total NSI scores (p<0.001), where symptom endorsement increased as number of reported blast exposures increased. Total NSI scores were significantly higher for the 3– and 4–10 blast groups compared with the 1- and 2-blast groups with effect sizes ranging from small to moderate (d=0.31 to 0.63). After controlling for PTSD symptoms using the PCL-C total score, NSI total score differences remained between the 4–10-blast group and the 1- and 2-blast groups, but were less pronounced (d=0.35 and d=0.24, respectively). Analyses of NSI subscale scores using PCL-C scores as a covariate revealed significant between-blast group differences on cognitive, sensory, and somatic, but not affective symptoms. Regression analyses revealed that cumulative blast exposures accounted for a small but significant amount of the variance in total NSI scores (4.8%; p=0.009) and total PCL-C scores (2.3%; p<0.001). Among service members exposed to blast, post-concussion symptom reporting increased as a function of cumulative blast exposures. Future research will need to determine the relationship between cumulative blast exposures, symptom reporting, and neuropathological changes. PMID:25036531
Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms.
Wang, Dong; Xu, Xin; Wu, Yin-Gang; Lyu, Li; Zhou, Zi-Wei; Zhang, Jian-Ning
2018-05-01
Traumatic brain injury induces potent inflammatory responses that can exacerbate secondary blood-brain barrier (BBB) disruption, neuronal injury, and neurological dysfunction. Dexmedetomidine is a novel α2-adrenergic receptor agonist that exert protective effects in various central nervous system diseases. The present study was designed to investigate the neuroprotective action of dexmedetomidine in a mouse traumatic brain injury model, and to explore the possible mechanisms. Adult male C57BL/6J mice were subjected to controlled cortical impact. After injury, animals received 3 days of consecutive dexmedetomidine therapy (25 µg/kg per day). The modified neurological severity score was used to assess neurological deficits. The rotarod test was used to evaluate accurate motor coordination and balance. Immunofluorescence was used to determine expression of ionized calcium binding adapter molecule-1, myeloperoxidase, and zonula occluden-1 at the injury site. An enzyme linked immunosorbent assay was used to measure the concentration of interleukin-1β (IL-1β), tumor necrosis factor α, and IL-6. The dry-wet weight method was used to measure brain water content. The Evans blue dye extravasation assay was used to measure BBB disruption. Western blot assay was used to measure protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1 p20, IL-1β, nuclear factor kappa B (NF-κB) p65, occluding, and zonula occluden-1. Flow cytometry was used to measure cellular apoptosis. Results showed that dexmedetomidine treatment attenuated early neurological dysfunction and brain edema. Further, dexmedetomidine attenuated post-traumatic inflammation, up-regulated tight junction protein expression, and reduced secondary BBB damage and apoptosis. These protective effects were accompanied by down-regulation of the NF-κB and NLRP3 inflammasome pathways. These findings suggest that dexmedetomidine exhibits neuroprotective effects against acute (3 days) post-traumatic inflammatory responses, potentially via suppression of NF-κB and NLRP3 inflammasome activation.
Nindl, Bradley C; Castellani, John W; Warr, Bradley J; Sharp, Marilyn A; Henning, Paul C; Spiering, Barry A; Scofield, Dennis E
2013-11-01
Modern international military deployments in austere environments (i.e., Iraq and Afghanistan) place considerable physiological demands on soldiers. Significant physiological challenges exist: maintenance of physical fitness and body composition, rigors of external load carriage, environmental extremes (heat, cold, and altitude), medical illnesses, musculoskeletal injuries, traumatic brain injuries, post-traumatic stress disorder, and environmental exposure hazards (i.e., burn pits, vehicle exhaust, etc.). To date there is very little published research and no comprehensive reviews on the physiological effects of deployments. The purpose of this paper is to overview what is currently known from the literature related mainly to current military conflicts with regard to the challenges and consequences from deployments. Summary findings include: (1) aerobic capacity declines while muscle strength, power and muscular endurance appear to be maintained, (2) load carriage continues to tax the physical capacities of the Soldier, (3) musculoskeletal injuries comprise the highest proportion of all injury categories, (4) environmental insults occur from both terrestrial extremes and pollutant exposure, and (5) post-deployment concerns linger for traumatic brain injury and post-traumatic stress disorder. A full understanding of these responses will assist in identifying the most effective risk mitigation strategies to ensure deployment readiness and to assist in establishment of military employment standards.
Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel
2014-08-01
This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.
Rowland, Jared A; Stapleton-Kotloski, Jennifer R; Dobbins, Dorothy L; Rogers, Emily; Godwin, Dwayne W; Taber, Katherine H
2018-05-01
Cross-sectional and longitudinal studies in active duty and veteran cohorts have both demonstrated that deployment-acquired traumatic brain injury (TBI) is an independent risk factor for developing post-traumatic stress disorder (PTSD), beyond confounds such as combat exposure, physical injury, predeployment TBI, and pre-deployment psychiatric symptoms. This study investigated how resting-state brain networks differ between individuals who developed PTSD and those who did not following deployment-acquired TBI. Participants included postdeployment veterans with deployment-acquired TBI history both with and without current PTSD diagnosis. Graph metrics, including small-worldness, clustering coefficient, and modularity, were calculated from individually constructed whole-brain networks based on 5-min eyes-open resting-state magnetoencephalography (MEG) recordings. Analyses were adjusted for age and premorbid IQ. Results demonstrated that participants with current PTSD displayed higher levels of small-worldness, F(1,12) = 5.364, p < 0.039, partial eta squared = 0.309, and Cohen's d = 0.972, and clustering coefficient, F(1, 12) = 12.204, p < 0.004, partial eta squared = 0.504, and Cohen's d = 0.905, than participants without current PTSD. There were no between-group differences in modularity or the number of modules present. These findings are consistent with a hyperconnectivity hypothesis of the effect of TBI history on functional networks rather than a disconnection hypothesis, demonstrating increased levels of clustering coefficient rather than a decrease as might be expected; however, these results do not account for potential changes in brain structure. These results demonstrate the potential pathological sequelae of changes in functional brain networks following deployment-acquired TBI and represent potential neurobiological changes associated with deployment-acquired TBI that may increase the risk of subsequently developing PTSD.
Combs, Hannah L; Berry, David T R; Pape, Theresa; Babcock-Parziale, Judith; Smith, Bridget; Schleenbaker, Randal; Shandera-Ochsner, Anne; Harp, Jordan P; High, Walter M
2015-07-01
United States veterans of the Iraqi (Operation Iraqi Freedom [OIF]) and Afghanistan (Operation Enduring Freedom [OEF]) conflicts have frequently returned from deployment after sustaining mild traumatic brain injury (mTBI) and enduring stressful events resulting in post-traumatic stress disorder (PTSD). A large number of returning service members have been diagnosed with both a history of mTBI and current PTSD. Substantial literature exists on the neuropsychological factors associated with mTBI and PTSD occurring separately; far less research has explored the combined effects of PTSD and mTBI. The current study employed neuropsychological and psychological measures in a sample of 251 OIF/OEF veterans to determine whether participants with a history of mTBI and current PTSD (mTBI+PTSD) have poorer cognitive and psychological outcomes than participants with mTBI only (mTBI-o), PTSD only (PTSD-o), or veteran controls (VC), when groups are comparable on intelligence quotient, education, and age. The mTBI+PTSD group performed more poorly than VC, mTBI-o, and PTSD-o groups on several neuropsychological measures. Effect size comparisons suggest small deleterious effects for mTBI-o on measures of processing speed and visual attention and small effects for PTSD-o on measures of verbal memory, with moderate effects for mTBI+PTSD on the same variables. Additionally, the mTBI+PTSD group was significantly more psychologically distressed than the PTSD-o group, and PTSD-o group was more distressed than VC and mTBI-o groups. These findings suggest that veterans with mTBI+PTSD perform significantly lower on neuropsychological and psychiatric measures than veterans with mTBI-o or PTSD-o. The results also raise the possibility of mild but persisting cognitive changes following mTBI sustained during deployment.
Combs, Hannah L.; Berry, David T. R.; Pape, Theresa; Babcock-Parziale, Judith; Smith, Bridget; Schleenbaker, Randal; Shandera-Ochsner, Anne; Harp, Jordan P.
2015-01-01
Abstract United States veterans of the Iraqi (Operation Iraqi Freedom [OIF]) and Afghanistan (Operation Enduring Freedom [OEF]) conflicts have frequently returned from deployment after sustaining mild traumatic brain injury (mTBI) and enduring stressful events resulting in post-traumatic stress disorder (PTSD). A large number of returning service members have been diagnosed with both a history of mTBI and current PTSD. Substantial literature exists on the neuropsychological factors associated with mTBI and PTSD occurring separately; far less research has explored the combined effects of PTSD and mTBI. The current study employed neuropsychological and psychological measures in a sample of 251 OIF/OEF veterans to determine whether participants with a history of mTBI and current PTSD (mTBI+PTSD) have poorer cognitive and psychological outcomes than participants with mTBI only (mTBI-o), PTSD only (PTSD-o), or veteran controls (VC), when groups are comparable on intelligence quotient, education, and age. The mTBI+PTSD group performed more poorly than VC, mTBI-o, and PTSD-o groups on several neuropsychological measures. Effect size comparisons suggest small deleterious effects for mTBI-o on measures of processing speed and visual attention and small effects for PTSD-o on measures of verbal memory, with moderate effects for mTBI+PTSD on the same variables. Additionally, the mTBI+PTSD group was significantly more psychologically distressed than the PTSD-o group, and PTSD-o group was more distressed than VC and mTBI-o groups. These findings suggest that veterans with mTBI+PTSD perform significantly lower on neuropsychological and psychiatric measures than veterans with mTBI-o or PTSD-o. The results also raise the possibility of mild but persisting cognitive changes following mTBI sustained during deployment. PMID:25350012
Sander, Angelle M; Lequerica, Anthony H; Ketchum, Jessica M; Hammond, Flora M; Gary, Kelli Williams; Pappadis, Monique R; Felix, Elizabeth R; Johnson-Greene, Douglas; Bushnik, Tamara
2018-05-31
To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years postinjury. Community. With dates of injury between October 1, 2002, and March 31, 2013, 5548 whites, 1347 blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database. Retrospective database analysis. Retention, defined as completion of at least 1 question on the follow-up interview by the person with TBI or a proxy. Retention rates 1 to 2 years post-TBI were significantly lower for Hispanic (85.2%) than for white (91.8%) or black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. The findings emphasize the importance of investigating retention rates separately for blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI research.
Winter, Craig; Bell, Christopher; Whyte, Timothy; Cardinal, John; Macfarlane, David; Rose, Stephen
2015-07-01
Damage to the blood-brain barrier (BBB) is an important secondary mechanism that occurs following traumatic brain injury (TBI) and may provide a potential therapeutic target to improve patient outcome. For such a progress to be realised, an accurate assessment of BBB compromise needs to be established. Fourteen patients with TBI were prospectively recruited. Post-traumatic BBB dysfunction was assessed using dynamic contrast-enhanced MRI (DCE-MRI), single-photon emission computerised tomography (SPECT) and serum S100B levels. A statistically significant correlation between standardised uptake value ratio (SUVR) calculated from 99mTc-DTPA SPECT and K(trans) (a volume transfer constant) from DCE-MRI was found for those eight patients who had concurrent scans. The positive correlation persisted when the data were corrected for patient age, number of days following trauma and both parameters combined. We found no statistically significant correlation between either of the imaging modalities and concurrent serum S100B levels. The correlation of SPECT with DCE-MRI suggests that either scan may be used to assess post-traumatic BBB damage. We could not support serum S100B to be an accurate measure of BBB damage when sampled a number of days following injury but the small number of patients, the heterogeneity in TBI patients and the delay following injury makes any firm conclusions regarding S100B and BBB difficult.
Mion, G; Le Masson, J; Granier, C; Hoffmann, C
2017-12-01
The objective of this study was to explore whether ketamine prevents or exacerbates acute or post-traumatic stress disorders in military trauma patients. We conducted a retrospective study of a database from the French Military Health Service, including all soldiers surviving a war injury in Afghanistan (2010-2012). The diagnosis of post-traumatic stress disorder was made by a psychiatrist and patients were analysed according to the presence or absence of this condition. Analysis included the following covariables: age; sex; acute stress disorder; blast injury; associated fatality; brain injury; traumatic amputation; Glasgow coma scale; injury severity score; administered drugs; number of surgical procedures; physical, neurosensory or aesthetic sequelae; and the development chronic pain. Covariables related to post-traumatic and acute stress disorders with a p ≤ 0.10 were included in a multivariable logistic regression model. The data from 450 soldiers were identified; 399 survived, of which 274 were analysed. Among these, 98 (36%) suffered from post-traumatic stress disorder and 89 (32%) had received ketamine. Fifty-four patients (55%) in the post-traumatic stress disorder group received ketamine vs. 35 (20%) in the no PTSD group (p < 0.001). The 89 injured soldiers who received ketamine had a median (IQR [range]) injury severity score of 5 (3-13 [1-26]) vs. 3 (2-4 [1-6] in the 185 patients who did not (p < 0.001). At multivariable analysis, only acute stress disorder and total number of surgical procedures were independently associated with the development of post-traumatic stress disorder. In this retrospective study, ketamine administration was not a risk factor for the development of post-traumatic stress disorder in the military trauma setting. © 2017 The Association of Anaesthetists of Great Britain and Ireland.
Krahulik, David; Aleksijevic, Darina; Smolka, Vratislav; Klaskova, Eva; Venhacova, Petra; Vaverka, Miroslav; Mihal, Vladimir; Zapletalova, Jirina
2017-03-01
Retrospective studies of TBI have found a neuroendocrine dysfunction following traumatic brain injury in 23 to 60% of adults and 15 to 21% of children. Our aims were to determine the prevalence of hypothalamo-hypophyseal dysfunction in children following brain injury, assess its relationship to the type of injury and the course of the acute post-traumatic phase. Body development (growth, pubertal development, and skeletal maturity) were evaluated in 58 patients (21 girls) after a brain injury rated 3 to 12 on the Glasgow Coma Scale (GCS). The patients underwent standard endocrine tests - TSH, fT4, IGF-1, PRL, morning cortisol, FSH, LH, and testosterone in boys and estradiol in girls - in the early post-traumatic period (2 to 14 days; T0) and at 3, 6, and 12 months after the injury (T3, T6, and T12). Dynamic tests were carried out in patients with abnormalities in their clinical examination and/or laboratory results. An MRI was performed on all patients at T12. The median age at the time of injury was 11.3 (0.5 to 18.7) years. Of the 58 patients, 23 had GCS < 8, corresponding to severe brain injury. At T0, diabetes insipidus (DI) was diagnosed in 12 patients, and the syndrome of inappropriate antidiuretic hormone secretion (SIADH) was found in 4 patients. Frequent hormonal changes simulated central hypothyroidism (in 45% of patients) and hypogonadotropic hypogonadism (in 25% of adolescents who were already pubertal at the time of injury > Tanner II). Examination at T3 (n = 58) confirmed a combined pituitary hormone deficiency in two boys and DI in another one. At T6 (n = 49), hormonal dysfunctions were diagnosed in two boys (precocious puberty and growth hormone deficiency). At T12 (n = 39), a new endocrine dysfunction was diagnosed in five patients (growth hormone deficiency in two, hypogonadotropic hypogonadism in two, and in one patient, already diagnosed with a growth hormone deficiency, central hypothyroidism, as well). Brain MRI revealed an empty sella in two patients with growth hormone deficiency. Patients with GCS < 8 had more symptoms of SIADH or DI in the early post-traumatic period 11/23 vs. patients with GCS of 8 to 13 (4/35), and more frequent hormonal disorder (6/23) than individuals with moderate trauma (3/35), P = 0.0135. The incidence of endocrine dysfunction at T0 significantly correlated with the severity of injury (P = 0.05), but it was not an indicator for the development of a late hormonal disorder. Within a year after injury, a hormonal disorder was found in 17.6% of the patients. Neuroendocrine dysfunction as a late consequence of craniocerebral trauma in children and adolescents was less frequent than in adults. Risk factors for its development are the gravity of the injury, brain scan pathology, and possibly the development of DI, SIADH, or CSWS in the acute post-traumatic phase.
The military's approach to traumatic brain injury and post-traumatic stress disorder
NASA Astrophysics Data System (ADS)
Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.
2014-06-01
Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.
Brain Transcriptome Profiles in Mouse Model Simulating Features of Post-traumatic Stress Disorder
2015-02-28
comorbid-related signaling pathways indicate the pervasive and multisystem effects of aggressor exposure in mice, potentially mirroring the pathologic...11,12]. Impaired extinction of fear- potentiated startle and en- hanced cue conditioning in these brain regions (of trau- matized patients and animal...lead to either a long-term synap- tic potentiation (LTP) increase in synaptic strength and in- crease in excitatory post-synaptic potential
Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen
2013-09-01
To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥ 3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported < 3 symptoms and 1 ≥ 3 symptoms, all exhibiting GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.
A Blast Model of Traumatic Brain Injury in Swine
2009-11-01
minutes post injury, was given 100 mg carprofen IM one hour post injury because of the slow recovery although did not display signs of pain and was...of pain by excessively grinding teeth and was given 100 mg carprofen one hour post injury. The swine were observed daily for 7 days for behavioral
NASA Astrophysics Data System (ADS)
Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.
2009-07-01
Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.
Differential Response of Neural Cells to Trauma-Induced Swelling In Vitro.
Jayakumar, A R; Taherian, M; Panickar, K S; Shamaladevi, N; Rodriguez, M E; Price, B G; Norenberg, M D
2018-02-01
Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na-K-Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.
Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang
2014-01-01
Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921
Fan, Hui-yu; Zhang, Qin-ting; Tang, Tao; Cai, Wei-xiong
2016-04-01
To explore the main performance of personality change in people with mild psychiatric impairments which due to the brain trauma caused by traffic accidents and its value in assessment of psychiatric impairment. The condition of personality change of patients with traumatic brain injury caused by traffic accident was evaluated by the Scale of Personality Change Post-traumatic Brain Injury (SPCPTBI). Furthermore, the correlation between the personality change and the degrees of traumatic brain injury and psychiatric impairment were explored. Results In 271 samples, 239 (88.2%) with personality changes. Among these 239 samples, 178 (65.7%), 46 (17.0%), 15 (5.5%) with mild, moderate and severe personality changes, respectively. The ratio based on the extent of personality changes to the degree of brain trauma was not significant (P > 0.05), but the total score difference between the groups was significant (P < 0.05). There was no statistical significance between the medium and high severity brain trauma groups. The higher degree of personality changes, the higher rank of mental disabilities. The total score difference of the scale of personality change among the different mild psychiatric impairment group was significant (P<0.05). The difference between other psychiatric impairment levels had statistical significance (P < 0.05) except level 7 and 8. The occurrence of personality change due to traumatic brain injury caused by traffic accident was high. Correlations exist between the personality change and the degree of psychiatric impairment. Personality change due to brain trauma caused by traffic accident can be assessed effectively by means of SPCPTBI, and the correlation between the total score and the extent of traumatic brain injury can be found.
Zimmerman, G; Shaltiel, G; Barbash, S; Cohen, J; Gasho, C J; Shenhar-Tsarfaty, S; Shalev, H; Berliner, S A; Shelef, I; Shoham, S; Friedman, A; Cohen, H; Soreq, H
2012-02-21
Post-traumatic anxiety notably involves inflammation, but its causes and functional significance are yet unclear. Here, we report that failure of the innate immune system Toll-like receptor 9 (TLR9) to limit inflammation is causally involved with anxiety-associated inflammation and that peripheral administration of specific oligonucleotide activators of TLR9 may prevent post-traumatic consequences in stressed mice. Suggesting involvement of NFκB-mediated enhancement of inflammatory reactions in the post-traumatic phenotype, we found association of serum interleukin-1β increases with symptoms severity and volumetric brain changes in post-traumatic stress disorder patients. In predator scent-stressed mice, the moderate NFκB-activating oligonucleotides mEN101 and its human ortholog BL-7040, but not the canonic NFκB activator oligonucleotide ODN1826, induced anxiolytic effects. In stressed mice, peripherally administered mEN101 prevented delayed stress-inducible serum interleukin-1β increases while limiting stress-characteristic hippocampal transcript modifications and the anxiety-induced EGR1-mediated neuronal activation. Attesting to the TLR9 specificity of this response, BL-7040 suppressed NFκB-mediated luciferase in transfected cells co-expressing TLR9, but not other TLRs. Furthermore, TLR9-/- mice were mEN101 and BL-7040 resistant and presented unprovoked anxiety-like behavior and anxiety-characteristic hippocampal transcripts. Our findings demonstrate functional relevance of TLR9 in protecting stressed mammals from overreacting to traumatic experiences and suggest using oligonucleotide-mediated peripheral TLR9 activation to potentiate the innate immune system and prevent post-traumatic inflammation and anxiety.
Zimmerman, G; Shaltiel, G; Barbash, S; Cohen, J; Gasho, C J; Shenhar-Tsarfaty, S; Shalev, H; Berliner, S A; Shelef, I; Shoham, S; Friedman, A; Cohen, H; Soreq, H
2012-01-01
Post-traumatic anxiety notably involves inflammation, but its causes and functional significance are yet unclear. Here, we report that failure of the innate immune system Toll-like receptor 9 (TLR9) to limit inflammation is causally involved with anxiety-associated inflammation and that peripheral administration of specific oligonucleotide activators of TLR9 may prevent post-traumatic consequences in stressed mice. Suggesting involvement of NFκB-mediated enhancement of inflammatory reactions in the post-traumatic phenotype, we found association of serum interleukin-1β increases with symptoms severity and volumetric brain changes in post-traumatic stress disorder patients. In predator scent-stressed mice, the moderate NFκB-activating oligonucleotides mEN101 and its human ortholog BL-7040, but not the canonic NFκB activator oligonucleotide ODN1826, induced anxiolytic effects. In stressed mice, peripherally administered mEN101 prevented delayed stress-inducible serum interleukin-1β increases while limiting stress-characteristic hippocampal transcript modifications and the anxiety-induced EGR1-mediated neuronal activation. Attesting to the TLR9 specificity of this response, BL-7040 suppressed NFκB-mediated luciferase in transfected cells co-expressing TLR9, but not other TLRs. Furthermore, TLR9−/− mice were mEN101 and BL-7040 resistant and presented unprovoked anxiety-like behavior and anxiety-characteristic hippocampal transcripts. Our findings demonstrate functional relevance of TLR9 in protecting stressed mammals from overreacting to traumatic experiences and suggest using oligonucleotide-mediated peripheral TLR9 activation to potentiate the innate immune system and prevent post-traumatic inflammation and anxiety. PMID:22832815
Tagge, Chad A; Fisher, Andrew M; Minaeva, Olga V; Gaudreau-Balderrama, Amanda; Moncaster, Juliet A; Zhang, Xiao-Lei; Wojnarowicz, Mark W; Casey, Noel; Lu, Haiyan; Kokiko-Cochran, Olga N; Saman, Sudad; Ericsson, Maria; Onos, Kristen D; Veksler, Ronel; Senatorov, Vladimir V; Kondo, Asami; Zhou, Xiao Z; Miry, Omid; Vose, Linnea R; Gopaul, Katisha R; Upreti, Chirag; Nowinski, Christopher J; Cantu, Robert C; Alvarez, Victor E; Hildebrandt, Audrey M; Franz, Erich S; Konrad, Janusz; Hamilton, James A; Hua, Ning; Tripodis, Yorghos; Anderson, Andrew T; Howell, Gareth R; Kaufer, Daniela; Hall, Garth F; Lu, Kun P; Ransohoff, Richard M; Cleveland, Robin O; Kowall, Neil W; Stein, Thor D; Lamb, Bruce T; Huber, Bertrand R; Moss, William C; Friedman, Alon; Stanton, Patric K; McKee, Ann C; Goldstein, Lee E
2018-02-01
The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.
Merkel, Steven F; Razmpour, Roshanak; Lutton, Evan M; Tallarida, Christopher S; Heldt, Nathan A; Cannella, Lee Anne; Persidsky, Yuri; Rawls, Scott M; Ramirez, Servio H
2017-01-01
Clinical psychiatric disorders of depression, anxiety, and substance abuse are most prevalent after traumatic brain injury (TBI). Pre-clinical research has focused on depression and anxiety post-injury; however, virtually no data exist examining whether the preference for illicit drugs is affected by traumatic injury in the developing adolescent brain. Using the controlled cortical impact (CCI) model of TBI and the conditioned place preference (CPP) assay, we tested the underlying hypothesis that brain injury during adolescence exacerbates the rewarding properties of cocaine in adulthood possibly through an active inflammatory status in the mesolimbic pathway. Six-week old, C57BL/6 mice sustained a single CCI-TBI to the right somatosensory cortex. CPP experiments with cocaine began 2 weeks post-TBI. Animals receiving cocaine displayed significant place preference shifts compared to saline controls. Further, within the cocaine-experienced cohort, moderate CCI-TBI during adolescence significantly increased the preference shift in adulthood when compared to naïve controls. Additionally, persistent neuroinflammatory responses were observed in the cortex, nucleus accumbens (NAc), and ventral tegmental area post-CCI-TBI. Significant increases in both astrocytic, glial fibrillary acidic protein, and microglial, ionization basic acid 1, markers were observed in the NAc at the end of CPP testing. Moreover, analysis using focused array gene expression panels identified the upregulation of numerous inflammatory genes in moderate CCI-TBI animals, compared to naïve controls, both in the cortex and NAc at 2 weeks post-TBI, before onset of cocaine administration. These results suggest that sustaining moderate TBI during adolescence may augment the rewarding effects of psychostimulants in adulthood, possibly by induction of chronic mesolimbic neuroinflammation.
Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.
Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane
2016-01-01
Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention.
Smith-Paine, Julia; Wade, Shari L; Treble-Barna, Amery; Zhang, Nanhua; Zang, Huaiyu; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Kurowski, Brad G
2018-05-02
This study examined whether the ankyrin repeat and kinase domain containing 1 gene (ANKK1) C/T single-nucleotide polymorphism (SNP) rs1800497 moderated the association of family environment with long-term executive function (EF) following traumatic injury in early childhood. Caregivers of children with traumatic brain injury (TBI) and children with orthopedic injury (OI) completed the Behavior Rating Inventory of Executive Function (BRIEF) at post injury visits. DNA was collected to identify the rs1800497 genotype in the ANKK1 gene. General linear models examined gene-environment interactions as moderators of the effects of TBI on EF at two times post injury (12 months and 7 years). At 12 months post injury, analyses revealed a significant 3-way interaction of genotype with level of permissive parenting and injury type. Post-hoc analyses showed genetic effects were more pronounced for children with TBI from more positive family environments, such that children with TBI who were carriers of the risk allele (T-allele) had significantly poorer EF compared to non-carriers only when they were from more advantaged environments. At 7 years post injury, analyses revealed a significant 2-way interaction of genotype with level of authoritarian parenting. Post-hoc analyses found that carriers of the risk allele had significantly poorer EF compared to non-carriers only when they were from more advantaged environments. These results suggest a gene-environment interaction involving the ANKK1 gene as a predictor of EF in a pediatric injury population. The findings highlight the importance of considering environmental influences in future genetic studies on recovery following TBI and other traumatic injuries in childhood.
Code of Federal Regulations, 2012 CFR
2012-04-01
... alcohol or drug abuse, post-traumatic stress disorder, or brain injury. (2) A person will also be... services, case management services, counseling, supervision, education, job training, and other services...
2016-10-01
tau PET imaging and 7T- MRI to the Australian Imaging Biomarkers and Lifestyle - Veterans study (AIBL-VETS) of post-traumatic stress disorder and...focal and widespread changes in white matter integrity. 4. 7T- MRI will reveal more extensive microhemorrhage than seen on 3T- MRI and this will relate...injury in war veterans. 6 | P a g e 1. Introduction The project will utilize tau, amyloid and FDG PET imaging, and MRI as well as clinical and
Hypogonadism after traumatic brain injury.
Hohl, Alexandre; Mazzuco, Tânia Longo; Coral, Marisa Helena César; Schwarzbold, Marcelo; Walz, Roger
2009-11-01
Traumatic brain injury (TBI) is the most common cause of death and disability in young adults. Post-TBI neuroendocrine disorders have been increasingly acknowledged in recent years due to their potential contribution to morbidity and, probably, to mortality after trauma. Marked alterations of the hypothalamic-pituitary axis during the post-TBI acute and chronic phases have been reported. Prospective and longitudinal studies have shown that some abnormalities are transitory. On the other hand, there is a high frequency (15% to 68%) of pituitary hormone deficiency among TBI survivors in a long term setting. Post-TBI hypogonadism is a common finding after cranial trauma, and it is predicted to develop in 16% of the survivors in the long term. Post-TBI hypogonadism has been associated with adverse results in the acute and chronic phases after injury. These data reinforce the need for identification of hormonal deficiencies and their proper treatment, in order to optimize patient recovery, improve their life quality, and avoid the negative consequences of non-treated hypogonadism in the long term.
Yoon, Kyung Jae; Lee, Yong-Taek; Chae, Seoung Wan; Park, Chae Ri; Kim, Dae Yul
2016-03-15
Transcranial direct current stimulation (tDCS) is a noninvasive technique to modulate the neural membrane potential. Its effects in the early stage of traumatic brain injury (TBI) have rarely been investigated. This study assessed the effects of anodal tDCS on behavioral and spatial memory in a rat model of traumatic brain injury. Thirty six rats underwent lateral fluid percussion and were then randomly assigned to one of three groups: control (n=12), five-day tDCS over peri-lesional cortex at one (1W, n=12), or two (2W, n=12) weeks post-injury. The Barnes maze (BM) and Rotarod (RR) tests were evaluated in a blind manner on day 1, week 3 and week 5 post-injury. After three weeks, both the 1W and 2W groups showed significant improvements in the BM ratio (P<0.05), whereas only group 2W obtained a significant improvement in the RR ratio compared with the control group (P<0.05). However, there were no significant differences between any of the groups at five weeks after TBI. Immunohistochemistry revealed that only group 2W had a significantly higher brain-derived neurotrophic factor (BDNF) expression in the peri-lesional cortex, which was significantly correlated with the improvement of the Rotarod test at 3-week post-injury. However, BDNF expression in the ipsi-lesional hippocampus was not significantly different among the three groups. Group 1W tended to have increased choline/creatine ratios, as measured by magnetic resonance spectroscopy in the peri-lesional cortex, than the control group (P=0.051). Neither regimen aggravated the lesion volume or brain edema measured by MRI. These beneficial effects were not observed with either regimen at five weeks post-injury. In conclusions, anodal tDCS ameliorated behavioral and spatial memory function in the early phase after TBI when it is delivered two weeks post-injury. Earlier stimulation (one week post-injury) improves spatial memory only. However, the beneficial effects did not persist after cessation of the anodal stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Mahmood, Abda; Roberts, Ian; Shakur, Haleema
2017-07-17
Tranexamic acid prevents blood clots from breaking down and reduces bleeding. However, it is uncertain whether tranexamic acid is effective in traumatic brain injury. The CRASH-3 trial is a randomised controlled trial that will examine the effect of tranexamic acid (versus placebo) on death and disability in 13,000 patients with traumatic brain injury. The CRASH-3 trial hypothesizes that tranexamic acid will reduce intracranial haemorrhage, which will reduce the risk of death. Although it is possible that tranexamic acid will reduce intracranial bleeding, there is also a potential for harm. In particular, tranexamic acid may increase the risk of cerebral thrombosis and ischaemia. The protocol detailed here is for a mechanistic sub-study nested within the CRASH-3 trial. This mechanistic sub-study aims to examine the effect of tranexamic acid (versus placebo) on intracranial bleeding and cerebral ischaemia. The CRASH-3 Intracranial Bleeding Mechanistic Sub-Study (CRASH-3 IBMS) is nested within a prospective, double-blind, multi-centre, parallel-arm randomised trial called the CRASH-3 trial. The CRASH-3 IBMS will be conducted in a cohort of approximately 1000 isolated traumatic brain injury patients enrolled in the CRASH-3 trial. In the CRASH-3 IBMS, brain scans acquired before and after randomisation are examined, using validated methods, for evidence of intracranial bleeding and cerebral ischaemia. The primary outcome is the total volume of intracranial bleeding measured on computed tomography after randomisation, adjusting for baseline bleeding volume. Secondary outcomes include progression of intracranial haemorrhage (from pre- to post-randomisation scans), new intracranial haemorrhage (seen on post- but not pre-randomisation scans), intracranial haemorrhage following neurosurgery, and new focal ischaemic lesions (seen on post-but not pre-randomisation scans). A linear regression model will examine whether receipt of the trial treatment can predict haemorrhage volume. Bleeding volumes and new ischaemic lesions will be compared across treatment groups using relative risks and 95% confidence intervals. The CRASH-3 IBMS will provide an insight into the mechanism of action of tranexamic acid in traumatic brain injury, as well as information about the risks and benefits. Evidence from this trial could inform the management of patients with traumatic brain injury. The CRASH-3 trial was prospectively registered and the CRASH-3 IBMS is an addition to the original protocol registered at the International Standard Randomised Controlled Trials registry ( ISRCTN15088122 ) 19 July 2011, and ClinicalTrials.gov on 25 July 2011 (NCT01402882).
Alavi, Seyed Alireza; Tan, Chin Lik; Menon, David K; Simpson, Helen L; Hutchinson, Peter J
2016-06-01
Patients with traumatic brain injury (TBI) may develop pituitary dysfunction. Although, there is now increasing awareness of and investigations into such post-traumatic hypopituitarism (PTHP), the exact prevalence and incidence remain uncertain. Here, we aim to identify the incidence of PTHP in a selected population of TBI patients deemed at risk of PTHP at a regional neurosurgical centre in the UK. A total of 105 patients have been assessed in two cohorts: (i) 58 patients in serial cohort and (ii) 47 patients in cross-sectional late cohort. We found that in serial cohort, 10.3% (6/58) of TBI patients had abnormalities of the pituitary-adrenal axis in the acute phase (Day 0-7 post injury). In comparison, in cross-sectional late cohort, 21.3% (10/47) of the patients developed dysfunction in at least one of their pituitary axes at 6 months or more post-TBI, with hypogonadotrophic hypogonadism being the most common. Twenty-two patients from these two cohorts had their growth hormone assessment at 12 months or more post-TBI and 9.1% (2/22) were found to have growth hormone deficiency. Our results suggest that PTHP is a common condition amongst sufferers of TBI, and appropriate measures should be taken to detect and manage it.
Salzar, Robert S; Treichler, Derrick; Wardlaw, Andrew; Weiss, Greg; Goeller, Jacques
2017-04-15
The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.
The spectrum of disease in chronic traumatic encephalopathy.
McKee, Ann C; Stern, Robert A; Nowinski, Christopher J; Stein, Thor D; Alvarez, Victor E; Daneshvar, Daniel H; Lee, Hyo-Soon; Wojtowicz, Sydney M; Hall, Garth; Baugh, Christine M; Riley, David O; Kubilus, Caroline A; Cormier, Kerry A; Jacobs, Matthew A; Martin, Brett R; Abraham, Carmela R; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L; Budson, Andrew E; Goldstein, Lee E; Kowall, Neil W; Cantu, Robert C
2013-01-01
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer's disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.
The spectrum of disease in chronic traumatic encephalopathy
McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.
2013-01-01
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I–IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I–III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer’s disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein. PMID:23208308
Nelson, Nathaniel W; Anderson, Carolyn R; Thuras, Paul; Kehle-Forbes, Shannon M; Arbisi, Paul A; Erbes, Christopher R; Polusny, Melissa A
2015-03-01
Estimates of the prevalence of mild traumatic brain injury (mTBI) among military personnel and combat veterans rely almost exclusively on retrospective self-reports; however, reliability of these reports has received little attention. To examine the consistency of reporting of mTBI over time and identify factors associated with inconsistent reporting. A longitudinal cohort of 948 US National Guard Soldiers deployed to Iraq completed self-report questionnaire screening for mTBI and psychological symptoms while in-theatre 1 month before returning home (time 1, T1) and 1 year later (time 2, T2). Most respondents (n = 811, 85.5%) were consistent in their reporting of mTBI across time. Among those who were inconsistent in their reports (n = 137, 14.5%), the majority denied mTBI at T1 and affirmed mTBI at T2 (n = 123, 89.8%). Respondents rarely endorsed mTBI in-theatre and later denied mTBI (n = 14, 10.2% of those with inconsistent reports). Post-deployment post-traumatic stress symptoms and non-specific physical complaints were significantly associated with inconsistent report of mTBI. Military service members' self-reports of mTBI are generally consistent over time; however, inconsistency in retrospective self-reporting of mTBI status is associated with current post-traumatic stress symptoms and non-specific physical health complaints. Royal College of Psychiatrists.
Goldstein, Lee E; McKee, Ann C; Stanton, Patric K
2014-01-01
The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms, neuropathological features, and neurological sequelae observed in the corresponding human disorder. Understanding the purpose of an animal model and the criteria by which experimental results derived from the model are validated are critical components for useful animal modeling. Animal models that reliably demonstrate clinically relevant endpoints will expedite development of new treatments, diagnostics, preventive measures, and rehabilitative strategies for individuals affected by blast TBI and its aftermath.
2014-01-01
The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms, neuropathological features, and neurological sequelae observed in the corresponding human disorder. Understanding the purpose of an animal model and the criteria by which experimental results derived from the model are validated are critical components for useful animal modeling. Animal models that reliably demonstrate clinically relevant endpoints will expedite development of new treatments, diagnostics, preventive measures, and rehabilitative strategies for individuals affected by blast TBI and its aftermath. PMID:25478023
Code of Federal Regulations, 2012 CFR
2012-04-01
... emotional impairment, including an impairment caused by alcohol or drug abuse, post-traumatic stress disorder, or brain injury; (2) A developmental disability, as defined in this section; or (3) The disease...
Code of Federal Regulations, 2014 CFR
2014-04-01
... emotional impairment, including an impairment caused by alcohol or drug abuse, post-traumatic stress disorder, or brain injury; (2) A developmental disability, as defined in this section; or (3) The disease...
Code of Federal Regulations, 2013 CFR
2013-04-01
... emotional impairment, including an impairment caused by alcohol or drug abuse, post-traumatic stress disorder, or brain injury; (2) A developmental disability, as defined in this section; or (3) The disease...
2017-10-01
a randomized sham- controlled double-blind design with the sham- control group receiving slightly pressurized air at the beginning and end of each... controlled ( non -treatment, non -sham) single-arm crossover single-blind study. The scope of the project is to recruit, enroll, test, treat, re-test and...the P.I. conducted a non - controlled pilot trial of hyperbaric oxygen therapy (HBOT 1.5 atmospheres absolute/60 minutes, twice/day, 40 treatments
de Lange, Geertje M; Rademaker, Marleen; Boks, Marco P; Palmen, Saskia J M C
2017-10-20
Human brain tissue is crucial to study the molecular and cellular basis of psychiatric disorders. However, the current availability of human brain tissue is inadequate. Therefore, the Netherlands Brain Bank initiated a program in which almost 4.000 participants of 15 large Dutch psychiatric research cohorts were asked to register as prospective brain donors. We approached patients with schizophrenia, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, post-traumatic stress disorder, families with a child with autism or Attention Deficit Hyperactivity Disorder, healthy relatives and healthy unrelated controls, either face-to-face or by post. We investigated whether diagnosis, method of approach, age, and gender were related to the likelihood of brain-donor registration. We found a striking difference in registration efficiency between the diagnosis groups. Patients with bipolar disorder and healthy relatives registered most often (25% respectively 17%), followed by unrelated controls (8%) and patients with major depressive disorder, post-traumatic stress disorder, and obsessive-compulsive disorder (9%, 6% resp. 5%). A face-to-face approach was 1.3 times more effective than a postal approach and the likelihood of registering as brain donor significantly increased with age. Gender did not make a difference. Between 2013 and 2016, our prospective brain-donor program for psychiatry resulted in an almost eightfold increase (from 149 to 1149) in the number of registered psychiatric patients at the Netherlands Brain Bank. Based on our results we recommend, when starting a prospective brain donor program in psychiatric patients, to focus on face to face recruitment of people in their sixties or older.
Han, Kihwan; Martinez, David; Chapman, Sandra B; Krawczyk, Daniel C
2018-03-23
Depression is the most frequent comorbid psychiatric condition among individuals with traumatic brain injury (TBI). Yet, little is known about changes in the brain associated with reduced depressive symptoms following rehabilitation for TBI. We identified whether cognitive training alleviates comorbid depressive symptoms in chronic TBI (>6 months post-injury) as a secondary effect. Further, we elucidated neural correlates of alleviated depressive symptoms following cognitive training. A total of seventy-nine individuals with chronic TBI (53 depressed and 26 non-depressed individuals, measured using the Beck Depressive Inventory [BDI]), underwent either strategy- or information-based cognitive training in a small group for 8 weeks. We measured psychological functioning scores, cortical thickness, and resting-state functional connectivity (rsFC) for these individuals before training, immediately post-training, and 3 months post-training. After confirming that changes in BDI scores were independent of training group affiliation, we identified that the depressive-symptoms group showed reductions in BDI scores over time relative to the non-depressed TBI controls (p < .01). Within the depressive-symptoms group, reduced BDI scores was associated with improvements in scores for post-traumatic stress disorder, TBI symptom awareness, and functional status (p < .00625), increases in cortical thickness in four regions within the right prefrontal cortex (p vertex < .01, p cluster <.05), and decreases in rsFC with each of these four prefrontal regions (p vertex < .01, p cluster < .0125). Overall, these findings suggest that cognitive training can reduce depressive symptoms in TBI even when the training does not directly target psychiatric symptoms. Importantly, cortical thickness and brain connectivity may offer promising neuroimaging markers of training-induced improvement in mental health status in TBI. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Schneider, Brandy L; Ghoddoussi, Farhad; Charlton, Jennifer L; Kohler, Robert J; Galloway, Matthew P; Perrine, Shane A; Conti, Alana C
2016-09-01
Mild traumatic brain injury (mTBI) contributes to development of affective disorders, including post-traumatic stress disorder (PTSD). Psychiatric symptoms typically emerge in a tardive fashion post-TBI, with negative effects on recovery. Patients with PTSD, as well as rodent models of PTSD, demonstrate structural and functional changes in brain regions mediating fear learning, including prefrontal cortex (PFC), amygdala (AMYG), and hippocampus (HC). These changes may reflect loss of top-down control by which PFC normally exhibits inhibitory influence over AMYG reactivity to fearful stimuli, with HC contribution. Considering the susceptibility of these regions to injury, we examined fear conditioning (FC) in the delayed post-injury period, using a mouse model of mTBI. Mice with mTBI displayed enhanced acquisition and delayed extinction of FC. Using proton magnetic resonance spectroscopy ex vivo, we examined PFC, AMYG, and HC levels of gamma-aminobutyric acid (GABA) and glutamate as surrogate measures of inhibitory and excitatory neurotransmission, respectively. Eight days post-injury, GABA was increased in PFC, with no significant changes in AMYG. In animals receiving FC and mTBI, glutamate trended toward an increase and the GABA/glutamate ratio decreased in ventral HC at 25 days post-injury, whereas GABA decreased and GABA/glutamate decreased in dorsal HC. These neurochemical changes are consistent with early TBI-induced PFC hypoactivation facilitating the fear learning circuit and exacerbating behavioral fear responses. The latent emergence of overall increased excitatory tone in the HC, despite distinct plasticity in dorsal and ventral HC fields, may be associated with disordered memory function, manifested as incomplete extinction and enhanced FC recall.
Broussard, John I; Acion, Laura; De Jesús-Cortés, Héctor; Yin, Terry; Britt, Jeremiah K; Salas, Ramiro; Costa-Mattioli, Mauro; Robertson, Claudia; Pieper, Andrew A; Arciniegas, David B; Jorge, Ricardo
2018-01-01
Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.
Defrin, Ruth; Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G
2015-01-01
Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed.
Riabinin, Miri; Feingold, Yelena; Schreiber, Shaul; Pick, Chaim G.
2015-01-01
Abstract Although the prevalence rate of chronic post-traumatic headache (CPTHA) after mild traumatic brain injury (TBI) reaches up to 95%, its mechanism is unknown, and little is known about the characteristics of the pain system in this condition. Our aim was to investigate the capabilities of two pain modulatory systems among individuals with CPTHA and study their association with CPTHA, here for the first time. Forty-six subjects participated; 16 with TBI and CPTHA, 12 with TBI without CPTHA, and 18 healthy controls. Testing included the measurement of heat-pain (HPT) and pressure-pain (PPT) thresholds in the forehead and forearm, pain adaptation to tonic noxious heat, and conditioned pain modulation (CPM).The participants completed a post-traumatic stress disorder (PTSD) questionnaire. The two TBI groups did not differ in the TBI and background characteristics. However, TBI patients with CPTHA had significantly higher HPT and lower PPT in the cranium and higher PTSD symptomatology than TBI patients without CPTHA and healthy controls. Adaptation to pain and CPM were diminished in the CPTHA group compared with the two control groups. The intensity of CPTHA correlated negatively with cranial PPT, magnitude of pain adaptation, and CPM. CPTHA intensity correlated positively with PTSD symptomatology. CPTHA appears to be characterized by cranial hyperalgesia and dysfunctional pain modulation capabilities, which are associated with CPTHA magnitude. It is concluded that damage to pain modulatory systems along with chronic cranial sensitization underlies the development of CPTHA. PTSD may reinforce CPTHA and vice versa. Clinical implications are discussed. PMID:25068510
Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury
Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J
2018-01-01
Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow-up period, as well as to changes in memory performance, prior to multiple comparison correction. In conclusion, traumatic brain injury results in progressive loss of brain tissue volume, which continues for many years post-injury. Atrophy is most prominent in the white matter, but is also more pronounced in cortical sulci compared to gyri. These findings suggest the Jacobian determinant provides a method of quantifying brain atrophy following a traumatic brain injury and is informative in determining the long-term neurodegenerative effects after injury. Power calculations indicate that Jacobian determinant images are an efficient surrogate marker in clinical trials of neuroprotective therapeutics. PMID:29309542
NASA Astrophysics Data System (ADS)
Gay, Michael
Research into concussion or mild traumatic brain injury (mTBI) has increased significantly within the past decade. In the literature some researchers are reporting 1.6 to 3.8 million concussions occurring in sports (Langlois, 2006), mTBI accounts for 80% of all reported traumatic brain injuries (Ruff, 2011). With these alarming statistics and an increasing number of athletes suffering a concussion there has been an increased emphasis for sports medicine practitioners to properly diagnose and treat those recovering from brain injury so that they may return safely to school, sports or work. Current clinical tools available to practitioners give them the ability to assess functional recovery in clinical measures of personality change; patient self reported symptom scales; functional cognitive domains (computer based neuropsychological batteries) and clinical balance measures. These current methods of clinical measurement, diagnosis and return to play protocols have remained largely unchanged for the past 20 years. In addition, there is some controversy into the application of these clinical measures within repeated measure testing as improvement does not necessarily reflect post-traumatic recovery but may instead reflect practice or "ceiling effects" of measurement. Therefore, diagnostic platforms that measure structural physiologic recovery must be implemented to assist the clinician in the 'Return to Play' process for athletic participation. In this study quantitative EEG (qEEG) analysis using a 128-lead dense array system during the first aerobic challenge in a 'Return to Play' protocol was performed. Subjects recovering from concussion and normal volunteers with no history of concussion were included and their neuroelectric activity recorded before, during, after and 24 hours post light aerobic exercise on a stationary bike. Subjects recovering from concussion demonstrated altered spectral absolute power across relevant regions of interest in the frontal, central (parietal) and posterior (occipital) regions of the brain. In addition connectivity measures (coherence across all frequency bands) are altered in subjects recovering from concussion both as a condition of group and exercise. In conclusion, these findings demonstrate the viability of the use of exercise to induce physiologic differences between uninjured normal volunteers and athletes recovering from concussion. These findings also support the use of qEEG as a supplementary tool in the clinical assessment of mild traumatic brain injury and concussion. Finally, qEEG can be used in the 'Return to Play' decision making process to assist clinicians in tracking physiologic recovery from concussion or mild traumatic brain injury.
Failla, Michelle D; Conley, Yvette P; Wagner, Amy K
2016-01-01
Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain-derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) can be protective against acute mortality. Postacutely, these genotypes carry lower mortality risk in older adults and greater mortality risk among younger adults. Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Cerebrospinal fluid (CSF) and serum BDNF were assessed prospectively during the first week following severe TBI (n = 203) and in controls (n = 10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. CSF BDNF levels tended to be higher post-TBI (P = .061) versus controls and were associated with time until death (P = .042). In contrast, serum BDNF levels were reduced post-TBI versus controls (P < .0001). Both gene * BDNF serum and gene * age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (P = .07). BDNF levels predicted mortality, in addition to gene * age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. © The Author(s) 2015.
Neuropathology and brain weight in traumatic-crush asphyxia.
Al-Sarraj, Safa; Laxton, Ross; Swift, Ben; Kolar, Alexander J; Chapman, Rob C; Fegan-Earl, Ashley W; Cary, Nat R B
2017-11-01
Traumatic (crush) asphyxia is a rare condition caused by severe compression of the chest and trunk leading to often extreme so-called asphyxial signs, including cyanosis in head and neck regions, multiple petechiae, and subconjunctival haemorrhage as well as neurological manifestations. To investigate the neuropathology and brain weight in traumatic asphyxia caused by different accidents such as industrial accidents and road traffic collision. Post mortem records of 20 cases of traumatic asphyxia (TA) resulting from different causes of which four brains are available for comprehensive neuropathological examination. The expected brain weights for given body height and associated 95% confidence range were calculated according to the following formula: baseline brain weight (BBW) + body height x rate (g/cm). The 95% confidence range was calculated by adding and subtracting the standard error (SE) x 1.96 (7-8). There was a trend for higher brain weight in the TA cohort but it was not significant (1494 g vs 1404 g, p = 0.1). The upper limits of the brain weight of 95% confidence was 1680 g vs 1660 g, p = 0.9. The neuropathological examination of four available brains from the TA cohort showed severe congestion of blood vessels, perivascular haemorrhages and occasional βAPP deposits consistent with early axonal disruption. Brain examination is informative as part of investigation of TA. Developing ischaemic changes and an increase in brain weight are the most likely indicators of a prolonged period of patient's survival. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Poulin, Valérie; Dawson, Deirdre R; Bottari, Carolina; Verreault, Cynthia; Turcotte, Samantha; Jean, Alexandra
2018-03-22
To identify and critically appraise the content, readability, reliability and usability of websites providing information for managing cognitive difficulties in everyday life for the families of adults with moderate to severe traumatic brain injury. Systematic searches on the Internet for relevant websites were conducted using five search engines, and through consultation of the lists of resources published on websites of traumatic brain injury organizations. Two team members assessed eligibility of the websites. To be included, they had to provide information related to management of cognitive difficulties following moderate to severe traumatic brain injury, to be in English or French and available free of charge. Two reviewers evaluated each website according to: (1) its readability using Flesch-Kincaid Grade Level; (2) the quality of its content using a checklist of eight recommendations for managing memory, attention and executive function problems; (3) its usability (e.g., clear design) and reliability (e.g., currency of information) using the Minervation Validation Instrument for Health Care Web Sites. Of the 38 websites included, 10 provide specific tips for families that cover several domains of cognitive function, including memory, attention and executive function. The most frequent recommendations focused on the use of environmental supports for memory problems (n = 33 websites). The readability of information is below the recommended grade 7 for only nine of the websites. All sites show acceptable usability, but their quality is variable in terms of reliability of the information. This review provides useful information for selecting online resources to educate families about the management of cognitive difficulties following moderate to severe traumatic brain injury, as a complement to information and training provided by the rehabilitation team. Implications for rehabilitation This review describes standardized criteria for the evaluation of the content, readability, reliability and usability of websites for family education post-TBI. Given the variability in the content, the readability and the reliability of websites providing information for families about the management of cognitive difficulties post-TBI, careful attention to the selection of appropriate resources is required. Findings from this review may facilitate clinicians' identification of relevant websites to educate families about the management of cognitive difficulties post-TBI, as a complement to other information and training from the rehabilitation team.
Kontos, Anthony P.; Reches, Amit; Elbin, R. J.; Dickman, Dalia; Laufer, Ilan; Geva, Amir; Shacham, Galit; DeWolf, Ryan; Collins, Michael W.
2015-01-01
Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4-week post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM. PMID:26091725
Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Coleman, Lee; Ditchfield, Michael; Crossley, Louise; Beauchamp, Miriam H; Anderson, Vicki A
2015-03-01
The purpose of the present investigation was to evaluate the contribution of age-at-insult and brain pathology on longitudinal outcome and recovery of pragmatic language in a sample of children and adolescents with traumatic brain injury (TBI). Children and adolescents with mild to severe TBI (n=112) were categorized according to timing of brain insult: (i) Middle Childhood (5-9 years; n=41); (ii) Late Childhood (10-11 years; n=39); and (iii) Adolescence (12-15 years; n=32) and group-matched for age, gender and socio-economic status (SES) to a typically developing (TD) control group (n=43). Participants underwent magnetic resonance imaging (MRI) including a susceptibility weighted imaging (SWI) sequence 2-8 weeks after injury and were assessed on measures of pragmatic language and behavioural functioning at 6- and 24-months after injury. Children and adolescents with TBI of all severity levels demonstrated impairments in these domains at 6-months injury before returning to age-expected levels at 2-years post-TBI. However, while adolescent TBI was associated with post-acute disruption to skills that preceded recovery to age-expected levels by 2-years post injury, the middle childhood TBI group demonstrated impairments at 6-months post-injury that were maintained at 2-year follow up. Reduced pragmatic communication was associated with frontal, temporal and corpus callosum lesions, as well as more frequent externalizing behaviour at 24-months post injury. Findings show that persisting pragmatic language impairment after pediatric TBI is related to younger age at brain insult, as well as microhemorrhagic pathology in brain regions that contribute to the anatomically distributed social brain network. Relationships between reduced pragmatic communication and more frequent externalizing behavior underscore the need for context-sensitive rehabilitation programs that aim to increase interpersonal effectiveness and reduce risk for maladaptive behavior trajectories into the long-term post injury. Copyright © 2015 Elsevier Inc. All rights reserved.
Exercise Preconditioning Improves Traumatic Brain Injury Outcomes
Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.
2015-01-01
Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153
Exercise preconditioning improves traumatic brain injury outcomes.
Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J
2015-10-05
To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Guilmette, T J; Temple, R O; Kennedy, M L; Weiler, M D; Ruffolo, L F; Dufresne, E
2005-11-01
To determine the influence of victim/plaintiff sex, occupation and intoxication status at the time of injury on potential jurors' judgement about the presence of brain damage in mild traumatic brain injury (MTBI). Survey. One of eight scenarios describing a MTBI from a motor vehicle accident was presented to 460 participants at a Department of Motor Vehicles. Victim sex, occupation (accountant or cafeteria worker) and alcohol intoxication status at the time of injury (sober or intoxicated) were manipulated across eight scenarios. Participants rated whether the victim's complaints at 6 months post-injury were the result of brain damage. Ratings were influenced by victim occupation and intoxication status (chi2>5.3, p<0.03), but not the sex of the victim. The occupational and intoxication status of MTBI victims may influence potential jurors' decision about the presence of brain damage.
Edlow, Brian L; Giacino, Joseph T; Hirschberg, Ronald E; Gerrard, Jason; Wu, Ona; Hochberg, Leigh R
2013-12-01
Prognostication in the early stage of traumatic coma is a common challenge in the neuro-intensive care unit. We report the unexpected recovery of functional milestones (i.e., consciousness, communication, and community reintegration) in a 19-year-old man who sustained a severe traumatic brain injury. The early magnetic resonance imaging (MRI) findings, at the time, suggested a poor prognosis. During the first year of the patient's recovery, MRI with diffusion tensor imaging and T2*-weighted imaging was performed on day 8 (coma), day 44 (minimally conscious state), day 198 (post-traumatic confusional state), and day 366 (community reintegration). Mean apparent diffusion coefficient (ADC) and fractional anisotropy values in the corpus callosum, cerebral hemispheric white matter, and thalamus were compared with clinical assessments using the Disability Rating Scale (DRS). Extensive diffusion restriction in the corpus callosum and bihemispheric white matter was observed on day 8, with ADC values in a range typically associated with neurotoxic injury (230-400 × 10(-6 )mm(2)/s). T2*-weighted MRI revealed widespread hemorrhagic axonal injury in the cerebral hemispheres, corpus callosum, and brainstem. Despite the presence of severe axonal injury on early MRI, the patient regained the ability to communicate and perform activities of daily living independently at 1 year post-injury (DRS = 8). MRI data should be interpreted with caution when prognosticating for patients in traumatic coma. Recovery of consciousness and community reintegration are possible even when extensive traumatic axonal injury is demonstrated by early MRI.
Evaluation and Treatment of Mild Traumatic Brain Injury: The Role of Neuropsychology
Prince, Carolyn; Bruhns, Maya E.
2017-01-01
Awareness of mild traumatic brain injury (mTBI) and persisting post-concussive syndrome (PCS) has increased substantially in the past few decades, with a corresponding increase in research on diagnosis, management, and treatment of patients with mTBI. The purpose of this article is to provide a narrative review of the current literature on behavioral assessment and management of patients presenting with mTBI/PCS, and to detail the potential role of neuropsychologists and rehabilitation psychologists in interdisciplinary care for this population during the acute, subacute, and chronic phases of recovery. PMID:28817065
2010-04-01
Aviyente, S., Kang, S.S., & Sponheim, S.R (2009, October). Beyond Wavelets : Utilizing uniform time and frequency resolution to improve measurement...may also help military leadership and health care professionals prescribe treatments that are personalized to an individual’s underlying brain pathology
Weigl, W; Milej, D; Gerega, A; Toczylowska, B; Kacprzak, M; Sawosz, P; Botwicz, M; Maniewski, R; Mayzner-Zawadzka, E; Liebert, A
2014-01-15
The aim of this study was to verify the usefulness of the time-resolved optical method utilizing diffusely reflected photons and fluorescence signals combined with intravenous injection of indocyanine green (ICG) in the assessment of brain perfusion in post-traumatic brain injury patients. The distributions of times of flight (DTOFs) of diffusely reflected photons were acquired together with the distributions of times of arrival (DTAs) of fluorescence photons. The data analysis methodology was based on the observation of delays between the signals of statistical moments (number of photons, mean time of flight and variance) of DTOFs and DTAs related to the inflow of ICG to the extra- and intracerebral tissue compartments. Eleven patients with brain hematoma, 15 patients with brain edema and a group of 9 healthy subjects were included in this study. Statistically significant differences between parameters obtained in healthy subjects and patients with brain hematoma and brain edema were observed. The best optical parameter to differentiate patients and control group was variance of the DTOFs or DTAs. Results of the study suggest that time-resolved optical monitoring of inflow of the ICG seems to be a promising tool for detecting cerebral perfusion insufficiencies in critically ill patients. © 2013 Elsevier Inc. All rights reserved.
Mild traumatic brain injury and fatigue: a prospective longitudinal study.
Norrie, Joan; Heitger, Marcus; Leathem, Janet; Anderson, Tim; Jones, Richard; Flett, Ross
2010-01-01
To examine fatigue prevalence, severity, predictors and co-variates over 6 months post-mild traumatic brain injury (MTBI). Longitudinal prospective study including 263 adults with MTBI. Participants completed the Fatigue Severity Scale (FSS), Rivermead Post-concussion Symptoms Questionnaire (RPSQ), Hospital Anxiety and Depression Scale (HADS) and the Short Form 36 Health Survey-Version 2 (SF-36v2). Complete data were available for 159 participants. Key measures; prevalence--RPSQ Item 6: severity--FSS. The effect of time on fatigue prevalence and severity was examined using ANOVA. Multiple regression analysis identified statistically significant covariates. Post-MTBI fatigue prevalence was 68%, 38% and 34% at 1 week, 3 and 6 months, respectively. There was a strong effect for time over the first 3 months and moderate-to-high correlations between fatigue prevalence and severity. Early fatigue strongly predicted later fatigue; depression, but not anxiety was a predictor. Fatigue was seen as laziness by family or friends in 30% of cases. Post-MTBI fatigue is a persistent post-concussion symptom, exacerbated by depression but not anxiety. It diminishes in the first 3 months and then becomes relatively stable, suggesting the optimum intervention placement is at 3 months or more post-MTBI.
2012-01-01
Placebo-Controlled Trial of the Dopamine Beta Hydroxylase (DBH) Inhibitor, Nepicastat, for the Treatment of PTSD in Operation Iraqi Freedom (OIF...Operation Enduring Freedom (OEF) Veterans 1 A Randomized, Placebo-Controlled Trial of the Dopamine -?-Hydroxylase (DBH) Inhibitor, Nepicastat for the...Reduction: Predeployment Stress Inoculation Training 1 Combat, Sexual Assault, and Post-Traumatic Stress in OIF/OEF Military Women 1 Comparing
ERIC Educational Resources Information Center
Taylor, Kathy J.
2013-01-01
One of the primary reasons many college students with disabilities, and more specifically college student veterans with disabilities, do not seek support services is due to the stigma associated with disability, especially cognitive and mental health disabilities. The purpose of the present study was to explore how public university faculty in the…
Pseudotumor cerebri following traumatic brain injury in a 29-year-old man
Rahman, Mohammed Izad; Raveendran, Savitha; Kaliaperumal, Chandrasekaran; Marks, Charles
2012-01-01
We describe a case of pseudotumor cerebri in a young man developing 4 years post-traumatic brain injury (TBI). A 29-year-old man was admitted after sustaining a fall with headache, and no clinical deficits were noted on examination. CT brain demonstrated an extradural hematoma. This was successfully evacuated after his symptomatic worsening. Following this, he developed bone flap infection and had the infected bone flap removed. He developed chronic mild-to-moderate headache following these procedures, which failed to respond to medical treatment. Pseudotumor cerebri was diagnosed. A lumboperitoneal (LP) shunt, ventriculo-peritoneal (VP) shunt, and bitemporal craniectomy were performed as a part of management at different stages. Post-TBI patients may present with chronic headache and in such circumstances, a possibility of pseudotumor cerebri must be considered. Investigations should include neuroimaging in the form of MRI/MRV and fundoscopy to look for papilledema. Management in the form of CSF flow diversion techniques (VP and LP shunt) with medical management results in good clinical outcomes PMID:22690064
Babikian, Talin; Alger, Jeffry R; Ellis-Blied, Monica U; Giza, Christopher C; Dennis, Emily; Olsen, Alexander; Mink, Richard; Babbitt, Christopher; Johnson, Jeff; Thompson, Paul M; Asarnow, Robert F
2018-05-18
Diffuse axonal injury contributes to the long-term functional morbidity observed after pediatric moderate/severe traumatic brain injury (msTBI). Whole-brain proton magnetic resonance echo-planar spectroscopic imaging was used to measure the neurometabolite levels in the brain to delineate the course of disruption/repair during the first year post-msTBI. The association between metabolite biomarkers and functional measures (cognitive functioning and corpus callosum [CC] function assessed by interhemispheric transfer time [IHTT] using an event related potential paradigm) was also explored. Pediatric patients with msTBI underwent assessments at two times (post-acutely at a mean of three months post-injury, n = 31, and chronically at a mean of 16 months post-injury, n = 24). Healthy controls also underwent two evaluations, approximately 12 months apart. Post-acutely, in patients with msTBI, there were elevations in choline (Cho; marker for inflammation and/or altered membrane metabolism) in all four brain lobes and the CC and decreases in N-acetylaspartate (NAA; marker for neuronal and axonal integrity) in the CC compared with controls, all of which normalized by the chronic time point. Subgroups of TBI showed variable patterns chronically. Patients with slow IHTT had lower lobar Cho chronically than those with normal IHTT; they also did not show normalization in CC NAA whereas those with normal IHTT showed significantly higher levels of CC NAA relative to controls. In the normal IHTT group only, chronic CC Cho and NAA together explained 70% of the variance in long-term cognitive functioning. MR based whole brain metabolic evaluations show different patterns of neurochemistry after msTBI in two subgroups with different outcomes. There is a dynamic relationship between prolonged inflammatory responses to brain damage, reparative processes/remyelination, and subsequent neurobehavioral outcomes. Multimodal studies allow us to test hypotheses about degenerative and reparative processes in patient groups that have divergent functional outcome, with the ultimate goal of developing targeted therapeutic agents.
Clinical evaluation of post-operative cerebral infarction in traumatic epidural haematoma.
Zhang, Suojun; Wang, Sheng; Wan, Xueyan; Liu, Shengwen; Shu, Kai; Lei, Ting
2017-01-01
Patients with traumatic epidural haematoma, undergoing the prompt and correct treatment, usually have favourable outcomes. However, secondary cerebral infarction may be life-threatening condition, as it is difficult to be identified before neurological impairment occurs. To evaluate the clinical data of patients with traumatic EDH and assess potential risk factors for post-operative cerebral infarction. The clinical data of patients with traumatic EDH were collected and analysed retrospectively. The univariate analysis revealed 10 potential risk factors (the haematoma location, volume, the largest thickness and mid-line shift, basal cisterns compression, traumatic subarachnoid haemorrhage, pupil dilatation, pre-operative Glasgow Coma Scale score, ∆GCS and intraoperative brain pressure) for cerebral infarction with statistically significant difference. Of these factors, haematoma volume and basal cistern compression turned out to be the most significant risk factors through final multivariate logistic regression analysis. The findings of this study can provide predictive factors for development of cerebral infarction and information for clinical decision-making and future studies.
Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar
2017-01-01
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Kempuraj, Duraisamy; Selvakumar, Govindhasamy P.; Thangavel, Ramasamy; Ahmed, Mohammad E.; Zaheer, Smita; Raikwar, Sudhanshu P.; Iyer, Shankar S.; Bhagavan, Sachin M.; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar
2017-01-01
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD. PMID:29302258
Heimann, Gábor; Canhos, Luisa L; Frik, Jesica; Jäger, Gabriele; Lepko, Tjasa; Ninkovic, Jovica; Götz, Magdalena; Sirko, Swetlana
2017-08-01
Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis. © The Author 2017. Published by Oxford University Press.
Recovery of Visual Search following Moderate to Severe Traumatic Brain Injury
Schmitter-Edgecombe, Maureen; Robertson, Kayela
2015-01-01
Introduction Deficits in attentional abilities can significantly impact rehabilitation and recovery from traumatic brain injury (TBI). This study investigated the nature and recovery of pre-attentive (parallel) and attentive (serial) visual search abilities after TBI. Methods Participants were 40 individuals with moderate to severe TBI who were tested following emergence from post-traumatic amnesia and approximately 8-months post-injury, as well as 40 age and education matched controls. Pre-attentive (automatic) and attentive (controlled) visual search situations were created by manipulating the saliency of the target item amongst distractor items in visual displays. The relationship between pre-attentive and attentive visual search rates and follow-up community integration were also explored. Results The results revealed intact parallel (automatic) processing skills in the TBI group both post-acutely and at follow-up. In contrast, when attentional demands on visual search were increased by reducing the saliency of the target, the TBI group demonstrated poorer performances compared to the control group both post-acutely and 8-months post-injury. Neither pre-attentive nor attentive visual search slope values correlated with follow-up community integration. Conclusions These results suggest that utilizing intact pre-attentive visual search skills during rehabilitation may help to reduce high mental workload situations, thereby improving the rehabilitation process. For example, making commonly used objects more salient in the environment should increase reliance or more automatic visual search processes and reduce visual search time for individuals with TBI. PMID:25671675
Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N
2012-05-01
Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.
A longitudinal examination of positive changes in quality-of-life after traumatic brain injury.
Gould, Kate R; Ponsford, Jennie L
2015-01-01
Most studies of quality-of-life (QoL) after traumatic brain injury (TBI) reveal a largely negative picture, yet some survivors show positive changes (PC). Understanding PC in QoL may assist clinicians in facilitating post-injury adjustment. This study aimed to prospectively explore changes in QoL from pre- to post-injury, identify those with PC and examine predictive and associated factors. Ninety-five participants, recruited from consecutive admissions to a rehabilitation hospital, were prospectively assessed at least once over the first 4 years post-injury. Measures of QoL, psychiatric disorders, coping style and psychosocial outcome were administered at each assessment. Participants' mean QoL was in the average range pre-injury and at follow-up. A third demonstrated PC post-injury, which tended to remain stable. PC participants tended to rate their relatives as of greater importance than other participants, but did not rate their health as high. Group membership was not predicted by pre-injury demographic or injury factors, but it was significantly associated with psychosocial and functional outcome. Even after a significant brain injury, some individuals show sustained improved QoL. Factors such as lack of 'good old days' bias and increased value placed on family may have important clinical utility.
Subbian, Vignesh; Meunier, Jason M; Korfhagen, Joseph J; Ratcliff, Jonathan J; Shaw, George J; Beyette, Fred R
2014-01-01
Post-Concussion Syndrome (PCS) is a common sequelae of mild Traumatic Brain Injury (mTBI). Currently, there is no reliable test to determine which patients will develop PCS following an mTBI. As a result, clinicians are challenged to identify patients at high risk for subsequent PCS. Hence, there is a need to develop an objective test that can guide clinical risk stratification and predict the likelihood of PCS at the initial point of care in an Emergency Department (ED). This paper presents the results of robotic-assisted neurologic testing completed on mTBI patients in the ED and its ability to predict PCS at 3 weeks post-injury. Preliminary results show that abnormal proprioception, as measured using robotic testing is associated with higher risk of developing PCS following mTBI. In this pilot study, proprioceptive measures obtained through robotic testing had a 77% specificity (95CI: 46%-94%) and a 64% sensitivity (95CI: 41%-82%).
McKay, Adam; Love, Jasmine; Trevena-Peters, Jessica; Gracey, Jacinta; Ponsford, Jennie
2018-06-03
Agitation is common during the post-traumatic amnesia (PTA) period after traumatic brain injury (TBI), although our knowledge of what causes or predicts agitation is limited. The current study aimed to examine the association of agitation in PTA with the concurrent impairments in orientation and memory while controlling for covariates of agitation. Participants were 125 patients in PTA following moderate to extremely severe TBI recruited from an inpatient brain injury rehabilitation service who were assessed throughout PTA on the Agitated Behavior Scale (ABS) and the Westmead PTA Scale (WPTAS). Agitation was observed in 42.4% of participants (ABS score > 21), with disinhibited behaviours (e.g., distractibility and impulsivity) most common. Multilevel modelling found daily ABS scores to be associated with daily scores on the WPTAS but in a non-linear pattern. Analysis of covariates found that shorter time post-admission, younger age, presence of infection and higher antipsychotic doses were associated with higher ABS scores. These results support a relationship between agitation and the concurrent cognitive impairment during PTA. While a causal link cannot yet be inferred, management strategies that can potentially interfere with cognition (e.g., sedating medications, environmental changes) should be used cautiously in case they exacerbate agitation.
Is Electroconvulsive Therapy a Treatment for Depression Following Traumatic Brain Injury?
Srienc, Anja; Sarai, Simrat; Xiong, Yee; Lippmann, Steven
2018-01-01
Traumatic brain injury (TBI) can be caused by blunt or penetrating injury to the head. The pathophysiological evolution of TBI involves complex biochemical and genetic changes. Common sequelae of TBI include seizures and psychiatric disorders, particularly depression. In considering pharmacologic interventions for treating post-TBI depression, it is important to remember that TBI patients have a higher risk of seizures; therefore, the benefits of prescribing medications that lower the seizure threshold need to be weighed against the risk of seizures. When post-TBI depression is refractory to pharmacotherapy, electroconvulsive therapy (ECT) could provide an alternative therapeutic strategy. Data remain sparse on using ECT in this seizure-prone population, but three case reports demonstrated good outcomes. Currently, not enough evidence exists to provide clinical recommendations for using ECT for treating post-TBI depression, and more research is needed to generate guidelines on how best to treat depression in TBI patients. However, the preliminary data on using ECT in patients with TBI are promising. If proven safe, ECT could be a powerful tool to treat post-TBI depression. PMID:29707426
Is Electroconvulsive Therapy a Treatment for Depression Following Traumatic Brain Injury?
Srienc, Anja; Narang, Puneet; Sarai, Simrat; Xiong, Yee; Lippmann, Steven
2018-04-01
Traumatic brain injury (TBI) can be caused by blunt or penetrating injury to the head. The pathophysiological evolution of TBI involves complex biochemical and genetic changes. Common sequelae of TBI include seizures and psychiatric disorders, particularly depression. In considering pharmacologic interventions for treating post-TBI depression, it is important to remember that TBI patients have a higher risk of seizures; therefore, the benefits of prescribing medications that lower the seizure threshold need to be weighed against the risk of seizures. When post-TBI depression is refractory to pharmacotherapy, electroconvulsive therapy (ECT) could provide an alternative therapeutic strategy. Data remain sparse on using ECT in this seizure-prone population, but three case reports demonstrated good outcomes. Currently, not enough evidence exists to provide clinical recommendations for using ECT for treating post-TBI depression, and more research is needed to generate guidelines on how best to treat depression in TBI patients. However, the preliminary data on using ECT in patients with TBI are promising. If proven safe, ECT could be a powerful tool to treat post-TBI depression.
Concussion is confusing us all.
Sharp, David J; Jenkins, Peter O
2015-06-01
It is time to stop using the term concussion as it has no clear definition and no pathological meaning. This confusion is increasingly problematic as the management of 'concussed' individuals is a pressing concern. Historically, it has been used to describe patients briefly disabled following a head injury, with the assumption that this was due to a transient disorder of brain function without long-term sequelae. However, the symptoms of concussion are highly variable in duration, and can persist for many years with no reliable early predictors of outcome. Using vague terminology for post-traumatic problems leads to misconceptions and biases in the diagnostic process, producing uninterpretable science, poor clinical guidelines and confused policy. We propose that the term concussion should be avoided. Instead neurologists and other healthcare professionals should classify the severity of traumatic brain injury and then attempt to precisely diagnose the underlying cause of post-traumatic symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-01-01
Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-02-29
Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.
Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids.
Ondruschka, Benjamin; Sieber, Monique; Kirsten, Holger; Franke, Heike; Dressler, Jan
2018-05-05
Until now, it is impossible to identify a fatal traumatic brain injury (TBI) before post-mortem radiological investigations or an autopsy take place. It would be preferable to have an additional diagnostic tool like post-mortem biochemistry to get greater insight into the pathological pathways and survival times after sustaining TBI. Cerebrospinal fluid (CSF) and serum samples of 84 autopsy cases were collected from forensic autopsies with post-mortem intervals (PMI) of up to 148 h. The cases were categorized into a fatal TBI case group (n=42) and non-TBI controls (n=42). The values of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and neutrophil gelatinase-associated lipocalin (NGAL) were analyzed by means of quantitative chemiluminescent multiplex immunoassays. The main results indicate that the usage of liquid samples with good macroscopic quality is more relevant for meaningful biomarker analyses than the length of the PMI. All three proteins were shown to differentiate TBI fatalities from the controls in CSF. In serum, only GFAP could be shown to be able to identify TBI cases. This study is the first approach to measure the three proteins together in CSF and serum in autopsy cases. Determined threshold values may differentiate between fatal TBI and control cases. The presented results emphasize the possible use of post-mortem biochemistry as a supplemental tool in everyday forensic routine.
Chronic post-traumatic headache: clinical findings and possible mechanisms
Defrin, Ruth
2014-01-01
Chronic post-traumatic headache (CPTHA), the most frequent complaint after traumatic brain injury (TBI), dramatically affects quality of life and function. Despite its high prevalence and persistence, the mechanism of CPTHA is poorly understood. This literature review aimed to analyze the results of studies assessing the characteristics and sensory profile of CPTHA in order to shed light on its possible underlying mechanisms. The search for English language articles published between 1960 and 2013 was conducted in MEDLINE, CINAHL, and PubMed. Studies assessing clinical features of headache after TBI as well as studies conducting quantitative somatosensory testing (QST) in individuals with CPTHA and in individuals suffering from other types of pain were included. Studies on animal models of pain following damage to peripheral tissues and to the peripheral and central nervous system were also included. The clinical features of CPTHA resembled those of primary headache, especially tension-type and migraine headache. Positive and negative signs were prevalent among individuals with CPTHA, in both the head and in other body regions, suggesting the presence of local (cranial) mechanical hypersensitivity, together with generalized thermal hypoesthesia and hypoalgesia. Evidence of dysfunctional pain modulation was also observed. Chronic post-traumatic headache can result from damage to intra- and pericranial tissues that caused chronic sensitization of these tissues. Alternatively, although not mutually exclusive, CPTHA might possibly be a form of central pain due to damage to brain structures involved in pain processing. These, other possibilities, as well as risk factors for CPTHA are discussed at length. PMID:24976746
Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.
Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A
2015-11-15
Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p < 0.001) or sustained moderate/severe TBI (p < 0.001). Patients with MVA and those with post-traumatic seizures, intracranial hemorrhage, petechial brain hemorrhages, and/or focal cortical contusions are at particular risk for serious pituitary dysfunction, including adrenal insufficiency and DI, and should be referred for neuroendocrine testing. However, a substantial proportion of patients without these risk factors also developed hypopituitarism.
Lisieski, Michael J.; Eagle, Andrew L.; Conti, Alana C.; Liberzon, Israel; Perrine, Shane A.
2018-01-01
Post-traumatic stress disorder (PTSD) is a common, costly, and often debilitating psychiatric condition. However, the biological mechanisms underlying this disease are still largely unknown or poorly understood. Considerable evidence indicates that PTSD results from dysfunction in highly-conserved brain systems involved in stress, anxiety, fear, and reward. Pre-clinical models of traumatic stress exposure are critical in defining the neurobiological mechanisms of PTSD, which will ultimately aid in the development of new treatments for PTSD. Single prolonged stress (SPS) is a pre-clinical model that displays behavioral, molecular, and physiological alterations that recapitulate many of the same alterations observed in PTSD, illustrating its validity and giving it utility as a model for investigating post-traumatic adaptations and pre-trauma risk and protective factors. In this manuscript, we review the present state of research using the SPS model, with the goals of (1) describing the utility of the SPS model as a tool for investigating post-trauma adaptations, (2) relating findings using the SPS model to findings in patients with PTSD, and (3) indicating research gaps and strategies to address them in order to improve our understanding of the pathophysiology of PTSD. PMID:29867615
Reddy, Rajakumari Pampa; Rajeswaran, Jamuna; Devi, B Indira; Kandavel, Thennarasu
2017-01-01
Traumatic brain injury (TBI) constitutes a significant burden on health care resources in India. TBI is a dynamic process which involves damage to the brain thus leading to behavior cognitive and emotional consequences. To study the cognitive profile, post-concussion symptoms (PCS), quality of life (QOL), and their correlation. A total of 60 patients with TBI were recruited and assessed for neuropsychological profile, PCS, and QOL, the correlation among the variables were analyzed. The results suggest that TBI has series of consequences which is interrelated, and the study has implications for rehabilitation of TBI. The study highlights the deficits of cognition, and its correlation with PCS and QOL, emphasizing integrated rehabilitation approach for patients with TBI.
Guseva, M V; Kamenskii, A A; Gusev, V B
2013-06-01
Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.
Yan, Edwin B.; Satgunaseelan, Laveniya; Paul, Eldho; Bye, Nicole; Nguyen, Phuong; Agyapomaa, Doreen; Kossmann, Thomas; Rosenfeld, Jeffrey V.
2014-01-01
Abstract Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood–brain barrier (BBB) dysfunction. Forty-two TBI patients with Glasgow Coma Scale ≤8 were recruited. Cerebrospinal fluid (CSF) and serum were collected over 6 days. Patients were divided into Hx (n=22) and Nx (n=20) groups. Eight cytokines were measured in the CSF; albumin, S100, myelin basic protein (MBP) and neuronal specific enolase (NSE) were quantified in serum. CSF/serum albumin quotient was calculated for BBB function. Glasgow Outcome Scale Extended (GOSE) was assessed at 6 months post-TBI. Production of granulocye macrophage-colony stimulating factor (GM-CSF) was higher, and profiles of GM-CSF, interferon (IFN)-γ and, to a lesser extent, tumor necrosis factor (TNF), were prolonged in the CSF of Hx but not Nx patients at 4–5 days post-TBI. Interleukin (IL)-2, IL-4, IL-6, and IL-10 increased similarly in both Hx and Nx groups. S100, MBP, and NSE were significantly higher in Hx patients with unfavorable outcome. Among these three biomarkers, S100 showed the strongest correlations to GOSE after TBI-Hx. Elevated CSF/serum albumin quotients lasted for 5 days post-TBI and displayed similar profiles in Hx and Nx patients. We demonstrate for the first time that post-TBI hypoxia is associated with prolonged neuroinflammation, amplified extravasation of biomarkers, and poor outcome. S100 and MBP could be implemented to track the occurrence of post-TBI hypoxia, and prompt adequate treatment. PMID:24279428
2008-02-01
and Stroke Two Long Term Consequences of Penetrating Head Injuries : Exacerbated Decline and Post-Traumatic Stress Disorder Key Note speaker: Michael L...an intuitively obvious first principle that if modern medicine hopes to repair adult brains (damaged by war injuries , automobile accidents, stroke ...Imaging Animal Models of Brain Disease Background and Animal Model Quantization of Structure Cerebral Blood Flow Mini- Strokes Cancer Future
Navy and Marine Corps Medical News. January 22, 2010
2010-01-22
Naval Postgraduate Dental School Orofacial Pain Center Has Unique DOD Mission 6 6 Navy Barracks in Texas to Open as Early as February 7 A Sailor...conditions, such as post-traumatic stress disorders, traumatic brain injuries or fibromyalgia that can contribute to their orofacial pain ...present in orofacial pain patients. A key research interest of the OPC is the role of stress in chronic pain . “We
Role of valued living and associations with functional outcome following traumatic brain injury.
Pais Hons, Celia; Ponsford, Jennie L; Gould Clin Neuro, Kate R; Wong, Dana
2017-04-19
Valued living (VL) is associated with improved enjoyment and engagement with daily activities despite negative emotional state or ongoing pain. However, the role of VL in recovery following traumatic brain injury (TBI) has yet to be investigated. This study aimed to examine changes in VL over the course of recovery and variables associated with VL. Participants with moderate-to-severe TBI were recruited from a rehabilitation hospital in three cohorts: "Early" (n = 25), "Mid" (n = 9) and "Late" (n = 36) post-TBI. All participants were assessed at time of recruitment and 12 months later. The main measure was the Valued Living Questionnaire. Compared to pre-injury estimates, VL was significantly reduced at 12 months post-injury. Levels of VL remained reduced between 2 and 3 years and increased between 3 and 6 years post-injury. VL was strongly associated with improved functional and psychosocial outcomes. Changes in VL occur over at least 3-5 years post-injury, with 12 months post-TBI a suitable time for intervention given VL remains low over the next 24 to 36 months post injury. Targeted intervention to modify values and/or valued activities to be consistent with post-injury capacity could improve rates of return to pre-injury levels of VL.
Catecholamines and cognition after traumatic brain injury
Jenkins, Peter O.; Mehta, Mitul A.
2016-01-01
Abstract Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296
Hellmich, Helen L.; Eidson, Kristine; Cowart, Jeremy; Crookshanks, Jeanna; Boone, Deborah K.; Shah, Syed; Uchida, Tatsuo; DeWitt, Douglas S.; Prough, Donald S.
2008-01-01
Increases of synaptically released zinc and intracellular accumulation of zinc in hippocampal neurons after traumatic or ischemic brain injury is neurotoxic and chelation of zinc has been shown to reduce neurodegeneration. Although our previous studies showed that zinc chelation in traumatically brain-injured rats correlated with an increase in whole-brain expression of several neuroprotective genes and reduced numbers of apoptotic neurons, the effect on functional outcome has not been determined, and the question of whether this treatment may actually be clinically relevant has not been answered. In the present study, we show that treatment of TBI rats with the zinc chelator calcium EDTA reduces the numbers of injured, Fluoro-Jade- positive neurons in the rat hippocampus 24 hours after injury but does not improve neurobehavioral outcome (spatial memory deficits) two weeks post-injury. Our data suggest that zinc chelation, despite providing short-term histological neuroprotection, fails to improve long-term functional outcome, perhaps because long-term disruptions in homeostatic levels of zinc adversely influence hippocampus-dependent spatial memory. PMID:18556117
Ross, Pamela; Ponsford, Jennie L; Di Stefano, Marilyn; Charlton, Judith; Spitz, Gershon
2016-01-01
To examine pre- and post-injury self-reported driver behaviour and safety in individuals with traumatic brain injury (TBI) who returned to driving after occupational therapy driver assessment and on-road rehabilitation. A self-report questionnaire, administered at an average of 4.5 years after completing an on-road driver assessment, documenting pre- and post-injury crash rates, near-crashes, frequency of driving, distances driven, driving conditions avoided and navigation skills, was completed by 106 participants, who had either passed the initial driver assessment (pass group n = 74), or required driver rehabilitation, prior to subsequent assessments (rehabilitation group n = 32). No significant difference was found between pre- and post-injury crash rates. Compared to pre-injury, 36.8% of drivers reported limiting driving time, 40.6% drove more slowly, 41.5% reported greater difficulty with navigating and 20.0% reported more near-crashes. The rehabilitation group (with greater injury severity) was significantly more likely to drive less frequently, shorter distances, avoid: driving with passengers, busy traffic, night and freeway driving than the pass group. Many drivers with moderate/severe TBI who completed a driver assessment and rehabilitation program at least 3 months post-injury, reported modifying their driving behaviour, and did not report more crashes compared to pre-injury. On-road driver training and training in navigation may be important interventions in driver rehabilitation programs. Driver assessment and on-road retraining are important aspects of rehabilitation following traumatic brain injury. Many drivers with moderate/severe TBI, reported modifying their driving behaviour to compensate for ongoing impairment and continued to drive safely in the longer term. Navigational difficulties were commonly experienced following TBI, suggesting that training in navigation may be an important aspect of driver rehabilitation.
Lutkenhoff, Evan S.; McArthur, David L.; Hua, Xue; Thompson, Paul M.; Vespa, Paul M.; Monti, Martin M.
2013-01-01
The primary and secondary damage to neural tissue inflicted by traumatic brain injury is a leading cause of death and disability. The secondary processes, in particular, are of great clinical interest because of their potential susceptibility to intervention. We address the dynamics of tissue degeneration in cortico-subcortical circuits after severe brain injury by assessing volume change in individual thalamic nuclei over the first six-months post-injury in a sample of 25 moderate to severe traumatic brain injury patients. Using tensor-based morphometry, we observed significant localized thalamic atrophy over the six-month period in antero-dorsal limbic nuclei as well as in medio-dorsal association nuclei. Importantly, the degree of atrophy in these nuclei was predictive, even after controlling for full-brain volume change, of behavioral outcome at six-months post-injury. Furthermore, employing a data-driven decision tree model, we found that physiological measures, namely the extent of atrophy in the anterior thalamic nucleus, were the most predictive variables of whether patients had regained consciousness by six-months, followed by behavioral measures. Overall, these findings suggest that the secondary non-mechanical degenerative processes triggered by severe brain injury are still ongoing after the first week post-trauma and target specifically antero-medial and dorsal thalamic nuclei. This result therefore offers a potential window of intervention, and a specific target region, in agreement with the view that specific cortico-thalamo-cortical circuits are crucial to the maintenance of large-scale network neural activity and thereby the restoration of cognitive function after severe brain injury. PMID:24273723
Animal models of post-traumatic epilepsy.
Ostergard, Thomas; Sweet, Jennifer; Kusyk, Dorian; Herring, Eric; Miller, Jonathan
2016-10-15
Post-traumatic epilepsy (PTE) is defined as the development of unprovoked seizures in a delayed fashion after traumatic brain injury (TBI). PTE lies at the intersection of two distinct fields of study, epilepsy and neurotrauma. TBI is associated with a myriad of both focal and diffuse anatomic injuries, and an ideal animal model of epilepsy after TBI must mimic the characteristics of human PTE. The three most commonly used models of TBI are lateral fluid percussion, controlled cortical injury, and weight drop. Much of what is known about PTE has resulted from use of these models. In this review, we describe the most commonly used animal models of TBI with special attention to their advantages and disadvantages with respect to their use as a model of PTE. Copyright © 2016 Elsevier B.V. All rights reserved.
Johansson, B; Wentzel, A-P; Andréll, P; Mannheimer, C; Rönnbäck, L
2015-01-01
Post-traumatic brain injury symptoms, such as mental fatigue, have considerable negative impacts on quality-of-life. In the present study the effects of methylphenidate in two different dosages were assessed with regard to mental fatigue, pain and cognitive functions in persons who had suffered a traumatic brain injury. Fifty-one subjects were included and 44 completed the study. The treatment continued for 12 weeks, including three treatment periods with no medication for 4 weeks, administration of low dose methylphenidate (up to 5 mg × 3) for 4 weeks and normal dose methylphenidate (up to 20 mg × 3) for a further 4 weeks. The patients were randomized into three groups where all groups were given all treatments. Significantly reduced mental fatigue, assessed with the Mental Fatigue Scale (MFS) and increased information processing speed (coding, WAIS-III), were detected. The SF-36 vitality and social functioning scales were also improved significantly. Pain was not reduced by methylphenidate. The positive effects of treatment were dose-dependent, with the most prominent effects being at 60 mg methylphenidate/day spread over three doses. Observed side-effects were increased blood pressure and increased heart rate. Methylphenidate was generally well-tolerated and it improved long-lasting mental fatigue and processing speed after traumatic brain injury.
Sherer, Mark; Nick, Todd G; Sander, Angelle M; Melguizo, Maria; Hanks, Robin; Novack, Thomas A; Tulsky, David; Kisala, Pamela; Luo, Chunqiao; Tang, Xinyu
To (1) identify groups of persons with traumatic brain injury (TBI) who differ on 12 dimensions of cognitive function: cognitive, emotional, and physical symptoms; personal strengths; physical functioning; environmental supports; and performance validity; and (2) describe patterns of differences among the groups on these dimensions and on participation outcome. Three centers for rehabilitation of persons with TBI. A total of 504 persons with TBI living in the community who were an average (standard deviation) of 6.3 (6.8) years postinjury and who had capacity to give consent, could be interviewed and tested in English, and were able to participate in an assessment lasting up to 4 hours. Observational study of a convenience sample of persons with TBI. Selected scales from the Traumatic Brain Injury Quality of Life measures, Neurobehavioral Symptom Inventory, Economic Quality of Life Scale, Family Assessment Device General Functioning Scale, measures of cognitive function, Word Memory Test, and Participation Assessment with Recombined Tools-Objective (PART-O) scale. Cluster analysis identified 5 groups of persons with TBI who differed in clinically meaningful ways on the 12 dimension scores and the PART-O scale. Cluster groupings identified in this study could assist clinicians with case conceptualization and treatment planning.
Creed, Jennifer A.; DiLeonardi, Ann Mae; Fox, Douglas P.; Tessler, Alan R.
2011-01-01
Abstract Concussive brain injury (CBI) accounts for approximately 75% of all brain-injured people in the United States each year and is particularly prevalent in contact sports. Concussion is the mildest form of diffuse traumatic brain injury (TBI) and results in transient cognitive dysfunction, the neuropathologic basis for which is traumatic axonal injury (TAI). To evaluate the structural and functional changes associated with concussion-induced cognitive deficits, adult mice were subjected to an impact on the intact skull over the midline suture that resulted in a brief apneic period and loss of the righting reflex. Closed head injury also resulted in an increase in the wet weight:dry weight ratio in the cortex suggestive of edema in the first 24 h, and the appearance of Fluoro-Jade-B-labeled degenerating neurons in the cortex and dentate gyrus of the hippocampus within the first 3 days post-injury. Compared to sham-injured mice, brain-injured mice exhibited significant deficits in spatial acquisition and working memory as measured using the Morris water maze over the first 3 days (p<0.001), but not after the fourth day post-injury. At 1 and 3 days post-injury, intra-axonal accumulation of amyloid precursor protein in the corpus callosum and cingulum was accompanied by neurofilament dephosphorylation, impaired transport of Fluoro-Gold and synaptophysin, and deficits in axonal conductance. Importantly, deficits in retrograde transport and in action potential of myelinated axons continued to be observed until 14 days post-injury, at which time axonal degeneration was apparent. These data suggest that despite recovery from acute cognitive deficits, concussive brain trauma leads to axonal degeneration and a sustained perturbation of axonal function. PMID:21299360
Kontos, Anthony P; Reches, Amit; Elbin, R J; Dickman, Dalia; Laufer, Ilan; Geva, Amir B; Shacham, Galit; DeWolf, Ryan; Collins, Michael W
2016-06-01
Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.
Brain network dysregulation, emotion, and complaints after mild traumatic brain injury.
van der Horn, Harm J; Liemburg, Edith J; Scheenen, Myrthe E; de Koning, Myrthe E; Marsman, Jan-Bernard C; Spikman, Jacoba M; van der Naalt, Joukje
2016-04-01
To assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Fifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matched for age, sex, education, and handedness) were included. Resting-state fMRI was performed at four weeks post-injury. Static and dynamic functional connectivity were studied within and between the default mode, executive (frontoparietal and bilateral frontal network), and salience network. The hospital anxiety and depression scale (HADS) was used to measure anxiety (HADS-A) and depression (HADS-D). Regarding within-network functional connectivity, none of the selected brain networks were different between groups. Regarding between-network interactions, patients with complaints exhibited lower functional connectivity between the bilateral frontal and salience network compared to patients without complaints. In the total patient group, higher HADS-D scores were related to lower functional connectivity between the bilateral frontal network and both the right frontoparietal and salience network, and to higher connectivity between the right frontoparietal and salience network. Furthermore, whereas higher HADS-D scores were associated with lower connectivity within the parietal midline areas of the bilateral frontal network, higher HADS-A scores were related to lower connectivity within medial prefrontal areas of the bilateral frontal network. Functional interactions of the executive and salience networks were related to emotion regulation and complaints after mTBI, with a key role for the bilateral frontal network. These findings may have implications for future studies on the effect of psychological interventions. © 2016 Wiley Periodicals, Inc.
Evidence for impaired plasticity after traumatic brain injury in the developing brain.
Li, Nan; Yang, Ya; Glover, David P; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney; Pelled, Galit
2014-02-15
The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2-3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.
Dennis, Emily L; Babikian, Talin; Alger, Jeffry; Rashid, Faisal; Villalon-Reina, Julio E; Jin, Yan; Olsen, Alexander; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F
2018-05-10
Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury. Previous analyses on this dataset revealed a significant division within the msTBI patient group, based on interhemispheric transfer time (IHTT); one subgroup of patients (TBI-normal) showed evidence of recovery over time, while the other showed continuing degeneration (TBI-slow). We combined dMRI with MRS to better understand WM disruptions in children with moderate-severe traumatic brain injury (msTBI). Tracts with poorer WM organization, as shown by lower FA and higher MD and RD, also showed lower N-acetylaspartate (NAA), a marker of neuronal and axonal health and myelination. We did not find lower NAA in tracts with normal WM organization. Choline, a marker of inflammation, membrane turnover, or gliosis, did not show such associations. We further show that multi-modal imaging can improve outcome prediction over a single modality, as well as over earlier cognitive function measures. Our results suggest that demyelination plays an important role in WM disruption post-injury in a subgroup of msTBI children and indicate the utility of multi-modal imaging. © 2018 Wiley Periodicals, Inc.
Heme Oxygenase-2 Modulates Early Pathogenesis after Traumatic Injury to the Immature Brain
Yoneyama-Sarnecky, Tomoko; Olivas, Andrea D.; Azari, Soraya; Ferriero, Donna M.; Manvelyan, Hovhannes M.; Noble-Haeusslein, Linda J.
2010-01-01
We determined if heme oxygenase-2 (HO-2), an enzyme that degrades the pro-oxidant heme, confers neuroprotection in the developing brain after traumatic brain injury (TBI). Male HO-2 wild-type (WT) and homozygous knockout (KO) mice at postnatal day 21 were subjected to TBI and euthanized 1, 7, and 14 days later. Relative cerebral blood flow, measured by laser Doppler, cortical and hippocampal pathogenesis, and motor recovery were evaluated at all time points. Cerebral blood flow was found to be similar between experimental groups. Blood flow significantly decreased immediately after injury, returned to baseline by 1 day, and was significantly elevated by 7 days, post-injury. Nonheme iron preferentially accumulated in the ipsilateral cortex, hippocampus, and external capsule in both WT and KO brain-injured genotypes. There were, however, a significantly greater number of TUNEL-positive cells in the hippocampal dentate gyrus and a significantly greater cortical lesion volume in KOs relative to WTs within the first week post-injury. By 14 days post-injury, however, cortical lesion volume and cell density in the hippocampal CA3 region and dorsal thalamus were similar between the two groups. Assays of fine motor function (grip strength) over the first 2 weeks post-injury revealed a general pattern of decreased strength in the contralateral forelimbs of KOs as compared to WTs. Together, these findings demonstrate that deficiency in HO-2 alters both the kinetics of secondary damage and fine motor recovery after TBI. PMID:20389079
Bond, F; Godfrey, H P
1997-05-01
The conversations of 62 traumatically brain-injured (TBI) patients, assessed between 6 months and 3 years post-injury, were compared with those of an orthopaedic control (OC) group (n = 25). Conversations involving TBI subjects were rated as significantly less interesting, less appropriate, less rewarding and more effortful than interactions involving OC subjects, and were characterized by differences in the frequency of prompt usage and turn duration. Furthermore, measures of turn duration and prompt frequency were significantly associated with the perceived quality of conversation. These findings provide a microbehavioural description of the social process through which TBI individuals fail to adequately reinforce others.
Toglia, Joan; Goverover, Yael; Johnston, Mark V; Dain, Barry
2011-01-01
The multicontext approach addresses strategy use and self-monitoring skills within activities and contexts that are systematically varied to facilitate transfer of learning. This article illustrates the application of the multicontext approach by presenting a case study of an adult who is 5 years post-traumatic brain injury with executive dysfunction and limited awareness. A single case study design with repeated pre-post measures was used. Methods to monitor strategy generation and specific awareness within intervention are described. Findings suggest improved functional performance and generalization of use of an external strategy despite absence of changes in general self-awareness of deficits. This case describes the multicontext intervention process and provides clinical suggestions for working with individuals with serious deficits in awareness and executive dysfunction following traumatic brain injury. Copyright 2011, SLACK Incorporated.
Sleep-wake disturbances after traumatic brain injury.
Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M
2015-07-01
Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shamsi Meymandi, Manzumeh; Soltani, Zahra; Sepehri, Gholamreza; Amiresmaili, Sedigheh; Farahani, Fatemeh; Moeini Aghtaei, Mohammadmehdi
2018-05-03
Brain edema and increased intracranial pressure (ICP) are among the main causes of neurological disturbance and mortality following traumatic brain injury (TBI). Since pregabalin neuroprotective effects have been shown, this study was performed to evaluate the possible neuroprotective effects of pregabalin in experimental TBI of male rats. Adult male Wistar rats were divided into 4 groups: sham, vehicle, pregabalin 30 mg/kg and pregabalin 60 mg/kg. TBI was induced in vehicle and pregabalin groups by Marmarou method. Pregabalin was administered 30 min after TBI. Sham and vehicle groups received saline. Brain water and Evans blue content and histopathological changes were evaluated 24, 5 and 24 h after TBI, respectively. The ICP and neurological outcomes (veterinary coma scale, VCS) were recorded before, 1 h and 24 h post TBI. The results showed a significant reduction in brain water content and ICP, and a significant increase in VCS of pregabalin group (60 mg/kg) as compared to vehicle group (P < 0.05). Also, pregabalin reduced brain edema and apoptosis score as compared to vehicle group. Post TBI pregabalin administration revealed a delayed but significant improvement in ICP and neurological outcomes in experimental TBI. The underlying mechanism(s) was not determined and needs further investigation. Copyright © 2018 Elsevier Inc. All rights reserved.
Libin, Alexander V; Scholten, Joel; Schladen, Manon Maitland; Danford, Ellen; Shara, Nawar; Penk, Walter; Grafman, Jordan; Resnik, Linda; Bruner, Dwan; Cichon, Samantha; Philmon, Miriam; Tsai, Brenda; Blackman, Marc; Dromerick, Alexander
2015-01-01
Traumatic brain injury is a major health problem that frequently leads to deficits in executive function. Self-regulation processes, such as goal-setting, may become disordered after traumatic brain injury, particularly when the frontal regions of the brain and their connections are involved. Such impairments reduce injured veterans' ability to return to work or school and to regain satisfactory personal lives. Understanding the neurologically disabling effects of brain injury on executive function is necessary for both the accurate diagnosis of impairment and the individual tailoring of rehabilitation processes to help returning service members recover independent function. The COMPASS(goal) (Community Participation through Self-Efficacy Skills Development) program develops and tests a novel patient-centered intervention framework for community re-integration psychosocial research in veterans with mild traumatic brain injury. COMPASS(goal) integrates the principles and best practices of goal self-management. Goal setting is a core skill in self-management training by which persons with chronic health conditions learn to improve their status and decrease symptom effects. Over a three-year period, COMPASS(goal) will recruit 110 participants with residual executive dysfunction three months or more post-injury. Inclusion criteria combine both clinical diagnosis and standardized scores that are >1 SD from the normative score on the Frontal Systems Rating Scale. Participants are randomized into two groups: goal-management (intervention) and supported discharge (control). The intervention is administered in eight consecutive, weekly sessions. Assessments occur at enrollment, post-intervention/supported discharge, and three months post-treatment follow-up. Goal management is part of the "natural language" of rehabilitation. However, collaborative goal-setting between clinicians/case managers and clients can be hindered by the cognitive deficits that follow brain injury. Re-training returning veterans with brain injury in goal management, with appropriate help and support, would essentially treat deficits in executive function. A structured approach to goal self-management may foster greater independence and self-efficacy, help veterans gain insight into goals that are realistic for them at a given time, and help clinicians and veterans to work more effectively as true collaborators.
Whitesides, Louisa W; Baren, Jill M; Biros, Michelle H; Fleischman, Ross J; Govindarajan, Prasanthi R; Jones, Elizabeth B; Pancioli, Arthur M; Pentz, Rebecca D; Scicluna, Victoria M; Wright, David W; Dickert, Neal W
2017-04-01
Evidence suggests that patients are generally accepting of their enrollment in trials for emergency care conducted under exception from informed consent. It is unknown whether individuals with more severe initial injuries or worse clinical outcomes have different perspectives. Determining whether these differences exist may help to structure post-enrollment interactions. Primary clinical data from the Progesterone for the Treatment of Traumatic Brain Injury trial were matched to interview data from the Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study. Answers to three key questions from Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study were analyzed in the context of enrolled patients' initial injury severity (initial Glasgow Coma Scale and Injury Severity Score) and principal clinical outcomes (Extended Glasgow Outcome Scale and Extended Glasgow Outcome Scale relative to initial injury severity). The three key questions from Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study addressed participants' general attitude toward inclusion in the Progesterone for the Treatment of Traumatic Brain Injury trial (general trial inclusion), their specific attitude toward being included in Progesterone for the Treatment of Traumatic Brain Injury trial under the exception from informed consent (personal exception from informed consent enrollment), and their attitude toward the use of exception from informed consent in the Progesterone for the Treatment of Traumatic Brain Injury trial in general (general exception from informed consent enrollment). Qualitative analysis of interview transcripts was performed to provide contextualization and to determine the extent to which respondents framed their attitudes in terms of clinical experience. Clinical data from Progesterone for the Treatment of Traumatic Brain Injury trial were available for all 74 patients represented in the Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study (including 46 patients for whom the surrogate was interviewed due to the patient's cognitive status or death). No significant difference was observed regarding acceptance of general trial inclusion or acceptance of general exception from informed consent enrollment between participants with favorable neurological outcomes and those with unfavorable outcomes relative to initial injury. Agreement with personal enrollment in Progesterone for the Treatment of Traumatic Brain Injury trial under exception from informed consent, however, was significantly higher among participants with favorable outcomes compared to those with unfavorable outcomes (89% vs 59%, p = 0.003). There was also a statistically significant relationship between more severe initial injury and increased acceptance of personal exception from informed consent enrollment ( p = 0.040) or general exception from informed consent use ( p = 0.034) in Progesterone for the Treatment of Traumatic Brain Injury trial. Many individuals referenced personal experience as a basis for their attitudes, but these references were not used to support negative views. Patients and surrogates of patients with unfavorable clinical outcomes were somewhat less accepting of their own inclusion in the Progesterone for the Treatment of Traumatic Brain Injury trial under exception from informed consent than were patients or surrogates of patients with favorable clinical outcomes. These findings suggest a need to identify optimal strategies for communicating with patients and their surrogates regarding exception from informed consent enrollment when clinical outcomes are poor.
2016-01-01
deficit hyperactivity disorder . The above diagram illustrates the time to death from admission from a retrospective review of 1,029 deaths over 4 years...hypotension occurring as consequences of the primary insult. TBI also predicts the development of both post-traumatic stress disorder and attention ...special attention to the management of hemorrhage on the battlefield” [Bellamy, 1984 #2647]. Despite extraordinary advances in hemorrhage control [Butler
Multimodal Retrospective and Prospective Unit-Level Analysis of Military Workplace Violence
2014-10-01
add_ever 5.3.3 Attention deficit disorder and Attention deficit hyperactivity disorder 1936524 0.0160 0.1255 delirium_ever 5.4. Delirium, dementia...in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so...Camp Pendleton). 2. KEYWORDS Military Workplace Violence Combat Deployment Traumatic Brain Injury Post-Traumatic Stress Disorder Risk Taking
2015-12-01
injuries that are not combat related. Letter Page 2 GAO-16-154 Hyperbaric Oxygen Therapy depression , and suicide. Experts believe...fatigue, visual disturbances, sensitivity to noise, judgment problems, depression , and anxiety. Although the majority of individuals with mild TBI have...suffer from other ailments, such as depression and substance abuse. PTSD is one of the most prevalent mental disorders arising from combat. HBO2
A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury
Song, S.; Race, N. S.; Kim, A.; Zhang, T.; Shi, R.; Ziaie, B.
2015-01-01
Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI. PMID:26586273
Targeting Microglia to Prevent Post-Traumatic Epilepsy
2012-07-01
long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 22 :317-330...attenuating damaging effects of hyperexcitability in the brain induced by inflammation resulting from glial cell immune responses to trauma. We are...damaging effects of hyperexcitability in the brain induced by inflammation resulting from glial cell immune responses to trauma. We are exploring two
Use of the emotional Stroop to assess psychological trauma following traumatic brain injury.
Coates, Richard C
2008-04-01
A modified Stroop task was used to investigate the hypothesis that implicit memory may be a possible mechanism for the development of acute stress disorder (ASD) in patients who have suffered a closed head injury. Three groups of hospital patients were compared within 1 month post-trauma: road traffic accident (RTA) patients with a brain injury (n = 15), RTA patients without a brain injury (n = 13) and a control group of orthopaedic and plastics patients (n = 15). Participants named colours of five types of words: RTA-related words, words related to hospitalization, obsessive-compulsive disorder (OCD) words, positive words and neutral words. Participants were also administered the Acute Stress Disorder Interview and the State-Trait Anxiety Inventory. Both RTA patients with and without a brain injury demonstrated significant interference on words related to an RTA. Significant interference was unexpectedly observed for OCD words in RTA patients. Control patients did not display significant interference effects. Findings suggested that patients, both with and without explicit recall for an RTA, responded similarly on a task involving implicit memory for trauma. Possible implications for ASD and Post-traumatic Stress Disorder are discussed.
Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.
Campbell, John N; Low, Brian; Kurz, Jonathan E; Patel, Sagar S; Young, Matt T; Churn, Severn B
2012-01-20
Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms.
Mechanisms of Dendritic Spine Remodeling in a Rat Model of Traumatic Brain Injury
Campbell, John N.; Low, Brian; Kurz, Jonathan E.; Patel, Sagar S.; Young, Matt T.
2012-01-01
Abstract Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms. PMID:21838518
Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos
2016-01-01
Abstract Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD. PMID:27082610
Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos
2016-04-01
Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD.
Wojtłowska-Wiechetek, D; Tworus, R; Dziuk, M; Petrovic, A; Szymańska, S; Zbyszewski, M; Ilnicki, S; Krzesiński, P
2013-01-01
The aim of this study was to evaluate the possibility of using PET both in assessing the susceptibility to stress and in the diagnosis of post-traumatic stress disorders. Mentally and somatically healthy soldiers were subjected to PET-CT head scan examinations before and after virtual reality stimulation with warfare scenarios. Despite stimulation of peripheral nervous system after 10 minutes, VR exposure in any of the examined soldiers simulation did not cause changes in any brain structure that was visualized in PET. PET-CT head scan was also performed in patients with typical symptoms of acute PTSD according to the criteria of DSM IV TR. In those patients no changes in any brain structure was found. Initially it was found that VR exposure techniques like clinically typical acute symptoms of PTSD do not leave changes in CNS, which could be visualized in PET. The preliminary hypothesis was put forward that exposure to stimuli like symptoms of PTSD must remain long enough to induce permanent damage of brain structure.
Alpha oscillations and their impairment in affective and post-traumatic stress disorders.
Eidelman-Rothman, Moranne; Levy, Jonathan; Feldman, Ruth
2016-09-01
Affective and anxiety disorders are debilitating conditions characterized by impairments in cognitive and social functioning. Elucidating their neural underpinnings may assist in improving diagnosis and developing targeted interventions. Neural oscillations are fundamental for brain functioning. Specifically, oscillations in the alpha frequency range (alpha rhythms) are prevalent in the awake, conscious brain and play an important role in supporting perceptual, cognitive, and social processes. We review studies utilizing various alpha power measurements to assess abnormalities in brain functioning in affective and anxiety disorders as well as obsessive compulsive and post-traumatic stress disorders. Despite some inconsistencies, studies demonstrate associations between aberrant alpha patterns and these disorders both in response to specific cognitive and emotional tasks and during a resting state. We conclude by discussing methodological considerations and future directions, and underscore the need for much further research on the role of alpha functionality in social contexts. As social dysfunction accompanies most psychiatric conditions, research on alpha's involvement in social processes may provide a unique window into the neural mechanisms underlying these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Abu-Judeh, H H; Parker, R; Singh, M; el-Zeftawy, H; Atay, S; Kumar, M; Naddaf, S; Aleksic, S; Abdel-Dayem, H M
1999-06-01
We present SPET brain perfusion findings in 32 patients who suffered mild traumatic brain injury without loss of consciousness and normal computed tomography. None of the patients had previous traumatic brain injury, CVA, HIV, psychiatric disorders or a history of alcohol or drug abuse. Their ages ranged from 11 to 61 years (mean = 42). The study was performed in 20 patients (62%) within 3 months of the date of injury and in 12 (38%) patients more than 3 months post-injury. Nineteen patients (60%) were involved in a motor vehicle accident, 10 patients (31%) sustained a fall and three patients (9%) received a blow to the head. The most common complaints were headaches in 26 patients (81%), memory deficits in 15 (47%), dizziness in 13 (41%) and sleep disorders in eight (25%). The studies were acquired approximately 2 h after an intravenous injection of 740 MBq (20.0 mCi) of 99Tcm-HMPAO. All images were acquired on a triple-headed gamma camera. The data were displayed on a 10-grade colour scale, with 2-pixel thickness (7.4 mm), and were reviewed blind to the patient's history of symptoms. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in the cortex or basal ganglia less than 70%, or less than 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. The results show that 13 (41%) had normal studies and 19 (59%) were abnormal (13 studies performed within 3 months of the date of injury and six studies performed more than 3 months post-injury). Analysis of the abnormal studies revealed that 17 showed 48 focal lesions and two showed diffuse supratentorial hypoperfusion (one from each of the early and delayed imaging groups). The 12 abnormal studies performed early had 37 focal lesions and averaged 3.1 lesions per patient, whereas there was a reduction to--an average of 2.2 lesions per patient in the five studies (total 11 lesions) performed more than 3 months post-injury. In the 17 abnormal studies with focal lesions, the following regions were involved in descending frequency: frontal lobes 58%, basal ganglia and thalami 47%, temporal lobes 26% and parietal lobes 16%. We conclude that: (1) SPET brain perfusion imaging is valuable and sensitive for the evaluation of cerebral perfusion changes following mild traumatic brain injury; (2) these changes can occur without loss of consciousness; (3) SPET brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions; and (4) the changes may explain a neurological component of the patient's symptoms in the absence of morphological abnormalities using other imaging modalities.
Hyperbaric oxygen for mild traumatic brain injury: Design and baseline summary.
Weaver, Lindell K; Chhoeu, Austin; Lindblad, Anne S; Churchill, Susan; Wilson, Steffanie H
2016-01-01
The Brain Injury and Mechanisms of Action of Hyperbaric Oxygen for Persistent Post-Concussive Symptoms after Mild Traumatic Brain Injury (mTBI) (BIMA) study, sponsored by the Department of Defense, is a randomized double-blind, sham-controlled clinical trial that has a longer duration of follow-up and more comprehensive assessment battery compared to recent HBO₂ studies. BIMA randomized 71 participants from September 2012 to May 2014. Primary results are expected in 2017. Randomized military personnel received hyperbaric oxygen (HBO₂) at 1.5 atmospheres absolute (ATA) or sham chamber sessions at 1.2 ATA, air, for 60 minutes daily for 40 sessions. Outcomes include neuropsychological, neuroimaging, neurological, vestibular, autonomic function, electroencephalography, and visual systems evaluated at baseline, immediately following intervention at 13 weeks and six months with self-report symptom and quality of life questionnaires at 12 months, 24 months and 36 months. Characteristics include: median age 33 years (range 21-53); 99% male; 82% Caucasian; 49% diagnosed post-traumatic stress disorder; 28% with most recent injury three months to one year prior to enrollment; 32% blast injuries; and 73% multiple injuries. This manuscript describes the study design, outcome assessment battery, and baseline characteristics. Independent of a therapeutic role of HBO₂, results of BIMA will aid understanding of mTBI. ClinicalTrials.gov Identifier: NCT01611194; https://clinicaltrials.gov/show/NCT01611194. Copyright© Undersea and Hyperbaric Medical Society.
Walker, William C; Nowak, Kayla J; Kenney, Kimbra; Franke, Laura Manning; Eapen, Blessen C; Skop, Karen; Levin, Harvey; Agyemang, Amma A; Tate, David F; Wilde, Elisabeth A; Hinds, Sidney; Nolen, Tracy L
2018-06-12
Determine if mild traumatic brain injury (mTBI) history is associated with balance disturbances. Chronic Effects of Neurotrauma Consortium (CENC) centres. The CENC multi-centre study enrols post-9/11 era Service Members and Veterans with combat exposure. This sample (n = 322) consisted of enrolees completing initial evaluation by September 2016 at the three sites conducting computerized dynamic post-urography (CDP) testing. Observational study with cross-sectional analyses using structural equation modelling. Comprehensive structured interviews were used to diagnose all lifetime mild traumatic brain injuries (mTBIs). The outcome, Sensory Organization Test (SOT), was measured on CDP dual-plate force platform. Other studied variables were measured by structured interviews, record review and questionnaires. The overall positive/negative mTBI classification did not have a significant effect on the composite equilibrium score. However, the repetitive mTBI classification showed lower scores for participants with ≥ 3 mTBI versus 1-2 lifetime mTBIs. For repetitive mTBI, pain interference acted as a mediator for the indirect effect, and a direct effect was evident on some sensory condition equilibrium scores. These findings show that repeated mTBI, partially mediated by pain, may lead to later balance disturbances among military combatants. Further study of CDP outcomes within this accruing cohort is warranted.
Post-traumatic stress disorder: the neurobiological impact of psychological trauma
Sherin, Jonathan E.; Nemeroff, Charles B.
2011-01-01
The classic fight-or-flight response to perceived threat is a reflexive nervous phenomenon thai has obvious survival advantages in evolutionary terms. However, the systems that organize the constellation of reflexive survival behaviors following exposure to perceived threat can under some circumstances become dysregulated in the process. Chronic dysregulation of these systems can lead to functional impairment in certain individuals who become “psychologically traumatized” and suffer from post-traumatic stress disorder (PTSD), A body of data accumulated over several decades has demonstrated neurobiological abnormalities in PTSD patients. Some of these findings offer insight into the pathophysiology of PTSD as well as the biological vulnerability of certain populations to develop PTSD, Several pathological features found in PTSD patients overlap with features found in patients with traumatic brain injury paralleling the shared signs and symptoms of these clinical syndromes. PMID:22034143
Vaaramo, Kalle; Puljula, Jussi; Tetri, Sami; Juvela, Seppo; Hillbom, Matti
2015-10-15
Patients who have recovered from traumatic brain injury (TBI) show an increased risk of premature death. To investigate long-term mortality rates in a population admitted to the hospital for head injury (HI), we conducted a population-based prospective case-control, record-linkage study, All subjects who were living in Northern Ostrobothnia, and who were admitted to Oulu University Hospital in 1999 because of HI (n=737), and 2196 controls matched by age, gender, and residence randomly drawn from the population of Northern Ostrobothnia were included. Death rate and causes of death in HI subjects during 15 years of follow-up was compared with the general population controls. The crude mortality rates were 56.9, 18.6, and 23.8% for subjects having moderate-to-severe traumatic brain injury (TBI), mild TBI, and head injury without TBI, respectively. The corresponding approximate annual mortality rates were 6.7%, 1.4%, and 1.9%. All types of index HI predicted a significant risk of traumatic death in the future. Subjects who had HI without TBI had an increased risk of both death from all causes (hazard ratio 2.00; 95% confidence interval 1.57-2.55) and intentional or unintentional traumatic death (4.01, 2.20-7.30), compared with controls. The main founding was that even HI without TBI carries an increased risk of future traumatic death. The reason for this remains unknown and further studies are needed. To prevent such premature deaths, post-traumatic therapy should include an interview focusing on lifestyle factors.
Taib, Toufik; Leconte, Claire; Van Steenwinckel, Juliette; Cho, Angelo H.; Palmier, Bruno; Torsello, Egle; Lai Kuen, Rene; Onyeomah, Somfieme; Ecomard, Karine; Benedetto, Chiara; Coqueran, Bérard; Novak, Anne-Catherine; Deou, Edwige; Plotkine, Michel; Gressens, Pierre; Marchand-Leroux, Catherine
2017-01-01
Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI. This model could help to validate a pharmacological strategy to prevent post-traumatic WMI and behavioral disorders following mild TBI. PMID:28910378
Basal cerebral glucose distribution in long-term post-traumatic stress disorder.
Molina, Mario Enrique; Isoardi, Roberto; Prado, Marcela Nathalie; Bentolila, Silvia
2010-03-01
The purpose of this investigation was to study basal cerebral glucose absorption patterns associated to long-term post-traumatic stress disorder. Fluorodeoxyglucose positron emission tomography (FDG-PET) and statistic parametric mapping (SPM) were used to compare regional cerebral glucose absorption between 15 war veterans (Hispanic men, aged 39-41 (M = 39.5, SD = 0.84)) diagnosed with post-traumatic stress disorder (PTSD) based on DSM-IV criteria, and a matching control group of six asymptomatic veterans. This study was conducted 20 years after the traumatic events. PTSD patients presented relatively diminished activity (P<0.005) in: cingulate gyri, precuneus, insula, hippocampus; frontal, pre-frontal and post-central regions; lingual, calcarine, occipital medial and superior gyri, and verbal and paraverbal areas. Relativeley augmented activity (P<0.005) was observed in PTSD patients in: fusiform, temporal superior, medial, and inferior gyri; occipital medial, inferior and lingual gyri; precuneus, and cerebellum. The amygdala and the thalamus showed normal metabolic activity. Various brain regions that showed diminished activity (limbic, frontal and prefrontal cortex, multimodal parieto-occipital areas and verbal and paraverbal areas) have evolved lately, and sub-serve highly complex cognitive and behavioural functions. Metabolic activity patterns are comparable to those observed in personality disorders of the borderline type.
Sport-related concussive convulsions: a systematic review.
Kuhl, Nicholas O; Yengo-Kahn, Aaron M; Burnette, Hannah; Solomon, Gary S; Zuckerman, Scott L
2018-02-01
The incidence of sport-related concussion (SRC) continues to rise. Presentations of concussed athletes vary from subtle symptoms to notable signs. Between the 4th and 5th iterations of the Concussion in Sport Group (CISG) guidelines, concussive convulsions were removed as a modifying factor, but little evidence or discussion supported this change. While considerable research exists regarding post-traumatic epilepsy in moderate to severe traumatic brain injury, convulsions following SRC are relatively understudied. There is no clear consensus on the prevalence of convulsions, seizures, or the management of these entities following SRC. The aim of this review was to assess the state of the literature, describe the management trends of concussive convulsions and post-traumatic epilepsy in the SRC population, and provide evidence and guidance for the management of these athletes. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were adapted for a review of heterogeneous literature. English-language titles and abstracts published prior to June 2017 were searched systematically across four electronic databases. Primary peer-reviewed journal articles were included if they reported individuals of any age or gender who suffered a concussion or mild traumatic brain injury that was associated with seizure activity during a sports/recreational event. Of 852 records screened for review, 58 full-text articles were assessed for eligibility. Eight studies with 130 athletes total met the inclusion criteria. Of these individuals suffering a SRC convulsion or a post-concussive seizure, 0.8% received antiepileptic medications, 24.6% underwent electroencephalography, and 30.8% underwent brain imaging. The mean time until the participant returned to play was 14.8 days. Only 6.9% developed long-term sequelae over a mean follow-up time of 3.3 years. The current literature describing concussive convulsions and post-concussion seizure in sports is limited. A void of primary literature concerning the management of patients with concussive convulsions or seizures and the long-term sequelae among this population remains. However, the evidence available suggests that concussive convulsions do not need to be a primary modifying factor in the management of SRC.
Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu
2014-01-01
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475
Bomb blast, mild traumatic brain injury and psychiatric morbidity: a review.
Rosenfeld, Jeffrey V; Ford, Nick L
2010-05-01
Traumatic brain injury (TBI) arising from blast exposure during war is common, and frequently complicated by psychiatric morbidity. There is controversy as to whether mild TBI from blast is different from other causes of mild TBI. Anxiety and affective disorders such as Post-traumatic Stress Disorder (PTSD) and depression are common accompaniments of blast injury with a significant overlap in the diagnostic features of PTSD with post-concussive syndrome (PCS). This review focuses on this overlap and the effects of mild TBI due to bomb blast. Mild TBI may have been over diagnosed by late retrospective review of returned servicemen and women using imprecise criteria. There is therefore a requirement for clear and careful documentation by health professionals of a TBI due to bomb blast shortly after the event so that the diagnosis of TBI can be made with confidence. There is a need for the early recognition of symptoms of PCS, PTSD and depression and early multi-disciplinary interventions focussed on expected return to duties. There also needs to be a continued emphasis on the de-stigmatization of psychological conditions in military personnel returning from deployment. (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lao, Yi; Gajawelli, Niharika; Haas, Lauren; Wilkins, Bryce; Hwang, Darryl; Tsao, Sinchai; Wang, Yalin; Law, Meng; Leporé, Natasha
2014-03-01
Mild traumatic brain injury (MTBI) or concussive injury affects 1.7 million Americans annually, of which 300,000 are due to recreational activities and contact sports, such as football, rugby, and boxing[1]. Finding the neuroanatomical correlates of brain TBI non-invasively and precisely is crucial for diagnosis and prognosis. Several studies have shown the in influence of traumatic brain injury (TBI) on the integrity of brain WM [2-4]. The vast majority of these works focus on athletes with diagnosed concussions. However, in contact sports, athletes are subjected to repeated hits to the head throughout the season, and we hypothesize that these have an influence on white matter integrity. In particular, the corpus callosum (CC), as a small structure connecting the brain hemispheres, may be particularly affected by torques generated by collisions, even in the absence of full blown concussions. Here, we use a combined surface-based morphometry and relative pose analyses, applying on the point distribution model (PDM) of the CC, to investigate TBI related brain structural changes between 9 pre-season and 9 post-season contact sport athlete MRIs. All the data are fed into surface based morphometry analysis and relative pose analysis. The former looks at surface area and thickness changes between the two groups, while the latter consists of detecting the relative translation, rotation and scale between them.
Concussion in Motor Vehicle Accidents: The Concussion Identification Index
2016-08-03
Motor Vehicle Accidents; TBI (Traumatic Brain Injury); Brain Contusion; Brain Injuries; Cortical Contusion; Concussion Mild; Cerebral Concussion; Brain Concussion; Accidents, Traffic; Traffic Accidents; Traumatic Brain Injury With Brief Loss of Consciousness; Traumatic Brain Injury With no Loss of Consciousness; Traumatic Brain Injury With Loss of Consciousness
Insomnia in the Military: Application and Effectiveness of Cognitive and Pharmacologic Therapies.
Capaldi, Vincent F; Kim, Jessica R; Grillakis, Antigone A; Taylor, Maura R; York, Carla M
2015-10-01
Insomnia is one of the most common complaints of US armed service members. Diagnosis and treatment of insomnia in active duty and veteran populations are often complicated by comorbid disorders experienced by military personnel, such as post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). Cognitive behavioral therapy for insomnia (CBTi), pharmacologic interventions, and alternative therapies are discussed as relevant to their applications within military populations. Future directions in research are suggested.
2013-01-29
Scanning Confocal Microscope (Zeiss- Pascal) using 20x obj. and edited using Zeiss Image Examiner Ver 5.0. The iso-cortical pyramidal layers 1 and 2 are...NeuN immunoreactivity is seen in the neuronal cytoplasm and especially apical dendrites of pyramidal neurons (white arrows), which facilitates the...identification of the pyramidal cell morphology in the outer pyramidal cell layer of neo-cortex (see picture A, depicted as py). Cortical Pyramidal
Evans, Randolph W
2010-04-01
There has been intense controversy about postconcussion syndrome since Erichsen's publication in 1866 on railway brain and railway spine. The fascinating history of this debate will be reviewed and then the non-organic explanations for postconcussion syndrome, headaches after head injury, and chronic whiplash injuries and headaches will be explored including the following: psychogenic, psychosocial, sociocultural, base rate misattribution, chronic pain, compensation and litigation, and malingering.
Too Hard to Control: Compromised Pain Anticipation and Modulation in Mild Traumatic Brain Injury
2014-01-07
modulation) will be able to answer these questions. In a related prior study, quantitative sensory testing was conducted in moderate to severe TBI and...found significant loss of thermal and touch sensibility compared with healthy con- trols.67 Although detailed quantitative sensory testing was not...IA. Pain and post traumatic stress disorder ‚Äì Review of clinical and experimental evidence. Neuropharmacology 2012; 62: 586–597. 36 First MB, Spitzer
Swick, Diane; Honzel, Nikki; Larsen, Jary; Ashley, Victoria; Justus, Timothy
2012-09-01
Combat veterans with post-traumatic stress disorder (PTSD) can show impairments in executive control and increases in impulsivity. The current study examined the effects of PTSD on motor response inhibition, a key cognitive control function. A Go/NoGo task was administered to veterans with a diagnosis of PTSD based on semi-structured clinical interview using DSM-IV criteria (n = 40) and age-matched control veterans (n = 33). Participants also completed questionnaires to assess self-reported levels of PTSD and depressive symptoms. Performance measures from the patients (error rates and reaction times) were compared to those from controls. PTSD patients showed a significant deficit in response inhibition, committing more errors on NoGo trials than controls. Higher levels of PTSD and depressive symptoms were associated with higher error rates. Of the three symptom clusters, re-experiencing was the strongest predictor of performance. Because the co-morbidity of mild traumatic brain injury (mTBI) and PTSD was high in this population, secondary analyses compared veterans with PTSD+mTBI (n = 30) to veterans with PTSD only (n = 10). Although preliminary, results indicated the two patient groups did not differ on any measure (p > .88). Since cognitive impairments could hinder the effectiveness of standard PTSD therapies, incorporating treatments that strengthen executive functions might be considered in the future. (JINS, 2012, 18, 1-10).
Cerebrovascular Pressure Reactivity in Children With Traumatic Brain Injury.
Lewis, Philip M; Czosnyka, Marek; Carter, Bradley G; Rosenfeld, Jeffrey V; Paul, Eldho; Singhal, Nitesh; Butt, Warwick
2015-10-01
Traumatic brain injury is a significant cause of morbidity and mortality in children. Cerebral autoregulation disturbance after traumatic brain injury is associated with worse outcome. Pressure reactivity is a fundamental component of cerebral autoregulation that can be estimated using the pressure-reactivity index, a correlation between slow arterial blood pressure, and intracranial pressure fluctuations. Pressure-reactivity index has shown prognostic value in adult traumatic brain injury, with one study confirming this in children. Pressure-reactivity index can identify a cerebral perfusion pressure range within which pressure reactivity is optimal. An increasing difference between optimal cerebral perfusion pressure and cerebral perfusion pressure is associated with worse outcome in adult traumatic brain injury; however, this has not been investigated in children. Our objective was to study pressure-reactivity index and optimal cerebral perfusion pressure in pediatric traumatic brain injury, including associations with outcome, age, and cerebral perfusion pressure. Prospective observational study. ICU, Royal Children's Hospital, Melbourne, Australia. Patients with traumatic brain injury who are 6 months to 16 years old, are admitted to the ICU, and require arterial blood pressure and intracranial pressure monitoring. None. Arterial blood pressure, intracranial pressure, and end-tidal CO2 were recorded electronically until ICU discharge or monitoring cessation. Pressure-reactivity index and optimal cerebral perfusion pressure were computed according to previously published methods. Clinical data were collected from electronic medical records. Outcome was assessed 6 months post discharge using the modified Glasgow Outcome Score. Thirty-six patients were monitored, with 30 available for follow-up. Pressure-reactivity index correlated with modified Glasgow Outcome Score (Spearman ρ = 0.42; p = 0.023) and was higher in patients with unfavorable outcome (0.23 vs -0.09; p = 0.0009). A plot of pressure-reactivity index averaged within 5 mm Hg cerebral perfusion pressure bins showed a U-shape, reaffirming the concept of cerebral perfusion pressure optimization in children. Optimal cerebral perfusion pressure increased with age (ρ = 0.40; p = 0.02). Both the duration and magnitude of negative deviations in the difference between cerebral perfusion pressure and optimal cerebral perfusion pressure were associated with unfavorable outcome. In pediatric patients with traumatic brain injury, pressure-reactivity index has prognostic value and can identify cerebral perfusion pressure targets that may differ from treatment protocols. Our results suggest but do not confirm that cerebral perfusion pressure targeting using pressure-reactivity index as a guide may positively impact on outcome. This question should be addressed by a prospective clinical study.
Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D
2015-02-01
The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.
Herringa, Ryan; Phillips, Mary; Almeida, Jorge; Insana, Salvatore; Germain, Anne
2012-01-01
Prior studies have examined differences in brain volume between patients with post-traumatic stress disorder (PTSD) and control subjects. Convergent findings include smaller hippocampus and medial prefrontal cortex volumes in PTSD. However, post-traumatic stress symptoms (PTSS) exist on a spectrum, and neural changes may occur beyond the diagnostic threshold of PTSD. We examined the relationship between PTSS and gray matter among combat-exposed U.S. military veterans. Structural brain magnetic resonance imaging (MRI) was obtained on 28 combat veterans from Operations Enduring and Iraqi Freedom. PTSS were assessed using the Clinician-Administered PTSD Scale (CAPS). Thirteen subjects met criteria for PTSD. Subjects were unmedicated, and free of major comorbid psychiatric disorders. Images were analyzed using voxel-based morphometry, and regressed against the total CAPS score and trauma load. Images were subsequently analyzed by diagnosis of PTSD vs. non-PTSD. CAPS scores were inversely correlated with volumes of the subgenual cingulate (sgACC), caudate, hypothalamus, insula, and left middle temporal gyrus (MTG). Group contrast revealed smaller sgACC, caudate, hypothalamus, left insula, left MTG, and right MFG in the PTSD group. PTSS are associated with abnormalities in limbic structures that may underlie the pathophysiology of PTSD. These abnormalities exist on a continuum with PTSS, beyond a diagnosis of PTSD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.
Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J
2015-11-01
See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury. Published by Oxford University Press on behalf of the Guarantors of Brain 2015. This work is written by US Government employees and is in the public domain in the US.
Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H
2016-04-01
Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hypopituitarism Following Traumatic Brain Injury: Determining Factors for Diagnosis
Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana Isabel; Kelestimur, Fahrettin; Casanueva, Felipe F.
2011-01-01
Neuroendocrine dysfunction, long recognized as a consequence of traumatic brain injury (TBI), is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioral, and social changes. There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism. The aim of this review is to clarify, based on the evidence, when endocrine assessment should be performed after TBI and which patients should be evaluated. Additional studies are still needed to know the impact of post-traumatic hypopituitarism and to assess the impact of hormone replacement in the prognosis. PMID:22649368
Hypopituitarism following traumatic brain injury: determining factors for diagnosis.
Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana Isabel; Kelestimur, Fahrettin; Casanueva, Felipe F
2011-01-01
Neuroendocrine dysfunction, long recognized as a consequence of traumatic brain injury (TBI), is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioral, and social changes. There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism. The aim of this review is to clarify, based on the evidence, when endocrine assessment should be performed after TBI and which patients should be evaluated. Additional studies are still needed to know the impact of post-traumatic hypopituitarism and to assess the impact of hormone replacement in the prognosis.
Prevention and treatment of traumatic brain injury due to rapid-onset natural disasters.
Regens, James L; Mould, Nick
2014-01-01
The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur.
Polyamine catabolism is enhanced after traumatic brain injury.
Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A; Strauss, Kenneth I
2010-03-01
Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N(1)-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6-24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6-24 h), then increased by approximately 50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6-72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24-72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies.
ERIC Educational Resources Information Center
Levine, Brian; Svoboda, Eva; Turner, Gary R.; Mandic, Marina; Mackey, Allison
2009-01-01
Patient M. L. [Levine, B., Black, S. E., Cabeza, R., Sinden, M., Mcintosh, A. R., Toth, J. P., et al. (1998). "Episodic memory and the self in a case of isolated retrograde amnesia." "Brain", "121", 1951-1973], lost memory for events occurring before his severe traumatic brain injury, yet his anterograde (post-injury) learning and memory appeared…
[Prognosis in pediatric traumatic brain injury. A dynamic cohort study].
Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma
2013-01-01
traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.
Post-traumatic seizure disorder following acquired brain injury.
Teasell, Robert; Bayona, Nestor; Lippert, Corbin; Villamere, James; Hellings, Chelsea
2007-02-01
The present study aimed to evaluate the effectiveness of prophylactic anticonvulsant pharmacological strategies for the prevention of seizure disorders following acquired brain injury (ABI) to provide guidance for clinical practice based on the best available evidence. A systematic review of the literature from 1980-2005 was conducted focusing on treatment interventions available for post-traumatic seizures following ABI. The evidence for the efficacy of a given intervention was ranked as strong (supported by at least two randomized controlled trials (RCTs), moderate (supported by a single RCT), or limited (supported by other types of studies in the absence of RCTs). Based on a previous meta-analysis and the findings of this review, there is strong evidence that prophylactic anticonvulsant therapy decreases the occurrence of early seizures but only within the first week post-injury. Moreover, the evidence indicates that prophylactic anticonvulsant therapy does not decrease the incidence of seizure onset more than one week post-injury. In children, there is moderate evidence that prophylactic phenytoin does not reduce the incidence of early or late seizures. The efficacy of anticonvulsants after the development of seizures has not been specifically studied in ABI. Prophylactic anti-convulsants are effective in reducing seizures in the first week post-injury in adults. However, they do not reduce the occurrence of seizures after the first week.
Barton, David J.; Kumar, Raj G.; McCullough, Emily H.; Galang, Gary; Arenth, Patricia M.; Berga, Sarah L.; Wagner, Amy K.
2015-01-01
Objective (1) Examine relationships between persistent hypogonadotropic hypogonadism (PHH) and long-term outcomes after severe traumatic brain injury (TBI); (2) determine if sub-acute testosterone levels can predict PHH. Setting Level 1 trauma center at a university hospital. Participants Consecutive sample of men with severe TBI between 2004 and 2009. Design Prospective cohort study. Main Measures Post-TBI blood samples were collected during week 1, every 2 weeks until 26 weeks, and at 52 weeks. Serum hormone levels were measured, and individuals were designated as having PHH if ≥50% of samples met criteria for hypogonadotropic hypogonadism. At 6 and 12 months post-injury, we assessed global outcome, disability, functional cognition, depression, and quality-of-life. Results We recruited 78 men; median (IQR) age was 28.5 (22–42) years. 34 patients (44%) had PHH during the first year post-injury. Multivariable regression, controlling for age, demonstrated PHH status predicted worse global outcome scores, more disability, and reduced functional cognition at 6 and 12 months post-TBI. Two-step testosterone screening for PHH at 12–16 weeks post-injury yielded a sensitivity of 79% and specificity of 100%. Conclusion PHH status in men predicts poor outcome after severe TBI, and PHH can accurately be predicted at 12–16 weeks. PMID:26360007
Substance P Mediates Reduced Pneumonia Rates After Traumatic Brain Injury
Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D.; Pritts, Timothy A.; Caldwell, Charles C.; Remick, Daniel G.; Lentsch, Alex B.
2014-01-01
Objectives Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Design Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Setting Academic medical centers in Cincinnati, OH, and Boston, MA. Patients/Subjects Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8–10 weeks old. Interventions Administration of a substance P receptor antagonist in mice. Measurements and Main Results Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury–associated increases in bacterial clearance and survival. Conclusions The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non–head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury–induced release of substance P, which improves innate immunity to decrease pneumonia. PMID:25014065
Substance P mediates reduced pneumonia rates after traumatic brain injury.
Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D; Pritts, Timothy A; Caldwell, Charles C; Remick, Daniel G; Lentsch, Alex B
2014-09-01
Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Academic medical centers in Cincinnati, OH, and Boston, MA. Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. Administration of a substance P receptor antagonist in mice. Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury-induced release of substance P, which improves innate immunity to decrease pneumonia.
Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury?
Khaksari, Mohammad; Rajizadeh, Mohammad Amin; Bejeshk, Mohammad Abbas; Soltani, Zahra; Motamedi, Sina; Moramdi, Fatemeh; Islami, Masoud; Shafa, Shahriyar; Khosravi, Sepehr
2018-06-01
Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-TBI. Brain water and Evans blue contents were determined, 24 and 5 hr after TBI, respectively. Intracranial pressure (ICP) and neurologic outcome were evaluated at -1, 1, 4 and 24 hr after TBI. Oxidant index [malondialdehyde (MDA)] was determined 24 hr after TBI. Brain water and Evans blue contents, and MDA and ICP levels increased in TBI and vehicle groups in comparison with the sham group. Candesartan attenuated the TBI-induced brain water and Evans blue contents, and ICP and MDA enhancement. The neurologic score enhanced following candesartan administration, 24 hr after TBI. The blockage of AT1R may be neuroprotective by decreasing ICP associated with the reduction of lipid peroxidation, brain edema, and blood-brain barrier (BBB) permeability, which led to the improvement of neurologic outcome.
2014-01-01
Purpose: Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury. Materials and methods: Three-week-old (juvenile) and eight-week-old young adult C57BL/J6 male mice received whole body cesium-137 (137Cs) irradiation with 4 gray (Gy). One month later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Two months post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains frozen for immunohistochemical assessment of activated microglia and neurogenesis in the hippocampal dentate gyrus. Results: All animals were able to learn the water maze task; however, treatment effects were seen when spatial memory retention was assessed. Animals that received irradiation as juveniles followed by a moderate traumatic brain injury one month later did not show spatial memory retention, i.e., were cognitively impaired. In contrast, all groups of animals that were treated as adults showed spatial memory retention in the probe trials. Conclusion: Although the mechanisms involved are not clear, our results suggest that irradiation enhanced a young animal's vulnerability to develop cognitive injury following a subsequent traumatic injury. PMID:24164494
Gao, Weiwei; Zhao, Zilong; Yu, Gongjie; Zhou, Ziwei; Zhou, Yuan; Hu, Tingting; Jiang, Rongcai; Zhang, Jianning
2015-10-05
Acute traumatic brain injury (TBI) tends to cause the over-activation of inflammatory response and disruption of blood brain barrier (BBB), associating with long-term cognitive and behavioral dysfunction. Vascular endothelial growth inhibitor (VEGI), as a suppressor in the angiogenesis specifically by inducing apoptosis in proliferating endothelial cells, has been applied to different diseases, especially the tumors. But rare study had been done in the field of brain injury. So in this study, we investigated the effects and mechanisms associated with VEGI-induced neuroprotection following CNS injury in mice TBI models. We demonstrated that the VEGI treatment reduced the contusion brain tissue loss, the permeation of inflammatory cells (MPO(+)) and the activation of microglia (Iba-1(+)). The treatment up-regulated the tight junction proteins (CLN5, ZO-1 and OCLN), which are vital importance for the integrity of the blood brain barrier (BBB), the B-cell lymphoma 2 (Bcl-2) cell survival factors, while down-regulated the expression of TLR4, NF-κB and inflammatory cytokines (IL-1β, TNF-α, iNOS). The treatment also decreased the expression of reactive astrocytes (GFAP(+)), as well as the VEGF, and lowered the permeability of Evens Blue (EB). These findings suggested that the VEGI-treatment could alleviate the post-traumatic excessive inflammatory response, and maintain the stability of blood vessels, remitting the secondary brain damage. Copyright © 2015. Published by Elsevier B.V.
Buchsbaum, Monte S; Simmons, Alan N; DeCastro, Alex; Farid, Nikdokht; Matthews, Scott C
2015-11-15
Individuals with mild traumatic brain injury (TBI) show diminished metabolic activity when studied with positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG). Since blast injury may not be localized in the same specific anatomical areas in every patient or may be diffuse, significance probability mapping may be vulnerable to false-negative detection of abnormalities. To address this problem, we used an anatomically independent measure to assess PET scans: increased numbers of contiguous voxels that are 2 standard deviations below values found in an uninjured control group. We examined this in three age-matched groups of male patients: 16 veterans with a history of mild TBI, 17 veterans with both mild TBI and post-traumatic stress disorder (PTSD), and 15 veterans without either condition. After FDG administration, subjects performed a modified version of the California Verbal Learning Task. Clusters of low uptake voxels were identified by computing the mean and standard deviation for each voxel in the healthy combat veteran group and then determining the voxel-based z-score for the patient groups. Abnormal clusters were defined as those that contained contiguous voxels with a z-score <-2. Patients with mild TBI alone and patients with TBI+PTSD had larger clusters of low uptake voxels, and cluster size significantly differentiated the mild TBI groups from combat controls. Clusters were more irregular in shape in patients, and patients also had a larger number of low-activity voxels throughout the brain. In mild TBI and TBI+PTSD patients, but not healthy subjects, cluster volume was significantly correlated with verbal learning during FDG uptake.
Preconditioning for traumatic brain injury
Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross
2016-01-01
Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189
Shandley, Sabrina; Wolf, E George; Schubert-Kappan, Christine M; Baugh, Laura M; Richards, Michael F; Prye, Jennifer; Arizpe, Helen M; Kalns, John
2017-01-01
Traumatic brain injury (TBI) may cause persistent cognitive dysfunction. A pilot clinical study was performed to determine if hyperbaric oxygen (HBO₂) treatment improves cognitive performance. It was hypothesized that stem cells, mobilized by HBO₂ treatment, are recruited to repair damaged neuronal tissue. This hypothesis was tested by measuring the relative abundance of stem cells in peripheral blood and cognitive performance during this clinical trial. The subject population consisted of 28 subjects with persistent cognitive impairment caused by mild to moderate TBI suffered during military deployment to Iraq or Afghanistan. Fluorescence-activated cell sorting (FACS) analysis was performed for stem cell markers in peripheral blood and correlated with variables resulting from standard tests of cognitive performance and post-traumatic stress disorder: ImPACT, BrainCheckers and PCL-M test results. HBO₂ treatment correlated with stem cell mobilization as well as increased cognitive performance. Together these results support the hypothesis that stem cell mobilization may be required for cognitive improvement in this population. Copyright© Undersea and Hyperbaric Medical Society.
An overview of attention deficits after paediatric traumatic brain injury.
Ginstfeldt, Tim; Emanuelson, Ingrid
2010-01-01
Attention could be categorized into sustained, selective, shifting, divided and attention span. The primary objective was to evaluate the type of attention deficits that occurs after paediatric traumatic brain injury. Keywords were used such as 'attention', 'child', 'traumatic', 'brain' and 'injury' on MEDLINE articles published in 1991-2009. Articles found through MEDLINE were manually cross-referenced. Out of the examined categorizes, divided and sustained attention seem to be the most vulnerably, frequently displaying deficits in the children with TBI. Attention span seemed to be the most resistant and the shifting and selective categories falling somewhere in between. Most of the recovery is expected within the first year post-injury, even if some individuals continue to improve for years, and deficits often persist into adulthood. The attention domains are not affected to the same extent by TBI and this should be taken into consideration when evaluating a child. The commonly used tests also seem to differ in how sensitive they are in detecting deficits. The definition of attention domains and TBI would benefit to be stricter and agreed upon, to further facilitate research and rehabilitation programmes.
2011-01-01
Background The aim of this study is to show how geographical information systems (GIS) can be used to track and compare hospitalization rates for traumatic brain injury (TBI) over time and across a large geographical area using population based data. Results & Discussion Data on TBI hospitalizations, and geographic and demographic variables, came from the Ontario Trauma Registry Minimum Data Set for the fiscal years 1993-1994 and 2001-2002. Various visualization techniques, exploratory data analysis and spatial analysis were employed to map and analyze these data. Both the raw and standardized rates by age/gender of the geographical unit were studied. Data analyses revealed persistent high rates of hospitalization for TBI resulting from any injury mechanism between two time periods in specific geographic locations. Conclusions This study shows how geographic information systems can be successfully used to investigate hospitalizaton rates for traumatic brain injury using a range of tools and techniques; findings can be used for local planning of both injury prevention and post discharge services, including rehabilitation. PMID:22054220
Ojo, Joseph O.; Greenberg, M. Banks; Leary, Paige; Mouzon, Benoit; Bachmeier, Corbin; Mullan, Michael; Diamond, David M.; Crawford, Fiona
2014-01-01
Co-morbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) has become the signature disorder for returning combat veterans. The clinical heterogeneity and overlapping symptomatology of mTBI and PTSD underscore the need to develop a preclinical model that will enable the characterization of unique and overlapping features and allow discrimination between both disorders. This study details the development and implementation of a novel experimental paradigm for PTSD and combined PTSD-mTBI. The PTSD paradigm involved exposure to a danger-related predator odor under repeated restraint over a 21 day period and a physical trauma (inescapable footshock). We administered this paradigm alone, or in combination with a previously established mTBI model. We report outcomes of behavioral, pathological and biochemical profiles at an acute timepoint. PTSD animals demonstrated recall of traumatic memories, anxiety and an impaired social behavior. In both mTBI and combination groups there was a pattern of disinhibitory like behavior. mTBI abrogated both contextual fear and impairments in social behavior seen in PTSD animals. No major impairment in spatial memory was observed in any group. Examination of neuroendocrine and neuroimmune responses in plasma revealed a trend toward increase in corticosterone in PTSD and combination groups, and an apparent increase in Th1 and Th17 proinflammatory cytokine(s) in the PTSD only and mTBI only groups respectively. In the brain there were no gross neuropathological changes in any groups. We observed that mTBI on a background of repeated trauma exposure resulted in an augmentation of axonal injury and inflammatory markers, neurofilament L and ICAM-1 respectively. Our observations thus far suggest that this novel stress-trauma-related paradigm may be a useful model for investigating further the overlapping and distinct spatio-temporal and behavioral/biochemical relationship between mTBI and PTSD experienced by combat veterans. PMID:25002839
Winkler, Ethan A.; Yue, John K.; Ferguson, Adam R.; Temkin, Nancy R.; Stein, Murray B.; Barber, Jason; Yuh, Esther L.; Sharma, Sourabh; Satris, Gabriela G.; McAllister, Thomas W.; Rosand, Jonathan; Sorani, Marco D.; Lingsma, Hester F.; Tarapore, Phiroz E.; Burchard, Esteban G.; Hu, Donglei; Eng, Celeste; Wang, Kevin K.W.; Mukherjee, Pratik; Okonkwo, David O.; Diaz-Arrastia, Ramon; Manley, Geoffrey T.
2017-01-01
Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist – Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09–0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20–6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10–0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11–0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03–0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69–4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings. PMID:27769642
Winkler, Ethan A; Yue, John K; Ferguson, Adam R; Temkin, Nancy R; Stein, Murray B; Barber, Jason; Yuh, Esther L; Sharma, Sourabh; Satris, Gabriela G; McAllister, Thomas W; Rosand, Jonathan; Sorani, Marco D; Lingsma, Hester F; Tarapore, Phiroz E; Burchard, Esteban G; Hu, Donglei; Eng, Celeste; Wang, Kevin K W; Mukherjee, Pratik; Okonkwo, David O; Diaz-Arrastia, Ramon; Manley, Geoffrey T
2017-01-01
Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val 158 Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met 158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val 158 Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photobiomodulation of the brain: a new paradigm (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hamblin, Michael R.
2017-02-01
Photobiomodulation (PBM) describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia), degenerative diseases (dementia, Alzheimer's and Parkinson's), and psychiatric disorders (depression, anxiety, post traumatic stress disorder). There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM) application, near-infrared (NIR) light is often applied to the forehead because of the better penetration (no hair, longer wavelength). Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED) arrays has allowed the development of light emitting helmets or "brain caps". This presentation will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken in this area.
Farrer, Thomas J; Hedges, Dawson W
2011-03-30
Traumatic brain injury can cause numerous behavioral abnormalities including aggression, violence, impulsivity, and apathy, factors that can be associated with criminal behavior and incarceration. To better characterize the association between traumatic brain injury and incarceration, we pooled reported frequencies of lifetime traumatic brain injury of any severity among incarcerated samples and compared the pooled frequency to estimates of the lifetime prevalence of traumatic brain injury in the general population. We found a significantly higher prevalence of traumatic brain injury in the incarcerated groups compared to the general population. As such, there appears to be an association between traumatic brain injury and incarceration. Copyright © 2011 Elsevier Inc. All rights reserved.
Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.
Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R
2013-12-01
Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.
Rădoi, A; Poca, M A; Cañas, V; Cevallos, J M; Membrado, L; Saavedra, M C; Vidal, M; Martínez-Ricarte, F; Sahuquillo, J
2016-12-19
Mild traumatic brain injury (mTBI) has traditionally been considered to cause no significant brain damage since symptoms spontaneously remit after a few days. However, this idea is facing increasing scrutiny. The purpose of this study is to demonstrate the presence of early cognitive alterations in a series of patients with mTBI and to link these findings to different markers of brain damage. We conducted a prospective study of a consecutive series of patients with mTBI who were evaluated over a 12-month period. Forty-one (3.7%) of the 1144 included patients had experienced a concussion. Patients underwent a routine clinical evaluation and a brain computed tomography (CT) scan, and were also administered a standardised test for post-concussion symptoms within the first 24hours of mTBI and also 1 to 2 weeks later. The second assessment also included a neuropsychological test battery. The results of these studies were compared to those of a control group of 28 healthy volunteers with similar characteristics. Twenty patients underwent an MRI scan. Verbal memory and learning were the cognitive functions most affected by mTBI. Seven out of the 20 patients with normal CT findings displayed structural alterations on MR images, which were compatible with diffuse axonal injury in 2 cases. Results from this pilot study suggest that early cognitive alterations and structural brain lesions affect a considerable percentage of patients with post-concussion syndrome following mTBI. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Cotinine: A Therapy for Memory Extinction in Post-traumatic Stress Disorder.
Mendoza, Cristhian; Barreto, George E; Iarkov, Alexandre; Tarasov, Vadim V; Aliev, Gjumrakch; Echeverria, Valentina
2018-01-15
Post-traumatic stress disorder (PTSD) is a mental disorder that may develop after exposure to exceptionally threatening or unescapable horrifying events. Actual therapies fail to alleviate the emotional suffering and cognitive impairment associated with this disorder, mostly because they are ineffective in treating the failure to extinguish trauma memories in a great percentage of those affected. In this review, current behavioral, cellular, and molecular evidence supporting the use of cotinine for treating PTSD are reviewed. The role of the positive modulation by cotinine of the nicotinic acetylcholine receptors (nAChRs) and their downstream effectors, the protection of astroglia, and the inhibition of microglia in the PTSD brain are also discussed.
Muralidhar, Venkiteswaran
2017-03-15
This is the first reported case of a work-related head injury in a coal-fired thermal power plant in India. This case highlights the trend of not reporting work injuries due to fears of reprisal from the management team that may include the termination of employment. Post-traumatic amnesia in a worker presenting with head trauma must be recognised by coworkers, so the cause of injury can be elicited early and the victim gets timely medical help. There are few published studies on work-related traumatic brain injury, and they provide no information on either anatomical localisation or signs and symptoms. It is imperative that this under-researched area is studied, so detailed epidemiology and accurate national and global statistics are made available to address this dangerous yet preventable condition. 2017 BMJ Publishing Group Ltd.
In search of antiepileptogenic treatments for post-traumatic epilepsy.
Saletti, Patricia G; Ali, Idrish; Casillas-Espinosa, Pablo M; Semple, Bridgette D; Lisgaras, Christos; Moshé, Solomon L; Galanopoulou, Aristea S
2018-06-21
Post-traumatic epilepsy (PTE) occurs in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments. Copyright © 2018. Published by Elsevier Inc.
Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H
2018-06-16
Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.
Endophenotypes of Dementia Associated with Traumatic Brain Injury in Retired Military Personnel
2015-06-01
Physical Activity; GDS= Geriatric Depression Scale; PCL-C=PTSD Checklist-Civilian; PTSD=Post- Traumatic Stress Disorder *adjusted for age, gender...depression (p = 0.047) and PTSD symptoms (p = 0.02), although both are far below clinical criteria for diagnosis. Sleep quality, physical activity...Intellectual/Leisure Activities Scale 29.5 (8.5) 25.4 (9.6) 0.02 RAPA 1 ( physical activity) 3.6 (1.3) 3.3 (1.4) 0.61 RAPA 2 (strength/flexibility) 1.2
Chemoresponsiveness and breath physiology in anosmia.
Mazzatenta, Andrea; Pokorski, Mieczyslaw; Montinaro, Danilo; Di Giulio, Camillo
2015-01-01
Anosmia is a model to study the interaction among chemoreception systems. In the head injury, the traumatic irreversible anosmia caused by damage to olfactory nerve fibers and brain regions is of enviable research interest. In this study, psychophysiological tests for a comprehensive assessment of olfactory function were utilized to investigate anosmia, together with a new technique based on the breath real-time monitoring of volatile organic compounds (VOCs). We applied the breath and VOCs analysis to investigate chemoresponsiveness in the long-term irreversible post-traumatic anosmia.
Baratz-Goldstein, Renana; Toussia-Cohen, Shlomi; Elpaz, Aviya; Rubovitch, Vardit; Pick, Chaim G
2017-09-01
Traumatic brain injury is the most common cause of death or chronic disability among people under-35-years-old. There is no effective pharmacological treatment currently existing for TBI. Hyperbaric oxygen therapy (HBOT) is defined as the inhalation of pure oxygen in a hyperbaric chamber that is pressurized higher than 1atm. HBOT offers physiological and mechanical effects by inducing a state of increased pressure and hyperoxia. HBOT has been proposed as an effective treatment for moderate traumatic brain injury (mTBI), yet the exact therapeutic window and mechanism that underlies this effect is not completely understood. HBOT was administrated for 4 consecutive days, post a mouse closed head weight drop moderate TBI (mTBI) in 2 different time lines: immediate treatment - initiated 3h post-injury and delayed treatment - initiated 7days post-injury. Behavioral cognitive tests and biochemical changes were assessed. The results were similar for both the immediate and the delayed treatments. mTBI mice exhibited impairment in learning abilities, whereas mTBI mice treated with HBO displayed significant improvement compared with the mTBI group, performing similar to the sham groups. mTBI mice had a decline in myelin basic protein, an increase in neuronal loss (NeuN staining), and an increase in the number of reactive astrocytes (GFAP). The HBO treated mice in both groups did not exhibit these changes and remained similar to the sham group. The delayed HBOT has a potential to serve as a neuroprotective treatment for mTBI with a long therapeutic window. Further research is needed for fully understanding the cellular changes. Copyright © 2017 Elsevier Inc. All rights reserved.
Ritchie, Linda; Wright-St Clair, Valerie A; Keogh, Justin; Gray, Marion
2014-01-01
To explore the scope, reliability, and validity of community integration measures for older adults after traumatic brain injury (TBI). A search of peer-reviewed articles in English from 1990 to April 2011 was conducted using the EBSCO Health and Scopus databases. Search terms included were community integration, traumatic brain injury or TBI, 65 plus or older adults, and assessment. Forty-three eligible articles were identified, with 11 selected for full review using a standardized critical review method. Common community integration measures were identified and ranked for relevance and psychometric properties. Of the 43 eligible articles, studies reporting community integration outcomes post-TBI were identified and critically reviewed. Older adults' community integration needs post-TBI from high quality studies were summarized. There is a relative lack of evidence pertaining to older adults post-TBI, but indicators are that older adults have poorer outcomes than their younger counterparts. The Community Integration Questionnaire (CIQ) is the most widely used community integration measurement tool used in research for people with TBI. Because of some limitations, many studies have used the CIQ in conjunction with other measures to better quantify and/or monitor changes in community integration. Enhancing integration of older adults after TBI into their community of choice, with particular emphasis on social integration and quality of life, should be a primary rehabilitation goal. However, more research is needed to inform best practice guidelines to meet the needs of this growing TBI population. It is recommended that subjective tools, such as quality of life measures, are used in conjunction with well-established community integration measures, such as the CIQ, during the assessment process. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dillard, Charles; Ditchman, Nicole; Nersessova, Karine; Foster, Nicola; Wehman, Paul; West, Michael; Riedlinger, Brendalin; Monasterio, Eugenio; Shaw, Bill; Neblett, Julie
2017-03-01
Purpose Mild traumatic brain injury (mTBI) is common among children and is associated with a range of symptomatology and clinical presentations. This study uses data from a paediatric outpatient TBI clinic to (1) investigate characteristics associated with more severe post-concussive symptoms and (2) examine differences in the proportion of individuals endorsing specific post-concussion symptoms based on group (e.g., sex, type of injury, and psychiatric history). Methods Data from the Children's Hospital of Richmond's TBI outpatient programme were analysed (N = 157). Results Gender and sports injury were associated with severity of symptoms. In addition, females endorsed a greater number of overall symptoms than males. A number of specific symptoms were found to be endorsed to a greater extent based on psychiatric history and type of injury; however, overall total number of symptoms endorsed did not differ based on these characteristics. Conclusions Findings from this study provide further evidence that mTBI affects a wide range of youth and that associated symptomatology can indeed be varied. Moreover, results revealed differences in endorsement of specific symptoms and symptom severity based on patient and injury characteristics which have implications for concussion assessment and treatment. Implications for Rehabilitation Symptoms following mild traumatic brain injury (mTBI) in children and adolescents can have varied presentation, ranging from minimal to severe. Females and those with non-sports-related injuries are more likely to endorse greater symptoms following concussion. Symptom evaluation is an essential component of the concussion assessment and treatment of paediatric patients following mTBI, and clinicians should be aware of patient characteristics associated with increased symptoms, especially when baseline symptom data are not available.
Day, Nicole L; Floyd, Candace L; D'Alessandro, Tracy L; Hubbard, William J; Chaudry, Irshad H
2013-09-01
Abstract Traumatic brain injury (TBI) is a significant public health problem in the United States. Despite preclinical success of various drugs, to date all clinical trials investigating potential therapeutics have failed. Recently, sex steroid hormones have sparked interest as possible neuroprotective agents after traumatic injury. One of these is 17β-estradiol (E2), the most abundant and potent endogenous vertebrate estrogen. The goal of our study was to investigate the acute potential protective effects of E2 or the specific G protein-coupled estrogen receptor 1 (GPER) agonist G-1 when administered in an intravenous bolus dose 1 hour post-injury in the lateral fluid percussion (LFP) rodent model of TBI. The results of this study show that, when assessed at 24 hours post-injury, E2 or G-1 confers protection in adult male rats subjected to LFP brain injury. Specifically, we found that an acute bolus dose of E2 or G-1 administered intravenously 1 hour post-TBI significantly increases neuronal survival in the ipsilateral CA 2/3 region of the hippocampus and decreases neuronal degeneration and apoptotic cell death in both the ipsilateral cortex and CA 2/3 region of the hippocampus. We also report a significant reduction in astrogliosis in the ipsilateral cortex, hilus, and CA 2/3 region of the hippocampus. Finally, these effects were observed to be chiefly dose-dependent for E2, with the 5 mg/kg dose generating a more robust level of protection. Our findings further elucidate estrogenic compounds as a clinically relevant pharmacotherapeutic strategy for treatment of secondary injury following TBI, and intriguingly, reveal a novel potential therapeutic target in GPER.
Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury.
Sekhon, Mypinder S; Gooderham, Peter; Toyota, Brian; Kherzi, Navid; Hu, Vivien; Dhingra, Vinay K; Hameed, Morad S; Chittock, Dean R; Griesdale, Donald E
2017-07-01
Background Traditionally, the delivery of dedicated neurocritical care (NCC) occurs in distinct NCC units and is associated with improved outcomes. Institution-specific logistical challenges pose barriers to the development of distinct NCC units; therefore, we developed a consultancy NCC service coupled with the implementation of invasive multimodal neuromonitoring, within a medical-surgical intensive care unit. Our objective was to evaluate the effect of a consultancy NCC program on neurologic outcomes in severe traumatic brain injury patients. We conducted a single-center quasi-experimental uncontrolled pre- and post-NCC study in severe traumatic brain injury patients (Glasgow Coma Scale ≤8). The NCC program includes consultation with a neurointensivist and neurosurgeon and multimodal neuromonitoring. Demographic, injury severity metrics, neurophysiologic data, and therapeutic interventions were collected. Glasgow Outcome Scale (GOS) at 6 months was the primary outcome. Multivariable ordinal logistic regression was used to model the association between NCC implementation and GOS at 6 months. A total of 113 patients were identified: 76 pre-NCC and 37 post-NCC. Mean age was 39 years (standard deviation [SD], 2) and 87 of 113 (77%) patients were male. Median admission motor score was 3 (interquartile ratio, 1-4). Daily mean arterial pressure was higher (95 mmHg [SD, 10]) versus (88 mmHg [SD, 10], p<0.001) and daily mean core body temperature was lower (36.6°C [SD, 0.90]) versus (37.2°C [SD, 1.0], p=0.001) post-NCC compared with pre-NCC, respectively. Multivariable regression modelling revealed the NCC program was associated with a 2.5 increased odds (odds ratios, 2.5; 95% confidence interval, 1.1-5.3; p=0.022) of improved 6-month GOS. Implementation of a NCC program is associated with improved 6 month GOS in severe TBI patients.
Lopez, Katherine C; Leary, Jacob B; Pham, Dzung L; Chou, Yi-Yu; Dsurney, John; Chan, Leighton
2017-01-01
Post-traumatic stress disorder (PTSD) is commonly associated with mild traumatic brain injury (mTBI). To better understand their relationship, we examined neuroanatomical structures and neuropsychological performance in a sample of individuals with mTBI, with and without PTSD symptoms. Thirty-nine subjects with mTBI were dichotomized into those with (n = 12) and without (n = 27) significant PTSD symptoms based on scores on the PTSD Checklist. Using a region-of-interest approach, fronto-temporal volumes, fiber bundles obtained by diffusion tensor imaging, and neuropsychological scores were compared between the two groups. After controlling for total intracranial volume and age, subjects with mTBI and PTSD symptoms exhibited volumetric differences in the entorhinal cortex, an area associated with memory networks, relative to mTBI-only patients (F = 4.28; p = 0.046). Additionally, subjects with PTSD symptoms showed reduced white matter integrity in the right cingulum bundle (axial diffusivity, F = 6.04; p = 0.020). Accompanying these structural alterations, mTBI and PTSD subjects also showed impaired performance in encoding (F = 5.98; p = 0.019) and retrieval (F = 7.32; p = 0.010) phases of list learning and in tests of processing speed (Wechsler Adult Intelligence Scale Processing Speed Index, F = 12.23; p = 0.001; Trail Making Test A, F = 5.56; p = 0.024). Increased volume and white matter disruptions in these areas, commonly associated with memory functions, may be related to functional disturbances during cognitively demanding tasks. Differences in brain volume and white matter integrity between mTBI subjects and those with mTBI and co-morbid PTSD symptoms point to neuroanatomical differences that may underlie poorer recovery of mTBI subjects who experience PTSD symptoms. These findings support theoretical models of PTSD and its relationship to learning deficits.
Eve, David J; Steele, Martin R; Sanberg, Paul R; Borlongan, Cesar V
2016-01-01
Traumatic brain injury (TBI) describes the presence of physical damage to the brain as a consequence of an insult and frequently possesses psychological and neurological symptoms depending on the severity of the injury. The recent increased military presence of US troops in Iraq and Afghanistan has coincided with greater use of improvised exploding devices, resulting in many returning soldiers suffering from some degree of TBI. A biphasic response is observed which is first directly injury-related, and second due to hypoxia, increased oxidative stress, and inflammation. A proportion of the returning soldiers also suffer from post-traumatic stress disorder (PTSD), and in some cases, this may be a consequence of TBI. Effective treatments are still being identified, and a possible therapeutic candidate is hyperbaric oxygen therapy (HBOT). Some clinical trials have been performed which suggest benefits with regard to survival and disease severity of TBI and/or PTSD, while several other studies do not see any improvement compared to a possibly poorly controlled sham. HBOT has been shown to reduce apoptosis, upregulate growth factors, promote antioxidant levels, and inhibit inflammatory cytokines in animal models, and hence, it is likely that HBOT could be advantageous in treating at least the secondary phase of TBI and PTSD. There is some evidence of a putative prophylactic or preconditioning benefit of HBOT exposure in animal models of brain injury, and the optimal time frame for treatment is yet to be determined. HBOT has potential side effects such as acute cerebral toxicity and more reactive oxygen species with long-term use, and therefore, optimizing exposure duration to maximize the reward and decrease the detrimental effects of HBOT is necessary. This review provides a summary of the current understanding of HBOT as well as suggests future directions including prophylactic use and chronic treatment. PMID:27799776
Slobounov, Semyon; Sebastianelli, Wayne; Newell, Karl M
2011-01-01
There is a growing concern that traditional neuropsychological (NP) testing tools are not sensitive to detecting residual brain dysfunctions in subjects suffering from mild traumatic brain injuries (MTBI). Moreover, most MTBI patients are asymptomatic based on anatomical brain imaging (CT, MRI), neurological examinations and patients' subjective reports within 10 days post-injury. Our ongoing research has documented that residual balance and visual-kinesthetic dysfunctions along with its underlying alterations of neural substrates may be detected in "asymptomatic subjects" by means of Virtual Reality (VR) graphics incorporated with brain imaging (EEG) techniques.
Harch, Paul G; Andrews, Susan R; Fogarty, Edward F; Amen, Daniel; Pezzullo, John C; Lucarini, Juliette; Aubrey, Claire; Taylor, Derek V; Staab, Paul K; Van Meter, Keith W
2012-01-01
This is a preliminary report on the safety and efficacy of 1.5 ATA hyperbaric oxygen therapy (HBOT) in military subjects with chronic blast-induced mild to moderate traumatic brain injury (TBI)/post-concussion syndrome (PCS) and post-traumatic stress disorder (PTSD). Sixteen military subjects received 40 1.5 ATA/60 min HBOT sessions in 30 days. Symptoms, physical and neurological exams, SPECT brain imaging, and neuropsychological and psychological testing were completed before and within 1 week after treatment. Subjects experienced reversible middle ear barotrauma (5), transient deterioration in symptoms (4), and reversible bronchospasm (1); one subject withdrew. Post-treatment testing demonstrated significant improvement in: symptoms, neurological exam, full-scale IQ (+14.8 points; p<0.001), WMS IV Delayed Memory (p=0.026), WMS-IV Working Memory (p=0.003), Stroop Test (p<0.001), TOVA Impulsivity (p=0.041), TOVA Variability (p=0.045), Grooved Pegboard (p=0.028), PCS symptoms (Rivermead PCSQ: p=0.0002), PTSD symptoms (PCL-M: p<0.001), depression (PHQ-9: p<0.001), anxiety (GAD-7: p=0.007), quality of life (MPQoL: p=0.003), and self-report of percent of normal (p<0.001), SPECT coefficient of variation in all white matter and some gray matter ROIs after the first HBOT, and in half of white matter ROIs after 40 HBOT sessions, and SPECT statistical parametric mapping analysis (diffuse improvements in regional cerebral blood flow after 1 and 40 HBOT sessions). Forty 1.5 ATA HBOT sessions in 1 month was safe in a military cohort with chronic blast-induced PCS and PTSD. Significant improvements occurred in symptoms, abnormal physical exam findings, cognitive testing, and quality-of-life measurements, with concomitant significant improvements in SPECT.
Educational professionals' understanding of childhood traumatic brain injury.
Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah
2013-01-01
To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.
A Mouse Model of Blast-Induced mild Traumatic Brain Injury
Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.
2011-01-01
Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269
Epidemiology of mild traumatic brain injury and neurodegenerative disease
Gardner, Raquel C.; Yaffe, Kristine
2015-01-01
Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma has been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. PMID:25748121
Arshad, Q; Roberts, R E; Ahmad, H; Lobo, R; Patel, M; Ham, T; Sharp, D J; Seemungal, B M
2017-04-01
We hypothesised that chronic vestibular symptoms (CVS) of imbalance and dizziness post-traumatic head injury (THI) may relate to: (i) the occurrence of multiple simultaneous vestibular diagnoses including both peripheral and central vestibular dysfunction in individual patients increasing the chance of missed diagnoses and suboptimal treatment; (ii) an impaired response to vestibular rehabilitation since the central mechanisms that mediate rehabilitation related brain plasticity may themselves be disrupted. We report the results of a retrospective analysis of both the comprehensive clinical and vestibular laboratory testing of 20 consecutive THI patients with prominent and persisting vestibular symptoms still present at least 6months post THI. Individual THI patients typically had multiple vestibular diagnoses and unique to this group of vestibular patients, often displayed both peripheral and central vestibular dysfunction. Despite expert neuro-otological management, at two years 20% of patients still had persisting vestibular symptoms. In summary, chronic vestibular dysfunction in THI could relate to: (i) the presence of multiple vestibular diagnoses, increasing the risk of 'missed' vestibular diagnoses leading to persisting symptoms; (ii) the impact of brain trauma which may impair brain plasticity mediated repair mechanisms. Apart from alerting physicians to the potential for multiple vestibular diagnoses in THI, future work to identify the specific deficits in brain function mediating poor recovery from post-THI vestibular dysfunction could provide the rationale for developing new therapy for head injury patients whose vestibular symptoms are resistant to treatment. Copyright © 2017. Published by Elsevier B.V.
Transforming Research and Clinical Knowledge in Traumatic Brain Injury
2015-10-01
identify patients unlikely to make a full recovery are needed to identify appropriate candidates for clinical trials of novel TBI therapies .5 Brain...interventions and in identifying patients likely to respond to targeted therapies . We examined the influence of the (C/T) SNP rs1800497 of ANKK1 on post...million persons currently live with long-term physical , cognitive, and neuropsychiatric disabil- ities attributable to TBI [2]. Heterogeneity of the
Ndode-Ekane, Xavier Ekolle; Matthiesen, Liz; Bañuelos-Cabrera, Ivette; Palminha, Cátia Alexandra Pêgas; Pitkänen, Asla
2018-06-06
T-lymphocyte (T-cell) invasion into the brain parenchyma is a major consequence of traumatic brain injury (TBI). However, the role of T-cells in the post-TBI functional outcome and secondary inflammatory processes is unknown. We explored the dynamics of T-cell infiltration into the cortex after TBI to establish whether the infiltration relates to post-injury functional impairment/recovery and progression of the secondary injury. TBI was induced in rats by lateral fluid-percussion injury, and the acute functional impairment was assessed using the neuroscore. Animals were killed between 1-90 d post-TBI for immunohistochemical analysis of T-cell infiltration (CD3), chronic macrophage/microglial reaction (CD68), blood-brain barrier (BBB) dysfunction (IgG), and endophenotype of the cortical injury. Furthermore, the occurrence of spontaneous seizures and spike-and-wave discharges were assessed using video-electroencephalography. The number of T-cells peaked at 2-d post-TBI, and then dramatically decreased by 7-d post-TBI (5% of 2-d value). Unexpectedly, chronic T-cell infiltration at 1 or 3 months post-TBI did not correlate with the severity of chronic inflammation (p > 0.05) or BBB dysfunction (p > 0.05). Multiple regression analysis indicated that inflammation and BBB dysfunction is associated with 48% of the perilesional T-cell infiltration even at the chronic time-point (r = 0.695, F = 6.54, p < 0.05). The magnitude of T-cell infiltration did not predict the pathologic endophenotype of cortical injury, but the higher the number of T-cells in the cortex, the poorer the recovery index based on the neuroscore (r = - 0.538, p < 0.05). T-cell infiltration was not associated with the number or duration of age-related spike-and-wave discharges (SWD). Nevertheless, the higher the number of SWD, the poorer the recovery index (r = - 0.767, p < 0.5). These findings suggest that acute infiltration of T-cells into the brain parenchyma after TBI is a contributing factor to poor post-injury recovery.
Diabetes Insipidus after Traumatic Brain Injury
Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki
2015-01-01
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685
Daniels, J K; Frewen, P; Theberge, J; Lanius, R A
2016-03-01
One factor potentially contributing to the heterogeneity of previous results on structural grey matter alterations in adult participants suffering from post-traumatic stress disorder (PTSD) is the varying levels of dissociative symptomatology. The aim of this study was therefore to test whether the recently defined dissociative subtype of PTSD characterized by symptoms of depersonalization and derealization is characterized by specific differences in volumetric brain morphology. Whole-brain MRI data were acquired for 59 patients with PTSD. Voxel-based morphometry was carried out to test for group differences between patients classified as belonging (n = 15) vs. not belonging (n = 44) to the dissociative subtype of PTSD. The correlation between dissociation (depersonalization/derealization) severity and grey matter volume was computed. Patients with PTSD classified as belonging to the dissociative subtype exhibited greater grey matter volume in the right precentral and fusiform gyri as well as less volume in the right inferior temporal gyrus. Greater dissociation severity was associated with greater volume in the right middle frontal gyrus. The results of this first whole-brain investigation of specific grey matter volume in dissociative subtype PTSD indentified structural aberrations in regions subserving the processing and regulation of emotional arousal. These might constitute characteristic biomarkers for the dissociative subtype PTSD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Andelic, Nada; Stevens, Lillian Flores; Sigurdardottir, Solrun; Arango-Lasprilla, Juan Carlos; Roe, Cecilie
2012-01-01
To investigate associations between disability and employment 1 year after traumatic brain injury (TBI) using the International Classification of Functioning, Disability and Health (ICF) as a conceptual model. A prospective study including 93 patients with moderate-to-severe TBI (aged 16-55 year). Disability components of the ICF model (impairments, activity limitations and participation restrictions) and personal factors (age, gender, pre-injury employment status) were used as independent variables. The outcome measure was employment at 1 year post-injury categorized into unemployed and employed groups. Personal factors, impairments (brain injury severity, overall trauma severity and number of impaired body functions) and activity limitations (motor and cognitive abilities) accounted for 57% of the variance in employment outcome. Multivariate analyses showed that the probabilities of being employed 1 year post-injury were 95% lower for patients who were unemployed pre-injury (OR = 0.05), 74% lower for those with more severe brain injury (OR = 0.26) and 82% lower for those with more cognitive limitations (OR = 0.18). Rehabilitation professionals should take into account the importance of the ICF model when planning vocational rehabilitation interventions for individuals with TBI and focus on targeting modifiable aspects related to employment outcome, such as the individual's cognitive ability.
A mild traumatic brain injury in mice produces lasting deficits in brain metabolism.
Lyons, Danielle N; Vekaria, Hemendra; Macheda, Teresa; Bakshi, Vikas; Powell, David K; Gold, Brian T; Lin, Ai-Ling; Sulllivan, Pat; Bachstetter, Adam D
2018-05-29
Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (ATP production) and state-V (complex-I) driven mitochondrial respiration was found at 1-month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at 1-month post injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid (NAA), and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyper- perfusion, as measured by a pseudo-continuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration following a mild TBI. Magnetic resonance spectroscopy provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.
Post-traumatic stress disorder: a right temporal lobe syndrome?
NASA Astrophysics Data System (ADS)
Engdahl, B.; Leuthold, A. C.; Tan, H.-R. M.; Lewis, S. M.; Winskowski, A. M.; Dikel, T. N.; Georgopoulos, A. P.
2010-12-01
In a recent paper (Georgopoulos et al 2010 J. Neural Eng. 7 016011) we reported on the power of the magnetoencephalography (MEG)-based synchronous neural interactions (SNI) test to differentiate post-traumatic stress disorder (PTSD) subjects from healthy control subjects and to classify them with a high degree of accuracy. Here we show that the main differences in cortical communication circuitry between these two groups lie in the miscommunication of temporal and parietal and/or parieto-occipital right hemispheric areas with other brain areas. This lateralized temporal-posterior pattern of miscommunication was very similar but was attenuated in patients with PTSD in remission. These findings are consistent with observations (Penfield 1958 Proc. Natl Acad. Sci. USA 44 51-66, Penfield and Perot 1963 Brain 86 595-696, Gloor 1990 Brain 113 1673-94, Banceaud et al 1994 Brain 117 71-90, Fried 1997 J. Neuropsychiatry Clin. Neurosci. 9 420-8) that electrical stimulation of the temporal cortex in awake human subjects, mostly in the right hemisphere, can elicit the re-enactment and re-living of past experiences. Based on these facts, we attribute our findings to the re-experiencing component of PTSD and hypothesize that it reflects an involuntarily persistent activation of interacting neural networks involved in experiential consolidation.
NASA Astrophysics Data System (ADS)
Rashid, Faisal M.; Dennis, Emily L.; Villalon-Reina, Julio E.; Jin, Yan; Lewis, Jeffrey D.; York, Gerald E.; Thompson, Paul M.; Tate, David F.
2017-11-01
Mild traumatic brain injury (mTBI) is characterized clinically by a closed head injury involving differential or rotational movement of the brain inside the skull. Over 3 million mTBIs occur annually in the United States alone. Many of the individuals who sustain an mTBI go on to recover fully, but around 20% experience persistent symptoms. These symptoms often last for many weeks to several months. The thalamus, a structure known to serve as a global networking or relay system for the rest of the brain, may play a critical role in neurorehabiliation and its integrity and connectivity after injury may also affect cognitive outcomes. To examine the thalamus, conventional tractography methods to map corticothalamic pathways with diffusion-weighted MRI (DWI) lead to sparse reconstructions that may contain false positive fibers that are anatomically inaccurate. Using a specialized method to zero in on corticothalamic pathways with greater robustness, we noninvasively examined corticothalamic fiber projections using DWI, in 68 service members. We found significantly lower fractional anisotropy (FA), a measure of white matter microstructural integrity, in pathways projecting to the left pre- and postcentral gyri - consistent with sensorimotor deficits often found post-mTBI. Mapping of neural circuitry in mTBI may help to further our understanding of mechanisms underlying recovery post-TBI.
Head Injury and the Post-Trauma Vision Syndrome.
ERIC Educational Resources Information Center
Padula, William V.; Shapiro, Jannie B.
1993-01-01
This article considers the visual rehabilitation of patients recovering from traumatic brain injuries. Characteristics, symptoms, and associated neuromotor difficulties of posttrauma vision syndrome are listed, as are common posture and gait adaptations. A neuro-optometric rehabilitative and orientation/mobility evaluation is recommended, as is…
Telerehabilitation for OIF/OEF Returnees with Combat-Related Traumatic Brain Injury
2013-06-01
VA has no national program for providing individualized care coordination for veterans via telemedicine. It does have an e-health portal where...Heart Failure, diabetes, hypertension , COPD and mental illness. However, this technology does not allow for the posting of individualized questions
Moreno, Paula; Alvarez, Antonio; Illana, Jennifer; Espinosa, Dionisio; Baamonde, Carlos; Cerezo, Francisco; Algar, Francisco Javier; Salvatierra, Angel
2013-06-01
To determine whether lung retrieval from traumatic donors performed within 24 h of brain death has a negative impact on early graft function and survival after lung transplantation (LT), when compared with those retrieved after 24 h. Review of lung transplants performed from traumatic donors over a 17-year period. Recipients were distributed into two groups: transplants from traumatic donor lungs retrieved within 24 h of brain death (Group A), and transplants from traumatic donor lungs retrieved after 24 h of brain death (Group B). Demographic data of donors and recipients, early graft function, perioperative complications and mortality were compared between both groups. Among 356 lung transplants performed at our institution, 132 were from traumatic donors (70% male, 30% female). Group A: 73 (55%); Group B: 59 (45%). There were 53 single, 77 double, and 2 combined LT. Indications were emphysema in 41 (31%), pulmonary fibrosis in 31 (23%), cystic fibrosis in 38 (29%), bronchiectasis in 9 (7%) and other indications in 13 patients (10%). Donor and recipient demographic data, need or cardiopulmonary bypass, postoperative complications and Intensive Care Unit and hospital stay did not differ between groups. Primary graft dysfunction (A vs B): 9 (16%) vs 13 (26%) P = 0.17. PaO2/FiO2 24 h post-transplant (A vs B): 303 mmHg vs 288 mmHg (P = 0.57). Number of acute rejection episodes (A vs B): 0.93 vs 1.49 (P = 0.01). Postoperative intubation time (A vs B): 99 vs 100 h (P = 0.99). 30-day mortality (A vs B): 7 (10%) vs 2 (3.5%) (P = 0.13). Freedom from bronchiolitis obliterans syndrome (A vs B): 82, 72, 37, 22 vs 78, 68, 42, 15%, at 3, 5, 10 and 15 years, respectively (P = 0.889). Survival (A vs B): 65, 54, 46, 42 and 27 vs 60, 50, 45, 43 and 29% at 3, 5, 7, 10 and 15 years, respectively (P = 0.937). In our experience, early lung retrieval after brain death from traumatic donors does not adversely affect early and long-term outcomes after LT.
Stubbs, Elin; Togher, Leanne; Kenny, Belinda; Fromm, Davida; Forbes, Margaret; MacWhinney, Brian; McDonald, Skye; Tate, Robyn; Turkstra, Lyn; Power, Emma
2018-01-01
There is limited research on communicative recovery during the early stages after a severe traumatic brain injury (TBI) in adults. In the current study 43 people with severe TBI described a simple procedure at 3 and 6 months post injury and this was compared to the description provided by 37 healthy speakers. Linguistic productivity and the presence of macrostructural discourse elements were analysed. No change occurred in productivity in the TBI group between the two time points. There was increased use of relevant information (macrostructure) over time for the TBI group, reflecting improvement. People with TBI differed from controls in speech rate and in two out of three macrostructural categories at both time points, indicating difficulties even after 12 weeks of recovery. Overall, the quality, rather than the quantity of discourse was disordered for participants with TBI. Findings indicate that procedural discourse is sensitive to discourse deficits of people with TBI and can be used to map recovery during the sub-acute phase.
Theadom, Alice; Barker-Collo, Suzanne; Jones, Kelly; Dudley, Margaret; Vincent, Norah; Feigin, Valery
2018-05-01
To explore feasibility and potential efficacy of on-line interventions for sleep quality following a traumatic brain injury (TBI). A two parallel-group, randomized controlled pilot study. Community-based. In all, 24 participants (mean age: 35.9 ± 11.8 years) who reported experiencing sleep difficulties between 3 and 36 months after a mild or moderate TBI. Participants were randomized to receive either a cognitive behaviour therapy or an education intervention on-line. Both interventions were self-completed for 20-30 minutes per week over a six-week period. The Pittsburgh Sleep Quality Index assessed self-reported sleep quality with actigraphy used as an objective measure of sleep quality. The CNS Vital Signs on-line neuropsychological test assessed cognitive functioning and the Rivermead Post-concussion Symptoms and Quality of Life after Brain Injury questionnaires were completed pre and post intervention. Both programmes demonstrated feasibility for use post TBI, with 83.3% of participants completing the interventions. The cognitive behaviour therapy group experienced significant reductions ( F = 5.47, p = 0.04) in sleep disturbance (mean individual change = -4.00) in comparison to controls post intervention (mean individual change = -1.50) with a moderate effect size of 1.17. There were no significant group differences on objective sleep quality, cognitive functioning, post-concussion symptoms or quality of life. On-line programmes designed to improve sleep are feasible for use for adults following mild-to-moderate TBI. Based on the effect size identified in this pilot study, 128 people (64 per group) would be needed to determine clinical effectiveness.
Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.
2018-01-01
Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141
45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...
45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...
45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...
45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...
45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...
Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent
2012-01-01
Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828
NASA Astrophysics Data System (ADS)
Dharmajaya, R.; Sari, D. K.; Ganie, R. A.
2018-03-01
Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (<2μg/L) 120 hours after injury and increased BDNF (>6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.
Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.
Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi
2012-04-01
Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.
Clark, Ian A.; Niehaus, Katherine E.; Duff, Eugene P.; Di Simplicio, Martina C.; Clifford, Gari D.; Smith, Stephen M.; Mackay, Clare E.; Woolrich, Mark W.; Holmes, Emily A.
2014-01-01
After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms. PMID:25151915
Lindquist, Lisa K; Love, Holly C; Elbogen, Eric B
2017-01-01
This study randomly sampled post-9/11 military veterans and reports on causes, predictors, and frequency of traumatic brain injury (TBI) (N=1,388). A total of 17.3% met criteria for TBI during military service, with about one-half reporting multiple head injuries, which were related to higher rates of posttraumatic stress disorder, depression, back pain, and suicidal ideation. The most common mechanisms of TBI included blasts (33.1%), objects hitting head (31.7%), and fall (13.5%). TBI was associated with enlisted rank, male gender, high combat exposure, and sustaining TBI prior to military service. Clinical and research efforts in veterans should consider TBI mechanism, effects of cumulative TBI, and screening for premilitary TBI.
Prevention and Treatment of Traumatic Brain Injury Due to Rapid-Onset Natural Disasters
Regens, James L.; Mould, Nick
2014-01-01
The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188
McKeon, Ashlee; Terhorst, Lauren; Skidmore, Elizabeth; Ding, Dan; Cooper, Rory; McCue, Michael
2017-01-01
This study aimed to develop a novel tool for measuring behavioural dysregulation in adults with traumatic brain injury (TBI) using objective data sources and real-world application and provide preliminary evidence for its psychometric properties. Fourteen adults with TBI receiving services at a local brain injury rehabilitation programme completed multiple assessments of behaviour and followed by a series of challenging problem-solving tasks while being video recorded. Trained clinicians completed post-hoc behavioural assessments using the behavioural dysregulation ratings scale, and behavioural event data were then extracted for comparison with self-report measures. Subject matter experts in neurorehabilitation were in 100% agreement that preliminarily, the new tool measured the construct of behavioural dysregulation. Construct validity was established through strong convergence with 'like' measures and weak correlation with 'unlike' measures. Substantial inter-rater reliability was established between two trained clinician raters. This study provides preliminary evidence supporting the use of a new precision measurement tool of behaviour in post-acute TBI that has the capability to be deployed naturalistically where deficits truly manifest. Future large-scaled confirmatory psychometric trials are warranted to further establish the utility of this new tool in rehabilitation research.
Post-traumatic stress disorder.
Yehuda, Rachel; Hoge, Charles W; McFarlane, Alexander C; Vermetten, Eric; Lanius, Ruth A; Nievergelt, Caroline M; Hobfoll, Stevan E; Koenen, Karestan C; Neylan, Thomas C; Hyman, Steven E
2015-10-08
Post-traumatic stress disorder (PTSD) occurs in 5-10% of the population and is twice as common in women as in men. Although trauma exposure is the precipitating event for PTSD to develop, biological and psychosocial risk factors are increasingly viewed as predictors of symptom onset, severity and chronicity. PTSD affects multiple biological systems, such as brain circuitry and neurochemistry, and cellular, immune, endocrine and metabolic function. Treatment approaches involve a combination of medications and psychotherapy, with psychotherapy overall showing greatest efficacy. Studies of PTSD pathophysiology initially focused on the psychophysiology and neurobiology of stress responses, and the acquisition and the extinction of fear memories. However, increasing emphasis is being placed on identifying factors that explain individual differences in responses to trauma and promotion of resilience, such as genetic and social factors, brain developmental processes, cumulative biological and psychological effects of early childhood and other stressful lifetime events. The field of PTSD is currently challenged by fluctuations in diagnostic criteria, which have implications for epidemiological, biological, genetic and treatment studies. However, the advent of new biological methodologies offers the possibility of large-scale approaches to heterogeneous and genetically complex brain disorders, and provides optimism that individualized approaches to diagnosis and treatment will be discovered.
Trentini, Cristina; Pagani, Marco; Fania, Piercarlo; Speranza, Anna Maria; Nicolais, Giampaolo; Sibilia, Alessandra; Inguscio, Lucio; Verardo, Anna Rita; Fernandez, Isabel; Ammaniti, Massimo
2015-01-01
Eye Movement Desensitization and Reprocessing (EMDR) therapy has been proven efficacious in restoring affective regulation in post-traumatic stress disorder (PTSD) patients. However, its effectiveness on emotion processing in children with complex trauma has yet to be explored. High density electroencephalography (hdEEG) was used to investigate the effects of EMDR on brain responses to adults’ emotions on children with histories of early maltreatment. Ten school-aged children were examined before (T0) and within one month after the conclusion of EMDR (T1). hdEEGs were recorded while children passively viewed angry, afraid, happy, and neutral faces. Clinical scales were administered at the same time. Correlation analyses were performed to detect brain regions whose activity was linked to children’s traumatic symptom-related and emotional-adaptive problem scores. In all four conditions, hdEEG showed similar significantly higher activity on the right medial prefrontal and fronto-temporal limbic regions at T0, shifting toward the left medial and superior temporal regions at T1. Moreover, significant correlations were found between clinical scales and the same regions whose activity significantly differed between pre- and post-treatment. These preliminary results demonstrate that, after EMDR, children suffering from complex trauma show increased activity in areas implicated in high-order cognitive processing when passively viewing pictures of emotional expressions. These changes are associated with the decrease of depressive and traumatic symptoms, and with the improvement of emotional-adaptive functioning over time. PMID:26594183
2013-04-01
Neuropsychology (AACN). Chicago , Illinois. One of the challenges in assessing the essential neural features of mild TBI in veterans is that... Chicago , Illinois. The tool, preliminarily called the Minnesota Blast Exposure Screening Tool (MN-BEST; see Figure 12), complements current screening...the AACN. Chicago , Illinois. Examination of the number of post-concussive symptoms endorsed by the entire National Guard sample indicates that
Hypopituitarism after traumatic brain injury.
Bondanelli, Marta; Ambrosio, Maria Rosaria; Zatelli, Maria Chiara; De Marinis, Laura; degli Uberti, Ettore C
2005-05-01
Traumatic brain injury (TBI) is one of the main causes of death and disability in young adults, with consequences ranging from physical disabilities to long-term cognitive, behavioural, psychological and social defects. Post-traumatic hypopituitarism (PTHP) was recognized more than 80 years ago, but it was thought to be a rare occurrence. Recently, clinical evidence has demonstrated that TBI may frequently cause hypothalamic-pituitary dysfunction, probably contributing to a delayed or hampered recovery from TBI. Changes in pituitary hormone secretion may be observed during the acute phase post-TBI, representing part of the acute adaptive response to the injury. Moreover, diminished pituitary hormone secretion, caused by damage to the pituitary and/or hypothalamus, may occur at any time after TBI. PTHP is observed in about 40% of patients with a history of TBI, presenting as an isolated deficiency in most cases, and more rarely as complete pituitary failure. The most common alterations appear to be gonadotropin and somatotropin deficiency, followed by corticotropin and thyrotropin deficiency. Hyper- or hypoprolactinemia may also be present. Diabetes insipidus may be frequent in the early, acute phase post-TBI, but it is rarely permanent. Severity of TBI seems to be an important risk factor for developing PTHP; however, PTHP can also manifest after mild TBI. Accurate evaluation and long-term follow-up of all TBI patients are necessary in order to detect the occurrence of PTHP, regardless of clinical evidence for pituitary dysfunction. In order to improve outcome and quality of life of TBI patients, an adequate replacement therapy is of paramount importance.
Juengst, Shannon B; Kumar, Raj G; Wagner, Amy K
2017-01-01
Depression is one of the most common conditions to emerge after traumatic brain injury (TBI), and despite its potentially serious consequences it remains undertreated. Treatment for post-traumatic depression (PTD) is complicated due to the multifactorial etiology of PTD, ranging from biological pathways to psychosocial adjustment. Identifying the unique, personalized factors contributing to the development of PTD could improve long-term treatment and management for individuals with TBI. The purpose of this narrative literature review was to summarize the prevalence and impact of PTD among those with moderate to severe TBI and to discuss current challenges in its management. Overall, PTD has an estimated point prevalence of 30%, with 50% of individuals with moderate to severe TBI experiencing an episode of PTD in the first year after injury alone. PTD has significant implications for health, leading to more hospitalizations and greater caregiver burden, for participation, reducing rates of return to work and affecting social relationships, and for quality of life. PTD may develop directly or indirectly as a result of biological changes after injury, most notably post-injury inflammation, or through psychological and psychosocial factors, including pre injury personal characteristics and post-injury adjustment to disability. Current evidence for effective treatments is limited, although the strongest evidence supports antidepressants and cognitive behavioral interventions. More personalized approaches to treatment and further research into unique therapy combinations may improve the management of PTD and improve the health, functioning, and quality of life for individuals with TBI.
Pain and neurological sequelae of cluster munitions on children and adolescents in South Lebanon.
Fares, Youssef; Ayoub, Fouad; Fares, Jawad; Khazim, Rabi; Khazim, Mahmoud; Gebeily, Souheil
2013-11-01
This paper aims at evaluating the neurological repercussions arising from injuries sustained due to cluster munitions in children up to 18 years in South Lebanon following the 2006 conflict. Data on neurological and pain symptoms suffered during and after treatment because of sub-munitions in South Lebanon from August 2006 till late 2011 were prospectively recorded. Patients were divided into subcategories; children aged 12 and under and adolescents aged between 13 and 18. During the study period, there were 407 casualties, 122 (30%) of which were aged 18 years or younger. There were 116 (95%) males and six (5%) females. Average age was 14 years. 10 (8.2%), all males, died as a result of their injuries. 42 (34.4%) were children and 80 (65.6%) were adolescents. 112 had surgical treatments for their injuries. 83 out of 112 patients (74%) with non-lethal injuries had amputations, 67% children and 78% adolescents. Among those who had amputations, 31 (37.4%) suffered from phantom limb pain and 71% suffered from stump/residual limb pain. 88% of patients were diagnosed with post-traumatic stress disorder (44% children and 77% adolescents) and 41% were diagnosed with post-concussion syndrome. Four patients (3.6%) suffered from traumatic brain injuries, both penetrating and closed. Pain syndromes were found in all patients who had amputation. The injury related comorbidities together with many post-concussion syndrome cases, and fewer traumatic brain injuries lead into a high level of physical, psychosocial and economic burdens on the community.
Modulating Hippocampal Plasticity with In Vivo Brain Stimulation
2016-11-17
Boggio et al., 2009), depression (Fregni et al., 2006; Loo et al., 2012; Brunoni et al., 2014), schizophrenia (Goder et al., 2013) and post-traumatic...Effects of transcranial direct current stimulation during sleep on memory performance in patients with schizophrenia . Schizophr Res 144:153-154. Gruart
An, Kelly Y; Monette, Mich C E
2018-04-20
To determine cognitive outcomes in older adults (≥ 50 years old) having sustained a traumatic brain injury (TBI) using meta-analysis. MedLine and PsycInfo databases were searched to identify studies comparing neuropsychological profiles in older adults with and without a history of TBI across various injury severities and times post-injury. Ten studies (n = 717) meeting inclusion criteria were identified. Tests were divided into functional modalities and average effect sizes were calculated across studies on a test-by-test basis. Older adults post-TBI performed worse than the non-TBI group on all cognitive outcomes evaluated (d = -0.34 to -0.75), with naming and vocabulary having the largest effect, M -0.75 (95% CI, -0.98 to -0.52). TBI in older adults leads to moderate deficits on all measured cognitive abilities, with the largest effects observed in naming and vocabulary abilities. The findings pertain broadly to TBI of mixed injury severities and times post-injury, although the majority of participants sustained TBIs of mild uncomplicated severity within one-year post-injury. Future research must address methodological limitations such as variability in reporting injury information, inconsistency in defining older age, and lack of orthopaedic comparison groups in order to permit more nuanced conclusions for this population.
Berman, Sean; Uhlendorf, Toni L; Berman, Mark; Lander, Elliot B
2018-06-18
Traumatic brain injury (TBI) affects 1.9 million Americans, including blast TBI that is the signature injury of the Iraq and Afghanistan wars. Our project investigated whether stromal vascular fraction (SVF) can assist in post-TBI recovery. We utilized strong acoustic waves (5.0 bar) to induce TBI in the cortex of adult Rowett Nude (RNU) rats. One hour post-TBI, harvested human SVF (500,000 cells suspended in 0.5 mL lactated Ringers) was incubated with Q-Tracker cell label and administered into tail veins of RNU rats. For comparison, we utilized rats that received SVF 72 h post-TBI, and a control group that received lactated Ringers solution. Rotarod and water maze assays were used to monitor motor coordination and spatial memories. Rats treated immediately after TBI showed no signs of motor skills and memory regression. SVF treatment 72 h post-TBI enabled the rats maintain their motor skills, while controls treated with lactated Ringers were 25% worse statistically in both assays. Histological analysis showed the presence of Q-dot labeled human cells near the infarct in both SVF treatment groups; however, labeled cells were twice as numerous in the one hour group. Our study suggests that immediate treatment with SVF would serve as potential therapeutic agents in TBI.
Oldenburg, Christian; Lundin, Anders; Edman, Gunnar; Nygren-de Boussard, Catharina; Bartfai, Aniko
2016-01-01
Having three or more persisting (i.e. > 3 months) post-concussion symptoms (PCS) affects a significant number of patients after a mild traumatic brain injury (mTBI). A common complaint is cognitive deficits. However, several meta-analyses have found no evidence of long-term cognitive impairment in mTBI patients. The study sought to answer two questions: first, is there a difference in cognitive performance between PCS and recovered mTBI patients? Second, is lower cognitive reserve a risk factor for developing PCS? Prospective inception cohort study. One hundred and twenty-two adult patients were recruited from emergency departments within 24 hours of an mTBI. Three months post-injury, participants completed the Rivermead Post Concussion Symptoms Questionnaire and a neuropsychological assessment. A healthy control group (n = 35) were recruited. The estimate of cognitive reserve was based upon sub-test Information from Wechsler Adult Intelligence Scale and international classifications of educational level and occupational skill level. mTBI patients showed reduced memory performance. Patients with lower cognitive reserve were 4.14-times more likely to suffer from PCS. mTBI may be linked to subtle executive memory deficits. Lower cognitive reserve appears to be a risk factor for PCS and indicates individual vulnerabilities.
NASA Astrophysics Data System (ADS)
Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.
2016-03-01
Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.
Ianof, Jéssica Natuline; Freire, Fabio Rios; Calado, Vanessa Tomé Gonçalves; Lacerda, Juliana Rhein; Coelho, Fernanda; Veitzman, Silvia; Schmidt, Magali Taino; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson; Anghinah, Renato
2014-01-01
Traumatic brain injury (TBI) is a major cause of lifelong disability and death worldwide. Sport-related traumatic brain injury is an important public health concern. The purpose of this review was to highlight the importance of sport-related concussions. Concussion refers to a transient alteration in consciousness induced by external biomechanical forces transmitted directly or indirectly to the brain. It is a common, although most likely underreported, condition. Contact sports such as American football, rugby, soccer, boxing, basketball and hockey are associated with a relatively high prevalence of concussion. Various factors may be associated with a greater risk of sport-related concussion, such as age, sex, sport played, level of sport played and equipment used. Physical complaints (headache, fatigue, dizziness), behavioral changes (depression, anxiety, irritability) and cognitive impairment are very common after a concussion. The risk of premature return to activities includes the prolongation of post-concussive symptoms and increased risk of concussion recurrence.
Djordjevic, Jelena; Sabbir, Mohammad Golam; Albensi, Benedict C
2016-01-01
Traumatic brain injury (TBI) has become a significant medical and social concern within the last 30 years. TBI has acute devastating effects, and in many cases, seems to initiate long-term neurodegeneration. With advances in medical technology, many people are now surviving severe brain injuries and their long term consequences. Post trauma effects include communication problems, sensory deficits, emotional and behavioral problems, physical complications and pain, increased suicide risk, dementia, and an increased risk for chronic CNS diseases, such as Alzheimer's disease (AD). In this review, we provide an introduction to TBI and hypothesize how it may lead to neurodegenerative disease in general and AD in particular. In addition, we discuss the evidence that supports the hypothesis that TBI may lead to AD. In particular, we focus on inflammatory responses as key processes in TBI-induced secondary injury, with emphasis on nuclear factor kappa B (NF-κB) signaling.
Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A
2016-04-01
Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Ryan, Nicholas P.; Catroppa, Cathy; Beare, Richard; Silk, Timothy J.; Crossley, Louise; Beauchamp, Miriam H.; Yeates, Keith Owen; Anderson, Vicki A.
2016-01-01
Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the ‘social brain network’ (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2–8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. PMID:26796967
Bajaj, Sahil; Dailey, Natalie S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S
2018-05-01
There is currently a critical need to establish an improved understanding of time-dependent differences in brain structure following mild traumatic brain injury (mTBI). We compared differences in brain structure, specifically cortical thickness (CT), cortical volume (CV), and cortical surface area (CSA) in 54 individuals who sustained a recent mTBI and 33 healthy controls (HCs). Individuals with mTBI were split into three groups, depending on their time since injury. By comparing structural measures between mTBI and HC groups, differences in CT reflected cortical thickening within several areas following 0-3 (time-point, TP1) and 3-6 months (TP2) post-mTBI. Compared with the HC group, the mTBI group at TP2 showed lower CSA within several areas. Compared with the mTBI group at TP2, the mTBI group during the most chronic stage (TP3: 6-18 months post-mTBI) showed significantly higher CSA in several areas. All the above reported differences in CT and CSA were significant at a cluster-forming p < .01 (corrected for multiple comparisons). We also found that in the mTBI group at TP2, CT within two clusters (i.e., the left rostral middle frontal gyrus (L. RMFG) and the right postcentral gyrus (R. PostCG)) was negatively correlated with basic attention abilities (L. RMFG: r = -.41, p = .05 and R. PostCG: r = -.44, p = .03). Our findings suggest that alterations in CT and associated neuropsychological assessments may be more prominent during the early stages of mTBI. However, alterations in CSA may reflect compensatory structural recovery during the chronic stages of mTBI. © 2018 Wiley Periodicals, Inc.
Association of traumatic brain injury and Alzheimer disease onset: A systematic review.
Julien, J; Joubert, S; Ferland, M-C; Frenette, L C; Boudreau-Duhaime, M M; Malo-Véronneau, L; de Guise, E
2017-09-01
Inconsistencies regarding the risk of developing Alzheimer disease after traumatic brain injury (TBI) remain in the literature. Indeed, why AD develops in certain TBI patients while others are unaffected is still unclear. The aim of this study was to performed a systematic review to investigate whether certain variables related to TBI, such as TBI severity, loss of consciousness (LOC) and post-traumatic amnesia (PTA), are predictors of risk of AD in adults. From 841 citations retrieved from MEDLINE via PubMed, EMBASE, PSYINFO and Cochrane Library databases, 18 studies were eligible for the review. The review revealed that about 55.5% of TBI patients may show deteriorated condition, from acute post-TBI cognitive deficits to then meeting diagnostic criteria for AD, but whether TBI is a risk factor for AD remains elusive. Failure to establish such a link may be related to methodological problems in the studies. To shed light on this dilemma, future studies should use a prospective design, define the types and severities of TBI and use standardized AD and TBI diagnostic criteria. Ultimately, an AD prediction model, based on several variables, would be useful for clinicians detecting TBI patients at risk of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.
Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan
2014-08-01
We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo neuroimaging after minor head trauma. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Rapp, Paul E.; Rosenberg, Brenna M.; Keyser, David O.; Nathan, Dominic; Toruno, Kevin M.; Cellucci, Christopher J.; Albano, Alfonso M.; Wylie, Scott A.; Gibson, Douglas; Gilpin, Adele M. K.; Bashore, Theodore R.
2013-01-01
Psychophysiological investigations of traumatic brain injury (TBI) are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed-onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP (event-related potential) component properties (e.g., timing, amplitude, scalp distribution), and a participant’s clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that TBI is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing TBI, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records. PMID:23885250
Monti, Daniel A; Tobia, Anna; Stoner, Marie; Wintering, Nancy; Matthews, Michael; He, Xiao-Song; Doucet, Gaelle; Chervoneva, Inna; Tracy, Joseph I; Newberg, Andrew B
2017-08-01
The purpose of this study was to characterize the neurophysiological and clinical effects that may result from the neuro emotional technique (NET) in patients with traumatic stress symptoms associated with a cancer-related event. We hypothesized that self-regulatory processing of traumatic memories would be observable as physiological changes in key brain areas after undergoing the NET intervention and that these changes would be associated with improvement of traumatic stress symptoms. We enrolled 23 participants with a prior cancer diagnosis who expressed a distressing cancer-related memory that was associated with traumatic stress symptoms of at least 6 months in duration. Participants were randomized to either the NET intervention or a waitlist control condition. To evaluate the primary outcome of neurophysiological effects, all participants received functional magnetic resonance imaging (fMRI) during the auditory presentation of both a neutral stimulus and a description of the specific traumatic event. Pre/post-comparisons were performed between the traumatic and neutral condition, within and between groups. Psychological measures included the Impact of Event Scale (IES), State Trait Anxiety Index (STAI), Brief Symptom Inventory (BSI)-18, and Posttraumatic Cognitions Inventory (PTCI). The initial fMRI scans in both groups showed significant increases in the bilateral parahippocampus and brainstem. After NET, reactivity in the parahippocampus, brainstem, anterior cingulate, and insula was significantly decreased during the traumatic stimulus. Likewise, participants receiving the NET intervention had significant reductions (p < 0.05) compared to the control group in distress as measured by the BSI-18 global severity index, anxiety as measured by the STAI, and traumatic stress as measured by the IES and PTCI. This study is an initial step towards understanding mechanistic features of the NET intervention. Specifically, brain regions involved with traumatic memories and distress such as the brainstem, insula, anterior cingulate gyrus, and parahippocampus had significantly reduced activity after the NET intervention and were associated with clinical improvement of symptoms associated with distressing recollections. This preliminary study suggests that the NET intervention may be effective at reducing emotional distress in patients who suffer from traumatic stress symptoms associated with a cancer-related event.
Wang, Fushun; Wang, Xiaowei; Shapiro, Lee A; Cotrina, Maria L; Liu, Weimin; Wang, Ernest W; Gu, Simeng; Wang, Wei; He, Xiaosheng; Nedergaard, Maiken; Huang, Jason H
2017-04-01
Traumatic brain injury (TBI) is not only a leading cause for morbidity and mortality in young adults (Bruns and Hauser, Epilepsia 44(Suppl 10):210, 2003), but also a leading cause of seizures. Understanding the seizure-inducing mechanisms of TBI is of the utmost importance, because these seizures are often resistant to traditional first- and second-line anti-seizure treatments. The early post-traumatic seizures, in turn, are a contributing factor to ongoing neuropathology, and it is critically important to control these seizures. Many of the available anti-seizure drugs target gamma-aminobutyric acid (GABA A ) receptors. The inhibitory activity of GABA A receptor activation depends on low intracellular Cl - , which is achieved by the opposing regulation of Na + -K + -Cl - cotransporter 1 (NKCC1) and K + -Cl - -cotransporter 2 (KCC2). Up-regulation of NKCC1 in neurons has been shown to be involved in neonatal seizures and in ammonia toxicity-induced seizures. Here, we report that TBI-induced up-regulation of NKCC1 and increased intracellular Cl - concentration. Genetic deletion of NKCC1 or pharmacological inhibition of NKCC1 with bumetanide suppresses TBI-induced seizures. TGFβ expression was also increased after TBI and competitive antagonism of TGFβ reduced NKKC1 expression, ameliorated reactive astrocytosis, and inhibited seizures. Thus, TGFβ might be an important pathway involved in NKCC1 up-regulation after TBI. Our findings identify neuronal up-regulation of NKCC1 and its mediation by TGFβ, as a potential and important mechanism in the early post-traumatic seizures, and demonstrate the therapeutic potential of blocking this pathway.
Clark, Ian A.; Mackay, Clare E.
2015-01-01
This hypothesis and theory paper presents a pragmatic framework to help bridge the clinical presentation and neuroscience of intrusive memories following psychological trauma. Intrusive memories are a hallmark symptom of post-traumatic stress disorder (PTSD). However, key questions, including those involving etiology, remain. In particular, we know little about the brain mechanisms involved in why only some moments of the trauma return as intrusive memories while others do not. We first present an overview of the patient experience of intrusive memories and the neuroimaging studies that have investigated intrusive memories in PTSD patients. Next, one mechanism of how to model intrusive memories in the laboratory, the trauma film paradigm, is examined. In particular, we focus on studies combining the trauma film paradigm with neuroimaging. Stemming from the clinical presentation and our current understanding of the processes involved in intrusive memories, we propose a framework in which an intrusive memory comprises five component parts; autobiographical (trauma) memory, involuntary recall, negative emotions, attention hijacking, and mental imagery. Each component part is considered in turn, both behaviorally and from a brain imaging perspective. A mapping of these five components onto our understanding of the brain is described. Unanswered questions that exist in our understanding of intrusive memories are considered using the proposed framework. Overall, we suggest that mental imagery is key to bridging the experience, memory, and intrusive recollection of the traumatic event. Further, we suggest that by considering the brain mechanisms involved in the component parts of an intrusive memory, in particular mental imagery, we may be able to aid the development of a firmer bridge between patients’ experiences of intrusive memories and the clinical neuroscience behind them. PMID:26257660
Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D
2017-01-01
Objectives: Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player’s life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users’ messages often reflects the prevailing culture related to a particular event or health issue. Methods: We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. Results: We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. Conclusion: While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies. PMID:28890783
Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D
2017-01-01
Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.
Shear, Deborah A.; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C.
2016-01-01
Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7–21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13–17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple domains that were evident days/weeks beyond the cooling duration and in the absence of overt adverse effects. These “proof-of-concept” results suggest that SBC may provide an attractive neuroprotective approach for clinical considerations. PMID:26684246
Lu, William; Krellman, Jason W; Dijkers, Marcel P
2016-01-01
Individuals with traumatic brain injury (TBI) often develop sleep disorders post-injury. The most common one is insomnia, which can exacerbate other post-injury symptoms, including fatigue, impaired cognition, depression, anxiety, and pain. Cognitive Behavioral Therapy for Insomnia (CBT-I) is a manualized treatment that effectively treats insomnia with secondary effects on cognition, mood, and pain in various populations. This paper reviews the use of CBT-I for three participants with TBI of different severities. Pre- and post-treatment assessments of insomnia, fatigue, depression, anxiety, and pain were conducted. Mood was further assessed at follow-up. Minimal clinically important difference (MCID) scores derived from the research literature were used to establish clinically meaningful symptom improvement on self-report questionnaires. The reduction in insomnia severity scores for all three participants were not large enough to be considered a clinically significant improvement following CBT-I, although trends toward improvement were observed. However, all participants showed clinically significant reductions in anxiety at post-treatment; the effects persisted for 2 participants at follow-up. Reductions in depression symptoms were observed for 2 participants at post-treatment, and treatment effects persisted for 1 participant at follow-up. One participant endorsed clinically significant improvements in fatigue and pain severity. We conclude that CBT-I may provide secondary benefits for symptoms commonly experienced by individuals with TBI, especially mood disturbances.
Cognitive development after traumatic brain injury in young children
GERRARD-MORRIS, AIMEE; TAYLOR, H. GERRY; YEATES, KEITH OWEN; WALZ, NICOLAY CHERTKOFF; STANCIN, TERRY; MINICH, NORI; WADE, SHARI L.
2014-01-01
The primary aims of this study were to examine post-injury cognitive development in young children with traumatic brain injury (TBI) and to investigate the role of the proximal family environment in predicting cognitive outcomes. Age at injury was 3–6 years, and TBI was classified as severe (n = 23), moderate (n = 21), and complicated mild (n = 43). A comparison group of children who sustained orthopedic injuries (OI, n = 117) was also recruited. Child cognitive assessments were administered at a post-acute baseline evaluation and repeated at 6, 12, and 18 months post-injury. Assessment of the family environment consisted of baseline measures of learning support and stimulation in the home and of parenting characteristics observed during videotaped parent–child interactions. Relative to the OI group, children with severe TBI group had generalized cognitive deficiencies and those with less severe TBI had weaknesses in visual memory and executive function. Although deficits persisted or emerged across follow-up, more optimal family environments were associated with higher scores for all injury groups. The findings confirm other reports of poor recovery of cognitive skills following early childhood TBI and suggest environmental influences on outcomes. PMID:19849883
Taylor, H. Gerry; Swartwout, Maegan; Yeates, Keith O.; Walz, Nicolay C.; Stancin, Terry; Wade, Shari L.
2009-01-01
Previous studies have documented weaknesses in cognitive ability and early academic readiness in young children with traumatic brain injury (TBI). However, few of these studies have rigorously controlled for demographic characteristics, examined the effects of TBI severity on a wide range of skills, or explored moderating influences of environmental factors on outcomes. To meet these objectives, each of three groups of children with TBI (20 with severe, 64 with moderate, and 15 with mild) were compared with a group of 117 children with orthopedic injuries (OI group). The children were hospitalized for their injuries between 3 and 6 years of age and were assessed an average of 1½ months post injury. Analysis revealed generalized weaknesses in cognitive and school readiness skills in the severe TBI group and suggested less pervasive effects of moderate and mild TBI. Indices of TBI severity predicted outcomes within the TBI sample and environmental factors moderated the effects of TBI on some measures. The findings document adverse effects of TBI in early childhood on post-acute cognitive and school readiness skills and indicate that residual deficits are related to both injury severity and the family environment. PMID:18764969
Johnstone, Maddison R; Sun, Mujun; Taylor, Caroline J; Brady, Rhys D; Grills, Brian L; Church, Jarrod E; Shultz, Sandy R; McDonald, Stuart J
2018-01-01
There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... DEPARTMENT OF EDUCATION Disability and Rehabilitation Research Project; Traumatic Brain Injury... Rehabilitation Research Project--Traumatic Brain Injury Model Systems Centers. CFDA Number: 84.133A-5. SUMMARY... for Disability and Rehabilitation Research Projects (DRRPs) to serve as Traumatic Brain Injury Model...
Brain-Derived Neurotrophic Factor (BDNF) and Traumatic Brain Injury (Head and Spinal)
1999-01-01
surface area. J Microscopy 150: 117-136. Osterman-Latif C, Mader M, Felgenhauer K (1993) An efficient sandwich-ELISA for the determination of choline ...anesthesia and surgery but were not injured (sham injury). After the appropriate survival times, the rats were deeply anesthetized with an overdose of...post-injury (Hicks et al., 1997b, 1998). Tissue Processing Following deep anesthesia with an overdose of sodium pentobarbital, the animals ".vere
Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K.; Bernick, Charles; Ghosh, Chaitali; Bazarian, Jeffrey J.; Janigro, Damir
2016-01-01
Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six post mortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. PMID:26556772
Fisher, Lauren B; Pedrelli, Paola; Iverson, Grant L; Bergquist, Thomas F; Bombardier, Charles H; Hammond, Flora M; Hart, Tessa; Ketchum, Jessica M; Giacino, Joseph; Zafonte, Ross
2016-01-01
This study utilized the Traumatic Brain Injury Model Systems (TBIMS) National Database to examine the prevalence of depression and suicidal behaviour in a large cohort of patients who sustained moderate-to-severe TBI. Participants presented to a TBIMS acute care hospital within 72 hours of injury and received acute care and comprehensive rehabilitation in a TBIMS designated brain injury inpatient rehabilitation programme. Depression and suicidal ideation were measured with the Patient Health Questionnaire (PHQ-9). Self-reported suicide attempts during the past year were recorded at each follow-up examination, at 1, 2, 3, 10, 15 and 20 years post-injury. Throughout the 20 years of follow-up, rates of depression ranged from 24.8-28.1%, suicidal ideation ranged from 7.0-10.1% and suicide attempts (past year) ranged from 0.8-1.7%. Participants who endorsed depression and/or suicidal behaviour at year 1 demonstrated consistently elevated rates of depression and suicidal behaviour 5 years after TBI. Compared to the general population, individuals with TBI are at greater risk for depression and suicidal behaviour many years after TBI. The significant psychiatric symptoms evidenced by individuals with TBI highlight the need for routine screening and mental health treatment in this population.
Batty, Rachel; Francis, Andrew; Thomas, Neil; Hopwood, Malcolm; Ponsford, Jennie; Johnston, Lisa; Rossell, Susan
2015-06-30
Verbal fluency in patients with psychosis following traumatic brain injury (PFTBI) has been reported as comparable to healthy participants. This finding is counterintuitive given the prominent fluency impairments demonstrated post-traumatic brain injury (TBI) and in psychotic disorders, e.g. schizophrenia. We investigated phonemic (executive) fluency (3 letters: 'F' 'A' and 'S'), and semantic fluency (1 category: fruits and/or vegetables) in four matched groups; PFTBI (N=10), TBI (N=10), schizophrenia (N=23), and healthy controls (N=23). Words produced (minus perseverations and errors), and clustering and switching scores were compared for the two fluency types across the groups. The results confirmed that PFTBI patients do show impaired fluency, aligned with existing evidence in TBI and schizophrenia. PFTBI patients produced the least amount of words on the phonemic fluency ('A') trial and total score, and demonstrated reduced switching on both phonemic and semantic tasks. No significant differences in clustering performance were found. Importantly, the pattern of results suggested that PFTBI patients share deficits with their brain-injured (primarily executive), and psychotic (executive and semantic), counterparts, and that these are exacerbated by their dual-diagnosis. These findings add to a very limited literature by providing novel evidence of the nature of fluency impairments in dually-diagnosed PFTBI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
2016-10-01
Traumatic Brain Injury Research Informatics Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0564 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...AWARD NUMBER: W81XWH-14-1-0564 TITLE: Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury...Research Informatics Systems PRINCIPAL INVESTIGATOR: Cynthia Harrison-Felix, PhD CONTRACTING ORGANIZATION: Craig Hospital Englewood, CO 80113
Chandrasekar, Akila; Heuvel, Florian Olde; Palmer, Annette; Linkus, Birgit; Ludolph, Albert C; Boeckers, Tobias M; Relja, Borna; Huber-Lang, Markus; Roselli, Francesco
2017-10-01
Ethanol intoxication is a common comorbidity in traumatic brain injury. To date, the effect of ethanol on TBI pathogenic cascades and resulting outcomes remains debated. A closed blunt weight-drop murine TBI model has been implemented to investigate behavioral (by sensorimotor and neurological tests), and neuro-immunological (by tissue cytokine arrays and immuno-histology) effects of ethanol intoxication on TBI. The effect of the occurrence of traumatic intracerebral hemorrhage was also studied. The results indicate that ethanol pretreatment results in a faster and better recovery after TBI with reduced infiltration of leukocytes and reduced microglia activation. These outcomes correspond to reduced parenchymal levels of GM-CSF, IL-6 and IL-3 and to the transient upregulation of IL-13 and VEGF, indicating an early shift in the cytokine profile towards reduced inflammation. A significant difference in the cytokine profile was still observed 24h post injury in the ethanol pretreated mice, as shown by the delayed peak in IL-6 and by the suppression of GM-CSF, IFN-γ, and IL-3. Seven days post-injury, ethanol-pretreated mice displayed a significant decrease both in CD45+ cells infiltration and in microglial activation. On the other hand, in the case of traumatic intracerebral hemorrhage, the cytokine profile was dominated by KC, CCL5, M-CSF and several interleukins and ethanol pretreatment did not produce any modification. We can thus conclude that ethanol intoxication suppresses the acute neuro-inflammatory response to TBI, an effect which is correlated with a faster and complete neurological recovery, whereas, the presence of traumatic intracerebral hemorrhage overrides the effects of ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.
Knowledge of Traumatic Brain Injury among Educators
ERIC Educational Resources Information Center
Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith
2016-01-01
The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…
van der Naalt, Joukje; Timmerman, Marieke E; de Koning, Myrthe E; van der Horn, Harm J; Scheenen, Myrthe E; Jacobs, Bram; Hageman, Gerard; Yilmaz, Tansel; Roks, Gerwin; Spikman, Jacoba M
2017-07-01
Mild traumatic brain injury (mTBI) accounts for most cases of TBI, and many patients show incomplete long-term functional recovery. We aimed to create a prognostic model for functional outcome by combining demographics, injury severity, and psychological factors to identify patients at risk for incomplete recovery at 6 months. In particular, we investigated additional indicators of emotional distress and coping style at 2 weeks above early predictors measured at the emergency department. The UPFRONT study was an observational cohort study done at the emergency departments of three level-1 trauma centres in the Netherlands, which included patients with mTBI, defined by a Glasgow Coma Scale score of 13-15 and either post-traumatic amnesia lasting less than 24 h or loss of consciousness for less than 30 min. Emergency department predictors were measured either on admission with mTBI-comprising injury severity (GCS score, post-traumatic amnesia, and CT abnormalities), demographics (age, gender, educational level, pre-injury mental health, and previous brain injury), and physical conditions (alcohol use on the day of injury, neck pain, headache, nausea, dizziness)-or at 2 weeks, when we obtained data on mood (Hospital Anxiety and Depression Scale), emotional distress (Impact of Event Scale), coping (Utrecht Coping List), and post-traumatic complaints. The functional outcome was recovery, assessed at 6 months after injury with the Glasgow Outcome Scale Extended (GOSE). We dichotomised recovery into complete (GOSE=8) and incomplete (GOSE≤7) recovery. We used logistic regression analyses to assess the predictive value of patient information collected at the time of admission to an emergency department (eg, demographics, injury severity) alone, and combined with predictors of outcome collected at 2 weeks after injury (eg, emotional distress and coping). Between Jan 25, 2013, and Jan 6, 2015, data from 910 patients with mTBI were collected 2 weeks after injury; the final date for 6-month follow-up was July 6, 2015. Of these patients, 764 (84%) had post-traumatic complaints and 414 (45%) showed emotional distress. At 6 months after injury, outcome data were available for 671 patients; complete recovery (GOSE=8) was observed in 373 (56%) patients and incomplete recovery (GOSE ≤7) in 298 (44%) patients. Logistic regression analyses identified several predictors for 6-month outcome, including education and age, with a clear surplus value of indicators of emotional distress and coping obtained at 2 weeks (area under the curve [AUC]=0·79, optimism 0·02; Nagelkerke R 2 =0·32, optimism 0·05) than only emergency department predictors at the time of admission (AUC=0·72, optimism 0·03; Nagelkerke R 2 =0·19, optimism 0·05). Psychological factors (ie, emotional distress and maladaptive coping experienced early after injury) in combination with pre-injury mental health problems, education, and age are important predictors for recovery at 6 months following mTBI. These findings provide targets for early interventions to improve outcome in a subgroup of patients at risk of incomplete recovery from mTBI, and warrant validation. Dutch Brain Foundation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neuroprotective Strategies after Repetitive Mild Traumatic Brain Injury
2011-06-01
applica- tions are beyond the scope of this review, it should be noted that certain drugs, fever and respiratory ailments limit clinical application of...observed no evidence of hemorrhage early after injury but did observe the presence of subtle petechial hemorrhages at 7 days post-injury (Fig. 7
Overhauling the Airborne Intelligence, Surveillance, and Reconnaissance Systems Procurement Process
2011-03-18
over 300,000 returning troops suffering from major depression or post-traumatic stress disorder and at least 320,000 brain injuries received6, the...Accessed December 31, 2010) 24 “Aviation Fuel,” linked from the U.S. Centennial of Flight Commission Home Page at “Essays,” http
The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury
Prins, Mayumi L.; Matsumoto, Joyce H.
2014-01-01
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741
Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap
2003-10-01
Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.
[Hypopituitarism following traumatic brain injury: diagnostic and therapeutic issues].
Lecoq, A-L; Chanson, P
2015-10-01
Traumatic Brain Injury (TBI) is a well-known public health problem worldwide and is a leading cause of death and disability, particularly in young adults. Besides neurological and psychiatric issues, pituitary dysfunction can also occur after TBI, in the acute or chronic phase. The exact prevalence of post-traumatic hypopituitarism is difficult to assess due to the wide heterogeneity of published studies and bias in interpretation of hormonal test results in this specific population. Predictive factors for hypopituitarism have been proposed and are helpful for the screening. The pathophysiology of pituitary dysfunction after TBI is not well understood but the vascular hypothesis is privileged. Activation of pituitary stem/progenitor cells is probably involved in the recovery of pituitary functions. Those cells also play a role in the induction of pituitary tumors, highlighting their crucial place in pituitary conditions. This review updates the current data related to anterior pituitary dysfunction after TBI and discusses the bias and difficulties encountered in its diagnosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Mild traumatic brain injury literature review and proposed changes to classification.
Krainin, Benjamin M; Forsten, Robert D; Kotwal, Russ S; Lutz, Robert H; Guskiewicz, Kevin M
2011-01-01
Mild traumatic brain injury (mTBI) reportedly occurs in 8-22% of U.S. servicemembers who conduct combat operations in Afghanistan and Iraq. The current definition for mTBI found in the medical literature, to include the Department of Defense (DoD) and Veterans Administration (VA) clinical practice guidelines is limited by the parameters of loss of consciousness, altered consciousness, or post-traumatic amnesia, and does not account for other constellations of potential symptoms. Although mTBI symptoms typically resolve within seven days, some servicemembers experience symptoms that continue for weeks, months, or years following an injury. Mild TBI is one of few disorders in medicine where a benign and misleading diagnostic classification is bestowed on patients at the time of injury, yet still can be associated with lifelong complications. This article comprehensively reviews the clinical literature over the past 20 years and proposes a new classification for TBI that addresses acute, sub-acute, and chronic phases, and includes neurocognitive, somatic, and psychological symptom presentation. 2011.
The chronic and evolving neurological consequences of traumatic brain injury.
Wilson, Lindsay; Stewart, William; Dams-O'Connor, Kristen; Diaz-Arrastia, Ramon; Horton, Lindsay; Menon, David K; Polinder, Suzanne
2017-10-01
Traumatic brain injury (TBI) can have lifelong and dynamic effects on health and wellbeing. Research on the long-term consequences emphasises that, for many patients, TBI should be conceptualised as a chronic health condition. Evidence suggests that functional outcomes after TBI can show improvement or deterioration up to two decades after injury, and rates of all-cause mortality remain elevated for many years. Furthermore, TBI represents a risk factor for a variety of neurological illnesses, including epilepsy, stroke, and neurodegenerative disease. With respect to neurodegeneration after TBI, post-mortem studies on the long-term neuropathology after injury have identified complex persisting and evolving abnormalities best described as polypathology, which includes chronic traumatic encephalopathy. Despite growing awareness of the lifelong consequences of TBI, substantial gaps in research exist. Improvements are therefore needed in understanding chronic pathologies and their implications for survivors of TBI, which could inform long-term health management in this sizeable patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Griesbach, Grace S; Masel, Brent E; Helvie, Richard E; Ashley, Mark J
2018-01-01
The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer's or Parkinson's. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.
Post-Traumatic Stress Constrains the Dynamic Repertoire of Neural Activity.
Mišić, Bratislav; Dunkley, Benjamin T; Sedge, Paul A; Da Costa, Leodante; Fatima, Zainab; Berman, Marc G; Doesburg, Sam M; McIntosh, Anthony R; Grodecki, Richard; Jetly, Rakesh; Pang, Elizabeth W; Taylor, Margot J
2016-01-13
Post-traumatic stress disorder (PTSD) is an anxiety disorder arising from exposure to a traumatic event. Although primarily defined in terms of behavioral symptoms, the global neurophysiological effects of traumatic stress are increasingly recognized as a critical facet of the human PTSD phenotype. Here we use magnetoencephalographic recordings to investigate two aspects of information processing: inter-regional communication (measured by functional connectivity) and the dynamic range of neural activity (measured in terms of local signal variability). We find that both measures differentiate soldiers diagnosed with PTSD from soldiers without PTSD, from healthy civilians, and from civilians with mild traumatic brain injury, which is commonly comorbid with PTSD. Specifically, soldiers with PTSD display inter-regional hypersynchrony at high frequencies (80-150 Hz), as well as a concomitant decrease in signal variability. The two patterns are spatially correlated and most pronounced in a left temporal subnetwork, including the hippocampus and amygdala. We hypothesize that the observed hypersynchrony may effectively constrain the expression of local dynamics, resulting in less variable activity and a reduced dynamic repertoire. Thus, the re-experiencing phenomena and affective sequelae in combat-related PTSD may result from functional networks becoming "stuck" in configurations reflecting memories, emotions, and thoughts originating from the traumatizing experience. The present study investigates the effects of post-traumatic stress disorder (PTSD) in combat-exposed soldiers. We find that soldiers with PTSD exhibit hypersynchrony in a circuit of temporal lobe areas associated with learning and memory function. This rigid functional architecture is associated with a decrease in signal variability in the same areas, suggesting that the observed hypersynchrony may constrain the expression of local dynamics, resulting in a reduced dynamic range. Our findings suggest that the re-experiencing of traumatic events in PTSD may result from functional networks becoming locked in configurations that reflect memories, emotions, and thoughts associated with the traumatic experience. Copyright © 2016 the authors 0270-6474/16/360419-13$15.00/0.
Bell, Kathleen R; Fann, Jesse R; Brockway, Jo Ann; Cole, Wesley R; Bush, Nigel E; Dikmen, Sureyya; Hart, Tessa; Lang, Ariel J; Grant, Gerald; Gahm, Gregory; Reger, Mark A; St De Lore, Jef; Machamer, Joan; Ernstrom, Karin; Raman, Rema; Jain, Sonia; Stein, Murray B; Temkin, Nancy
2017-01-15
Mild traumatic brain injury (mTBI) is a common injury for service members in recent military conflicts. There is insufficient evidence of how best to treat the consequences of mTBI. In a randomized, clinical trial, we evaluated the efficacy of telephone-delivered problem-solving treatment (PST) on psychological and physical symptoms in 356 post-deployment active duty service members from Joint Base Lewis McChord, Washington, and Fort Bragg, North Carolina. Members with medically confirmed mTBI sustained during deployment to Iraq and Afghanistan within the previous 24 months received PST or education-only (EO) interventions. The PST group received up to 12 biweekly telephone calls from a counselor for subject-selected problems. Both groups received 12 educational brochures describing common mTBI and post-deployment problems, with follow-up for all at 6 months (end of PST), and at 12 months. At 6 months, the PST group significantly improved on a measure of psychological distress (Brief Symptom Inventory; BSI-18) compared to the EO group (p = 0.005), but not on post-concussion symptoms (Rivermead Post-Concussion Symptoms Questionnaire [RPQ]; p = 0.19), the two primary endpoints. However, these effects did not persist at 12-month follow-up (BSI, p = 0.54; RPQ, p = 0.45). The PST group also had significant short-term improvement on secondary endpoints, including sleep (p = 0.01), depression (p = 0.03), post-traumatic stress disorder (p = 0.04), and physical functioning (p = 0.03). Participants preferred PST over EO (p < 0.001). Telephone-delivered PST appears to be a well-accepted treatment that offers promise for reducing psychological distress after combat-related mTBI and could be a useful adjunct treatment post-mTBI. Further studies are required to determine how to sustain its effects. (Trial registration: ClinicalTrials.gov Identifier: NCT01387490 https://clinicaltrials.gov ).
Popescu, Mihai; Hughes, John D; Popescu, Elena-Anda; Riedy, Gerard; DeGraba, Thomas J
2016-09-01
To determine if changes in cortical alpha-band power in patients with mild traumatic brain injury (mTBI) are associated with the severity of their post-traumatic stress disorder (PTSD) symptoms, and if injury severity and level of exposure to psychologically traumatic events are predictors of these electrophysiological changes. Resting-state magnetoencephalographic recordings were analyzed in 32 patients with mTBI. Alpha-band power was estimated for each patient in 68 cortical regions and was compared between groups of patients with low versus high PTSD symptoms severity. Participants with high PTSD symptom severity showed reduced alpha-band power bilaterally in the superior and middle frontal gyri and frontal poles, and in the left inferior frontal gyrus. Alpha-band power in bilateral middle frontal gyri and frontal poles was negatively correlated with scores reflecting symptoms of emotional numbing. Loss of consciousness (LOC) associated with mTBI and level of exposure to psychologically traumatic events were predictors of decreased prefrontal alpha-band power in some of these regions. Altered prefrontal alpha-band activity, shown to be partly explained by mTBI-related LOC, is associated with PTSD symptoms severity. Our findings will guide future studies addressing the electrophysiological mechanisms underlying a higher incidence of PTSD in patients with mTBI. Published by Elsevier Ireland Ltd.
Malejko, Kathrin; Abler, Birgit; Plener, Paul L; Straub, Joana
2017-01-01
Post-traumatic stress disorder (PTSD) is a common psychiatric disease with changes in neural circuitries. Neurobiological models conceptualize the symptoms of PTSD as correlates of a dysfunctional stress reaction to traumatic events. Functional imaging studies showed an increased amygdala and a decreased prefrontal cortex response in PTSD patients. As psychotherapeutic approaches represent the gold standard for PTSD treatment, it is important to examine its underlying neurobiological correlates. Studies published until August 2016 were selected through systematic literature research in the databases PubMed, PsychInfo, and Cochrane Library's Central Register of Controlled Trials or were identified manually by searching reference lists of selected articles. Search terms were "neural correlates" OR "fMRI" OR "SPECT," AND "therapy" AND "PTSD." A total of 19 articles were included in the present review whereof 15 studies compared pre-to-post-therapy signal changes, six studies related pre-treatment activity to pre-to-post-symptom improvement, and four studies compared neural correlates of responders versus non-responders. The disposed therapy forms were cognitive behavioral therapy (CBT), eye movement desensitization and reprocessing, cognitive therapy, exposure therapy, mindfulness-based intervention, brief eclectic psychotherapy, and unspecified therapy. Successful psychotherapy of PTSD was repeatedly shown to be accompanied by decreased activity in the amygdala and the insula as well as increased activity in the dorsal anterior cingulate cortex (dACC) and hippocampus. Elevated dACC activity prior to treatment was related to subsequent treatment success and a positive predictor for treatment response. Elevated amygdala and insula pre-treatment activities were related to treatment failure. Decreased activity in limbic brain regions and increased activity in frontal brain areas in PTSD patients after successful psychotherapeutic treatment might reflect regained top-down control over previously impaired bottom-up processes.
Hart, Tessa; Benn, Emma K T; Bagiella, Emilia; Arenth, Patricia; Dikmen, Sureyya; Hesdorffer, Dale C; Novack, Thomas A; Ricker, Joseph H; Zafonte, Ross
2014-04-01
Psychiatric disturbance is common and disabling after traumatic brain injury (TBI). Few studies have investigated the trajectory of psychiatric symptoms in the first 6 months postinjury, when monitoring and early treatment might prevent persistent difficulties. The aim of this study was to examine the trajectory of psychiatric symptoms 1-6 months post-TBI, the patient/injury characteristics associated with changes, and characteristics predictive of persisting symptoms. A secondary analysis was performed on data from a clinical trial with three data collection points. Across eight centers, 872 participants with complicated mild to severe TBI were administered the Brief Symptom Inventory (BSI) at 30, 90, and 180 days postinjury. Mixed-effects models were used to assess longitudinal changes in the BSI Global Severity Index (GSI). Multi-variate logistic regression was used to assess predictors of clinically significant GSI elevations persisting to 6 months post-TBI. In general, GSI scores improved over time. Women improved faster than men; race/ethnicity was also significantly associated with rate of change, with Hispanics showing the most and African Americans the least improvement. Clinically significant psychiatric symptoms (caseness) occurred in 42% of the sample at 6 months, and more than one type of symptom was common. Significant predictors of caseness included African American race, age from 30 to 60 years, longer post-traumatic amnesia (PTA) duration, pre-TBI unemployment, and pre-TBI risky alcohol use. Findings indicate that psychiatric symptoms are common in the first 6 months post-TBI and frequently extend beyond the depression and anxiety symptoms that may be most commonly screened. Patients with longer PTA and preinjury alcohol misuse may need more intensive monitoring for symptom persistence.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds...). ACTION: Notice of Non-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State... initially authorized by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently...
Carroll, Linda J; Cassidy, J David; Holm, Lena; Kraus, Jess; Coronado, Victor G
2004-02-01
The WHO Collaborating Centre for Neurotrauma Task Force on Mild Traumatic Brain Injury performed a comprehensive search and critical review of the literature published between 1980 and 2002 to assemble the best evidence on the epidemiology, diagnosis, prognosis and treatment of mild traumatic brain injury. Of 743 relevant studies, 313 were accepted on scientific merit and comprise our best-evidence synthesis. The current literature on mild traumatic brain injury is of variable quality and we report the most common methodological flaws. We make recommendations for avoiding the shortcomings evident in much of the current literature and identify topic areas in urgent need of further research. This includes the need for large, well-designed studies to support evidence-based guidelines for emergency room triage of children with mild traumatic brain injury and to explore more fully the issue of prognosis after mild traumatic brain injury in the elderly population. We also advocate use of standard criteria for defining mild traumatic brain injury and propose a definition.
Griesbach, G S; Vincelli, J; Tio, D L; Hovda, D A
2012-05-17
We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post-injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either an FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30 min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7, and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain-derived neurotrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors was determined by Western blot analysis. Results indicated injury-dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle-treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14. These findings suggest that the increased sensitivity to stressful events during the first post-injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury
Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.
2015-01-01
Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781
Traumatic Brain Injury: Effects on the Endocrine System
Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...
de Sousa, Arielle; McDonald, Skye; Rushby, Jacqueline
2012-01-01
This study was designed to examine the relationship between deficits in empathy, emotional responsivity, and social behavior in adults with severe traumatic brain injury (TBI). A total of 21 patients with severe TBI and 25 control participants viewed six film clips containing pleasant, unpleasant, and neutral content whilst facial muscle responses, skin conductance, and valence and arousal ratings were measured. Emotional empathy (the Balanced Emotional Empathy Scale, BEES: self-report) and changes in drive and control in social situations (The Current Behaviour Scale, CBS: relative report) were also assessed. In comparison to control participants, those in the TBI group reported less ability to empathize emotionally and had reduced facial responding to both pleasant and unpleasant films. They also exhibited lowered autonomic arousal, as well as abnormal ratings of valence and arousal, particularly to unpleasant films. Relative reported loss of emotional control was significantly associated with heightened empathy, while there was a trend to suggest that impaired drive (or motivation) may be related to lower levels of emotional empathy. The results represent the first to suggest that level of emotional empathy post traumatic brain injury may be associated with behavioral manifestations of disorders of drive and control.
Kiraly, Michael; Kiraly, Stephen J
2007-11-12
Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.
Polyamine Catabolism Is Enhanced after Traumatic Brain Injury
Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.
2010-01-01
Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies. PMID:19968558
Heart rate variability: Pre-deployment predictor of post-deployment PTSD symptoms
Pyne, Jeffrey M.; Constans, Joseph I.; Wiederhold, Mark D.; Gibson, Douglas P.; Kimbrell, Timothy; Kramer, Teresa L.; Pitcock, Jeffery A.; Han, Xiaotong; Williams, D. Keith; Chartrand, Don; Gevirtz, Richard N.; Spira, James; Wiederhold, Brenda K.; McCraty, Rollin; McCune, Thomas R.
2017-01-01
Heart rate variability is a physiological measure associated with autonomic nervous system activity. This study hypothesized that lower pre-deployment HRV would be associated with higher post-deployment post-traumatic stress disorder (PTSD) symptoms. Three-hundred-forty-three Army National Guard soldiers enrolled in the Warriors Achieving Resilience (WAR) study were analyzed. The primary outcome was PTSD symptom severity using the PTSD Checklist – Military version (PCL) measured at baseline, 3- and 12-month post-deployment. Heart rate variability predictor variables included: high frequency power (HF) and standard deviation of the normal cardiac inter-beat interval (SDNN). Generalized linear mixed models revealed that the pre-deployment PCL*ln(HF) interaction term was significant (p < 0.0001). Pre-deployment SDNN was not a significant predictor of post-deployment PCL. Covariates included age, pre-deployment PCL, race/ethnicity, marital status, tobacco use, childhood abuse, pre-deployment traumatic brain injury, and previous combat zone deployment. Pre-deployment heart rate variability predicts post-deployment PTSD symptoms in the context of higher pre-deployment PCL scores. PMID:27773678
Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain.
Donat, Cornelius K; Walter, Bernd; Kayser, Tanja; Deuther-Conrad, Winnie; Schliebs, Reinhard; Nieber, Karen; Bauer, Reinhard; Härtig, Wolfgang; Brust, Peter
2010-02-01
Traumatic brain injury is a leading cause of death and disability in children. Studies using adult animal models showed alterations of the central cholinergic neurotransmission as a result of trauma. However, there is a lack of knowledge about consequences of brain trauma on cholinergic function in the immature brain. It is hypothesized that trauma affects the relative acetylcholine esterase activity and causes a loss of cholinergic neurons in the immature brain. Severe fluid percussion trauma (FP-TBI, 3.8+/-0.3atm) was induced in 15 female newborn piglets, monitored for 6h and compared with 12 control animals. The hemispheres ipsilateral to FP-TBI obtained from seven piglets were used for acetylcholine esterase histochemistry on frozen sagittal slices, while regional cerebral blood flow and oxygen availability was determined in the remaining eight FP-TBI animals. Post-fixed slices were immunohistochemically labelled for choline acetyltransferase as well as for low-affinity neurotrophin receptor in order to characterize cholinergic neurons in the basal forebrain. Regional cerebral blood flow and brain oxygen availability were reduced during the first 2h after FP-TBI (P<0.05). In addition, acetylcholine esterase activity was significantly increased in the neocortex, basal forebrain, hypothalamus and medulla after trauma (P<0.05), whereas the number of choline acetyltransferase and low-affinity neurotrophin receptor positive cells in the basal forebrain were unaffected by the injury. Thus, traumatic brain injury evoked an increased relative activity of the acetylcholine esterase in the immature brain early after injury, without loss of cholinergic neurons in the basal forebrain. These changes may contribute to developmental impairments after immature traumatic brain injury. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.
Lateral automobile impacts and the risk of traumatic brain injury.
Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A
2004-08-01
We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year in the United States.
Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.
Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François
2015-10-01
Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.
Treatment of Sleep Disorders after Traumatic Brain Injury
Castriotta, Richard J.; Atanasov, Strahil; Wilde, Mark C.; Masel, Brent E.; Lai, Jenny M.; Kuna, Samuel T.
2009-01-01
Study Objectives: Determine whether treatment of sleep disorders identified in brain injured adults would result in resolution of those sleep disorders and improvement of symptoms and daytime function. Methods: Prospective evaluation of unselected traumatic brain injury patients with nocturnal polysomnography (NPSG), multiple sleep latency test (MSLT), Epworth Sleepiness Scale (ESS), and neuropsychological testing including Psychomotor Vigilance Test (PVT), Profile of Mood States (POMS), and Functional Outcome of Sleep Questionnaire (FOSQ) before and after treatment with continuous positive airway pressure (CPAP) for obstructive sleep apnea (OSA), modafinil (200 mg) for narcolepsy and posttraumatic hypersomnia (PTH), or pramipexole (0.375 mg) for periodic limb movements in sleep (PLMS). Setting: Three academic medical centers. Participants: Fifty-seven (57) adults ≥ 3 months post traumatic brain injury (TBI). Measurements And Results: Abnormal sleep studies were found in 22 subjects (39%), of whom 13 (23%) had OSA, 2 (3%) had PTH, 3 (5%) had narcolepsy, 4 (7%) had PLMS, and 12 had objective excessive daytime sleepiness with MSLT score < 10 minutes. Apneas, hypopneas, and snoring were eliminated by CPAP in OSA subjects, but there was no significant change in MSLT scores. Periodic limb movements were eliminated with pramipexole. One of 3 narcolepsy subjects and 1 of 2 PTH subjects had resolution of hypersomnia with modafinil. There was no significant change in FOSQ, POMS, or PVT results after treatment. Conclusions: Treatment of sleep disorders after TBI may result in polysomnographic resolution without change in sleepiness or neuropsychological function. Citation: Castriotta RJ; Atanasov S; Wilde MC; Masel BE; Lai JM; Kuna ST. Treatment of sleep disorders after traumatic brain injury. J Clin Sleep Med 2009;5(2):137-144. PMID:19968047
D-Cycloserine improves functional outcome after traumatic brain injury with wide therapeutic window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeleye, A.; Biegon, A.; Adeleye, A.
It has been long thought that hyperactivation of N-methyl-D-aspartate (NMDA) receptors underlies neurological decline after traumatic brain injury. However, all clinical trials with NMDA receptor antagonists failed. Since NMDA receptors are down-regulated from 4 h to 2 weeks after brain injury, activation at 24 h, rather than inhibition, of these receptors, was previously shown to be beneficial in mice. Here, we tested the therapeutic window, dose regimen and mechanism of action of the NMDA receptor partial agonist d-cycloserine (DCS) in traumatic brain injury. Male mice were subjected to trauma using a weight-drop model, and administered 10 mg/kg (i.p.) DCS ormore » vehicle once (8, 16, 24, or 72 h) twice (24 and 48 h) or three times (24, 48 and 72 h). Functional recovery was assessed for up to 60 days, using a Neurological Severity Score that measures neurobehavioral parameters. In all groups in which treatment was begun at 24 or 72 h neurobehavioral function was significantly better than in the vehicle-treated groups. Additional doses, on days 2 and 3 did not further improve recovery. Mice treated at 8 h or 16 h post injury did not differ from the vehicle-treated controls. Co-administration of the NMDA receptor antagonist MK-801 completely blocked the protective effect of DCS given at 24 h. Infarct volume measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h or by cresyl violet at 28 days was not affected by DCS treatment. Since DCS is used clinically for other indications, the present study offers a novel approach for treating human traumatic brain injury with a therapeutic window of at least 24 h.« less
Educational skills: long-term outcome and predictors following paediatric traumatic brain injury.
Catroppa, Cathy; Anderson, Vicki A; Muscara, Frank; Morse, Sue A; Haritou, Flora; Rosenfeld, Jeffrey V; Heinrich, Liesl M
2009-10-01
Given that reading, spelling and arithmetic skills are acquired through childhood, their development may be compromised following a childhood traumatic brain injury (TBI). The present study examined educational skills (reading accuracy, spelling and arithmetic) at a mean follow-up interval of 6.8 years post-injury in children who had sustained a mild, moderate, or severe TBI at two ages: 'Young' (age at injury: 3-7 years, n = 48) and 'Old': (age at injury: 8-12 years, n = 36). Comparisons between the young and old TBI groups resulted in inconsistent findings. While a dose-response relationship for severity was evident for the young group, this was not always the case for the old group. Significant predictors of outcome included both severity and acute intellectual function.
Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi
2017-04-01
The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.
Ismael, Saifudeen; Nasoohi, Sanaz; Ishrat, Tauheed
2018-06-01
Nucleotide oligomerization domain (NOD)-like receptor protein-3 (NLRP3) inflammasome may intimately contribute to sustaining damage after traumatic brain injury (TBI). This study aims to examine whether specific modulation of NLPR3 inflammasome by MCC950, a novel selective NLRP3 inhibitor, confers protection after experimental TBI. Unilateral cortical impact injury was induced in young adult C57BL/6 mice. MCC950 (50 mg/kg, intraperitoneally) or saline was administration at 1 and 3 h post-TBI. Animals were tested for neurological function and then sacrificed at 24 or 72 h post-TBI. Immunoblotting and histological analysis were performed to identify markers of NLRP3 inflammasome and proapoptotic activity in pericontusional areas of the brains at 24 or 72 h post-TBI. MCC950 treatment provided a significant improvement in neurological function and reduced cerebral edema in TBI animals. TBI upregulated NLRP3, apoptosis-associated speck-like adapter protein (ASC), cleaved caspase-1, and interlukein-1β (IL-1β) in the perilesional area. MCC950 efficiently repressed caspase-1 and IL-1β with a transient effect on ASC and NLRP3 post-TBI. MCC950 treatment also provided protection against proapoptotic activation of poly (ADP-ribose) polymerase and caspase-3 associated with TBI. A concurrent inhibition of inflammasome priming was also detectable at the nuclear factor kappa B/p65 and caspase-1 level. Our findings support the implication of NLRP3 inflammasome in the pathogenesis of TBI and further suggests the therapeutic potential of MCC950.
Chiang, Chia-Chen; Guo, Su-Er; Huang, Kuo-Chang; Lee, Bih-O; Fan, Jun-Yu
2016-08-01
To investigate the associated factors and change trajectories of quality of life (QoL), global outcome, and post-concussion symptoms (PCS) over the first year following mild traumatic brain injury (mTBI). This was a prospective longitudinal study of 100 participants with mTBI from neurosurgical outpatient departments in Chiayi County District Hospitals in Taiwan. The checklist of post-concussion syndromes (CPCS) was used to assess PCS at enrollment and at 1, 3, and 12 months after mTBI; the glasgow outcome scale extended (GOSE), the quality of life after brain injured (QOLIBRI), Chinese version, and the Short Form 36 Health Survey (SF-36), Taiwan version, were used to assess mTBI global outcome and QoL at 1, 3, and 12 months after mTBI. Latent class growth models (LCGMs) indicated the change trajectories of QOLIBRI, PCS SF-36, MCS SF-36, GOSE, and PCS. Classes of trajectory were associated with age ≥40 years, unemployment at 1 month after injury, and educational level ≤12 years. Univariate analysis revealed that employment status at 1 month post-injury was correlated with the trajectories of QOLIBRI, PCS SF-36, MCS SF-36, and GOSE, but not PCS. Employment status was the most crucial associated factor for QoL in individuals with mTBI at the 1-year follow-up. Future studies should explore the benefits of employment on QoL of individuals with mTBI.
Tavender, Emma J; Bosch, Marije; Gruen, Russell L; Green, Sally E; Knott, Jonathan; Francis, Jill J; Michie, Susan; O'Connor, Denise A
2014-01-13
Mild traumatic brain injury is a frequent cause of presentation to emergency departments. Despite the availability of clinical practice guidelines in this area, there is variation in practice. One of the aims of the Neurotrauma Evidence Translation program is to develop and evaluate a targeted, theory- and evidence-informed intervention to improve the management of mild traumatic brain injury in Australian emergency departments. This study is the first step in the intervention development process and uses the Theoretical Domains Framework to explore the factors perceived to influence the uptake of four key evidence-based recommended practices for managing mild traumatic brain injury. Semi-structured interviews were conducted with emergency staff in the Australian state of Victoria. The interview guide was developed using the Theoretical Domains Framework to explore current practice and to identify the factors perceived to influence practice. Two researchers coded the interview transcripts using thematic content analysis. A total of 42 participants (9 Directors, 20 doctors and 13 nurses) were interviewed over a seven-month period. The results suggested that (i) the prospective assessment of post-traumatic amnesia was influenced by: knowledge; beliefs about consequences; environmental context and resources; skills; social/professional role and identity; and beliefs about capabilities; (ii) the use of guideline-developed criteria or decision rules to inform the appropriate use of a CT scan was influenced by: knowledge; beliefs about consequences; environmental context and resources; memory, attention and decision processes; beliefs about capabilities; social influences; skills and behavioral regulation; (iii) providing verbal and written patient information on discharge was influenced by: beliefs about consequences; environmental context and resources; memory, attention and decision processes; social/professional role and identity; and knowledge; (iv) the practice of providing brief, routine follow-up on discharge was influenced by: environmental context and resources; social/professional role and identity; knowledge; beliefs about consequences; and motivation and goals. Using the Theoretical Domains Framework, factors thought to influence the management of mild traumatic brain injury in the emergency department were identified. These factors present theoretically based targets for a future intervention.
Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice.
Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn; Tsang, Stephen H; Ferguson, Polly J; Mahoney, Jolonda; Hue, Christopher D; Vogel, Edward W; Morrison, Barclay; Arancio, Ottavio; Nichols, Russell; Bassuk, Alexander G; Mahajan, Vinit B
2018-03-01
Limited attention has been given to ocular injuries associated with traumatic brain injury (TBI). The retina is an extension of the central nervous system and evaluation of ocular damage may offer a less-invasive approach to gauge TBI severity and response to treatment. We aim to characterize acute changes in the mouse eye after exposure to two different models of TBI to assess the utility of eye damage as a surrogate to brain injury. A model of blast TBI (bTBI) using a shock tube was compared to a lateral fluid percussion injury model (LFPI) using fluid pressure applied directly to the brain. Whole eyes were collected from mice 3 days post LFPI and 24 days post bTBI and were evaluated histologically using a hematoxylin and eosin stain. bTBI mice showed evidence of vitreous detachment in the posterior chamber in addition to vitreous hemorrhage with inflammatory cells. Subretinal hemorrhage, photoreceptor degeneration, and decreased cellularity in the retinal ganglion cell layer was also seen in bTBI mice. In contrast, eyes of LFPI mice showed evidence of anterior uveitis and subcapsular cataracts. We demonstrated that variations in the type of TBI can result in drastically different phenotypic changes within the eye. As such, molecular and phenotypic changes in the eye following TBI may provide valuable information regarding the mechanism, severity, and ongoing pathophysiology of brain injury. Because vitreous samples are easily obtained, molecular changes within the eye could be utilized as biomarkers of TBI in human patients.
Soeker, Shaheed
2017-09-14
Individuals diagnosed with a Traumatic Brain Injury (TBI) often experience major limitations in returning to work despite participating in rehabilitation programmes. The aim of the study was to determine whether individuals who sustained a traumatic brain injury experienced improved cognitive functioning after participating in an intervention programme that utilizes the Model of Occupational Self-Efficacy (MOOSE). Ten (10) individuals who were diagnosed with a mild to moderate brain injury participated in the study. The research study was positioned within the quantitative paradigm specifically utilizing a pre and post intervention research design. In order to gather data from the participants, the Montreal Cognitive Assessment (MOCA) was used to determine whether the individual with brain injury's cognitive functioning improved after participating in a vocational rehabilitation model called the Model of Occupational Self Efficacy (MOOSE). All the participants in this study presented with an improvement in MOCA test scores. The results of the study revealed a statistically significant effect of the intervention (i.e. MOOSE) on cognitive functioning measured using the Montreal Cognitive Assessment, F(4, 6) = 15.95, p = 0.002. The findings of this study indicated that MOOSE is a useful model to facilitate the return of individuals living with a TBI back to work. It is also suggested that cognitive rehabilitative activities be included as part of the vocational rehabilitation programme.
Malec, James F; Parrot, Devan; Altman, Irwin M; Swick, Shannon
2015-01-01
The objective of the study was to develop statistical formulas to predict levels of community participation on discharge from post-hospital brain injury rehabilitation using retrospective data analysis. Data were collected from seven geographically distinct programmes in a home- and community-based brain injury rehabilitation provider network. Participants were 642 individuals with post-traumatic brain injury. Interventions consisted of home- and community-based brain injury rehabilitation. The main outcome measure was the Mayo-Portland Adaptability Inventory (MPAI-4) Participation Index. Linear discriminant models using admission MPAI-4 Participation Index score and log chronicity correctly predicted excellent (no to minimal participation limitations), very good (very mild participation limitations), good (mild participation limitations), and limited (significant participation limitations) outcome levels at discharge. Predicting broad outcome categories for post-hospital rehabilitation programmes based on admission assessment data appears feasible and valid. Equations to provide patients and families with probability statements on admission about expected levels of outcome are provided. It is unknown to what degree these prediction equations can be reliably applied and valid in other settings.
Stam, Daniel; Fernandez, Jennifer
2017-07-01
Diffuse axonal injury is a prominent cause of disablement post-traumatic brain injury. Utilization of the rapid expansion of our current scientific knowledge base combined with greater access to neurological and assistive technology as adjuncts to providing sensorimotor experience may yield innovative new approaches to rehabilitation based upon a dynamic model of brain response following injury. A 24-year-old female who sustained a traumatic brain injury, bilateral subdural hemorrhage, subarachnoid hemorrhage and severe diffuse axonal injury secondary to a motor vehicle collision. Evidence-based appraisal of present literature suggests a link between graded intensity of aerobic activity to facilitation of neuro-plastic change and up-regulation of neurotrophins essential to functional recovery post-diffuse axonal injury. Following resolution of paroxysmal autonomic instability with dystonia, aggressive early mobilization techniques were progressed utilizing robotic assistive gait technology in combination with conventional therapy. This approach allowed for arguably greater repetition and cardiovascular demands across a six-month inpatient rehabilitation stay. Outcomes in this case suggest that the use of assistive technology to adjunct higher level and intensity rehabilitation strategies may be a safe and effective means towards reduction of disablement following severe traumatic brain and neurological injury. Implications for Rehabilitation Functional recovery and neuroplasticity following diffuse neurological injury involves a complex process determined by the sensorimotor experience provided by rehabilitation clinicians. This process is in part modulated by intrinsic brain biochemical processes correlated to cardiovascular intensity of the activity provided. It is important that rehabilitation professionals monitor physiological response to higher intensity activities to provide an adaptive versus maladaptive response of central nervous system plasticity with activity. Identification of early mobilization parameters and skill acquisition may assist selection of gait assistive technology adjunct in progressing early optimal physical rehabilitation outcomes in the acute inpatient setting.
2007-07-31
brain injury) All surgeries were performed using aseptic technique. Animals were checked for pain /distress immediately prior to anesthesia/surgery... Pain /distress checks were performed at 3, 6, 12, 24, 36, 48, 60, and 72 hours post-injury. Fluid Percussion Injury (FPI) For animals in the...NIH), and Neurobehavioral Scale (NBS). The criteria used to obtain the scores are detailed in Tables 2 and 3. As an additional endpoint, we also
Vik, Berit Marie Dykesteen; Skeie, Geir Olve; Vikane, Eirik; Specht, Karsten
2018-01-01
We explored the effects of playing the piano on patients with cognitive impairment after mild traumatic brain injury (mTBI) and, addressed the question if this approach would stimulate neural networks in re-routing neural connections and link up cortical circuits that had been functional inhibited due to disruption of brain tissue. Functional neuroimaging scans (fMRI) and neuropsychological tests were performed pre-post intervention. Three groups participated, one mTBI group (n = 7), two groups of healthy participants, one with music training (n = 11), one baseline group without music (n = 12). The music groups participated in 8 weeks music-supported intervention. The patient group revealed training-related neuroplasticity in the orbitofrontal cortex. fMRI results fit well with outcome from neuropsychological tests with significant enhancement of cognitive performance in the music groups. Ninety per cent of mTBI group returned to work post intervention. Here, for the first time, we demonstrated behavioural improvements and functional brain changes after 8 weeks of playing piano on patients with mTBI having attention, memory and social interaction problems. We present evidence for a causal relationship between musical training and reorganisation of neural networks promoting enhanced cognitive performance. These results add a novel music-supported intervention within rehabilitation of patients with cognitive deficits following mTBI.
Delouche, Aurélie; Attyé, Arnaud; Heck, Olivier; Grand, Sylvie; Kastler, Adrian; Lamalle, Laurent; Renard, Felix; Krainik, Alexandre
2016-01-01
Mild traumatic brain injury (mTBI) is a leading cause of disability in adults, many of whom report a distressing combination of physical, emotional and cognitive symptoms, collectively known as post-concussion syndrome, that persist after the injury. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of fractional anisotropy or mean diffusivity, have enhanced our knowledge on the different stages of mTBI pathophysiology. Other diffusion imaging-derived techniques, including diffusion kurtosis imaging with multi-shell diffusion and high-order tractography models, have recently demonstrated their usefulness in mTBI. Our review starts by briefly outlining the physical basis of diffusion tensor imaging including the pitfalls for use in brain trauma, before discussing findings from diagnostic trials testing its usefulness in assessing brain structural changes in patients with mTBI. Use of different post-processing techniques for the diffusion imaging data, identified the corpus callosum as the most frequently injured structure in mTBI, particularly at sub-acute and chronic stages, and a crucial location for evaluating functional outcome. However, structural changes appear too subtle for identification using traditional diffusion biomarkers, thus disallowing expansion of these techniques into clinical practice. In this regard, more advanced diffusion techniques are promising in the assessment of this complex disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wu, Ziyan; Mazzola, Catherine A; Catania, Lori; Owoeye, Oyindamola; Yaramothu, Chang; Alvarez, Tara; Gao, Yu; Li, Xiaobo
2018-06-01
This study aimed at understanding the neurobiological mechanisms associated with inattention induced by traumatic brain injury (TBI). To eliminate the potential confounding caused by the heterogeneity of TBI, we focused on young adults postsports-related concussion (SRC). Functional near-infrared spectroscopy (fNIRS) data were collected from 27 young adults post-SRC and 27 group-matched normal controls (NCs), while performing a visual sustained attention task. Task responsive cortical activation maps and pairwise functional connectivity among six regions of interest were constructed for each subject. Correlations among the brain imaging measures and clinical measures of attention were calculated in each group. Compared to the NCs, the SRC group showed significantly increased brain activation in left middle frontal gyrus (MFG) and increased functional connectivity between right inferior occipital cortex (IOC) bilateral calcarine gyri (CG). The left MFG activation magnitude was significantly negatively correlated with the hyperactive/impulsive symptom severity measure in the NCs, but not in the patients. The right hemisphere CG-IOC functional connectivity showed a significant positive correlation with the hyperactive/impulsive symptom severity measure in patients, but not in NCs. The current data suggest that abnormal left MFG activation and hyper-communications between right IOC and bilateral CG during visual attention processing may significantly contribute to behavioral manifestations of attention deficits in patients with TBI. © 2018 John Wiley & Sons Ltd.
A longitudinal fMRI investigation in acute post-traumatic stress disorder (PTSD).
Ke, Jun; Zhang, Li; Qi, Rongfeng; Li, Weihui; Hou, Cailan; Zhong, Yuan; He, Zhong; Li, Lingjiang; Lu, Guangming
2016-11-01
Background Neuroimaging studies have implicated limbic, paralimbic, and prefrontal cortex in the pathophysiology of chronic post-traumatic stress disorder (PTSD). However, little is known about the neural substrates of acute PTSD and how they change with symptom improvement. Purpose To examine the neural circuitry underlying acute PTSD and brain function changes during clinical recovery from this disorder. Material and Methods Nineteen acute PTSD patients and nine non-PTSD subjects who all experienced a devastating mining accident underwent clinical assessment as well as functional magnetic resonance imaging (fMRI) scanning while viewing trauma-related and neutral pictures. Two years after the accident, a subgroup of 17 patients completed a second clinical evaluation, of which 13 were given an identical follow-up scan. Results Acute PTSD patients demonstrated greater activation in the vermis and right posterior cingulate, and greater deactivation in the bilateral medial prefrontal cortex and inferior parietal lobules than controls in the traumatic versus neutral condition. At follow-up, PTSD patients showed symptom reduction and decreased activation in the right middle frontal gyrus, bilateral posterior cingulate/precuneus, and cerebellum. Correlation results confirmed these findings and indicated that brain activation in the posterior cingulate/precuneus and vermis was predictive of PTSD symptom improvement. Conclusion The findings support the involvement of the medial prefrontal cortex, inferior parietal lobule, posterior cingulate, and vermis in the pathogenesis of acute PTSD. Brain activation in the vermis and posterior cingulate/precuneus appears to be a biological marker of recovery potential from PTSD. Furthermore, decreased activation of the middle frontal gyrus, posterior cingulate/precuneus, and cerebellum may reflect symptom improvement.
Diab, Safwat Y; Isosävi, Sanna; Qouta, Samir R; Kuittinen, Saija; Punamäki, Raija-Leena
2018-02-21
Women at pre partum and post partum are especially susceptible to war trauma because they struggle to protect their infants from danger. Trauma research suggests increased problems in maternal mental health and infant development. Yet many cognitive-emotional processes affect the trauma survivors' mental health, such as post-traumatic growth and post-traumatic cognition. The aim of this study was to examine whether a mother's high post-traumatic growth and optimal post-traumatic cognition could protect their own mental health and their infant's stress regulation from the effects of traumatic war experiences. This three-wave prospective study involved Palestinian women living in the Gaza Strip who were at the second trimester of pregnancy (T1), women with infants aged 4 months (T2), and women with children aged 12 months (T3) months. The participants reported their war experiences in a 30-item checklist of losses, destruction, and atrocities in the 2008-09, 2012, and 2014 military offensives. Post-traumatic growth was assessed by a 21-item scale and post-traumatic cognition by a 36-item scale. Maternal mental health was assessed by post-traumatic stress disorder (PTSD), depressive, anxiety, and dissociation symptoms at T1 and T3, and infants' stress regulation was assessed with the Infant Behaviour Questionnaire at T2 and T3. We included 511 women at T1, 481 women at T2, and 454 women at T3. High maternal post-traumatic growth and post-traumatic cognition had protective roles. Post-traumatic growth had a protective effect on maternal mental health since severe exposure to traumatic war experiences was not associated with maternal PTSD, depression, and dissociation if women showed high post-traumatic growth, as indicated by the significant interaction effect between post-traumatic growth and war trauma on each of the three symptoms. Post-traumatic cognition had a protective effect on infant development since severe exposure was not associated with dysfunctional infant emotion regulation when mothers reported optimal post-traumatic cognition, as indicated by the significant interaction effect between post-traumatic cognition and war trauma on each of negative affectivity and surgency or extraversion. The nature of cognitive emotional processing of war trauma could explain the distinct roles of post-traumatic growth and post-traumatic cognition. High post-traumatic growth involves increased social affiliation, spiritual awareness, and psychological strengths resulting from painful and traumatic experiences. In the national struggle for independence, post-traumatic growth is often associated with heroism and even hardiness, which might benefit a mother's mental health but not their infant's wellbeing. Optimal post-traumatic cognition indicates successful and harmonious trauma processing, which enables mothers to be more reflective and sensitive to their infant's needs. Interventions to promote healthy infant development in war settings should encourage and support mothers' effective cognitive-emotional processing of traumatic experiences. The Academy of Finland and University of Tampere, Finland. Copyright © 2018 Elsevier Ltd. All rights reserved.
Licznerski, Pawel; Duric, Vanja; Banasr, Mounira; Alavian, Kambiz N.; Ota, Kristie T.; Kang, Hyo Jung; Jonas, Elizabeth A.; Ursano, Robert; Krystal, John H.; Duman, Ronald S.
2015-01-01
Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology. PMID:26506154
Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury
2014-11-01
Award Number: W81XWH-11-2-0011 TITLE: Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Oct 2014 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...fluid percussion, traumatic brain injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids , microglia and 16
Peck, C P; Schroeder, R W; Heinrichs, R J; Vondran, E J; Brockman, C J; Webster, B K; Baade, L E
2013-01-01
This study examined differences in raw scores on the Symptom Validity Scale and Response Bias Scale (RBS) from the Minnesota Multiphasic Personality Inventory-2 in three criterion groups: (i) valid traumatic brain injured, (ii) invalid traumatic brain injured, and (iii) psychogenic non-epileptic seizure disorders. Results indicate that a >30 raw score cutoff for the Symptom Validity Scale accurately identified 50% of the invalid traumatic brain injured group, while misclassifying none of the valid traumatic brain injured group and 6% of the psychogenic non-epileptic seizure disorder group. Using a >15 RBS raw cutoff score accurately classified 50% of the invalid traumatic brain injured group and misclassified fewer than 10% of the valid traumatic brain injured and psychogenic non-epileptic seizure disorder groups. These cutoff scores used conjunctively did not misclassify any members of the psychogenic non-epileptic seizure disorder or valid traumatic brain injured groups, while accurately classifying 44% of the invalid traumatic brain injured individuals. Findings from this preliminary study suggest that the conjunctive use of the Symptom Validity Scale and the RBS from the Minnesota Multiphasic Personality Inventory-2 may be useful in differentiating probable malingering from individuals with brain injuries and conversion disorders.
Do survivors of acute neurologic injury remember their stay in the neuroscience intensive care unit?
Hocker, Sara; Anderson, Heidi L; McMahon, Katherine E; Wijdicks, Eelco F M
2013-06-01
Patients in medical, surgical, and trauma intensive care units (ICUs) are at risk for later development of symptoms of post-traumatic stress disorder (PTSD). Because acute brain injury can impair recall; we sought to show that neuroscience patients undergoing prolonged neuroscience ICU admission have limited memory of their ICU stay and thus are less likely to develop symptoms of PTSD. We surveyed patients >18 years admitted for 10 days or more to our neuroscience ICU over a 10-year period. The survey response rate was 50.5% (47/93). Forty percent (19/47) of respondents presented with coma. Recall of details of the ICU admission was limited. Fewer than 10% of patients who required mechanical ventilation recalled being on a ventilator. Only five patients (11%) had responses suggestive of possible post-traumatic stress syndrome. The most commonly experienced symptoms following discharge were difficulty sleeping, difficulty with concentration, and memory loss. Patients requiring prolonged neuroscience ICU admission do not appear to be traumatized by their ICU stay.
NASA Astrophysics Data System (ADS)
Georgopoulos, A. P.; Tan, H.-R. M.; Lewis, S. M.; Leuthold, A. C.; Winskowski, A. M.; Lynch, J. K.; Engdahl, B.
2010-02-01
Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a debilitating condition and for which no biomarker currently exists (Institute of Medicine (US) 2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses the functional interactions among neural populations derived from magnetoencephalographic (MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349-55) can successfully differentiate PTSD patients from healthy control subjects. Externally cross-validated, bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but one of 18 patients who were not receiving medications for their disease were correctly classified. Altogether, these findings document robust differences in brain function between the PTSD and control groups that can be used for differential diagnosis and which possess the potential for assessing and monitoring disease progression and effects of therapy.
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
Traumatic Brain Injury and Blood-Brain Barrier Cross-Talk.
Nasser, Mohammad; Bejjani, Fabienne; Raad, Mohamad; Abou-El-Hassan, Hadi; Mantash, Sarah; Nokkari, Amaly; Ramadan, Naify; Kassem, Nouhad; Mondello, Stefania; Hamade, Eva; Darwish, Hala; Zibara, Kazem; Kobeissy, Firas
2016-01-01
Traumatic brain injury, often referred to as the "silent epidemic," is a nondegenerative, non-congenital insult to the brain due to a blow or penetrating object that disrupts the function of the brain leading to permanent or temporary impairment of cognition, physical and psychosocial functions. Traumatic brain injury usually has poor prognosis for long-term treatment and is a major cause of mortality and morbidity worldwide; approximately 10 million deaths and/or hospitalizations annually are directly related to traumatic brain injury. Traumatic brain injury involves primary and secondary insults. Primary injury occurs during the initial insult, and results from direct or indirect force applied to the physical structures of the brain. Secondary injury is characterized by longer-term degeneration of neurons, glial cells, and vascular tissues due to activation of several proteases, glutamate and pro-inflammatory cytokine secretion. In addition, there is growing evidence that the blood-brain barrier is involved in the course of traumatic brain injury pathophysiology and has detrimental effects on the overall pathology of brain trauma, as will be discussed in this work.
Extracellular N-Acetylaspartate in Human Traumatic Brain Injury
Shannon, Richard J.; Carter, Eleanor L.; Jalloh, Ibrahim; Menon, David K.; Hutchinson, Peter J.; Carpenter, Keri L.H.
2016-01-01
Abstract N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically “normal” areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism. PMID:26159566
Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.
2016-01-01
Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978
Morgan, Angela; Ward, Elizabeth; Murdoch, Bruce
2004-04-01
To provide a preliminary clinical profile of the resolution and outcomes of oral-motor impairment and swallowing function in a group of paediatric dysphagia patients post-traumatic brain injury (TBI). To document the level of cognitive impairment parallel to the return to oral intake, and to investigate the correlation between the resolution of impaired swallow function versus the resolution of oral-motor impairment and cognitive impairment. Thirteen children admitted to an acute care setting for TBI. A series of oral-motor (Verbal Motor Production Assessment for Children, Frenchay Dysarthria Assessment, Schedule for Oral Motor Assessment) and swallowing (Paramatta Hospital's Assessment for Dysphagia) assessments, an outcome measure for swallowing (Royal Brisbane Hospital's Outcome Measure for Swallowing), and a cognitive rating scale (Rancho Level of Cognitive Functioning Scale). Across the patient group, oral-motor deficits resolved to normal status between 3 and 11 weeks post-referral (and at an average of 12 weeks post-injury) and swallowing function and resolution to normal diet status were achieved by 3-11 weeks post-referral (and at an average of 12 weeks post-injury). The resolution of dysphagia and the resolution of oral-motor impairment and cognitive impairment were all highly correlated. The provision of a preliminary profile of oral-motor functioning and dysphagia resolution, and data on the linear relationship between swallowing impairment and cognition, will provide baseline information on the course of rehabilitation of dysphagia in the paediatric population post-TBI. Such data will contribute to more informed service provision and rehabilitation planning for paediatric patients post-TBI.
Scheibel, Randall S; Newsome, Mary R; Troyanskaya, Maya; Steinberg, Joel L; Goldstein, Felicia C; Mao, Hui; Levin, Harvey S
2009-09-01
Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3-4, 5-8, or 9-15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory.
Overview of traumatic brain injury patients at a tertiary trauma centre.
de Guise, Elaine; Feyz, Mitra; LeBlanc, Joanne; Richard, Sylvain-Luc; Lamoureux, Julie
2005-05-01
The goal of this study was to provide a general descriptive and cognitive portrait of a population with traumatic brain injury (TBI) at the time of their acute care stay. Three hundred and forty-eight TBI patients were assessed. The following data were collected for each patient: age, level of education, duration of post-traumatic amnesia, Galveston Orientation Amnesia Test score, Glasgow Coma Scale score, results of cerebral imaging, Neurobehavioral Rating Scale score, the Functional Independence Measure cognitive score and the Glasgow Outcome Scale score. The clinical profile of the population revealed a mean age of 40.2 (+/-18.7) and a mean of 11.5 (+/-3.6) years of education. Most patients presented with frontal (57.6%) and temporal (40%) lesions. Sixty-two percent had post-traumatic amnesia of less than 24 hours. Seventy percent presented with mild TBI, 14% with moderate and 15% with severe TBI. The cognitive deficits most frequently observed on the Neurobehavioral Rating Scale were in the areas of attention, memory and mental flexibility as well as slowness and mental fatigability. Most patients had good cognitive outcome on the Functional Independence Measure and scores of 2 and 3 were frequent on the GOS. Forty-five percent of the patients returned home after discharge, 51.7% were referred to in or out patient rehabilitation and 3.2% were transferred to long-term care facilities. Because of the specialized mandate of acute care institutions, the information provided here concerning characteristics of our TBI population is essential for more efficient decision-making and planning/programming with regards to care and service delivery.
Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder.
Kaplan, Gary B; Leite-Morris, Kimberly A; Wang, Lei; Rumbika, Kendra K; Heinrichs, Stephen C; Zeng, Xiang; Wu, Liquan; Arena, Danielle T; Teng, Yang D
2018-01-15
The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.
Benromano, T; Defrin, R; Ahn, A H; Zhao, J; Pick, C G; Levy, D
2015-05-01
Headache is one of the most common symptoms following traumatic head injury. The mechanisms underlying the emergence of such post-traumatic headache (PTH) remain unknown but may be related to injury of deep cranial tissues or damage to central pain processing pathways, as a result of brain injury. A mild closed head injury in mice combined with the administration of cranial or hindpaw formalin tests was used to examine post-traumatic changes in the nociceptive processing from deep cranial tissues or the hindpaw. Histological analysis was used to examine post-traumatic pro-inflammatory changes in the calvarial periosteum, a deep cranial tissue. At 48 h after head injury, mice demonstrated enhanced nociceptive responses following injection of formalin into the calvarial periosteum, a deep cranial tissue, but no facilitation of the nociceptive responses following injection of formalin into an extracranial tissue, the hindpaw. Mice also showed an increase in the number of activated periosteal mast cells 48 h following mild head trauma, suggesting an inflammatory response. Our study demonstrates that mild closed head injury is associated with enhanced processing of nociceptive information emanating from trigeminal-innervated deep cranial tissues, but not from non-cranial tissues. Based on these finding as well as the demonstration of head injury-evoked degranulation of calvarial periosteal mast cells, we propose that inflammatory-evoked enhancement of peripheral cranial nociception, rather than changes in supraspinal pain mechanisms play a role in the initial emergence of PTH. Peripheral targeting of nociceptors that innervate the calvaria may be used to ameliorate PTH pain. © 2014 European Pain Federation - EFIC®
Chung, Pearl; Yun, Sarah Jin; Khan, Fary
2014-02-01
To compare the contents of participation outcome measures in traumatic brain injury with the International Classification of Functioning, Disability and Health (ICF) Core Sets for traumatic brain injury. A systematic search with an independent review process selected relevant articles to identify outcome measures in participation in traumatic brain injury. Instruments used in two or more studies were linked to the ICF categories, which identified categories in participation for comparison with the ICF Core Sets for traumatic brain injury. Selected articles (n = 101) identified participation instruments used in two or more studies (n = 9): Community Integration Questionnaire, Craig Handicap Assessment and Reporting Technique, Mayo-Portland Adaptability Inventory-4 Participation Index, Sydney Psychosocial Reintegration Scale Version-2, Participation Assessment with Recombined Tool-Objective, Community Integration Measure, Participation Objective Participation Subjective, Community Integration Questionnaire-2, and Quality of Community Integration Questionnaire. Each instrument was linked to 4-35 unique second-level ICF categories, of which 39-100% related to participation. Instruments addressed 86-100% and 50-100% of the participation categories in the Comprehensive and Brief ICF Core Sets for traumatic brain injury, respectively. Participation measures in traumatic brain injury were compared with the ICF Core Sets for traumatic brain injury. The ICF Core Sets for traumatic brain injury could contribute to the development and selection of participation measures.
Prehospital Tranexamic Acid Use for Traumatic Brain Injury
2014-10-01
AWARD NUMBER: W81XWH-13-2-0090 TITLE: Prehospital Tranexamic Acid Use for Traumatic Brain...2013 - 29 Sep 2014 4. TITLE AND SUBTITLE Prehospital Tranexamic Acid Use for Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...N/A 7. Appendices-N/A Page 7 Early Tranexamic Acid Use for Traumatic Brain Injury DMRDP Funding Opportunity Number: W81XWH-12-CCCJPC
Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.
2013-01-01
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307
Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma
Takahashi, D. Koji; Isabel, Feng Gu; Parada, Shri Vyas; Prince, David A.
2016-01-01
Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation (“undercut” or “UC”) leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3 days post UC injury (Graber and Prince, 1999, 2004; Li et al., 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3 days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments. PMID:26956396
Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma.
Takahashi, D Koji; Gu, Feng; Parada, Isabel; Vyas, Shri; Prince, David A
2016-07-01
Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments. Copyright © 2016 Elsevier Inc. All rights reserved.
Dault, Mylène Claude; Dugas, Claude
2002-03-01
The purpose of this study was to evaluate the effectiveness of an aerobic dancing training, designed to reduce postural imbalance and coordination deficits for individuals who had sustained a traumatic brain injury (TBI). A two group experimental design was conducted. A control group participated in a traditional muscular training (TMT) programme while participants in the experimental group were assigned to an aerobic dancing, Slide and Step training programme (specific training group (ST)). Participants were evaluated pre- and post-training. Balance was quantified using a force platform and coordination using a Peak Performance system to compare the velocity profiles of a modified Jumping jack test. Results showed that temporal variables were significantly different pre- and post-training for the ST group, but no changes were found in the TMT group. The results of the balance test indicated a significant reduction of postural sway area in the ST group but not in the TMT group. Overall, the combination workout with Step and Slide is more effective in reducing balance and coordination deficits when compared to muscular based training.
Rakofsky, JJ; Ressler, KJ; Dunlop, BW
2013-01-01
Bipolar disorder (BD) and post-traumatic stress disorder (PTSD) frequently co-occur among psychiatric patients, leading to increased morbidity and mortality. Brain-derived neurotrophic factor (BDNF) function is associated with core characteristics of both BD and PTSD. We propose a neurobiological model that underscores the role of reduced BDNF function resulting from several contributing sources, including the met variant of the BDNF val66met (rs6265) single-nucleotide polymorphism, trauma-induced epigenetic regulation and current stress, as a contributor to the onset of both illnesses within the same person. Further studies are needed to evaluate the genetic association between the val66met allele and the BD-PTSD population, along with central/peripheral BDNF levels and epigenetic patterns of BDNF gene regulation within these patients. PMID:21931317
2013-04-01
Findings Post deployment health problems. The top three post deployment health problems mentioned were depression, anxiety and sleep issues... anxiety ) are immediately available to the iVA, which is able to determine how to proceed with the user. The iVA may choose to schedule a screening... anxiety , sleep quality, depression, and alcohol use). For each domain, the screening data are analyzed by the iVA and a subsequent detailed assessment
Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel
Mac Donald, Christine L.; Johnson, Ann M.; Cooper, Dana; Nelson, Elliot C.; Werner, Nicole J.; Shimony, Joshua S.; Snyder, Abraham Z.; Raichle, Marcus E.; Witherow, John R.; Fang, Raymond; Flaherty, Stephen F.; Brody, David L.
2011-01-01
BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.) PMID:21631321
Social Behavior and Impairments in Social Cognition Following Traumatic Brain Injury.
May, Michelle; Milders, Maarten; Downey, Bruce; Whyte, Maggie; Higgins, Vanessa; Wojcik, Zuzana; Amin, Sophie; O'Rourke, Suzanne
2017-05-01
The negative effect of changes in social behavior following traumatic brain injury (TBI) are known, but much less is known about the neuropsychological impairments that may underlie and predict these changes. The current study investigated possible associations between post-injury behavior and neuropsychological competencies of emotion recognition, understanding intentions, and response selection, that have been proposed as important for social functioning. Forty participants with TBI and 32 matched healthy participants completed a battery of tests assessing the three functions of interest. In addition, self- and proxy reports of pre- and post-injury behavior, mood, and community integration were collected. The TBI group performed significantly poorer than the comparison group on all tasks of emotion recognition, understanding intention, and on one task of response selection. Ratings of current behavior suggested significant changes in the TBI group relative to before the injury and showed significantly poorer community integration and interpersonal behavior than the comparison group. Of the three functions considered, emotion recognition was associated with both post-injury behavior and community integration and this association could not be fully explained by injury severity, time since injury, or education. The current study confirmed earlier findings of associations between emotion recognition and post-TBI behavior, providing partial evidence for models proposing emotion recognition as one of the pre-requisites for adequate social functioning. (JINS, 2017, 23, 400-411).
DeMatteo, Carol; Greenspoon, Dayna; Levac, Danielle; Harper, Jessica A; Rubinoff, Mandy
2014-08-01
Adolescents with mild traumatic brain injuries (MTBI) are at substantial risk for repeat injury if they return to activity too soon. Post-concussion symptoms and impaired balance are two factors that limit return to activity. Post-injury assessments that challenge activity tolerance and balance skills are needed to ensure readiness to return to activity. This cross-sectional study evaluated the Nintendo Wii as a measure of exertion (heart rate [HR], respiration rate [RR], and caloric expenditure) and balance testing for youth with MTBI in a clinical setting. Twenty-four youth with MTBI, ages 9-18, played six Wii games. The Bruininks-Oseretsky Test of Motor Proficiency 2nd edition (BOT-2) and the Community Balance and Mobility Scale (CBM) were used as balance indicators. The Wii Fit Running game demonstrated the highest caloric expenditure and HR (p = .010). Frequency counts of balance loss during Wii game play did not correlate with performance on the BOT-2 or the CBM. Type, number, and time since injury were predictive of balance performance on the CBM (p = .008). Findings provide preliminary evidence for the use of the Wii as an exertion challenge to evaluate tolerance for exercise post-concussion. Frequency count of balance loss during Wii game play, however, was not a valid measure of balance impairment post-MTBI.
Jacobsson, L J; Westerberg, M; Malec, J F; Lexell, J
2011-06-01
The objective of the study was to assess sense of coherence (SOC) many years after traumatic brain injury (TBI) and explore the relationship between SOC and self-rated life satisfaction (LS) as well as measures of functioning and disability, sex, age at injury, injury severity and time post-injury. Sixty-six individuals (aged 18-65 years) who were 6-15 years post-injury were interviewed. Data on SOC (SOC-13 item scale), measures of functioning and disability (Mayo-Portland Adaptability Inventory, MPAI-4), LS (Satisfaction with Life Scale, SWLS), and sex, age at injury, injury severity and time post-injury were analysed with hierarchical multiple regression analyses. The results showed that SOC in the study group did not differ from the general population and was strongly associated with LS. Regression analyses revealed that emotional factors, social participation, SOC, and time since injury, were more influential than sex, age at injury, and injury severity in explaining LS. It was concluded that SOC in this group of individuals with TBI who were many years post-injury was similar to nondisabled individuals. SOC, together with emotional factors, social participation and injury-related factors, were determinants of LS. These results confirm that LS after TBI is a complex phenomenon dependent on several factors that are important targets for rehabilitation professionals.
Moein, Houshang; Khalili, Hossein A; Keramatian, Kamyar
2006-09-01
Traumatic brain injury is one of the major causes of death and disability among young people. Methylphenidate, a neural stimulant and protective drug, which has been mainly used for childhood attention deficit/hyperactivity disorder, has shown some benefits in late psychosocial problems in patients with traumatic brain injury. Its effect on arousal and consciousness has been also revealed in the sub-acute phase of traumatic brain injury. We studied its effect on the acute phase of moderate and severe traumatic brain injury (TBI) in relation to the length of ICU and hospital admission. Severely and moderately TBI patients (according to inclusion and exclusion criteria) were randomized to treatment and control groups. The treatment group received methylphenidate 0.3mg/kg per dose PO BID by the second day of admission until the time of discharge, and the control group received a placebo. Admission information and daily Glasgow Coma Scale (GCS) were recorded. Medical, surgical, and discharge plans for patients were determined by the attending physician, blinded to the study. Forty patients with severe TBI (GCS = 5-8) and 40 moderately TBI patients (GCS = 9-12) were randomly divided into treatment and control groups on the day of admission. In the severely TBI patients, both hospital and ICU length of stay, on average, were shorter in the treatment group compared with the control group. In the moderately TBI patients while ICU stay was shorter in the treatment group, there was no significant reduction of the period of hospitalization. There were no significant differences between the treatment and control groups in terms of age, sex, post resuscitation GCS, or brain CT scan findings, in either severely or moderately TBI patients. Methylphenidate was associated with reductions in ICU and hospital length of stay by 23% in severely TBI patients (P = 0.06 for ICU and P = 0.029 for hospital stay time). However, in the moderately TBI patients who received methylphenidate, there was 26% fall (P = 0.05) only in ICU length of stay.
Walker, William C; Stromberg, Katharine A; Marwitz, Jennifer H; Sima, Adam P; Agyemang, Amma A; Graham, Kristin M; Harrison-Felix, Cynthia; Hoffman, Jeanne M; Brown, Allen W; Kreutzer, Jeffrey S; Merchant, Randall
2018-05-16
For patients surviving serious traumatic brain injury (TBI), families and other stakeholders often desire information on long-term functional prognosis, but accurate and easy-to-use clinical tools are lacking. We aimed to build utilitarian decision trees from commonly collected clinical variables to predict Glasgow Outcome Scale (GOS) functional levels at 1, 2, and 5 years after moderate-to-severe closed TBI. Flexible classification tree statistical modeling was used on prospectively collected data from the TBI-Model Systems (TBIMS) inception cohort study. Enrollments occurred at 17 designated, or previously designated, TBIMS inpatient rehabilitation facilities. Analysis included all participants with nonpenetrating TBI injured between January 1997 and January 2017. Sample sizes were 10,125 (year-1), 8,821 (year-2), and 6,165 (year-5) after cross-sectional exclusions (death, vegetative state, insufficient post-injury time, and unavailable outcome). In our final models, post-traumatic amnesia (PTA) duration consistently dominated branching hierarchy and was the lone injury characteristic significantly contributing to GOS predictability. Lower-order variables that added predictability were age, pre-morbid education, productivity, and occupational category. Generally, patient outcomes improved with shorter PTA, younger age, greater pre-morbid productivity, and higher pre-morbid vocational or educational achievement. Across all prognostic groups, the best and worst good recovery rates were 65.7% and 10.9%, respectively, and the best and worst severe disability rates were 3.9% and 64.1%. Predictability in test data sets ranged from C-statistic of 0.691 (year-1; confidence interval [CI], 0.675, 0.711) to 0.731 (year-2; CI, 0.724, 0.738). In conclusion, we developed a clinically useful tool to provide prognostic information on long-term functional outcomes for adult survivors of moderate and severe closed TBI. Predictive accuracy for GOS level was demonstrated in an independent test sample. Length of PTA, a clinical marker of injury severity, was by far the most critical outcome determinant.
Evanson, Nathan K; Guilhaume-Correa, Fernanda; Herman, James P; Goodman, Michael D
2018-01-01
Adult male C57BL/6J mice have previously been reported to have motor and memory deficits after experimental closed head traumatic brain injury (TBI), without associated gross pathologic damage or neuroimaging changes detectable by magnetic resonance imaging or diffusion tensor imaging protocols. The presence of neurologic deficits, however, suggests neural damage or dysfunction in these animals. Accordingly, we undertook a histologic analysis of mice after TBI. Gross pathology and histologic analysis using Nissl stain and NeuN immunohistochemistry demonstrated no obvious tissue damage or neuron loss. However, Luxol Fast Blue stain revealed myelin injury in the optic tract, while Fluoro Jade B and silver degeneration staining revealed evidence of axonal neurodegeneration in the optic tract as well as the lateral geniculate nucleus of the thalamus and superior colliculus (detectable at 7 days, but not 24 hours, after injury). Fluoro Jade B staining was not detectable in other white matter tracts, brain regions or in cell somata. In addition, there was increased GFAP staining in these optic tract, lateral geniculate, and superior colliculus 7 days post-injury, and morphologic changes in optic tract microglia that were detectable 24 hours after injury but were more prominent 7 days post-injury. Interestingly, there were no findings of degeneration or gliosis in the suprachiasmatic nucleus, which is also heavily innervated by the optic tract. Using micro-computed tomography imaging, we also found that the optic canal appears to decrease in diameter with a dorsal-ventral load on the skull, which suggests that the optic canal may be the site of injury. These results suggest that there is axonal degeneration in the optic tract and a subset of directly innervated areas, with associated neuroinflammation and astrocytosis, which develop within 7 days of injury, and also suggest that this weight drop injury may be a model for studying indirect traumatic optic neuropathy.
Miller, Kelly J; Kennedy, Jan E; Schwab, Karen A
2017-03-01
Assess the prevalence of self-identified unmet service needs in a military sample an average of 5 years following noncombat traumatic brain injury (TBI). Examine relationships between unmet needs and background, injury-related and outcome variables. The study sample consisted of 89 veterans and service members who sustained non-combat TBI between 1999 and 2003, selected from enrollees in the Defense and Veterans Brain Injury Center TBI registry. Semistructured telephone interview was used to collect information about participants' self-reported unmet service needs, symptoms, and functional status. Most participants (65%) reported having at least one unmet service need. The most prevalent needs were "getting information about available post-TBI services" (47%) and "improving memory and attention" (45%). Unmet needs were associated with cognitive difficulties, physical and emotional symptoms, mental health diagnosis/treatment, and poorer functional status. Needs for services following TBI are associated with poor symptomatic and functional outcomes and may persist for years after injury in military service members and veterans. The study suggests service members' needs post TBI for improved cognition, support for emotional issues, and resources for vocational skills. Information about available services should be made accessible to those recovering from TBI to reduce the incidence of long-term unmet needs. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Johnstone, Victoria P A; Wright, David K; Wong, Kendrew; O'Brien, Terence J; Rajan, Ramesh; Shultz, Sandy R
2015-09-01
Traumatic brain injury (TBI) is a leading cause of death worldwide. In recent studies, we have shown that experimental TBI caused an immediate (24-h post) suppression of neuronal processing, especially in supragranular cortical layers. We now examine the long-term effects of experimental TBI on the sensory cortex and how these changes may contribute to a range of TBI morbidities. Adult male Sprague-Dawley rats received either a moderate lateral fluid percussion injury (n=14) or a sham surgery (n=12) and 12 weeks of recovery before behavioral assessment, magnetic resonance imaging, and electrophysiological recordings from the barrel cortex. TBI rats demonstrated sensorimotor deficits, cognitive impairments, and anxiety-like behavior, and this was associated with significant atrophy of the barrel cortex and other brain structures. Extracellular recordings from ipsilateral barrel cortex revealed normal neuronal responsiveness and diffusion tensor MRI showed increased fractional anisotropy, axial diffusivity, and tract density within this region. These findings suggest that long-term recovery of neuronal responsiveness is owing to structural reorganization within this region. Therefore, it is likely that long-term structural and functional changes within sensory cortex post-TBI may allow for recovery of neuronal responsiveness, but that this recovery does not remediate all behavioral deficits.
Chan, Suk-tak; Evans, Karleyton C; Rosen, Bruce R; Song, Tian-yue; Kwong, Kenneth K
2015-01-01
To use breath-hold functional magnetic resonance imaging (fMRI) to localize the brain regions with impaired cerebrovascular reactivity (CVR) in a female patient diagnosed with mild traumatic brain injury (mTBI). The extent of impaired CVR was evaluated 2 months after concussion. Follow-up scan was performed 1 year post-mTBI using the same breath-hold fMRI technique. Case report. fMRI blood oxygenation dependent level (BOLD) signals were measured under breath-hold challenge in a female mTBI patient 2 months after concussion followed by a second fMRI with breath-hold challenge 1 year later. CVR was expressed as the percentage change of BOLD signals per unit time of breath-hold. In comparison with CVR measurement of normal control subjects, statistical maps of CVR revealed substantial neurovascular deficits and hemispheric asymmetry within grey and white matter in the initial breath-hold fMRI scan. Follow-up breath-hold fMRI performed 1 year post-mTBI demonstrated normalization of CVR accompanied with symptomatic recovery. CVR may serve as an imaging biomarker to detect subtle deficits in both grey and white matter for individual diagnosis of mTBI. The findings encourage further investigation of hypercapnic fMRI as a diagnostic tool for mTBI.