Sample records for posterior hemiblock pattern

  1. Changing axis deviation during acute myocardial infarction.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-07-09

    Changing axis deviation has been reported during acute myocardial infarction also associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. We present a case of changing axis deviation in a 70-year-old Italian man with acute myocardial infarction. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  2. Acute myocardial infarction with changing axis deviation.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2011-07-01

    Changing axis deviation has been rarely reported also during atrial fibrillation or atrial flutter. Changing axis deviation has been rarely reported also during acute myocardial infarction associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. Left anterior hemiblock development during acute inferior myocardial infarction can be an indicator of left anterior descending coronary artery lesions, multivessel coronary artery disease, and impaired left ventricular systolic function. We present a case of changing axis deviation in a 62-year-old Italian man with acute myocardial infarction. Also this case focuses attention on changing axis deviation during acute myocardial infarction. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Wolff-Parkinson-white syndrome mimics a conduction disease.

    PubMed

    Marrakchi, S; Kammoun, I; Kachboura, S

    2014-01-01

    Background. It is important to recognise Wolff-Parkinson-White (WPW) syndrome in electrocardiograms (ECG), as it may mimic ischaemic heart disease, ventricular hypertrophy, and bundle branch block. Recognising WPW syndrome allows for risk stratification, the identification of associated conditions, and the institution of appropriate management. Objective. The present case showed that electrophysiological study is indicated in patients with abnormal ECG and syncope. Case Report. A 40-year-old man with Wolff-Parkinson-White syndrome was presented to emergency with syncope. A baseline ECG was a complete right branch block and posterior left hemiblock. He was admitted to the cardiac care unit for pacemaker implantation. The atypical figure of complete right branch block and posterior left hemiblock was thought to be a "false positive" of conduction abnormality. But the long anterograde refractory period of the both accessory pathway and atrioventricular conduction may cause difficulty in diagnosing Wolff-Parkinson-White syndrome, Conclusion. A Wolff-Parkinson-White Syndrome may mimic a conduction disease. No reliable algorithm exists for making an ECG diagnosis of a preexcitation syndrome with conduction disorders. This can lead to diagnostic and therapeutic dilemmas in the context of syncope.

  4. Wolff-Parkinson-White Syndrome Mimics a Conduction Disease

    PubMed Central

    Marrakchi, S.; Kammoun, I.; Kachboura, S.

    2014-01-01

    Background. It is important to recognise Wolff-Parkinson-White (WPW) syndrome in electrocardiograms (ECG), as it may mimic ischaemic heart disease, ventricular hypertrophy, and bundle branch block. Recognising WPW syndrome allows for risk stratification, the identification of associated conditions, and the institution of appropriate management. Objective. The present case showed that electrophysiological study is indicated in patients with abnormal ECG and syncope. Case Report. A 40-year-old man with Wolff-Parkinson-White syndrome was presented to emergency with syncope. A baseline ECG was a complete right branch block and posterior left hemiblock. He was admitted to the cardiac care unit for pacemaker implantation. The atypical figure of complete right branch block and posterior left hemiblock was thought to be a “false positive” of conduction abnormality. But the long anterograde refractory period of the both accessory pathway and atrioventricular conduction may cause difficulty in diagnosing Wolff-Parkinson-White syndrome, Conclusion. A Wolff-Parkinson-White Syndrome may mimic a conduction disease. No reliable algorithm exists for making an ECG diagnosis of a preexcitation syndrome with conduction disorders. This can lead to diagnostic and therapeutic dilemmas in the context of syncope. PMID:25114686

  5. Intermittent changing axis deviation with intermittent left anterior hemiblock during atrial flutter with subclinical hyperthyroidism.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2009-06-26

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with CHD or mortality from cardiovascular causes but it is usually associated with a higher heart rate and a higher risk of supraventricular arrhythmias including atrial fibrillation and atrial flutter. Intermittent changing axis deviation during atrial fibrillation has also rarely been reported. We present a case of intermittent changing axis deviation with intermittent left anterior hemiblock in a 59-year-old Italian man with atrial flutter and subclinical hyperthyroidism. To our knowledge, this is the first report of intermittent changing axis deviation with intermittent left anterior hemiblock in a patient with atrial flutter.

  6. Nonalcoholic fatty liver disease is associated with an increased risk of heart block in hospitalized patients with type 2 diabetes mellitus.

    PubMed

    Mantovani, Alessandro; Rigolon, Riccardo; Pichiri, Isabella; Bonapace, Stefano; Morani, Giovanni; Zoppini, Giacomo; Bonora, Enzo; Targher, Giovanni

    2017-01-01

    Recent studies suggested that nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiac tachyarrhythmias (mainly atrial fibrillation) in patients with and without type 2 diabetes mellitus. The aim of this study was to examine whether an association also exists between NAFLD and heart block. We have retrospectively evaluated a hospital-based cohort of 751 patients with type 2 diabetes discharged from our Division of Diabetes and Endocrinology during years 2007-2014. Standard electrocardiograms were performed on all patients. Diagnosis of NAFLD was based on ultrasonography, whereas the severity of advanced hepatic fibrosis was based on the fibrosis (FIB)-4 score and other non-invasive fibrosis markers. Overall, 524 (69.8%) patients had NAFLD and 202 (26.9%) had heart block (defined as at least one block among first-degree atrio-ventricular block, second-degree block, third-degree block, left bundle branch block, right bundle branch block, left anterior hemi-block or left posterior hemi-block) on electrocardiograms. Patients with NAFLD had a remarkably higher prevalence of any persistent heart block than those without NAFLD (31.3% vs. 16.7%, p<0.001); this prevalence was particularly increased among those with higher FIB-4 score. NAFLD was associated with a threefold increased risk of prevalent heart block (adjusted-odds ratio 3.04, 95% CI 1.81-5.10), independently of age, sex, hypertension, prior ischemic heart disease, hemoglobin A1c, microvascular complication status, use of medications and other potentially confounding factors. In conclusion, this is the largest cross-sectional study to show that NAFLD and its severity are independently associated with an increased risk of prevalent heart block in hospitalized patients with type 2 diabetes.

  7. Risk of advanced heart block during extradural anaesthesia in patients with right bundle branch block and left anterior hemiblock.

    PubMed

    Coriat, P; Harari, A; Ducardonet, A; Tarot, J P; Viars, P

    1981-05-01

    Electrocardiographic recording by Holter monitoring demonstrated the absence of any modification, however minimal, of the intranodal conduction during surgical procedures under extradural anaesthesia in 20 patients with right bundle branch block (RBBB) and left anterior hemiblock (LAHB) but without symptoms. These data suggest that extradural anaesthesia can be used safely in patients with asymptomatic chronic RBBB and LAHB without prophylactic insertion of pacemakers. However, patients having experienced either syncope or transient Mobitz II second degree AV block are likely to have a trifascicular block and increased risk of advanced heart block during extradural anaesthesia.

  8. [Intervention among patients with right bundle branch block and left anterior hemiblock. Operatory risk (author's transl)].

    PubMed

    Coriat, P; Harari, A; Tarot, J P; Ducardonnet, A; Viars, P

    1981-01-01

    In order to assess the risk of advanced heart block during anesthesia in patients with right bundle branch block and left anterior hemiblock, 35 consecutive patients were monitored throughout the pre-, intra- and postoperative period. As conventional ECG monitoring may only detect advanced atrioventricular block, patients were monitored according to the Holter method which can easily detect even minor changes of atrioventricular conduction namely slight increased PR interval or dropped P wave. All patients were asymptomatic, in normal sinus rhythm without second degree AV block. Surgical procedures were performed under general anesthesia (n = 15) and epidural anesthesia using lidocaine (n = 20). No episode of second or third degree atrioventricular block occurred. The only modifications observed were rare and transient increase of PR, occurring during surgical procedures in 5 patients, always associated with a sinus bradycardia. They immediately regressed at the termination of the sinus bradycardia either spontaneously or following atropine injection, strongly suggesting the responsability of increased vagal tone. Thus general or epidural anesthesia did not compromise infranodal conduction in any of the observed patients. These data indicate that anesthesia can be safely used without prophylactic preoperative insertion of pacemakers in patients with asymptomatic chronic right bundle branch block and left anterior hemi-block.

  9. Electrocardiographic features of patients with earthquake related posttraumatic stress disorder

    PubMed Central

    İlhan, Erkan; Kaplan, Abdullah; Güvenç, Tolga Sinan; Biteker, Murat; Karabulut, Evindar; Işıklı, Serhan

    2013-01-01

    AIM: To analyze electrocardiographic features of patients diagnosed with posttraumatic stress disorder (PTSD) after the Van-Erciş earthquake, with a shock measuring 7.2 on the Richter scale that took place in Turkey in October 2011. METHODS: Surface electrocardiograms of 12 patients with PTSD admitted to Van Erciş State Hospital (Van, Turkey) from February 2012 to May 2012 were examined. Psychiatric interviews of the sex and age matched control subjects, who had experienced the earthquake, confirmed the absence of any known diagnosable psychiatric conditions in the control group. RESULTS: A wide range of electrocardiogram (ECG) parameters, such as P-wave dispersion, QT dispersion, QT interval, Tpeak to Tend interval, intrinsicoid deflection durations and other traditional parameters were similar in both groups. There was no one with an abnormal P wave axis, short or long PR interval, long or short QT interval, negative T wave in lateral leads, abnormal T wave axis, abnormal left or right intrinsicoid deflection duration, low voltage, left bundle branch block, right bundle branch block, left posterior hemiblock, left or right axis deviation, left ventricular hypertrophy, right or left atrial enlargement and pathological q(Q) wave in either group. CONCLUSION: The study showed no direct effect of earthquake related PTSD on surface ECG in young patients. So, we propose that PTSD has no direct effect on surface ECG but may cause electrocardiographic changes indirectly by triggering atherosclerosis and/or contributing to the ongoing atherosclerotic process. PMID:23538549

  10. Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas' cardiopathy.

    PubMed

    Zicker, F; Smith, P G; Netto, J C; Oliveira, R M; Zicker, E M

    1990-11-01

    A case-control study was conducted to examine whether physical activity, sibling history of heart disease (HHD), and length of residence in an area endemic for Chagas' disease were associated with the risk of developing Chagas' cardiopathy. Two hundred forty-seven cases of Chagas' heart disease and 345 seropositive subjects with normal ECG (controls) were selected in a population survey in Goiânia, Brazil. Prevalence ratios for exposure variables were estimated for cases in relation to controls and for subgroups of seropositives with selected ECG abnormalities in relation to controls. Increasing age and male sex were consistently and significantly related to an increased risk of ECG abnormalities. HHD was significantly associated with ECG alterations in 3 of the 5 comparison subgroups (any ECG alteration, right bundle branch block, and left anterior hemiblock). No association was found between length of residence in an area endemic, physical activity, and ECG abnormalities. A sample of 529 seronegative subjects were also examined and the interaction between exposure variables and seropositivity was tested to assess whether the associations found were specific for seropositives. Males were at greater risk of any ECG alteration and left anterior hemiblock in relation to females if they were seropositive. An increasing risk of ventricular premature beats with age was clearer for seropositive than for seronegative subjects. Subjects with HHD were at an increased risk of ECG abnormalities and this was greater in those with a positive serological test (P less than 0.05). The findings suggest a possible geographical clustering or a familial aggregation of cases of Chagas' heart disease.

  11. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region

    PubMed Central

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  12. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region.

    PubMed

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-11-05

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis.

  13. Patterns and Rates of Supplementary Venous Drainage to the Internal Jugular Veins.

    PubMed

    Qureshi, Adnan I; Ishfaq, Muhammad Fawad; Herial, Nabeel A; Khan, Asif A; Suri, M Fareed K

    2016-07-01

    Several studies have found supplemental venous drainage channels in addition to bilateral internal jugular veins for cerebral venous efflux. We performed this study to characterize the supplemental venous outflow patterns in a consecutive series of patients undergoing detailed cerebral angiography with venous phase imaging. The venographic phase of the arteriogram was reviewed to identify and classify supplemental cerebral venous drainage into anterior (cavernous venous sinus draining into pterygoid plexus and retromandibular vein) and posterior drainage pattern. The posterior drainage pattern was further divided into plexiform pattern (with sigmoid venous sinus draining into the paravertebral venous plexus), and solitary vein pattern (dominant single draining deep cervical vein) drainage. The posterior plexiform pattern was further divided into 2 groups: posterior plexiform with or without prominent solitary vein. Supplemental venous drainage was seen ipsilateral to internal jugular vein in 76 (43.7%) of 174 venous drainages (87 patients) analyzed. The patterns were anterior (n = 23, 13.2%), posterior plexiform without prominent solitary vein (n = 40, 23%), posterior plexiform with prominent solitary vein (n = 62, 35.6%), and posterior solitary vein alone (n = 3, 1.7%); occipital emissary veins and/or transosseous veins were seen in 1 supplemental venous drainage. Concurrent ipsilateral anterior and posterior supplemental drainage was seen in 6 of 174 venous drainages analyzed. We provide an assessment of patterns and rates of supplementary venous drainage to internal jugular veins to improve our understanding of anatomical and physiological aspects of cerebral venous drainage. Copyright © 2016 by the American Society of Neuroimaging.

  14. Comparison of two Nd:YAG laser posterior capsulotomy: cruciate pattern vs circular pattern with vitreous strand cutting

    PubMed Central

    Kim, Jin-Soo; Choi, Jung Yeol; Kwon, Ji-Won; Wee, Won Ryang; Han, Young Keun

    2018-01-01

    AIM To investigate the effects and safety of neodymium: yttrium-aluminium-garnet (Nd:YAG) laser posterior capsulotomy with vitreous strand cutting METHODS A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity (PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting (modified round pattern). The best corrected visual acuity (BCVA), intraocular pressure (IOP), refractive error, endothelial cell count (ECC), anterior segment parameters, including anterior chamber depth (ACD) and anterior chamber angle (ACA) were measured before and 1mo after the laser posterior capsulotomy. RESULTS In both groups, the BCVA improved significantly (P<0.001 for the modified round pattern group, P=0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased (P<0.001 for both) and the ACA significantly increased (P=0.001 for the modified round pattern group and P=0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups. CONCLUSION Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO. PMID:29487812

  15. Comparison of two Nd:YAG laser posterior capsulotomy: cruciate pattern vs circular pattern with vitreous strand cutting.

    PubMed

    Kim, Jin-Soo; Choi, Jung Yeol; Kwon, Ji-Won; Wee, Won Ryang; Han, Young Keun

    2018-01-01

    To investigate the effects and safety of neodymium: yttrium-aluminium-garnet (Nd:YAG) laser posterior capsulotomy with vitreous strand cutting. A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity (PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting (modified round pattern). The best corrected visual acuity (BCVA), intraocular pressure (IOP), refractive error, endothelial cell count (ECC), anterior segment parameters, including anterior chamber depth (ACD) and anterior chamber angle (ACA) were measured before and 1mo after the laser posterior capsulotomy. In both groups, the BCVA improved significantly ( P <0.001 for the modified round pattern group, P =0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased ( P <0.001 for both) and the ACA significantly increased ( P =0.001 for the modified round pattern group and P =0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups. Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO.

  16. Evolution of antero‐posterior patterning of the limb: Insights from the chick

    PubMed Central

    2017-01-01

    Summary The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero‐posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero‐posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero‐posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero‐posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods. PMID:28734068

  17. Clinical characteristics and outcomes of acute coronary syndrome patients with left anterior hemiblock.

    PubMed

    Zhang, Hanfei; Goodman, Shaun G; Steg, Gabriel P; Budaj, Andrzej; Lopez-Sendon, Jose; Dorian, Paul; Huynh, Thao; Mangat, Iqwal; Wong, Graham C; Spencer, Frederick A; Yan, Andrew T

    2014-09-15

    We aimed to study the relationships between left anterior hemiblock (LAHB) and the patient characteristics, management, and clinical outcomes in the setting of acute coronary syndromes (ACS). Admission ECGs of patients enrolled in the Global Registry of Acute Coronary Events (GRACE) ECG substudy, and the Canadian ACS Registry I, were analysed independently at a blinded core laboratory. Multivariable logistic regression analysis was performed to assess the independent associations between LAHB on the admission ECG and in-hospital and 6-month mortality. Of the 11 820 eligible ACS patients, 692 (5.9%) patients had LAHB. The presence of LAHB on admission was associated with older age, male sex, prior myocardial infarction, prior heart failure, worse Killip class, higher creatinine level, and higher GRACE risk score (all p<0.01). Patients with LAHB less frequently underwent cardiac catheterisation, coronary revascularisation or reperfusion therapy (all p<0.05). The LAHB group had higher in-hospital (6.9% vs 3.9%, p<0.001) and 6-month mortality (12.5% vs 7.7%, p<0.001). However, after adjusting for the known predictors of mortality in the GRACE risk models, LAHB was not independently associated with in-hospital death (OR 1.07, 95% CI 0.76 to 1.52, p=0.70), or death at 6 months (OR 1.00, 95% CI 0.75 to 1.34, p=0.99). Across the broad spectrum of ACS, LAHB was associated with significant comorbidities, high-risk clinical features on presentation, and worse unadjusted outcomes. However, LAHB was not an independent predictor of in-hospital and 6-month mortality and did not carry incremental prognostic value beyond the known prognosticators in the GRACE risk models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Anatomical variations in the pattern of the right hepatic veins draining the posterior segment of the right lobe of the liver.

    PubMed

    Shilal, Poonam; Tuli, Anita

    2015-03-01

    The pattern of drainage in the right posterior lobe of liver varies considerably. The knowledge of this variation is very important while performing various surgeries on the right posterior lobe. A study was conducted to see the variations in the pattern of drainage of posterior segment of the right lobe of liver. The aim was to see the variations of right hepatic vein and small accessory hepatic veins draining the posterior segment, the presence of which led to modifications in drainage of posterior segment. Sixty formalin fixed adult human liver specimens were dissected manually. According to the pattern of drainage of tributaries of right hepatic vein, the right hepatic vein was classified into type I, type II, type III and type IV. According to presence of inferior right hepatic vein, three types of drainage of posterior lobe were seen: Type I, (76.36%) right hepatic vein was large, draining wide area of posterior segment. A small inferior right hepatic vein drained the small area of posterior segment. In Type II, (19.92%) both right hepatic and inferior right hepatic veins were medium sized draining the posteroinferior segment of the right lobe concomitantly. In Type III, (32%) accessory veins, the middle right hepatic vein drained the posterosuperior (VII) as well as the posteroinferior (VI) segment. In one specimen, there were numerous middle right hepatic veins draining the right posterior segment. The knowledge of anatomic relationship of veins draining right lobe, is important in performing right posterior segmentectomy. For safe resection of the liver, the complex anatomy of the distribution of the tributaries of the right hepatic vein and the accessory veins have to be studied prior to any surgery done on liver.

  19. Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes

    NASA Astrophysics Data System (ADS)

    Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter

    2001-12-01

    This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.

  20. A shift in anterior–posterior positional information underlies the fin-to-limb evolution

    PubMed Central

    Onimaru, Koh; Kuraku, Shigehiro; Takagi, Wataru; Hyodo, Susumu; Sharpe, James; Tanaka, Mikiko

    2015-01-01

    The pectoral fins of ancestral fishes had multiple proximal elements connected to their pectoral girdles. During the fin-to-limb transition, anterior proximal elements were lost and only the most posterior one remained as the humerus. Thus, we hypothesised that an evolutionary alteration occurred in the anterior–posterior (AP) patterning system of limb buds. In this study, we examined the pectoral fin development of catshark (Scyliorhinus canicula) and revealed that the AP positional values in fin buds are shifted more posteriorly than mouse limb buds. Furthermore, examination of Gli3 function and regulation shows that catshark fins lack a specific AP patterning mechanism, which restricts its expression to an anterior domain in tetrapods. Finally, experimental perturbation of AP patterning in catshark fin buds results in an expansion of posterior values and loss of anterior skeletal elements. Together, these results suggest that a key genetic event of the fin-to-limb transformation was alteration of the AP patterning network. DOI: http://dx.doi.org/10.7554/eLife.07048.001 PMID:26283004

  1. Mandibular fracture patterns consistent with posterior maxillary fractures involving the posterior maxillary sinus, pterygoid plate or both: CT characteristics.

    PubMed

    Imai, T; Sukegawa, S; Kanno, T; Fujita, G; Yamamoto, N; Furuki, Y; Michizawa, M

    2014-01-01

    The aim of this study was to determine the incidence of posterior maxillary fractures involving the posterior maxillary sinus wall, pterygoid plate or both, unrelated to major midface fractures in patients with mandibular fractures, and to characterize associated fractures. A CT study was performed in patients with mandibular fractures to identify posterior maxillary fractures. Patients aged under 16 years, those with mandibular fractures involving only dentoalveolar components and those with concurrent major midfacial fractures were excluded. 13 (6.7%) of 194 patients with mandibular fractures also had posterior maxillary fractures (case group). The injury pattern correlated with the external force directed to the lateral side of the mandible (p < 0.001), alcohol consumption (p = 0.049), the presence of multifocal fractures (p = 0.002) and the fracture regions in the symphysis/parasymphysis (p = 0.001) and the angle/ramus (p = 0.001). No significant difference between the case and non-case groups was seen for age, sex or cause of trauma. Non-displaced fractures in the ipsilateral posterior mandible occurred with significant frequency (p = 0.001) when the posterior maxillary fractures involved only the sinus. Mandibular fractures accompanied by posterior maxillary fractures are not rare. The finding of a unilateral posterior maxillary fracture on CT may aid the efficient radiological examination of the mandible based on possible patterns of associated fractures, as follows: in the ipsilateral posterior region as a direct fracture when the impact is a medially directed force, and in the symphysis/parasymphysis or contralateral condylar neck as an indirect fracture.

  2. Mandibular fracture patterns consistent with posterior maxillary fractures involving the posterior maxillary sinus, pterygoid plate or both: CT characteristics

    PubMed Central

    Sukegawa, S; Kanno, T; Fujita, G; Yamamoto, N; Furuki, Y; Michizawa, M

    2014-01-01

    Objectives: The aim of this study was to determine the incidence of posterior maxillary fractures involving the posterior maxillary sinus wall, pterygoid plate or both, unrelated to major midface fractures in patients with mandibular fractures, and to characterize associated fractures. Methods: A CT study was performed in patients with mandibular fractures to identify posterior maxillary fractures. Patients aged under 16 years, those with mandibular fractures involving only dentoalveolar components and those with concurrent major midfacial fractures were excluded. Results: 13 (6.7%) of 194 patients with mandibular fractures also had posterior maxillary fractures (case group). The injury pattern correlated with the external force directed to the lateral side of the mandible (p < 0.001), alcohol consumption (p = 0.049), the presence of multifocal fractures (p = 0.002) and the fracture regions in the symphysis/parasymphysis (p = 0.001) and the angle/ramus (p = 0.001). No significant difference between the case and non-case groups was seen for age, sex or cause of trauma. Non-displaced fractures in the ipsilateral posterior mandible occurred with significant frequency (p = 0.001) when the posterior maxillary fractures involved only the sinus. Conclusions: Mandibular fractures accompanied by posterior maxillary fractures are not rare. The finding of a unilateral posterior maxillary fracture on CT may aid the efficient radiological examination of the mandible based on possible patterns of associated fractures, as follows: in the ipsilateral posterior region as a direct fracture when the impact is a medially directed force, and in the symphysis/parasymphysis or contralateral condylar neck as an indirect fracture. PMID:24336313

  3. A radiographic study of the ossification of the posterior wall of the acetabulum: implications for the diagnosis of pediatric and adolescent hip disorders.

    PubMed

    Fabricant, Peter D; Hirsch, Brandon P; Holmes, Ian; Kelly, Bryan T; Lorich, Dean G; Helfet, David L; Bogner, Eric A; Green, Daniel W

    2013-02-06

    Subtle variations in acetabular morphology have been implicated in several pathologic hip conditions. Although it is understood that the acetabulum forms at the junction of the ilium, ischium, and pubis at the triradiate cartilage, the ossification and development pattern of the posterior wall of the acetabulum is unknown. Standard radiographs and computed tomographic scans used in evaluation of the adolescent hip do not allow a complete assessment of the non-ossified portions of the developing acetabulum. The purpose of this study was to define the currently unknown ossification pattern and development of the posterior wall of the acetabulum and to determine when conventional imaging, with use of computed tomography and radiographs, is appropriate. One hundred and eighty magnetic resonance imaging examinations in patients who were four to fifteen years old were evaluated by a musculoskeletal radiologist for ossification patterns of the posterior wall of the acetabulum and triradiate cartilage. Correlations were made with available radiographs. Posterior acetabular wall ossification lags behind anterior wall ossification throughout development. On average, the posterior wall of the acetabulum began to ossify at the chronological age of eight years, followed by a discrete rim of posterior calcification (posterior rim sign) at the patient age of twelve years, just prior to the fusion of the posterior acetabular wall elements to the pelvis. This preceded the closure of the triradiate cartilage in all subjects. On average, male patients had fusion of the posterior wall of the acetabulum one to 1.5 years after female patients. The ossification of the posterior wall of the acetabulum is completed in a predictable manner prior to closure of the triradiate cartilage.

  4. Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus.

    PubMed

    Onai, Takayuki; Lin, Hsiu-Chin; Schubert, Michael; Koop, Demian; Osborne, Peter W; Alvarez, Susana; Alvarez, Rosana; Holland, Nicholas D; Holland, Linda Z

    2009-08-15

    A role for Wnt/beta-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/beta-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/beta-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/beta-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/beta-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo-increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.

  5. A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum.

    PubMed

    Schmitt-Engel, Christian; Cerny, Alexander C; Schoppmeier, Michael

    2012-04-15

    Abdominal patterning in Drosophila requires the function of Nanos (nos) and Pumilio (pum) to repress posterior translation of hunchback mRNA. Here we provide the first functional analysis of nanos and pumilio genes during blastodermal patterning of a short-germ insect. We found that nos and pum in the red flour beetle Tribolium castaneum crucially contribute to posterior segmentation by preventing hunchback translation. While this function seems to be conserved among insects, we provide evidence that Nos and Pum may also act on giant expression, another gap gene. After depletion of nos and pum by parental RNAi, Hunchback and giant remain ectopically at the posterior blastoderm and the posterior Krüppel (Kr) domain is not being activated. giant may be a direct target of Nanos and Pumilio in Tribolium and presumably prevents early Kr expression. In the absence of Kr, the majority of secondary gap gene domains fail to be activated, and abdominal segmentation is terminated prematurely. Surprisingly, we found Nos and Pum also to be involved in early head patterning, as the loss of Nos and Pum results in deletions and transformations of gnathal and pre-gnathal anlagen. Since the targets of Nos and Pum in head development remain to be identified, we propose that anterior patterning in Tribolium may involve additional maternal factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Posterior Rotator Cuff Strengthening Using Theraband® in a Functional Diagonal Pattern in Collegiate Baseball Pitchers

    PubMed Central

    Page, Phillip A.; Lamberth, John; Abadie, Ben; Boling, Robert; Collins, Robert; Linton, Russell

    1993-01-01

    The deceleration phase of the pitching mechanism requires forceful eccentric contraction of the posterior rotator cuff. Because traditional isotonic strengthening may not be specific to this eccentric pattern, a more effective and functional means of strengthening the posterior rotator cuff is needed. Twelve collegiate baseball pitchers performed a moderate intensity isotonic dumbbell strengthening routine for 6 weeks. Six of the 12 subjects were randomly assigned to an experimental group and placed on a Theraband® Elastic Band strengthening routine in a functional-diagonal pattern to emphasize the eccentric contraction of the posterior rotator cuff, in addition to the isotonic routine. The control group (n = 6) performed only the isotonic exercises. Both groups were evaluated on a KIN-COM® isokinetic dynamometer in a functional diagonal pattern. Pretest and posttest average eccentric force production of the posterior rotator cuff was compared at two speeds, 60 and 180°/s. Data were analyzed with an analysis of covariance at the .05 level with significance at 60°/s. Values at 180°/s, however, were not significant. Eccentric force production at 60°/s increased more during training in the experimental group (+19.8%) than in the control group (-1.6%). There was no difference in the two groups at 180°/s; both decreased (8 to 15%). Theraband was effective at 60°/s in functional eccentric strengthening of the posterior rotator cuff in the pitching shoulder. ImagesFig 1. PMID:16558251

  7. The posterior cervical lymph node in toxoplasmosis.

    PubMed

    Gray, G F; Kimball, A C; Kean, B H

    1972-11-01

    Posterior cervical node enlargement is characteristic of clinical toxoplasmosis in adults. Lymph node biopsies from 37 patients, who were tested for toxoplasmosis by serologic and isolation studies, were examined. A characteristic pattern of sinus histiocytosis was seen in 17 of 18 posterior cervical nodes and in only 1 of 4 lymph nodes from other sites from patients with toxoplasmosis. The characteristic pattern was not seen in posterior cervical nodes or in lymph nodes from other sites from patients with other diseases. Lymphoma obscured the characteristic changes of toxoplasmosis in the posterior cervical nodes and other nodes of 5 patients with these coexisting diseases. Organisms were seen in tissue sections in only 2 instances. T gondii was isolated from mice in 14 of 17 attempts using nodes from patients with toxoplasmosis, but from none of 8 attempts using nodes from patients with other diseases.

  8. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.

    PubMed

    Alexander, J; Stainier, D Y; Yelon, D

    1998-01-01

    The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.

  9. The epidemic spreading model and the direction of information flow in brain networks.

    PubMed

    Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P

    2017-05-15

    The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. MR imaging evaluation of inferior olivary nuclei: comparison of postoperative subjects with and without posterior fossa syndrome.

    PubMed

    Patay, Z; Enterkin, J; Harreld, J H; Yuan, Y; Löbel, U; Rumboldt, Z; Khan, R; Boop, F

    2014-04-01

    Posterior fossa syndrome is a severe postoperative complication occurring in up to 29% of children undergoing posterior fossa tumor resection; it is most likely caused by bilateral damage to the proximal efferent cerebellar pathways, whose fibers contribute to the Guillain-Mollaret triangle. When the triangle is disrupted, hypertrophic olivary degeneration develops. We hypothesized that MR imaging patterns of inferior olivary nucleus changes reflect patterns of damage to the proximal efferent cerebellar pathways and show association with clinical findings, in particular the presence or absence of posterior fossa syndrome. We performed blinded, randomized longitudinal MR imaging analyses of the inferior olivary nuclei of 12 children with and 12 without posterior fossa syndrome after surgery for midline intraventricular tumor in the posterior fossa. The Fisher exact test was performed to investigate the association between posterior fossa syndrome and hypertrophic olivary degeneration on MR imaging. The sensitivity and specificity of MR imaging findings of bilateral hypertrophic olivary degeneration for posterior fossa syndrome were measured. Of the 12 patients with posterior fossa syndrome, 9 had bilateral inferior olivary nucleus abnormalities. The 12 patients without posterior fossa syndrome had either unilateral or no inferior olivary nucleus abnormalities. The association of posterior fossa syndrome and hypertrophic olivary degeneration was statistically significant (P < .0001). Hypertrophic olivary degeneration may be a surrogate imaging indicator for damage to the contralateral proximal efferent cerebellar pathway. In the appropriate clinical setting, bilateral hypertrophic olivary degeneration may be a sensitive and specific indicator of posterior fossa syndrome.

  11. Cerebellar medulloblastoma: the importance of posterior fossa dose to survival and patterns of failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, C.L.; Simpson, J.R.

    1982-11-01

    Fifty patients with biopsy-proven cerebellar medulloblastoma were retrospectively analyzed for prognostic factors, survival and patterns of failure. Five- and ten-year actuarial survivals for the entire group were 51% and 42%. Survival and local control were significantly better for the 21 patients who received doses greater than 5000 rad to the posterior fossa (85% and 80% respectively) than for the remaining patients (38% and 38%, respectively). Significant prognostic factors included achievement of local control in the posterior fossa (p = .0001) and dose to the posterior fossa (p = .0005). Sex, age, duration of symptoms, extent of surgery and initial T-stagemore » of disease were not significant. Posterior fossa was the predominant site of failure (71% of failures), but 10% of patients failed in the cerebrum and 12% outside the CNS. This experience confirms that survival rates of 70-80% are achievable with current treatment policies but accurate and consistent dose delivery to the posterior fossa is essential.« less

  12. Cerebellar medulloblastoma: the importance of posterior fossa dose to survival and patterns of failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, C.L.; Simpson, J.R.

    1982-11-01

    Fifty patients with biopsy-proven cerebellar medulloblastoma were retrospectively analyzed for prognostic factors, survival and patterns of failure. Five- and ten-year actuarial survivals for the entire group were 51% and 42%. Survival and local control were significantly better for the 21 patients who received doses greater that 5000 rad to the posterior fossa (85% and 80% respectively) than for the remaining patients (38% and 38%, respectively). Significant prognostic factors included achievement of local control in the posterior fossa (p = .0001) and dose to the posterior fossa (p = .0005). Sex, age, duration of symptoms, extent of surgery and initial T-stagemore » of disease were not significant. Posterior fossa was the predominant site of failure (71% of failures), but 10% of patients failed in the cerebrum and 12% outside the CNS. This experience confirms that survival rates of 70-80% are achievable with current treatment policies but accurate and consistent dose delivery to the posterior fossa is essential.« less

  13. The Posterior Cervical Lymph Node in Toxoplasmosis

    PubMed Central

    Gray, George F.; Kimball, Anne C.; Kean, B. H.

    1972-01-01

    Posterior cervical node enlargement is characteristic of clinical toxoplasmosis in adults. Lymph node biopsies from 37 patients, who were tested for toxoplasmosis by serologic and isolation studies, were examined. A characteristic pattern of sinus histiocytosis was seen in 17 of 18 posterior cervical nodes and in only 1 of 4 lymph nodes from other sites from patients with toxoplasmosis. The characteristic pattern was not seen in posterior cervical nodes or in lymph nodes from other sites from patients with other diseases. Lymphoma obscured the characteristic changes of toxoplasmosis in the posterior cervical nodes and other nodes of 5 patients with these coexisting diseases. Organisms were seen in tissue sections in only 2 instances. T gondii was isolated from mice in 14 of 17 attempts using nodes from patients with toxoplasmosis, but from none of 8 attempts using nodes from patients with other diseases. ImagesFig 3Fig 4Fig 1Fig 2 PMID:4634739

  14. Effects of astigmatic axis orientation on postural stabilization with stationary equilibrium

    NASA Astrophysics Data System (ADS)

    Kanazawa, Masatsugu; Uozato, Hiroshi; Asakawa, Ken; Kawamorita, Takushi

    2018-02-01

    We evaluated 15 healthy participants by assessing their maintenance of postural control while standing on a platform stabilometer for 1 min under the following conditions: eyes open; eyes open with + 3.00 D on both eyes on same directions (45, 90, 135, 180 degree axis); right eye on 45 degree axis and left eye on 135 degree axis (inverted V-pattern), and right eye on 135 degree axis and left eye on axis 45 degree axis (V-pattern). The differences in the linear length, area and maximum velocity of center of pressure during postural control before and after the six types of positive cylinder-oriented axes were analyzed. Comparing the antero-posterior lengths and antero-posterior maximum velocities, there were significant differences between the V-pattern condition and the six other conditions. Astigmatic defocus in the antagonistic axes conditions, particularly the V-pattern condition, affects postural control of antero-posterior sway (143/150).

  15. Evaluation of hyaloid-retinal relationship during triamcinolone-assisted vitrectomy for primary rhegmatogenous retinal detachment.

    PubMed

    Sundar, Dheepak; Takkar, Brijesh; Venkatesh, Pradeep; Chawla, Rohan; Temkar, Shreyas; Azad, Shorya Vardhan; Vohra, Rajpal

    2018-03-01

    To determine hyaloid-retinal relationship in primary rhegmatogenous retinal detachment during vitreous surgery. This is a prospective, interventional study of patients (n = 72) undergoing triamcinolone-assisted 25G vitreous surgery for primary rhegmatogenous retinal detachment. Hyaloid-retinal relationship was noted intraoperatively to identify regions and patterns of firm attachment and was classified into subgroups. Analysis was done to determine association between hyaloid-retinal relationship patterns and preoperative findings: posterior vitreous detachment, proliferative vitreoretinopathy, type of retinal tear, the presence of peripheral degenerations, and postoperative outcomes. Three patterns of hyaloid-retinal relationship were identified: type1 (complete absence of posterior vitreous detachment (21%)), type 2 (incomplete posterior vitreous detachment (47%)) and type 3 (complete posterior vitreous detachment (32%)). Posterior vitreous detachment in some form was present in 84% of the cases with retinal tears as the causative break but none of the cases with retinal holes (p < 0.001). None of the cases with vitreoretinal degeneration had complete posterior vitreous detachment (p = 0.001). 69% of proliferative vitreoretinopathy-C cases had type 1 hyaloid-retinal relationship as compared to 11% cases with no proliferative vitreoretinopathy (p < 0.001). Proliferative vitreoretinopathy-related anatomical failure was seen in 7.5%, and 80% of these eyes with recurrent RD had type 1 hyaloid-retinal relationship (p<0.001). Nearly half the patients diagnosed as complete posterior vitreous detachment preoperatively were found to have incomplete posterior vitreous detachment intraoperatively. Majority of the cases with rhegmatogenous retinal detachment have some form of strong vitreoretinal adhesion. Hyaloid-retinal relationship varies with types of retinal breaks, retinal degeneration, and proliferative vitreoretinopathy. Intraoperative hyaloid-retinal relationship is frequently different from that assessed before surgery and the proposed classification may improve surgical decision making and prognostication.

  16. Whiplash injury is more than neck pain: a population-based study of pain localization after traffic injury.

    PubMed

    Hincapié, Cesar A; Cassidy, J David; Côté, Pierre; Carroll, Linda J; Guzmán, Jaime

    2010-04-01

    To describe the distribution of bodily pain and identify common patterns of pain localization after traffic injury. Cross-sectional analysis of a population-based cohort of 6481 Saskatchewan residents who were treated or filed an auto insurance claim within 30 days of traffic injury or both. The prevalence of pain in each of 13 body areas was calculated and compared with pain confined exclusively to each of these areas. Principal component analysis was used to identify the main patterns of pain localization after traffic injury. Irrespective of pain in other areas, 86% of respondents reported posterior neck pain, 72% indicated head pain, and 60% noted lumbar back pain. Ninety-five percent of claimants reported some pain within the posterior trunk region, comprising the posterior neck, shoulder, mid-back, lumbar, and buttock areas. Only 0.4% of respondents reported posterior neck pain only. Four main patterns accounted for 60% of the variance in pain localization: 1) upper anterior trunk and upper extremity pain; 2) head, posterior neck, and upper posterior trunk pain; 3) low back pain; and 4) lower anterior trunk and lower extremity pain. Pain after traffic injury is most commonly reported in multiple body areas; isolated neck pain is extremely rare. These results have implications for clinical management of traffic injuries and interpretation of whiplash-related trials.

  17. Simulation-based Bayesian inference for latent traits of item response models: Introduction to the ltbayes package for R.

    PubMed

    Johnson, Timothy R; Kuhn, Kristine M

    2015-12-01

    This paper introduces the ltbayes package for R. This package includes a suite of functions for investigating the posterior distribution of latent traits of item response models. These include functions for simulating realizations from the posterior distribution, profiling the posterior density or likelihood function, calculation of posterior modes or means, Fisher information functions and observed information, and profile likelihood confidence intervals. Inferences can be based on individual response patterns or sets of response patterns such as sum scores. Functions are included for several common binary and polytomous item response models, but the package can also be used with user-specified models. This paper introduces some background and motivation for the package, and includes several detailed examples of its use.

  18. Perception of Place of Articulation by Children with Cleft Palate and Posterior Placement.

    ERIC Educational Resources Information Center

    Whitehill, Tara L.; Francis, Alexander L.; Ching, Christine K-Y.

    2003-01-01

    A study examined if 10 children (ages 4-12) with repaired cleft palate who demonstrate posterior placement of alveolar targets differed from 10 children with cleft palate without such error patterns, and from 10 controls in the perception of alveolar targets. Children with posterior placement appeared unable to distinguish alveolar targets.…

  19. Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle

    PubMed Central

    Hammond, Katherine L.; Whitfield, Tanya T.

    2011-01-01

    Specification of the otic anteroposterior axis is one of the earliest patterning events during inner ear development. In zebrafish, Hedgehog signalling is necessary and sufficient to specify posterior otic identity between the 10 somite (otic placode) and 20 somite (early otic vesicle) stages. We now show that Fgf signalling is both necessary and sufficient for anterior otic specification during a similar period, a function that is completely separable from its earlier role in otic placode induction. In lia–/– (fgf3–/–) mutants, anterior otic character is reduced, but not lost altogether. Blocking all Fgf signalling at 10-20 somites, however, using the pan-Fgf inhibitor SU5402, results in the loss of anterior otic structures and a mirror image duplication of posterior regions. Conversely, overexpression of fgf3 during a similar period, using a heat-shock inducible transgenic line, results in the loss of posterior otic structures and a duplication of anterior domains. These phenotypes are opposite to those observed when Hedgehog signalling is altered. Loss of both Fgf and Hedgehog function between 10 and 20 somites results in symmetrical otic vesicles with neither anterior nor posterior identity, which, nevertheless, retain defined poles at the anterior and posterior ends of the ear. These data suggest that Fgf and Hedgehog act on a symmetrical otic pre-pattern to specify anterior and posterior otic identity, respectively. Each signalling pathway has instructive activity: neither acts simply to repress activity of the other, and, together, they appear to be key players in the specification of anteroposterior asymmetries in the zebrafish ear. PMID:21831919

  20. Age-Related Variability in Tongue Pressure Patterns for Maximum Isometric and Saliva Swallowing Tasks

    PubMed Central

    Peladeau-Pigeon, Melanie

    2017-01-01

    Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767

  1. Linking DMN connectivity to episodic memory capacity: What can we learn from patients with medial temporal lobe damage?

    PubMed Central

    McCormick, Cornelia; Protzner, Andrea B.; Barnett, Alexander J.; Cohn, Melanie; Valiante, Taufik A.; McAndrews, Mary Pat

    2014-01-01

    Computational models predict that focal damage to the Default Mode Network (DMN) causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE) that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs) and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities. PMID:25068108

  2. Molecular signaling along the anterior–posterior axis of early palate development

    PubMed Central

    Smith, Tara M.; Lozanoff, Scott; Iyyanar, Paul P.; Nazarali, Adil J.

    2013-01-01

    Cleft palate is a common congenital birth defect in humans. In mammals, the palatal tissue can be distinguished into anterior bony hard palate and posterior muscular soft palate that have specialized functions in occlusion, speech or swallowing. Regulation of palate development appears to be the result of distinct signaling and genetic networks in the anterior and posterior regions of the palate. Development and maintenance of expression of these region-specific genes is crucial for normal palate development. Numerous transcription factors and signaling pathways are now recognized as either anterior- (e.g., Msx1, Bmp4, Bmp2, Shh, Spry2, Fgf10, Fgf7, and Shox2) or posterior-specific (e.g., Meox2, Tbx22, and Barx1). Localized expression and function clearly highlight the importance of regional patterning and differentiation within the palate at the molecular level. Here, we review how these molecular pathways and networks regulate the anterior–posterior patterning and development of secondary palate. We hypothesize that the anterior palate acts as a signaling center in setting up development of the secondary palate. PMID:23316168

  3. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    PubMed

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  4. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes

    PubMed Central

    Rosenberg, Miriam I; Brent, Ava E; Payre, François; Desplan, Claude

    2014-01-01

    Embryonic anterior–posterior patterning is well understood in Drosophila, which uses ‘long germ’ embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use ‘short germ’ embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001 PMID:24599282

  5. A novel remaining tendon preserving repair technique leads to improved outcomes in special rotator cuff tear patterns.

    PubMed

    Jeon, Yoon Sang; Kim, Rag Gyu; Shin, Sang-Jin

    2018-05-16

    The purpose of this study was to identify the tear pattern that could be anatomically repaired by preserving the remaining tendon on footprint and evaluate clinical outcomes of patients who underwent remaining tendon preserving cuff repair. Of 523 patients with full-thickness rotator cuff tears who underwent arthroscopic repair, 41 (7.8%) patients had repairable rotator cuff tear while preserving the remaining tendon. Among them, 31 patients were followed-up for more than 2 years, including 26 patients with posterior L-shaped tear and 5 patients with transtendinous tear patterns. Clinical outcomes were evaluated using ASES and Constant score, SANE score for patient satisfaction, and VAS for pain. MRI was taken for tendon integrity 6 months postoperatively. Of the 31 patients, 11 (35.5%) had previous injury history before rotator cuff tear, including 7 (26.9%) of the 26 patients with posterior L-shaped tear and 4 (80%) of the 5 patients with transtendinous tear. The average size of preoperative cuff tear was 17.8 ± 6.8 mm in anterior-to-posterior direction and 15.2 ± 5.1 mm in medial-to-lateral direction. ASES and Constant score, SANE score, and VAS for pain were significantly (p < 0.001) improved after remaining tendon preserving rotator cuff repair. Rotator cuff tendons of 22(84.6%) patients with posterior L-shaped tear and 4(80%) patients with transtendinous tear patterns were healed. Patients who underwent rotator cuff repair with preservation of the remaining tendon on the footprint obtained satisfactory functional outcomes. Rotator cuff tears in patients who had posterior L-shaped tear extending between supraspinatus and infraspinatus tendons or transtendinous tear pattern with substantial remaining tendon could be repaired using remaining tendon preserving repair technique. Anatomic reduction of torn cuff tendon without undue tension could be achieved using the remaining tendon preserving repair technique.

  6. Inhibition of Shh signalling in the chick wing gives insights into digit patterning and evolution.

    PubMed

    Pickering, Joseph; Towers, Matthew

    2016-10-01

    In an influential model of pattern formation, a gradient of Sonic hedgehog (Shh) signalling in the chick wing bud specifies cells with three antero-posterior positional values, which give rise to three morphologically different digits by a self-organizing mechanism with Turing-like properties. However, as four of the five digits of the mouse limb are morphologically similar in terms of phalangeal pattern, it has been suggested that self-organization alone could be sufficient. Here, we show that inhibition of Shh signalling at a specific stage of chick wing development results in a pattern of four digits, three of which can have the same number of phalanges. These patterning changes are dependent on a posterior extension of the apical ectodermal ridge, and this also allows the additional digit to arise from the Shh-producing cells of the polarizing region - an ability lost in ancestral theropod dinosaurs. Our analyses reveal that, if the specification of antero-posterior positional values is curtailed, self-organization can then produce several digits with the same number of phalanges. We present a model that may give important insights into how the number of digits and phalanges has diverged during the evolution of avian and mammalian limbs. © 2016. Published by The Company of Biologists Ltd.

  7. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    PubMed

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Innervation pattern of the suprascapular nerve within supraspinatus: a three-dimensional computer modeling study.

    PubMed

    Hermenegildo, J A; Roberts, S L; Kim, S Y

    2014-05-01

    The relationship between the innervation pattern of the suprascapular nerve (SSN) and the muscle architecture of supraspinatus has not been thoroughly investigated. The supraspinatus is composed of two architecturally distinct regions: anterior and posterior. Each of these regions is further subdivided into three parts: superficial, middle and deep. The purpose of this study was to investigate the course of the SSN throughout the volume of supraspinatus and to relate the intramuscular branches to the distinct regions and parts of the supraspinatus. The SSN was dissected in thirty formalin embalmed cadaveric specimens and digitized throughout the muscle volume in six of those specimens. The digitized data were modeled using Autodesk(®) Maya(®) 2011. The three-dimensional (3D) models were used to relate the intramuscular innervation pattern to the muscle and tendon architecture defined by Kim et al. (2007, Clin Anat 20:648-655). The SSN bifurcated into two main trunks: medial and lateral. All parts of the anterior region were predominantly innervated by the medial trunk and its proximal and medial branches, whereas all parts of the posterior region predominantly by the lateral trunk and its posterolateral and/or posteromedial branches. The posterior region also received innervation from the proximal branch of the medial trunk in half of the specimens. These findings provide evidence that the anterior and posterior regions are distinct with respect to their innervation. The 3D map of the innervation pattern will aid in planning future clinical studies investigating muscle activation patterns and provide insight into possible injury of the nerve with supraspinatus pathology and surgical techniques. Copyright © 2013 Wiley Periodicals, Inc.

  9. Ventilatory mechanics and the effects of water depth on breathing pattern in the aquatic caecilian Typhlonectes natans.

    PubMed

    Prabha, K C; Bernard, D G; Gardner, M; Smatresk, N J

    2000-01-01

    The breathing pattern in the aquatic caecilian Typhlonectes natans was investigated by recording airflow via a pneumotachograph under unrestrained normal physiological conditions. Ventilatory mechanics were assessed using airflow and pressure measurements from the buccal cavity and trachea. The breathing pattern consisted of an expiratory phase followed by a series of 10-15 small buccal pumps to inflate the lung, succeeded by a long non-ventilatory period. T. natans separate the expiratory and inspiratory gases in the buccal cavity and take several inspiratory pumps, distinguishing their breathing pattern from that of sarcopterygians. Hydrostatic pressure assisted exhalation. The tracheal pressure was greater than the water pressure at that depth, suggesting that pleuroperitoneal pressure as well as axial or pulmonary smooth muscles may have contributed to the process of exhalation. The frequency of lung ventilation was 6.33+/-0.84 breaths h(-)(1), and ventilation occurred via the nares. Compared with other amphibians, this low ventilatory frequency suggests that T. natans may have acquired very efficient pulmonary respiration as an adaptation for survival in their seasonally fluctuating natural habitat. Their respiratory pathway is quite unique, with the trachea separated into anterior, central and posterior regions. The anterior region serves as an air channel, the central region is attached to the tracheal lung, and the posterior region consists of a bifurcated air channel leading to the left and right posterior lungs. The lungs are narrow, elongated, profusely vascularized and compartmentalized. The posterior lungs extend to approximately two-thirds of the body length. On the basis of their breathing pattern, it appears that caecilians are phylogenetically derived from two-stroke breathers.

  10. Ectocranial suture fusion in primates: pattern and phylogeny.

    PubMed

    Cray, James; Cooper, Gregory M; Mooney, Mark P; Siegel, Michael I

    2014-03-01

    Patterns of ectocranial suture fusion among Primates are subject to species-specific variation. In this study, we used Guttman Scaling to compare modal progression of ectocranial suture fusion among Hominidae (Homo, Pan, Gorilla, and Pongo), Hylobates, and Cercopithecidae (Macaca and Papio) groups. Our hypothesis is that suture fusion patterns should reflect their evolutionary relationship. For the lateral-anterior suture sites there appear to be three major patterns of fusion, one shared by Homo-Pan-Gorilla, anterior to posterior; one shared by Pongo and Hylobates, superior to inferior; and one shared by Cercopithecidae, posterior to anterior. For the vault suture pattern, the Hominidae groups reflect the known phylogeny. The data for Hylobates and Cercopithecidae groups is less clear. The vault suture site termination pattern of Papio is similar to that reported for Gorilla and Pongo. Thus, it may be that some suture sites are under larger genetic influence for patterns of fusion, while others are influenced by environmental/biomechanic influences. Copyright © 2013 Wiley Periodicals, Inc.

  11. Biomechanical differences of the anterior and posterior bands of the ulnar collateral ligament of the elbow.

    PubMed

    Jackson, Timothy J; Jarrell, Shelby E; Adamson, Gregory J; Chung, Kyung Chil; Lee, Thay Q

    2016-07-01

    The main purpose of this study was to examine the functional characteristics of the anterior and posterior bands of the anterior bundle of the ulnar collateral ligament (UCL). Six cadaveric elbows were tested using a digital tracking system to measure the strain in the anterior band and posterior band of the anterior bundle of the UCL throughout a flexion/extension arc. The specimens were then placed in an Instron materials testing machine and loaded to failure to determine yield load and ultimate load of the UCL. The posterior band showed a linear increase in strain with increasing degrees of elbow flexion while the anterior band showed minimal change in strain throughout. The bands showed similar strain at yield load and ultimate load, demonstrating similar intrinsic properties. The anterior band of the anterior bundle of the UCL shows an isometric strain pattern through elbow range of motion, while the posterior band shows an increasing strain pattern in higher degrees of elbow flexion. Both bands show similar strain in a load to failure model, indicating insertion point, not intrinsic differences, of the bands determine the function of the anterior bundle of the UCL. This demonstrates a biomechanical rationale for UCL reconstructions using single point anatomical insertion points.

  12. Specification of posterior midbrain region in zebrafish neuroepithelium.

    PubMed

    Miyagawa, T; Amanuma, H; Kuroiwa, A; Takeda, H

    1996-04-01

    The developing vertebrate nervous system displays a pronounced anterior-posterior (A-P) pattern, but the mechanism that generates this pattern is poorly understood. We examined through cell-transplantation experiments, when and how the cells in the zebrafish posterior midbrain acquire regional specificity along the A-P axis as shown by pax[b] gene expression. Labelled donor cells from the presumptive midbrain region at various stages were transplanted into more anterior part of unlabelled host embryos of the same developmental stage, and the expression of pax[b] in the donor cells were examined by in situ hybridization. The results indicated that, in the cells from the presumptive midbrain region, expression of pax[b] was determined as early as the 55%-epiboly (6.5 h, early gastrulation) when the underlying hypoblastic layer reached the presumptive midbrain region. We also found that when transplanted heterotopically, anterior, but not posterior, hypoblast cells induced expression of pax[b] in the overlying ectoderm. Expression of a midbrain specific gene is determined during early gastrulation and the hypoblastic layer plays an important role in this determination process.

  13. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest.

    PubMed

    Escriva, Hector; Holland, Nicholas D; Gronemeyer, Hinrich; Laudet, Vincent; Holland, Linda Z

    2002-06-01

    Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5' untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA shifts pharyngeal expression of AmphiTR2/4 anteriorly, while BMS009 extends it posteriorly. Collectively, our results suggest a model for anteroposterior patterning of the amphioxus nerve cord and pharynx, which is probably applicable to vertebrates as well, in which a low anterior level of AmphiRAR (caused, at least in part, by competitive inhibition by AmphiTR2/4) is necessary for patterning the forebrain and formation of gill slits, the posterior extent of both being set by a sharp increase in the level of AmphiRAR. Supplemental data available on-line

  14. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest

    NASA Technical Reports Server (NTRS)

    Escriva, Hector; Holland, Nicholas D.; Gronemeyer, Hinrich; Laudet, Vincent; Holland, Linda Z.

    2002-01-01

    Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5' untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA shifts pharyngeal expression of AmphiTR2/4 anteriorly, while BMS009 extends it posteriorly. Collectively, our results suggest a model for anteroposterior patterning of the amphioxus nerve cord and pharynx, which is probably applicable to vertebrates as well, in which a low anterior level of AmphiRAR (caused, at least in part, by competitive inhibition by AmphiTR2/4) is necessary for patterning the forebrain and formation of gill slits, the posterior extent of both being set by a sharp increase in the level of AmphiRAR. Supplemental data available on-line.

  15. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC) in Schizophrenia.

    PubMed

    Chechko, Natalia; Cieslik, Edna C; Müller, Veronika I; Nickl-Jockschat, Thomas; Derntl, Birgit; Kogler, Lydia; Aleman, André; Jardri, Renaud; Sommer, Iris E; Gruber, Oliver; Eickhoff, Simon B

    2018-01-01

    In schizophrenia (SCZ), dysfunction of the dorsolateral prefrontal cortex (DLPFC) has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior) based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC) profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI) scans were obtained from 120 patients and 172 healthy controls (HC) at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.

  16. Regeneration mechanisms in Syllidae (Annelida)

    PubMed Central

    Ribeiro, Rannyele P.

    2018-01-01

    Abstract Syllidae is one of the most species‐rich groups within Annelida, with a wide variety of reproductive modes and different regenerative processes. Syllids have striking ability to regenerate their body anteriorly and posteriorly, which in many species is redeployed during sexual (schizogamy) and asexual (fission) reproduction. This review summarizes the available data on regeneration in syllids, covering descriptions of regenerative mechanisms in different species as well as regeneration in relation to reproductive modes. Our survey shows that posterior regeneration is widely distributed in syllids, whereas anterior regeneration is limited in most of the species, excepting those reproducing by fission. The latter reproductive mode is well known for a few species belonging to Autolytinae, Eusyllinae, and Syllinae. Patterns of fission areas have been studied in these animals. Deviations of the regular regeneration pattern or aberrant forms such as bifurcated animals or individuals with multiple heads have been reported for several species. Some of these aberrations show a deviation of the bilateral symmetry and antero‐posterior axis, which, interestingly, can also be observed in the regular branching body pattern of some species of syllids. PMID:29721325

  17. Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking.

    PubMed

    Kim, Woo-Sub

    2016-10-01

    This study was performed to investigate whether components from trunk progression (TP) and step length were related to step length asymmetry in walking in patients with hemiparesis. Gait analysis was performed for participants with hemiparesis and healthy controls. The distance between the pelvis and foot in the anterior-posterior axis was calculated at initial-contact. Step length was partitioned into anterior foot placement (AFP) and posterior foot placement (PFP). TP was partitioned into anterior trunk progression (ATP) and posterior trunk progression (PTP). The TP pattern and step length pattern were defined to represent intra-TP and intra-step spatial balance, respectively. Of 29 participants with hemiparesis, nine participants showed longer paretic step length, eight participants showed symmetric step length, and 12 participants showed shorter paretic step length. For the hemiparesis group, linear regression analysis showed that ATP asymmetry, AFP asymmetry, and TP patterns had significant predictability regarding step length asymmetry. Prolonged paretic ATP and shortened paretic AFP was the predominant pattern in the hemiparesis group, even in participants with symmetric step length. However, some participants showed same direction of ATP and AFP asymmetry. These findings indicate the following: (1) ATP asymmetries should be observed to determine individual characteristics of step length asymmetry, and (2) TP patterns can provide complementary information for non-paretic limb compensation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structural whole-brain covariance of the anterior and posterior hippocampus: Associations with age and memory.

    PubMed

    Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig

    2018-02-01

    The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.

  19. Correct Patterning of the Primitive Streak Requires the Anterior Visceral Endoderm

    PubMed Central

    Stuckey, Daniel W.; Di Gregorio, Aida; Clements, Melanie; Rodriguez, Tristan A.

    2011-01-01

    Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE). AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE) by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo. PMID:21445260

  20. Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells.

    PubMed

    Múnera, Jorge O; Wells, James M

    2017-01-01

    Over the past several decades, developmental biologists have discovered fundamental mechanisms by which organs form in developing embryos. With this information it is now possible to generate human "organoids" by the stepwise differentiation of human pluripotent stem cells using a process that recapitulates organ development. For the gastrointestinal tract, one of the first key steps is the formation of definitive endoderm and mesoderm, a process that relies on the TGFb molecule Nodal. Endoderm is then patterned along the anterior-posterior axis, with anterior endoderm forming the foregut and posterior endoderm forming the mid and hindgut. A-P patterning of the endoderm is accomplished by the combined activities of Wnt, BMP, and FGF. High Wnt and BMP promote a posterior fate, whereas repressing these pathways promotes an anterior endoderm fate. The stomach derives from the posterior foregut and retinoic acid signaling is required for promoting a posterior foregut fate. The small and large intestine derive from the mid and hindgut, respectively.These stages of gastrointestinal development can be precisely manipulated through the temporal activation and repression of the pathways mentioned above. For example, stimulation of the Nodal pathway with the mimetic Activin A, another TGF-β superfamily member, can trigger the differentiation of pluripotent stem cells into definitive endoderm (D'Amour et al., Nat Biotechnol 23:1534-1541, 2005). Exposure of definitive endoderm to high levels of Wnt and FGF promotes the formation of posterior endoderm and mid/hindgut tissue that expresses CDX2. Mid-hindgut spheroids that are cultured in a three-dimensional matrix form human intestinal organoids (HIOs) that are small intestinal in nature Spence et al., Nature 2011. In contrast, activation of FGF and Wnt in the presence of the BMP inhibitor Noggin promotes the formation of anterior endoderm and foregut tissues that express SOX2. These SOX2-expressing foregut spheroids can be further patterned into posterior foregut by addition of retinoic acid. Once formed, these posterior foregut spheroids can be grown in three-dimensional human gastric organoids (HGOs) that have all of the cell types of antral part of the stomach (Mc Cracken et al. 2014).Here, we describe the detailed methods for generating stomach/human gastric organoids (HGOs) and human intestinal organoids (HIOs) from human pluripotent stem cells. We first present a method for generating definitive endoderm from pluripotent stem cells followed by differentiation of definitive endoderm into either posterior foregut spheroids or mid-hindgut spheroids. We then describe how three-dimensional culturing of these spheroids results in the formation of HGOs and HIOs, respectively.

  1. Thalamus surface shape deformity in obsessive-compulsive disorder and schizophrenia.

    PubMed

    Kang, Do-Hyung; Kim, Sun Hyung; Kim, Chi-Won; Choi, Jung-Seok; Jang, Joon Hwan; Jung, Myung Hun; Lee, Jong-Min; Kim, Sun I; Kwon, Jun Soo

    2008-04-16

    The authors performed a three-dimensional shape deformation analysis to clarify the various patterns of specific thalamic nuclei abnormality using three age-matched and sex-matched groups of 22 patients with obsessive-compulsive disorder (OCD), 22 patients with schizophrenia and 22 control participants. Compared with the healthy volunteers, the anterior, lateral outward surface deformities of the thalamus were significant in OCD patients, whereas the posterior, medial outward deformities of the thalamus were prominent in schizophrenia patients. In terms of thalamic asymmetry, both OCD and schizophrenia patients exhibited the loss of a leftward pattern of asymmetry on the posterior, medial surface of the thalamus. Different patterns of shape abnormality of specific thalamic nuclei may be related to the different phenomenology of OCD and schizophrenia.

  2. Simultaneous avulsion fracture of the posterior medial and posterior lateral meniscus root: a case report and review of the literature.

    PubMed

    Feucht, Matthias J; Salzmann, Gian M; Pestka, Jan M; Südkamp, Norbert P; Niemeyer, Philipp

    2014-04-01

    Injuries of the meniscus roots are increasingly recognized as a serious knee joint pathology. An avulsion fracture of the meniscus root is a rare variant of this injury pattern. In this article, a case of a traumatic simultaneous avulsion fracture of both the posterior medial and posterior lateral meniscus root associated with a tear of the anterior cruciate ligament is presented. Both avulsion fractures were treated by indirect arthroscopic transtibial pullout fixation of the bony fragment. Based on the findings of our literature review, root avulsion fractures seem to be more common in young male patients after an acute trauma to the knee joint.

  3. Variations in the branching pattern of posterior division of mandibular nerve: a case report.

    PubMed

    Muraleedharan, Aparna; Veeramani, Raveendranath; Chand, Parkash

    2014-11-01

    Abnormal communications among the branches of mandibular nerve especially the posterior division are significant due to various procedures undertaken in this region. These variations are worth reporting as they pose serious implications in several interventions in this region, and may even lead to false diagnosis. During routine dissection, the mandibular nerve and its branches were dissected in the infratemporal fossa. The branches from the posterior division of the mandibular nerve namely the inferior alveolar and auriculotemporal nerves were carefully dissected, and their abnormal branching pattern was noted. There was a communicating branch between left inferior alveolar and auriculotemporal nerve. There was also a variant recurrent branch from the left inferior alveolar nerve that supplied the lateral pterygoid muscle. Such variant branches and communications between the branches of mandibular nerve as seen in this case have an embryological basis and are clinically important in this region especially for dental surgeries and anesthesia.

  4. Alternating Wolff-Parkinson-White syndrome associated with attack of angina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangiafico, R.A.; Petralito, A.; Grimaldi, D.R.

    1990-07-01

    In a patient with Wolff-Parkinson-White syndrome and an inferior-posterior bypass tract, transient restoration of normal conduction occurred during an attack of angina. The ECG pattern of inferior posterior ischemia was present when the conduction was normal. Thallium scintigraphy showed a reversible posterolateral perfusion defect. The possible mechanisms for production of intermittent preexcitation are discussed.

  5. A Cognitive and Affective Pattern in Posterior Fossa Strokes in Children: A Case Series

    ERIC Educational Resources Information Center

    Kossorotoff, Manoelle; Gonin-Flambois, Coralie; Gitiaux, Cyril; Quijano, Susana; Boddaert, Nathalie; Bahi-Buisson, Nadia; Barnerias, Christine; Dulac, Olivier; Brunelle, Francis; Desguerre, Isabelle

    2010-01-01

    Aim: Posterior fossa strokes account for about 10% of ischaemic strokes in children. Although motor and dysautonomic symptoms are common, to our knowledge cognitive and affective deficits have not been described in the paediatric literature. Our aim, therefore, was to describe these symptoms and deficits. Method: In a retrospective study, we…

  6. Bilambdoid and posterior sagittal synostosis: the Mercedes Benz syndrome.

    PubMed

    Moore, M H; Abbott, A H; Netherway, D J; Menard, R; Hanieh, A

    1998-09-01

    A consistent pattern of craniosynostosis in the sagittal and bilateral lambdoid sutures is described in three patients. The external cranial ridging associated with fusion of these sutures produces a characteristic triradiate, or "Mercedes Benz," appearance to the posterior skull. Locally marked growth restriction is evident in the posterior fossa with compensatory secondary expansion of the anterior fossa manifesting a degree of frontal bossing which mimics bicoronal synostosis. Although this appearance could lead to inadvertent surgery in the frontal region, attention to the occipital region with wide early suture excision and vault shaping is indicated.

  7. Analysis of PITFL injuries in rotationally unstable ankle fractures.

    PubMed

    Warner, Stephen J; Garner, Matthew R; Schottel, Patrick C; Hinds, Richard M; Loftus, Michael L; Lorich, Dean G

    2015-04-01

    Reduction and stabilization of the syndesmosis in unstable ankle fractures is important for ankle mortise congruity and restoration of normal tibiotalar contact forces. Of the syndesmotic ligaments, the posterior inferior tibiofibular ligament (PITFL) provides the most strength for maintaining syndesmotic stability, and previous work has demonstrated the significance of restoring PITFL function when it remains attached to a posterior malleolus fracture fragment. However, little is known regarding the nature of a PITFL injury in the absence of a posterior malleolus fracture. The goal of this study was to describe the PITFL injury pattern based on magnetic resonance imaging (MRI) and intraoperative observation. A prospective database of all operatively treated ankle fractures by a single surgeon was used to identify all supination-external rotation (SER) types III and IV ankle fracture patients with complete preoperative orthogonal ankle radiographs and MRI. All patients with a posterior malleolus fracture were excluded. Using a combination of preoperative imaging and intraoperative findings, we analyzed the nature of injuries to the PITFL. In total, 185 SER III and IV operatively treated ankle fractures with complete imaging were initially identified. Analysis of the preoperative imaging and operative reports revealed 34% (63/185) had a posterior malleolus fracture and were excluded. From the remaining 122 ankle fractures, the PITFL was delaminated from the posterior malleolus in 97% (119/122) of cases. A smaller proportion (3%; 3/122) had an intrasubstance PITFL rupture. Accurate and stable syndesmotic reduction is a significant component of restoring the ankle mortise after unstable ankle fractures. In our large cohort of rotationally unstable ankle fractures without posterior malleolus fractures, we found that most PITFL injuries occur as a delamination off the posterior malleolus. This predictable PITFL injury pattern may be used to guide new methods for stabilizing the syndesmosis in these patients. Level IV, case series. © The Author(s) 2014.

  8. Developmental Control of Cell-Cycle Compensation Provides a Switch for Patterned Mitosis at the Onset of Chordate Neurulation.

    PubMed

    Ogura, Yosuke; Sasakura, Yasunori

    2016-04-18

    During neurulation of chordate ascidians, the 11th mitotic division within the epidermal layer shows a posterior-to-anterior wave that is precisely coordinated with the unidirectional progression of the morphogenetic movement. Here we show that the first sign of this patterned mitosis is an asynchronous anterior-to-posterior S-phase length and that mitotic synchrony is reestablished by a compensatory asynchronous G2-phase length. Live imaging combined with genetic experiments demonstrated that compensatory G2-phase regulation requires transcriptional activation of the G2/M regulator cdc25 by the patterning genes GATA and AP-2. The downregulation of GATA and AP-2 at the onset of neurulation leads to loss of compensatory G2-phase regulation and promotes the transition to patterned mitosis. We propose that such developmentally regulated cell-cycle compensation provides an abrupt switch to spatially patterned mitosis in order to achieve the coordination between mitotic timing and morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ictal speech and language dysfunction in adult epilepsy: Clinical study of 95 seizures.

    PubMed

    Dussaule, C; Cauquil, C; Flamand-Roze, C; Gagnepain, J-P; Bouilleret, V; Denier, C; Masnou, P

    2017-04-01

    To analyze the semiological characteristics of the language and speech disorders arising during epileptic seizures, and to describe the patterns of language and speech disorders that can predict laterality of the epileptic focus. This study retrospectively analyzed 95 consecutive videos of seizures with language and/or speech disorders in 44 patients admitted for diagnostic video-EEG monitoring. Laterality of the epileptic focus was defined according to electro-clinical correlation studies and structural and functional neuroimaging findings. Language and speech disorders were analyzed by a neurologist and a speech therapist blinded to these data. Language and/or speech disorders were subdivided into eight dynamic patterns: pure anterior aphasia; anterior aphasia and vocal; anterior aphasia and "arthria"; pure posterior aphasia; posterior aphasia and vocal; pure vocal; vocal and arthria; and pure arthria. The epileptic focus was in the left hemisphere in more than 4/5 of seizures presenting with pure anterior aphasia or pure posterior aphasia patterns, while discharges originated in the right hemisphere in almost 2/3 of seizures presenting with a pure vocal pattern. No laterality value was found for the other patterns. Classification of the language and speech disorders arising during epileptic seizures into dynamic patterns may be useful for the optimal analysis of anatomo-electro-clinical correlations. In addition, our research has led to the development of standardized tests for analyses of language and speech disorders arising during seizures that can be conducted during video-EEG sessions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Attention to Distinct Goal-relevant Features Differentially Guides Semantic Knowledge Retrieval.

    PubMed

    Hanson, Gavin K; Chrysikou, Evangelia G

    2017-07-01

    A critical aspect of conceptual knowledge is the selective activation of goal-relevant aspects of meaning. Although the contributions of ventrolateral prefrontal and posterior temporal areas to semantic cognition are well established, the precise role of posterior parietal cortex in semantic control remains unknown. Here, we examined whether this region modulates attention to goal-relevant features within semantic memory according to the same principles that determine the salience of task-relevant object properties during visual attention. Using multivoxel pattern analysis, we decoded attentional referents during a semantic judgment task, in which participants matched an object cue to a target according to concrete (i.e., color, shape) or abstract (i.e., function, thematic context) semantic features. The goal-relevant semantic feature participants attended to (e.g., color or shape, function or theme) could be decoded from task-associated cortical activity with above-chance accuracy, a pattern that held for both concrete and abstract semantic features. A Bayesian confusion matrix analysis further identified differential contributions to representing attentional demands toward specific object properties across lateral prefrontal, posterior temporal, and inferior parietal regions, with the dorsolateral pFC supporting distinctions between higher-order properties and the left intraparietal sulcus being the only region supporting distinctions across all semantic features. These results are the first to demonstrate that patterns of neural activity in the parietal cortex are sensitive to which features of a concept are attended to, thus supporting the contributions of posterior parietal cortex to semantic control.

  11. Differential Impact of Posterior Lesions in the Left and Right Hemisphere on Visual Category Learning and Generalization to Contrast Reversal

    ERIC Educational Resources Information Center

    Langguth, Berthold; Juttner, Martin; Landis, Theodor; Regard, Marianne; Rentschler, Ingo

    2009-01-01

    Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of…

  12. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos.

    PubMed

    Hunter, C P; Kenyon, C

    1996-10-18

    The early asymmetric cleavages of Caenorhabditis elegans embryos produce blastomeres with distinct developmental potentials. Here, we show that the caudal-like homeodomain protein PAL-1 is required to specify the somatic identity of one posterior blastomere in the 4 cell embryo. We find that pal-1 activity is sequentially restricted to this blastomere. First, at the 4 cell stage, it is translated only in the two posterior blastomeres. Then, its function is restricted to one of these blastomeres. This second targeting step is dependent on the activities of the posteriorly localized SKN-1 and asymmetrically segregated PIE-1 proteins. We propose that the segregation of PIE-1, combined with the temporal decay of SKN-1, targets pal-1 activity to this posterior lineage, thus coupling the regulation of this conserved posterior patterning gene to asymmetric cell cleavages.

  13. Topography of acute stroke in a sample of 439 right brain damaged patients.

    PubMed

    Sperber, Christoph; Karnath, Hans-Otto

    2016-01-01

    Knowledge of the typical lesion topography and volumetry is important for clinical stroke diagnosis as well as for anatomo-behavioral lesion mapping analyses. Here we used modern lesion analysis techniques to examine the naturally occurring lesion patterns caused by ischemic and by hemorrhagic infarcts in a large, representative acute stroke patient sample. Acute MR and CT imaging of 439 consecutively admitted right-hemispheric stroke patients from a well-defined catchment area suffering from ischemia (n = 367) or hemorrhage (n = 72) were normalized and mapped in reference to stereotaxic anatomical atlases. For ischemic infarcts, highest frequencies of stroke were observed in the insula, putamen, operculum and superior temporal cortex, as well as the inferior and superior occipito-frontal fascicles, superior longitudinal fascicle, uncinate fascicle, and the acoustic radiation. The maximum overlay of hemorrhages was located more posteriorly and more medially, involving posterior areas of the insula, Heschl's gyrus, and putamen. Lesion size was largest in frontal and anterior areas and lowest in subcortical and posterior areas. The large and unbiased sample of stroke patients used in the present study accumulated the different sub-patterns to identify the global topographic and volumetric pattern of right hemisphere stroke in humans.

  14. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian.

    PubMed

    Kanska, Justyna; Frank, Uri

    2013-07-15

    Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.

  15. Learning and recall of form discriminations during reversible cooling deactivation of ventral-posterior suprasylvian cortex in the cat.

    PubMed Central

    Lomber, S G; Payne, B R; Cornwell, P

    1996-01-01

    Extrastriate visual cortex of the ventral-posterior suprasylvian gyrus (vPS cortex) of freely behaving cats was reversibly deactivated with cooling to determine its role in performance on a battery of simple or masked two-dimensional pattern discriminations, and three-dimensional object discriminations. Deactivation of vPS cortex by cooling profoundly impaired the ability of the cats to recall the difference between all previously learned pattern and object discriminations. However, the cats' ability to learn or relearn pattern and object discriminations while vPS was deactivated depended upon the nature of the pattern or object and the cats' prior level of exposure to them. During cooling of vPS cortex, the cats could neither learn the novel object discriminations nor relearn a highly familiar masked or partially occluded pattern discrimination, although they could relearn both the highly familiar object and simple pattern discriminations. These cooling-induced deficits resemble those induced by cooling of the topologically equivalent inferotemporal cortex of monkeys and provides evidence that the equivalent regions contribute to visual processing in similar ways. Images Fig. 1 Fig. 3 PMID:8643686

  16. En Face Optical Coherence Tomography for Visualization of the Choroid.

    PubMed

    Savastano, Maria Cristina; Rispoli, Marco; Savastano, Alfonso; Lumbroso, Bruno

    2015-05-01

    To assess posterior pole choroid patterns in healthy eyes using en face optical coherence tomography (OCT). This observational study included 154 healthy eyes of 77 patients who underwent en face OCT. The mean age of the patients was 31.2 years (standard deviation: 13 years); 40 patients were women, and 37 patients were men. En face imaging of the choroidal vasculature was assessed using an OCT Optovue RTVue (Optovue, Fremont, CA). To generate an appropriate choroid image, the best detectable vessels in Haller's layer below the retinal pigment epithelium surface parallel plane were selected. Images of diverse choroidal vessel patterns at the posterior pole were observed and recorded with en face OCT. Five different patterns of Haller's layer with different occurrences were assessed. Pattern 1 (temporal herringbone) represented 49.2%, pattern 2 (branched from below) and pattern 3 (laterally diagonal) represented 14.2%, pattern 4 (doubled arcuate) was observed in 11.9%, and pattern 5 (reticular feature) was observed in 10.5% of the reference plane. In vivo assessment of human choroid microvasculature in healthy eyes using en face OCT demonstrated five different patterns. The choroid vasculature pattern may play a role in the origin and development of neuroretinal pathologies, with potential importance in chorioretinal diseases and circulatory abnormalities. Copyright 2015, SLACK Incorporated.

  17. Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus

    PubMed Central

    2013-01-01

    Background Hox genes encode transcription factors that have an ancestral role in all bilaterian animals in specifying regions along the antero-posterior axis. In arthropods (insects, crustaceans, myriapods and chelicerates), Hox genes function to specify segmental identity, and changes in Hox gene expression domains in different segments have been causal to the evolution of novel arthropod morphologies. Despite this, the roles of Hox genes in arthropods that have secondarily lost or reduced their segmental composition have been relatively unexplored. Recent data suggest that acariform mites have a reduced segmental component of their posterior body tagma, the opisthosoma, in that only two segments are patterned during embryogenesis. This is in contrast to the observation that in many extinct and extant chelicerates (that is, horseshoe crabs, scorpions, spiders and harvestmen) the opisthosoma is comprised of ten or more segments. To explore the role of Hox genes in this reduced body region, we followed the expression of the posterior-patterning Hox genes Ultrabithorax (Ubx) and Abdominal-B (Abd-B), as well as the segment polarity genes patched (ptc) and engrailed (en), in the oribatid mite Archegozetes longisetosus. Results We find that the expression patterns of ptc are in agreement with previous reports of a reduced mite opisthosoma. In comparison to the ptc and en expression patterns, we find that Ubx and Abd-B are expressed in a single segment in A. longisetosus, the second opisthosomal segment. Abd-B is initially expressed more posteriorly than Ubx, that is, into the unsegmented telson; however, this domain clears in subsequent stages where it remains in the second opisthosomal segment. Conclusions Our findings suggest that Ubx and Abd-B are expressed in a single segment in the opisthosoma. This is a novel observation, in that these genes are expressed in several segments in all studied arthropods. These data imply that a reduction in opisthosomal segmentation may be tied to a dramatically reduced Hox gene input in the opisthosoma. PMID:23991696

  18. Network modulation during complex syntactic processing

    PubMed Central

    den Ouden, Dirk-Bart; Saur, Dorothee; Mader, Wolfgang; Schelter, Björn; Lukic, Sladjana; Wali, Eisha; Timmer, Jens; Thompson, Cynthia K.

    2011-01-01

    Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian model selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing. PMID:21820518

  19. Fine dissection of the tarsal tunnel in 60 cases

    PubMed Central

    Yang, Y.; Du, M. L.; Fu, Y. S.; Liu, W.; Xu, Q.; Chen, X.; Hao, Y. J.; Liu, Z.; Gao, M. J.

    2017-01-01

    The fine dissection of nerves and blood vessels in the tarsal tunnel is necessary for clinical operations to provide anatomical information. A total of 60 feet from 30 cadavers were dissected. Two imaginary reference lines that passed through the tip of the medial malleolus were applied. A detailed description of the branch pattern and the corresponding position of the posterior tibial nerve, posterior tibial artery, medial calcaneal nerve and medial calcaneal artery was provided, and the measured data were analyzed. Our results can be summarized as follows. I. A total of 81.67% of the bifurcation points of the posterior tibial nerve, which was divided into the medial and lateral plantar nerves, were located within the tarsal tunnel, not distal to the tarsal tunnel. II. The bifurcation points of the posterior tibial artery were all located in the tarsal tunnel. Almost all of the bifurcation points of the posterior tibial artery were lower than those of the posterior tibial nerve. The bifurcation point of the posterior tibial artery situated distal to the tarsal tunnel was not found. III. The number and the origin of the medial calcaneal nerves and arteries were highly variable. PMID:28398291

  20. Anteroposterior Patterning of Gene Expression in the Human Infant Sclera: Chondrogenic Potential and Wnt Signaling.

    PubMed

    Seko, Yuko; Azuma, Noriyuki; Yokoi, Tadashi; Kami, Daisuke; Ishii, Ryuga; Nishina, Sachiko; Toyoda, Masashi; Shimokawa, Hitoyata; Umezawa, Akihiro

    2017-01-01

    Purpose/Aim: We sought to identify the anteroposterior spatial gene expression hierarchy in the human sclera to develop a hypothesis for axial elongation and deformity of the eyeball. We analyzed the global gene expression of human scleral cells derived from distinct parts of the human infant sclera obtained from surgically enucleated eyes with retinoblastoma, using Affymetrix GeneChip oligonucleotide arrays, and compared, in particular, gene expression levels between the anterior and posterior parts of the sclera. The ages of three donors were 10M, 4M, and 1Y9M. K-means clustering analysis of gene expression revealed that expression levels of cartilage-associated genes such as COLXIA and ACAN increased from the anterior to the posterior part of the sclera. Microarray analyses and RT-PCR data showed that the expression levels of MGP, COLXIA, BMP4, and RARB were significantly higher in the posterior than in the anterior sclera of two independent infant eyes. Conversely, expression levels of WNT2, DKK2, GREM1, and HOXB2 were significantly higher in the anterior sclera. Among several Wnt-family genes examined, WNT2B was found to be expressed at a significantly higher level in the posterior sclera, and the reverse order was observed for WNT2. The results of luciferase reporter assays suggested that a GSK-3β inhibitor stimulated Wnt/β-catenin signaling particularly strongly in the posterior sclera. The expression pattern of RARB, a myopia-related gene, was similar in three independent eyes. Chondrogenic potential was higher and Wnt/β-catenin signaling was more potently activated by a GSK-3β inhibitor in the posterior than in the anterior part of the human infant sclera. Although the differences in the gene expression profiles between the anterior and posterior sclera might be involved only in normal growth processes, this anteroposterior hierarchy in the sclera might contribute to disorders involving abnormal elongation and deformity of the eyeball, including myopia.

  1. Regional differences in hyoid muscle activity and length-dynamics during mammalian head-shaking

    PubMed Central

    Wentzel, Sarah E.; Konow, Nicolai; German, Rebecca Z.

    2010-01-01

    The sternohyoid (SH) and geniohyoid (GH) are antagonist strap-muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the sternohyoid exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the sternohyoid and geniohyoid muscles during an unrestrained, and vigorous head-shake behavior in an animal model of human head, neck and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several head revolutions. Using sonomicrometry and intramuscular EMG we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly and posterior) of each muscle. Changes in muscle length however, were more complex. In the SH, mid-belly length-change occurred out of phase with the anterior and posterior end-regions, but with a zero-lag timing; the anterior region shortened prior to the posterior. In the GH, the anterior region shortened prior to, and out of phase with the mid-belly and posterior regions. Head-shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length-dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these ‘simple hyoid strap muscles’ are more complex than textbooks often suggest. PMID:21370479

  2. Circumferential resection margin positivity after preoperative chemoradiotherapy based on magnetic resonance imaging for locally advanced rectal cancer: implication of boost radiotherapy to the involved mesorectal fascia.

    PubMed

    Kim, Kyung Hwan; Park, Min Jung; Lim, Joon Seok; Kim, Nam Kyu; Min, Byung Soh; Ahn, Joong Bae; Kim, Tae Il; Kim, Ho Geun; Koom, Woong Sub

    2016-04-01

    To identify patients who are at a higher risk of pathologic circumferential resection margin involvement using preoperative magnetic resonance imaging. Between October 2008 and November 2012, 165 patients with locally advanced rectal cancer (cT4 or cT3 with <2 mm distance from tumour to mesorectal fascia) who received preoperative chemoradiotherapy were analysed. The morphologic patterns on post-chemoradiotherapy magnetic resonance imaging were categorized into five patterns from Pattern A (most-likely negative pathologic circumferential resection margin) to Pattern E (most-likely positive pathologic circumferential resection margin). In addition, the location of mesorectal fascia involvement was classified as lateral, posterior and anterior. The diagnostic accuracy of the morphologic criteria was calculated using receiver operating characteristic curve analysis. Pathologic circumferential resection margin involvement was identified in 17 patients (10.3%). The diagnostic accuracy of predicting pathologic circumferential resection margin involvement was 0.73 using the five-scale magnetic resonance imaging pattern. The sensitivity, specificity, positive predictive value and negative predictive value for predicting pathologic circumferential resection margin involvement were 76.5, 65.5, 20.3 and 96.0%, respectively, when cut-off was set between Patterns C and D. On multivariate logistic regression, the magnetic resonance imaging patterns D and E (P= 0.005) and posterior or lateral mesorectal fascia involvement (P= 0.017) were independently associated with increased probability of pathologic circumferential resection margin involvement. The rate of pathologic circumferential resection margin involvement was 30.0% when the patient had Pattern D or E with posterior or lateral mesorectal fascia involvement. Patients who are at a higher risk of pathologic circumferential resection margin involvement can be identified using preoperative magnetic resonance imaging although the predictability is moderate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The association between the parenchymal neurological involvement and posterior uveitis in Behçet's syndrome.

    PubMed

    Bitik, Berivan; Tufan, Abdurrahman; Sahin, Kubilay; Sucullu Karadag, Yesim; Can Sandikci, Sevinc; Mercan, Ridvan; Ak, Fikri; Karaaslan, Yasar; Ozturk, Mehmet Akif; Goker, Berna; Haznedaroglu, Seminur

    2016-01-01

    Behçet's syndrome (BS) is a systemic vasculitis, which may involve multiple organ systems simultaneously. Clinical findings in BS often fit into well-recognized patterns, such as the association between papulo-pustular skin lesions and arthritis. We have recently observed a distinct pattern, in which a subtype of neuro-Behçet's syndrome (NBS) is often preceded by specific ophthalmic manifestations of the disease process. The purpose of this study is to evaluate the association between the parenchymal subtype of NBS and posterior uveitis (PU). We have retrospectively reviewed the clinical records of 295 patients with BS, who met the international classification criteria for BS, diagnosed at two major rheumatology clinics from 2010 to 2014. Patient demographics, ophthalmic examinations, clinical and radiologic patterns of neurological involvement were recorded. Manifestations of BS were classified as PU, NBS, vascular involvement, and arthritis. The association between clinical findings was analysed for statistical significance. Of the 295 patients, 100 had PU and 44 had NBS. 30 patients had parenchymal NBS and 14 had vascular NBS. Patients with PU were significantly more likely to have neurological involvement compared to those without PU (p<0.001; Odds Ratio: 3.924; 95% CI: 1.786-8.621). Rate of posterior uveitis was higher in patients with parenchymal NBS when compared to patients with vascular NBS, vascular BS or arthritis (63.3%, 21.4%, 22% and 4.2% respectively, p<0.001). Our findings suggest a clinically and statistically significant association between posterior uveitis and parenchymal type of neurologic involvement in BS. The development of posterior uveitis in a patient with previously diagnosed BS should be recognized as a "warning sign" for predisposition to neurologic involvement. These patients should be informed about the possible signs and symptoms of neurological involvement, which can cause very rapid and irreversible damage unless recognized and treated immediately.

  4. Ultra-wide-field and autofluorescence imaging of choroidal dystrophies.

    PubMed

    Yuan, Alex; Kaines, Andrew; Jain, Atul; Reddy, Shantan; Schwartz, Steven D; Sarraf, David

    2010-10-28

    The authors retrospectively identified 2 cases of gyrate atrophy, 3 cases of choroideremia, and 1 case of the carrier state of choroideremia who underwent ultra-wide-field fundus photography and fluorescein angiography. The findings were studied and compared to standard fundus photography and fluorescein angiography. Gyrate atrophy demonstrated a diffuse confluent extent of chorioretinal atrophy extending from the anterior to the posterior pole to the periphery. Choroideremia demonstrated a patchy irregular pattern of chorioretinal atrophy extending from the posterior pole to the periphery. Peripheral reticular degeneration without chorioretinal atrophy was appreciated in the carrier state. Ultra-wide-field imaging of these choroidal dystrophies demonstrated distinctive patterns that may aid in their identification and diagnosis. Copyright 2010, SLACK Incorporated.

  5. Anterior-posterior regionalized gene expression in the Ciona notochord

    PubMed Central

    Veeman, Michael

    2014-01-01

    Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133

  6. Anterior-posterior regionalized gene expression in the Ciona notochord.

    PubMed

    Reeves, Wendy; Thayer, Rachel; Veeman, Michael

    2014-04-01

    In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.

  7. Connectivity of Sleep- and Wake-Promoting Regions of the Human Hypothalamus During Resting Wakefulness.

    PubMed

    Boes, Aaron D; Fischer, David; Geerling, Joel C; Bruss, Joel; Saper, Clifford B; Fox, Michael D

    2018-05-29

    The hypothalamus is a central hub for regulating sleep-wake patterns, the circuitry of which has been investigated extensively in experimental animals. This work has identified a wake-promoting region in the posterior hypothalamus, with connections to other wake-promoting regions, and a sleep-promoting region in the anterior hypothalamus, with inhibitory projections to the posterior hypothalamus. It is unclear whether a similar organization exists in humans. Here, we use anatomical landmarks to identify homologous sleep and wake-promoting regions of the human hypothalamus and investigate their functional relationships using resting-state functional connectivity MRI in healthy awake participants. First, we identify a negative correlation (anticorrelation) between the anterior and posterior hypothalamus, two regions with opposing roles in sleep-wake regulation. Next, we show that hypothalamic connectivity predicts a pattern of regional sleep-wake changes previously observed in humans. Specifically, regions that are more positively correlated with the posterior hypothalamus and more negatively correlated with the anterior hypothalamus correspond to regions with the greatest change in cerebral blood flow between sleep-wake states. Taken together, these findings provide preliminary evidence relating a hypothalamic circuit investigated in animals to sleep-wake neuroimaging results in humans, with implications for our understanding of human sleep-wake regulation and the functional significance of anticorrelations.

  8. Specialization along the left superior temporal sulcus for auditory categorization.

    PubMed

    Liebenthal, Einat; Desai, Rutvik; Ellingson, Michael M; Ramachandran, Brinda; Desai, Anjali; Binder, Jeffrey R

    2010-12-01

    The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams.

  9. Speed regulation of genetic cascades allows for evolvability in the body plan specification of insects

    PubMed Central

    Zhu, Xin; Rudolf, Heike; Healey, Lucas; François, Paul; Brown, Susan J.; Klingler, Martin; El-Sherif, Ezzat

    2017-01-01

    During the anterior−posterior fate specification of insects, anterior fates arise in a nonelongating tissue (called the “blastoderm”), and posterior fates arise in an elongating tissue (called the “germband”). However, insects differ widely in the extent to which anterior−posterior fates are specified in the blastoderm versus the germband. Here we present a model in which patterning in both the blastoderm and germband of the beetle Tribolium castaneum is based on the same flexible mechanism: a gradient that modulates the speed of a genetic cascade of gap genes, resulting in the induction of sequential kinematic waves of gap gene expression. The mechanism is flexible and capable of patterning both elongating and nonelongating tissues, and hence converting blastodermal to germband fates and vice versa. Using RNAi perturbations, we found that blastodermal fates could be shifted to the germband, and germband fates could be generated in a blastoderm-like morphology. We also suggest a molecular mechanism underlying our model, in which gradient levels regulate the switch between two enhancers: One enhancer is responsible for sequential gene activation, and the other is responsible for freezing temporal rhythms into spatial patterns. This model is consistent with findings in Drosophila melanogaster, where gap genes were found to be regulated by two nonredundant “shadow” enhancers. PMID:28973882

  10. Content Representation in the Human Medial Temporal Lobe

    PubMed Central

    Liang, Jackson C.; Wagner, Anthony D.

    2013-01-01

    Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pathways, empirical data for content-based MTL subregional dissociations are mixed. Here, we combined functional magnetic resonance imaging with multiple statistical approaches to characterize MTL subregional responses to different classes of novel event content (faces, scenes, spoken words, sounds, visual words). Univariate analyses revealed that responses to novel faces and scenes were distributed across the anterior–posterior axis of MTL cortex, with face responses distributed more anteriorly than scene responses. Moreover, multivariate pattern analyses of perirhinal and parahippocampal data revealed spatially organized representational codes for multiple content classes, including nonpreferred visual and auditory stimuli. In contrast, anterior hippocampal responses were content general, with less accurate overall pattern classification relative to MTL cortex. Finally, posterior hippocampal activation patterns consistently discriminated scenes more accurately than other forms of content. Collectively, our findings indicate differential contributions of MTL subregions to event representation via a distributed code along the anterior–posterior axis of MTL that depends on the nature of event content. PMID:22275474

  11. Foxp2 Regulates Identities and Projection Patterns of Thalamic Nuclei During Development.

    PubMed

    Ebisu, Haruka; Iwai-Takekoshi, Lena; Fujita-Jimbo, Eriko; Momoi, Takashi; Kawasaki, Hiroshi

    2017-07-01

    The molecular mechanisms underlying the formation of the thalamus during development have been investigated intensively. Although transcription factors distinguishing the thalamic primordium from adjacent brain structures have been uncovered, those involved in patterning inside the thalamus are largely unclear. Here, we show that Foxp2, a member of the forkhead transcription factor family, regulates thalamic patterning during development. We found a graded expression pattern of Foxp2 in the thalamic primordium of the mouse embryo. The expression levels of Foxp2 were high in the posterior region and low in the anterior region of the thalamic primordium. In Foxp2 (R552H) knockin mice, which have a missense loss-of-function mutation in the forkhead domain of Foxp2, thalamic nuclei of the posterior region of the thalamus were shrunken, while those of the intermediate region were expanded. Consistently, Foxp2 (R552H) knockin mice showed changes in thalamocortical projection patterns. Our results uncovered important roles of Foxp2 in thalamic patterning and thalamocortical projections during development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  13. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  14. Changing patterns of brain activation during maze learning.

    PubMed

    Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F

    1998-05-18

    Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.

  15. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population.

    PubMed

    Prior, Simon; Mitchell, Tim; Whiteley, Rod; O'Sullivan, Peter; Williams, Benjamin K; Racinais, Sebastien; Farooq, Abdulaziz

    2014-03-27

    Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20-45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an "upright standing" reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may provide important insights into injury mechanisms and inform rehabilitation strategies.

  16. Different patterns of spontaneous brain activity between tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease: a resting-state fMRI study.

    PubMed

    Chen, Hui-Min; Wang, Zhi-Jiang; Fang, Jin-Ping; Gao, Li-Yan; Ma, Ling-Yan; Wu, Tao; Hou, Ya-Nan; Zhang, Jia-Rong; Feng, Tao

    2015-10-01

    Postural instability/gait difficulty (PIGD) and tremor-dominant (TD) subtypes of Parkinson's disease (PD) show different clinical manifestations; however, their underlying neural substrates remain incompletely understood. This study aimed at investigating the subtype-specific patterns of spontaneous brain activity in PD. Thirty-one patients with PD (12 TD/19 PIGD) and 22 healthy gender- and age-matched controls were recruited. Resting-state functional magnetic resonance imaging data were collected, and amplitude of low-frequency fluctuations (ALFF) was measured. Voxelwise one-way analysis of covariance and post hoc analyses of ALFF were performed among the three groups, with age and gender as covariates (levodopa daily dosage and gray matter volume as additional covariates for validation analysis). Correlations of clinical variables (e.g., disease duration and PIGD/tremor subscale score) with ALFF values were examined. Compared with controls, patients with TD exhibited higher ALFF in the right cerebellar posterior lobe and patients with PIGD exhibited lower ALFF in the bilateral putamen and cerebellar posterior lobe, and higher values primarily in several cortical areas including the inferior and superior temporal gyrus, superior frontal, and parietal gyrus. Compared with patients with PIGD, patients with TD had higher ALFF in the bilateral putamen and the cerebellar posterior lobe, as well as lower ALFF in the bilateral temporal gyrus and the left superior parietal lobule. In all patients, ALFF in the bilateral cerebellar posterior lobe positively correlated with tremor score and ALFF in the bilateral putamen negatively correlated with PIGD score. Different patterns of spontaneous neural activity in the cerebellum and putamen may underlie the neural substrate of PD motor subtypes. © 2015 John Wiley & Sons Ltd.

  17. Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo.

    PubMed

    Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E

    2005-08-18

    Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5) huntingtin deficient embryos. In the absence of huntingtin, expression of nutritive genes appears normal but E7.0-7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.

  18. Left-right analysis of mammary gland development in retinoid X receptor-α+/- mice.

    PubMed

    Robichaux, Jacqulyne P; Fuseler, John W; Patel, Shrusti S; Kubalak, Steven W; Hartstone-Rose, Adam; Ramsdell, Ann F

    2016-12-19

    Left-right (L-R) differences in mammographic parenchymal patterns are an early predictor of breast cancer risk; however, the basis for this asymmetry is unknown. Here, we use retinoid X receptor alpha heterozygous null (RXRα +/- ) mice to propose a developmental origin: perturbation of coordinated anterior-posterior (A-P) and L-R axial body patterning. We hypothesized that by analogy to somitogenesis-in which retinoic acid (RA) attenuation causes anterior somite pairs to develop L-R asynchronously-that RA pathway perturbation would likewise result in asymmetric mammary development. To test this, mammary glands of RXRα +/- mice were quantitatively assessed to compare left- versus right-side ductal epithelial networks. Unlike wild-type controls, half of the RXRα +/- thoracic mammary gland (TMG) pairs exhibited significant L-R asymmetry, with left-side reduction in network size. In RXRα +/- TMGs in which symmetry was maintained, networks had bilaterally increased size, with left networks showing greater variability in area and pattern. Reminiscent of posterior somites, whose bilateral symmetry is refractory to RA attenuation, inguinal mammary glands (IMGs) also had bilaterally increased network size, but no loss of symmetry. Together, these results demonstrate that mammary glands exhibit differential A-P sensitivity to RXRα heterozygosity, with ductal network symmetry markedly compromised in anterior but not posterior glands. As TMGs more closely model human breast development than IMGs, these findings raise the possibility that for some women, breast cancer risk may initiate with subtle axial patterning defects that result in L-R asymmetric growth and pattern of the mammary ductal epithelium.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  19. Regulating mechanical tension at compartment boundaries in Drosophila.

    PubMed

    Michel, Marcus; Dahmann, Christian

    2016-10-01

    During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.

  20. Bronchovascular anatomy of the upper lobes: evaluation with thin-section CT.

    PubMed

    Lee, K S; Bae, W K; Lee, B H; Kim, I Y; Choi, E W; Lee, B H

    1991-12-01

    The anatomy of the bronchovascular trees of the upper lobes was evaluated with thin-section computed tomography (CT) in 50 patients. In all patients, the subsegmental bronchi could be seen, except the right B2b, left B1 + 2c, and left B3c. Regular anatomic relationships were seen between the right A3b and B3b (A3b was seen along the medial aspect of B3b in 45 patients [90%]), right A2a and B2a (A2a was seen along the posteromedial aspect of B2a in 45 patients [90%]), and left A1 + 2c and B1 + 2c (A1 + 2c was seen along the posterior aspect of B1 + 2c in 41 patients [82%]). Four patterns of bronchial branching were seen in the left upper lobe. The lateral branch of the posterior segmental vein of the upper lobes was an anatomic landmark dividing the anterior and posterior segments of the upper lobes. Three kinds of venous drainage patterns were identified in both the right and left upper lobes.

  1. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration.

    PubMed

    Salser, S J; Kenyon, C

    1992-01-16

    Anterior-posterior patterning in insects, vertebrates and nematodes involves members of conserved Antennapedia-class homeobox gene clusters (HOM-C) that are thought to give specific body regions their identities. The effects of these genes on region-specific body structures have been described extensively, particularly in Drosophila, but little is known about how HOM-C genes affect the behaviours of cells that migrate into their domains of function. In Caenorhabditis elegans, the Antennapedia-like HOM-C gene mab-5 not only specifies postembryonic fates of cells in a posterior body region, but also influences the migration of mesodermal and neural cells that move through this region. Here we show that as one neuroblast migrates into this posterior region, it switches on mab-5 gene expression; mab-5 then acts as a developmental switch to control the migratory behaviour of the neuroblast descendants. HOM-C genes can therefore not only direct region-specific patterns of cell division and differentiation, but can also act within migrating cells to programme region-specific migratory behaviour.

  2. In vivo determination of total knee arthroplasty kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komistek, Richard D; Mahfouz, Mohamed R; Bertin, Kim

    2008-01-01

    The objective of this study was to determine if consistent posterior femoral rollback of an asymmetrical posterior cruciate retaining (PCR) total knee arthroplasty was mostly influenced by the implant design, surgical technique, or presence of a well-functioning posterior cruciate ligament (PCL). Three-dimensional femorotibial kinematics was determined for 80 subjects implanted by 3 surgeons, and each subject was evaluated under fluoroscopic surveillance during a deep knee bend. All subjects in this present study having an intact PCL had a well-functioning PCR knee and experienced normal kinematic patterns, although less in magnitude than the normal knee. In addition, a surprising finding wasmore » that, on average, subjects without a PCL still achieved posterior femoral rollback from full extension to maximum knee flexion. The findings in this study revealed that implant design did contribute to the normal kinematics demonstrated by subjects having this asymmetrical PCR total knee arthroplasty.« less

  3. Distinct hippocampal functional networks revealed by tractography-based parcellation.

    PubMed

    Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat

    2016-07-01

    Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.

  4. Evaluation of the performance of orthodontic devices using FBG sensors

    NASA Astrophysics Data System (ADS)

    Carvalho, L.; Roriz, P.; Frazão, O.; Marques, M. B.

    2015-04-01

    Cross-bite, as a malocclusion effect, is defined as a transversal changing of the upper dental arch, in relation to the lower arch, and may be classified as skeletal, dental or functional. As a consequence, the expansion of maxilla is an effective clinical treatment used to correct transversal maxillary discrepancy. The maxillary expansion is an ancient method used in orthodontics, for the correction of the maxillary athresia with posterior crossbite, through the opening of the midpalatal suture (disjunction), using orthodontic- orthopaedic devices. Same controversial discussion arises among the clinicians, about the effects of each orthodontic devices as also about the technique to be employed. The objective of this study was to compare the strain field induced by two different orthodontic devices, named disjunctor with and without a connecting bar, in an acrylic model jaw, using fiber Bragg grating sensors to measure the strain patterns. The orthodontic device disjunctor with the bar, in general, transmits higher forces and strain to teeth and maxillae, than with the disjunctor without bar. It was verified that the strain patterns were not symmetric between the left and the right sides as also between the posterior and anterior regions of the maxillae. For the two devices is also found that in addition a displacement in the horizontal plane, particularly in posterior teeth, also occurs a rotation corresponding to a vestibularization of the posterior teeth and their alveolar processes.

  5. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left–right patterning

    PubMed Central

    Beckers, Anja; Alten, Leonie; Viebahn, Christoph; Andre, Philipp; Gossler, Achim

    2007-01-01

    The mouse homeobox gene Noto represents the homologue of zebrafish floating head (flh) and is expressed in the organizer node and in the nascent notochord. Previous analyses suggested that Noto is required exclusively for the formation of the caudal part of the notochord. Here, we show that Noto is also essential for node morphogenesis, controlling ciliogenesis in the posterior notochord, and the establishment of laterality, whereas organizer functions in anterior–posterior patterning are apparently not compromised. In mutant embryos, left–right asymmetry of internal organs and expression of laterality markers was randomized. Mutant posterior notochord regions were variable in size and shape, cilia were shortened with highly irregular axonemal microtubuli, and basal bodies were, in part, located abnormally deep in the cytoplasm. The transcription factor Foxj1, which regulates the dynein gene Dnahc11 and is required for the correct anchoring of basal bodies in lung epithelial cells, was down-regulated in mutant nodes. Likewise, the transcription factor Rfx3, which regulates cilia growth, was not expressed in Noto mutants, and various other genes important for cilia function or assembly such as Dnahc5 and Nphp3 were down-regulated. Our results establish Noto as an essential regulator of node morphogenesis and ciliogenesis in the posterior notochord, and suggest Noto acts upstream of Foxj1 and Rfx3. PMID:17884984

  6. Surgical approach to cervical spondylotic myelopathy on the basis of radiological patterns of compression: prospective analysis of 129 cases

    PubMed Central

    Chaudhary, Kshitij; Sharma, Amit; Laheri, Vinod

    2008-01-01

    This is a prospective analysis of 129 patients operated for cervical spondylotic myelopathy (CSM). Paucity of prospective data on surgical management of CSM, especially multilevel CSM (MCM), makes surgical decision making difficult. The objectives of the study were (1) to identify radiological patterns of cord compression (POC), and (2) to propose a surgical protocol based on POC and determine its efficacy. Average follow-up period was 2.8 years. Following POCs were identified: POC I: one or two levels of anterior cord compression. POC II: one or two levels of anterior and posterior compression. POC III: three levels of anterior compression. POC III variant: similar to POC III, associated with significant medical morbidity. POC IV: three or more levels of anterior compression in a developmentally narrow canal or with multiple posterior compressions. POC IV variant: similar to POC IV with one or two levels, being more significant than the others. POC V: three or more levels of compression in a kyphotic spine. Anterior decompression and reconstruction was chosen for POC I, II and III. Posterior decompression was chosen in POC III variant because they had more incidences of preoperative morbidity, in spite of being radiologically similar to POC III. Posterior surgery was also performed for POC IV and IV variant. For POC IV variant a targeted anterior decompression was considered after posterior decompression. The difference in the mJOA score before and after surgery for patients in each POC group was statistically significant. Anterior surgery in MCM had better result (mJOA = 15.9) versus posterior surgery (mJOA = 14.96), the difference being statistically significant. No major graft-related complications occurred in multilevel groups. The better surgical outcome of anterior surgery in MCM may make a significant difference in surgical outcome in younger and fitter patients like those of POC III whose expectations out of surgery are more. Judicious choice of anterior or posterior approach should be made after individualizing each case. PMID:18946692

  7. High-resolution ultrasonic imaging of the posterior segment.

    PubMed

    Coleman, D Jackson; Silverman, Ronald H; Chabi, Almira; Rondeau, Mark J; Shung, K Kirk; Cannata, Jon; Lincoff, Harvey

    2004-07-01

    Conventional ophthalmic ultrasonography is performed using 10-megahertz (MHz) transducers. Our aim was to explore the use of higher frequency ultrasound to provide improved resolution of the posterior pole. Prospective case series. One normal subject and 5 subjects with pathologies affecting the posterior coats, including nevii, small melanomas, and macular hole. We modeled the frequency-dependent attenuation of ultrasound across the eye to develop an understanding of the range of frequencies that might be practically applied for imaging of the posterior pole. We compared images of the posterior coats made at 10, 15, and 20 MHz, and 20-MHz ultrasound images of pathologies with 10-MHz ultrasound and optical coherence tomography (OCT). Ability to resolve normal and pathologic structures affecting posterior coats of the eye. Modeling showed that frequencies of 20 to 25 MHz might be used for posterior pole imaging. Twenty-megahertz images allowed differentiation of the retina, choroid, and sclera. In addition, at 20 MHz the retina showed banding patterns suggesting an internal structure comparable in many respects to that seen in OCT and histology. Images of ocular pathology provided much improved detail relative to 10-MHz images and deeper penetration than OCT. Twenty-megahertz ultrasound can be practically employed for imaging of the posterior pole of the eye, providing a 2-fold improvement in resolution relative to conventional 10-MHz instruments. Although not providing the resolution of OCT, ultrasound can be used in the presence of optical opacities and allows evaluation of deeper tissue structures.

  8. Influence of maxillary posterior discrepancy on upper molar vertical position and facial vertical dimensions in subjects with or without skeletal open bite

    PubMed Central

    Aliaga-Del Castillo, Aron; Pérez-Vargas, Luis Fernando; Flores-Mir, Carlos

    2016-01-01

    Summary Objectives: To determine the influence of maxillary posterior discrepancy on upper molar vertical position and dentofacial vertical dimensions in individuals with or without skeletal open bite (SOB). Materials and methods: Pre-treatment lateral cephalograms of 139 young adults were examined. The sample was divided into eight groups categorized according to their sagittal and vertical skeletal facial growth pattern and maxillary posterior discrepancy (present or absent). Upper molar vertical position, overbite, lower anterior facial height and facial height ratio were measured. Independent t-test was performed to determine differences between the groups considering maxillary posterior discrepancy. Principal component analysis and MANCOVA test were also used. Results: No statistically significant differences were found comparing the molar vertical position according to maxillary posterior discrepancy for the SOB Class I group or the group with adequate overbite. Significant differences were found in SOB Class II and Class III groups. In addition, an increased molar vertical position was found in the group without posterior discrepancy. Limitations: Some variables closely related with the individual’s intrinsic craniofacial development that could influence the evaluated vertical measurements were not considered. Conclusions and implications: Overall maxillary posterior discrepancy does not appear to have a clear impact on upper molar vertical position or facial vertical dimensions. Only the SOB Class III group without posterior discrepancy had a significant increased upper molar vertical position. PMID:26385786

  9. Influence of maxillary posterior discrepancy on upper molar vertical position and facial vertical dimensions in subjects with or without skeletal open bite.

    PubMed

    Arriola-Guillén, Luis Ernesto; Aliaga-Del Castillo, Aron; Pérez-Vargas, Luis Fernando; Flores-Mir, Carlos

    2016-06-01

    To determine the influence of maxillary posterior discrepancy on upper molar vertical position and dentofacial vertical dimensions in individuals with or without skeletal open bite (SOB). Pre-treatment lateral cephalograms of 139 young adults were examined. The sample was divided into eight groups categorized according to their sagittal and vertical skeletal facial growth pattern and maxillary posterior discrepancy (present or absent). Upper molar vertical position, overbite, lower anterior facial height and facial height ratio were measured. Independent t-test was performed to determine differences between the groups considering maxillary posterior discrepancy. Principal component analysis and MANCOVA test were also used. No statistically significant differences were found comparing the molar vertical position according to maxillary posterior discrepancy for the SOB Class I group or the group with adequate overbite. Significant differences were found in SOB Class II and Class III groups. In addition, an increased molar vertical position was found in the group without posterior discrepancy. Some variables closely related with the individual's intrinsic craniofacial development that could influence the evaluated vertical measurements were not considered. Overall maxillary posterior discrepancy does not appear to have a clear impact on upper molar vertical position or facial vertical dimensions. Only the SOB Class III group without posterior discrepancy had a significant increased upper molar vertical position. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Source localization of small sharp spikes: low resolution electromagnetic tomography (LORETA) reveals two distinct cortical sources.

    PubMed

    Zumsteg, Dominik; Andrade, Danielle M; Wennberg, Richard A

    2006-06-01

    We have investigated the cortical sources and electroencephalographic (EEG) characteristics of small sharp spikes (SSS) by using statistical non-parametric mapping (SNPM) of low resolution electromagnetic tomography (LORETA). We analyzed 7 SSS patterns (501 individual SSS) in 6 patients who underwent sleep EEG studies with 29 or 23 scalp electrodes. The scalp signals were averaged time-locked to the SSS peak activity and subjected to SNPM of LORETA values. All 7 SSS patterns (mean 72 individual SSS, range 11-200) revealed a very similar and highly characteristic transhemispheric oblique scalp voltage distribution comprising a first negative field maximum over ipsilateral lateral temporal areas, followed by a second negative field maximum over the contralateral subtemporal region approximately 30 ms later. SNPM-LORETA consistently localized the first component into the ipsilateral posterior insular region, and the second component into ipsilateral posterior mesial temporo-occipital structures. SSS comprise an amalgam of two sequential, distinct cortical components, showing a very uniform and peculiar EEG pattern and cortical source solutions. As such, they must be clearly distinguished from interictal epileptiform discharges in patients with epilepsy. The awareness of these peculiar EEG characteristics may increase our ability to differentiate SSS from interictal epileptiform activity. The finding of a posterior insular source might serve as an inspiration for new physiological considerations regarding these enigmatic waveforms.

  11. The medial temporal lobes distinguish between within-item and item-context relations during autobiographical memory retrieval.

    PubMed

    Sheldon, Signy; Levine, Brian

    2015-12-01

    During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.

  12. Masticatory motor patterns in ungulates: a quantitative assessment of jaw-muscle coordination in goats, alpacas and horses.

    PubMed

    Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Hylander, William L

    2007-04-01

    We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.

  13. Evidence from tooth surface morphology for a posterior maxillary origin of the proteroglyph gang

    USGS Publications Warehouse

    Jackson, K.; Fritts, T.H.

    1995-01-01

    Although the front-fanged venom delivery system of the Elapidae is believed to be derived from an aglyphous or opisthoglyphous colubroid ancestor, opinion is divided as to the end of the maxilla on which the proteroglyph fang originated. This study was undertaken to determine whether the evolutionary precursor of the proteroglyph fang was (a) a grooved posterior fang which migrated anteriorly, or (b) an enlarged anterior tooth which secondarily developed a groove for the conduction of venom. The surface morphology of the maxillary teeth of colubrid genera was examined using scanning electron microscopy. Ridges present on the lingual and labial surfaces of anterior maxillary teeth and on the anterior and posterior surfaces of posterior maxillary teeth were identified as morphological markers of potential value in distinguishing the anterior and posterior maxillary teeth of colubrid snakes, and in determining the origin of the proteroglyph fang. Patterns of ridges on the surfaces of elapid fangs examined were found to be consistent with the hypothesis that the evolutionary precursor of the proteroglyph fang was an opisthoglyph fang which migrated anteriorly.

  14. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex

    PubMed Central

    Keidel, James L.; Ing, Leslie P.; Horner, Aidan J.

    2015-01-01

    It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or “schemas”). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. SIGNIFICANCE STATEMENT Memories are strengthened via consolidation. We investigated memory for lifelike events using video clips and showed that rehearsing their content dramatically boosts memory consolidation. Using MRI scanning, we measured patterns of brain activity while watching the videos and showed that, in a network of brain regions, similar patterns of brain activity are reinstated when rehearsing the same videos. Within the posterior cingulate, the strength of reinstatement predicted how well the videos were remembered a week later. The findings extend our knowledge of the brain regions important for creating long-lasting memories for complex, lifelike events. PMID:26511235

  15. The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis

    PubMed Central

    Rottschy, C.; Oberwelland, E.; Bzdok, D.; Fox, P. T.; Eickhoff, S. B.; Fink, G. R.; Konrad, K.

    2016-01-01

    The right temporoparietal junction (rTPJ) is frequently associated with different capacities that to shift attention to unexpected stimuli (reorienting of attention) and to understand others’ (false) mental state [theory of mind (ToM), typically represented by false belief tasks]. Competing hypotheses either suggest the rTPJ representing a unitary region involved in separate cognitive functions or consisting of subregions subserving distinct processes. We conducted activation likelihood estimation (ALE) meta-analyses to test these hypotheses. A conjunction analysis across ALE meta-analyses delineating regions consistently recruited by reorienting of attention and false belief studies revealed the anterior rTPJ, suggesting an overarching role of this specific region. Moreover, the anatomical difference analysis unravelled the posterior rTPJ as higher converging in false belief compared with reorienting of attention tasks. This supports the concept of an exclusive role of the posterior rTPJ in the social domain. These results were complemented by meta-analytic connectivity mapping (MACM) and resting-state functional connectivity (RSFC) analysis to investigate whole-brain connectivity patterns in task-constrained and task-free brain states. This allowed for detailing the functional separation of the anterior and posterior rTPJ. The combination of MACM and RSFC mapping showed that the posterior rTPJ has connectivity patterns with typical ToM regions, whereas the anterior part of rTPJ co-activates with the attentional network. Taken together, our data suggest that rTPJ contains two functionally fractionated subregions: while posterior rTPJ seems exclusively involved in the social domain, anterior rTPJ is involved in both, attention and ToM, conceivably indicating an attentional shifting role of this region. PMID:24915964

  16. The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses

    PubMed Central

    Reynolds, Jeremy R.; O'Reilly, Randall C.; Cohen, Jonathan D.; Braver, Todd S.

    2012-01-01

    The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms. PMID:22355309

  17. Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology: An ultrasonographic and electromyographic study with age-matched controls.

    PubMed

    Rathi, Sangeeta; Taylor, Nicholas F; Soo, Brendan; Green, Rodney A

    2018-03-02

    To determine whether patients with symptomatic rotator cuff pathology had more glenohumeral joint translation and different patterns of rotator cuff muscle activity compared to controls. Repeated measurements of glenohumeral translation and muscle activity in two positions and six testing conditions in two groups. Twenty participants with a symptomatic and diagnosed rotator cuff tear and 20 age, and gender matched controls were included. Neuromuscular activity was tested by inserting intramuscular electrodes in the rotator cuff muscles. Anterior and posterior glenohumeral translations were measured using real time ultrasound in testing conditions (with and without translation force, with and without isometric internal and external rotation), in two positions (shoulder neutral, 90° of abduction) and two force directions (anterior, posterior). Symptomatic pathology group demonstrated increased passive glenohumeral translation with posterior translation force (p<0.05). Overall, rotator cuff muscle contraction in the pathology group limited joint translation in a similar manner to the control group, but they did not show the normal direction specific pattern in the neutral posterior position (p<0.03). The pathology group demonstrated reduced EMG activity in the upper infraspinatus muscle relative to the reference position (p<0.02) with anterior translation force and in the supraspinatus (p<0.05) muscle with anterior and posterior translation force in the abducted position. Symptomatic pathology resulted in increased passive glenohumeral joint translation. Although there were some reductions in muscle activity with injury, their rotator cuff still controlled glenohumeral translation. These results highlight the need to consider joint translation in the assessment and management of patients with rotator cuff injury. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Terminal branching pattern of the right coronary artery in left-dominant hearts: a cadaveric study.

    PubMed

    Gupta, Tulika; Saini, Abhimanyu; Sahni, Daisy

    2013-01-01

    Left coronary dominance has been reported to be associated with increased mortality and severity in case of myocardial ischemia involving left coronary artery. The present cadaveric study was proposed to objectively study and document the termination and branching pattern of the right coronary artery in left-coronary-dominant hearts in relation to the blood supply to the posterior surface of the right ventricle. Seventy-five cadaveric hearts were studied. The coronary vessels were injected with colored cellulose acetate butyrate and dissected. The coronary dominance was determined. In left-dominant hearts, branches and termination of the right coronary artery were studied. Left coronary dominance was found in 13% of the specimens. The number of ventricular branches was found to be present as 0, 1, 2, and 4 in two, four, two, and two of the cases, respectively. The average length of the ventricular branch was 12.7 mm with a range of 5-35 mm. The atrial branch was found in 50% of hearts, varying from 2 to 3 mm in length. In three hearts, the acute marginal artery did not give any posterior ventricular branch, while two, three, and five posterior ventricular branches were seen in four, two, and one heart(s), respectively. The length of the posterior ventricular arteries was between 5 and 15 mm. The RCA is an inconstant and unreliable source of posterior right ventricular perfusion in a significant percentage of population with left-coronary-dominant hearts. This might be the reason for the increased morbidity and mortality seen in the event of left coronary ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients.

    PubMed

    Zhu, Xueling; Wang, Xiang; Xiao, Jin; Liao, Jian; Zhong, Mingtian; Wang, Wei; Yao, Shuqiao

    2012-04-01

    Imaging studies have shown that major depressive disorder (MDD) is associated with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and MDD-related pathopsychological characteristics, such as depressive rumination and overgeneral autobiographical memory (OGM) phenomena, still remain unclear. Using independent component analysis, we analyzed resting-state functional magnetic resonance imaging data obtained from 35 first-episode, treatment-naive young adults with MDD and from 35 matched healthy control subjects. Patients with MDD exhibited higher levels of rumination and OGM than did the control subjects. We observed increased functional connectivity in the anterior medial cortex regions (especially the medial prefrontal cortex and anterior cingulate cortex) and decreased functional connectivity in the posterior medial cortex regions (especially the posterior cingulate cortex/precuneus) in MDD patients compared with control subjects. In the depressed group, the increased functional connectivity in the anterior medial cortex correlated positively with rumination score, while the decreased functional connectivity in the posterior medial cortex correlated negatively with OGM score. We report dissociation between anterior and posterior functional connectivity in resting-state DMNs of first-episode, treatment-naive young adults with MDD. Increased functional connectivity in anterior medial regions of the resting-state DMN was associated with rumination, whereas decreased functional connectivity in posterior medial regions was associated with OGM. These results provide new evidence for the importance of the DMN in the pathophysiology of MDD and suggest that abnormal DMN activity may be an MDD trait. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Redescription of Tintinnopsis cylindrica Daday, 1887 (Ciliophora: Spirotricha) and Unification of Tintinnid Terminology

    PubMed Central

    AGATHA, Sabine; RIEDEL-LORJÉ, Jeannette Cornelie

    2010-01-01

    Summary Although Tintinnopsis cylindrica Daday, 1887 is apparently widely distributed in the plankton of marine and brackish coastal waters, its ciliary pattern remained unknown. Without detailed knowledge of the cell morphology, however, the proposed synonymies cannot be proved. Hence, the cell and lorica features of T. cylindrica are redescribed from live and protargol-impregnated specimens collected in mixo-polyhaline basins at the German North Sea coast. An improved species diagnosis and a comprehensive unified terminology are provided. The somatic ciliary pattern of T. cylindrica is complex, comprising a ventral, dorsal, and posterior kinety as well as a right, left, and lateral ciliary field. Accordingly, the species differs from its congener T. cylindrata that has merely a right and left ciliary field and ventral organelles. On the other hand, the genera Codonella, Codonellopsis, Cymatocylis, Helicostomella, Leprotintinnus, and Stenosemella share this pattern. The oral primordium of T. cylindrica develops hypoapokinetally posterior to the lateral ciliary field as in Codonella cratera and Cymatocylis convallaria. PMID:20368769

  1. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion.

    PubMed

    Peelen, Marius V; Wiggett, Alison J; Downing, Paul E

    2006-03-16

    Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.

  2. Patterns of Failure After Proton Therapy in Medulloblastoma; Linear Energy Transfer Distributions and Relative Biological Effectiveness Associations for Relapses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Roshan V.; Giantsoudi, Drosoula; Raiford, Michael

    2014-03-01

    Purpose: The pattern of failure in medulloblastoma patients treated with proton radiation therapy is unknown. For this increasingly used modality, it is important to ensure that outcomes are comparable to those in modern photon series. It has been suggested this pattern may differ from photons because of variations in linear energy transfer (LET) and relative biological effectiveness (RBE). In addition, the use of matching fields for delivery of craniospinal irradiation (CSI) may influence patterns of relapse. Here we report the patterns of failure after the use of protons, compare it to that in the available photon literature, and determine themore » LET and RBE values in areas of recurrence. Methods and Materials: Retrospective review of patients with medulloblastoma treated with proton radiation therapy at Massachusetts General Hospital (MGH) between 2002 and 2011. We documented the locations of first relapse. Discrete failures were contoured on the original planning computed tomography scan. Monte Carlo calculation methods were used to estimate the proton LET distribution. Models were used to estimate RBE values based on the LET distributions. Results: A total of 109 patients were followed for a median of 38.8 months (range, 1.4-119.2 months). Of the patients, 16 experienced relapse. Relapse involved the supratentorial compartment (n=8), spinal compartment (n=11), and posterior fossa (n=5). Eleven failures were isolated to a single compartment; 6 failures in the spine, 4 failures in the supratentorium, and 1 failure in the posterior fossa. The remaining patients had multiple sites of disease. One isolated spinal failure occurred at the spinal junction of 2 fields. None of the 70 patients treated with an involved-field-only boost failed in the posterior fossa outside of the tumor bed. We found no correlation between Monte Carlo-calculated LET distribution and regions of recurrence. Conclusions: The most common site of failure in patients treated with protons for medulloblastoma was outside of the posterior fossa. The most common site for isolated local failure was the spine. We recommend consideration of spinal imaging in follow-up and careful attention to dose distribution in the spinal junction regions. Development of techniques that do not require field matching may be of benefit. We did not identify a direct correlation between lower LET values and recurrence in medulloblastoma patients treated with proton therapy. Patterns of failure do not appear to differ from those in patients treated with photon therapy.« less

  3. Two types of lateral extension in juvenile nasopharyngeal angiofibroma: diagnostic and therapeutic management.

    PubMed

    Szymańska, Anna; Szymański, Marcin; Czekajska-Chehab, Elżbieta; Szczerbo-Trojanowska, Małgorzata

    2015-01-01

    Juvenile nasopharyngeal angiofibroma is a benign, locally aggressive nasopharyngeal tumor. Apart from anterior lateral extension to the pterygopalatine fossa, it may spread laterally posterior to the pterygoid process, showing posterior lateral growth pattern, which is less common and more difficult to identify during surgery. We analyzed the routes of lateral spread, modalities useful in its diagnosis, the incidence of lateral extension and its influence on outcomes of surgical treatment. The records of 37 patients with laterally extending JNA treated at our institution between 1987 and 2011 were retrospectively evaluated. Computed tomography was performed in all patients and magnetic resonance imaging in 17 (46 %) patients. CT and MRI were evaluated to determine routes and extension of JNA lateral spread. Anterior lateral extension to the pterygopalatine fossa occurred in 36 (97 %) patients and further to the infratemporal fossa in 20 (54 %) patients. In 16 (43 %) cases posterior lateral spread was observed: posterior to the pterygoid process and/or between its plates. The recurrence rate was 29.7 % (11/37). The majority of residual lesions was located behind the pterygoid process (7/11). Recurrent disease occurred in 3/21 patients with anterior lateral extension, in 7/15 patients with both types of lateral extensions and in 1 patient with posterior lateral extension. JNA posterior lateral extension may spread behind the pterygoid process or between its plates. The recurrence rate in patients with anterior and/or posterior lateral extension is significantly higher than in patients with anterior lateral extension only. Both CT and MRI allow identification of the anterior and posterior lateral extensions.

  4. Development of the pelvis and posterior part of the vertebral column in the Anura

    PubMed Central

    Ročková, Hana; Roček, Zbyněk

    2005-01-01

    The anuran pelvic girdle is unique among all amphibians in that its acetabular portion is located far posterior to the sacrum, lateral to the postsacral (= caudal) vertebral column, which is reduced to a single rod-like element called the urostyle. This situation in the adult is strikingly different not only from that in ancestral temnospondyls but also in other modern amphibians. Because there is no fossil that would document this evolutionary anatomical modification except for Triadobatrachus, the only data may be inferred from development in modern anurans. We chose seven anuran species (belonging to the genera Discoglossus, Bombina, Pelobates, Bufo, Rana and Xenopus), representing the principal locomotory types (saltation, swimming, crawling and burrowing). Development of the pelvic girdle was studied on cleared and stained whole mounts and partly on serial histological sections. The basic developmental pattern was similar in all species: the pelvis on both sides develops from two centres (puboischiadic and iliac, respectively). The ilium then extends vertically towards the sacral vertebra and later rotates posteriorly so that ultimately the acetabulum is lateral to the tail (= urostyle). Only minor deviations from this pattern were found, mainly associated with differences in water and terrestrial dwelling. PMID:15679868

  5. Whole-brain patterns of (1)H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies.

    PubMed

    Su, L; Blamire, A M; Watson, R; He, J; Hayes, L; O'Brien, J T

    2016-08-30

    Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB.

  6. Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.

    PubMed

    Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene

    2007-01-01

    This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.

  7. CT incidence of Morel-Lavallee lesions in patients with pelvic fractures: a 4-year experience at a level 1 trauma center.

    PubMed

    Beckmann, Nicholas M; Cai, Chunyan

    2016-12-01

    The aim of this study is to determine the incidence and location of Morel-Lavallee lesions (MLLs) on pelvic CTs performed in evaluation of pelvic fractures and determine if correlation exists between MLLs and mechanism of injury or pelvic ring injury pattern. A retrospective review was performed of pelvic CTs on 1493 consecutive patients presenting with pelvic fractures at our level 1 trauma center. MLLs occurred in 182 of 1493 patients presenting with pelvic fractures. Statistical significance in MLL incidence was found across mechanism of injuries with MLLs being seen most frequently in MCC/ATV accidents and crush injuries. A little over half of MLLs occurred over the lateral thigh with almost all other MLLs occurring over the posterior (flank or lumbar) region. MLLs were much more common in vertical shear and spinopelvic dissociation pelvic ring fracture patterns compared to lateral compression and AP compression patterns. In lateral compression injuries, MLLs most commonly occurred over the thigh. In all other pelvic ring injury patterns, MLLs were predominately posterior. MLL's are not as rare as previously believed. The lateral thigh and lumbar/flank regions should be closely inspected on pelvic trauma patients to identify MLLs, particularly in patients with a spinopelvic dissociation injury pattern.

  8. Egg structure and ultrastructure of Paterdecolyus yanbarensis (Insecta, Orthoptera, Anostostomatidae, Anabropsinae).

    PubMed

    Mashimo, Yuta; Fukui, Makiko; Machida, Ryuichiro

    2016-11-01

    The egg structure of Paterdecolyus yanbarensis was examined using light, scanning electron and transmission electron microscopy. The egg surface shows a distinct honeycomb pattern formed by exochorionic ridges. Several micropyles are clustered on the ventral side of the egg. The egg membrane is composed of an exochorion penetrated with numerous aeropyles, an endochorion, and an extremely thin vitelline membrane. The endochorion is thickened at the posterior egg pole, probably associated with water absorption. A comparison of egg structure among Orthoptera revealed that the micropylar distribution pattern is conserved in Ensifera and Caelifera and might be regarded as a groundplan feature for each group; in Ensifera, multiple micropyles are clustered on the ventral side of the egg, whereas in Caelifera, micropyles are arranged circularly around the posterior pole of the egg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects.

    PubMed

    Sun, Hui; Luo, Lizhu; Yuan, Xinru; Zhang, Lu; He, Yini; Yao, Shuqiao; Wang, Jiaojian; Xiao, Jing

    2018-08-01

    Cognitive vulnerability to depression (CVD) is a high risk for depressive disorder. Recent studies focus on individuals with CVD to determine the neural basis of major depressive disorder (MDD) neuropathology. However, whether CVD showed specific or similar brain functional activity and connectivity patterns, compared to MDD, remain largely unknown. Here, using resting-state functional magnetic resonance imaging in subjects with CVD, healthy controls (HC) and MDD, regional homogeneity (ReHo) and resting-state functional connectivity (R-FC) analyses were conducted to assess local synchronization and changes in functional connectivity patterns. Significant ReHo differences were found in right posterior lobe of cerebellum (PLC), left lingual gyrus (LG) and precuneus. Compared to HC, CVD subjects showed increased ReHo in the PLC, which was similar to the difference found between MDD and HC. Compared to MDD patients, CVD subjects showed decreased ReHo in PLC, LG, and precuneus. R-FC analyses found increased functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex in CVD compared to both HC and MDD. Moreover, Regional mean ReHo values were positively correlated with Center for Epidemiologic Studies Depression Scale scores. These analyses revealed that PLC and functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex may be a potential marker for CVD. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Predicting driver from front passenger using only the postmortem pattern of injury following a motor vehicle collision.

    PubMed

    Curtin, Eleanor; Langlois, Neil E I

    2007-10-01

    This study aimed to establish whether post-mortem injury patterns can assist in distinguishing drivers from front seat passengers among victims of motor vehicle collisions without regard to collision type, vehicle type or if safety equipment had been used. Injuries sustained by 206 drivers and 91 front seat passengers were catalogued from post-mortem reports. Injuries were coded for the body region, depth and location of the injury. Statistical analysis was used to detect injuries capable of discriminating between driver and passenger. Drivers were more likely to sustain the following injuries: brain injury; fractures to the right femur, right posterior ribs, base of skull, right humerus and right shoulder; and superficial wounds at the right lateral and posterior thigh, right face, right and left anterior knee, right anterior shoulder, lateral right arm and forearm and left anterior thigh. Front passengers were more vulnerable to splenic injury; fractures to the left posterior and anterior ribs, left shoulder and left femur; and superficial wounds at the left anterior shoulder region and left lateral neck. Linear discriminant analysis generated a model for predicting seating position based on the presence of injury to certain regions of the body; the overall predictive accuracy of the model was 69.3%. It was found that driver and front passenger fatalities receive different injury patterns from motor vehicle collisions, regardless of collision type. A larger study is required to improve the predictive accuracy of this model and to ascertain its value to forensic medicine.

  11. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    PubMed

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  12. Disentangling neural representations of value and salience in the human brain

    PubMed Central

    Kahnt, Thorsten; Park, Soyoung Q; Haynes, John-Dylan; Tobler, Philippe N.

    2014-01-01

    A large body of evidence has implicated the posterior parietal and orbitofrontal cortex in the processing of value. However, value correlates perfectly with salience when appetitive stimuli are investigated in isolation. Accordingly, considerable uncertainty has remained about the precise nature of the previously identified signals. In particular, recent evidence suggests that neurons in the primate parietal cortex signal salience instead of value. To investigate neural signatures of value and salience, here we apply multivariate (pattern-based) analyses to human functional MRI data acquired during a noninstrumental outcome-prediction task involving appetitive and aversive outcomes. Reaction time data indicated additive and independent effects of value and salience. Critically, we show that multivoxel ensemble activity in the posterior parietal cortex encodes predicted value and salience in superior and inferior compartments, respectively. These findings reinforce the earlier reports of parietal value signals and reconcile them with the recent salience report. Moreover, we find that multivoxel patterns in the orbitofrontal cortex correlate with value. Importantly, the patterns coding for the predicted value of appetitive and aversive outcomes are similar, indicating a common neural scale for appetite and aversive values in the orbitofrontal cortex. Thus orbitofrontal activity patterns satisfy a basic requirement for a neural value signal. PMID:24639493

  13. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.

    PubMed

    Heinsfeld, Anibal Sólon; Franco, Alexandre Rosa; Craddock, R Cameron; Buchweitz, Augusto; Meneguzzi, Felipe

    2018-01-01

    The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.

  14. Anatomical Variability in the Termination of the Basilar Artery in the Human Cadaveric Brain.

    PubMed

    Gunnal, Sandhya; Farooqui, Mujeebuddin; Wabale, Rajendra

    2015-01-01

    The basilar artery (BA) is the prominent median vessel of the vertebrobasilar circulation and usually terminates into two posterior cerebral arteries forming the posterior angle of the Circle of Willis (CW). To tackle different variations of CW, basilar artery acts as a guideline for neuroradiologists and neurosurgeons. Basilar termination is the most frequent site of aneurysm. Abnormalities at the site of termination may compress the oculomotor nerve. Variations at the termination may complicate surgeries at the base of brain. The present study aims to add to the knowledge regarding the termination pattern of the BA. 170 BA terminations were studied. Morphological variations in the termination pattern were noted. Frequency of variations in termination patterns was recorded. Dimensions of BA were measured. Data were analyzed. Morphological variations in termination were seen in 17.64%. Bifurcation, Trifurcation, Quadrifurcation, Pentafurcation and Nonfurcation of BA was seen in 82.35%, 5.29%, 5.88%, 3.52% and 2.94% respectively. BA associated with aneurysm and Fenestration was seen in 3.52% and 1.17% respectively. Mean length and diameter of BA was 30.27 mm and 4.8 mm respectively. Awareness of these anatomical variations in termination patterns of BA is important in neurovascular procedures.

  15. Surface feature-guided mapping of cerebral metabolic changes in cognitively normal and mildly impaired elderly.

    PubMed

    Apostolova, Liana G; Thompson, Paul M; Rogers, Steve A; Dinov, Ivo D; Zoumalan, Charleen; Steiner, Calen A; Siu, Erin; Green, Amity E; Small, Gary W; Toga, Arthur W; Cummings, Jeffrey L; Phelps, Michael E; Silverman, Daniel H

    2010-04-01

    The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4 +/- 0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG)-PET scan (interval 21.7 +/- 3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10-15% decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5-5% similarly distributed decline. ApoE4-positive individuals underwent 5-15% metabolic decline in the posterior association cortices. Using 3-D surface-based MR-guided FDG-PET mapping, significant metabolic changes were seen in five posterior and the left lateral frontal regions. The changes were more pronounced for the declining relative to the cognitively stable group.

  16. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration.

    PubMed

    Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A

    2016-08-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.

  17. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration

    PubMed Central

    Josephson, Matthew P.; Miltner, Adam M.; Lundquist, Erik A.

    2016-01-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39. A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39mab-5egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. PMID:27225683

  18. Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo

    PubMed Central

    Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E

    2005-01-01

    Background Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdhex4/5 huntingtin deficient embryos. Results In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Conclusion Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease. PMID:16109169

  19. β-Catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii

    PubMed Central

    Darras, Sébastien; Gerhart, John; Terasaki, Mark; Kirschner, Marc; Lowe, Christopher J.

    2011-01-01

    The canonical Wnt/β-catenin pathway is a key regulator of body plan organization and axis formation in metazoans, being involved in germ layer specification, posterior growth and patterning of the anteroposterior axis. Results from animals spanning a wide phylogenetic range suggest that a unifying function of β-catenin in metazoans is to define the posterior/vegetal part of the embryo. Although the specification of vegetal territories (endoderm) by β-catenin has been demonstrated in distantly related animals (cnidarians, a protostome, echinoderms and ascidians), the definition of the posterior part of the embryo is well supported only for vertebrates and planarians. To gain insights into β-catenin functions during deuterostome evolution, we have studied the early development of the direct developing hemichordate Saccoglossus kowalevskii. We show that the zygote is polarized after fertilization along the animal-vegetal axis by cytoplasmic rearrangements resembling the ascidian vegetal contraction. This early asymmetry is translated into nuclear accumulation of β-catenin at the vegetal pole, which is necessary and sufficient to specify endomesoderm. We show that endomesoderm specification is crucial for anteroposterior axis establishment in the ectoderm. The endomesoderm secretes as yet unidentified signals that posteriorize the ectoderm, which would otherwise adopt an anterior fate. Our results point to a conserved function at the base of deuterostomes for β-catenin in germ layer specification and to a causal link in the definition of the posterior part of the embryonic ectoderm by way of activating posteriorizing endomesodermal factors. Consequently, the definition of the vegetal and the posterior regions of the embryo by β-catenin should be distinguished and carefully re-examined. PMID:21303849

  20. Patterns of local recurrence after primary resection of cancers that arise in the sinonasal region and the maxillary alveolus.

    PubMed

    McMahon, Jeremy D; Wong, Ling Siew; Crowther, John; Taylor, William M; McManners, Joseph; Devine, John C; Wales, Craig; Maciver, Colin

    2013-07-01

    Local recurrence remains the most important sign of relapse of disease after treatment of advanced cancer of the maxilla and sinonasal region. In this retrospective study we describe patterns of recurrence in a group of patients who had had open resection for cancer of the sinonasal region and posterior maxillary alveolus with curative intent. Casenotes and imaging studies were reviewed to find out the pattern of any relapse, with particular reference to local recurrence. The minimum follow-up period was 12 months. Of 50 patients a total of 16 developed recurrences, 11 of which were local. Of those 11, a total of 8 were in posterior and superior locations (the orbit, the infratemporal and pterygopalatine fossas, the traversing neurovascular canals of the body of the sphenoid to the cavernous sinus, the Gasserian ganglion, and the dura of the middle cranial fossa). Advanced cancer of the midface often equates with disease at the skull base. Treatment, including surgical tactics, should reflect that. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. A Cortical Network for the Encoding of Object Change

    PubMed Central

    Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.

    2015-01-01

    Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425

  2. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors

    PubMed Central

    2018-01-01

    ABSTRACT Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. Although the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete and Odd-paired expression. In Drosophila, these transcription factors are expressed like simple timers within the blastoderm, whereas in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis, we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports. PMID:29724758

  3. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  4. The specific scintigraphic pattern of "shin splints in the lower leg": concise communication.

    PubMed

    Holder, L E; Michael, R H

    1984-08-01

    The clinical entity, "shin splints," is now being recognized, and more specifically characterized by the findings of exercise-induced pain and tenderness to palpation along the posterior medial border of the tibia. In this prospective study, ten patients with this syndrome were evaluated using three-phase bone scintigrams, and a specific scintigraphic pattern was determined. Radionuclide angiograms and blood-pool images were all normal. On delayed images, tibial lesions involved the posterior cortex, were longitudinally oriented, were long, involving one third of the length of the bone, and often showed varying tracer uptake along that length. Obtaining both lateral and medial views was crucial. The location of activity suggested that this entity is related to the soleus muscle. These scintigraphic findings can be used to differentiate shin splints from stress fractures or other conditions causing pain in the lower leg in athletes.

  5. [Surgical approaches to tibial plateau fractures].

    PubMed

    Krause, Matthias; Müller, Gunnar; Frosch, Karl-Heinz

    2018-06-06

    Intra-articular tibial plateau fractures can present a surgical challenge due to complex injury patterns and compromised soft tissue. The treatment goal is to spare the soft tissue and an anatomical reconstruction of the tibial articular surface. Depending on the course of the fracture, a fracture-specific access strategy is recommended to provide correct positioning of the plate osteosynthesis. While the anterolateral approach is used in the majority of lateral tibial plateau fractures, only one third of the joint surface is visible; however, posterolateral fragments require an individual approach, e. g. posterolateral or posteromedial. If necessary, osteotomy of the femoral epicondyles can improve joint access for reduction control. Injuries to the posterior columns should be anatomically reconstructed and biomechanically correctly addressed via posterior approaches. Bony posterior cruciate ligament tears can be refixed via a minimally invasive posteromedial approach.

  6. A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta

    PubMed Central

    de Jong, Danielle M.; Seaver, Elaine C.

    2016-01-01

    Regeneration, the ability to replace lost tissues and body parts following traumatic injury, occurs widely throughout the animal tree of life. Regeneration occurs either by remodeling of pre-existing tissues, through addition of new cells by cell division, or a combination of both. We describe a staging system for posterior regeneration in the annelid, Capitella teleta, and use the C. teleta Hox gene code as markers of regional identity for regenerating tissue along the anterior-posterior axis. Following amputation of different posterior regions of the animal, a blastema forms and by two days, proliferating cells are detected by EdU incorporation, demonstrating that epimorphosis occurs during posterior regeneration of C. teleta. Neurites rapidly extend into the blastema, and gradually become organized into discrete nerves before new ganglia appear approximately seven days after amputation. In situ hybridization shows that seven of the ten Hox genes examined are expressed in the blastema, suggesting roles in patterning the newly forming tissue, although neither spatial nor temporal co-linearity was detected. We hypothesized that following amputation, Hox gene expression in pre-existing segments would be re-organized to scale, and the remaining fragment would express the complete suite of Hox genes. Surprisingly, most Hox genes display stable expression patterns in the ganglia of pre-existing tissue following amputation at multiple axial positions, indicating general stability of segmental identity. However, the three Hox genes, CapI-lox4, CapI-lox2 and CapI-Post2, each shift its anterior expression boundary by one segment, and each shift includes a subset of cells in the ganglia. This expression shift depends upon the axial position of the amputation. In C. teleta, thoracic segments exhibit stable positional identity with limited morphallaxis, in contrast with the extensive body remodeling that occurs during regeneration of some other annelids, planarians and acoel flatworms. PMID:26894631

  7. Categorization of biologically relevant chemical signals in the medial amygdala

    PubMed Central

    Samuelsen, Chad L.; Meredith, Michael

    2009-01-01

    Many species employ chemical signals to convey messages between members of the same species (conspecific), but chemosignals may also provide information to another species (heterospecific). Here, we found that conspecific chemosignals (male, female mouse urine) increased immediate early gene-protein (IEG) expression in both anterior and posterior medial amygdala of male mice, whereas most heterospecific chemosignals (e.g.: hamster vaginal fluid, steer urine) increased expression only in anterior medial amygdala. This categorization of responses in medial amygdala conforms to our previously reported findings in male hamsters. The same characteristic pattern of IEG expression appears in the medial amygdala of each species in response to conspecific stimuli for that species. These results suggest that the amygdala categorizes stimuli according to the biological relevance for the tested species. Thus, a heterospecific predator (cat collar) stimulus, which elicited behavioral avoidance in mice, increased IEG expression in mouse posterior medial amygdala (like conspecific stimuli). Further analysis suggests reproduction related and potentially threatening stimuli produce increased IEG expression in different sub-regions of posterior medial amygdala (dorsal and ventral, respectively). These patterns of IEG expression in medial amygdala may provide glimpses of a tertiary sorting of chemosensory signals beyond the primary-level selectivity of chemosensory neurons and the secondary sorting in main and accessory olfactory bulbs. PMID:19368822

  8. The developing juvenile ischium: macro-radiographic insights.

    PubMed

    Maclean, Stephen J; Black, Sue M; Cunningham, Craig A

    2014-09-01

    Despite the importance of the human pelvis as a weight-bearing structure, there is a paucity of literature that discusses the development of the juvenile innominate from a biomechanical perspective. This study aims to add to the limited body of literature pertaining to this topic through the qualitative analysis of the gross architecture of the human ischium during the juvenile period. Macro-radiographs of 55 human ischia ranging from 28 intra-uterine weeks to 14 years of age were examined using intensity-gradient color mapping to highlight changes in gross structural morphology with increasing age. A clear pattern of maturation was observed in the juvenile ischium with increasing age. The acetabular component and ramus of the ischium consistently displayed low bone intensity in the postnatal skeletal material. Conversely the posterior body of the ischium, and in particular the ischial spine and lesser sciatic notch, exhibited increasing bone intensity which first arose at 1-2 years of age and became more expansive in older cohorts. The intensity patterns observed within the developing juvenile ischium are indicative of the potential factors influencing the maturation of this skeletal element. While the low intensity acetabular fossa indicates a lack of significant biomechanical interactions, the posterior increase in bone intensity may be related to the load-bearing nature of the posterior ischium. © 2014 Wiley Periodicals, Inc.

  9. RNase reverses segment sequence in the anterior of a beetle egg (Callosobruchus maculatus, Coleoptera).

    PubMed

    van der Meer, Jitse M

    2018-01-01

    The genetic regulation of anterior-posterior segment pattern development has been elucidated in detail for Drosophila, but it is not canonical for insects. A surprising diversity of regulatory mechanisms is being uncovered not only between insect orders, but also within the order of the Diptera. The question is whether the same diversity of regulatory mechanisms exists within other insect orders. I show that anterior puncture of the egg of the pea beetle Callosobruchus maculatus submerged in RNase can induce double abdomen development suggesting a role for maternal mRNA. In a double abdomen, anterior segments are replaced by posterior segments oriented in mirror image symmetry to the original posterior segments. This effect is specific for RNase activity, for treatment of the anterior egg pole and for cytoplasmic RNA. Yield depends on developmental stage, enzyme concentration, and temperature. A maximum of 30% of treated eggs reversed segment sequence after submersion and puncture in 10 μg/mL RNase S reconstituted from S-protein and S-peptide at 30°C. This result sets the stage for an analysis of the genetic regulation of segment pattern formation in the long germ embryo of the coleopteran Callosobruchus and for comparison with the short germ embryo of the coleopteran Tribolium. © 2018 Wiley Periodicals, Inc.

  10. Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel MITF gene mutations.

    PubMed

    Cortés-González, Vianney; Zenteno, Juan Carlos; Guzmán-Sánchez, Martín; Giordano-Herrera, Verónica; Guadarrama-Vallejo, Dalia; Ruíz-Quintero, Narlly; Villanueva-Mendoza, Cristina

    2016-12-01

    Tietz syndrome and Waardenburg syndrome type 2A are allelic conditions caused by MITF mutations. Tietz syndrome is inherited in an autosomal dominant pattern and is characterized by congenital deafness and generalized skin, hair, and eye hypopigmentation, while Waardenburg syndrome type 2A typically includes variable degrees of sensorineural hearing loss and patches of de-pigmented skin, hair, and irides. In this paper, we report two unrelated families with MITF mutations. The first family showed an autosomal dominant pattern and variable expressivity. The second patient was isolated. MITF gene analysis in the first family demonstrated a c.648A>C heterozygous mutation in exon 8 c.648A>C; p. (R216S), while in the isolated patient, an apparently de novo heterozygous c.1183_1184insG truncating mutation was demonstrated in exon 10. All patients except one had bilateral reduced ocular anteroposterior axial length and a high hyperopic refractive error corresponding to posterior microphthalmos, features that have not been described as part of the disease. Our results suggest that posterior microphthalmos might be part of the clinical characteristics of Tietz/Waardenburg syndrome type 2A and expand both the clinical and molecular spectrum of the disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Development of vocal tract length during early childhood: A magnetic resonance imaging study

    NASA Astrophysics Data System (ADS)

    Vorperian, Houri K.; Kent, Ray D.; Lindstrom, Mary J.; Kalina, Cliff M.; Gentry, Lindell R.; Yandell, Brian S.

    2005-01-01

    Speech development in children is predicated partly on the growth and anatomic restructuring of the vocal tract. This study examines the growth pattern of the various hard and soft tissue vocal tract structures as visualized by magnetic resonance imaging (MRI), and assesses their relational growth with vocal tract length (VTL). Measurements on lip thickness, hard- and soft-palate length, tongue length, naso-oro-pharyngeal length, mandibular length and depth, and distance of the hyoid bone and larynx from the posterior nasal spine were used from 63 pediatric cases (ages birth to 6 years and 9 months) and 12 adults. Results indicate (a) ongoing growth of all oral and pharyngeal vocal tract structures with no sexual dimorphism, and a period of accelerated growth between birth and 18 months; (b) vocal tract structure's region (oral/anterior versus pharyngeal/posterior) and orientation (horizontal versus vertical) determine its growth pattern; and (c) the relational growth of the different structures with VTL changes with development-while the increase in VTL throughout development is predominantly due to growth of pharyngeal/posterior structures, VTL is also substantially affected by the growth of oral/anterior structures during the first 18 months of life. Findings provide normative data that can be used for modeling the development of the vocal tract. .

  12. Aphasia in border-zone infarcts has a specific initial pattern and good long-term prognosis.

    PubMed

    Flamand-Roze, C; Cauquil-Michon, C; Roze, E; Souillard-Scemama, R; Maintigneux, L; Ducreux, D; Adams, D; Denier, C

    2011-12-01

    While border-zone infarcts (BZI) account for about 10% of strokes, studies on related aphasia are infrequent. The aim of this work was to redefine specifically their early clinical pattern and evolution. We prospectively studied consecutive patients referred to our stroke unit within a 2-year period. Cases of aphasia in right-handed patients associated with a MRI confirmed left-sided hemispheric BZI were included. These patients had a standardized language examination in the first 48 h, at discharge from stroke unit and between 6 and 18 months later. Eight patients were included. Three had anterior (MCA/ACA), two posterior (MCA/PCA), two both anterior and posterior, and one bilateral BZI. All our patients initially presented transcortical mixed aphasia, characterized by comprehension and naming difficulties associated with preserved repetition. In all patients, aphasia rapidly improved. It fully recovered within a few days in three patients. Initial improvement was marked, although incomplete in the five remaining patients: their aphasias specifically evolved according to the stroke location toward transcortical motor aphasia for the three patients with anterior BZI and transcortical sensory aphasia for the two patients with posterior BZI. All patients made a full language recovery within 18 months after stroke. We report a specific aphasic pattern associated with hemispheric BZI, including an excellent long-term outcome. These findings appear relevant to (i) clinically suspect BZI and (ii) plan rehabilitation and inform the patient and his family of likelihood of full language recovery. © 2011 The Author(s). European Journal of Neurology © 2011 EFNS.

  13. Freestyle multiple propeller flap reconstruction (jigsaw puzzle approach) for complicated back defects.

    PubMed

    Park, Sung Woo; Oh, Tae Suk; Eom, Jin Sup; Sun, Yoon Chi; Suh, Hyun Suk; Hong, Joon Pio

    2015-05-01

    The reconstruction of the posterior trunk remains to be a challenge as defects can be extensive, with deep dead space, and fixation devices exposed. Our goal was to achieve a tension-free closure for complex defects on the posterior trunk. From August 2006 to May 2013, 18 cases were reconstructed with multiple flaps combining perforator(s) and local skin flaps. The reconstructions were performed using freestyle approach. Starting with propeller flap(s) in single or multilobed design and sequentially in conjunction with adjacent random pattern flaps such as fitting puzzle. All defects achieved tensionless primary closure. The final appearance resembled a jigsaw puzzle-like appearance. The average size of defect was 139.6 cm(2) (range, 36-345 cm(2)). A total of 26 perforator flaps were used in addition to 19 random pattern flaps for 18 cases. In all cases, a single perforator was used for each propeller flap. The defect and the donor site all achieved tension-free closure. The reconstruction was 100% successful without flap loss. One case of late infection was noted at 12 months after surgery. Using multiple lobe designed propeller flaps in conjunction with random pattern flaps in a freestyle approach, resembling putting a jigsaw puzzle together, we can achieve a tension-free closure by distributing the tension to multiple flaps, supplying sufficient volume to obliterate dead space, and have reliable vascularity as the flaps do not need to be oversized. This can be a viable approach to reconstruct extensive defects on the posterior trunk. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern.

    PubMed

    Polavarapu, Kiran; Manjunath, Mahadevappa; Preethish-Kumar, Veeramani; Sekar, Deepha; Vengalil, Seena; Thomas, PriyaTreesa; Sathyaprabha, Talakad N; Bharath, Rose Dawn; Nalini, Atchayaram

    2016-11-01

    The purpose of this study was to describe the pattern of muscle involvement using MRI findings and correlate with functional as well as muscle strength measurements. Fifty genetically confirmed DMD children with a mean age of 7.6 ± 2.8 (4-15 years) underwent muscle MRI and qualitative assessment was done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. Detailed phenotypic characterisation was done with Manual muscle testing (modified MRC grading) and Muscular Dystrophy Functional Rating Scale (MDFRS). Mercuri scoring showed severe fibro-fatty changes in Gluteus medius, minimus and Adductor magnus followed by moderate to severe changes in Gluteus maximus and Quadriceps muscles. Total sparing of Gracilis, Sartorius and Semimembranosus muscles was observed. Superficial posterior and lateral leg muscles were preferentially involved with sparing of deep posterior and anterior leg muscles. Myoedema showed significant inverse correlation with fatty infiltration in thigh muscles. Similarly, significant inverse correlation was observed between Mercuri scores and MRC grading as well as MDFRS scores. A direct linear correlation was observed between duration of illness and fibro-fatty changes in piriformis, quadriceps and superficial posterior leg muscles. There was no correlation between MRI findings and genotypic characteristics. However, this specific pattern of muscle involvement in MRI could aid in proceeding for genetic testing when clinical suspicion is high, thus reducing the need for muscle biopsy. Fibro fatty infiltration as measured by Mercuri scoring can be a useful marker for assessing the disease severity and progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Local Failure After Episcleral Brachytherapy for Posterior Uveal Melanoma: Patterns, Risk Factors, and Management.

    PubMed

    Bellerive, Claudine; Aziz, Hassan A; Bena, James; Wilkinson, Allan; Suh, John H; Plesec, Thomas; Singh, Arun D

    2017-05-01

    To evaluate the patterns, the risk factors, and the management of recurrence following brachytherapy in patients with posterior uveal melanoma, given that an understanding of the recurrence patterns can improve early recognition and management of local treatment failure in such patients. Retrospective cohort study. Setting: Multispecialty tertiary care center. A total of 375 eyes treated with episcleral brachytherapy for posterior uveal melanoma from January 2004 to December 2014. Exclusion criteria included inadequate follow-up (<1 year) and previous radiation therapy. Main Outcomes and Measures: Local control rate and time to recurrence were the primary endpoints. Kaplan-Meier estimation and Cox proportional hazards models were conducted to identify risk factors for recurrence. Twenty-one patients (5.6%) experienced recurrence (follow-up range 12-156 months; median 47 months). The median time to recurrence was 18 months (range 4-156 months). Five-year estimated local recurrence rate was 6.6%. The majority (90.5%) of the recurrences occurred within the first 5 years. The predominant site of recurrence was at the tumor margin (12 patients, 57.1%). Univariate analysis identified 3 statistically significant recurrence risk factors: advanced age, largest basal diameter, and the use of adjuvant transpupillary thermotherapy (TTT). Recurrent tumors were managed by repeat brachytherapy, TTT, or enucleation. Local recurrences following brachytherapy are uncommon 5 years after episcleral brachytherapy. Follow-up intervals can be adjusted to reflect time to recurrence. Most of the eyes with recurrent tumor can be salvaged by conservative methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Topographic distribution of EEG alpha attractor correlation dimension values in wake and drowsy states in humans.

    PubMed

    Kalauzi, Aleksandar; Vuckovic, Aleksandra; Bojić, Tijana

    2015-03-01

    Organization of resting state cortical networks is of fundamental importance for the phenomenon of awareness, which is altered in the first part of hypnagogic period (Hori stages 1-4). Our aim was to investigate the change in brain topography pattern of EEG alpha attractor correlation dimension (CD) in the period of transition from Hori stage 1 to 4. EEG of ten healthy adult individuals was recorded in the wake and drowsy states, using a 14 channel average reference montage, from which 91 bipolar channels were derived and filtered in the wider alpha (6-14 Hz) range. Sixty 1s long epochs of each state and individual were subjected to CD calculation according to the Grassberger-Procaccia method. For such a collection of signals, two embedding dimensions, d={5, 10}, and 22 time delays τ=2-23 samples were explored. Optimal values were d=10 and τ=18, where both saturation and second zero crossing of the autocorrelation function occurred. Bipolar channel CD underwent a significant decrease during the transition and showed a positive linear correlation with electrode distance, stronger in the wake individuals. Topographic distribution of bipolar channels with above median CD changed from longitudinal anterior-posterior pattern (awake) to a more diagonal pattern, with localization in posterior regions (drowsiness). Our data are in line with the literature reporting functional segregation of neuronal assemblies in anterior and posterior regions during this transition. Our results should contribute to understanding of complex reorganization of the cortical part of alpha generators during the wake/drowsy transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Differential alpha coherence hemispheric patterns in men and women during pleasant and unpleasant musical emotions.

    PubMed

    Flores-Gutiérrez, Enrique O; Díaz, José-Luis; Barrios, Fernando A; Guevara, Miguel Angel; Del Río-Portilla, Yolanda; Corsi-Cabrera, María; Del Flores-Gutiérrez, Enrique O

    2009-01-01

    Potential sex differences in EEG coherent activity during pleasant and unpleasant musical emotions were investigated. Musical excerpts by Mahler, Bach, and Prodromidès were played to seven men and seven women and their subjective emotions were evaluated in relation to alpha band intracortical coherence. Different brain links in specific frequencies were associated to pleasant and unpleasant emotions. Pleasant emotions (Mahler, Bach) increased upper alpha couplings linking left anterior and posterior regions. Unpleasant emotions (Prodromidès) were sustained by posterior midline coherence exclusively in the right hemisphere in men and bilateral in women. Combined music induced bilateral oscillations among posterior sensory and predominantly left association areas in women. Consistent with their greater positive attributions to music, the coherent network is larger in women, both for musical emotion and for unspecific musical effects. Musical emotion entails specific coupling among cortical regions and involves coherent upper alpha activity between posterior association areas and frontal regions probably mediating emotional and perceptual integration. Linked regions by combined music suggest more working memory contribution in women and attention in men.

  18. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo.

    PubMed

    Thisse, B; Wright, C V; Thisse, C

    2000-01-27

    Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.

  19. Preliminary clinical results with the ISL laser

    NASA Astrophysics Data System (ADS)

    Hoppeler, Thomas; Gloor, Balder

    1992-08-01

    The ISL laser (Intelligent Surgical Lasers, Inc.), a Nd:YLF picosecond pulse laser, is currently being used under investigational device exemption to perform microsurgery of the anterior segment of the eye. At different study sites procedures for cataract fragmentation and iridotomy, as well as for posterior capsulotomy after cataract surgery, are under evaluation. Other potential applications include: sclerostomy ab interno, the cutting of membranes in the anterior and posterior segment of the eye; corneal incisions; and corneal intrastromal effects. We discuss various clinically relevant aspects of the use of this picosecond laser. An overview of different computer controlled laser patterns is given.

  20. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain.

    PubMed

    Weinhold, Paul S; Stewart, Jason-Dennis N; Liu, Hsin-Yi; Lin, Cheng-Feng; Garrett, William E; Yu, Bing

    2007-08-01

    Studies have shown that women are at higher risk of sustaining noncontact anterior cruciate ligament (ACL) injuries in specific sports. Recent gait studies of athletic tasks have documented that gender differences in knee movement, muscle activation, and external loading patterns exist. The objective of this study was to determine in a knee cadaver model if application of female-specific loading and movement patterns characterised in vivo for a stop-jump task cause higher ACL strains than male patterns. Gender-specific loading patterns of the landing phase of the vertical stop-jump task were applied to seven cadaver knees using published kinetic/kinematic results for recreational athletes. Loads applied consecutively included: tibial compression, quadriceps, hamstrings, external posterior tibial shear, and tibial torque. Knee flexion was fixed based on the kinematic data. Strain of the ACL was monitored by means of a differential variable reluctance transducer installed on the anterior-medial bundle of the ACL. The ACL strain was significantly increased (P<0.05) for the female loading pattern relative to the male loading pattern after the posterior tibial shear force was applied, and showed a similar trend (P=0.1) to be increased after the final tibial torque was applied. This study suggests that female motor control strategies used during the stop-jump task may place higher strains on the ACL than male strategies, thus putting females at greater risk of ACL injury. We believe these results suggest the potential effectiveness of using training programs to modify motor control strategies and thus modify the risk of injury.

  1. The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos.

    PubMed

    Nowicki, Julie L; Takimoto, Ryoko; Burke, Ann Campbell

    2003-02-01

    Patterning events along the anterior-posterior (AP) axis of vertebrate embryos result in the distribution of muscle and bone forming a highly effective functional system. A key aspect of regionalized AP patterning results from variation in the migratory pattern of somite cells along the dorsal-ventral (DV) axis of the body. This occurs as somite cell populations expand around the axis or migrate away from the dorsal midline and cross into the lateral plate. The fate of somitic cells has been intensely studied and many details have been reported about inductive signaling from other tissues that influence somite cell fate and behavior. We are interested in understanding the specific differences between somites in particular AP regions and how these differences contribute to the global pattern of the organism. Using orthotopic transplants of segmental plate between quail and chick embryos, we have mapped the interface of the somitic and lateral plate mesoderm during the formation of the body wall in cervical and thoracic regions. This interface does not change dramatically in the mid-cervical region, but undergoes extensive changes in the thoracic region. Based on this regional mapping and consistent with the extensive literature, we suggest a revised method of classifying regions of the body wall that relies on embryonic cell lineages rather than adult functional criteria.

  2. Forces directing germ-band extension in Drosophila embryos.

    PubMed

    Kong, Deqing; Wolf, Fred; Großhans, Jörg

    2017-04-01

    Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Hepatectomy for metastatic liver tumors complicated with right umbilical portion.

    PubMed

    Sakaguchi, Takanori; Suzuki, Shohachi; Morita, Yoshifumi; Oishi, Kosuke; Suzuki, Atsushi; Fukumoto, Kazuhiko; Inaba, Keisuke; Takehara, Yasuo; Baba, Satoshi; Nakamura, Satoshi; Konno, Hiroyuki

    2011-01-01

    We report the case of a 76-year-old man, presenting with a right umbilical portion (RUP), with two liver metastases of rectal cancer, 2cm and 1 cm tumors in the caudate lobe and anterior segment, respectively. The portal first branch ran to the right posterior segment and the remaining formed a left trunk, thereafter forming RUP. The tumor in the caudate was close to the right posterior segment's Glissonean pedicle. On 3-dimensional CT analysis under tubography via an endoscopic naso-biliary tube, the anatomical patterns of the arteries and bile ducts were complicated. On laparotomy, the gallbladder was located to the left of the round ligament. Right posterior segmentectomy plus partial caudate resection and partial hepatectomy of the anterior segment was performed after skeletonization of the biliovascular structures at the hepatic hilum. Precise examination of the biliovascular structures is needed to safely perform hepatectomy in patients complicated with RUP.

  4. Cognitive Control Network Contributions to Memory-Guided Visual Attention

    PubMed Central

    Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.

    2016-01-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253

  5. Bundled payment reimbursement for anterior and posterior approaches for cervical spondylotic myelopathy: an analysis of private payer and Medicare databases.

    PubMed

    Virk, Sohrab S; Phillips, Frank M; Khan, Safdar N

    2018-03-01

    OBJECTIVE Cervical spondylotic myelopathy (CSM) is a progressive spinal condition that often requires surgery. Studies have shown the clinical equivalency of anterior versus posterior approaches for CSM surgery. The purpose of this study was to determine the amount and type of resources used for anterior and posterior surgical treatment of CSM by using large national databases of clinical and financial information from patients. METHODS This study consists of 2 large cohorts of patients who underwent either an anterior or posterior approach for treatment of CSM. These patients were selected from the Medicare 5% National Sample Administrative Database (SAF5) and the Humana orthopedic database (HORTHO), which is a database of patients with private payer health insurance. The outcome measures were the cost of a 90-day episode of care, as well as a breakdown of the cost components for each surgical procedure between 2005 and 2014. RESULTS A total of 16,444 patients were included in this analysis. In HORTHO, there were 10,332 and 1556 patients treated with an anterior or posterior approach for CSM, respectively. In SAF5, there were 3851 and 705 patients who were treated by an anterior or posterior approach for CSM, respectively. The mean ± SD reimbursements for anterior and posterior approaches in the HORTHO database were $20,863 ± $2014 and $23,813 ± $4258, respectively (p = 0.048). The mean ± SD reimbursements for anterior and posterior approaches in the SAF5 database were $18,219 ± $1053 and $25,598 ± $1686, respectively (p < 0.0001). There were also significantly higher reimbursements for a rehabilitation/skilled nursing facility and hospital/inpatient care for patients who underwent a posterior approach in both the private payer and Medicare databases. In all cohorts in this study, the hospital-related reimbursement was more than double the surgeon-related reimbursement. CONCLUSIONS This study provides resource utilization information for a 90-day episode of care for both anterior and posterior approaches for CSM surgery. There is a statistically significant higher resource utilization for patients undergoing the posterior approach for CSM, which is consistent with the literature. Understanding the reimbursement patterns for anterior versus posterior approaches for CSM will help providers design a bundled payment for patients requiring surgery for CSM, and this study suggests that a subset of patients who require the posterior approach for treatment also require greater resources. The data also suggest that hospital-related reimbursement is the major driver of payments.

  6. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution.

    PubMed

    Slater, Graham J; Pennell, Matthew W

    2014-05-01

    A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.

  7. A supplementary functional connectivity microstate attached to the default mode network in depression revealed by resting-state magnetoencephalography.

    PubMed

    Zhang, Siqi; Tian, Shui; Chattun, Mohammad Ridwan; Tang, Hao; Yan, Rui; Bi, Kun; Yao, Zhijian; Lu, Qing

    2018-04-20

    Default mode network (DMN) has discernable involvement in the representation of negative, self-referential information in depression. Both increased and decreased resting-state functional connectivity between the anterior and posterior DMN have been observed in depression. These conflicting connectivity differences necessitated further exploration of the resting-state DMN dysfunction in depression. Hence, we investigated the time-varying dynamic interactions within the DMN via functional connectivity microstates in a sub-second level. 25 patients with depression and 25 matched healthy controls were enrolled in the MEG analysis. Spherical K-means algorithms embedded within an iterative optimization frame were applied to sliding windowed correlation matrices, resulting in sub-second alternations of two functional connectivity microstates for groups and highlighting the presence of functional variability. In the power dominant state, depressed patients showed a transient decreased pattern that reflected inter/intra-subnetwork deregulation. A supplementary negatively correlated state simultaneously presented with increased connectivity between the ventromedial prefrontal cortex (vmPFC) and the posterior cingulate cortex (PCC), two core nodes for the anterior and posterior DMN respectively. Additionally, depressed patients stayed longer in the supplementary microstate compared to healthy controls. During the time spent in the supplementary microstate, an attempt to compensate for the aberrant effect of vmPFC on PCC across DMN subnetworks was possibly made to balance the self-related processes disturbed by the dominant pattern. The functional compensation mechanism of the supplementary microstate attached to the dominant disrupted one provided a possible explanation to the existing inconsistent findings between the anterior and posterior DMN in depression. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse.

    PubMed

    Engert, Silvia; Burtscher, Ingo; Liao, W Perry; Dulev, Stanimir; Schotta, Gunnar; Lickert, Heiko

    2013-08-01

    Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.

  9. Waardenburg syndrome: iris and choroidal hypopigmentation: findings on anterior and posterior segment imaging.

    PubMed

    Shields, Carol L; Nickerson, Stephanie J; Al-Dahmash, Saad; Shields, Jerry A

    2013-09-01

    Waardenburg syndrome typically manifests with congenital iris pigmentary abnormalities, but careful inspection can reveal additional posterior uveal pigmentary abnormalities. To demonstrate iris and choroidal hypopigmentation in patients with Waardenburg syndrome. Retrospective review of 7 patients referred for evaluation of presumed ocular melanocytosis. To describe the clinical and imaging features of the anterior and posterior uvea. In all patients, the diagnosis of Waardenburg syndrome was established. The nonocular features included white forelock in 4 of 7 (57%), tubular nose in 5 of 6 (83%), and small nasal alae in 5 of 6 (83%) patients. In 2 patients, a hearing deficit was documented on audiology testing. Family history of Waardenburg syndrome was elicited in 5 of 7 (71%) patients. Ocular features (7 patients) included telecanthus in 5 (71%), synophrys in 2 (29%), iris hypopigmentation in 5 (71%), and choroidal hypopigmentation in 5 (71%) patients. No patient had muscle contractures or Hirschsprung disease. Visual acuity was 20/20 to 20/50 in all patients. Iris hypopigmentation in 8 eyes was sector in 6 (75%) and diffuse (complete) in 2 (25%). Choroidal hypopigmentation in 9 eyes (100%) showed a sector pattern in 6 (67%) and a diffuse pattern in 3 (33%). Anterior segment optical coherence tomography revealed the hypopigmented iris to be thinner and with shallower crypts than the normal iris. Posterior segment optical coherence tomography showed a normal retina in all patients, but the subfoveal choroid in the hypopigmented region was slightly thinner (mean, 197 μm) compared with the opposite normal choroid (243 μm). Fundus autofluorescence demonstrated mild hyperautofluorescence (scleral unmasking) in hypopigmented choroid and no lipofuscin abnormality. Waardenburg syndrome manifests hypopigmentation of the iris and choroid with imaging features showing a slight reduction in the thickness of the affected tissue.

  10. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype

    PubMed Central

    Kappen, Claudia

    2016-01-01

    The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes. PMID:26800342

  11. Analysis of the spinal nerve roots in relation to the adjacent vertebral bodies with respect to a posterolateral vertebral body replacement procedure.

    PubMed

    Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F

    2017-01-01

    This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.

  12. The efficacy of modified direct lateral versus posterior approach on gait function and hip muscle strength after primary total hip arthroplasty at 12months follow-up. An explorative randomised controlled trial.

    PubMed

    Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders

    2016-11-01

    The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J

    2015-02-01

    A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of scene perception abilities in posterior cortical atrophy and offers insights into the mechanisms by which high-level cognitive schemes interact with low-level perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Intra-articular calcaneal fractures: effect of open reduction and internal fixation on the contact characteristics of the subtalar joint.

    PubMed

    Mulcahy, D M; McCormack, D M; Stephens, M M

    1998-12-01

    Intra-articular calcaneal fractures are associated with significant long-term morbidity, and considerable controversy exists regarding the optimum method of treating them. The contact characteristics in the intact subtalar joint were determined at known loads and for different positions of the ankle and subtalar joint, using pressure-sensitive film (Super Low; Fuji, Itochu Canada Ltd, Montreal, Quebec). We measured the contact area to joint area ratio (pressure > 5 kg force/cm2 [kgf/cm2]) which normalizes for differences in joint size and the ratio of high pressure zone (>20 kgf/cm2) as a reflection of overall increase in joint pressure. Three simulated fracture patterns were then created and stabilized with either 1 or 2 mm of articular incongruity. Eight specimens were prepared with a primary fracture line through the posterior facet, eight with a joint depression-type fracture, and six with a central joint depression fracture. A measure of 1 to 2 mm of incongruity in the posterior facet for all three fracture patterns produced significant unloading of the depressed fragment, with a redistribution of the overall pattern of pressure distribution to parts of the facet that were previously unloaded.

  15. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation

    PubMed Central

    Pirotte, Nicky; Stevens, An-Sofie; Fraguas, Susanna; Plusquin, Michelle; Van Roten, Andromeda; Van Belleghem, Frank; Paesen, Rik; Ameloot, Marcel; Cebrià, Francesc; Artois, Tom; Smeets, Karen

    2015-01-01

    Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes. PMID:26180588

  16. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates.

    PubMed

    Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi

    2017-04-01

    The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Correct Hox gene expression established independently of position in Caenorhabditis elegans.

    PubMed

    Cowing, D; Kenyon, C

    1996-07-25

    The Hox genes are expressed in a conserved sequence of spatial domains along the anteroposterior (A/P) body axes of many organisms. In Drosophila, position-specific signals located along the A/P axis establish the pattern of Hox gene expression. In the nematode Caenorhabditis elegans, it is not known how the pattern of Hox gene expression is established. C. elegans uses lineal control mechanisms and local cell interactions to specify early blastomere identities. However, many cells expressing the same Hox gene are unrelated by lineage, suggesting that, as in Drosophila, domains of Hox gene expression may be defined by cell-extrinsic A/P positional signals. To test this, we have investigated whether posterior mesodermal and ectodermal cells will express their normal posterior Hox gene when they are mispositioned in the anterior. Surprisingly, we find that correct Hox gene expression does not depend on cell position, but is highly correlated with cell lineage. Thus, although the most striking feature of Hox gene expression is its positional specificity, in C. elegans the pattern is achieved, at least in part, by a lineage-specific control system that operates without regard to A/P position.

  18. Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system.

    PubMed

    Salser, S J; Loer, C M; Kenyon, C

    1993-09-01

    Intricate patterns of overlapping HOM-C gene expression along the A/P axis have been observed in many organisms; however, the significance of these patterns in establishing the ultimate fates of individual cells is not well understood. We have examined the expression of the Caenorhabditis elegans Antennapedia homolog mab-5 and its role in specifying cell fates in the posterior of the ventral nerve cord. We find that the pattern of fates specified by mab-5 not only depends on mab-5 expression but also on post-translational interactions with the neighboring HOM-C gene lin-39 and a second, inferred gene activity. Where mab-5 expression overlaps with lin-39 activity, they can interact in two different ways depending on the cell type: They can either effectively neutralize one another where they are both expressed or lin-39 can predominate over mab-5. As observed for Antennapedia in Drosophila, expression of mab-5 itself is repressed by the next most posterior HOM-C gene, egl-5. Thus, a surprising diversity in HOM-C regulatory mechanisms exists within a small set of cells even in a simple organism.

  19. Notch Signalling Synchronizes the Zebrafish Segmentation Clock but Is Not Needed To Create Somite Boundaries

    PubMed Central

    Özbudak, Ertuğrul M; Lewis, Julian

    2008-01-01

    Somite segmentation depends on a gene expression oscillator or clock in the posterior presomitic mesoderm (PSM) and on read-out machinery in the anterior PSM to convert the pattern of clock phases into a somite pattern. Notch pathway mutations disrupt somitogenesis, and previous studies have suggested that Notch signalling is required both for the oscillations and for the read-out mechanism. By blocking or overactivating the Notch pathway abruptly at different times, we show that Notch signalling has no essential function in the anterior PSM and is required only in the posterior PSM, where it keeps the oscillations of neighbouring cells synchronized. Using a GFP reporter for the oscillator gene her1, we measure the influence of Notch signalling on her1 expression and show by mathematical modelling that this is sufficient for synchronization. Our model, in which intracellular oscillations are generated by delayed autoinhibition of her1 and her7 and synchronized by Notch signalling, explains the observations fully, showing that there are no grounds to invoke any additional role for the Notch pathway in the patterning of somite boundaries in zebrafish. PMID:18248098

  20. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  1. Ultrastructural characters of the spermatozoa in Digeneans of the genus Lecithochirium Lühe, 1901 (Digenea, Hemiuridae), parasites of fishes: comparative study of L. microstomum and L. musculus

    PubMed Central

    Ndiaye, Papa Ibnou; Quilichini, Yann; Sène, Aminata; Tkach, Vasyl V.; Bâ, Cheikh Tidiane; Marchand, Bernard

    2014-01-01

    This study provides the first ultrastructural data of spermatozoa in the genus Lecithochirium. The spermatozoa of L. microstomum (from Trichiurus lepturus in Senegal) and L. musculus (from Anguilla anguilla in Corsica) exhibit the general pattern described in the great majority of the Digenea, namely two axonemes with the 9 + “1” pattern typical of the Trepaxonemata, one mitochondrion, a nucleus, parallel cortical microtubules and external ornamentation of the plasma membrane. Spermatozoa of L. microstomum and L. musculus have some specific features such as the presence of a reduced number of cortical microtubules arranged on only one side of the spermatozoon, the lack of spine-like bodies and expansion of the plasma membrane. The external ornamentation of the plasma membrane entirely covers the anterior extremity of the spermatozoa. The ultrastructure of the posterior extremity of the spermatozoa corresponds to the pattern previously described in the Hemiuridae, characterized by only singlets of the second axoneme. A particularity of these spermatozoa is the organization of the microtubule doublets of the second axoneme around the nucleus in the posterior part of the spermatozoon. PMID:25275216

  2. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls.

    PubMed

    Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul

    2016-01-01

    Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto-posterior connectivity even in the absence of behavioral impairment.

  3. Hox gene expression during postlarval development of the polychaete Alitta virens.

    PubMed

    Bakalenko, Nadezhda I; Novikova, Elena L; Nesterenko, Alexander Y; Kulakova, Milana A

    2013-05-01

    Hox genes are the family of transcription factors that play a key role in the patterning of the anterior-posterior axis of all bilaterian animals. These genes display clustered organization and colinear expression. Expression boundaries of individual Hox genes usually correspond with morphological boundaries of the body. Previously, we studied Hox gene expression during larval development of the polychaete Alitta virens (formerly Nereis virens) and discovered that Hox genes are expressed in nereid larva according to the spatial colinearity principle. Adult Alitta virens consist of multiple morphologically similar segments, which are formed sequentially in the growth zone. Since the worm grows for most of its life, postlarval segments constantly change their position along the anterior-posterior axis. We studied the expression dynamics of the Hox cluster during postlarval development of the nereid Alitta virens and found that 8 out of 11 Hox genes are transcribed as wide gene-specific gradients in the ventral nerve cord, ectoderm, and mesoderm. The expression domains constantly shift in accordance with the changing proportions of the growing worm, so expression domains of most Hox genes do not have stable anterior or/and posterior boundaries.In the course of our study, we revealed long antisense RNA (asRNA) for some Hox genes. Expression patterns of two of these genes were analyzed using whole-mount in-situ hybridization. This is the first discovery of antisense RNA for Hox genes in Lophotrochozoa. Hox gene expression in juvenile A. virens differs significantly from Hox gene expression patterns both in A. virens larva and in other Bilateria.We suppose that the postlarval function of the Hox genes in this polychaete is to establish and maintain positional coordinates in a constantly growing body, as opposed to creating morphological difference between segments.

  4. Brain injury patterns in hypoglycemia in neonatal encephalopathy.

    PubMed

    Wong, D S T; Poskitt, K J; Chau, V; Miller, S P; Roland, E; Hill, A; Tam, E W Y

    2013-07-01

    Low glucose values are often seen in term infants with NE, including HIE, yet the contribution of hypoglycemia to the pattern of neurologic injury remains unclear. We hypothesized that MR features of neonatal hypoglycemia could be detected, superimposed on the predominant HIE injury pattern. Term neonates (n = 179) with NE were prospectively imaged with day-3 MR studies and had glucose data available for review. The predominant imaging pattern of HIE was recorded as watershed, basal ganglia, total, focal-multifocal, or no injury. Radiologic hypoglycemia was diagnosed on the basis of selective edema in the posterior white matter, pulvinar, and anterior medial thalamic nuclei. Clinical charts were reviewed for evidence of NE, HIE, and hypoglycemia (<46 mg/dL). The predominant pattern of HIE injury imaged included 17 watershed, 25 basal ganglia, 10 total, 42 focal-multifocal, and 85 cases of no injury. A radiologic diagnosis of hypoglycemia was made in 34 cases. Compared with laboratory-confirmed hypoglycemia, MR findings had a positive predictive value of 82% and negative predictive value of 78%. Sixty (34%) neonates had clinical hypoglycemia before MR imaging. Adjusting for 5-minute Apgar scores and umbilical artery pH with logistic regression, clinical hypoglycemia was associated with a 17.6-fold higher odds of MR imaging identification (P < .001). Selective posterior white matter and pulvinar edema were most predictive of clinical hypoglycemia, and no injury (36%) or a watershed (32%) pattern of injury was seen more often in severe hypoglycemia. In term infants with NE and hypoglycemia, specific imaging features for both hypoglycemia and hypoxia-ischemia can be identified.

  5. Dental caries and their treatment needs in 3-5 year old preschool children in a rural district of India.

    PubMed

    Gupta, Devanand; Momin, Rizwan K; Mathur, Ayush; Srinivas, Kavuri Teja; Jain, Ankita; Dommaraju, Neelima; Dalai, Deepak Ranjan; Gupta, Rajendra Kumar

    2015-04-01

    Dental problems in the preschool children are neglected by their parents as the deciduous teeth are going to shed off, and hence considered to be of no importance and more of economic burden if attended to them. This study was to determine the caries prevalence in preschool children (3-5-year-old) of rural Moradabad district, to analyze the specific pattern of dental caries experience in this population and to assess the treatment needs among them. Children within the age group of 3-5 years attending Anganwadi centers of rural Moradabad district were included in the study. Caries diagnosis was based on decayed, extracted, filled surface (defs) and the treatment needs were recorded using World Health Organization (WHO) oral health assessment form 1997. Out of 1,500 children examined, 48.7% males and 52.6% females did not require any treatment. The mean decayed, extracted, filled teeth (deft) value was found to be significantly high in 5-year-old participants when compared to 3-year-old participants (P < 0.01). Majority of the children required one surface filling followed by two surface fillings, caries arresting sealant care, extraction, crown bridge element, pulp care, and space maintainer. The most common pattern was pit and fissure, then maxillary anterior pattern, posterior proximal pattern, and posterior buccal lingual smooth surface pattern. The mean deft value was higher in males as compared to females. There is a greater need for oral health education among parents and teachers.

  6. The Intersection of the Extrinsic Hedgehog and WNT/Wingless Signals with the Intrinsic Hox Code Underpins Branching Pattern and Tube Shape Diversity in the Drosophila Airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos

    2015-01-01

    The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601

  7. Graphical methods for the sensitivity analysis in discriminant analysis

    DOE PAGES

    Kim, Youngil; Anderson-Cook, Christine M.; Dae-Heung, Jang

    2015-09-30

    Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretative compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern ofmore » the change.« less

  8. Arthroscopic Management of Anterior, Posterior, and Multidirectional Shoulder Instabilities.

    PubMed

    Field, Larry D; Ryu, Richard K N; Abrams, Jeffrey S; Provencher, Matthew

    2016-01-01

    Arthroscopic shoulder stabilization offers several potential advantages compared with open surgery, including the opportunity to more accurately evaluate the glenohumeral joint at the time of diagnostic assessment; comprehensively address multiple pathologic lesions that may be identified; and avoid potential complications unique to open stabilization, such as postoperative subscapularis failure. A thorough understanding of normal shoulder anatomy and biomechanics, along with the pathoanatomy responsible for anterior, posterior, and multidirectional shoulder instability patterns, is very important in the management of patients who have shoulder instability. The treating physician also must be familiar with diagnostic imaging and physical examination maneuvers that are required to accurately diagnose shoulder instability.

  9. Morphometric Study of the Anterior Thalamoperforating Arteries

    PubMed Central

    Kim, Sung-Ho; Yeo, Dong-Kyu; Shim, Jae-Joon; Yoon, Seok-Mann; Chang, Jae-Chil

    2015-01-01

    Objective To evaluate the morphometry of the anterior thalamoperforating arteries (ATPA). Methods A microanatomical study was performed in 79 specimens from 42 formalin-fixed adult cadaver brains. The origins of the ATPAs were divided into anterior, middle, and posterior segments according to the crowding pattern. The morphometry of the ATPAs, including the premammillary artery (PMA), were examined under a surgical microscope. Results The anterior and middle segments of the ATPAs arose at mean intervals of 1.75±1.62 mm and 5.86±2.05 mm from the internal carotid artery (ICA), and the interval between these segments was a mean of 3.17±1.64 mm. The posterior segment arose at a mean interval of 2.43±1.46 mm from the posterior cerebral artery (PCA), and the interval between the middle and posterior segments was a mean of 3.45±1.39 mm. The mean numbers of perforators were 2.66±1.19, 3.03±1.84, and 1.67±0.98 in the anterior, middle, and posterior segments, respectively. The PMA originated from the middle segment in 66% of cases. A perforator-free zone was located >2 mm from the ICA in 30.4% and >2 mm from the PCA in 67.1% of cases. Conclusion Most perforators arose from the anterior and middle segments, within the anterior two-thirds of the posterior communicating artery (PCoA). The safest perforator-free zone was located closest to the PCA. These anatomical findings may be helpful to verify safety when treating lesions around the PCoA and in the interpeduncular fossa. PMID:26113962

  10. Application of Posterior Thigh Three-Dimensional Profunda Artery Perforator Perforasomes in Refining Next-Generation Flap Designs: Transverse, Vertical, and S-Shaped Profunda Artery Perforator Flaps.

    PubMed

    Mohan, Anita T; Zhu, Lin; Sur, Yoo Joon; Morsy, Mohamed; Michalak, Gregory J; Lachman, Nirusha; Rammos, Charalambos K; Saint-Cyr, Michel

    2017-04-01

    This study aimed to delineate and compare the hot spots and three-dimensional vascular territories of dominant profunda artery perforators in the posterior thigh region, and modifications in flap design are discussed. Twenty-nine posterior thigh flaps were raised in fresh cadaveric specimens, and profunda artery perforators were documented. Dominant perforators were injected with iodinated contrast to assess perforasomes using computed tomographic angiography. Analysis with three-dimensional rendering and volume calculations of perfusion patterns was performed. In total, 316 perforators were mapped and 33 perforators were injected for analysis. The hot spot for dominant perforators was the proximal medial quadrant, 5 to 10 cm from the inferior gluteal crease, with two smaller hot spots in the upper lateral and distal posterior midline. Although 69 percent were musculocutaneous, distal perforators were predominantly septocutaneous in the posterior midline, 5 to 8 cm from the popliteal crease. Proximal perforators were classified into first (most proximal) and second perforators, and their median perforasome was 233 and 286.4 cm, respectively (p = 0.86). There were no significant differences between proximal and distal perforators in perforasome surface areas, percentage areas perfused, and perforasome volumes. Large linking vessel networks were attributed to a broader perforasome and greater overlap between adjacent or distal perforators. Dominant linking vessels and recurrent flow through the subdermal plexus contribute to the robust vascular supply of profunda artery perforator flaps. Posterior thigh region perforator hot spots and their perfusion characteristics can inform the potential limits, orientation, and modifications of flap or skin paddle designs.

  11. Three-dimensional analysis of maxillary stability after Le Fort I osteotomy using hydroxyapatite/poly-L-lactide plate.

    PubMed

    Park, Jung-Hyun; Kim, Minkyu; Kim, Sang Yoon; Jung, Hwi-Dong; Jung, Young-Soo

    2016-04-01

    To evaluate three-dimensional change in maxillary position using biodegradable plates. A total of 53 patients who underwent orthognathic surgery using biodegradable plates were analyzed retrospectively. The position of maxilla was measured three-dimensionally using cone beam computed tomography data at preoperative (T0), 1-month postoperative (T1), and 1-year postoperative (T2) time points. Changes in the maxilla 1 year after the operation (T2-T1) were analyzed to demonstrate postoperative stability. The correlation between postoperative relapse (T2-T1) and surgical movement (T1-T0) of the maxilla was investigated. At 1-year postoperatively, no significant changes in maxillary position were noted in the antero-posterior and transverse dimensions. The anterior maxillary position in the vertical dimension also showed no significant changes, but the posterior maxillary position (posterior nasal spine, greater palatine foramen) showed a 0- to 2.98-mm relapse at 1-year postoperatively. The posterior maxilla tended to relapse inferiorly when the amount of surgical upward movement was greater than 3-3.5 mm and to relapse superiorly when the amount of surgical upward movement was less than 3-3.5 mm. For all patients, no postoperative complications in the osteofixated maxilla were observed during the follow-up period. Maxilla fixed with biodegradable plates was stable in the antero-posterior and transverse and the vertical (anterior maxilla) dimensions. Posterior maxillary vertical relapse was clinically acceptable, but relapse patterns that relate to the amount of surgical upward movement should be considered for surgical treatment planning. Copyright © 2016. Published by Elsevier Ltd.

  12. Immunohistochemical localization of serotonin- and substance P-containing fibers around respiratory muscle motoneurons in the nucleus ambiguus of the cat.

    PubMed

    Holtman, J R

    1988-07-01

    Retrograde tracing with a fluorescent dye (Fast Blue) combined with immunohistochemistry was used to determine if the putative neurotransmitters, serotonin and substance P, are present around posterior cricoarytenoid muscle motoneurons. Fast Blue was injected into the posterior cricoarytenoid muscle of the larynx. Following a 14-21 day survival time to allow for transport of the dye, the animals were perfusion fixed and the brainstem was removed for analysis under the fluorescence microscope. Retrogradely labeled cell bodies containing Fast Blue were found within the nucleus ambiguus from 0.5 to 3.0 mm rostral to obex. These motoneurons ranged in size from 23 to 38 micron. The same tissue sections containing labeled posterior cricoarytenoid muscle motoneurons were then used to determine the distribution of serotonin and substance P around these motoneurons using the indirect immunofluorescence technique. A dense network of serotonin-containing immunoreactive fibers was found around posterior cricoarytenoid muscle motoneurons. The fibers contained varicosities which were in close proximity, actually appearing to surround these motoneurons. Substance P immunoreactive fibers and varicosities were also found around posterior cricoarytenoid muscle motoneurons. The density and pattern of distribution of the substance P immunoreactivity was similar to that of the serotonin immunoreactivity. These results suggest that these putative neurotransmitters may be involved in influencing the activity of posterior cricoarytenoid muscle motoneurons. Serotonin and substance P are also present around other respiratory motoneurons such as phrenic motoneurons. Therefore, these two neurotransmitters may have a more general role in influencing respiratory motor outflow.

  13. Treatment of hyperdivergent growth pattern and anterior open bite with posterior metallic bite planes.

    PubMed

    Ciavarella, Domenico; Lo Russo, Lucio; Nichelini, Jeffrey; Mastrovincenzo, Mario; Barbato, Ersilia; Laurenziello, Michele; Montaruli, Graziano; Lo Muzio, Lorenzo

    2017-12-01

    In the present paper, the authors analyze the effect of the "Swallowing Occlusal Contact Intercept Appliance" (SOCIA) in treatment of children with hyperdivergent Class II malocclusion. This functional appliance has no intra-oral anchorage, but induces a continuous periodontal, muscular, and articular stimulation. Twenty-six patients with hyperdivergent growth and class II malocclusion were selected and treated with SOCIA appliance. Cephalometric analysis was performed before treatment (T1) and immediately after the treatment (T2). After 24 months treatment authors observed a modification of maxillary growth with a reduction of the divergence with an increase of the posterior facial height, a modification of condylar inclination and forward position of the a hyoid. No modifications was observed about the ANB angle. After treatment the open bite was resolved with a reduction of the inclination of the upper incisors. SOCIA is a reliable functional appliance in growing age patients with a hyperdivergent pattern growth, anterior open bite and class II molar malocclusion.

  14. Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry.

    PubMed

    Das, Dipjyoti; Chatti, Veena; Emonet, Thierry; Holley, Scott A

    2017-07-24

    The biomechanics of posterior embryonic growth must be dynamically regulated to ensure bilateral symmetry of the spinal column. Throughout vertebrate trunk elongation, motile mesodermal progenitors undergo an order-to-disorder transition via an epithelial-to-mesenchymal transition and sort symmetrically into the left and right paraxial mesoderm. We combine theoretical modeling of cell migration in a tail-bud-like geometry with experimental data analysis to assess the importance of ordered and disordered cell motion. We find that increasing order in cell motion causes a phase transition from symmetric to asymmetric body elongation. In silico and in vivo, overly ordered cell motion converts normal anisotropic fluxes into stable vortices near the posterior tail bud, contributing to asymmetric cell sorting. Thus, disorder is a physical mechanism that ensures the bilateral symmetry of the spinal column. These physical properties of the tissue connect across scales such that patterned disorder at the cellular level leads to the emergence of organism-level order. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Miyake-Apple video analysis of movement patterns of an accommodative intraocular lens implant].

    PubMed

    Auffarth, G U; Schmidbauer, J; Becker, K A; Rabsilber, T M; Apple, D J

    2002-11-01

    The potentially accommodative intraocular lens (IOL) is a new development in IOL design We evaluated the new Humanoptics 1CU accommodative IOL in a laboratory study with human post mortem autopsy eyes. Using the Miyake-Apple posterior view video technique, the movement pattern of the IOL was tested and observed from the posterior perspective. RESULTS. A circular bend at the level of the ciliary body applied slight circular force onto the sclera allowing the relaxation of the zonules. The shift of focus was demonstrated by using a reading target. In addition, viscoelastic was injected into the vitreous resulting in the same anterior movement of the IOL optic. The 1CU Humanoptics accommodative IOL showed potential accommodative behaviour in the laboratory. The accommodative (respectively pseudoaccommodative) effect was based on the anterior shift principle with anterior movement of the IOL-optic in the state of relaxing zonules. Whether this reflects the clinical situation, especially to this extent, must be further evaluated.

  16. The mRNA-bound proteome of the early fly embryo

    PubMed Central

    Wessels, Hans-Hermann; Imami, Koshi; Baltz, Alexander G.; Kolinski, Marcin; Beldovskaya, Anastasia; Selbach, Matthias; Small, Stephen; Ohler, Uwe; Landthaler, Markus

    2016-01-01

    Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first 2 h of Drosophila melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first 2 h of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation. PMID:27197210

  17. Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee.

    PubMed

    Sonnery-Cottet, Bertrand; Conteduca, Jacopo; Thaunat, Mathieu; Gunepin, François Xavier; Seil, Romain

    2014-04-01

    Anterior cruciate ligament (ACL) tears are frequently associated with meniscal lesions. Despite improvements in meniscal repair techniques, failure rates remain significant, especially for the posterior horn of the medial meniscus. To determine whether a systematic arthroscopic exploration of the posterior horn of the medial meniscus with an additional posteromedial portal is useful to identify otherwise unrecognized lesions. Case series; Level of evidence, 4. In a consecutive series of 302 ACL reconstructions, a systematic arthroscopic exploration of the posterior horn of the medial meniscus was performed. The first stage of the exploration was achieved through anterior visualization via a standard anterolateral portal. In the second stage, the posterior horn of the medial meniscus was visualized posteriorly via the anterolateral portal with the scope positioned deep in the notch. In the third stage, the posterior horn was probed through an additional posteromedial portal. A χ2 test and logistic regression analysis were performed to determine if the time from injury to surgery was associated with the meniscal tear pattern. A medial meniscal tear was diagnosed in 125 of the 302 patients (41.4%). Seventy-five lesions (60%) located in the meniscal body were diagnosed at the first stage of the arthroscopic exploration. Fifty lesions located in the ramp area were diagnosed: 29 (23.2%) at the second stage and 21 lesions (16.8%) at the third stage after minimal debridement of the superficial soft tissue layer. The latter type of lesion is called a "hidden lesion." Altogether, the prevalence of ramp lesions in this population was 40%. Meniscal body lesions (odds ratio, 2.6; 95% confidence interval, 1.18-5.18; P < .02) were found to be significantly correlated with a longer delay between injury and surgery. Posterior visualization and posteromedial probing of the posterior horn of the medial meniscus can help in discovering a higher rate of lesions that could be easily missed through a standard anterior exploration. In numerous cases, these lesions were "hidden" under a membrane-like tissue and were discovered after minimal debridement through a posteromedial portal.

  18. Improvement in the medial meniscus posterior shift following anterior cruciate ligament reconstruction.

    PubMed

    Inoue, Hiroto; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Kodama, Yuya; Ozaki, Toshifumi

    2018-02-01

    Anterior cruciate ligament (ACL) reconstruction can reduce the risk of developing osteoarthritic knees. The goals of ACL reconstruction are to restore knee stability and reduce post-traumatic meniscal tears and cartilage degradation. A chronic ACL insufficiency frequently results in medial meniscus (MM) injury at the posterior segment. How ACL reconstruction can reduce the deformation of the MM posterior segment remains unclear. In this study, we evaluated the form of the MM posterior segment and anterior tibial translation before and after ACL reconstruction using open magnetic resonance imaging (MRI). Seventeen patients who underwent ACL reconstructions without MM injuries were included in this study. MM deformation was evaluated using open MRI before surgery and 3 months after surgery. We measured medial meniscal length (MML), medial meniscal height (MMH), medial meniscal posterior body width (MPBW), MM-femoral condyle contact width (M-FCW) and posterior tibiofemoral distance (PTFD) at knee flexion angles of 10° and 90°. There were no significant pre- and postoperative differences during a flexion angle of 10°. At a flexion angle of 90°, MML decreased from 43.7 ± 4.5 to 41.4 ± 4.5 mm (P < 0.001), MMH from 7.5 ± 1.4 to 6.9 ± 1.4 mm (P = 0.006), MPBW from 13.1 ± 2.0 to 12.2 ± 1.9 mm (P < 0.001) and M-FCW from 10.0 ± 1.5 to 8.5 ± 1.5 mm (P < 0.001) after ACL reconstruction. The PTFD increased from 2.1 ± 2.8 to 2.7 ± 2.4 mm after ACL reconstruction (P = 0.015). ACL reconstruction affects the contact pattern between the MM posterior segment and medial femoral condyle and can reduce the deformation of the MM posterior segment in the knee-flexed position by reducing abnormal anterior tibial translation. It possibly prevents secondary injury to the MM posterior segment and cartilage that progresses to knee osteoarthritis. IV.

  19. Robust Selectivity for Faces in the Human Amygdala in the Absence of Expressions

    PubMed Central

    Mende-Siedlecki, Peter; Verosky, Sara C.; Turk-Browne, Nicholas B.; Todorov, Alexander

    2014-01-01

    There is a well-established posterior network of cortical regions that plays a central role in face processing and that has been investigated extensively. In contrast, although responsive to faces, the amygdala is not considered a core face-selective region, and its face selectivity has never been a topic of systematic research in human neuroimaging studies. Here, we conducted a large-scale group analysis of fMRI data from 215 participants. We replicated the posterior network observed in prior studies but found equally robust and reliable responses to faces in the amygdala. These responses were detectable in most individual participants, but they were also highly sensitive to the initial statistical threshold and habituated more rapidly than the responses in posterior face-selective regions. A multivariate analysis showed that the pattern of responses to faces across voxels in the amygdala had high reliability over time. Finally, functional connectivity analyses showed stronger coupling between the amygdala and posterior face-selective regions during the perception of faces than during the perception of control visual categories. These findings suggest that the amygdala should be considered a core face-selective region. PMID:23984945

  20. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    NASA Astrophysics Data System (ADS)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  1. Temporal changes in dental caries levels and patterns in a Native American preschool population.

    PubMed

    Douglass, J M; O'Sullivan, D M; Tinanoff, N

    1996-01-01

    The purposes of this study were to assess current dental caries experience and levels of mutans streptococci in Apache children in 1993 and to determine how caries levels and patterns were different from 15 years before. Four-year-old Head Start children (n = 127) were examined for dental caries and sampled for salivary mutans streptococci in 1993. Dental caries information on 113 4-year-old children from the same location was obtained from a chart audit of the 1978-79 Head Start dental examinations. Neither the caries prevalence (95%) nor the prevalence of caries patterns differed between the 1978-79 and 1993 cohorts. However, the level of treatment received in 1993 was greater than that in 1978-79. Children with nursing caries (64%) had a greater severity of fissure caries and a greater prevalence of posterior proximal caries compared with caries-positive children without nursing caries. The mean dmfs and dmft on the children categorized in the high mutans streptococci range were greater than those of children categorized in the moderate range. The caries prevalence found in these preschool Native Americans is among the highest reported for this age group and does not differ from that found at this location 15 years before. It appears that children with nursing caries in this population are at greater risk for posterior caries patterns.

  2. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump.

    PubMed

    Djupesland, Per Gisle; Skretting, Arne

    2012-10-01

    Delivery of powder formulations to the nose is an attractive alternative for many drugs and vaccines. This study compared the regional nasal deposition and clearance patterns of lactose powder delivered by the OptiNose powder device (Opt-Powder; OptiNose US Inc., Yardley, PA, USA) to that of liquid aerosol administered via a traditional hand-actuated liquid spray pump (Rexam SP270, Rexam Pharma, France). The study was an open-label, crossover design in seven healthy subjects (five females, two males). The regional nasal deposition and clearance patterns of the Opt-Powder device were compared to a traditional liquid spray pump by dynamic gamma camera imaging after administration of either (99m)Tc-labeled lactose powder or liquid (99m)Tc- diethelyne triamine pentaacetic acid-aerosol. The gamma camera images were scaled and aligned with sagittal magnetic resonance images to identify nasal regions. Possible deposition of radiolabeled material in the lungs following both methods of delivery was also evaluated. Both powder and spray were distributed to all of the nasal regions. The Opt-Powder device, however, achieved significantly larger initial deposition in the upper and middle posterior regions of the nose than spray (upper posterior region; Opt-Powder 18.3% ± 11.5 vs. Spray 2.4% ± 1.8, p<0.02; sum of upper and middle posterior regions; Opt-Powder 53.5% ± 18.5 vs. Spray 15.7% ± 13.8, p<0.02). The summed initial deposition to the lower anterior and posterior regions for spray was three times higher compared to Opt-Powder (Opt-Powder 17.4% ± 24.5 vs. Spray 59.4% ± 18.2, p<0.04). OptiNose powder delivery resulted in more rapid overall nasal clearance. No lung deposition was observed. The initial deposition following powder delivery was significantly larger in the ciliated mucosa of the upper and posterior nasal regions, whereas less was deposited in the lower regions. Overall nasal clearance of powder was slower initially, but due to retention in anterior nonciliated regions the overall nasal clearance after spray was slower.

  3. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-07-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen.

  4. Osteogenesis imperfecta and hearing loss--description of three case reports.

    PubMed

    Pereira da Silva, Ana; Feliciano, Telma; Figueirinhas, Rosário; Almeida E Sousa, Cecília

    2013-01-01

    Osteogenesis imperfecta is the commonest connective tissue hereditary disease. Its clinical presentation has a wide spectrum of characteristics, which includes skeletal deformities and hearing loss. We describe three case reports of individuals carriers of this disease presenting with different patterns of hearing loss. Hearing loss prevalence and patterns are variable and have no clear relation with genotype. Its assessment at initial evaluation and posterior monitoring is essential to provide the best therapeutic alternatives. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. A rare type of ankle fracture: Syndesmotic rupture combined with a high fibular fracture without medial injury.

    PubMed

    van Wessem, K J P; Leenen, L P H

    2016-03-01

    High fibular spiral fractures are usually caused by pronation-external rotation mechanism. The foot is in pronation and the talus externally rotates, causing a rupture of the medial ligaments or a fracture of the medial malleolus. With continued rotation the anterior and posterior tibiofibular ligament will rupture, and finally, the energy leaves the fibula by creating a spiral fracture from anterior superior to posterior inferior. In this article we demonstrate a type of ankle fracture with syndesmotic injury and high fibular spiral fractures without a medial component. This type of ankle fractures cannot be explained by the Lauge-Hansen classification, since it lacks injury on the medial side of the ankle, but it does have the fibular fracture pattern matching the pronation external rotation injury (anterior superior to posterior inferior fracture). We investigated the mechanism of this injury illustrated by 3 cases and postulate a theory explaining the biomechanics behind this type of injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age

    PubMed Central

    Damaraju, E.; Caprihan, A.; Lowe, J.R.; Allen, E.A.; Calhoun, V.D.; Phillips, J.P.

    2013-01-01

    We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9 months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9 months. However at 9 months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. PMID:23994454

  7. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis.

    PubMed

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-04-11

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning.

  8. Functional connectivity in the developing brain: a longitudinal study from 4 to 9months of age.

    PubMed

    Damaraju, E; Caprihan, A; Lowe, J R; Allen, E A; Calhoun, V D; Phillips, J P

    2014-01-01

    We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9months. However at 9months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. © 2013.

  9. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    PubMed Central

    Winter, Mark R.; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K.; Temple, Sally; Cohen, Andrew R.

    2015-01-01

    Summary Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  10. Tbx16 regulates hox gene activation in mesodermal progenitor cells

    PubMed Central

    Payumo, Alexander Y.; McQuade, Lindsey E.; Walker, Whitney J.; Yamazoe, Sayumi; Chen, James K.

    2016-01-01

    The transcription factor T-box 16 (Tbx16/Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. The mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic, and we describe here the application of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identify 124 Tbx16-regulated genes that are expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis, and somitogenesis. Unexpectedly, we observe that loss of Tbx16 function precociously activates posterior hox genes in MPCs, and overexpression of a single posterior hox gene is sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691

  11. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  12. Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels

    PubMed Central

    Chen, Yao; Mohammadi, Moosa; Flanagan, John G.

    2009-01-01

    Summary Graded guidance labels are widely used in neural map formation, but it is not well understood which potential strategy leads to their graded expression. In midbrain tectal map development, FGFs can induce an entire midbrain, but their protein distribution is unclear, nor is it known whether they may act instructively to produce graded gene expression. Using a receptor-alkaline phosphatase fusion probe, we find a long-range posterior>anterior FGF protein gradient spanning the midbrain. Heparan sulfate proteoglycan (HSPG) is required for this gradient. To test whether graded FGF concentrations can instruct graded gene expression, a quantitative tectal explant assay was developed. Engrailed-2 and ephrin-As, normally in posterior>anterior tectal gradients, showed graded upregulation. Moreover, EphAs, normally in anterior>posterior countergradients, showed coordinately graded downregulation. These results provide a mechanism to establish graded mapping labels, and more generally provide a developmental strategy to coordinately induce a structure and pattern its cell properties in gradients. PMID:19555646

  13. Preoperative varus-valgus kinematic pattern throughout flexion persists more strongly after cruciate-retaining than after posterior-stabilized total knee arthroplasty.

    PubMed

    Hino, Kazunori; Oonishi, Yoshio; Kutsuna, Tatsuhiko; Watamori, Kunihiko; Iseki, Yasutake; Kiyomatsu, Hiroshi; Watanabe, Seiji; Miura, Hiromasa

    2016-08-01

    Restoration of normal knee kinematics is key to improving patient satisfaction and functional outcomes after total knee arthroplasty (TKA). However, the effect of preoperative varus-valgus kinematics due to knee osteoarthritis on the postoperative kinematics is unclear. The function of the knee ligament contributes to both knee stability and kinematics. The aim of this study was to evaluate changes in varus-valgus kinematics before and after TKA using a navigation system, in addition to comparing the pre- and postoperative changes in kinematic patterns between cruciate-retaining (CR)- and posterior-stabilized (PS)-TKAs. Forty knees treated with TKA were evaluated (CR-TKA 20; PS-TKA 20). Manual mild passive knee flexion was applied while moving the leg from full extension to flexion. The varus-valgus angle was automatically measured by a navigation system at every 10° of the flexion angle, and the kinematics were evaluated. Kinematic patterns throughout flexion can be classified into five types. The pre- and postoperative kinematic patterns were similar in 60% of patients who underwent CR-TKA, whereas they were similar in only 25% of those who underwent PS-TKA. The mean change in the size of the varus-valgus angle throughout flexion did not differ between CR-TKA and PS-TKA. However, the distribution of changes in the size of the varus-valgus angle differed between CR-TKA and PS-TKA. We obtained the following results: 1) some patterns of varus-valgus kinematics are noted under unloading conditions despite recovery of neutral alignment in extension and 2) the preoperative varus-valgus kinematic pattern persisted more strongly after CR-TKA than after PS-TKA. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Wrapped in flames: Corydoras hephaestus, a new remarkably colored species from the Rio Madeira basin (Teleostei: Callichthyidae).

    PubMed

    Ohara, Willian Massaharu; Tencatt, Luiz F C; Britto, Marcelo R

    2016-09-26

    A new species of Corydoras is described from the upper Rio Machado, Rio Madeira basin, Rondônia State, Brazil. The new species can be distinguished from its congeners by the absence of contact between the posterior process of the parieto-supraoccipital and the nuchal plate; a ventral laminar expansion of the infraorbital 1 conspicuously developed; and the posterior margin of the pectoral-fin spine with serrations along almost of its entire length, only lacking in the distal portion. Additionally, Corydoras hephaestus possesses dorsal and pectoral spines short, and exhibits an unusual color pattern in life. The conservation status of the new species and other endemic species are briefly commented.

  15. Quantitative assessment and characterization of glenoid bone loss in a spectrum of patients with glenohumeral osteoarthritis.

    PubMed

    Lombardo, D J; Khan, J; Prey, B; Zhang, L; Petersen-Fitts, G R; Sabesan, V J

    2016-12-01

    Eccentric posterior bone loss and associated glenoid retroversion represent challenges to glenoid placement during total shoulder arthroplasty. This bone loss can lead to poor stability and perforation of the glenoid during arthroplasty. The purpose of this study was to evaluate the morphology of glenoid bone loss for a spectrum of osteoarthritis patients using 3D computed tomography imaging and simulation software. This study included 29 patients with glenohumeral osteoarthritis treated with shoulder arthroplasty. Three-dimensional reconstruction of preoperative CT images was performed. Glenoid bone loss was measured at ten, vertically equidistant axial planes along the glenoid surface at four distinct anterior-posterior points on each plane. The images were fitted with modeled pegged glenoid implants to predict glenoid perforation. The 3D maps demonstrated greatest average bone loss posteriorly in the AP plane at the central axis of the glenoid in the SI plane. The average amount of bone loss was 3.85 mm. Walch A2 and B1 shoulders showed more central bone loss, while Walch B2 shoulders displayed more posterior and inferior bone loss. Patients with predicted peg perforation displayed significantly greater bone loss than those without predicted peg perforation (p = 0.037). Peg perforation was most common in Walch B2 shoulders occurring in the posterior direction involving the central and posterior-inferior peg. These data demonstrate an anatomic pattern of glenoid bone loss for different classes of glenohumeral arthritis. These findings can be used to develop various models of glenoid bone loss to guide surgeons, predict failures, and develop better glenoid implants. This study has been approved by the Cleveland Clinic IRB: Number 6235.

  16. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    PubMed

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Dental Caries and Their Treatment Needs in 3-5 Year Old Preschool Children in a Rural District of India

    PubMed Central

    Gupta, Devanand; Momin, Rizwan K; Mathur, Ayush; Srinivas, Kavuri Teja; Jain, Ankita; Dommaraju, Neelima; Dalai, Deepak Ranjan; Gupta, Rajendra Kumar

    2015-01-01

    Background: Dental problems in the preschool children are neglected by their parents as the deciduous teeth are going to shed off, and hence considered to be of no importance and more of economic burden if attended to them. Aims: This study was to determine the caries prevalence in preschool children (3-5-year-old) of rural Moradabad district, to analyze the specific pattern of dental caries experience in this population and to assess the treatment needs among them. Material and Methods: Children within the age group of 3-5 years attending Anganwadi centers of rural Moradabad district were included in the study. Caries diagnosis was based on decayed, extracted, filled surface (defs) and the treatment needs were recorded using World Health Organization (WHO) oral health assessment form 1997. Results: Out of 1,500 children examined, 48.7% males and 52.6% females did not require any treatment. The mean decayed, extracted, filled teeth (deft) value was found to be significantly high in 5-year-old participants when compared to 3-year-old participants (P < 0.01). Majority of the children required one surface filling followed by two surface fillings, caries arresting sealant care, extraction, crown bridge element, pulp care, and space maintainer. Conclusion: The most common pattern was pit and fissure, then maxillary anterior pattern, posterior proximal pattern, and posterior buccal lingual smooth surface pattern. The mean deft value was higher in males as compared to females. There is a greater need for oral health education among parents and teachers. PMID:25973401

  18. Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis.

    PubMed

    Butler, A B; Northcutt, R G

    1992-01-01

    The retinofugal projections in the bowfin, a non-teleost actinopterygian, were studied by autoradiographic and horseradish peroxidase methods, and the cytoarchitecture of retinorecipient regions of the diencephalon was analyzed with serially sectioned, Bodian stained material. Nuclei were identified in the thalamus, the periventricular portion of the posterior tuberculum, synencephalon, and pretectum which are homologous to like-named nuclei in teleosts and other non-teleost actinopterygian fishes. Of particular note, a posterior pretectal nucleus and, possibly, a homologue of nucleus corticalis were found to be present in the pretectum. These nuclei have previously been identified only in teleosts. The posterior pretectal nucleus is relatively small in the bowfin, and the distribution of a small, versus a large, posterior pretectal nucleus in Teleostei and Halecomorphi suggests that this nucleus was small plesiomorphically. The pattern of retinofugal projections in the bowfin is similar to that in other non-teleost actinopterygian fishes and in teleosts in most regards. Contralaterally, the retina projects to nuclei in the dorsal and ventral thalamus, superficial and central pretectum, dorsal and ventral accessory optic nuclei, and to the optic tectum. Additionally, there are sparse projections to the suprachiasmatic nucleus in the preoptic area, the periventricular nucleus of the posterior tuberculum, and the dorsal and ventral periventricular pretectal nuclei. Ipsilateral projections are sparse and are derived from fibers which do not decussate in the optic chiasm. Undecussated ipsilateral retinal projections, as present in the bowfin, are a widely distributed character in vertebrates and appear to be plesiomorphic for vertebrates.

  19. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    PubMed

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  20. Reduced Uptake of FDOPA PET in End-Stage Liver Disease with Elevated Manganese Levels

    PubMed Central

    Criswell, Susan R; Perlmutter, Joel S; Crippin, Jeffrey S; Videen, Tom O; Moerlein, Stephen M; Flores, Hubert P; Birke, Angela M; Racette, Brad A

    2013-01-01

    Objective To investigate whether manganese toxicity secondary to end state liver disease is associated with nigrastriatal dysfunction as measured by 6-[18F]fluoro-L-DOPA (FDOPA) PET imaging. Design Observational case report. Setting The Movement Disorder Center at Washington University in St. Louis. Patients An individual with manganese toxicity secondary to end stage liver disease. His FDOPA PET was compared with those of 10 idiopathic Parkinson disease patients and 10 age- and sex-matched healthy controls. Main Outcome Measure The average estimated net FDOPA uptake by Patlak graphical analysis for caudate, anterior putamen and posterior putamen. Results The FDOPA uptake for the patient with secondary manganese toxicity was reduced across all regions by more than 2 SDs compared with healthy controls: caudate (reduced 24.7%), anterior putamen (28.0%), and posterior putamen (29.3%). The ratio of uptake between the caudate/posterior putamen was 0.99 and was different from that of idiopathic Parkinson disease patients, in whom the greatest reduction of FDOPA was in the posterior putamen (mean [SD] ratio, 1.65 [0.41]). Conclusions Reduce striatal uptake of FDOPA uptake indicates dysfunction of the nigrostriatal pathways in manganese toxicity secondary to end stage liver disease. The pattern of striatal involvement with equal reduction of FDOPA uptake in the caudate compared with posterior putamen appears different from those previously reported in individuals with occupational manganese toxicity and idiopathic Parkinson disease and may be specific to manganese toxicity secondary to end stage liver disease. PMID:22410448

  1. Influence of Implant Shape (Tapered vs Cylindrical) on the Survival of Dental Implants Placed in the Posterior Maxilla: A Systematic Review.

    PubMed

    Alshehri, Mohammed; Alshehri, Fahad

    2016-12-01

    The aim of this review was to assess the effect of implant shape (tapered vs cylindrical) on the survival of dental implants placed in the posterior maxilla. Databases were searched from 1977 up to and including February 2015 using various key words. Only original clinical studies were included. Experimental studies, letters to the editor, review articles, case reports, and unpublished literature were excluded. The pattern of the present review was customized to mainly summarize the relevant information. Five studies were included. The number of patients included ranged between 4 and 29 participants. In total, 7 to 72 implants were placed in the posterior maxilla. Tapered and cylindrical shaped implants were placed in 1 and 1 study, respectively. In 1 study, both 41 tapered and cylindrical implant were placed. In all studies, rough-surfaced and threaded implants were used. Three studies reported the diameter and lengths of implants placed, which ranged between 3.75 to 4 mm and 10 to 20 mm, respectively. The mean follow-up period and survival rate of implants ranged between 19 and 96 months and 84.2% to 100%, respectively. In 1 study, implants were placed subcrestally in the posterior maxilla. Guided bone regeneration was performed in none of the studies. In all studies, participants were nonsmokers and were systemically healthy. There is no influence of implant shape on the survival of implants placed in the posterior maxilla.

  2. PITX2 and NODAL expression during axis formation in the early rabbit embryo.

    PubMed

    Plöger, Ruben; Viebahn, Christoph

    2018-04-26

    Attaining molecular and morphological axial polarity during gastrulation is a fundamental early requirement for normal development of the embryo. In mammals, the first morphological sign of the anterior-posterior axis appears anteriorly in the form of the anterior marginal crescent (or anterior visceral endoderm) while in the avian the first such sign is the Koller's sickle at the posterior pole of the embryonic disc. Despite this inverse mode of axis formation many genes and molecular pathways involved in various steps of this process seem to be evolutionary conserved amongst amniotes, the nodal gene being a well-known example with its functional involvement prior and during gastrulation. The pitx2 gene, however, is a new candidate described in the chick as an early marker for anterior-posterior polarity and as regulator of axis formation including twinning. To find out whether pitx2 has retained its inductive and early marker function during the evolution of mammals, this study analyzes pitx2 and nodal expression at parallel stages during formation of the anterior-posterior polarity in the early rabbit embryo using whole-mount in situ hybridization and serial light-microscopical sections. At a late pre-gastrulation stage a localized reduction of nodal expression presages the position of the anterior pole of the embryonic disc and thus serves as the earliest molecular marker of anterior-posterior polarity known so far. pitx2 is expressed in a polarized manner in the anterior marginal crescent and in the posterior half of the embryonic disc during further development only while nodal expression in the anterior segment of the posterior pitx2 expression domain helps to define the so-called anterior streak domain (ASD), a novel progenitor region of the anterior half of the primitive streak. The expression patterns of both genes thus serve as signs of a conserved involvement in early axis formation in amniotes and, possibly, in twinning in mammals as well. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Decapentaplegic and growth control in the developing Drosophila wing.

    PubMed

    Akiyama, Takuya; Gibson, Matthew C

    2015-11-19

    As a central model for morphogen action during animal development, the bone morphogenetic protein 2/4 (BMP2/4)-like ligand Decapentaplegic (Dpp) is proposed to form a long-range signalling gradient that directs both growth and pattern formation during Drosophila wing disc development. While the patterning role of Dpp secreted from a stripe of cells along the anterior-posterior compartmental boundary is well established, the mechanism by which a Dpp gradient directs uniform cell proliferation remains controversial and poorly understood. Here, to determine the precise spatiotemporal requirements for Dpp during wing disc development, we use CRISPR-Cas9-mediated genome editing to generate a flippase recognition target (FRT)-dependent conditional null allele. By genetically removing Dpp from its endogenous stripe domain, we confirm the requirement of Dpp for the activation of a downstream phospho-Mothers against dpp (p-Mad) gradient and the regulation of the patterning targets spalt (sal), optomotor blind (omb; also known as bifid) and brinker (brk). Surprisingly, however, third-instar wing blade primordia devoid of compartmental dpp expression maintain relatively normal rates of cell proliferation and exhibit only mild defects in growth. These results indicate that during the latter half of larval development, the Dpp morphogen gradient emanating from the anterior-posterior compartment boundary is not directly required for wing disc growth.

  4. Prone Hip Extension Muscle Recruitment is Associated with Hamstring Injury Risk in Amateur Soccer.

    PubMed

    Schuermans, Joke; Van Tiggelen, Damien; Witvrouw, Erik

    2017-09-01

    'Core stability' is considered essential in rehabilitation and prevention. Particularly with respect to hamstring injury prevention, assessment and training of lumbo-pelvic control is thought to be key. However, supporting scientific evidence is lacking. To explore the importance of proximal neuromuscular function with regard to hamstring injury susceptibility, this study investigated the association between the Prone Hip Extension (PHE) muscle activation pattern and hamstring injury incidence in amateur soccer players. 60 healthy male soccer players underwent a comprehensive clinical examination, comprising a range of motion assessments and the investigation of the posterior chain muscle activation pattern during PHE. Subsequently, hamstring injury incidence was recorded prospectively throughout a 1.5-season monitoring period. Players who were injured presented a PHE activation pattern that differed significantly from those who did not. Contrary to the controls, hamstring activity onset was significantly delayed (p=0.018), resulting in a shifted activation sequence. Players were 8 times more likely to get injured if the hamstring muscles were activated after the lumbar erector spinae instead of vice versa (p=0.009). Assessment of muscle recruitment during PHE demonstrated to be useful in injury prediction, suggesting that neuromuscular coordination in the posterior chain influences hamstring injury vulnerability. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Patterns of anterior and posterior muscle chain interactions during high performance long-hang elements in gymnastics.

    PubMed

    von Laßberg, Christoph; Rapp, Walter; Krug, Jürgen

    2014-06-01

    In a prior study with high level gymnasts we could demonstrate that the neuromuscular activation pattern during the "whip-like" leg acceleration phases (LAP) in accelerating movement sequences on high bar, primarily runs in a consecutive succession from the bar (punctum fixum) to the legs (punctum mobile). The current study presents how the neuromuscular activation is represented during movement sequences that immediately follow the LAP by the antagonist muscle chain to generate an effective transfer of momentum for performing specific elements, based on the energy generated by the preceding LAP. Thirteen high level gymnasts were assessed by surface electromyography during high performance elements on high bar and parallel bars. The results show that the neuromuscular succession runs primarily from punctum mobile towards punctum fixum for generating the transfer of momentum. Additionally, further principles of neuromuscular interactions between the anterior and posterior muscle chain during such movement sequences are presented. The findings complement the understanding of neuromuscular activation patterns during rotational movements around fixed axes and will help to form the basis of more direct and better teaching methods regarding earlier optimization and facilitation of the motor learning process concerning fundamental movement requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Anatomy and prevalence of atlas vertebrae bridges in a Kenyan population: An osteological study.

    PubMed

    Karau, Paul Bundi; Ogengo, Julius A; Hassanali, Jameela; Odula, Paul

    2010-09-01

    Atlas bridges are bony outgrowths over the third segment of the vertebral artery. They may exist as incipient, incomplete, or complete bridges, converting the groove into a deep sulcus, incomplete, or complete foramen respectively. These bridges and their associated foramina display bilateral and sex differences in their prevalence and type. Occurrence of these bridges may predispose to vertebrobasilar insufficiency and Barre-Lieou syndrome. The coexistence of lateral and posterior bridges as well as side predilection is not clear in either sex. Their relative occurrence may also point to some evolutionary patterns. We studied the prevalence, side predilection, coexistence, and anatomical features of atlas bridges using 102 dry atlases (49 males and 53 females) obtained from the osteology department of the National Museums of Kenya. Complete posterior bridges occurred in 14.7% and 13.7% on the right and left sides, respectively. A lateral bridge was found in 3.9% of cases on the right side only. There was positive correlation in the coexistence of the bridges. A retrotransverse foramen was found in 13% of cases. This study has found that posterior and lateral atlas bridges occur in association especially on the right side. Complete bridges were more prevalent in females and were more often present on the right side. This pattern seems to mirror the sexual predilection of vertebral artery compression syndromes. Gender roles may have an influence on the occurrence of these bridges and therefore the syndromes as well.

  7. Round and angular kyphosis in paediatric patients.

    PubMed

    Miladi, L

    2013-02-01

    Structural kyphosis is a posterior convex deformity of the spine that may appear in childhood then worsen with growth, most notably during the pubertal growth spurt. The abnormal curvature may be smooth, defining round kyphosis, or may display a sharp angular pattern. Angular kyphosis is the more severe of the two forms. The main causes of round kyphosis are postural kyphosis and Scheuermann's disease. The spontaneous outcome is favourable, and round kyphosis is well tolerated in adulthood. The treatment relies on orthopaedic methods in the overwhelming majority of cases. Surgery is reserved for severe rigid kyphosis in older children and for kyphosis responsible for refractory pain or neurological deficits. Surgical treatment carries a non-negligible risk of neurological, gastrointestinal, mechanical, and septic complications, which should be explained clearly to the family. Advances in contemporary posterior instrumentation have considerably limited the indications for anterior approaches. Many conditions may cause angular kyphosis, whose greater severity is related to a greater potential for progression and neurological impairment. Clinical investigations are in order to identify the cause and to plan the surgical strategy. Early surgery may be indicated, via a combined anterior and posterior approach. Anterior strut grafting, anterior or posterior osteotomies, or even vertebral column resections may be necessary to correct a major deformity. Copyright © 2012. Published by Elsevier Masson SAS.

  8. Dissociable Frontal–Striatal and Frontal–Parietal Networks Involved in Updating Hierarchical Contexts in Working Memory

    PubMed Central

    Nee, Derek Evan; Brown, Joshua W.

    2013-01-01

    Recent theories propose that the prefrontal cortex (PFC) is organized in a hierarchical fashion with more abstract, higher level information represented in anterior regions and more concrete, lower level information represented in posterior regions. This hierarchical organization affords flexible adjustments of action plans based on the context. Computational models suggest that such hierarchical organization in the PFC is achieved through interactions with the basal ganglia (BG) wherein the BG gate relevant contexts into the PFC. Here, we tested this proposal using functional magnetic resonance imaging (fMRI). Participants were scanned while updating working memory (WM) with 2 levels of hierarchical contexts. Consistent with PFC abstraction proposals, higher level context updates involved anterior portions of the PFC (BA 46), whereas lower level context updates involved posterior portions of the PFC (BA 6). Computational models were only partially supported as the BG were sensitive to higher, but not lower level context updates. The posterior parietal cortex (PPC) showed the opposite pattern. Analyses examining changes in functional connectivity confirmed dissociable roles of the anterior PFC–BG during higher level context updates and posterior PFC–PPC during lower level context updates. These results suggest that hierarchical contexts are organized by distinct frontal–striatal and frontal–parietal networks. PMID:22798339

  9. Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in Tribolium

    PubMed Central

    El-Sherif, Ezzat; Zhu, Xin; Fu, Jinping; Brown, Susan J.

    2014-01-01

    In the short-germ beetle Tribolium castaneum, waves of pair-rule gene expression propagate from the posterior end of the embryo towards the anterior and eventually freeze into stable stripes, partitioning the anterior-posterior axis into segments. Similar waves in vertebrates are assumed to arise due to the modulation of a molecular clock by a posterior-to-anterior frequency gradient. However, neither a molecular candidate nor a functional role has been identified to date for such a frequency gradient, either in vertebrates or elsewhere. Here we provide evidence that the posterior gradient of Tc-caudal expression regulates the oscillation frequency of pair-rule gene expression in Tribolium. We show this by analyzing the spatiotemporal dynamics of Tc-even-skipped expression in strong and mild knockdown of Tc-caudal, and by correlating the extension, level and slope of the Tc-caudal expression gradient to the spatiotemporal dynamics of Tc-even-skipped expression in wild type as well as in different RNAi knockdowns of Tc-caudal regulators. Further, we show that besides its absolute importance for stripe generation in the static phase of the Tribolium blastoderm, a frequency gradient might serve as a buffer against noise during axis elongation phase in Tribolium as well as vertebrates. Our results highlight the role of frequency gradients in pattern formation. PMID:25329152

  10. Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment

    PubMed Central

    Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E.L.

    2011-01-01

    The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what extent, the striatum is modulated by punishment during an instrumental learning task. Using high-resolution functional magnetic resonance imaging (fMRI) during a reward- and punishment-based probabilistic associative learning task, we observed activity in the ventral putamen for stimuli learned via reward regardless of whether participants were correct or incorrect (i.e., outcome). In contrast, activity in the dorsal caudate was modulated by trials that received feedback—either correct reward or incorrect punishment trials. We also identified an anterior/posterior dissociation reflecting reward and punishment prediction error estimates. Additionally, differences in patterns of activity that correlated with the amount of training were identified along the anterior/posterior axis of the striatum. We suggest that unique subregions of the striatum—separated along both a dorsal/ventral and anterior/posterior axis— differentially participate in the learning of associations through reward and punishment. PMID:22021252

  11. The evolution of nervous system patterning: insights from sea urchin development

    PubMed Central

    Angerer, Lynne M.; Yaguchi, Shunsuke; Angerer, Robert C.; Burke, Robert D.

    2011-01-01

    Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields – the anterior neuroectoderm and the more posterior ciliary band neuroectoderm – during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution. PMID:21828090

  12. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  13. Uncovering a Dynamic Feature of the Transcriptional Regulatory Network for Anterior-Posterior Patterning in the Drosophila Embryo

    PubMed Central

    Liu, Junbo; Ma, Jun

    2013-01-01

    Anterior-posterior (AP) patterning in the Drosophila embryo is dependent on the Bicoid (Bcd) morphogen gradient. However, most target genes of Bcd also require additional inputs to establish their expression domains, reflective of the operation of a cross-regulatory network and contributions of other maternal signals. This is in contrast to hunchback (hb), which has an anterior expression domain driven by an enhancer that appears to respond primarily to the Bcd input. To gain a better understanding of the regulatory logic of the AP patterning network, we perform quantitative studies that specifically investigate the dynamics of hb transcription during development. We show that Bcd-dependent hb transcription, monitored by the intron-containing nascent transcripts near the P2 promoter, is turned off quickly–on the order of a few minutes–upon entering the interphase of nuclear cycle 14A. This shutdown contrasts with earlier cycles during which active hb transcription can persist until the moment when the nucleus enters mitosis. The shutdown takes place at a time when the nuclear Bcd gradient profile in the embryo remains largely intact, suggesting that this is a process likely subject to control of a currently unknown regulatory mechanism. We suggest that this dynamic feature offers a window of opportunity for hb to faithfully interpret, and directly benefit from, Bcd gradient properties, including its scaling properties, to help craft a robust AP patterning outcome. PMID:23646132

  14. What Role Do Annelid Neoblasts Play? A Comparison of the Regeneration Patterns in a Neoblast-Bearing and a Neoblast-Lacking Enchytraeid Oligochaete

    PubMed Central

    Myohara, Maroko

    2012-01-01

    The term ‘neoblast’ was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts. PMID:22615975

  15. In Vivo Assessment of Brainstem Depigmentation in Parkinson Disease: Potential as a Severity Marker for Multicenter Studies.

    PubMed

    Schwarz, Stefan T; Xing, Yue; Tomar, Pragya; Bajaj, Nin; Auer, Dorothee P

    2017-06-01

    Purpose To investigate the pattern of neuromelanin signal intensity loss within the substantia nigra pars compacta (SNpc), locus coeruleus, and ventral tegmental area in Parkinson disease (PD); the specific aims were (a) to study regional magnetic resonance (MR) quantifiable depigmentation in association with PD severity and (b) to investigate whether imaging- and platform-dependent signal intensity variations can be normalized. Materials and Methods This prospective case-control study was approved by the local ethics committee and the research department of Nottingham University Hospitals. Written informed consent was obtained from all participants before enrollment in the study. Sixty-nine participants (39 patients with PD and 30 control subjects) were investigated with neuromelanin-sensitive MR imaging by using two different 3-T platforms and three differing protocols. Neuromelanin-related volumes of the anterior and posterior SNpc, locus coeruleus, and ventral tegmental area were determined, and normalized neuromelanin volumes were assessed for protocol-dependent effects. Diagnostic test performance of normalized neuromelanin volume was investigated by using receiver operating characteristic analyses, and correlations with the Unified Parkinson's Disease Rating Scale scores were tested. Results Reduction of normalized neuromelanin volume in PD was most pronounced in the posterior SNpc (median, -83%; P < .001), followed by the anterior SNpc (-49%; P < .001) and the locus coeruleus (-37%; P < .05). Normalized neuromelanin volume loss of the posterior and whole SNpc allowed the best differentiation of patients with PD and control subjects (area under the receiver operating characteristic curve, 0.92 and 0.88, respectively). Normalized neuromelanin volume of the anterior, posterior, and whole SNpc correlated with Unified Parkinson's Disease Rating Scale scores (r 2 = 0.25, 0.22, and 0.28, respectively; all P < .05). Conclusion PD-induced neuromelanin loss can be quantified across imaging protocols and platforms by using appropriate adjustment. Depigmentation in PD follows a distinct spatial pattern, affords high diagnostic accuracy, and is associated with disease severity. © RSNA, 2016 Online supplemental material is available for this article.

  16. Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…

  17. A Kinesthetic Model Demonstrating Molecular Interactions Involved in Anterior-Posterior Pattern Formation in "Drosophila"

    ERIC Educational Resources Information Center

    Douglas, Kristin R.

    2008-01-01

    Prerequisites for the Developmental Biology course at Augustana College are introductory courses in zoology and cell biology. After introductory courses students appreciate the fact that proteins have three-dimensional structures; however, they often fail to recognize how protein interactions with other cellular components can lead to specific…

  18. Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies.

    PubMed

    Martin, Anna; Schurz, Matthias; Kronbichler, Martin; Richlan, Fabio

    2015-05-01

    We used quantitative, coordinate-based meta-analysis to objectively synthesize age-related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23-34 years) were matched to 20 studies with children (age means: 7-12 years). The separate meta-analyses of these two sets showed a pattern of reading-related brain activation common to children and adults in left ventral occipito-temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta-analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading-related activation clusters in children and adults are provided. © 2015 Wiley Periodicals, Inc.

  19. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease?

    PubMed Central

    Beaufils, Emilie; Ribeiro, Maria Joao; Vierron, Emilie; Vercouillie, Johnny; Dufour-Rainfray, Diane; Cottier, Jean-Philippe; Camus, Vincent; Mondon, Karl; Guilloteau, Denis; Hommet, Caroline

    2014-01-01

    Background Posterior cortical atrophy (PCA) is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD). The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET) between PCA and AD subjects. Methods We performed 18F-AV45 PET, cerebrospinal fluid (CSF) biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution. PMID:25538727

  20. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus

    PubMed Central

    Weiss, Aryeh; Williams, Terri A.; Nagy, Lisa M.

    2017-01-01

    We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus. We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. PMID:28432218

  1. 3D reconstruction and heat map of porcine recurrent laryngeal nerve anatomy: branching and spatial location.

    PubMed

    Mason, Nena Lundgreen; Christiansen, Marc; Wisco, Jonathan J

    2015-01-01

    Recurrent laryngeal nerve palsy is a common post-operative complication of many head and neck surgeries. Theoretically, the best treatment to restore partial function to a damaged recurrent laryngeal nerve would be reinnervation of the posterior cricoarytenoid muscle via anastomosis of the recurrent laryngeal and phrenic nerves. The pig is an excellent model of human laryngeal anatomy and physiology but a more thorough knowledge of porcine laryngeal anatomy is necessary before the pig can be used to improve existing surgical strategies, and develop new ones. This study first identifies the three most common recurrent laryngeal nerve branching patterns in the pig. Secondly, this study presents three-dimensional renderings of the porcine larynx onto which the recurrent laryngeal nerve patterns are accurately mapped. Lastly, heat maps are presented to display the spatial variability of recurrent laryngeal nerve trunks and primary branches on each side of 15 subjects (28 specimens). We intend for this study to be useful to groups using a porcine model to study posterior cricoarytenoid muscle reinnervation techniques.

  2. Municipal mortality due to thyroid cancer in Spain

    PubMed Central

    Lope, Virginia; Pollán, Marina; Pérez-Gómez, Beatriz; Aragonés, Nuria; Ramis, Rebeca; Gómez-Barroso, Diana; López-Abente, Gonzalo

    2006-01-01

    Background Thyroid cancer is a tumor with a low but growing incidence in Spain. This study sought to depict its spatial municipal mortality pattern, using the classic model proposed by Besag, York and Mollié. Methods It was possible to compile and ascertain the posterior distribution of relative risk on the basis of a single Bayesian spatial model covering all of Spain's 8077 municipal areas. Maps were plotted depicting standardized mortality ratios, smoothed relative risk (RR) estimates, and the posterior probability that RR > 1. Results From 1989 to 1998 a total of 2,538 thyroid cancer deaths were registered in 1,041 municipalities. The highest relative risks were mostly situated in the Canary Islands, the province of Lugo, the east of La Coruña (Corunna) and western areas of Asturias and Orense. Conclusion The observed mortality pattern coincides with areas in Spain where goiter has been declared endemic. The higher frequency in these same areas of undifferentiated, more aggressive carcinomas could be reflected in the mortality figures. Other unknown genetic or environmental factors could also play a role in the etiology of this tumor. PMID:17173668

  3. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    PubMed Central

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  4. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  5. Anatomical feasibility study of flexor hallucis longus transfer in treatment of Achilles tendon and posteromedial portal of ankle arthroscopy.

    PubMed

    Mao, Haijiao; Wang, Linger; Dong, Wenwei; Liu, Zhenxin; Yin, Weigang; Xu, Dachuan; Wapner, Keith L

    2018-04-16

    The aim of this study was to evaluate the occurrence of anatomical variations of the musculotendinous junction of the flexor hallucis longus (FHL) muscle, the relationship between FHL tendon or muscle and the tibial neurovascular bundle at the level of the posterior ankle joint in human cadavers. Seventy embalmed feet from 20 male and 15 female cadavers, the cadavers' mean age was 65.4 (range from 14 to 82) years, were dissected and anatomically classified to observe FHL muscle morphology define the relationship between FHL tendon or muscle and the tibial neurovascular bundle. The distance between the musculotendinous junction and the relationship between FHL tendon or muscle and the tibial neurovascular bundle was determined. Three morphology types of FHL muscle were identified: a long lateral and shorter medial muscle belly, which was observed in 63 specimens (90%); equal length medial and lateral muscle bellies, this variant was only observed in five specimens (7.1%); one lateral and no medial muscle belly, which was observed in two specimens (2.9%). No statistically significant difference was observed according to gender or side (p > 0.05). Two patterns were identified and described between FHL tendon or muscle and the tibial neurovascular bundle. Pattern 1, the distance between the neurovascular bundle and FHL tendon was 3.46 mm (range 2.34-8.84, SD = 2.12) which was observed in 66 specimens (94.3%); Pattern 2, there was no distance which was observed in four specimens (5.7%). Knowing FHL muscle morphology, variations provide new important insights into secure planning and execution of a FHL transfer for Achilles tendon defect as well as for the interpretation of ultrasound and magnetic resonance images. With posterior arthroscopic for the treatment of various ankle pathologies, posteromedial portal may be introduced into the posterior aspect of the ankle without gross injury to the tibial neurovascular structures because of the gap between the neurovascular bundle and FHL tendon.

  6. The clock and wavefront model revisited.

    PubMed

    Murray, Philip J; Maini, Philip K; Baker, Ruth E

    2011-08-21

    The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior-posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The effect of donepezil on increased regional cerebral blood flow in the posterior cingulate cortex of a patient with Parkinson's disease dementia.

    PubMed

    Imamura, Keiko; Wada-Isoe, Kenji; Kowa, Hisanori; Tanabe, Yoshio; Nakashima, Kenji

    2008-01-01

    It has been reported that the cholinesterase inhibitor, donepezil, improves cognitive decline in patients with Parkinson's disease dementia (PDD). However, this improvement was dominant for frontal lobe dysfunction, and the increase in the Mini-Mental State Examination (MMSE) score was minimal. We report a PDD patient with a decline of regional cerebral blood flow (rCBF) in the posterior cingulate cortex, precunei, and bilateral parietotemporal association cortex, as determined by single-photon emission computed tomography (SPECT) using the easy Z-scores imaging system (e-ZIS). Upon administration of donepezil, both the rCBF and MMSE score increased. The effectiveness of donepezil may vary based on the rCBF pattern in PDD.

  8. Memory-based decision-making with heuristics: evidence for a controlled activation of memory representations.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Meier, Stefanie; Bien, Siegfried; Jost, Kerstin; Rösler, Frank

    2011-11-01

    Many of our daily decisions are memory based, that is, the attribute information about the decision alternatives has to be recalled. Behavioral studies suggest that for such decisions we often use simple strategies (heuristics) that rely on controlled and limited information search. It is assumed that these heuristics simplify decision-making by activating long-term memory representations of only those attributes that are necessary for the decision. However, from behavioral studies alone, it is unclear whether using heuristics is indeed associated with limited memory search. The present study tested this assumption by monitoring the activation of specific long-term-memory representations with fMRI while participants made memory-based decisions using the "take-the-best" heuristic. For different decision trials, different numbers and types of information had to be retrieved and processed. The attributes consisted of visual information known to be represented in different parts of the posterior cortex. We found that the amount of information required for a decision was mirrored by a parametric activation of the dorsolateral PFC. Such a parametric pattern was also observed in all posterior areas, suggesting that activation was not limited to those attributes required for a decision. However, the posterior increases were systematically modulated by the relative importance of the information for making a decision. These findings suggest that memory-based decision-making is mediated by the dorsolateral PFC, which selectively controls posterior storage areas. In addition, the systematic modulations of the posterior activations indicate a selective boosting of activation of decision-relevant attributes.

  9. Dynamic behavioral strategies during sonar signal emission in roundleaf bats.

    PubMed

    Feng, Lin; Li, Yitan; Lu, Hongwang

    2013-10-02

    For echolocating bats which emit biosonar pulses nasally, their nostrils are surrounded by fleshy appendages that diffract the outgoing ultrasonic waves. The posterior leaf, as a prominent part of the noseleaf, was mentioned in previous preliminary observations to move during flight in some species of bats, yet the detailed motion patterns and thus the possible functional role of the posterior leaf movement in biosonar systems remain unclear. In the current work, the motion of the posterior leaf of living pratt's roundleaf bats has been investigated quantitatively. Temporal characterizations of the noseleaf movement and the ultrasonic pulse emission were performed by virtue of synchronized laser vibrometry and sound recording. The results showed that the posterior leaf tilted forwards and restored to original position within tens of milliseconds. Noseleaf motions were temporally correlated with the emitted ultrasonic pulses. The surfaces of the posterior leaf were moving in the anterior direction in most of the pulse duration. The bats were able to switch the motions on or off. From the comparison with the previously reported noseleaf dynamics in horseshoe bat, we find similar ratio sizes and displacements of the noseleaves compared to the used wavelengths, implying that similar behavioral strategies are utilized by species of bats and it may be applied to different components of the signal emitting apparatus. It suggests that the dynamic sensing principles may widely play a role in the biosonar systems and the investigation on time-variant mechanisms is of capital importance to understand the biosonar sensing strategies used by echolocating bats. © 2013.

  10. Selective pressures in the human bony pelvis: Decoupling sexual dimorphism in the anterior and posterior spaces.

    PubMed

    Brown, Kirsten M

    2015-07-01

    Sexual dimorphism in the human bony pelvis is commonly assumed to be related to the intensity of obstetrical selective pressures. With intense obstetrical selective pressures, there should be greater shape dimorphism; with minimal obstetrical selective pressures, there should be reduced shape dimorphism. This pattern is seen in the nondimorphic anterior spaces and highly dimorphic posterior spaces. Decoupling sexual dimorphism in these spaces may in turn be related to the differential influence of other selective pressures, such as biomechanical ones. The relationship between sexual dimorphism and selective pressures in the human pelvis was examined using five skeletal samples (total female n = 101; male n = 103). Pelvic shape was quantified by collecting landmark coordinate data on articulated pelves. Euclidean distance matrix analysis was used to extract the distances that defined the anterior and posterior pelvic spaces. Sex and body mass were used as proxies for obstetrical and biomechanical selective pressures, respectively. MANCOVA analyses demonstrate significant effects of sex and body mass on distances in both the anterior and the posterior spaces. A comparison of the relative contribution of shape variance attributed to each of these factors suggests that the posterior space is more influenced by sex, and obstetrics by proxy, whereas the anterior space is more influenced by body mass, and biomechanics by proxy. Although the overall shape of the pelvis has been influenced by obstetrical and biomechanical selective pressures, there is a differential response within the pelvis to these factors. These results provide new insight into the ongoing debate on the obstetrical dilemma hypothesis. © 2015 Wiley Periodicals, Inc.

  11. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography

    PubMed Central

    Ozker, Muge; Schepers, Inga M.; Magnotti, John F.; Yoshor, Daniel; Beauchamp, Michael S.

    2017-01-01

    Human speech can be comprehended using only auditory information from the talker’s voice. However, comprehension is improved if the talker’s face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl’s gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech. PMID:28253074

  12. Behavioral and brain pattern differences between acting and observing in an auditory task

    PubMed Central

    Karanasiou, Irene S; Papageorgiou, Charalabos; Tsianaka, Eleni I; Matsopoulos, George K; Ventouras, Errikos M; Uzunoglu, Nikolaos K

    2009-01-01

    Background Recent research has shown that errors seem to influence the patterns of brain activity. Additionally current notions support the idea that similar brain mechanisms are activated during acting and observing. The aim of the present study was to examine the patterns of brain activity of actors and observers elicited upon receiving feedback information of the actor's response. Methods The task used in the present research was an auditory identification task that included both acting and observing settings, ensuring concurrent ERP measurements of both participants. The performance of the participants was investigated in conditions of varying complexity. ERP data were analyzed with regards to the conditions of acting and observing in conjunction to correct and erroneous responses. Results The obtained results showed that the complexity induced by cue dissimilarity between trials was a demodulating factor leading to poorer performance. The electrophysiological results suggest that feedback information results in different intensities of the ERP patterns of observers and actors depending on whether the actor had made an error or not. The LORETA source localization method yielded significantly larger electrical activity in the supplementary motor area (Brodmann area 6), the posterior cingulate gyrus (Brodmann area 31/23) and the parietal lobe (Precuneus/Brodmann area 7/5). Conclusion These findings suggest that feedback information has a different effect on the intensities of the ERP patterns of actors and observers depending on whether the actor committed an error. Certain neural systems, including medial frontal area, posterior cingulate gyrus and precuneus may mediate these modulating effects. Further research is needed to elucidate in more detail the neuroanatomical and neuropsychological substrates of these systems. PMID:19154586

  13. Medial temporal lobe reinstatement of content-specific details predicts source memory

    PubMed Central

    Liang, Jackson C.; Preston, Alison R.

    2016-01-01

    Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. PMID:28029355

  14. Medial temporal lobe reinstatement of content-specific details predicts source memory.

    PubMed

    Liang, Jackson C; Preston, Alison R

    2017-06-01

    Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Clinical application of a color map pattern on shear-wave elastography for invasive breast cancer.

    PubMed

    Lee, Seokwon; Jung, Younglae; Bae, Youngtae

    2016-03-01

    The aim of this study was to classify the color map pattern on shear-wave elastography (SWE) and to determine its association with clinicopathological factors for clinical application in invasive breast cancer. From June to December 2014, 103 invasive breast cancers were imaged by B-mode ultrasonography (US) and SWE just before surgery. The color map pattern identified on the SWE could be classified into three main categories: type 1 (diffuse pattern), increased stiffness in the surrounding stroma and the interior lesion itself; type 2 (lateral pattern), marked peri-tumoral stiffness at the anterior and lateral portions with no or minor stiffness at the posterior portion; and type 3 (rim-off pattern), marked peri-tumoral stiffness at the anterior and posterior portion with no or minor stiffness at both lateral portions. High-grade density on mammography (grade 3-4) was more frequent in the type 1 pattern than the other pattern types (80.5% in high-grade density vs. 19.5% in low-grade density). For type 1 tumors, the extent of synchronous non-invasive cancers (pT0), ductal carcinoma in situ (DCIS), was 1.8-2.0 times wider than that measured by US or magnetic resonance imaging (MRI). For type 2 tumors, the invasive tumor components (pT size) size was 1.3 times greater than measured by MRI (p = 0.049). On the other hand, the pT size and pT0 extent of type 3 tumors were almost equal to the preoperative US and MRI measurements. In terms of immunohistochemical (IHC) profiles, type 3 tumors showed a high histologic grade (p = 0.021), poor differentiation (p = 0.009), presence of necrosis (p = 0.018), and high Ki-67 (p = 0.002). The percentage of HER2-positive cancers was relatively high within the type 2 group, and the percentage of triple negative breast cancer was relatively high in the type 3 group (p = 0.011). We expect that assessments of the SWE color map pattern will prove useful for surgical or therapeutic plan decisions and to predict prognosis in invasive breast cancer patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants.

    PubMed

    Scholpp, Steffen; Brand, Michael

    2003-11-01

    Initial anterior-posterior patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs already during gastrulation, in response to signals patterning the gastrula embryo. After the initial establishment, further development within each brain part is thought to proceed largely independently of the others. However, mechanisms should exist that ensure proper delineation of brain subdivisions also at later stages; such mechanisms are, however, poorly understood. In zebrafish no isthmus mutant embryos, inactivation of the pax2.1 gene leads to a failure of the midbrain and isthmus primordium to develop normally from the gastrula stage onward (Lun and Brand [1998] Development 125:3049-3062). Here, we report that, after the initially correct establishment during gastrulation stages, the neighbouring forebrain primordium and, partially, the hindbrain primordium expand into the misspecified midbrain territory in no isthmus mutant embryos. The expansion is particularly evident for the posterior part of the diencephalon and less so for the first rhombomeric segment, the territories immediately abutting the midbrain/isthmus primordium. The nucleus of the posterior commissure is expanded in size, and marker genes of the forebrain and rhombomere 1 expand progressively into the misspecified midbrain primordium, eventually resulting in respecification of the midbrain primordium. We therefore suggest that the genetic program controlled by Pax2.1 is not only involved in initiating but also in maintaining the identity of midbrain and isthmus cells to prevent them from assuming a forebrain or hindbrain fate. Copyright 2003 Wiley-Liss, Inc.

  17. Pax2/Pax8-defined subdomains and the occurrence of apoptosis in the posterior placodal area of mice.

    PubMed

    Washausen, Stefan; Knabe, Wolfgang

    2017-08-01

    The present work aims to improve our understanding of the causes and functions of apoptosis during the morphogenesis of epibranchial placodes in mice. Schematic maps helped to compare the spatiotemporal sequence of apoptotic events with the protein expression patterns of general (Six1) and specific placodal markers (Pax2, Pax8). Our findings challenge the view that, in mammals, all three epibranchial placodes spring from the original posterior placodal area (PPA) of presomite or early somite embryos. Instead, close-meshed analysis of the Pax2/Pax8 expression patterns demonstrates the stepwise emergence of two subdomains which both belong to the gradually expanding PPA, and which largely give rise to the otic placode and epibranchial placode 1 (anterior subdomain), or to the caudal epibranchial placodes (posterior subdomain). Our observations reinforce previous doubts raised on the PPA progeny of early somite Xenopus embryos (Schlosser and Ahrens, Dev Biol 271:439-466, 2004). They also demonstrate that partly different Pax2/Pax8 codes accompany epibranchial placode development in Xenopus laevis and mice. In mice, interplacodal apoptosis assists in the establishment of the two PPA subdomains and, subsequently, of individualized placodes by predominantly eliminating Six1 + placodal precursor cells. Onset of interplacodal and intraplacodal large-scale apoptosis is almost always preceded and/or paralleled by Pax2/Pax8 expression minima in the very same region. Future work will demand the use of knock-out mice and whole embryo culture to experimentally test, whether the combined action of differentially expressed Pax2 and Pax8 genes exerts antiapoptotic effects in the mammalian PPA.

  18. Anatomically related gray and white matter alterations in the brains of functional dyspepsia patients.

    PubMed

    Nan, J; Liu, J; Mu, J; Zhang, Y; Zhang, M; Tian, J; Liang, F; Zeng, F

    2015-06-01

    Previous studies summarized altered brain functional patterns in functional dyspepsia (FD) patients, but how the brain structural patterns are related to FD remains largely unclear. The objective of this study was to determine the brain structural characteristics in FD patients. Optimized voxel-based morphometry and tract-based spatial statistics were employed to investigate the changes in gray matter (GM) and white matter (WM) respectively in 34 FD patients with postprandial distress syndrome and 33 healthy controls based on T1-weighted and diffusion-weighted imaging. The Pearson's correlation evaluated the link among GM alterations, WM abnormalities, and clinical variables in FD patients. The optimal brain structural parameters for identifying FD were explored using the receiver operating characteristic curve. Compared to controls, FD patients exhibited a decrease in GM density (GMD) in the right posterior insula/temporal superior cortex (marked as pINS), right inferior frontal cortex (IFC), and left middle cingulate cortex, and an increase in fractional anisotropy (FA) in the posterior limb of the internal capsule, posterior thalamic radiation, and external capsule (EC). Interestingly, the GMD in the pINS was significantly associated with GMD in the IFC and FA in the EC. Moreover, the EC adjacent to the pINS provided the best performance for distinguishing FD patients from controls. Our results showed pINS-related structural abnormalities in FD patients, indicating that GM and WM parameters were not affected independently. These findings would lay the foundation for probing an efficient target in the brain for treating FD. © 2015 John Wiley & Sons Ltd.

  19. Changes in biomechanical strain and morphology of rat calvarial sutures and bone after Tgf-β3 inhibition of posterior interfrontal suture fusion.

    PubMed

    Shibazaki-Yorozuya, Reiko; Wang, Qian; Dechow, Paul C; Maki, Koutaro; Opperman, Lynne A

    2012-06-01

    Craniofacial sutures are bone growth fronts that respond and adapt to biomechanical environments. Little is known of the role sutures play in regulating the skull biomechanical environment during patency and fusion conditions, especially how delayed or premature suture fusion will impact skull biomechanics. Tgf-β3 has been shown to prevent or delay suture fusion over the short term in rat skulls, yet the long-term patency or its consequences in treated sutures is not known. It was therefore hypothesized that Tgf-β3 had a long-term impact to prevent suture fusion and thus alter the skull biomechanics. In this study, collagen gels containing 3 ng Tgf-β3 were surgically placed superficial to the posterior interfrontal suture (IFS) and deep to the periosteum in postnatal day 9 (P9) rats. At P9, P24, and P70, biting forces and strains over left parietal bone, posterior IFS, and sagittal suture were measured with masticatory muscles bilaterally stimulated, after which the rats were sacrificed and suture patency analyzed histologically. Results demonstrated that Tgf-β3 treated sutures showed less fusion over time than control groups, and strain patterns in the skulls of the Tgf-β3-treated group were different from that of the control group. Although bite force increased with age, no alterations in bite force were attributable to Tgf-β3 treatment. These findings suggest that the continued presence of patent sutures can affect strain patterns, perhaps when higher bite forces are present as in adult animals. Copyright © 2012 Wiley Periodicals, Inc.

  20. FOOT PLACEMENT IN A BODY REFERENCE FRAME DURING WALKING AND ITS RELATIONSHIP TO HEMIPARETIC WALKING PERFORMANCE

    PubMed Central

    Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.

    2010-01-01

    Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972

  1. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.

    PubMed

    Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A

    2010-06-01

    Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Complete vs partial-thickness tears of the posterior cruciate ligament: MR findings.

    PubMed

    Patten, R M; Richardson, M L; Zink-Brody, G; Rolfe, B A

    1994-01-01

    We sought to define the MRI appearance of both complete and partial-thickness tears of the posterior cruciate ligament (PCL) and to describe patterns of injury and associated MRI findings. Three radiologists retrospectively reviewed MR images and medical records on 32 patients with PCL tears (15 complete, 17 partial) and correlated MRI findings to results of clinical testing and surgery. The PCL had indistinct margins in 27 (84%) of 32 patients and was abnormally thick in 25 (78%) patients. In 31 (97%) patients, the torn PCL showed increased signal intensity on both T1- and T2-weighted pulse sequences. Although there was no statistically significant difference between patients with complete tears and those with partial tears with regard to thickness, margination, and signal intensity of the PCL, MR images in patients with complete tears were more likely to show focal areas of ligamentous discontinuity (10 of 15 cases) (p = 0.01). Associated knee injuries were seen in 21 (66%) patients and were seen more frequently in patients with complete PCL tears (p = 0.015). Bony injury (n = 11, 34%) and tears of the medial collateral ligament (n = 13, 41%) and menisci (n = 10, 31%) were common. No specific pattern of bony injury was found. Posterior cruciate ligament tears can be diagnosed readily by multiplanar MRI using both morphological and signal intensity characteristics. Although differentiation between complete and partial-thickness PCL tears by MRI criteria alone is more problematic, complete tears are more likely to show focal areas of discontinuity and partial tears are more likely to show at least some intact fibers.

  3. Patterning by heritage in mouse molar row development.

    PubMed

    Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata

    2010-08-31

    It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.

  4. [A case of migraine presenting with thunderclap headache associated with posterior reversible encephalopathy syndrome].

    PubMed

    Katoh, Hirotaka; Saito, Yu; Ohwan, Yoshiyuki; Kasai, Hideyo; Fujita, Kazuhisa; Kawamura, Mitsuru

    2014-10-01

    We report a 47-year-old woman who developed a thunderclap headache. Head axial, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI) revealed high signal lesions in the left occipital and right parietal lobes. Apparent diffusion coefficient mapping showed a vasogenic edema pattern. Upon admission, the patient's blood pressure was normal and the neurological examination was unremarkable. As thunderclap headaches are associated with a repeated rise in blood pressure, we considered cerebral vasoconstriction and administered a calcium channel blocker. Thereafter, her headache with high blood pressure eased significantly and the high signal lesions on FLAIR MRI disappeared. We diagnosed the condition as posterior reversible encephalopathy syndrome (PRES). In addition, head magnetic resonance angiogram showed vasoconstriction of the right anterior cerebral artery, left middle cerebral artery, and bilateral posterior cerebral artery. Calcium channel blocker use was continued and vasoconstriction improved by day 70. In this case, the presenting symptom was thunderclap headache, which is a characteristic feature of reversible cerebral vasoconstriction syndrome (RCVS). Therefore, PRES may be caused by RCVS.

  5. Neuropsychiatric Symptoms in Posterior Cortical Atrophy and Alzheimer Disease

    PubMed Central

    Crutch, Sebastian J.; Franco-Macías, Emilio; Gil-Néciga, Eulogio

    2016-01-01

    Background: Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome characterized by early progressive visual dysfunction in the context of relative preservation of memory and a pattern of atrophy mainly involving the posterior cortex. The aim of the present study is to characterize the neuropsychiatric profile of PCA. Methods: The Neuropsychiatric Inventory was used to assess 12 neuropsychiatric symptoms (NPS) in 28 patients with PCA and 34 patients with typical Alzheimer disease (AD) matched by age, disease duration, and illness severity. Results: The most commonly reported NPS in both groups were depression, anxiety, apathy, and irritability. However, aside from a trend toward lower rates of apathy in patients with PCA, there were no differences in the percentage of NPS presented in each group. All those patients presenting visual hallucinations in the PCA group also met diagnostic criteria for dementia with Lewy bodies (DLB). Auditory hallucinations were only present in patients meeting diagnosis criteria for DLB. Conclusion: Prevalence of the 12 NPS examined was similar between patients with PCA and AD. Hallucinations in PCA may be helpful in the differential diagnosis between PCA-AD and PCA-DLB. PMID:26404166

  6. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    PubMed

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  7. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis

    PubMed Central

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-01-01

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning. DOI: http://dx.doi.org/10.7554/eLife.12845.001 PMID:27063937

  8. Repetition-related reductions in neural activity reveal component processes of mental simulation.

    PubMed

    Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L

    2014-05-01

    In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.

  9. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease

    PubMed Central

    Small, Gary W.; Ercoli, Linda M.; Silverman, Daniel H. S.; Huang, S.-C.; Komo, Scott; Bookheimer, Susan Y.; Lavretsky, Helen; Miller, Karen; Siddarth, Prabha; Rasgon, Natalie L.; Mazziotta, John C.; Saxena, Sanjaya; Wu, H. M.; Mega, Michael S.; Cummings, Jeffrey L.; Saunders, Ann M.; Pericak-Vance, Margaret A.; Roses, Allen D.; Barrio, Jorge R.; Phelps, Michael E.

    2000-01-01

    The major known genetic risk for Alzheimer's disease (AD), apolipoprotein E-4 (APOE-4), is associated with lowered parietal, temporal, and posterior cingulate cerebral glucose metabolism in patients with a clinical diagnosis of AD. To determine cognitive and metabolic decline patterns according to genetic risk, we investigated cerebral metabolic rates by using positron emission tomography in middle-aged and older nondemented persons with normal memory performance. A single copy of the APOE-4 allele was associated with lowered inferior parietal, lateral temporal, and posterior cingulate metabolism, which predicted cognitive decline after 2 years of longitudinal follow-up. For the 20 nondemented subjects followed longitudinally, memory performance scores did not decline significantly, but cortical metabolic rates did. In APOE-4 carriers, a 4% left posterior cingulate metabolic decline was observed, and inferior parietal and lateral temporal regions demonstrated the greatest magnitude (5%) of metabolic decline after 2 years. These results indicate that the combination of cerebral metabolic rates and genetic risk factors provides a means for preclinical AD detection that will assist in response monitoring during experimental treatments. PMID:10811879

  10. Cognitive Control Network Contributions to Memory-Guided Visual Attention.

    PubMed

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2016-05-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Experiencing Past and Future Personal Events: Functional Neuroimaging Evidence on the Neural Bases of Mental Time Travel

    ERIC Educational Resources Information Center

    Botzung, Anne; Denkova, Ekaterina; Manning, Lilianne

    2008-01-01

    Functional MRI was used in healthy subjects to investigate the existence of common neural structures supporting re-experiencing the past and pre-experiencing the future. Past and future events evocation appears to involve highly similar patterns of brain activation including, in particular, the medial prefrontal cortex, posterior regions and the…

  12. Opposite brain emotion-regulation patterns in identity states of dissociative identity disorder: a PET study and neurobiological model.

    PubMed

    Reinders, Antje A T S; Willemsen, Antoon T M; den Boer, Johan A; Vos, Herry P J; Veltman, Dick J; Loewenstein, Richard J

    2014-09-30

    Imaging studies in posttraumatic stress disorder (PTSD) have shown differing neural network patterns between hypo-aroused/dissociative and hyper-aroused subtypes. Since dissociative identity disorder (DID) involves different emotional states, this study tests whether DID fits aspects of the differing brain-activation patterns in PTSD. While brain activation was monitored using positron emission tomography, DID individuals (n=11) and matched DID-simulating healthy controls (n=16) underwent an autobiographic script-driven imagery paradigm in a hypo-aroused and a hyper-aroused identity state. Results were consistent with those previously found in the two PTSD subtypes for the rostral/dorsal anterior cingulate, the prefrontal cortex, and the amygdala and insula, respectively. Furthermore, the dissociative identity state uniquely activated the posterior association areas and the parahippocampal gyri, whereas the hyper-aroused identity state uniquely activated the caudate nucleus. Therefore, we proposed an extended PTSD-based neurobiological model for emotion modulation in DID: the hypo-aroused identity state activates the prefrontal cortex, cingulate, posterior association areas and parahippocampal gyri, thereby overmodulating emotion regulation; the hyper-aroused identity state activates the amygdala and insula as well as the dorsal striatum, thereby undermodulating emotion regulation. This confirms the notion that DID is related to PTSD as hypo-aroused and hyper-arousal states in DID and PTSD are similar. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation

    NASA Technical Reports Server (NTRS)

    Marshburn, T. H.; Kaufman, G. D.; Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Immunolabeling patterns of the immediate early gene-related protein Fos in the gerbil brainstem were studied following stimulation of the sacculus by both hypergravity and galvanic stimulation. Head-restrained, alert animals were exposed to a prolonged (1 h) inertial vector of 2 G (19.6 m/s2) head acceleration directed in a dorso-ventral head axis to maximally stimulate the sacculus. Fos-defined immunoreactivity was quantified, and the results compared to a control group. The hypergravity stimulus produced Fos immunolabeling in the dorsomedial cell column (dmcc) of the inferior olive independently of other subnuclei. Similar dmcc labeling was induced by a 30 min galvanic stimulus of up to -100 microA applied through a stimulating electrode placed unilaterally on the bony labyrinth overlying the posterior canal (PC). The pattern of vestibular afferent firing activity induced by this galvanic stimulus was quantified in anesthetized gerbils by simultaneously recording from Scarpa's ganglion. Only saccular and PC afferent neurons exhibited increases in average firing rates of 200-300%, suggesting a pattern of current spread involving only PC and saccular afferent neurons at this level of stimulation. These results suggest that alteration in saccular afferent firing rates are sufficient to induce Fos-defined genomic activation of the dmcc, and lend further evidence to the existence of a functional vestibulo-olivary-cerebellar pathway of adaptation to novel gravito-inertial environments.

  14. Correlation between frontal sinus dimensions and cephalometric indices: A cross-sectional study

    PubMed Central

    Tehranchi, Azita; Motamedian, Saeed Reza; Saedi, Sara; Kabiri, Sattar; Shidfar, Shireen

    2017-01-01

    Objective: Growth prediction plays a significant role in accurate diagnosis and treatment planning of orthodontics patients. It was hypothesized that the unique pattern of pneumatization of the frontal sinus as a component of craniofacial structure would influence the skeletal growth pattern and may be used as a growth predictor. Materials and Methods: A total of 144 subjects (78 females and 66 males) with a mean age of 19.26 ± 4.66 years were included in this retrospective study. Posterior-anterior and lateral cephalograms (LCs) were used to measure the frontal sinus dimensions. The skeletal growth pattern and relations of craniofacial structures were analyzed on LC using variables for sagittal and vertical analyses. Correlation between the frontal sinus dimensions and cephalometric indices was assessed by the Pearson's correlation coefficient. Results: The SN-FH and SNA angles had significant associations with frontal sinus dimensions in all enrolled subjects (P < 0.05). In males, the SN-FH, sum of posterior angles, Pal-SN, and Jarabak index were significantly associated with the size of frontal sinus (P < 0.05). In females, the associations of SN-FH and gonial angles with frontal sinus dimensions were significant (P < 0.05). Conclusion: The results show that larger size of frontal sinus was associated with reduced inclination of the anterior cranial base, increased anterior facial height (in males), and increased gonial angle (in females) in the study population. PMID:28435368

  15. Nodal signalling determines biradial asymmetry in Hydra.

    PubMed

    Watanabe, Hiroshi; Schmidt, Heiko A; Kuhn, Anne; Höger, Stefanie K; Kocagöz, Yigit; Laumann-Lipp, Nico; Ozbek, Suat; Holstein, Thomas W

    2014-11-06

    In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of β-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of β-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians.

  16. Tau PET binding distinguishes patients with early-stage posterior cortical atrophy from amnestic Alzheimer disease dementia

    PubMed Central

    Day, Gregory S.; Gordon, Brian A.; Jackson, Kelley; Christensen, Jon J.; Ponisio, Maria Rosana; Su, Yi; Ances, Beau M; Benzinger, Tammie L.S.; Morris, John C.

    2017-01-01

    Background Flortaucipir (tau) PET binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. Methods Flortaucipir and florbetapir (β-amyloid) PET-imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxel-wise level, controlling for age. Results PCA patients (median age-at-onset, 59 [51–61] years) were younger at symptom-onset than similarly-staged individuals with amnestic AD (75 [60–85] years) or CN controls (73 [61–90] years; p=0.002). Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. Conclusions and Relevance Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype. PMID:28394771

  17. Should total hip arthroplasty femoral components be designed to subside? A radiostereometric analysis study of the Charnley Elite and Exeter stems.

    PubMed

    Alfaro-Adrián, J; Gill, H S; Murray, D W

    2001-08-01

    The Charnley Elite and the Exeter stems have different design concepts: The former is designed not to subside, whereas the latter is expected to subside. This radiostereometric analysis study compares the early migration of the 2 stems. For both implants, the 1st year migration was about 4 times faster than the 2nd year. The Exeter migration was predominantly distal (1 mm/y in the 1st year). It also showed slight collapse into valgus, and the head migrated slowly posteriorly (0.3 mm/y in the 1st year). In contrast, the Elite had slow distal migration (0.2 mm/y in the 1st year) and rapid posterior head migration (0.8 mm/y in the 1st year). Four Elites and no Exeters had rapid posterior head migration rates (mean 2.8 mm/y in the 1st year and 0.8 mm/y in the 2nd year). The Elite and the Exeter stems have fundamentally different early patterns of migration, which affect their long-term function; 20% of the Elites and none of the Exeters had rapid posterior head migration in the 1st year and the 2nd year and are likely to fail early. Polished, collarless, tapered designs, such as the Exeter, may be more forgiving than conventional stems designed not to subside.

  18. Advances of optical coherence tomography in myopia and pathologic myopia

    PubMed Central

    Ng, D S C; Cheung, C Y L; Luk, F O; Mohamed, S; Brelen, M E; Yam, J C S; Tsang, C W; Lai, T Y Y

    2016-01-01

    The natural course of high-axial myopia is variable and the development of pathologic myopia is not fully understood. Advancements in optical coherence tomography (OCT) technology have revealed peculiar intraocular structures in highly myopic eyes and unprecedented pathologies that cause visual impairment. New OCT findings include posterior precortical vitreous pocket and precursor stages of posterior vitreous detachment; peripapillary intrachoroidal cavitation; morphological patterns of scleral inner curvature and dome-shaped macula. Swept source OCT is capable of imaging deeper layers in the posterior pole for investigation of optic nerve pits, stretched and thinned lamina cribrosa, elongated dural attachment at posterior scleral canal, and enlargement of retrobulbar subarachnoid spaces. This has therefore enabled further evaluation of various visual field defects in high myopia and the pathogenesis of glaucomatous optic neuropathy. OCT has many potential clinical uses in managing visual impairing conditions in pathologic myopia. Understanding how retinal nerve fibers are redistributed in axial elongation will allow the development of auto-segmentation software for diagnosis and monitoring progression of glaucoma. OCT is indispensable in the diagnosis of various conditions associated with myopic traction maculopathy and monitoring of post-surgical outcomes. In addition, OCT is commonly used in the multimodal imaging assessment of myopic choroidal neovascularization. Biometry and topography of the retinal layers and choroid will soon be validated for the classification of myopic maculopathy for utilization in epidemiological studies as well as clinical trials. PMID:27055674

  19. Tau-PET Binding Distinguishes Patients With Early-stage Posterior Cortical Atrophy From Amnestic Alzheimer Disease Dementia.

    PubMed

    Day, Gregory S; Gordon, Brian A; Jackson, Kelley; Christensen, Jon J; Rosana Ponisio, Maria; Su, Yi; Ances, Beau M; Benzinger, Tammie L S; Morris, John C

    2017-01-01

    Flortaucipir (tau) positron emission tomography (PET) binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau-PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. Flortaucipir and florbetapir (β-amyloid) PET imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxelwise level, controlling for age. PCA patients [median age-at-onset, 59 (51 to 61) years] were younger at symptom onset than similarly staged individuals with amnestic AD [75 (60 to 85) years] or CN controls [73 (61 to 90) years; P=0.002]. Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype.

  20. Indocyanine green angiography in posterior uveitis

    PubMed Central

    Agrawal, Rupesh V; Biswas, Jyotirmay; Gunasekaran, Dinesh

    2013-01-01

    Literature review for indocyanine green angiography and evaluate the role of indocyanine green angiogram (ICGA) in patients with posterior uveitis seen at a tertiary referral eye care centre. Detailed review of the literature on ICGA was performed. Retrospective review of medical records of patients with posterior uveitis and dual fundus and ICGA was done after institutional board approval. Eighteen patients (26 eyes) had serpiginous choroiditis out of which 12 patients had active choroiditis and six patients had healed choroiditis, six patients (12 eyes) had ampiginous choroiditis, six patients (12 eyes) had acute multifocal posterior placoid pigment epitheliopathy, eight patients (10 eyes) had multifocal choroiditis, four patients (eight eyes) had presumed ocular histoplasmosis syndrome, four patients (eight eyes) had presumed tuberculous choroiditis, two patients (four eyes) had multiple evanescent white dot syndrome and two patients (four eyes) had Vogt Koyanagi Harada (VKH) syndrome. The most characteristic feature noted on ICGA was the presence of different patterns of hypofluorescent dark spots, which were present at different stages of the angiogram. ICGA provides the clinician with a powerful adjunctive tool in choroidal inflammatory disorders. It is not meant to replace already proven modalities such as the fluorescein angiography, but it can provide additional information that is useful in establishing a more definitive diagnosis in inflammatory chorioretinal diseases associated with multiple spots. It still needs to be determined if ICGA can prove to be a follow up parameter to evaluate disease progression. PMID:23685486

  1. Histopathological Differences Between the Anterior and Posterior Brain Arteries as a Function of Aging.

    PubMed

    Roth, William; Morgello, Susan; Goldman, James; Mohr, Jay P; Elkind, Mitchell S V; Marshall, Randolph S; Gutierrez, Jose

    2017-03-01

    We tested the hypothesis that posterior brain arteries differ pathologically from anterior brain arteries and that this difference varies with age. Brain large arteries from 194 autopsied individuals (mean age 56±17 years, 63% men, 25% nonwhite, 17% with brain infarcts) were analyzed to obtain the areas of arterial layers and lumen as well as the relative content of elastin, collagen, and amyloid. Visual rating was used to determine the prevalence of atheroma, calcification, vasa vasorum , pattern of intima thickening, and internal elastic lamina gaps. We used multilevel models adjusting for age, sex, ethnicity, vascular risk factors, artery type and location, and multiple comparisons. Of 1362 large artery segments, 5% had vasa vasorum, 5% had calcifications, 15% had concentric intimal thickening, and 11% had atheromas. Posterior brain arteries had thinner walls, less elastin, and more concentric intima thickening than anterior brain arteries. Compared to anterior brain arteries, the basilar artery had higher arterial area encircled by the internal elastic lamina, whereas the vertebral arteries had higher prevalence of elastin loss, concentric intima thickening, and nonatherosclerotic stenosis. In younger individuals, vertebral artery calcifications were more likely than calcification in anterior brain arteries, but this difference attenuated with age. Posterior brain arteries differ pathologically from anterior brain arteries in the degree of wall thickening, elastin loss, and concentric intimal thickening. © 2017 American Heart Association, Inc.

  2. Gossypibomas, a surgeon's nightmare—patient demographics, risk factors, imaging and how we can prevent it

    PubMed Central

    Thomas, Binston; Basti, Ram S; Suresh, Hadihally B

    2017-01-01

    Objective: Gossypibomas are a cottonoid matrix left behind following surgery. Owing to the legal issues associated with it, very few literature studies are available online, most of them being case reports. The purpose of our study was to identify the patient demographics, risk factors and imaging features. Methods: Six surgically identified and histopathologically confirmed cases of gossypibomas recorded over a period of 5 years from a single tertiary institution were retrospectively evaluated for patient demographics [sex, age, body mass index (BMI)], type of surgery and duration from time of surgery to onset of symptoms. Ultrasound and CT images obtained from our hospital database were evaluated for their characteristic pattern. Statistics used included percentage and frequency. Results: Females formed the bulk of our patients and the mean BMI of our patients was 24.25. The interval between surgery and symptom presentation ranged from 2 months to 7 years. The most common imaging patterns observed on ultrasound and CT were a thick-walled hypoechoic lesion with a strong posterior acoustic shadowing and a “spongiform pattern”, respectively. Conclusion: A detailed patient history, taking into account radiologist—surgeon interaction, along with familiarization of the various risk factors and imaging patterns can bring about an accurate diagnosis of a gossypiboma. Advances in knowledge: Our study showed that the female sex, especially those undergoing gynaecology-related surgery such as hysterectomy and patients with a high BMI were at risk of gossypibomas. The combination of a hypoechoic lesion with strong posterior shadowing on ultrasound along with a spongiform pattern on CT was highly characteristic for gossypiboma on imaging. PMID:27885854

  3. Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity.

    PubMed

    Úbeda-Contreras, Jesús; Marín-Blasco, Ignacio; Nadal, Roser; Armario, Antonio

    2018-06-01

    Regardless of its particular nature, emotional stressors appear to elicit a widespread and roughly similar brain activation pattern as evaluated by c-fos expression. However, their behavioral and physiological consequences may strongly differ. Here we addressed in adult male rats the contribution of the intensity and the particular nature of stressors by comparing, in a set of brain areas, the number of c-fos expressing neurons in response to open-field, cat odor or immobilization on boards (IMO). These are qualitatively different stressors that are known to differ in terms of intensity, as evaluated by biological markers. In the present study, plasma levels of the adrenocorticotropic hormone (ACTH) demonstrated that intensity increases in the following order: open-field, cat odor and IMO. Four different c-fos activation patterns emerged among all areas studied: (i) positive relationship with intensity (posterior-dorsal medial amygdala, dorsomedial hypothalamus, lateral septum ventral and paraventricular nucleus of the hypothalamus), (ii) negative relationship with intensity (cingulate cortex 1, posterior insular cortex, dorsal striatum, nucleus accumbens and some subdivisions of the hippocampal formation); (iii) activation not dependent on the intensity of the stressor (prelimbic and infralimbic cortex and lateral and basolateral amygdala); and (iv) activation specifically associated with cat odor (ventromedial amygdala and ventromedial hypothalamus). Histone 3 phosphorylation at serine 10, another neuronal activation marker, corroborated c-fos results. Summarizing, deepest analysis of the brain activation pattern elicit by emotional stressor indicated that, in spite of activating similar areas, each stressor possess their own brain activation signature, mediated mainly by qualitative aspects but also by intensity.

  4. A Knowledge-Based Arrangement of Prototypical Neural Representation Prior to Experience Contributes to Selectivity in Upcoming Knowledge Acquisition.

    PubMed

    Kurashige, Hiroki; Yamashita, Yuichi; Hanakawa, Takashi; Honda, Manabu

    2018-01-01

    Knowledge acquisition is a process in which one actively selects a piece of information from the environment and assimilates it with prior knowledge. However, little is known about the neural mechanism underlying selectivity in knowledge acquisition. Here we executed a 2-day human experiment to investigate the involvement of characteristic spontaneous activity resembling a so-called "preplay" in selectivity in sentence comprehension, an instance of knowledge acquisition. On day 1, we presented 10 sentences (prior sentences) that were difficult to understand on their own. On the following day, we first measured the resting-state functional magnetic resonance imaging (fMRI). Then, we administered a sentence comprehension task using 20 new sentences (posterior sentences). The posterior sentences were also difficult to understand on their own, but some could be associated with prior sentences to facilitate their understanding. Next, we measured the posterior sentence-induced fMRI to identify the neural representation. From the resting-state fMRI, we extracted the appearances of activity patterns similar to the neural representations for posterior sentences. Importantly, the resting-state fMRI was measured before giving the posterior sentences, and thus such appearances could be considered as preplay-like or prototypical neural representations. We compared the intensities of such appearances with the understanding of posterior sentences. This gave a positive correlation between these two variables, but only if posterior sentences were associated with prior sentences. Additional analysis showed the contribution of the entorhinal cortex, rather than the hippocampus, to the correlation. The present study suggests that prior knowledge-based arrangement of neural activity before an experience contributes to the active selection of information to be learned. Such arrangement prior to an experience resembles preplay activity observed in the rodent brain. In terms of knowledge acquisition, the present study leads to a new view of the brain (or more precisely of the brain's knowledge) as an autopoietic system in which the brain (or knowledge) selects what it should learn by itself, arranges preplay-like activity as a position for the new information in advance, and actively reorganizes itself.

  5. Anatomical significance of a posterior horn of medial meniscus: the relationship between its radial tear and cartilage degradation of joint surface.

    PubMed

    Kan, Akinori; Oshida, Midori; Oshida, Shigemi; Imada, Masato; Nakagawa, Takumi; Okinaga, Shuji

    2010-01-12

    Traumatic injury and surgical meniscectomy of a medial meniscus are known to cause subsequent knee osteoarthritis. However, the difference in the prevalence of osteoarthritis caused by the individual type of the medial meniscal tear has not been elucidated. The aim of this study was to investigate what type of tear is predominantly responsible for the degradation of articular cartilage in the medial compartment of knee joints. Five hundred and forty eight cadaveric knees (290 male and 258 female) were registered in this study. The average age of cadavers at death was 78.8 years old (range: 52-103 years). The knees were macroscopically examined and their medial menisci were classified into four groups according to types of tears: "no tear", "radial tear of posterior horn", "other types of tear" and "worn-out meniscus" groups. The severity of cartilage degradation in their medial compartment of knee joints was evaluated using the international cartilage repair society (ICRS) grading system. We statistically compared the ICRS grades among the groups using Mann-Whitney U test. The knees were assigned into the four groups: 416 "no tear" knees, 51 "radial tear of posterior horn" knees, 71 "other types of tear" knees, and 10 "worn-out meniscus" knees. The knees with substantial meniscal tears showed the severer ICRS grades of cartilage degradation than those without meniscal tears. In addition, the ICRS grades were significantly severer in the "radial tear of posterior horn" group than in the "other types of tear" group, suggesting that the radial tear of posterior horn in the medial meniscus is one of the risk factors for cartilage degradation of joint surface. We have clarified the relationship between the radial tear of posterior horn in the medial meniscus and the severer grade of cartilage degradation. This study indicates that the efforts should be made to restore the anatomical role of the posterior horn in keeping the hoop strain, when patients' physical activity levels are high and the tear pattern is simple enough to be securely sutured.

  6. A Knowledge-Based Arrangement of Prototypical Neural Representation Prior to Experience Contributes to Selectivity in Upcoming Knowledge Acquisition

    PubMed Central

    Kurashige, Hiroki; Yamashita, Yuichi; Hanakawa, Takashi; Honda, Manabu

    2018-01-01

    Knowledge acquisition is a process in which one actively selects a piece of information from the environment and assimilates it with prior knowledge. However, little is known about the neural mechanism underlying selectivity in knowledge acquisition. Here we executed a 2-day human experiment to investigate the involvement of characteristic spontaneous activity resembling a so-called “preplay” in selectivity in sentence comprehension, an instance of knowledge acquisition. On day 1, we presented 10 sentences (prior sentences) that were difficult to understand on their own. On the following day, we first measured the resting-state functional magnetic resonance imaging (fMRI). Then, we administered a sentence comprehension task using 20 new sentences (posterior sentences). The posterior sentences were also difficult to understand on their own, but some could be associated with prior sentences to facilitate their understanding. Next, we measured the posterior sentence-induced fMRI to identify the neural representation. From the resting-state fMRI, we extracted the appearances of activity patterns similar to the neural representations for posterior sentences. Importantly, the resting-state fMRI was measured before giving the posterior sentences, and thus such appearances could be considered as preplay-like or prototypical neural representations. We compared the intensities of such appearances with the understanding of posterior sentences. This gave a positive correlation between these two variables, but only if posterior sentences were associated with prior sentences. Additional analysis showed the contribution of the entorhinal cortex, rather than the hippocampus, to the correlation. The present study suggests that prior knowledge-based arrangement of neural activity before an experience contributes to the active selection of information to be learned. Such arrangement prior to an experience resembles preplay activity observed in the rodent brain. In terms of knowledge acquisition, the present study leads to a new view of the brain (or more precisely of the brain’s knowledge) as an autopoietic system in which the brain (or knowledge) selects what it should learn by itself, arranges preplay-like activity as a position for the new information in advance, and actively reorganizes itself. PMID:29662446

  7. Prediction of postoperative diabetes insipidus using morphological hyperintensity patterns in the pituitary stalk on magnetic resonance imaging after transsphenoidal surgery for sellar tumors.

    PubMed

    Hayashi, Yasuhiko; Kita, Daisuke; Watanabe, Takuya; Fukui, Issei; Sasagawa, Yasuo; Oishi, Masahiro; Tachibana, Osamu; Ueda, Fumiaki; Nakada, Mitsutoshi

    2016-12-01

    Diabetes insipidus (DI) remains a complication of transsphenoidal surgery (TSS) for sellar and parasellar tumors. Antidiuretic hormone (ADH) appears as hyper intensity (HI) in the pituitary stalk and the posterior lobe of the pituitary gland on T1-weighted magnetic resonance (MR) imaging. Its disappearance from the posterior lobe occurs with DI, indicating a lack of ADH. The appearance of HI in the pituitary stalk indicates disturbances in ADH transport. This retrospective study included 172 patients undergoing TSS for sellar tumors at our institute from 2006 to 2014. Sequential T1-weighted MR images without enhancement were evaluated for HI in the pituitary stalk and the posterior lobe to assess the localization of ADH before and at intervals after TSS. DI was assessed pre- and postoperatively. HI in the pituitary stalk showed the following morphology: (1) ovoid in the distal end of the pituitary stalk (group A), (2) linear in the distal part of the pituitary stalk (group B), (3) linear in the whole pituitary stalk (group C). Preoperative DI occurred in 6 patients (3.5 %) with no HI observed in the posterior lobe. Postoperative DI was transient in 82 patients (47.7 %), and permanent in 11 (6.4 %). One week after surgery, HI was absent in the posterior lobe in 74 patients (43.0 %), and present in the pituitary stalk in 99 patients (57.6 %); both were significantly correlated with postoperative DI (p < 0.001). The absence of HI in the posterior lobe (A, 48.9 %; B, 68.3 %; C, 92.3 %), persistence of DI (A, 3.7 days; B, 45.9 days; C, 20.5 months), and duration until HI recovery in the posterior lobe (A, 3.6 months; B, 6.8 months; C, 22.9 months) were greatest in group C, followed by group B, and then group A. Fourteen group A patients did not have postoperative DI despite having HI in the pituitary stalk and the posterior lobe. Four group C patients developed permanent DI with persistence HI in the pituitary stalk. HI in the pituitary stalk and its absence in the posterior lobe indicated postoperative DI, which was transient if HI was detected in the pituitary stalk. DI duration could be predicted by the length of HI in the pituitary stalk, which corresponded to the degree of ADH transport obstruction.

  8. Epilepsy surgery in the posterior part of the brain.

    PubMed

    Liava, Alexandra; Mai, Roberto; Cardinale, Francesco; Tassi, Laura; Casaceli, Giuseppe; Gozzo, Francesca; Cossu, Massimo; Nobili, Lino; Castana, Laura; Sartori, Ivana; Lo Russo, Giorgio; Francione, Stefano

    2016-11-01

    Posterior cortex epilepsy surgery is rarely performed and is associated with a high number of surgical failures, partly because accurate localization of the epileptogenic zone in the posterior part of the brain is extremely difficult. We present the characteristics as well as the surgical outcome and its determinants of a cohort of 208 consecutive patients (adults/children: 125/83) operated on for drug-resistant posterior cortex epilepsy at the "Claudio Munari" Epilepsy Surgery Centre, Milan between May 1996 and May 2013 (mean postsurgical follow-up: 9.6years). In addition, we highlight the differences in anatomoelectroclinical features and outcome between (i) patients who necessitated an invasive preoperative evaluation and those who proceeded directly to surgery and (ii) adults and children. Mean age at epilepsy onset was 6.8years (91.4% with onset before 14years of age). A high seizure frequency was reported by 51% of subjects, interictal and ictal EEG features were localizing in 16% and 28% of cases, and 86% of patients had a positive, judged as more or less informative, MRI. Invasive presurgical evaluation by stereoelectroencephalography was performed in 54% of patients; explorations may schematically be grouped in three main implantation patterns. Globally, 70% of subjects achieved seizure freedom, and further, 10% achieved Engel class II, with the patients operated on in childhood achieving significantly better postsurgical results in terms of seizure freedom and drug discontinuation. Duration of epilepsy represented the most consistent predictor of surgical outcome, with early surgery being correlated with higher chances of surgical success. Therefore, we recommend an early surgical referral in cases of pharmacoresistant posterior cortex seizures. Furthermore, we suggest that surgical failure might be predicted very early, namely within the first 6 postoperative months. We conclude that surgical management of posterior cortex epilepsy may attain excellent results. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans

    PubMed Central

    Josephson, Matthew P.; Chai, Yongping; Ou, Guangshuo; Lundquist, Erik A.

    2016-01-01

    Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right) and QL (on the left) undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly). EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p) after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function). PMID:26863303

  10. Effect of Right Posterior Bile Duct Anatomy on Biliary Complications in Patients Undergoing Right Lobe Living Donor Liver Transplant.

    PubMed

    Tezcaner, Tugan; Dinç, Nadire; Y Karakayalı, Feza; Kırnap, Mahir; Coşkun, Mehmet; Moray, Gökhan; Haberal, Mehmet

    2017-01-27

    Our aim was to evaluate the influence of the localization of right posterior bile duct anatomy relative to portal vein of the donors on posttransplant bile duct complications. We retrospectively investigated 141 patients who had undergone living donor liver transplant using right hemiliver grafts. The patients were classified based on the pattern of the right posterior bile duct and divided into infraportal and supraportal types. Clinical donor and recipient risk factors and surgical outcomes were compared for their relationship with biliary complications using logistic regression analyses. The 2 groups were similar according to demographic and clinical features. The biliary complication rate was 23.7% (9/38) in the infraportal group and 47.4% (37/78) in the supraportal group (P = .014). An analysis of risk factors for the development of anastomotic bile leak using logistic regression showed that a supraportal right posterior bile duct anatomy was a statistically significant positive predictor, with odds ratio of 18.905 (P = .012; confidence interval, 1.922-185.967). The distance of the right posterior bile duct from confluence was significantly lower in patients with biliary complications than in those without (mean of 7.66 vs 0.40 mm; P = .044). According to receiver operating characteristic analyses, the cut-off point for the length of right bile duct to right posterior bile duct from the hepatic confluence was 9.5 mm regarding presence of complications. Factors influencing bile duct anastomosis leakage were supraportal-type donor bile duct anatomy and length of the right main bile duct from biliary confluence. Hepatic arterial complications were similarly a risk factor for biliary strictures. Because of the multiple factors leading to complications in living donor liver transplant, it is challenging to group these patients by operative risk; however, establishing risk models may facilitate the prediction of complications.

  11. Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D

    2014-01-01

    The investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark–recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity. Model-selection approaches based on information criteria or Bayes factors have been used to address this question. Here, we suggest that, in addition to model-selection, model-checking methods can provide additional important insights to tackle this issue, as they allow one to evaluate a model's misfit in terms of ecologically meaningful measures. Specifically, we propose the use of posterior predictive checks to explicitly assess discrepancies between a model and the data, and we explain how to incorporate model checking into the inferential process used to assess the practical implications of ignoring individual heterogeneity. Posterior predictive checking is a straightforward and flexible approach for performing model checks in a Bayesian framework that is based on comparisons of observed data to model-generated replications of the data, where parameter uncertainty is incorporated through use of the posterior distribution. If discrepancy measures are chosen carefully and are relevant to the scientific context, posterior predictive checks can provide important information allowing for more efficient model refinement. We illustrate this approach using analyses of vital rates with long-term mark–recapture data for Weddell seals and emphasize its utility for identifying shortfalls or successes of a model at representing a biological process or pattern of interest. We show how posterior predictive checks can be used to strengthen inferences in ecological studies. We demonstrate the application of this method on analyses dealing with the question of individual reproductive heterogeneity in a population of Antarctic pinnipeds. PMID:24834335

  12. Age of acquisition effects on the functional organization of language in the adult brain.

    PubMed

    Mayberry, Rachel I; Chen, Jen-Kai; Witcher, Pamela; Klein, Denise

    2011-10-01

    Using functional magnetic resonance imaging (fMRI), we neuroimaged deaf adults as they performed two linguistic tasks with sentences in American Sign Language, grammatical judgment and phonemic-hand judgment. Participants' age-onset of sign language acquisition ranged from birth to 14 years; length of sign language experience was substantial and did not vary in relation to age of acquisition. For both tasks, a more left lateralized pattern of activation was observed, with activity for grammatical judgment being more anterior than that observed for phonemic-hand judgment, which was more posterior by comparison. Age of acquisition was linearly and negatively related to activation levels in anterior language regions and positively related to activation levels in posterior visual regions for both tasks. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Computed tomography of calcaneal fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heger, L.; Wulff, K.; Seddiqi, M.S.A.

    1985-07-01

    Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concludedmore » that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment.« less

  14. Micropatterned Protective Membranes Inhibit Lens Epithelial Cell Migration in Posterior Capsule Opacification Model

    PubMed Central

    Magin, Chelsea M.; May, Rhea M.; Drinker, Michael C.; Cuevas, Kevin H.; Brennan, Anthony B.; Reddy, Shravanthi T.

    2015-01-01

    Purpose To evaluate the ability of Sharklet (SK) micropatterns to inhibit lens epithelial cell (LEC) migration. Sharklet Technologies, Inc. (STI) and InSight Innovations, LLC have proposed to develop a Sharklet-patterned protective membrane (PM) to be implanted in combination with a posterior chamber intraocular lens (IOL) to inhibit cellular migration across the posterior capsule, and thereby reduce rates of posterior capsular opacification (PCO). Methods A variety of STI micropatterns were evaluated versus smooth (SM) controls in a modified scratch wound assay for the ability to reduce or inhibit LEC migration. The best performing topography was selected, translated to a radial design, and applied to PM prototypes. The PM prototypes were tested in an in vitro PCO model for reduction of cell migration behind an IOL versus unpatterned prototypes and IOLs with no PM. In both assays, cell migration was analyzed with fluorescent microscopy. Results All SK micropatterns significantly reduced LEC migration compared with SM controls. Micropatterns that protruded from the surface reduced migration more than recessed features. The best performing micropattern reduced LEC coverage by 80%, P = 0.0001 (ANOVA, Tukey Test). Micropatterned PMs reduced LEC migration in a PCO model by 50%, P = 0.0005 (ANOVA, Tukey Test) compared with both IOLs with no PM and IOLs with SM PMs. Conclusions Collectively, in vitro results indicate the implantation of micropatterned PMs in combination with posterior chamber IOLs could significantly reduce rates of clinically relevant PCO. This innovative technology is a globally accessible solution to high PCO rates. Translational Relevance A novel IOL incorporating the SK micropattern in a membrane design surrounding the optic may help increase the success of cataract surgery by reducing secondary cataract, or PCO. PMID:25883876

  15. Atlas Assimilation Patterns in Different Types of Adult Craniocervical Junction Malformations.

    PubMed

    Ferreira, Edson Dener Zandonadi; Botelho, Ricardo Vieira

    2015-11-01

    This is a cross-sectional analysis of resonance magnetic images of 111 patients with craniocervical malformations and those of normal subjects. To test the hypothesis that atlas assimilation is associated with basilar invagination (BI) and atlas's anterior arch assimilation is associated with craniocervical instability and type I BI. Atlas assimilation is the most common malformation in the craniocervical junction. This condition has been associated with craniocervical instability and BI in isolated cases. We evaluated midline Magnetic Resonance Images (MRIs) (and/or CT scans) from patients with craniocervical junction malformation and normal subjects. The patients were separated into 3 groups: Chiari type I malformation, BI type I, and type II. The atlas assimilations were classified according to their embryological origins as follows: posterior, anterior, and both arches assimilation. We studied the craniometric values of 111 subjects, 78 with craniocervical junction malformation and 33 without malformations. Of the 78 malformations, 51 patients had Chiari type I and 27 had BI, of whom 10 presented with type I and 17 with type II BI. In the Chiari group, 41 showed no assimilation of the atlas. In the type I BI group, all patients presented with anterior arch assimilation, either in isolation or associated with assimilation of the posterior arch. 63% of the patients with type II BI presented with posterior arch assimilation, either in isolation or associated with anterior arch assimilation. In the control group, no patients had atlas assimilation. Anterior atlas assimilation leads to type I BI. Posterior atlas assimilation more frequently leads to type II BI. Separation in terms of anterior versus posterior atlas assimilation reflects a more accurate understanding of the clinical and embryological differences in craniocervical junction malformations. N/A.

  16. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection

    PubMed Central

    Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.

    2013-01-01

    Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Methods Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Results Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Conclusions Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. PMID:21144498

  17. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    PubMed

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Are Fetal-Type Posterior Cerebral Arteries Associated With an Increased Risk of Posterior Communicating Artery Aneurysms?

    PubMed

    Thiarawat, Peeraphong; Jahromi, Behnam Rezai; Kozyrev, Danil A; Intarakhao, Patcharin; Teo, Mario K; Choque-Velasquez, Joham; Niemelä, Mika; Hernesniemi, Juha

    2018-05-21

    Fetal-type posterior cerebral arteries (F-PCAs) might result in alterations in hemodynamic flow patterns and may predispose an individual to an increased risk of posterior communicating artery aneurysms (PCoAAs). To determine the association between PCoAAs and the presence of ipsilateral F-PCAs. We retrospectively reviewed the radiographic findings from 185 patients harboring 199 PCoAAs that were treated at our institution between 2005 and 2015. Our study population consisted of 4 cohorts: (A) patients with 171 internal carotid arteries (ICAs) harboring unilateral PCoAAs; (B) 171 unaffected ICAs in the same patients from the first group; (C) 28 ICAs of 14 patients with bilateral PCoAAs; and (D) 180 ICAs of 90 patients with aneurysms in other locations. We then determined the presence of ipsilateral F-PCAs and recorded all aneurysm characteristics. Group A had the highest prevalence of F-PCAs (42%) compared to 19% in group B, 3% in group C, and 14% in group D (odds ratio A : B = 3.041; A : C = 19.626; and A : D = 4.308; P < .001). PCoAAs were associated with larger diameters of the posterior communicating arteries (median value 1.05 vs 0.86 mm; P = .001). The presence of F-PCAs was associated with larger sizes of the aneurysm necks (median value 3.3 vs 3.0 mm; P = .02). PCoAAs were associated with a higher prevalence of ipsilateral F-PCAs. This variant was associated with larger sizes of the aneurysm necks but was not associated with the sizes of the aneurysm domes or with their rupture statuses.

  19. Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications.

    PubMed

    Otaki, Joji M

    2008-07-01

    A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.

  20. Premature infant swallowing: patterns of tongue-soft palate coordination based upon videofluoroscopy.

    PubMed

    Goldfield, Eugene C; Buonomo, Carlo; Fletcher, Kara; Perez, Jennifer; Margetts, Stacey; Hansen, Anne; Smith, Vincent; Ringer, Steven; Richardson, Michael J; Wolff, Peter H

    2010-04-01

    Coordination between movements of individual tongue points, and between soft palate elevation and tongue movements, were examined in 12 prematurely born infants referred from hospital NICUs for videofluoroscopic swallow study (VFSS) due to poor oral feeding and suspicion of aspiration. Detailed post-evaluation kinematic analysis was conducted by digitizing images of a lateral view of digitally superimposed points on the tongue and soft palate. The primary measure of coordination was continuous relative phase of the time series created by movements of points on the tongue and soft palate over successive frames. Three points on the tongue (anterior, medial, and posterior) were organized around a stable in-phase pattern, with a phase lag that implied an anterior to posterior direction of motion. Coordination between a tongue point and a point on the soft palate during lowering and elevation was close to anti-phase at initiation of the pharyngeal swallow. These findings suggest that anti-phase coordination between tongue and soft palate may reflect the process by which the tongue is timed to pump liquid by moving it into an enclosed space, compressing it, and allowing it to leave by a specific route through the pharynx. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Redescription of the Tintinnid Stenosemella pacifica Kofoid and Campbell, 1929 (Ciliophora, Spirotricha) Based on Live Observation, Protargol Impregnation, and Scanning Electron Microscopy

    PubMed Central

    AGATHA, SABINE; TSAI, SHENG-FANG

    2010-01-01

    The tintinnid ciliate Stenosemella pacifica Kofoid and Campbell, 1929 was occasionally recorded from the pelagial of temperate, subtropical, and tropical neritic waters. Since its cytological features were unknown, the species is redescribed from material collected in the pelagial of the Irish Sea, using live observation, protargol impregnation, and scanning electron microscopy. Furthermore, the species diagnosis is improved to include new characteristics, e.g. the somatic ciliary pattern comprising a ventral, dorsal, and posterior kinety as well as a right, left, and lateral ciliary field. The stomatogenesis of S. pacifica is typical for species with such a complex somatic ciliary pattern: the oral primordium develops hypoapokinetally posterior to the lateral ciliary field. The presence of windows in the lorica collar of Stenosemella ventricosa, the type of the genus, necessitates (i) an improved genus diagnosis, (ii) a synonymization of the genus Luminella Kofoid and Campbell, 1939, and (iii) a transfer of the Luminella species to the genus Stenosemella, including Luminella neocalifornica, which becomes Stenosemella neocalifornica nov. comb. Owing to the lack of a description, Stenosemella crateri is considered a nomen nudum. PMID:18318859

  2. The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome.

    PubMed

    Manley, Andrew T; Maertens, Paul M

    2015-01-01

    By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound. Copyright © 2014 by the American Society of Neuroimaging.

  3. Scanning Electron Microscopy Findings With Energy-Dispersive X-ray Investigations of Cosmetically Tinted Contact Lenses

    PubMed Central

    Hotta, Fumika; Imai, Shoji; Miyamoto, Tatsuro; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori

    2015-01-01

    Objective: To investigate the surfaces and principal elements of the colorants of cosmetically tinted contact lenses (Cos-CLs). Methods: We analyzed the surfaces and principal elements of the colorants of five commercially available Cos-CLs using scanning electron microscopy with energy-dispersive x-ray analysis. Results: In two Cos-CLs, the anterior and posterior surfaces were smooth, and colorants were found inside the lens. One lens showed colorants located to a depth of 8 to 14 μm from the anterior side of the lens. In the other lens, colorants were found in the most superficial layer on the posterior surface, although a coated layer was observed. The colorants in the other three lenses were deposited on either lens surface. Although a print pattern was uniform in embedded type lenses, uneven patterns were apparent in dot-matrix design lenses. Colorants used in all lenses contained chlorine, iron, and titanium. In the magnified scanning electron microscopy images of a certain lens, chlorine is exuded and spread. Conclusions: Cosmetically tinted contact lenses have a wide variety of lens surfaces and colorants. Colorants may be deposited on the lens surface and consist of an element that has tissue toxicity. PMID:25799458

  4. Molecular cloning and expression of nanos in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Ogaugwu, Christian E; Wimmer, Ernst A

    2013-01-01

    The gene nanos (nos) is a maternal-effect gene that plays an important role in posterior patterning and germ cell development in early stage embryos. nos is known from several diverse insect species, but has so far not been described for any Tephritid fruit fly. Here, we report the molecular cloning and expression pattern of the nos orthologous gene, Ccnos, in the Mediterranean fruit fly Ceratitis capitata, which is a destructive pest of high agricultural importance. CcNOS contains 398 amino acids and has a C-terminal region with two conserved CCHC zinc-binding motifs known to be essential for NOS function. Transcripts of Ccnos were confirmed by in situ hybridization to be maternally-derived and localized to the posterior pole of early stage embryos. Regulatory regions of nos have been employed in genetic engineering in some dipterans such as Drosophila and mosquitoes. Given the similarity in spatial and temporal expression between Ccnos and nos orthologs from other dipterans, its regulatory regions will be valuable to generate additional genetic tools that can be applied for engineering purposes to improve the fight against this devastating pest. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Reading in the brain of children and adults: A meta‐analysis of 40 functional magnetic resonance imaging studies

    PubMed Central

    Martin, Anna; Schurz, Matthias; Kronbichler, Martin

    2015-01-01

    Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041

  6. The imaging features of the meniscal roots on isotropic 3D MRI in young asymptomatic volunteers.

    PubMed

    Wang, Ping; Zhang, Cheng-Zhou; Zhang, Di; Liu, Quan-Yuan; Zhong, Xiao-Fei; Yin, Zhi-Jie; Wang, Bin

    2018-05-01

    This study aimed to describe clearly the normal imaging features of the meniscal roots on the magnetic resonance imaging (MRI) with a 3-dimensional (3D) proton density-weighted (PDW) sequence at 3T. A total of 60 knees of 31 young asymptomatic volunteers were examined using a 3D MRI. The insertion patterns, constitution patterns, and MR signals of the meniscal roots were recorded. The anterior root of the medial meniscus (ARMM), the anterior root of the lateral meniscus (ARLM), and the posterior root of the medial meniscus (PRMM) had 1 insertion site, whereas the posterior root of the lateral meniscus (PRLM) can be divided into major and minor insertion sites. The ARLM and the PRMM usually consisted of multiple fiber bundles (≥3), whereas the ARMM and the PRLM often consisted of a single fiber bundle. The ARMM and the PRLM usually appeared as hypointense, whereas the ARLM and the PRMM typically exhibited mixed signals. The meniscal roots can be complex and diverse, and certain characteristics of them were observed on 3D MRI. Understanding the normal imaging features of the meniscal roots is extremely beneficial for further diagnosis of root tears.

  7. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    PubMed

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.

    PubMed

    Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J

    2014-06-01

    Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD

  9. Apoptosis regulates notochord development in Xenopus.

    PubMed

    Malikova, Marina A; Van Stry, Melanie; Symes, Karen

    2007-11-15

    The notochord is the defining characteristic of the chordate embryo and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos, however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that, by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirrors that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed.

  10. Age-related differences in the neural basis of the subjective vividness of memories: Evidence from multivoxel pattern classification

    PubMed Central

    Johnson, Marcia K.; Kuhl, Brice A.; Mitchell, Karen J.; Ankudowich, Elizabeth; Durbin, Kelly A.

    2016-01-01

    Although older adults often show reduced episodic memory accuracy, their ratings of the subjective vividness of their memories often equal or even exceed those of young adults. Such findings suggest that young and older adults may differentially access and/or weight different kinds of information in making vividness judgments. We examined this idea using multivoxel pattern classification of fMRI data to measure category representations while participants saw and remembered pictures of objects and scenes. Consistent with our hypothesis, there were age-related differences in how category representations related to the subjective sense of vividness. During remembering, older adults’ vividness ratings were more related, relative to young adults’, to category representations in prefrontal cortex. In contrast, young adults’ vividness ratings were more related, relative to older adults, to category representations in parietal cortex. In addition, category representations were more correlated among posterior regions in young than older adults, whereas correlations between PFC and posterior regions did not differ between the two groups. Together, these results are consistent with the idea that young and older adults differentially weight different types of information in assessing subjective vividness of their memories. PMID:25855004

  11. Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi

    PubMed Central

    Sillitoe, Roy V; Künzle, Heinz; Hawkes, Richard

    2003-01-01

    The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently. PMID:14529046

  12. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning.

    PubMed

    Maclean, Glenn; Dollé, Pascal; Petkovich, Martin

    2009-03-01

    Cyp26b1 encodes a cytochrome-P450 enzyme that catabolizes retinoic acid (RA), a vitamin A derived signaling molecule. We have examined Cyp26b1(-/-) mice and report that mutants exhibit numerous abnormalities in cranial neural crest cell derived tissues. At embryonic day (E) 18.5 Cyp26b1(-/-) animals exhibit a truncated mandible, abnormal tooth buds, reduced ossification of calvaria, and are missing structures of the maxilla and nasal process. Some of these abnormalities may be due to defects in formation of Meckel's cartilage, which is truncated with an unfused distal region at E14.5 in mutant animals. Despite the severe malformations, we did not detect any abnormalities in rhombomere segmentation, or in patterning and migration of anterior hindbrain derived neural crest cells. Abnormal migration of neural crest cells toward the posterior branchial arches was observed, which may underlie defects in larynx and hyoid development. These data suggest different periods of sensitivity of anterior and posterior hindbrain neural crest derivatives to elevated levels of RA in the absence of CYP26B1. (c) 2009 Wiley-Liss, Inc.

  13. Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda?

    PubMed Central

    2013-01-01

    Background Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. Results The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. Conclusions The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal’s trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda. PMID:23758940

  14. Loading Patterns of the Posterior Cruciate Ligament in the Healthy Knee: A Systematic Review

    PubMed Central

    List, Renate; Oberhofer, Katja; Fucentese, Sandro F.; Snedeker, Jess G.; Taylor, William R.

    2016-01-01

    Background The posterior cruciate ligament (PCL) is the strongest ligament of the knee, serving as one of the major passive stabilizers of the tibio-femoral joint. However, despite a number of experimental and modelling approaches to understand the kinematics and kinetics of the ligament, the normal loading conditions of the PCL and its functional bundles are still controversially discussed. Objectives This study aimed to generate science-based evidence for understanding the functional loading of the PCL, including the anterolateral and posteromedial bundles, in the healthy knee joint through systematic review and statistical analysis of the literature. Data sources MEDLINE, EMBASE and CENTRAL Eligibility criteria for selecting studies Databases were searched for articles containing any numerical strain or force data on the healthy PCL and its functional bundles. Studied activities were as follows: passive flexion, flexion under 100N and 134N posterior tibial load, walking, stair ascent and descent, body-weight squatting and forward lunge. Method Statistical analysis was performed on the reported load data, which was weighted according to the number of knees tested to extract average strain and force trends of the PCL and identify deviations from the norms. Results From the 3577 articles retrieved by the initial electronic search, only 66 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that the loading patterns of the PCL vary with activity type, knee flexion angle, but importantly also the technique used for assessment. Moreover, different fibres of the PCL exhibit different strain patterns during knee flexion, with higher strain magnitudes reported in the anterolateral bundle. While during passive flexion the posteromedial bundle is either lax or very slightly elongated, it experiences higher strain levels during forward lunge and has a synergetic relationship with the anterolateral bundle. The strain patterns obtained for virtual fibres that connect the origin and insertion of the bundles in a straight line show similar trends to those of the real bundles but with different magnitudes. Conclusion This review represents what is now the best available understanding of the biomechanics of the PCL, and may help to improve programs for injury prevention, diagnosis methods as well as reconstruction and rehabilitation techniques. PMID:27880849

  15. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID:24732724

  16. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  17. Morphogenesis underlying the development of the everted teleost telencephalon.

    PubMed

    Folgueira, Mónica; Bayley, Philippa; Navratilova, Pavla; Becker, Thomas S; Wilson, Stephen W; Clarke, Jonathan D W

    2012-09-18

    Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon.

  18. Morphogenesis underlying the development of the everted teleost telencephalon

    PubMed Central

    2012-01-01

    Background Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. Results Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. Conclusion Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon. PMID:22989074

  19. A morphological study on gills of a crab acclimated to fresh water.

    PubMed

    Barra, J A; Pequeux, A; Humbert, W

    1983-01-01

    The gills of the fully euryhaline Chinese crab Eriocheir sinensis were studied by light and electron microscopy. In these Phyllobranchiates, the gills consist of a double row of lamellae extending laterally from a central shaft. Haemolymph flow pattern inside the gill is described and the existence of a complex secondary vascularization inside the platelets is reported. It is shown that important differences exist between the ultrastructure of the three anterior and the three posterior pairs of large gills. The epithelium of the posterior gills is much thicker and possesses an extensive elaboration of the plasma membranes in the form of infoldings, crypts and interdigitations, along which are packed numerous mitochondria. The presence of such a complex membrane system opening to the extracellular space and closely associated with mitochondria is common to all salt-transporting tissues. This study corroborates the idea that the posterior pairs of gills of Eriocheir sinensis are the only ones implicated in active Na+ uptake when the crab lives in dilute aquatic environment. The epithelium of anterior gills is much thinner and the cells poor in intracellular organelles. It seems to be involved essentially in respiration. Thus this work clearly corroborates the existence already suggested by physiological approach of a functional difference between the different pairs of E. sinensis branchiae with respect to their participation in the respiration and in the regulation of the blood ions content. Common to both types of gills is the presence of a lamellar septum separating the haemolymph space into two compartments. The part played by that structure in determining the pattern of haemolymph flow, together with periodic bridges forming pillars across the haemolymph space, is emphasized.

  20. Velocity vector imaging fails to quantify regional myocardial dysfunction in a mouse model of isoprenaline-induced cardiotoxicity.

    PubMed

    Täng, Margareta Scharin; Redfors, Bjorn; Shao, Yangzhen; Omerovic, Elmir

    2012-08-01

    Regional myocardial deformation patterns are important in a variety of cardiac diseases, including stress-induced cardiomyopathy. Velocity-vector-based imaging is a speckle-tracking echocardiography (STE)-based algorithm that has been shown to allow in-depth cardiac phenotyping in humans. Regional posterior wall myocardial dysfunction occurs during severe isoprenaline stress in mice. We have previously shown that regional posterior wall end-systolic transmural strain decreases after severe isoprenaline toxicity in mice. We hypothesize that STE can detect and further quantify these perturbations. Twenty-three mice underwent echocardiographic examination using the VEVO2100 system. Regional transmural radial strain and strain rate were calculated in both parasternal short-axis and parasternal long-axis cine loops using the VisualSonics VEVO 2100 velocity vector imaging (VVI) STE algorithm. Eight C57BL/6 mice underwent baseline echocardiographic examination using the VisualSonics VEVO 770 system, which can acquire >1,000 frames/s cine loops. In a parasternal short-axis cine loop, the heart was divided into six segments, and regional fractional wall thickening (FWT) was assessed manually. The same protocols were also performed 90 minutes post 400 mg/kg intraperitoneally isoprenaline. Regional myocardial FWT is uniform at baseline but increases significantly in anterolateral segments, whereas it decreases significantly in posterior segments (P < 0.05). A similar pattern is seen using the VVI algorithm although the variance is larger, and differences are smaller and fail to reach significance. VVI is less sensitive in detecting regional perturbations in myocardial function than manual tracing, possibly due to the low frame rate in the cine loops used. © 2012, Wiley Periodicals, Inc.

  1. Episiotomy: the final cut?

    PubMed

    Steiner, Naama; Weintraub, Adi Y; Wiznitzer, Arnon; Sergienko, Ruslan; Sheiner, Eyal

    2012-12-01

    To investigate whether episiotomy prevents 3rd or 4th degree perineal tears in critical conditions such as shoulder dystocia, instrumental deliveries (vacuum or forceps), persistent occiput-posterior position, fetal macrosomia (>4,000 g), and non-reassuring fetal heart rate (NRFHR) patterns. A retrospective study comparing 3rd and 4th degree perineal tears during vaginal deliveries with or without episiotomy, in selected critical conditions was performed. Multiple gestations, preterm deliveries (<37 weeks' gestation) and cesarean deliveries were excluded from the analysis. Stratified analysis (using the Mantel-Haenszel technique) was used to obtain the weighted odds ratio (OR), while controlling for these variables. During the study period, there were 168,077 singleton vaginal deliveries. Of those, 188 (0.1%) had 3rd or 4th degree perineal tears. Vaginal deliveries with episiotomy had statistically significant higher rates of 3rd or 4th degree perineal tears than those without episiotomy (0.2 vs. 0.1%; P<0.001). The association between episiotomy and severe perineal tears remained significant even in the critical conditions. Stratified analysis revealed that the adjusted ORs for 3rd or 4th degree perineal tears in these critical conditions (Macrosomia OR=2.3; instrumental deliveries OR=1.8; NRFHR patterns OR=2.1; occipito-posterior position OR=2.3; and shoulder dystocia OR=2.3) were similar to the crude OR (OR=2.3). Mediolateral episiotomy is an independent risk factor for 3rd or 4th degree perineal tears, even in critical conditions such as shoulder dystocia, instrumental deliveries, occiput-posterior position, fetal macrosomia, and NRFHR. Prophylactic use of episiotomy in these conditions does not seem beneficial if performed to prevent 3rd or 4th degree perineal tears.

  2. Gene Circuit Analysis of the Terminal Gap Gene huckebein

    PubMed Central

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-01-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378

  3. Gene circuit analysis of the terminal gap gene huckebein.

    PubMed

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-10-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.

  4. Ultrastructure analysis of the immature stages of Ravinia belforti (Diptera: Sarcophagidae), a species of medical-veterinary and forensic importance, by scanning electron microscopy.

    PubMed

    da-Silva-Xavier, Alexandre; de Carvalho Queiroz, Margareth Maria

    2016-07-01

    The postmortem interval is related to the age of immature species of flies found on corpses and can be estimated using data available in the literature on the biology of the species. The flesh fly Ravinia belforti is a carrier of enteric pathogens that can affect human and animal health as well as being of forensic importance. As the morphology of many immature Sarcophagidae is unknown, these immature forms must be collected and characterized after the emergence of the adult male. Here we describe and analyze the morphological characteristics of the larvae stages L1, L2, L3 and the puparium of R. belforti by scanning electron microscopy (SEM). Ten specimens of each stage were analyzed. Larvae of R. belforti follow the typical muscoid vermiform pattern with 12 segments. The anterior region is pointed, while the posterior region is thicker. The spines of the cephalic collar are flattened and with double, triple or quadruple points, different from the spines along the body that only have a single point. In L2, the anterior spiracle is present with a varying number of papillae (16-22), differing from other species. The posterior spiracles are located within the peritreme. The spiracular cavity is internalized in the posterior region, following the pattern that differs Sarcophagidae from other families. L3 features more visible and developed spines around the cephalic collar, getting thicker and denser near to the first thoracic segment. Puparium is similar to other species of Sarcophagidae. This paper presents important data on this family which has both health and forensic importance. Furthermore, R. belforti shows significant differences from other species of Sarcophagidae. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Specific patterns of whole-brain structural covariance of the anterior and posterior hippocampus in young APOE ε4 carriers.

    PubMed

    Stening, Eva; Persson, Jonas; Eriksson, Elias; Wahlund, Lars-Olof; Zetterberg, Henrik; Söderlund, Hedvig

    2017-05-30

    Apolipoprotein E (APOE) ε4 has been associated with smaller hippocampal volumes in healthy aging, while findings in young adults are inconclusive. Previous studies have mostly used univariate methods, and without considering potential anterior/posterior differences. Here, we used a multivariate method, partial least squares, and assessed whole-brain structural covariance of the anterior (aHC) and posterior (pHC) hippocampus in young adults (n=97) as a function of APOE ε4 status and sex. Two significant patterns emerged: (1) specific structural covariance of the aHC with frontal regions, temporal and occipital areas in APOE ε4 women, whereas the volume of both the aHC and pHC in all other groups co-varied with frontal, parietal and cerebellar areas; and (2) opposite structural covariance of the pHC in ε4 carriers compared to the aHC in non-carriers, with the pHC of ε4 carriers covarying with parietal and frontal areas, and the aHC of ε4 non-carriers covarying with motor areas and the middle frontal gyrus. APOE ε4 has in young adults been associated with better episodic and spatial memory, functions involving the aHC and pHC, respectively. We found no associations between structural covariance and performance, suggesting that other factors underlie the performance differences seen between carriers and non-carriers. Our findings indicate that APOE ε4 carriers and non-carriers differ in hippocampal organization and that there are differences as a function of sex and hippocampal segment. They stress the need to consider the hippocampus as a heterogeneous structure, and highlight the benefits of multivariate methods in assessing group differences in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biomechanical and anatomical assessment after knee hyperextension injury.

    PubMed

    Fornalski, Stefan; McGarry, Michelle H; Csintalan, Rick P; Fithian, Donald C; Lee, Thay Q

    2008-01-01

    Knee hyperextension can be a serious and disabling injury in both the athletic and general patient population. Understanding the pathoanatomy and pathomechanics is critical for accurate surgical soft tissue reconstructions. To quantify the effects of knee hyperextension injury on knee laxity in a human cadaveric model and to qualitatively assess the anatomical injury pattern through surgical dissection. Descriptive laboratory study. Six fresh-frozen cadaveric knees were rigidly mounted on a custom knee testing system that simulates clinical laxity tests. The knee laxity measurements consisted of anterior-posterior laxity, internal-external rotational laxity, and varus-valgus laxity using a custom testing setup and a Microscribe 3DLX system. The laxity data were collected at both 30 degrees and 90 degrees of knee flexion for the intact specimens and then after 15 degrees and 30 degrees hyperextension injury. After biomechanical assessment, a detailed dissection was performed to document the injured structures in the knee. Repeated-measures analysis of variance with a Tukey post hoc test (P < .05) was used for statistical comparison. The results from this study suggest progressive damage to translational and rotational knee soft-tissue restraints with increasing knee hyperextension. Knee hyperextension to 30 degrees caused the most significant increase in anterior-posterior and rotational laxity. Anatomical dissections showed a general injury pattern to the posterolateral corner, partial femoral anterior cruciate ligament avulsion in 4 of 6 specimens, and no gross posterior cruciate ligament injuries. Injuries to the posterolateral corner of the knee can result from isolated knee hyperextension. The clinician should be aware of the potential for posterolateral corner injuries with isolated knee hyperextension. This will allow early surgical planning and primary surgical repair.

  7. Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping.

    PubMed

    Bien, Nina; Sack, Alexander T

    2014-07-01

    In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Enhanced visual processing contributes to matrix reasoning in autism

    PubMed Central

    Soulières, Isabelle; Dawson, Michelle; Samson, Fabienne; Barbeau, Elise B.; Sahyoun, Cherif; Strangman, Gary E.; Zeffiro, Thomas A.; Mottron, Laurent

    2009-01-01

    Recent behavioral investigations have revealed that autistics perform more proficiently on Raven's Standard Progressive Matrices (RSPM) than would be predicted by their Wechsler intelligence scores. A widely-used test of fluid reasoning and intelligence, the RSPM assays abilities to flexibly infer rules, manage goal hierarchies, and perform high-level abstractions. The neural substrates for these abilities are known to encompass a large frontoparietal network, with different processing models placing variable emphasis on the specific roles of the prefrontal or posterior regions. We used functional magnetic resonance imaging to explore the neural bases of autistics' RSPM problem solving. Fifteen autistic and eighteen non-autistic participants, matched on age, sex, manual preference and Wechsler IQ, completed 60 self-paced randomly-ordered RSPM items along with a visually similar 60-item pattern matching comparison task. Accuracy and response times did not differ between groups in the pattern matching task. In the RSPM task, autistics performed with similar accuracy, but with shorter response times, compared to their non-autistic controls. In both the entire sample and a subsample of participants additionally matched on RSPM performance to control for potential response time confounds, neural activity was similar in both groups for the pattern matching task. However, for the RSPM task, autistics displayed relatively increased task-related activity in extrastriate areas (BA18), and decreased activity in the lateral prefrontal cortex (BA9) and the medial posterior parietal cortex (BA7). Visual processing mechanisms may therefore play a more prominent role in reasoning in autistics. PMID:19530215

  9. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    PubMed

    Rong, Xiaozhi; Chen, Chen; Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  10. R-Spondin 3 Regulates Dorsoventral and Anteroposterior Patterning by Antagonizing Wnt/β-Catenin Signaling in Zebrafish Embryos

    PubMed Central

    Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos. PMID:24918770

  11. CELLULAR AND SECRETORY PROTEINS OF THE SALIVARY GLANDS OF SCIARA COPROPHILA DURING THE LARVAL-PUPAL TRANSFORMATION

    PubMed Central

    Been, Anita C.; Rasch, Ellen M.

    1972-01-01

    The cellular and secretory proteins of the salivary gland of Sciara coprophila during the stages of the larval-pupal transformation were examined by electrophoresis in 0.6 mm sheets of polyacrylamide gel with both SDS-continuous and discontinuous buffer systems. After SDS-electrophoresis, all electrophoretograms of both reduced and nonreduced proteins from single glands stained with Coomassie brilliant blue revealed a pattern containing the same 25 bands during the stages of the larval-pupal transformation. With the staining procedures used in this study, qualitative increases and decreases were detected in existing proteins and enzymes. There was no evidence, however, for the appearance of new protein species that could be correlated with the onset of either pupation or gland histolysis. Electrophoretograms of reduced samples of anterior versus posterior gland parts indicated that no protein in the basic pattern of 25 bands was unique to either the anterior or posterior gland part. Electrophoretograms of reduced samples of secretion collected from either actively feeding or "cocoon"-building animals showed an electrophoretic pattern containing up to six of the 25 protein fractions detected in salivary gland samples, with varied amounts of these same six proteins in electrophoretograms of secretion samples from a given stage. Zymograms of non-specific esterases in salivary gland samples revealed a progressive increase in the amount of esterase reaction produce in one major band and some decrease in the second major band during later stages of the larval-pupal transformation. PMID:4116523

  12. The superficial medial collateral ligament is the primary medial restraint to knee laxity after cruciate-retaining or posterior-stabilised total knee arthroplasty: effects of implant type and partial release.

    PubMed

    Athwal, Kiron K; Daou, Hadi El; Kittl, Christoph; Davies, Andrew J; Deehan, David J; Amis, Andrew A

    2016-08-01

    The aim of this study was to quantify the contributions of medial soft tissues to stability following cruciate-retaining (CR) or posterior-stabilised (PS) total knee arthroplasty (TKA). Using a robotic system, eight cadaveric knees were subjected to ±90-N anterior-posterior force, ±5-Nm internal-external and ±8-Nm varus-valgus torques at various flexion angles. The knees were tested intact and then with CR and PS implants, and successive cuts of the deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) quantified the percentage contributions of each structure to restraining the applied loads. In implanted knees, the sMCL restrained valgus rotation (62 % across flexion angles), anterior-posterior drawer (24 and 10 %, respectively) and internal-external rotation (22 and 37 %). Changing from CR TKA to PS TKA increased the load on the sMCL when resisting valgus loads. The dMCL restrained 11 % of external and 13 % of valgus rotations, and the PMC was significant at low flexion angles. This work has shown that medial release in the varus knee should be minimised, as it may inadvertently result in a combined laxity pattern. There is increasing interest in preserving constitutional varus in TKA, and this work argues for preservation of the sMCL to afford the surgeon consistent restraint and maintain a balanced knee for the patient.

  13. Kinematics, muscular activity and propulsion in gopher snakes

    PubMed

    Moon; Gans

    1998-10-01

    Previous studies have addressed the physical principles and muscular activity patterns underlying terrestrial lateral undulation in snakes, but not the mechanism by which muscular activity produces curvature and propulsion. In this study, we used synchronized electromyography and videography to examine the muscular basis and propulsive mechanism of terrestrial lateral undulation in gopher snakes Pituophis melanoleucus affinis. Specifically, we used patch electrodes to record from the semispinalis, longissimus dorsi and iliocostalis muscles in snakes pushing against one or more pegs. Axial bends propagate posteriorly along the body and contact the pegs at or immediately posterior to an inflection of curvature, which then reverses anterior to the peg. The vertebral column bends broadly around a peg, whereas the body wall bends sharply and asymmetrically around the anterior surface of the peg. The epaxial muscles are always active contralateral to the point of contact with a peg; they are activated slightly before or at the point of maximal convexity and deactivated variably between the inflection point and the point of maximal concavity. This pattern is consistent with muscular shortening and the production of axial bends, although variability in the pattern indicates that other muscles may affect the mechanics of the epaxial muscles. The kinematic and motor patterns in snakes crawling against experimentally increased drag indicated that forces are produced largely by muscles that are active in the axial bend around each peg, rather than by distant muscles from which the forces might be transmitted by connective tissues. At each point of force exertion, the propulsive mechanism of terrestrial lateral undulation may be modeled as a type of cam-follower, in which continuous bending of the trunk around the peg produces translation of the snake.

  14. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    PubMed

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  15. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone.

    PubMed

    Oberhofer, Georg; Grossmann, Daniela; Siemanowski, Janna L; Beissbarth, Tim; Bucher, Gregor

    2014-12-01

    Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function. © 2014. Published by The Company of Biologists Ltd.

  16. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone

    PubMed Central

    Oberhofer, Georg; Grossmann, Daniela; Siemanowski, Janna L.; Beissbarth, Tim; Bucher, Gregor

    2014-01-01

    Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function. PMID:25395458

  17. Right fusiform response patterns reflect visual object identity rather than semantic similarity.

    PubMed

    Bruffaerts, Rose; Dupont, Patrick; De Grauwe, Sophie; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik

    2013-12-01

    We previously reported the neuropsychological consequences of a lesion confined to the middle and posterior part of the right fusiform gyrus (case JA) causing a partial loss of knowledge of visual attributes of concrete entities in the absence of category-selectivity (animate versus inanimate). We interpreted this in the context of a two-step model that distinguishes structural description knowledge from associative-semantic processing and implicated the lesioned area in the former process. To test this hypothesis in the intact brain, multi-voxel pattern analysis was used in a series of event-related fMRI studies in a total of 46 healthy subjects. We predicted that activity patterns in this region would be determined by the identity of rather than the conceptual similarity between concrete entities. In a prior behavioral experiment features were generated for each entity by more than 1000 subjects. Based on a hierarchical clustering analysis the entities were organised into 3 semantic clusters (musical instruments, vehicles, tools). Entities were presented as words or pictures. With foveal presentation of pictures, cosine similarity between fMRI response patterns in right fusiform cortex appeared to reflect both the identity of and the semantic similarity between the entities. No such effects were found for words in this region. The effect of object identity was invariant for location, scaling, orientation axis and color (grayscale versus color). It also persisted for different exemplars referring to a same concrete entity. The apparent semantic similarity effect however was not invariant. This study provides further support for a neurobiological distinction between structural description knowledge and processing of semantic relationships and confirms the role of right mid-posterior fusiform cortex in the former process, in accordance with previous lesion evidence. © 2013.

  18. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.

    PubMed

    Schlosser, Gerhard; Patthey, Cedric; Shimeld, Sebastian M

    2014-05-01

    Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Reactive postural control deficits in patients with posterior parietal cortex lesions after stroke and the influence of auditory cueing.

    PubMed

    Lin, Ying-Hui; Tang, Pei-Fang; Wang, Yao-Hung; Eng, Janice J; Lin, Keh-Chung; Lu, Lu; Jeng, Jiann-Shing; Chen, Shih-Ching

    2014-10-01

    The purpose of this study was to investigate the ways in which stroke-induced posterior parietal cortex (PPC) lesions affect reactive postural responses and whether providing auditory cues modulates these responses. Seventeen hemiparetic patients after stroke, nine with PPC lesions (PPCLesion) and eight with intact PPCs (PPCSpared), and nine age-matched healthy adults completed a lateral-pull perturbation experiment under noncued and cued conditions. The activation rates of the gluteus medius muscle ipsilateral (GMi) and contralateral to the pull direction, the rates of occurrence of three types of GM activation patterns, and the GMi contraction latency were investigated. In noncued pulls toward the paretic side, of the three groups, the PPCLesion group exhibited the lowest activation rate (56%) of the GMi (P < 0.05), which is the primary postural muscle involved in this task, and the highest rate of occurrence (33%) of the gluteus medius muscle contralateral-activation-only pattern (P < 0.05), which is a compensatory activation pattern. In contrast, in cued pulls toward the paretic side, the PPCLesion group was able to increase the activation rate of the GMi to a level (81%) such that there became no significant differences in activation rate of the GMi among the three groups (P > 0.05). However, there were no significant differences in the GM activation patterns and GMi contraction latency between the noncued and cued conditions for the PPCLesion group (P > 0.05). The PPCLesion patients had greater deficits in recruiting paretic muscles and were more likely to use the compensatory muscle activation pattern for postural reactions than the PPCSpared patients, suggesting that PPC is part of the neural circuitry involved in reactive postural control in response to lateral perturbations. The auditory cueing used in this study, however, did not significantly modify the muscle activation patterns in the PPCLesion patients. More research is needed to explore the type and structure of cueing that could effectively improve patterns and speed of postural responses in these patients.

  20. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  1. Blood vessel adaptation to gravity in a semi-arboreal snake

    NASA Technical Reports Server (NTRS)

    Conklin, D. J.; Lillywhite, H. B.; Olson, K. R.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior than anterior arteries. Anterior vessels were significantly more sensitive to catecholamines than midbody and posterior vessels. Angiotensin II stimulated significantly greater tension in carotid artery than in midbody and posterior dorsal aorta. Arginine vasotocin strongly contracted the left and right aortic arches and anterior dorsal aorta. Veins were strongly contracted by catecholamines, high potassium and angiotensin II, but less so by adenosine triphosphate, arginine vasotocin and histamine. Precontracted vessel were relaxed by acetylcholine and sodium nitroprusside, but not by atrial natriuretic peptide or bradykinin. Chronic exposure of snakes to intermittent hypergravity stress ( + 1.5 Gz at tail) did not affect the majority of vessel responses. These data demonstrate that in vitro tension correlates with that catecholamines, as well as other agonists, are important in mediating vascular responses to gravitational stresses in snakes.

  2. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer's disease

    PubMed Central

    Lehmann, Manja; Koedam, Esther L.G.E.; Barnes, Josephine; Bartlett, Jonathan W.; Ryan, Natalie S.; Pijnenburg, Yolande A.L.; Barkhof, Frederik; Wattjes, Mike P.; Scheltens, Philip; Fox, Nick C.

    2012-01-01

    Medial temporal lobe atrophy (MTA) is a recognized marker of Alzheimer's disease (AD), however, it can be prominent in frontotemporal lobar degeneration (FTLD). There is an increasing awareness that posterior atrophy (PA) is important in AD and may aid the differentiation of AD from FTLD. Visual rating scales are a convenient way of assessing atrophy in a clinical setting. In this study, 2 visual rating scales measuring MTA and PA were used to compare atrophy patterns in 62 pathologically-confirmed AD and 40 FTLD patients. Anatomical correspondence of MTA and PA was assessed using manually-delineated regions of the hippocampus and posterior cingulate gyrus, respectively. Both MTA and PA scales showed good inter- and intrarater reliabilities (kappa > 0.8). MTA scores showed a good correspondence with manual hippocampal volumes. Thirty percent of the AD patients showed PA in the absence of MTA. Adding the PA to the MTA scale improved discrimination of AD from FTLD, and early-onset AD from normal aging. These results underline the importance of considering PA in AD diagnosis, particularly in younger patients where medial temporal atrophy may be less conspicuous. PMID:21596458

  3. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.

    PubMed

    Horschig, Jörn M; Oosterheert, Wouter; Oostenveld, Robert; Jensen, Ole

    2015-11-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direction of attention from the magnetoencephalogram by a template matching classifier and provided the classification outcome to the subject in real-time using a novel graphical user interface. Training data for the templates were obtained from a Posner-cueing task conducted just before the BCI task. Eleven subjects participated in four sessions each. Eight of the subjects achieved classification rates significantly above chance level. Subjects were able to significantly increase their performance from the first to the second session. Individual patterns of posterior alpha power remained stable throughout the four sessions and did not change with increased performance. We conclude that posterior alpha power can successfully be used as a control signal in brain-computer interfaces. We also discuss several ideas for further improving the setup and propose future research based on solid hypotheses about behavioral consequences of modulating neuronal oscillations by brain computer interfacing.

  4. Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques.

    PubMed

    Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas

    2006-08-01

    The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.

  5. Automated cell tracking identifies mechanically oriented cell divisions during Drosophila axis elongation.

    PubMed

    Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.

  6. Touch activates human auditory cortex.

    PubMed

    Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko; Hari, Riitta

    2006-05-01

    Vibrotactile stimuli can facilitate hearing, both in hearing-impaired and in normally hearing people. Accordingly, the sounds of hands exploring a surface contribute to the explorer's haptic percepts. As a possible brain basis of such phenomena, functional brain imaging has identified activations specific to audiotactile interaction in secondary somatosensory cortex, auditory belt area, and posterior parietal cortex, depending on the quality and relative salience of the stimuli. We studied 13 subjects with non-invasive functional magnetic resonance imaging (fMRI) to search for auditory brain areas that would be activated by touch. Vibration bursts of 200 Hz were delivered to the subjects' fingers and palm and tactile pressure pulses to their fingertips. Noise bursts served to identify auditory cortex. Vibrotactile-auditory co-activation, addressed with minimal smoothing to obtain a conservative estimate, was found in an 85-mm3 region in the posterior auditory belt area. This co-activation could be related to facilitated hearing at the behavioral level, reflecting the analysis of sound-like temporal patterns in vibration. However, even tactile pulses (without any vibration) activated parts of the posterior auditory belt area, which therefore might subserve processing of audiotactile events that arise during dynamic contact between hands and environment.

  7. Transcriptome sequencing of Atlantic salmon (Salmo salar L.) notochord prior to development of the vertebrae provides clues to regulation of positional fate, chordoblast lineage and mineralisation.

    PubMed

    Wang, Shou; Furmanek, Tomasz; Kryvi, Harald; Krossøy, Christel; Totland, Geir K; Grotmol, Sindre; Wargelius, Anna

    2014-02-19

    In teleosts such as Atlantic salmon (Salmo salar L.), segmentation and subsequent mineralisation of the notochord during embryonic stages are essential for normal vertebrae formation. However, the molecular mechanisms leading to segmentation and mineralisation of the notochord are poorly understood. The aim of this study was to identify genes/pathways acting in gradients over time and along the anterior-posterior axis during notochord segmentation and immediately prior to mineralisation of the vertebral bodies in Atlantic salmon. Notochord samples were collected from unsegmented, pre-segmented and segmented developmental stages. In each stage, the cellular core of the notochord was cut into three pieces along the longitudinal axis (anterior, mid, posterior). RNA was sequenced (22 million pair-end 100 bp/ library) and mapped to the salmon genome. 66569 transcripts were predicted and 55775 were annotated. In order to identify possible gradients leading to segmentation of the notochord, all 71 notochord-expressed hox genes were investigated, most of them displaying a typical anterior-posterior expression pattern along the notochord axis. The clustering of hox genes revealed a pattern that could be related to notochord segmentation. We further investigated how mineralisation is initiated in the notochord, and several factors related to chondrogenic lineage were identified (sox9, sox5, sox6, tgfb3, ihhb and col2a1), suggesting a cartilage-like character of the notochord. KEGG analysis of differentially expressed genes between stages revealed down-regulation of pathways associated with ECM, cell division, metabolism and development at onset of notochord segmentation. This implies that inhibitory signals produce segmentation of the notochord. One such potential inhibitory signal was identified, col11a2, which was detected in segments of non-mineralising notochord. An incomplete salmon genome was successfully used to analyse RNA-seq data from the cellular core of the Atlantic salmon notochord. In transcriptome we found; hox gene patterns possibly linked to segmentation; down-regulation of pathways in the notochord at onset of segmentation; segmented expression of col11a2 in non-mineralised segments of the notochord; and a chondroblast-like footprint in the notochord.

  8. Differences on Brain Connectivity in Adulthood Are Present in Subjects with Iron Deficiency Anemia in Infancy

    PubMed Central

    Algarin, Cecilia; Karunakaran, Keerthana Deepti; Reyes, Sussanne; Morales, Cristian; Lozoff, Betsy; Peirano, Patricio; Biswal, Bharat

    2017-01-01

    Iron deficiency continues to be the most prevalent micronutrient deficit worldwide. Since iron is involved in several processes including myelination, dopamine neurotransmission and neuronal metabolism, the presence of iron deficiency anemia (IDA) in infancy relates to long-lasting neurofunctional effects. There is scarce data regarding whether these effects would extend to former iron deficient anemic human adults. Resting state functional magnetic resonance imaging (fMRI) is a novel technique to explore patterns of functional connectivity. Default Mode Network (DMN), one of the resting state networks, is deeply involved in memory, social cognition and self-referential processes. The four core regions consistently identified in the DMN are the medial prefrontal cortex, posterior cingulate/retrosplenial cortex and left and right inferior parietal cortex. Therefore to investigate the DMN in former iron deficient anemic adults is a particularly useful approach to elucidate de long term effects on functional brain. We conducted this research to explore the connection between IDA in infancy and altered patterns of resting state brain functional networks in young adults. Resting-state fMRI studies were performed to 31 participants that belong to a follow-up study since infancy. Of them, 14 participants were former iron deficient anemic in infancy and 17 were controls, with mean age of 21.5 years (±1.5) and 54.8% were males. Resting-state fMRI protocol was used and the data was analyzed using the seed based connectivity statistical analysis to assess the DMN. We found that compared to controls, former iron deficient anemic subjects showed posterior DMN decreased connectivity to the left posterior cingulate cortex (PCC), whereas they exhibited increased anterior DMN connectivity to the right PCC. Differences between groups were also apparent in the left medial frontal gyrus, with former iron deficient anemic participants having increased connectivity with areas included in DMN and dorsal attention networks. These preliminary results suggest different patterns of functional connectivity between former iron deficient anemic and control young adults. Indeed, IDA in infancy, a common nutritional problem among human infants, may turn out to be important for understanding the mechanisms of cognitive alterations, common in adulthood. PMID:28326037

  9. Multiple active myofascial trigger points and pressure pain sensitivity maps in the temporalis muscle are related in women with chronic tension type headache.

    PubMed

    Fernández-de-las-Peñas, César; Caminero, Ana B; Madeleine, Pascal; Guillem-Mesado, Amparo; Ge, Hong-You; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-01-01

    To describe the common locations of active trigger points (TrPs) in the temporalis muscle and their referred pain patterns in chronic tension type headache (CTTH), and to determine if pressure sensitivity maps of this muscle can be used to describe the spatial distribution of active TrPs. Forty women with CTTH were included. An electronic pressure algometer was used to assess pressure pain thresholds (PPT) from 9 points over each temporalis muscle: 3 points in the anterior, medial and posterior part, respectively. Both muscles were examined for the presence of active TrPs over each of the 9 points. The referred pain pattern of each active TrP was assessed. Two-way analysis of variance detected significant differences in mean PPT levels between the measurement points (F=30.3; P<0.001), but not between sides (F=2.1; P=0.2). PPT scores decreased from the posterior to the anterior column (P<0.001). No differences were found in the number of active TrPs (F=0.3; P=0.9) between the dominant side the nondominant side. Significant differences were found in the distribution of the active TrPs (chi2=12.2; P<0.001): active TrPs were mostly found in the anterior column and in the middle of the muscle belly. The analysis of variance did not detect significant differences in the referred pain pattern between active TrPs (F=1.1, P=0.4). The topographical pressure pain sensitivity maps showed the distinct distribution of the TrPs indicated by locations with low PPTs. Multiple active TrPs in the temporalis muscle were found, particularly in the anterior column and in the middle of the muscle belly. Bilateral posterior to anterior decreased distribution of PPTs in the temporalis muscle in women with CTTH was found. The locations of active TrPs in the temporalis muscle corresponded well to the muscle areas with lower PPT, supporting the relationship between multiple active muscle TrPs and topographical pressure sensitivity maps in the temporalis muscle in women with CTTH.

  10. Glenoid subchondral bone density distribution in male total shoulder arthroplasty subjects with eccentric and concentric wear.

    PubMed

    Simon, Peter; Gupta, Anil; Pappou, Ioannis; Hussey, Michael M; Santoni, Brandon G; Inoue, Nozomu; Frankle, Mark A

    2015-03-01

    Glenoid component loosening in total shoulder arthroplasty may be prevented by component placement on a congruent and adequate bony surface. Glenoid subchondral bone density (SBD) variability may be correlated with this concept. This study analyzed the 3-dimensional distribution of glenoid SBD in total shoulder arthroplasty patients with osteoarthritis. Three-dimensional computed tomography osteoabsorptiometry (CT-OAM) was performed in 42 men (21 with eccentric and 21 with concentric wear patterns) with glenohumeral arthritis. Glenoid SBD was measured from the joint surface based on 5 clinically relevant topographic zones. The correlation of the wear pattern with the SBD distribution was investigated. The glenoid subarticular layers could be separated into distinct regions: calcified cartilage (≤ 1.5 mm), subchondral plate (2-4.5 mm) and cancellous bone (≥ 5 mm). There were significant differences in SBD among these layers within and between patients with concentric and eccentric wear patterns. In concentric glenoids, the SBD distribution was homogeneous, with greater mineralization in the central zone, 1,749.1 ± 162.3 Hounsfield units (HU) (at 2.5 mm), compared with the posterior, anterior, and superior zones (P < .001). In the eccentric group, the SBD distribution was inhomogeneous. Mineralization was greatest in the posterior zone, 1,739.0 ± 172.6 HU (at 2.5 mm), followed by the inferior zone, 1,722.1 ± 186.6 HU (at 3 mm). This study represents the first study using CT-OAM to evaluate the 3-dimensional SBD distribution of the glenoid vault for different arthritic wear patterns. The study findings indicate that the SBD distribution is dependent on (1) depth from the articular surface, (2) topographic zone, and (3) wear pattern. CT-OAM may be an effective tool to assist in preoperative planning for shoulder arthroplasty. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Reconstitution of a Patterned Neural Tube from Single Mouse Embryonic Stem Cells.

    PubMed

    Ishihara, Keisuke; Ranga, Adrian; Lutolf, Matthias P; Tanaka, Elly M; Meinhardt, Andrea

    2017-01-01

    The recapitulation of tissue development and patterning in three-dimensional (3D) culture is an important dimension of stem cell research. Here, we describe a 3D culture protocol in which single mouse ES cells embedded in Matrigel under neural induction conditions clonally form a lumen containing, oval-shaped epithelial structure within 3 days. By Day 7 an apicobasally polarized neuroepithelium with uniformly dorsal cell identity forms. Treatment with retinoic acid at Day 2 results in posteriorization and self-organization of dorsal-ventral neural tube patterning. Neural tube organoid growth is also supported by pure laminin gels as well as poly(ethylene glycol) (PEG)-based artificial extracellular matrix hydrogels, which can be fine-tuned for key microenvironment characteristics. The rapid generation of a simple, patterned tissue in well-defined culture conditions makes the neural tube organoid a tractable model for studying neural stem cell self-organization.

  12. Regulation of Facial Morphogenesis by Endothelin Signaling: Insights from Mice and Fish

    PubMed Central

    Clouthier, David E.; Garcia, Elvin; Schilling, Thomas F.

    2010-01-01

    Craniofacial morphogenesis is accomplished through a complex set of developmental events, most of which are initiated in neural crest cells within the pharyngeal arches. Local patterning cues from the surrounding environment induce gene expression within neural crest cells, leading to formation of a diverse set of skeletal elements. Endothelin-1 (Edn1) is one of the primary signals that establish the identities of neural crest cells within the mandibular portion of the first pharyngeal arch. Signaling through its cognate receptor, the endothelin-A receptor, is critical for patterning the ventral/distal portion of the arch (lower jaw) and also participates with Hox genes in patterning more posterior arches. Edn1/Ednra signaling is highly conserved between mouse and zebrafish, and genetic analyses in these two species have provided complementary insights into the patterning cues responsible for establishing the craniofacial complex as well as the genetic basis of facial birth defect syndromes. PMID:20684004

  13. Ectocranial suture closure in Pan troglodytes and Gorilla gorilla: pattern and phylogeny.

    PubMed

    Cray, James; Meindl, Richard S; Sherwood, Chet C; Lovejoy, C Owen

    2008-08-01

    The order in which ectocranial sutures undergo fusion displays species-specific variation among primates. However, the precise relationship between suture closure and phylogenetic affinities is poorly understood. In this study, we used Guttman Scaling to determine if the modal progression of suture closure differs among Homo sapiens, Pan troglodytes, and Gorilla gorilla. Because DNA sequence homologies strongly suggest that P. troglodytes and Homo sapiens share a more recent common ancestor than either does with G. gorilla, we hypothesized that this phylogenetic relationship would be reflected in the suture closure patterns of these three taxa. Results indicated that while all three species do share a similar lateral-anterior closure pattern, G. gorilla exhibits a unique vault pattern, which, unlike humans and P. troglodytes, follows a strong posterior-to-anterior gradient. P. troglodytes is therefore more like Homo sapiens in suture synostosis. Copyright 2008 Wiley-Liss, Inc.

  14. Patterns of cytochrome oxidase activity in the visual cortex of a South American opossum (Didelphis marsupialis aurita).

    PubMed

    Martinich, S; Rosa, M G; Rocha-Miranda, C E

    1990-01-01

    The normal pattern of cytochrome oxidase (CO) activity in the posterior cortical areas of the South American opossum (Didelphis marsupialis aurita) was assessed both in horizontal sections of flattened cortices and in transversal cortical sections. The tangential distribution of CO activity was uniformly high in the striate cortex. In the peristriate region alternating bands of dense and weak staining occupied all the cortical layers with the exception of layer I. This observation suggests the existence of a functional segregation of visual processing in the peristriate cortex of the opossum similar to that present in phylogenetically more recent groups.

  15. Brain activation during mental rotation in school children and adults.

    PubMed

    Kucian, K; von Aster, M; Loenneker, T; Dietrich, T; Mast, F W; Martin, E

    2007-01-01

    Mental rotation is a complex cognitive skill depending on the manipulation of mental representations. We aimed to investigate the maturing neuronal network for mental rotation by measuring brain activation in 20 children and 20 adults using functional magnetic resonance imaging. Our results indicate that brain activation patterns are very similar between children and adults. However, adults exhibit stronger activation in the left intraparietal sulcus compared to children. This finding suggests a shift of activation from a predominantly right parietal activation in children to a bilateral activation pattern in adults. Furthermore, adults show a deactivation of the posterior cingulate gyrus and precuneus, which is not observed in children. In conclusion, developmental changes of brain activation during mental rotation are leading to a bilateral parietal activation pattern and faster performance.

  16. Trypanosoma cruzi infection and electrocardiographic findings among active manual workers. A population-based study in central Brazil.

    PubMed

    Zicker, F; Netto, J C; Zicker, E M; Oliveira, R M; Smith, P G

    1990-03-01

    In a cross sectional survey of the prevalence of Trypanosoma cruzi infection among urban unskilled workers in Goiânia, Brazil, blood samples from 6222 manual workers from seven institutions were examined for anti-Trypanosoma cruzi antibodies by immunofluorescence, ELISA and haemagglutination tests. ECGs were performed and a clinical history was taken from 624 seropositive and a random sample of 529 seronegative subjects. Abnormal ECGs were found in 15.1% of individuals without Trypanosoma cruzi antibodies and in 44.4% of those with antibodies (p less than 0.001). In general, cardiovascular symptoms reported were not associated with seropositivity nor with ECG alterations but dizziness and dyspnoea were more often reported among those with an abnormal tracing (p less than 0.01). The prevalence of ECG abnormalities increased with age in both groups but was higher among those seropositive in all age groups. An odds ratio of 2.0 (95% Cl 1.2-3.1) and 2.9 (95% Cl 1.5-6.3) of ECG abnormalities, for each decade of life, was estimated for seropositive and seronegative subjects, respectively. Relative risks (based on the odds ratios) for various specific ECG abnormalities, comparing seropositive to seronegative individuals, were calculated after adjustment for age, sex and institution. The odds ratio for complete right bundle branch block was 49.9 (95% CL 12.2-203.4); for left anterior hemiblock was 4.1 (2.8-6.0); for large Q/QS waves was 4.2 (2.4-7.3) and for first degree A-V block was 8.5 (2.6-28.1).

  17. A prospective evaluation of 68 patients suffering blunt chest trauma for evidence of cardiac injury.

    PubMed

    Helling, T S; Duke, P; Beggs, C W; Crouse, L J

    1989-07-01

    The prevalence and significance of cardiac injury following blunt chest trauma is largely unknown. Although electrocardiography (ECG) and creatinine phosphokinase isoenzyme (CPK-MB) determination have traditionally been used in determining cardiac injury, recent developments in two-dimensional echocardiography (ECHO) as a noninvasive diagnostic tool have led to its use in detecting structural cardiac damage following trauma. In an attempt to determine the occurrence and consequences of cardiac injury we prospectively evaluated 68 patients at one institution using ECHO, serial ECG, and serial CPK-MB determinations in the first 3 days following hospital admission. Patients were selected who had evidence of blunt chest injury on examination or by mechanism of injury. The mean age of the 68 patients was 36.3 +/- 19.6 years and the mean Injury Severity Score, 21.5 +/- 11.6. Forty-nine patients (72%) were found to have an abnormal ECHO, ECG, or CPK-MB (greater than 3%). Eighteen patients (26%) had abnormal ECHOs consisting of seven right ventricular contusions, three left ventricular contusions, three contusions of both chambers, four pericardial effusions, and one small ventricular septal defect. Only three contusions were associated with elevated CPK-MB and seven with abnormal ECGs. Abnormalities of ECG included 18 patients with S-T, T wave changes, axis shifts (11 patients), and bundle branch or hemiblocks (10 patients). No patient died or experienced serious morbidity as a result of their cardiac injury, including 12 patients who underwent surgical procedures with general anesthesia within 30 days of admission.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. What Is the Optimal Minimum Penetration Depth for "All-Inside" Meniscal Repairs?

    PubMed

    McCulloch, Patrick C; Jones, Hugh L; Lue, Jeffrey; Parekh, Jesal N; Noble, Philip C

    2016-08-01

    To identify desired minimum depth setting for safe, effective placement of the all-inside meniscal suture anchors. Using 16 cadaveric knees and standard arthroscopic techniques, 3-dimensional surfaces of the meniscocapsular junction and posterior capsule were digitized. Using standard anteromedial and anterolateral portals, the distance from the meniscocapsular junction to the posterior capsule outer wall was measured for 3 locations along the posterior half of medial and lateral menisci. Multiple all-inside meniscal repairs were performed on 7 knees to determine an alternate measure of capsular thickness (X2) and compared with the digitized results. In the digitized group, the distance (X1) from the capsular junction to the posterior capsular wall was averaged in both menisci for 3 regions using anteromedial and anterolateral portals. Mean distances of 6.4 to 8.8 mm were found for the lateral meniscus and 6.5 to 9.1 mm for the medial meniscus. The actual penetration depth was determined in the repair group and labeled X2. It showed a similar pattern to the variation seen in X1 by region, although it exceeded predicted distances an average 1.7 mm in the medial and 1.5 mm in the lateral meniscus owing to visible deformation of the capsule as it pierced. Capsular thickness during arthroscopic repair measures approximately 6 to 9 mm (X1), with 1.5 to 2 mm additional depth needed to ensure penetration rather than bulging of the posterior capsule (X2), resulting in 8 to 10 mm minimum penetration depth range. Surgeons can add desired distance away from the meniscocapsular junction (L) at device implantation, finding optimal minimal setting for penetration depth (X2 + L), which for most repairable tears may be as short as 8 mm and not likely to be greater than 16 mm. Minimum depth setting for optimal placement of all-inside meniscal suture anchors when performing all-inside repair of the medial or lateral meniscus reduces risk of harming adjacent structures secondary to overpenetration and underpenetration of the posterior capsule. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Dampened regulates the activating potency of Bicoid and the embryonic patterning outcome in Drosophila

    PubMed Central

    Liu, Junbo; Ma, Jun

    2014-01-01

    The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning, but it is poorly understood how its ability to activate a target gene may impact this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear co-factor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is due to a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fates-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd. PMID:24336107

  20. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

    PubMed Central

    Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer

    2018-01-01

    During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. PMID:29412136

  1. Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern.

    PubMed

    Jacob, Pedro F; Hedwig, Berthold

    2016-08-01

    Decoding the neural basis of behaviour requires analysing how the nervous system is organised and how the temporal structure of motor patterns emerges from its activity. The stereotypical patterns of the calling song behaviour of male crickets, which consists of chirps and pulses, is an ideal model to study this question. We applied selective lesions to the abdominal nervous system of field crickets and performed long-term acoustic recordings of the songs. Specific lesions to connectives or ganglia abolish singing or reliably alter the temporal features of the chirps and pulses. Singing motor control appears to be organised in a modular and hierarchically fashion, where more posterior ganglia control the timing of the chirp pattern and structure and anterior ganglia the timing of the pulses. This modular organisation may provide the substrate for song variants underlying calling, courtship and rivalry behaviour and for the species-specific song patterns in extant crickets. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Stress and displacement pattern evaluation using two different palatal expanders in unilateral cleft lip and palate: a three-dimensional finite element analysis.

    PubMed

    Mathew, Anoop; Nagachandran, K S; Vijayalakshmi, Devaki

    2016-12-01

    In this finite element (FE) study, the stress distribution and displacement pattern was evaluated in the mid-palatal area and around circum-maxillary sutures exerted by bone-borne palatal expander (BBPE) in comparison with conventional HYRAX rapid palatal expander in unilateral cleft lip and palate. Computed tomography scan images of a patient with unilateral cleft palate was used to create a FE model of the maxillary bone along with circum-maxillary sutures. A three-dimensional model of the conventional HYRAX (Hygienic Rapid Expander) expander and custom-made BBPE was created by laser scanning and programmed into the FE model. With the BBPE, the maximum stress was observed at the implant insertion site, whereas with the conventional HYRAX expander, it was at the dentition level. Among the circum-maxillary sutures, the zygomaticomaxillary suture experienced maximum stress followed by the zygomaticotemporal and nasomaxillary sutures. Displacement in the X-axis (transverse) was highest on the cleft side, and in the Y-axis (antero-posterior), it was highest in the posterior region in the BBPE. The total displacement was observed maximum in the mid-palatal cleft area in the BBPE, and it produced true skeletal expansion at the alveolar level without any dental tipping when compared with the conventional HYRAX expander.

  3. Incremental Value of Plaque Enhancement in Patients with Moderate or Severe Basilar Artery Stenosis: 3.0 T High-Resolution Magnetic Resonance Study.

    PubMed

    Wang, Wanqian; Yang, Qi; Li, Debiao; Fan, Zhaoyang; Bi, Xiaoming; Du, Xiangying; Wu, Fang; Wu, Ye; Li, Kuncheng

    2017-01-01

    To investigate the clinical relevance of plaque's morphological characteristics and distribution pattern using 3.0 T high-resolution magnetic resonance imaging (HRMRI) in patients with moderate or severe basilar artery (BA) atherosclerosis stenosis. Fifty-seven patients (33 symptomatic patients and 24 asymptomatic patients) were recruited for 3.0 T HRMRI scan; all of them had >50% stenosis on the BA. The intraplaque hemorrhage (IPH), contrast-enhancement pattern, and distribution of BA plaques were compared between the symptomatic and asymptomatic groups. Factors potentially associated with posterior ischemic stroke were calculated by multivariate analyses. Enhancement of BA plaque was more frequently observed in symptomatic than in asymptomatic patients (27/33, 81.8% versus 11/24, 45.8%; p < 0.01). In multivariate regression analysis, plaque enhancement (OR = 7.193; 95% CI: 1.880-27.517; p = 0.004) and smoking (OR = 4.402; 95% CI: 2.218-15.909; p = 0.024) were found to be independent risk factors of posterior ischemic events in patients with BA stenosis >50%. Plaques were mainly distributed at the ventral site (39.3%) or involved more than two arcs (21.2%) in the symptomatic group but were mainly distributed at left (33.3%) and right (25.0%) sites in the asymptomatic group.

  4. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry.

    PubMed

    Schatton, Adriana; Mendoza, Ezequiel; Grube, Kathrin; Scharff, Constance

    2018-06-15

    Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera. © 2018 Wiley Periodicals, Inc.

  5. Sound transmission in the chest under surface excitation - An experimental and computational study with diagnostic applications

    PubMed Central

    Peng, Ying; Dai, Zoujun; Mansy, Hansen A.; Sandler, Richard H.; Balk, Robert A; Royston, Thomas. J

    2014-01-01

    Chest physical examination often includes performing chest percussion, which involves introducing sound stimulus to the chest wall and detecting an audible change. This approach relies on observations that underlying acoustic transmission, coupling, and resonance patterns can be altered by chest structure changes due to pathologies. More accurate detection and quantification of these acoustic alterations may provide further useful diagnostic information. To elucidate the physical processes involved, a realistic computer model of sound transmission in the chest is helpful. In the present study, a computational model was developed and validated by comparing its predictions with results from animal and human experiments which involved applying acoustic excitation to the anterior chest while detecting skin vibrations at the posterior chest. To investigate the effect of pathology on sound transmission, the computational model was used to simulate the effects of pneumothorax on sounds introduced at the anterior chest and detected at the posterior. Model predictions and experimental results showed similar trends. The model also predicted wave patterns inside the chest, which may be used to assess results of elastography measurements. Future animal and human tests may expand the predictive power of the model to include acoustic behavior for a wider range of pulmonary conditions. PMID:25001497

  6. Neural correlates of moral judgment in pedophilia.

    PubMed

    Massau, Claudia; Kärgel, Christian; Weiß, Simone; Walter, Martin; Ponseti, Jorge; Hc Krueger, Tillmann; Walter, Henrik; Schiffer, Boris

    2017-09-01

    Pedophilia is a sexual preference that is often associated with child sex offending (CSO). Sexual urges towards prepubescent children and specifically acting upon those urges are universally regarded as immoral. However, up until now, it is completely unknown whether moral processing of sexual offenses is altered in pedophiles. A total of 31 pedophilic men and 19 healthy controls were assessed by using functional magnetic resonance imaging (fMRI) in combination with a moral judgment paradigm consisting of 36 scenarios describing different types of offenses.Scenarios depicting sexual offenses against children compared to those depicting adults were associated with higher pattern of activation in the left temporo-parietal-junction (TPJ) and left posterior insular cortex, the posterior cingulate gyrus as well as the precuneus in controls relative to pedophiles, and vice versa. Moreover, brain activation in these areas were positively associated with ratings of moral reprehensibility and negatively associated with decision durations, but only in controls. Brain activation, found in key areas related to the broad network of moral judgment, theory of mind and (socio-)moral disgust - point to different moral processing of sexual offenses in pedophilia in general. The lack of associations between brain activation and behavioral responses in pedophiles further suggest a biased response pattern or dissected implicit valuation processes. © The Author (2017). Published by Oxford University Press.

  7. Neural correlates of moral judgment in pedophilia

    PubMed Central

    Kärgel, Christian; Weiß, Simone; Walter, Martin; Ponseti, Jorge; HC Krueger, Tillmann; Walter, Henrik; Schiffer, Boris

    2017-01-01

    Abstract Pedophilia is a sexual preference that is often associated with child sex offending (CSO). Sexual urges towards prepubescent children and specifically acting upon those urges are universally regarded as immoral. However, up until now, it is completely unknown whether moral processing of sexual offenses is altered in pedophiles. A total of 31 pedophilic men and 19 healthy controls were assessed by using functional magnetic resonance imaging (fMRI) in combination with a moral judgment paradigm consisting of 36 scenarios describing different types of offenses. Scenarios depicting sexual offenses against children compared to those depicting adults were associated with higher pattern of activation in the left temporo-parietal-junction (TPJ) and left posterior insular cortex, the posterior cingulate gyrus as well as the precuneus in controls relative to pedophiles, and vice versa. Moreover, brain activation in these areas were positively associated with ratings of moral reprehensibility and negatively associated with decision durations, but only in controls. Brain activation, found in key areas related to the broad network of moral judgment, theory of mind and (socio-)moral disgust - point to different moral processing of sexual offenses in pedophilia in general. The lack of associations between brain activation and behavioral responses in pedophiles further suggest a biased response pattern or dissected implicit valuation processes. PMID:28992273

  8. The functional neuroanatomy of maternal love: mother's response to infant's attachment behaviors.

    PubMed

    Noriuchi, Madoka; Kikuchi, Yoshiaki; Senoo, Atsushi

    2008-02-15

    Maternal love, which may be the core of maternal behavior, is essential for the mother-infant attachment relationship and is important for the infant's development and mental health. However, little has been known about these neural mechanisms in human mothers. We examined patterns of maternal brain activation in response to infant cues using video clips. We performed functional magnetic resonance imaging (fMRI) measurements while 13 mothers viewed video clips, with no sound, of their own infant and other infants of approximately 16 months of age who demonstrated two different attachment behaviors (smiling at the infant's mother and crying for her). We found that a limited number of the mother's brain areas were specifically involved in recognition of the mother's own infant, namely orbitofrontal cortex (OFC), periaqueductal gray, anterior insula, and dorsal and ventrolateral parts of putamen. Additionally, we found the strong and specific mother's brain response for the mother's own infant's distress. The differential neural activation pattern was found in the dorsal region of OFC, caudate nucleus, right inferior frontal gyrus, dorsomedial prefrontal cortex (PFC), anterior cingulate, posterior cingulate, thalamus, substantia nigra, posterior superior temporal sulcus, and PFC. Our results showed the highly elaborate neural mechanism mediating maternal love and diverse and complex maternal behaviors for vigilant protectiveness.

  9. Neural Similarity Between Encoding and Retrieval is Related to Memory Via Hippocampal Interactions

    PubMed Central

    Ritchey, Maureen; Wing, Erik A.; LaBar, Kevin S.; Cabeza, Roberto

    2013-01-01

    A fundamental principle in memory research is that memory is a function of the similarity between encoding and retrieval operations. Consistent with this principle, many neurobiological models of declarative memory assume that memory traces are stored in cortical regions, and the hippocampus facilitates the reactivation of these traces during retrieval. The present investigation tested the novel prediction that encoding–retrieval similarity can be observed and related to memory at the level of individual items. Multivariate representational similarity analysis was applied to functional magnetic resonance imaging data collected during encoding and retrieval of emotional and neutral scenes. Memory success tracked fluctuations in encoding–retrieval similarity across frontal and posterior cortices. Importantly, memory effects in posterior regions reflected increased similarity between item-specific representations during successful recognition. Mediation analyses revealed that the hippocampus mediated the link between cortical similarity and memory success, providing crucial evidence for hippocampal–cortical interactions during retrieval. Finally, because emotional arousal is known to modulate both perceptual and memory processes, similarity effects were compared for emotional and neutral scenes. Emotional arousal was associated with enhanced similarity between encoding and retrieval patterns. These findings speak to the promise of pattern similarity measures for evaluating memory representations and hippocampal–cortical interactions. PMID:22967731

  10. ERP profiles for face and word recognition are based on their status in semantic memory not their stimulus category.

    PubMed

    Nie, Aiqing; Griffin, Michael; Keinath, Alexander; Walsh, Matthew; Dittmann, Andrea; Reder, Lynne

    2014-04-04

    Previous research has suggested that faces and words are processed and remembered differently as reflected by different ERP patterns for the two types of stimuli. Specifically, face stimuli produced greater late positive deflections for old items in anterior compared to posterior regions, while word stimuli produced greater late positive deflections in posterior compared to anterior regions. Given that words have existing representations in subjects׳ long-term memories (LTM) and that face stimuli used in prior experiments were of unknown individuals, we conducted an ERP study that crossed face and letter stimuli with the presence or absence of a prior (stable or existing) memory representation. During encoding, subjects judged whether stimuli were known (famous face or real word) or not known (unknown person or pseudo-word). A surprise recognition memory test required subjects to distinguish between stimuli that appeared during the encoding phase and stimuli that did not. ERP results were consistent with previous research when comparing unknown faces and words; however, the late ERP pattern for famous faces was more similar to that for words than for unknown faces. This suggests that the critical ERP difference is mediated by whether there is a prior representation in LTM, and not whether the stimulus involves letters or faces. Published by Elsevier B.V.

  11. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Spatial harmonics and pattern specification in early Drosophila development. Part II. The four colour wheels model.

    PubMed

    Kauffman, S A; Goodwin, B C

    1990-06-07

    We review the evidence presented in Part I showing that transcripts and protein products of maternal, gap, pair-rule, and segment polarity genes exhibit increasingly complex, multipeaked longitudinal waveforms in the early Drosophila embryo. The central problem we address in Part II is the use the embryo makes of these wave forms to specify longitudinal pattern. Based on the fact that mutants of many of these genes generate deletions and mirror symmetrical duplications of pattern elements on length scales ranging from about half the egg to within segments, we propose that position is specified by measuring a "phase angle" by use of the ratios of two or more variables. Pictorially, such a phase angle can be thought of as a colour on a colour wheel. Any such model contains a phaseless singularity where all or many phases, or colours, come together. We suppose as well that positional values sufficiently close to the singularity are meaningless, hence a "dead zone". Duplications and deletions are accounted for by deformation of the cycle of morphogen values occurring along the antero-posterior axis. If the cycle of values surrounds the singularity and lies outside the dead zone, pattern is normal. If the curve transects the dead zone, pattern elements are deleted. If the curve lies entirely on one side of the singularity, pattern elements are deleted and others are duplicated with mirror symmetry. The existence of different wavelength transcript patterns in maternal, gap, pair-rule, and segment polarity genes and the roles of those same genes in generating deletions and mirror symmetrical duplications on a variety of length scales lead us to propose that position is measured simultaneously on at least four colour wheels, which cycle different numbers of times along the anterior-posterior axis. These yield progressively finer grained positional information. Normal pattern specification requires a unique angle, outside of the dead zone, from each of the four wheels. Deformations of the cycle of gene product concentrations yield the deletions and mirror symmetric duplications observed in the mutants discussed. The alternative familiar hypothesis that longitudinal position is specified in an "on" "off" combinatorial code does not readily account for the duplication deletion phenomena.

  13. Transcortical sensory aphasia: revisited and revised.

    PubMed

    Boatman, D; Gordon, B; Hart, J; Selnes, O; Miglioretti, D; Lenz, F

    2000-08-01

    Transcortical sensory aphasia (TSA) is characterized by impaired auditory comprehension with intact repetition and fluent speech. We induced TSA transiently by electrical interference during routine cortical function mapping in six adult seizure patients. For each patient, TSA was associated with multiple posterior cortical sites, including the posterior superior and middle temporal gyri, in classical Wernicke's area. A number of TSA sites were immediately adjacent to sites where Wernicke's aphasia was elicited in the same patients. Phonological decoding of speech sounds was assessed by auditory syllable discrimination and found to be intact at all sites where TSA was induced. At a subset of electrode sites where the pattern of language deficits otherwise resembled TSA, naming and word reading remained intact. Language lateralization testing by intracarotid amobarbital injection showed no evidence of independent right hemisphere language. These results suggest that TSA may result from a one-way disruption between left hemisphere phonology and lexical-semantic processing.

  14. Brain Metabolic Dysfunction in Capgras Delusion During Alzheimer's Disease: A Positron Emission Tomography Study.

    PubMed

    Jedidi, H; Daury, N; Capa, R; Bahri, M A; Collette, F; Feyers, D; Bastin, C; Maquet, P; Salmon, E

    2015-11-01

    Capgras delusion is characterized by the misidentification of people and by the delusional belief that the misidentified persons have been replaced by impostors, generally perceived as persecutors. Since little is known regarding the neural correlates of Capgras syndrome, the cerebral metabolic pattern of a patient with probable Alzheimer's disease (AD) and Capgras syndrome was compared with those of 24-healthy elderly participants and 26 patients with AD without delusional syndrome. Comparing the healthy group with the AD group, the patient with AD had significant hypometabolism in frontal and posterior midline structures. In the light of current neural models of face perception, our patients with Capgras syndrome may be related to impaired recognition of a familiar face, subserved by the posterior cingulate/precuneus cortex, and impaired reflection about personally relevant knowledge related to a face, subserved by the dorsomedial prefrontal cortex. © The Author(s) 2013.

  15. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  16. Variant facial artery in the submandibular region.

    PubMed

    Vadgaonkar, Rajanigandha; Rai, Rajalakshmi; Prabhu, Latha V; Bv, Murlimanju; Samapriya, Neha

    2012-07-01

    Facial artery has been considered to be the most important vascular pedicle in facial rejuvenation procedures and submandibular gland (SMG) resection. It usually arises from the external carotid artery and passes from the carotid to digastric triangle, deep to the posterior belly of digastric muscle, and lodges in a groove at the posterior end of the SMG. It then passes between SMG and the mandible to reach the face after winding around the base of the mandible. During a routine dissection, in a 62-year-old female cadaver, in Kasturba Medical College Mangalore, an unusual pattern in the cervical course of facial artery was revealed. The right facial artery was found to pierce the whole substance of the SMG before winding around the lower border of the mandible to enter the facial region. Awareness of existence of such a variant and its comparison to the normal anatomy will be useful to oral and maxillofacial surgeons.

  17. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway.

    PubMed

    Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2014-08-08

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Using Latent Class Analysis to Model Temperament Types.

    PubMed

    Loken, Eric

    2004-10-01

    Mixture models are appropriate for data that arise from a set of qualitatively different subpopulations. In this study, latent class analysis was applied to observational data from a laboratory assessment of infant temperament at four months of age. The EM algorithm was used to fit the models, and the Bayesian method of posterior predictive checks was used for model selection. Results show at least three types of infant temperament, with patterns consistent with those identified by previous researchers who classified the infants using a theoretically based system. Multiple imputation of group memberships is proposed as an alternative to assigning subjects to the latent class with maximum posterior probability in order to reflect variance due to uncertainty in the parameter estimation. Latent class membership at four months of age predicted longitudinal outcomes at four years of age. The example illustrates issues relevant to all mixture models, including estimation, multi-modality, model selection, and comparisons based on the latent group indicators.

  19. Medulloblastoma in infants and children: computed tomographic follow-up after treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.Y.; Glass, J.P.; van Eys, J.

    1985-03-01

    Thirty-six proven cases of medulloblastoma were reviewed by serial CT follow-up examinations from 4 months to 10 years, 2 months after the initial diagnosis, with a mean follow-up time of 3 years, 9 months. The tumor recurred at the primary site in 20 cases (56%). Leptomeningeal metastasis was demonstrated on CT in 14 cases (39%); seven of these patients also presented with solid subarachnoid metastases. Thirteen patients (36%) showed evidence of severe brain atrophy, which was confined to the posterior fossa in seven of the 13. Calcification resulting from mineralizing microangiopathy developed in five cases (14%), including three patients whomore » had had extensive dystrophic calcification in the corticomedullary junction and the deep-seated nuclei of the cerebrum and cerebellum. The patterns of tumor recurrence in the posterior fossa that is severely deformed by surgery and other treatment modalities and leptomeningeal spread of tumor are discussed.« less

  20. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    PubMed Central

    Katsuki, Fumi; Constantinidis, Christos

    2012-01-01

    The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms. PMID:22563310

  1. Separating pitch chroma and pitch height in the human brain

    PubMed Central

    Warren, J. D.; Uppenkamp, S.; Patterson, R. D.; Griffiths, T. D.

    2003-01-01

    Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas. PMID:12909719

  2. Separating pitch chroma and pitch height in the human brain.

    PubMed

    Warren, J D; Uppenkamp, S; Patterson, R D; Griffiths, T D

    2003-08-19

    Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas.

  3. Appraising the plasticity of the circle of Willis: a model of hemodynamic modulation in cerebral arteriovenous malformations.

    PubMed

    Chuang, Yu-Ming; Guo, Wanyuo; Lin, Ching-Po

    2010-01-01

    Cerebral arteriovenous malformations (AVMs) harbor a network of abnormal vasculatures, namely the nidus between arterial and venous components. The pressure gradient between these two components results in abnormal high-velocity arteriovenous shunts flowing through the nidus and alternate intracranial hemodynamics. This study hypothesizes that the flow patterns of the circle of Willis (CoW) are modulated by the alternation of intracranial hemodynamics occurring in cerebral AVMs. The flow patterns of the CoW before and after AVMs had been corrected and the arteriovenous shunts closed by radiosurgery were assessed to validate the hypothesis. Fifty patients (32 men and 18 women; mean age 35.8 +/- 4.2, range 23-52 years) with cerebral AVMs previously treated by radiosurgery were retrospectively investigated. This investigation used magnetic resonance angiography, performed prior to and after AVM surgery, to assess the CoW flow patterns. The CoW flow patterns in nearly half of the subjects (20/50, 40%) altered after the AVMs had been corrected. The alterations included: (1) decreased size or ceased flow patterns in the CoW vascular segment: ipsilateral A1 (n = 1) of the anterior cerebral artery (ACA), ipsilateral posterior communicating artery (PCoA) segment (n = 7), contralateral PCoA collateral (n = 4), bilateral PCoA (n = 2); (2) increased size or opening of the previous 'hypoplastic' segment of CoW: ipsilateral A1 of ACA (n = 1), contralateral PCoA (n = 2), bilateral PCoA (n = 1), and (3) biphasic alteration of the CoW: ceased ipsilateral PCoA segment and opening ipsilateral A1 of the ACA (n = 1), ceased ipsilateral PCoA and opening contralateral P1 of the posterior cerebral artery (n = 1). The plasticity of the flow patterns in the CoW are modulated by intracranial hemodynamics as shown by the AVM model. The calibers of CoW arterial segments are not a static feature. Willisian collateralization with recruitment of the CoW segment may cease, or hypoplastic segments may reopen after closing arteriovenous shunts of the AVM. (c) 2010 S. Karger AG, Basel.

  4. Leg symptoms associated with sacroiliac joint disorder and related pain.

    PubMed

    Murakami, Eiichi; Aizawa, Toshimi; Kurosawa, Daisuke; Noguchi, Kyoko

    2017-06-01

    The symptoms of sacroiliac joint (SIJ) disorders are usually detected in the buttock and groin, and occasionally referred to the thigh and leg. However, lumbar disorders also cause symptoms in these same body regions. The presence of a characteristic, symptomatic pattern in the legs would be useful for diagnosing SIJ disorders. This study aimed to identify specific leg symptoms in patients with SIJ pain originating from the posterior sacroiliac ligament and determine the rate of occurrence of these symptoms. The source population consisted of 365 consecutive patients from February 2005 to December 2007. One hundred patients were diagnosed with SIJ pain by a periarticular SIJ injection (42 males and 58 females, average age 46 years, age range, 18-75 years). A leg symptom map was made by subtracting the symptoms after a periarticular SIJ injection from the initial symptoms, and evaluating the rate of each individual symptom by area. Ninety-four patients reported pain at or around the posterior-superior iliac spine (PSIS). Leg symptoms comprised pain and a numbness/tingling sensation; ≥60% of the patients had these symptoms. Pain was mainly detected in the back, buttock, groin, and thigh areas, while numbness/tingling was mainly detected in the lateral to posterior thigh and back of the calf. Leg symptoms associated with SIJ pain originating from the posterior sacroiliac ligament include both pain and numbness, which do not usually correspond to the dermatome. These leg symptoms in addition to pain around the PSIS may indicate SIJ disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex.

    PubMed

    Bird, Chris M; Keidel, James L; Ing, Leslie P; Horner, Aidan J; Burgess, Neil

    2015-10-28

    It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature. Copyright © 2015 Bird, Keidel et al.

  6. Unique insula subregion resting-state functional connectivity with amygdala complexes in posttraumatic stress disorder and its dissociative subtype.

    PubMed

    Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A

    2016-04-30

    The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Intrinsic functional network architecture of human semantic processing: Modules and hubs.

    PubMed

    Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao

    2016-05-15

    Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Directional information flow in patients with Alzheimer's disease. A source-space resting-state MEG study.

    PubMed

    Engels, M M A; Yu, M; Stam, C J; Gouw, A A; van der Flier, W M; Scheltens, Ph; van Straaten, E C W; Hillebrand, A

    2017-01-01

    In a recent magnetoencephalography (MEG) study, we found posterior-to-anterior information flow over the cortex in higher frequency bands in healthy subjects, with a reversed pattern in the theta band. A disruption of information flow may underlie clinical symptoms in Alzheimer's disease (AD). In AD, highly connected regions (hubs) in posterior areas are mostly disrupted. We therefore hypothesized that in AD the information flow from these hub regions would be disturbed. We used resting-state MEG recordings from 27 early-onset AD patients and 26 healthy controls. Using beamformer-based virtual electrodes, we estimated neuronal oscillatory activity for 78 cortical regions of interest (ROIs) and 12 subcortical ROIs of the AAL atlas, and calculated the directed phase transfer entropy (dPTE) as a measure of information flow between these ROIs. Group differences were evaluated using permutation tests and, for the AD group, associations between dPTE and general cognition or CSF biomarkers were determined using Spearman correlation coefficients. We confirmed the previously reported posterior-to-anterior information flow in the higher frequency bands in the healthy controls, and found it to be disturbed in the beta band in AD. Most prominently, the information flow from the precuneus and the visual cortex, towards frontal and subcortical structures, was decreased in AD. These disruptions did not correlate with cognitive impairment or CSF biomarkers. We conclude that AD pathology may affect the flow of information between brain regions, particularly from posterior hub regions, and that changes in the information flow in the beta band indicate an aspect of the pathophysiological process in AD.

  9. Clinical analysis of a large kindred with the pallister ulnar-mammary syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamshad, M.; Root, S.; Carey, J.C.

    1996-11-11

    The ulnar-mammary syndrome (UMS) is an autosomal dominant disorder characterized by posterior limb deficiencies or duplications, apocrine/mammary gland hypoplasia and/or dysfunction, abnormal dentition, delayed puberty in males, and genital anomalies. We present the clinical descriptions of 33 members of a six generation kindred with UMS. The number of affected individuals in this family is more than the sum of all previously reported cases of UMS. The clinical expression of UMS is highly variable. While most patients have limb deficiencies, the range of abnormalities extends from hypoplasia of the terminal phalanx of the 5th digit to complete absence of the ulnamore » and 3rd, 4th, and 5th digits. Moreover, affected individuals may have posterior digital duplications with or without contralateral limb deficiencies. Apocrine gland abnormalities range from diminished axillary perspiration with normal breast development and lactation, to complete absence of the breasts and no axillary perspiration. Dental abnormalities include misplaced or absent teeth. Affected males consistently undergo delayed puberty, and both sexes have diminished to absent axillary hair. Imperforate hymen were seen in some affected women. A gene for UMS was mapped to chromosome area 12q23-q24.1. A mutation in the gene causing UMS can interfere with limb patterning in the proximal/distal, anterior/posterior, and dorsal/ventral axes. This mutation disturbs development of the posterior elements of forearm, wrist, and hand while growth and development of the anterior elements remain normal. 24 refs., 4 figs., 1 tab.« less

  10. Primary failure of eruption: further characterization of a rare eruption disorder.

    PubMed

    Frazier-Bowers, Sylvia A; Koehler, Karen E; Ackerman, James L; Proffit, William R

    2007-05-01

    Posterior open bite has several possible causes, including primary failure of eruption (PFE) that affects all teeth distal to the most mesial involved tooth, mechanical failure of eruption (MFE) (primarily ankylosis) that affects only the involved tooth or teeth, and soft-tissue interferences with eruption (other). Radiographs and other clinical records for 97 cases of failure of posterior eruption submitted for consultation were analyzed to further characterize PFE and distinguish it from MFE. Of the 97 cases, 38 were judged to be clear-cut PFE; 19 were diagnosed as MFE; 32 were classified as indeterminate failure because they were too young to be certain of the distinction between PFE and MFE; and 8 were placed in the "other" category. Two subtypes of PFE were observed. In type 1, eruption failure occurred at or near the same time for all teeth in an affected quadrant. In type 2, a gradient of the time of failure was present, so that some further development of the teeth posterior to the most mesial affected tooth was observed before eruption failure. A family history of eruption problems was noted in 10 of the 38 PFE subjects (26%), and a pedigree analysis was done for 4 families. This was consistent with autosomal dominant transmission. The distinction between PFE and MFE is clinically important because it determines whether all posterior teeth, or only individual affected teeth, will not respond to orthodontic force. Certain diagnosis often requires progress radiographs so that the pattern of eruption of teeth distal to the most mesial affected tooth can be observed.

  11. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  12. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline

    PubMed Central

    Fan, Yong; Batmanghelich, Nematollah; Clark, Chris M.; Davatzikos, Christos

    2010-01-01

    Spatial patterns of brain atrophy in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) were measured via methods of computational neuroanatomy. These patterns were spatially complex and involved many brain regions. In addition to the hippocampus and the medial temporal lobe gray matter, a number of other regions displayed significant atrophy, including orbitofrontal and medial-prefrontal grey matter, cingulate (mainly posterior), insula, uncus, and temporal lobe white matter. Approximately 2/3 of the MCI group presented patterns of atrophy that overlapped with AD, whereas the remaining 1/3 overlapped with cognitively normal individuals, thereby indicating that some, but not all, MCI patients have significant and extensive brain atrophy in this cohort of MCI patients. Importantly, the group with AD-like patterns presented much higher rate of MMSE decline in follow-up visits; conversely, pattern classification provided relatively high classification accuracy (87%) of the individuals that presented relatively higher MMSE decline within a year from baseline. High-dimensional pattern classification, a nonlinear multivariate analysis, provided measures of structural abnormality that can potentially be useful for individual patient classification, as well as for predicting progression and examining multivariate relationships in group analyses. PMID:18053747

  13. Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan.

    PubMed

    Koop, Demian; Holland, Nicholas D; Sémon, Marie; Alvarez, Susana; de Lera, Angel Rodriguez; Laudet, Vincent; Holland, Linda Z; Schubert, Michael

    2010-02-01

    Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.

  14. Spatiotemporal Patterns of Tumor Occurrence in Children with Intraocular Retinoblastoma.

    PubMed

    King, Benjamin A; Parra, Carlos; Li, Yimei; Helton, Kathleen J; Qaddoumi, Ibrahim; Wilson, Matthew W; Ogg, Robert J

    2015-01-01

    To accurately map the retinal area covered by tumor in a prospectively enrolled cohort of children diagnosed with retinoblastoma. Orbital MRI in 106 consecutive retinoblastoma patients (44 bilateral) was analyzed. For MRI-visible tumors, the polar angle and angle of eccentricity of points defining tumor perimeter on the retina were determined by triangulation from images in three orthogonal planes. The centroid of the mapped area was calculated to approximate tumor origin, and the location and cumulative tumor burden were analyzed in relation to mutation type (germline vs. somatic), tumor area, and patient age at diagnosis. Location of small tumors undetected by MRI was approximated with fundoscopic images. Mapping was successful for 129 tumors in 91 eyes from 67 patients (39 bilateral, 43 germline mutation). Cumulative tumor burden was highest within the macula and posterior pole and was asymmetrically higher within the inferonasal periphery. Tumor incidence was lowest in the superotemporal periphery. Tumor location varied with age at diagnosis in a complex pattern. Tumor location was concentrated in the macula and superonasal periphery in patients <5.6 months, in the inferotemporal quadrant of the posterior pole in patients 5.6-8.8 months, in the inferonasal quadrant in patients 8.8-13.2 months, and in the nasal and superotemporal periphery in patients >13.2 months. The distribution of MRI-invisible tumors was consistent with the asymmetry of mapped tumors. MRI-based mapping revealed a previously unrecognized pattern of retinoblastoma localization that evolves with age at diagnosis. The structured spatiotemporal distribution of tumors may provide valuable clues about cellular or molecular events associated with tumorigenesis in the developing retina.

  15. Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation.

    PubMed

    Romaniello, Romina; Arrigoni, Filippo; Panzeri, Elena; Poretti, Andrea; Micalizzi, Alessia; Citterio, Andrea; Bedeschi, Maria Francesca; Berardinelli, Angela; Cusmai, Raffaella; D'Arrigo, Stefano; Ferraris, Alessandro; Hackenberg, Annette; Kuechler, Alma; Mancardi, Margherita; Nuovo, Sara; Oehl-Jaschkowitz, Barbara; Rossi, Andrea; Signorini, Sabrina; Tüttelmann, Frank; Wahl, Dagmar; Hehr, Ute; Boltshauser, Eugen; Bassi, Maria Teresa; Valente, Enza Maria; Borgatti, Renato

    2017-12-01

    To determine the neuroimaging pattern of cerebellar dysplasia (CD) and other posterior fossa morphological anomalies associated with mutations in tubulin genes and to perform clinical and genetic correlations. Twenty-eight patients harbouring 23 heterozygous pathogenic variants (ten novel) in tubulin genes TUBA1A (n = 10), TUBB2B (n = 8) or TUBB3 (n = 5) were studied by a brain MRI scan performed either on a 1.5 T (n = 10) or 3 T (n = 18) MR scanner with focus on the posterior fossa. Cerebellar anomalies were detected in 24/28 patients (86%). CD was recognised in 19/28 (68%) including cortical cerebellar dysplasia (CCD) in 18/28, either involving only the cerebellar hemispheres (12/28) or associated with vermis dysplasia (6/28). CCD was located only in the right hemisphere in 13/18 (72%), including four TUBB2B-, four TUBB3- and five TUBA1A-mutated patients, while in the other five TUBA1A cases it was located only in the left hemisphere or in both hemispheres. The postero-superior region of the cerebellar hemispheres was most frequently affected. The cerebellar involvement in tubulinopathies shows specific features that may be labelled as 'tubulin-related CD'. This pattern is unique and differs from other genetic causes of cerebellar dysplasia. • Cortical cerebellar dysplasia without cysts is suggestive of tubulin-related disorder. • Cerebellar dysplasia in tubulinopathies shows specific features labelled as 'tubulin-related CD'. • Focal and unilateral involvement of cerebellar hemispheres has important implications for counselling.

  16. The common neural bases between sexual desire and love: a multilevel kernel density fMRI analysis.

    PubMed

    Cacioppo, Stephanie; Bianchi-Demicheli, Francesco; Frum, Chris; Pfaus, James G; Lewis, James W

    2012-04-01

    One of the most difficult dilemmas in relationship science and couple therapy concerns the interaction between sexual desire and love. As two mental states of intense longing for union with others, sexual desire and love are, in fact, often difficult to disentangle from one another. The present review aims to help understand the differences and similarities between these two mental states using a comprehensive statistical meta-analyses of all functional magnetic resonance imaging (fMRI) studies on sexual desire and love. Systematic retrospective review of pertinent neuroimaging literature. Review of published literature on fMRI studies illustrating brain regions associated with love and sexual desire to date. Sexual desire and love not only show differences but also recruit a striking common set of brain areas that mediate somatosensory integration, reward expectation, and social cognition. More precisely, a significant posterior-to-anterior insular pattern appears to track sexual desire and love progressively. This specific pattern of activation suggests that love builds upon a neural circuit for emotions and pleasure, adding regions associated with reward expectancy, habit formation, and feature detection. In particular, the shared activation within the insula, with a posterior-to-anterior pattern, from desire to love, suggests that love grows out of and is a more abstract representation of the pleasant sensorimotor experiences that characterize desire. From these results, one may consider desire and love on a spectrum that evolves from integrative representations of affective visceral sensations to an ultimate representation of feelings incorporating mechanisms of reward expectancy and habit learning. © 2012 International Society for Sexual Medicine.

  17. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    PubMed

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Coherence and recurrency: maintenance, control and integration in working memory

    PubMed Central

    Raffone, Antonino

    2007-01-01

    Working memory (WM), including a ‘central executive’, is used to guide behavior by internal goals or intentions. We suggest that WM is best described as a set of three interdependent functions which are implemented in the prefrontal cortex (PFC). These functions are maintenance, control of attention and integration. A model for the maintenance function is presented, and we will argue that this model can be extended to incorporate the other functions as well. Maintenance is the capacity to briefly maintain information in the absence of corresponding input, and even in the face of distracting information. We will argue that maintenance is based on recurrent loops between PFC and posterior parts of the brain, and probably within PFC as well. In these loops information can be held temporarily in an active form. We show that a model based on these structural ideas is capable of maintaining a limited number of neural patterns. Not the size, but the coherence of patterns (i.e., a chunking principle based on synchronous firing of interconnected cell assemblies) determines the maintenance capacity. A mechanism that optimizes coherent pattern segregation, also poses a limit to the number of assemblies (about four) that can concurrently reverberate. Top-down attentional control (in perception, action and memory retrieval) can be modelled by the modulation and re-entry of top-down information to posterior parts of the brain. Hierarchically organized modules in PFC create the possibility for information integration. We argue that large-scale multimodal integration of information creates an ‘episodic buffer’, and may even suffice for implementing a central executive. PMID:17901994

  19. Homeotic genes and the arthropod head: Expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects

    PubMed Central

    Abzhanov, Arhat; Kaufman, Thomas C.

    1999-01-01

    cDNA fragments of the homologues of the Drosophila head homeotic genes labial (lab), proboscipedia (pb), and Deformed (Dfd) have been isolated from the crustacean Porcellio scaber. Because the accumulation domains of the head homeotic complex (Hox) genes had not been previously reported for crustaceans, we studied the expression patterns of these genes in P. scaber embryos by using in situ hybridization. The P. scaber lab homologue is expressed in the developing second antennal segment and its appendages. This expression domain in crustaceans and in the homologous intercalary segment of insects suggests that the lab gene specified this metamere in the last common ancestor of these two groups. The expression domain of the P. scaber pb gene is in the posterior part of the second antennal segment. This domain, in contrast to that in insects, is colinear with the domains of other head genes in P. scaber, and it differs from the insect pb gene expression domain in the posterior mouthparts, suggesting that the insect and crustacean patterns evolved independently from a broader ancestral domain similar to that found in modern chelicerates. P. scaber Dfd is expressed in the mandibular segment and paragnaths (a pair of ventral mouthpart structures associated with the stomodeum) and differs from insects, where expression is in the mandibular and maxillary segments. Thus, like pb, Dfd shows a divergent Hox gene deployment. We conclude that homologous structures of the mandibulate head display striking differences in their underlying developmental programs related to Hox gene expression. PMID:10468590

  20. Human Foramen Magnum Area and Posterior Cranial Fossa Volume Growth in Relation to Cranial Base Synchondrosis Closure in the Course of Child Development.

    PubMed

    Coll, Guillaume; Lemaire, Jean-Jacques; Di Rocco, Federico; Barthélémy, Isabelle; Garcier, Jean-Marc; De Schlichting, Emmanuel; Sakka, Laurent

    2016-11-01

    To date, no study has compared the evolution of the foramen magnum area (FMA) and the posterior cranial fossa volume (PCFV) with the degree of cranial base synchondrosis ossification. To illustrate these features in healthy children. The FMA, the PCFV, and the ossification of 12 synchondroses according to the Madeline and Elster scale were retrospectively analyzed in 235 healthy children using millimeter slices on a computed tomography scan. The mean FMA of 6.49 cm in girls was significantly inferior to the FMA of 7.67 cm in boys (P < .001). In both sexes, the growth evolved in a 2-phase process, with a phase of rapid growth from birth to 3.75 years old (yo) followed by a phase of stabilization. In girls, the first phase was shorter (ending at 2.6 yo) than in boys (ending at 4.33 yo) and proceeded at a higher rate. PCFV was smaller in girls (P < .001) and displayed a biphasic pattern in the whole population, with a phase of rapid growth from birth to 3.58 yo followed by a phase of slow growth until 16 yo. In girls, the first phase was more active and shorter (ending at 2.67 yo) than in boys (ending at 4.5 yo). The posterior interoccipital synchondroses close first, followed by the anterior interoccipital and occipitomastoidal synchondroses, the lambdoid sutures simultaneously, then the petro-occipital and spheno-occipital synchondroses simultaneously. The data provide a chronology of synchondrosis closure. We showed that FMA and PCFV are constitutionally smaller in girls at birth (P ≤ .02) and suggest that a sex-related difference in the FMA is related to earlier closure of anterior interoccipital synchondroses in girls (P = .01). AIOS, anterior interoccipital synchondrosesFMA, foramen magnum areaLS, lambdoid suturesOMS, occipitomastoidal synchondrosesPCFV, posterior cranial fossa volumePIOS, posterior interoccipital synchondrosesPOS, petro-occipital synchondrosesSOS, spheno-occipital synchondrosisyo, years old.

  1. Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus.

    PubMed

    Moriwaki, Chinatsu; Chiba, Seiichi; Wei, Huixing; Aosa, Taishi; Kitamura, Hirokazu; Ina, Keisuke; Shibata, Hirotaka; Fujikura, Yoshihisa

    2015-10-01

    Histidine decarboxylase (HDC) catalyzes the biosynthesis of histamine from L-histidine and is expressed throughout the mammalian nervous system by histaminergic neurons. Histaminergic neurons arise in the posterior mesencephalon during the early embryonic period and gradually develop into two histaminergic substreams around the lateral area of the posterior hypothalamus and the more anterior peri-cerebral aqueduct area before finally forming an adult-like pattern comprising five neuronal clusters, E1, E2, E3, E4, and E5, at the postnatal stage. This distribution of histaminergic neuronal clusters in the rat hypothalamus appears to be a consequence of neuronal development and reflects the functional differentiation within each neuronal cluster. However, the close linkage between the locations of histaminergic neuronal clusters and their physiological functions has yet to be fully elucidated because of the sparse information regarding the location and orientation of each histaminergic neuronal clusters in the hypothalamus of rats and mice. To clarify the distribution of the five-histaminergic neuronal clusters more clearly, we performed an immunohistochemical study using the anti-HDC antibody on serial sections of the rat hypothalamus according to the brain maps of rat and mouse. Our results confirmed that the HDC-immunoreactive (HDCi) neuronal clusters in the hypothalamus of rats and mice are observed in the ventrolateral part of the most posterior hypothalamus (E1), ventrolateral part of the posterior hypothalamus (E2), ventromedial part from the medial to the posterior hypothalamus (E3), periventricular part from the anterior to the medial hypothalamus (E4), and diffusely extended part of the more dorsal and almost entire hypothalamus (E5). The stereological estimation of the total number of HDCi neurons of each clusters revealed the larger amount of the rat than the mouse. The characterization of histaminergic neuronal clusters in the hypothalamus of rats and mice may provide useful information for further investigations. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique.

    PubMed

    Kotani, Yoshihisa; Abumi, Kuniyoshi; Ito, Manabu; Takahata, Masahiko; Sudo, Hideki; Ohshima, Shigeki; Minami, Akio

    2007-06-15

    The accuracy of pedicle screw placement was evaluated in posterior scoliosis surgeries with or without the use of computer-assisted surgical techniques. In this retrospective cohort study, the pedicle screw placement accuracy in posterior scoliosis surgery was compared between conventional fluoroscopic and computer-assisted surgical techniques. There has been no study systemically analyzing the perforation pattern and comparative accuracy of pedicle screw placement in posterior scoliosis surgery. The 45 patients who received posterior correction surgeries were divided into 2 groups: Group C, manual control (25 patients); and Group N, navigation surgery (20 patients). The average Cobb angles were 73.7 degrees and 73.1 degrees before surgery in Group C and Group N, respectively. Using CT images, vertebral rotation, pedicle axes as measured to anteroposterior sacral axis and vertebral axis, and insertion angle error were measured. In perforation cases, the angular tendency, insertion point, and length abnormality were evaluated. The perforation was observed in 11% of Group C and 1.8% in Group N. In Group C, medial perforations of left screws were demonstrated in 8 of 9 perforated screws and 55% were distributed either in L1 or T12. The perforation consistently occurred in pedicles in which those axes approached anteroposterior sacral axis within 5 degrees . The average insertion errors were 8.4 degrees and 5.0 degrees in Group C and Group N, respectively, which were significantly different (P < 0.02). The medial perforation in Group C occurred around L1, especially when pedicle axis approached anteroposterior sacral axis. This consistent tendency was considered as the limitation of fluoroscopic screw insertion in which horizontal vertebral image was not visible. The use of surgical navigation system successfully reduced the perforation rate and insertion angle errors, demonstrating the clear advantage in safe and accurate pedicle screw placement of scoliosis surgery.

  3. The role of the subelytral spiracles in respiration in the flightless dung beetle Circellium bacchus.

    PubMed

    Byrne, Marcus J; Duncan, Frances D

    2003-04-01

    The role of the subelytral cavity in flightless beetle species as an adaptation to water saving in arid habitats is still in dispute. We found that relatively little CO(2) was released from the subelytral cavity of a large apterous beetle Circellium bacchus during simultaneous measurements of CO(2) emission from the anterior mesothoracic spiracles and posterior body, which included the subelytral spiracles. However, when we sampled air directly from inside the subelytral cavity, we discovered that this pattern was reversed. A discontinuous gas exchange cycle (DGC) was recorded from the posterior body half, revealing a flutter phase that had been absent from the anterior mesothoracic DGC. The anterior mesothoracic and posterior subelytral spiracles act in synchrony to maintain high CO(2) and water vapour levels inside the subelytral cavity. In addition, the O(2) concentration of the air within the subelytral cavity is lower than the air around the elytral case, irrespective of the time of sampling. These findings lead us to conclude that the subelytral spiracles work in a coordinated fashion with the anterior spiracles to create a DGC, which allows us to extend the hypothesis of the function of the subelytral cavity as a respiratory water-saving device.

  4. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    PubMed

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production?

    PubMed Central

    Torrecillas, Silvia; Montero, Daniel; Caballero, Maria José; Pittman, Karin A.; Custódio, Marco; Campo, Aurora; Sweetman, John; Izquierdo, Marisol

    2015-01-01

    The main objective of this study was to assess the effects of 4 g kg−1 dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced dietary n–3/n–6 ratio for an appropriate GALT-immune response against MOS in European sea bass juveniles. PMID:26300883

  6. The generation of vertebral segmental patterning in the chick embryo

    PubMed Central

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-01-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. PMID:22458512

  7. Tagmatization in Stomatopoda - reconsidering functional units of modern-day mantis shrimps (Verunipeltata, Hoplocarida) and implications for the interpretation of fossils.

    PubMed

    Haug, Carolin; Sallam, Wafaa S; Maas, Andreas; Waloszek, Dieter; Kutschera, Verena; Haug, Joachim T

    2012-11-14

    We describe the tagmatization pattern of the anterior region of the extant stomatopod Erugosquilla massavensis. For documentation we used the autofluorescence capacities of the specimens, resulting in a significant contrast between sclerotized and membranous areas. The anterior body region of E. massavensis can be grouped into three tagmata. Tagma I, the sensorial unit, comprises the segments of the eyes, antennules and antennae. This unit is set-off anteriorly from the posterior head region. Ventrally this unit surrounds a large medial sclerite, interpreted as the anterior part of the hypostome. Dorsally the antennular and antennal segments each bear a well-developed tergite. The dorsal shield is part of tagma II, most of the ventral part of which is occupied in the midline by the large, partly sclerotized posterior part of a complex combining hypostome and labrum. Tagma II includes three more segments behind the labrum, the mandibular, maxillulary and maxillary segments. Tagma III includes the maxillipedal segments, bearing five pairs of sub-chelate appendages. The dorsal sclerite of the first of these tagma-III segments, the segment of the first maxillipeds, is not included in the shield, so this segment is not part of tagma II as generally thought. The second and third segments of tagma III form a unit dorsally and ventrally. The tergites of the segments of tagma III become progressively larger from the anterior to the posterior, possibly resulting from a paedomorphic effect during evolution, which caused this reversed enlargement. The described pattern of tagmosis differs from current textbook knowledge. Therefore, our re-description of the anterior body area of stomatopods is of considerable impact for understanding the head evolution of Stomatopoda. Likewise, it has a bearing upon any comparisons with fossil stomatopods, as mainly sclerotized areas are fossilized, and, on a wider scale, upon larger-scale comparisons with other malacostracans and eucrustaceans in general.

  8. The role of lin-22, a hairy/enhancer of split homolog, in patterning the peripheral nervous system of C. elegans.

    PubMed

    Wrischnik, L A; Kenyon, C J

    1997-08-01

    In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell proliferation and the production of neural as well as epidermal cells. In the wild type, activity of the gene lin-22 allows V1-V4 to generate their normal epidermal lineages rather than V5-like lineages. lin-22 activity is also required to prevent additional neurons from being produced by one branch of the V5 lineage. We find that the lin-22 gene exhibits homology to the Drosophila gene hairy, and that lin-22 activity represses neural development within the V5 lineage by blocking expression of the posterior-specific Hox gene mab-5 in specific cells. In addition, in order to prevent anterior V cells from generating V5-like lineages, wild-type lin-22 gene activity must inhibit (directly or indirectly) at least five downstream regulatory gene activities. In anterior body regions, lin-22(+) inhibits expression of the Hox gene mab-5. It also inhibits the activity of the achaete-scute homolog lin-32 and an unidentified gene that we postulate regulates stem cell division. Each of these three genes is required for the expression of a different piece of the ectopic V5-like lineages generated in lin-22 mutants. In addition, lin-22 activity prevents two other Hox genes, lin-39 and egl-5, from acquiring new activities within their normal domains of function along the A/P body axis. Some, but not all, of the patterning activities of lin-22 in C. elegans resemble those of hairy in Drosophila.

  9. Network Dynamics Underlying Speed-Accuracy Trade-Offs in Response to Errors

    PubMed Central

    Agam, Yigal; Carey, Caitlin; Barton, Jason J. S.; Dyckman, Kara A.; Lee, Adrian K. C.; Vangel, Mark; Manoach, Dara S.

    2013-01-01

    The ability to dynamically and rapidly adjust task performance based on its outcome is fundamental to adaptive, flexible behavior. Over trials of a task, responses speed up until an error is committed and after the error responses slow down. These dynamic adjustments serve to optimize performance and are well-described by the speed-accuracy trade-off (SATO) function. We hypothesized that SATOs based on outcomes reflect reciprocal changes in the allocation of attention between the internal milieu and the task-at-hand, as indexed by reciprocal changes in activity between the default and dorsal attention brain networks. We tested this hypothesis using functional MRI to examine the pattern of network activation over a series of trials surrounding and including an error. We further hypothesized that these reciprocal changes in network activity are coordinated by the posterior cingulate cortex (PCC) and would rely on the structural integrity of its white matter connections. Using diffusion tensor imaging, we examined whether fractional anisotropy of the posterior cingulum bundle correlated with the magnitude of reciprocal changes in network activation around errors. As expected, reaction time (RT) in trials surrounding errors was consistent with predictions from the SATO function. Activation in the default network was: (i) inversely correlated with RT, (ii) greater on trials before than after an error and (iii) maximal at the error. In contrast, activation in the right intraparietal sulcus of the dorsal attention network was (i) positively correlated with RT and showed the opposite pattern: (ii) less activation before than after an error and (iii) the least activation on the error. Greater integrity of the posterior cingulum bundle was associated with greater reciprocity in network activation around errors. These findings suggest that dynamic changes in attention to the internal versus external milieu in response to errors underlie SATOs in RT and are mediated by the PCC. PMID:24069223

  10. Association of cross-sectional area of the rectus capitis posterior minor muscle with active trigger points in chronic tension-type headache: a pilot study.

    PubMed

    Fernández-de-Las-Peñas, César; Cuadrado, María Luz; Arendt-Nielsen, Lars; Ge, Hong-You; Pareja, Juan A

    2008-03-01

    To investigate whether cross-sectional area (CSA) of the suboccipital muscles was associated with active trigger points (TrPs) in chronic tension-type headache (CTTH). Magnetic resonance imaging (MRI) of the cervical spine was performed in 11 females with CTTH aged from 26 to 50 yrs old. CSA for both rectus capitis posterior minor (RCPmin) and rectus capitis posterior major (RCPmaj) muscles were measured from axial T1-weighted images, using axial MRI slices aligned parallel to the C2/3 intervertebral disc. A headache diary was kept for 4 wks to record the pain history. TrPs in the suboccipital muscle were identified by eliciting referred pain to palpation, and increased referred pain with muscle contraction. TrPs were considered active if the elicited referred pain reproduced the head pain pattern and features of the pattern seen during spontaneous headache attacks. Active TrPs were found in six patients (55%), whereas the remaining five patients showed latent TrPs. CSA of the RCPmin was significantly smaller (F = 13.843; P = 0.002) in the patients with active TrPs (right side: 55.9 +/- 4.4 mm; left side: 61.1 +/-: 3.8 mm) than in patients with latent TrPs (right side: 96.9 +/- 14.4 mm; left side: 88.7 +/- 9.7 mm). No significant differences were found for CSA of the RCPmaj between the patients with either active or latent TrP (P > 0.5). It seems that muscle atrophy in the RCPmin, but not in the RCPmaj, was associated with suboccipital active TrPs in CTTH, although studies with larger sample sizes are now required. It may be that nociceptive inputs in active TrPs could lead to muscle atrophy of the involved muscles. Muscle disuse or avoidance behavior can also be involved in atrophy.

  11. Effect of halo-vest components on stabilizing the injured cervical spine.

    PubMed

    Ivancic, Paul C; Beauchman, Naseem N; Tweardy, Lisa

    2009-01-15

    An in vitro biomechanical study. The objectives were to develop a new biofidelic skull-neck-thorax model capable of quantifying motion patterns of the cervical spine in the presence of a halo-vest; to investigate the effects of vest loosening, superstructure loosening, and removal of the posterior uprights; and to evaluate the ability of the halo-vest to stabilize the neck within physiological motion limits. Previous clinical and biomechanical studies have investigated neck motion with the halo-vest only in the sagittal plane or only at the injured spinal level. No previous studies have quantified three-dimensional intervertebral motion patterns throughout the injured cervical spine stabilized with the halo-vest or studied the effect of halo-vest components on these motions. The halo-vest was applied to the skull-neck-thorax model. Six osteoligamentous whole cervical spine specimens (occiput through T1 vertebra) were used that had sustained multiplanar ligamentous injuries at C3/4 through C7-T1 during a previous protocol. Flexibility tests were performed with normal halo-vest application, loose vest, loose superstructure, and following removal of the posterior uprights. Average total range of motion for each experimental condition was statistically compared (P < 0.05) with the physiologic rotation limit for each spinal level. Cervical spine snaking was observed in both the sagittal and frontal planes. The halo-vest, applied normally, generally limited average spinal motions to within average physiological limits. No significant increases in average spinal motions above physiologic were observed due to loose vest, loose superstructure, or removal of the posterior uprights. However, a trend toward increased motion at C6/7 in lateral bending was observed due to loose superstructure. The halo-vest, applied normally, effectively immobilized the cervical spine. Sagittal or frontal plane snaking of the cervical spine due to the halo-vest may reduce its immobilization capability at the upper cervical spine and cervicothoracic junction.

  12. Transcriptome sequencing of Atlantic salmon (Salmo salar L.) notochord prior to development of the vertebrae provides clues to regulation of positional fate, chordoblast lineage and mineralisation

    PubMed Central

    2014-01-01

    Background In teleosts such as Atlantic salmon (Salmo salar L.), segmentation and subsequent mineralisation of the notochord during embryonic stages are essential for normal vertebrae formation. However, the molecular mechanisms leading to segmentation and mineralisation of the notochord are poorly understood. The aim of this study was to identify genes/pathways acting in gradients over time and along the anterior-posterior axis during notochord segmentation and immediately prior to mineralisation of the vertebral bodies in Atlantic salmon. Results Notochord samples were collected from unsegmented, pre-segmented and segmented developmental stages. In each stage, the cellular core of the notochord was cut into three pieces along the longitudinal axis (anterior, mid, posterior). RNA was sequenced (22 million pair-end 100 bp/ library) and mapped to the salmon genome. 66569 transcripts were predicted and 55775 were annotated. In order to identify possible gradients leading to segmentation of the notochord, all 71 notochord-expressed hox genes were investigated, most of them displaying a typical anterior-posterior expression pattern along the notochord axis. The clustering of hox genes revealed a pattern that could be related to notochord segmentation. We further investigated how mineralisation is initiated in the notochord, and several factors related to chondrogenic lineage were identified (sox9, sox5, sox6, tgfb3, ihhb and col2a1), suggesting a cartilage-like character of the notochord. KEGG analysis of differentially expressed genes between stages revealed down-regulation of pathways associated with ECM, cell division, metabolism and development at onset of notochord segmentation. This implies that inhibitory signals produce segmentation of the notochord. One such potential inhibitory signal was identified, col11a2, which was detected in segments of non-mineralising notochord. Conclusions An incomplete salmon genome was successfully used to analyse RNA-seq data from the cellular core of the Atlantic salmon notochord. In transcriptome we found; hox gene patterns possibly linked to segmentation; down-regulation of pathways in the notochord at onset of segmentation; segmented expression of col11a2 in non-mineralised segments of the notochord; and a chondroblast-like footprint in the notochord. PMID:24548379

  13. Direct measurement of hoop strains in the intact and torn human medial meniscus.

    PubMed

    Jones, R Spencer; Keene, G C R; Learmonth, D J A; Bickerstaff, D; Nawana, N S; Costi, J J; Pearcy, M J

    1996-07-01

    OBJECTIVE: To measure the circumferential or hoop strains generated in the medial meniscus during loading of the knee joint and to examine the effect of longitudinal and radial tears in the meniscus on these strain values. DESIGN: An in vitro investigation measuring the circumferential strains in the medial menisci of cadaveric human knees as they were loaded in a materials testing machine. BACKGROUND: The menisci transmit approximately 50% of the load through the knee, the rest being transmitted by direct contact of the articular cartilage. Damage to the menisci will alter the pattern of load transmission as will meniscectomy. This study examined the changes in the mechanics of the meniscus in situ as a result of simulated tears to assess the effect of its load carrying capacity and the implications of surgery to remove part or all of a damaged meniscus. METHODS: Nineteen human cadaveric knees were tested. Windows were made in the joint capsule and strain gauges inserted into the anterior, middle and posterior sections of the medial meniscus. The knees were then loaded to three times body weight at speeds of 50 and 500 mm/min, with the knee joint at 0 degrees and 30 degrees of flexion. The tests were repeated following the creation of a longitudinal or a radial tear in the meniscus. RESULTS: The intact menisci showed significantly less strain in the posterior section compared to the anterior and middle sections (P < 0.003, with strains of 1.54%, 2.86% and 2.65% respectively). With a longitudinal tear this pattern changed with strains decreasing anteriorly and increasing posteriorly. There were also significant differences at different angles of knee joint flexion not seen in the intact meniscus. 50% radial tears reduced the strains anteriorly whilst a complete radial tear completely defunctioned the meniscus. CONCLUSIONS: This study has shown that there are significantly different hoop strains produced in different sections of the medial meniscus under load and the patterns of strain distribution are disturbed by meniscal tears. RELEVANCE: These results provide important data for mathematical models which must include non-uniform behaviour. They also have implications for the surgical management of torn menisci. Undamaged portions should be preserved and the integrity of the circumferential fibres maintained to ensure the menisci retain a load bearing capability.

  14. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.

  15. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.

    PubMed

    Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle

    2018-05-01

    Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.

  16. Hunter-Schreger Band patterns in human tooth enamel

    PubMed Central

    Lynch, Christopher D; O’Sullivan, Victor R; Dockery, Peter; McGillycuddy, Catherine T; Sloan, Alastair J

    2010-01-01

    Using light microscopy, we examined Hunter-Schreger Band (HSB) patterns on the axial and occlusal/incisal surfaces of 160 human teeth, sectioned in both the buccolingual and mesiodistal planes. We found regional variations in HSB packing densities (number of HSBs per mm of amelodentinal junction length) and patterns throughout the crown of each class of tooth (maxillary and mandibular: incisor, canine, premolar, and molar) examined. HSB packing densities were greatest in areas where functional and occlusal loads are greatest, such as the occlusal surfaces of posterior teeth and the incisal regions of incisors and canines. From this it is possible to infer that the behaviour of ameloblasts forming enamel prisms during amelogenesis is guided by genetic/evolutionary controls that act to increase the fracture and wear resistance of human tooth enamel. It is suggested that HSB packing densities and patterns are important in modern clinical dental treatments, such as the bonding of adhesive restorations to enamel, and in the development of conditions, such as abfraction and cracked tooth syndrome. PMID:20579171

  17. [Conventional X-Rays of Ankle Joint Fractures in Older Patients are Not Always Predictive].

    PubMed

    Jubel, A; Faymonville, C; Andermahr, J; Boxberg, S; Schiffer, G

    2017-02-01

    Background: Ankle fractures are extremely common in the elderly, with an incidence of up to 39 fractures per 100,000 persons per year. We found a discrepancy between intraoperative findings and preoperative X-ray findings. It was suggested that many relevant lesions of the ankle joint in the elderly cannot be detected with plain X-rays. Methods: Complete data sets and preoperative X-rays of 84 patients aged above 60 years with ankle fractures were analysed retrospectively. There were 59 women and 25 men, with a mean age of 69.9 years. Operation reports and preoperative X-rays were analysed with respect to four relevant lesions: multifragmentary fracture pattern of the lateral malleolus, involvement of the medial malleolus, posterior malleolar fractures and bony avulsion of anterior syndesmosis. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence were calculated. Results: The prevalence of specific ankle lesions in the analyzed cohort was 24 % for the multifragmentary fracture pattern of the lateral malleolus, 38 % for fractures of the medial malleolus, 25 % for posterior malleolar fractures and 22.6 % for bony avulsions of the anterior syndesmosis. Multifragmentary fracture patterns of the lateral malleolus (sensitivity 0 %) and bony avulsions of the anterior syndesmosis (sensitivity 5 %) could not be detected in plain X-rays of the ankle joint at all. Fractures of the medial malleolus and involvement of the dorsal tibial facet were detected with a sensitivity of 96.8 % and 76.2 %, respectively, and specificity of 100 % in both cases. Conclusions: This study confirms that complex fracture patterns, such as multifragmentary involvement of the lateral malleolus, additional fracture of the medial malleolus, involvement of the dorsal tibial facet or bony avulsion of the anterior syndesmosis are common in ankle fractures of the elderly. Therefore, CT scans should be routinely considered for primary diagnosis, in addition to plain X-rays. Georg Thieme Verlag KG Stuttgart · New York.

  18. The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation

    NASA Technical Reports Server (NTRS)

    Seaver, E. C.; Paulson, D. A.; Irvine, S. Q.; Martindale, M. Q.

    2001-01-01

    We are interested in understanding whether the annelids and arthropods shared a common segmented ancestor and have approached this question by characterizing the expression pattern of the segment polarity gene engrailed (en) in a basal annelid, the polychaete Chaetopterus. We have isolated an en gene, Ch-en, from a Chaetopterus cDNA library. Genomic Southern blotting suggests that this is the only en class gene in this animal. The predicted protein sequence of the 1.2-kb cDNA clone contains all five domains characteristic of en proteins in other taxa, including the en class homeobox. Whole-mount in situ hybridization reveals that Ch-en is expressed throughout larval life in a complex spatial and temporal pattern. The Ch-en transcript is initially detected in a small number of neurons associated with the apical organ and in the posterior portion of the prototrochophore. At later stages, Ch-en is expressed in distinct patterns in the three segmented body regions (A, B, and C) of Chaetopterus. In all segments, Ch-en is expressed in a small set of segmentally iterated cells in the CNS. In the A region, Ch-en is also expressed in a small group of mesodermal cells at the base of the chaetal sacs. In the B region, Ch-en is initially expressed broadly in the mesoderm that then resolves into one band/segment coincident with morphological segmentation. The mesodermal expression in the B region is located in the anterior region of each segment, as defined by the position of ganglia in the ventral nerve cord, and is involved in the morphogenesis of segment-specific feeding structures late in larval life. We observe banded mesodermal and ectodermal staining in an anterior-posterior sequence in the C region. We do not observe a segment polarity pattern of expression of Ch-en in the ectoderm, as is observed in arthropods. Copyright 2001 Academic Press.

  19. Desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes.

    PubMed

    Hagert, Elisabet; Persson, Jonas K E

    2010-07-01

    The presence of wrist proprioceptive reflexes after stimulation of the dorsal scapholunate interosseous ligament has previously been described. Because this ligament is primarily innervated by the posterior interosseous nerve (PIN) we hypothesized altered ligamento-muscular reflex patterns following desensitization of the PIN. Eight volunteers (3 women, 5 men; mean age, 26 y; range 21-28 y) participated in the study. In the first study on wrist proprioceptive reflexes (study 1), the scapholunate interosseous ligament was stimulated through a fine-wire electrode with 4 1-ms bipolar pulses at 200 Hz, 30 times consecutively, while EMG activity was recorded from the extensor carpi radialis brevis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris, with the wrist in extension, flexion, radial deviation, and ulnar deviation. After completion of study 1, the PIN was anesthetized in the radial aspect of the fourth extensor compartment using 2-mL lidocaine (10 mg/mL) infiltration anesthesia. Ten minutes after desensitization, the experiment was repeated as in study 1. The average EMG results from the 30 consecutive stimulations were rectified and analyzed using Student's t-test. Statistically significant changes in EMG amplitude were plotted along time lines so that the results of study 1 and 2 could be compared. Dramatic alterations in reflex patterns were observed in wrist flexion, radial deviation, and ulnar deviation following desensitization of the PIN, with an average of 72% reduction in excitatory reactions. In ulnar deviation, the inhibitory reactions of the extensor carpi ulnaris were entirely eliminated. In wrist extension, no differences in the reflex patterns were observed. Wrist proprioception through the scapholunate ligament in flexion, radial deviation, and ulnar deviation depends on an intact PIN function. The unchanged reflex patterns in wrist extension suggest an alternate proprioceptive pathway for this position. Routine excision of the PIN during wrist surgical procedures should be avoided, as it alters the proprioceptive function of the wrist. Therapeutic IV. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies.

    PubMed

    Iwata, Masaki; Otaki, Joji M

    2016-01-01

    Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.

  1. Traits and evolution of wing venation pattern in paraneopteran insects.

    PubMed

    Nel, André; Prokop, Jakub; Nel, Patricia; Grandcolas, Philippe; Huang, Di-Ying; Roques, Patrick; Guilbert, Eric; Dostál, Ondřej; Szwedo, Jacek

    2012-05-01

    Two different patterns of wing venation are currently supposed to be present in each of the three orders of Paraneoptera. This is unlikely compared with the situation in other insects where only one pattern exists per order. We propose for all Paraneoptera a new and unique interpretation of wing venation pattern, assuming that the convex cubitus anterior gets fused with the common stem of median and radial veins at or very near to wing base, after separation from concave cubitus posterior, and re-emerges more distally from R + M stem. Thereafter, the vein between concave cubitus posterior and CuA is a specialized crossvein called "cua-cup," proximally concave and distally convex. We show that despite some variations, that is, cua-cup can vary from absent to hypertrophic; CuA can re-emerge together with M or not, or even completely disappear, this new interpretation explains all situations among all fossil and recent paraneopteran lineages. We propose that the characters "CuA fused in a common stem with R and M"and "presence of specialized crossvein cua-cup" are venation apomorphies that support the monophyly of the Paraneoptera. In the light of these characters, we reinterpret several Palaeozoic and early Mesozoic fossils that were ascribed to Paraneoptera, and confirm the attribution of several to this superorder as well as possible attribution of Zygopsocidae (Zygopsocus permianus Tillyard, 1935) as oldest Psocodea. We discuss the situation in extinct Hypoperlida and Miomoptera, suggesting that both orders could well be polyphyletic, with taxa related to Archaeorthoptera, Paraneoptera, or even Holometabola. The Carboniferous Protoprosbolidae is resurrected and retransferred into the Paraneoptera. The genus Lithoscytina is restored. The miomopteran Eodelopterum priscum Schmidt, 1962 is newly revised and considered as a fern pinnule. In addition, the new paraneopteran Bruayaphis oudardi gen. nov. et sp. nov. is described fromthe Upper Carboniferous of France (see Supporting Information). Copyright © 2011 Wiley Periodicals, Inc.

  2. Dental compensation for moderate Class III with vertical growth pattern by extraction of the lower second molars.

    PubMed

    Jacobs, Collin; Jacobs-Müller, Claudia; Hoffmann, Viviana; Meila, Dan; Erbe, Christina; Krieger, Elena; Wehrbein, Heiner

    2012-01-01

    Analysis of the effects and side effects of treatment of patients with moderate skeletal Class III and vertical growth pattern by means of extraction of the second molars in the lower jaw. A total of 20 patients with a mean age of 12.9 years were examined retrospectively. Inclusion criteria consisted of a Wits value of 0 to -5, a posterior growth pattern of the mandible (Hasund analysis), an overjet of -2 to 1 mm, and an overbite of 0 to -3 mm. Treatment was performed using a straight-wire appliance. As part of the treatment, the lower second molars were extracted and Class III elastics attached. Cephalograms and orthopantomograms taken before and after treatment were used for evaluation. Treatment resulted in a significant change in the mean overjet from 0.5 mm to 2.1 mm and the attainment of a positive mean overbite of -1.0 mm to 0.9 mm. The occlusal plane rotated anteriorly from 18.8° to 13.7°. The skeletal parameters showed a change in the Wits value from -3.3 mm to -1.4 mm and an anterior mandibular rotation (ML-NSL 35.5° vs. 32.0°). The soft tissues revealed an increase in the distance between the lower lip and the "esthetic line" to the posterior (-2.0 mm vs. -3.9 mm). Dental compensation of moderate skeletal Class III with a tendency to an anterior open bite with vertical growth pattern by extracting the lower second molars, combined with Class III elastics, resulted in an anterior rotation of the occlusal plane and mandible. Eighteen of 20 patients achieved a physiological overjet and positive overbite. A prerequisite for this therapy is the presence of lower wisdom teeth; a potential side effect is elongation of the upper second molars.

  3. Role of GLI2 in hypopituitarism phenotype.

    PubMed

    Arnhold, Ivo J P; França, Marcela M; Carvalho, Luciani R; Mendonca, Berenice B; Jorge, Alexander A L

    2015-06-01

    GLI2 is a zinc-finger transcription factor involved in the Sonic Hedgehog pathway. Gli2 mutant mice have hypoplastic anterior and absent posterior pituitary glands. We reviewed the literature for patients with hypopituitarism and alterations in GLI2. Twenty-five patients (16 families) had heterozygous truncating mutations, and the phenotype frequently included GH deficiency, a small anterior pituitary lobe and an ectopic/undescended posterior pituitary lobe on magnetic resonance imaging and postaxial polydactyly. The inheritance pattern was autosomal dominant with incomplete penetrance and variable expressivity. The mutation was frequently inherited from an asymptomatic parent. Eleven patients had heterozygous non-synonymous GLI2 variants that were classified as variants of unknown significance, because they were either absent from or had a frequency lower than 0.001 in the databases. In these patients, the posterior pituitary was also ectopic, but none had polydactyly. A third group of variants found in patients with hypopituitarism were considered benign because their frequency was ≥ 0.001 in the databases. GLI2 is a large and polymorphic gene, and sequencing may identify variants whose interpretation may be difficult. Incomplete penetrance implies in the participation of other genetic and/or environmental factors. An interaction between Gli2 mutations and prenatal ethanol exposure has been demonstrated in mice dysmorphology. In conclusion, a relatively high frequency of GLI2 mutations and variants were identified in patients with congenital GH deficiency without other brain defects, and most of these patients presented with combined pituitary hormone deficiency and an ectopic posterior pituitary lobe. Future studies may clarify the relative role and frequency of GLI2 alterations in the aetiology of hypopituitarism. © 2015 Society for Endocrinology.

  4. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    PubMed

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Aberrant functional connectivity of default-mode network in type 2 diabetes patients.

    PubMed

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun

    2015-11-01

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. • Type 2 diabetes mellitus is associated with impaired cognition • Default- mode network plays a central role in maintaining normal cognition • Network connectivity within the default mode was disrupted in type 2 diabetes patients • Decreased network connectivity was correlated with cognitive performance and insulin resistance level • Disrupted default-mode network might explain the impaired cognition in diabetic population.

  6. The Role of Superior Oblique Posterior Tenectomy Along With Inferior Rectus Recessions for the Treatment of Chin-up Head Positioning in Patients With Nystagmus.

    PubMed

    Escuder, Anna G; Ranka, Milan P; Lee, Kathy; Nam, Julie N; Steele, Mark A

    2018-05-29

    To evaluate the clinical outcomes of bilateral superior oblique posterior 7/8th tenectomy with inferior rectus recession on improving chin-up head positioning in patients with horizontal nystagmus. Medical records were reviewed from 2007 to 2017 for patients with nystagmus and chin-up positioning of 15° or more who underwent combined bilateral superior oblique posterior 7/8th tenectomy with an inferior rectus recession of at least 5 mm. Thirteen patients (9 males and 4 females) were included, with an average age of 7.3 years (range: 1.8 to 15 years). Chin-up positioning ranged from 15° to 45° degrees (average: 30°). Three patients had prior horizontal muscle surgeries, 1 for esotropia and 2 for horizontal null zones causing anomalous face turns. Ten patients underwent other concomitant eye muscle surgery: 3 had esotropia, 1 had exotropia, and 2 had biplanar nystagmus null point requiring a horizontal Anderson procedure. Four patients underwent simultaneous bilateral medial rectus tenotomy and reattachment. All patients had improved chin-up positioning. Eight patients had complete resolution, whereas 5 had minimal residual chin-up positioning. Three patients developed an eccentric horizontal gaze null point with compensatory anomalous face turn with onset 2 weeks, 2 years, and 3 years postoperatively. Average follow-up was 42.7 months. No postoperative pattern deviations, cyclodeviations, or inferior oblique overaction were seen. No surgical complications were noted. Bilateral superior oblique posterior 7/8th tenectomy in conjunction with bilateral inferior rectus recession is a safe and effective procedure for improving chin-up head positioning in patients with horizontal nystagmus with a down gaze null point. [J Pediatr Ophthalmol Strabismus. 201X;XX(X):XX-XX.]. Copyright 2018, SLACK Incorporated.

  7. Full-thickness tears of the supraspinatus tendon: A three-dimensional finite element analysis.

    PubMed

    Quental, C; Folgado, J; Monteiro, J; Sarmento, M

    2016-12-08

    Knowledge regarding the likelihood of propagation of supraspinatus tears is important to allow an early identification of patients for whom a conservative treatment is more likely to fail, and consequently, to improve their clinical outcome. The aim of this study was to investigate the potential for propagation of posterior, central, and anterior full-thickness tears of different sizes using the finite element method. A three-dimensional finite element model of the supraspinatus tendon was generated from the Visible Human Project data. The mechanical behaviour of the tendon was fitted from experimental data using a transversely isotropic hyperelastic constitutive model. The full-thickness tears were simulated at the supraspinatus tendon insertion by decreasing the interface area. Tear sizes from 10% to 90%, in 10% increments, of the anteroposterior length of the supraspinatus footprint were considered in the posterior, central, and anterior regions of the tendon. For each tear, three finite element analyses were performed for a supraspinatus force of 100N, 200N, and 400N. Considering a correlation between tendon strain and the risk of tear propagation, the simulated tears were compared qualitatively and quantitatively by evaluating the volume of tendon for which a maximum strain criterion was not satisfied. The finite element analyses showed a significant impact of tear size and location not only on the magnitude, but also on the patterns of the maximum principal strains. The mechanical outcome of the anterior full-thickness tears was consistently, and significantly, more severe than that of the central or posterior full-thickness tears, which suggests that the anterior tears are at greater risk of propagating than the central or posterior tears. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system.

    PubMed

    Forkel, Philipp; Reuter, Sven; Sprenker, Frederike; Achtnich, Andrea; Herbst, Elmar; Imhoff, Andreas; Petersen, Wolf

    2015-01-01

    Posterior lateral meniscus root tears (PLMRTs) affect the intra-articular pressure distribution in the lateral compartment of the knee. The biomechanical consequences of these injuries are significantly influenced by the integrity of the meniscofemoral ligaments (MFLs). A newly introduced arthroscopic classification system for PLMRTs that takes MFL integrity into account has not yet been clinically applied but may be useful in selecting the optimal method of PLMRT repair. Prospective ACL reconstruction data were collected. Concomitant injuries of the lateral meniscus posterior horn were classified according to their shape and MFL status. The classifications were: type 1, avulsion of the root; type 2, radial tear of the lateral meniscus posterior horn close to the root with an intact MFL; and type 3, complete detachment of the posterior meniscus horn. Between January 2011 and May 2012, 228 consecutive ACL reconstructions were included. Lateral and medial meniscus tears were identified in 38.2% (n = 87) and 44.7% (n = 102), respectively. Of the 87 lateral meniscus tears, 32 cases had PLMRTs; the overall prevalence of PLMRTs was 14% (n = 32). Two medial meniscus root tears were detected. All PLMRTs were classified according to the classification system described above, and the fixation procedure was adapted to the type of meniscus tear. The PLMRT tear is a common injury among patients undergoing ACL repair and can be arthroscopically classified into three different types. Medial meniscus root tears are rare in association with ACL tears. The PLMRT classification presented here may help to estimate the injury's impact on the lateral compartment and to identify the optimal treatment. These tears should not be overlooked, and the treatment strategy should be chosen with respect to the type of root tear. IV.

  9. Spermiogenesis and spermatozoon ultrastructure in basal polyopisthocotylean monogeneans, Hexabothriidae and Chimaericolidae, and their significance for the phylogeny of the Monogenea

    PubMed Central

    Justine, Jean-Lou; Poddubnaya, Larisa G.

    2018-01-01

    Sperm ultrastructure provides morphological characters useful for understanding phylogeny; no study was available for two basal branches of the Polyopisthocotylea, the Chimaericolidea and Diclybothriidea. We describe here spermiogenesis and sperm in Chimaericola leptogaster (Chimaericolidae) and Rajonchocotyle emarginata (Hexabothriidae), and sperm in Callorhynchocotyle callorhynchi (Hexabothriidae). Spermiogenesis in C. leptogaster and R. emarginata shows the usual pattern of most Polyopisthocotylea with typical zones of differentiation and proximo-distal fusion of the flagella. In all three species, the structure of the spermatozoon is biflagellate, with two incorporated trepaxonematan 9 + “1” axonemes and a posterior nucleus. However, unexpected structures were also seen. An alleged synapomorphy of the Polyopisthocotylea is the presence of a continuous row of longitudinal microtubules in the nuclear region. The sperm of C. leptogaster has a posterior part with a single axoneme, and the part with the nucleus is devoid of the continuous row of microtubules. The spermatozoon of R. emarginata has an anterior region with membrane ornamentation, and posterior lateral microtubules are absent. The spermatozoon of C. callorhynchi has transverse sections with only dorsal and ventral microtubules, and its posterior part shows flat sections containing a single axoneme and the nucleus. These findings have important implications for phylogeny and for the definition of synapomorphies in the Neodermata. We point out a series of discrepancies between actual data and interpretation of character states in the matrix of a phylogeny of the Monogenea. Our main conclusion is that the synapomorphy “lateral microtubules in the principal region of the spermatozoon” does not define the Polyopisthocotylea but is restricted to the Mazocraeidea. PMID:29436366

  10. Subcortical mechanisms in language: lexical-semantic mechanisms and the thalamus.

    PubMed

    Crosson, B

    1999-07-01

    Four previously published cases of dominant thalamic lesion in which the author has participated are reviewed to gain a better understanding of thalamic participation in lexical-semantic functions. Naming deficits in two cases support Nadeau and Crosson's (1997) hypothesis of a selective engagement mechanism involving the frontal lobes, inferior thalamic peduncle, nucleus reticularis, and other thalamic nuclei, possibly the centromedian nucleus. This mechanism selectively engages those cortical areas required to perform a cognitive task, while maintaining other areas in a state of relative disengagement. Deficits in selective engagement disproportionately affect lexical retrieval based on semantic input, as opposed to lexical and sublexical processes, because the former is more dependent upon this attentional system. The concept of selective engagement is also useful in understanding thalamic participation in working memory, as supported by data from one recent functional neuroimaging study. Other processes also may be compromised in more posterior thalamic lesions which damage the pulvinar but not other components of this selective engagement system. A third case with aphasia after a more superior and posterior thalamic lesion also had oral reading errors similar to those in neglect dyslexia. The pattern of deficits suggested a visual processing problem in the early stages of reading. The fourth case had a category-specific naming deficit after posterior thalamic lesion. Taken together, the latter two cases indicate that the nature of language functions in more posterior regions of the dominant thalamus depends upon the cortical connectivity of the thalamic region. Together, findings from the four cases suggest that thalamic nuclei and systems are involved in multiple processes which directly or indirectly support cortical language functions. Copyright 1999 Academic Press.

  11. Arthroscopy Up to Date: Anterior Cruciate Ligament Anatomy.

    PubMed

    Schillhammer, Carl K; Reid, John B; Rister, Jamie; Jani, Sunil S; Marvil, Sean C; Chen, Austin W; Anderson, Chris G; D'Agostino, Sophia; Lubowitz, James H

    2016-01-01

    To categorize and summarize up-to-date anterior cruciate ligament (ACL) research published in Arthroscopy and The American Journal of Sports Medicine and systematically review each subcategory, beginning with ACL anatomy. After searching for "anterior cruciate ligament" OR "ACL" in Arthroscopy and The American Journal of Sports Medicine from January 2012 through December 2014, we excluded articles more pertinent to ACL augmentation; open growth plates; and meniscal, chondral, or multiligamentous pathology. Studies were subcategorized for data extraction. We included 212 studies that were classified into 8 categories: anatomy; basic science and biomechanics; tunnel position; graft selection; graft fixation; injury risk and rehabilitation; practice patterns and outcomes; and complications. Anatomic risk factors for ACL injury and post-reconstruction graft failure include a narrow intercondylar notch, low native ACL volume, and increased posterior slope. Regarding anatomic footprints, the femoral attachment is 43% of the proximal-to-distal lateral femoral condylar length whereas the posterior border of the tendon is 2.5 mm from the articular margin. The tibial attachment of the ACL is two-fifths of the medial-to-lateral interspinous distance and 15 mm anterior to the posterior cruciate ligament. Anatomic research using radiology and computed tomography to evaluate ACL graft placement shows poor interobserver and intraobserver reliability. With a mind to improving outcomes, surgeons should be aware of anatomic risk factors (stenotic femoral notch, low ligament volume, and increased posterior slope) for ACL graft failure, have a precise understanding of arthroscopic landmarks identifying femoral and tibial footprint locations, and understand that imaging to evaluate graft placement is unreliable. Level III, systematic review of Level III evidence. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  13. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    PubMed

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  14. How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes.

    PubMed

    Martin, Chris B; Sullivan, Jacqueline A; Wright, Jessey; Köhler, Stefan

    2018-02-01

    A role of perirhinal cortex (PrC) in recognition memory for objects has been well established. Contributions of parahippocampal cortex (PhC) to this function, while documented, remain less well understood. Here, we used fMRI to examine whether the organization of item-based recognition memory signals across these two structures is shaped by object category, independent of any difference in representing episodic context. Guided by research suggesting that PhC plays a critical role in processing landmarks, we focused on three categories of objects that differ from each other in their landmark suitability as confirmed with behavioral ratings (buildings > trees > aircraft). Participants made item-based recognition-memory decisions for novel and previously studied objects from these categories, which were matched in accuracy. Multi-voxel pattern classification revealed category-specific item-recognition memory signals along the long axis of PrC and PhC, with no sharp functional boundaries between these structures. Memory signals for buildings were observed in the mid to posterior extent of PhC, signals for trees in anterior to posterior segments of PhC, and signals for aircraft in mid to posterior aspects of PrC and the anterior extent of PhC. Notably, item-based memory signals for the category with highest landmark suitability ratings were observed only in those posterior segments of PhC that also allowed for classification of landmark suitability of objects when memory status was held constant. These findings provide new evidence in support of the notion that item-based memory signals for objects are not limited to PrC, and that the organization of these signals along the longitudinal axis that crosses PrC and PhC can be captured with reference to landmark suitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Glossopharyngeal schwannoma of the suprahyoid carotid space: case report and discussion of the relationship to the carotid artery.

    PubMed

    Nagamine, Wayde H; Conneely, Mark F; Petruzzelli, Guy J; Hacein-Bey, Lotfi

    2009-04-01

    The distinction between lesions of the deep parotid space and those of the carotid space has been greatly facilitated by cross-sectional imaging, particularly magnetic resonance imaging (MRI), due to 1) good assessment of parapharyngeal fat displacement, and 2) reliable and consistent identification of the carotid artery. While masticator space masses consistently displace the carotid artery posteriorly, it is generally assumed that carotid space masses, particularly schwannomas, displace the carotid artery anteriorly. We report on a patient with a rare glossopharyngeal schwannoma of the carotid space that caused posterior displacement of the carotid artery. A 38-year-old female presented with headaches and a pharyngeal sensation of a foreign body without dysgeusia and dysphagia. Computed tomography (CT) and MRI showed a left carotid space mass, suggestive of a schwannoma, although the internal carotid artery was displaced posteriorly. The mass was hypovascular at angiography. The patient underwent surgical excision of her lesion via a left cervical-parotid approach. In our patient with a carotid space mass, all imaging features suggested a schwannoma, except for posterior displacement of the carotid artery. A glossopharyngeal nerve schwannoma was found at surgery. Schwannomas of the glossopharyngeal nerve are uncommon, and those originating from the extracranial course of the nerve are extremely rare. Schwannomas of the suprahyoid carotid space most commonly arise from the vagus nerve and have a typical pattern, which includes anterior displacement of the carotid artery. A rare exception to this has been reported in schwannomas of the sympathetic nerve, which may displace the carotid artery posteromedially. Our patient had a schwannoma of the extracranial glossopharyngeal nerve, which caused posterolateral carotid displacement.

  16. The role of the posterior cingulate cortex in cognition and disease

    PubMed Central

    Sharp, David J.

    2014-01-01

    The posterior cingulate cortex is a highly connected and metabolically active brain region. Recent studies suggest it has an important cognitive role, although there is no consensus about what this is. The region is typically discussed as having a unitary function because of a common pattern of relative deactivation observed during attentionally demanding tasks. One influential hypothesis is that the posterior cingulate cortex has a central role in supporting internally-directed cognition. It is a key node in the default mode network and shows increased activity when individuals retrieve autobiographical memories or plan for the future, as well as during unconstrained ‘rest’ when activity in the brain is ‘free-wheeling’. However, other evidence suggests that the region is highly heterogeneous and may play a direct role in regulating the focus of attention. In addition, its activity varies with arousal state and its interactions with other brain networks may be important for conscious awareness. Understanding posterior cingulate cortex function is likely to be of clinical importance. It is well protected against ischaemic stroke, and so there is relatively little neuropsychological data about the consequences of focal lesions. However, in other conditions abnormalities in the region are clearly linked to disease. For example, amyloid deposition and reduced metabolism is seen early in Alzheimer’s disease. Functional neuroimaging studies show abnormalities in a range of neurological and psychiatric disorders including Alzheimer’s disease, schizophrenia, autism, depression and attention deficit hyperactivity disorder, as well as ageing. Our own work has consistently shown abnormal posterior cingulate cortex function following traumatic brain injury, which predicts attentional impairments. Here we review the anatomy and physiology of the region and how it is affected in a range of clinical conditions, before discussing its proposed functions. We synthesize key findings into a novel model of the region’s function (the ‘Arousal, Balance and Breadth of Attention’ model). Dorsal and ventral subcomponents are functionally separated and differences in regional activity are explained by considering: (i) arousal state; (ii) whether attention is focused internally or externally; and (iii) the breadth of attentional focus. The predictions of the model can be tested within the framework of complex dynamic systems theory, and we propose that the dorsal posterior cingulate cortex influences attentional focus by ‘tuning’ whole-brain metastability and so adjusts how stable brain network activity is over time. PMID:23869106

  17. Variation in osteocyte lacunar morphology and density in the human femur - a synchrotron radiation micro-CT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Yasmin; Thomas, C David L.; Clement, John G

    2013-04-09

    In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within themore » femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm 3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.« less

  18. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    PubMed

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Testing Proposed Neuronal Models of Effective Connectivity Within the Cortico-basal Ganglia-thalamo-cortical Loop During Loss of Consciousness.

    PubMed

    Crone, Julia Sophia; Lutkenhoff, Evan Scott; Bio, Branden Joseph; Laureys, Steven; Monti, Martin Max

    2017-04-01

    In recent years, a number of brain regions and connectivity patterns have been proposed to be crucial for loss and recovery of consciousness but have not been compared in detail. In a 3 T resting-state functional magnetic resonance imaging paradigm, we test the plausibility of these different neuronal models derived from theoretical and empirical knowledge. Specifically, we assess the fit of each model to the dynamic change in effective connectivity between specific cortical and subcortical regions at different consecutive levels of propofol-induced sedation by employing spectral dynamic causal modeling. Surprisingly, our findings indicate that proposed models of impaired consciousness do not fit the observed patterns of effective connectivity. Rather, the data show that loss of consciousness, at least in the context of propofol-induced sedation, is marked by a breakdown of corticopetal projections from the globus pallidus. Effective connectivity between the globus pallidus and the ventral posterior cingulate cortex, present during wakefulness, fades in the transition from lightly sedated to full loss of consciousness and returns gradually as consciousness recovers, thereby, demonstrating the dynamic shift in brain architecture of the posterior cingulate "hub" during changing states of consciousness. These findings highlight the functional role of a previously underappreciated direct pallido-cortical connectivity in supporting consciousness. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    PubMed Central

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  1. Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory.

    PubMed

    Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di

    2015-08-01

    In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Morphometric Study of the Lumbar Posterior Longitudinal Ligament

    PubMed Central

    Lee, Sang Beom; Chang, Jae Chil; Lee, Gwang Soo; Hwang, Jae Chan; Bae, Hack Gun; Doh, Jae Won

    2018-01-01

    Objective Morphometric data for the lumbar posterior longitudinal ligament (PLL) was investigated to identify whether there is a difference in the morphometry of the PLL of the lumbar spine at each level with respect to the pattern of intervertebral disc displacement. Methods In 14 formalin-fixed adult cadavers (12 males and 2 females), from L1 to L5, the authors measured the width and height of the PLL and compared them with other landmarks such as the disc and the pedicle. Results Horizontally, at the upper margin of the disc, the central portion of the superficial PLL covered 17.8–36.9% of the disc width and the fan-like portion of the PLL covered 63.9–76.7% of the disc width. At the level of the median portion of the disc, the PLL covered 69.1–74.5% of the disc width. Vertically, at the level of the medial margin of the pedicle, the fan-like portion of the PLL covered 23.5–29.9% of the disc height. In general, a significant difference in length was not found in the right-left and male-female comparisons. Conclusion This study presents the morphometric data on the pattern of intervertebral disc displacement and helps to improve the knowledge of the surgical anatomy of the lumbar PLL. PMID:29354240

  3. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    PubMed

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.

  4. Functional neuroimaging of the Iowa Gambling Task in older adults.

    PubMed

    Halfmann, Kameko; Hedgcock, William; Bechara, Antoine; Denburg, Natalie L

    2014-11-01

    The neural systems most susceptible to age-related decline mirror the systems linked to decision making. Yet, the neural processes underlying decision-making disparities among older adults are not well understood. We sought to identify neural response patterns that distinguish 2 groups of older adults who exhibit divergent decision-making patterns. Participants were 31 healthy older adults (ages 59-88, 53% female), defined as advantageous or disadvantageous decision-makers based on Iowa Gambling Task (IGT) performance, who completed an alternate version of the IGT while undergoing functional MRI. The groups were indistinguishable on neuropsychological testing. We contrasted the BOLD signal between groups during 3 phases of the decision-making process: Prechoice (preselection), Prefeedback (postselection), and Feedback (receipt of gains/losses). We further examined whether BOLD signal varied as a function of age in each group. We observed greater activation among the IGT-Disadvantageous relative to -Advantageous older adults in the prefrontal cortex during the early phases of the decision-making process (Prechoice), and in posterior brain regions (e.g., the precuneus) during the later phases (Prefeedback and Feedback). We also found that with increasing age, IGT-Advantageous older adults showed increasing activation in the prefrontal cortex during all phases and increasing activation in the posterior cingulate during earlier phases of the decision process. By contrast, the IGT-Disadvantageous older adults exhibited a reduced or reversed trend. These functional differences may be a consequence of altered reward processing or differing compensatory strategies between IGT-Disadvantageous and -Advantageous older adults. This supports the notion that divergent neurobiological aging trajectories underlie disparate decision-making patterns. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    PubMed

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. CLINICAL APPLICATION OF THE RIGHT SIDELYING RESPIRATORY LEFT ADDUCTOR PULL BACK EXERCISE

    PubMed Central

    2013-01-01

    Problem: Lumbopelvic‐femoral conditions are common and may be associated with asymmetrical musculoskeletal and respiratory impairments and postural mal‐alignment called a Left Anterior Interior Chain (AIC) pattern. An inherent pattern of asymmetry involves the trunk/ribs/spine/pelvis/hip joints and includes the tendency to stand on the right leg and shift the center of gravity to the right which may result for example, in a tight left posterior hip capsule, poorly approximated left hip, long/weak left adductors, internal obliques (IO) and transverse abdominus (TA), short/strong/over active paraspinals and muscles on the right anterior outlet (adductors, levator ani and obturator internus), a left rib flare and a decreased respiratory diaphragm zone of apposition (ZOA). The Solution: A therapeutic exercise technique that can address impairments associated with postural asymmetry may be beneficial in improving function, reducing and/or eliminating pain causation, and improving breathing. The Right Sidelying Left Respiratory Adductor Pull Back is an exercise designed to affect alignment of the lumbopelvic‐femoral region by influencing the left posterior ischiofemoral ligament, ZOA and right anterior outlet and left anterior inlet (rectus femoris, sartorius), activating/shortening the left adductors, left IO/TA's and inhibiting/lengthening the paraspinals, bilaterally. Discussion: The exercise technique is often used by Physical Therapists, Physical Therapist assistants and Athletic Trainers as an initial exercise to positively affect position/alignment of the lumbopelvic‐femoral region, referred to as “repositioning,” by clinicians who use it. Four published case studies have used similar exercises to address the above impairments associated with a Left AIC pattern and in each 100% improvement in function and pain intensity was described. This particular exercise technique is relatively new and warrants future research. PMID:23772350

  7. Reliability study of tibialis posterior and selected leg muscle EMG and multi-segment foot kinematics in rheumatoid arthritis associated pes planovalgus

    PubMed Central

    Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James

    2012-01-01

    Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819

  8. The Effect of Cavity Design on Fracture Resistance and Failure Pattern in Monolithic Zirconia Partial Coverage Restorations - An In vitro Study.

    PubMed

    Harsha, Madhavareddy Sri; Praffulla, Mynampati; Babu, Mandava Ramesh; Leneena, Gudugunta; Krishna, Tejavath Sai; Divya, G

    2017-05-01

    Cavity preparations of posterior teeth have been frequently associated with decreased fracture strength of the teeth. Choosing the correct indirect restoration and the cavity design when restoring the posterior teeth i.e., premolars was difficult as it involves aesthetic, biomechanical and anatomical considerations. To evaluate the fracture resistance and failure pattern of three different cavity designs restored with monolithic zirconia. Human maxillary premolars atraumatically extracted for orthodontic reasons were chosen. A total of 40 teeth were selected and divided into four groups (n=10). Group I-Sound teeth (control with no preparation). Group II-MOD Inlay, Group III-Partial Onlay, Group IV-Complete Onlay. Restorations were fabricated with monolithic partially sintered zirconia CAD (SAGEMAX- NexxZr). All the 30 samples were cemented using Multilink Automix (Ivoclar) and subjected to fracture resistance testing using Universal Testing Machine (UTM) (Instron) with a steel ball of 3.5 mm diameter at crosshead speed of 0.5 mm/minute. Stereomicroscope was used to evaluate the modes of failure of the fractured specimen. Fracture resistance was tested using parametric one way ANOVA test, unpaired t-test and Tukey test. Fracture patterns were assessed using non-parametric Chi-square test. Group IV (Complete Onlay) presented highest fracture resistance and showed statistical significant difference. Group II (MOD Inlay) and Group III (Partial Onlay) showed significantly lower values than the Group I (Sound teeth). However, Groups I, II and III presented no significant difference from each other. Coming to the modes of failure, Group II (MOD Inlay) and Group III (Partial Onlay) presented mixed type of failures; Group IV (Complete Onlay) demonstrated 70% Type I failures. Of the three cavity designs evaluated, Complete Onlay had shown a significant increase in the fracture resistance than the Sound teeth.

  9. Nasal airway and septal variation in unilateral and bilateral cleft lip and palate.

    PubMed

    Starbuck, John M; Friel, Michael T; Ghoneima, Ahmed; Flores, Roberto L; Tholpady, Sunil; Kula, Katherine

    2014-10-01

    Cleft lip and palate (CLP) affects the dentoalveolar and nasolabial facial regions. Internal and external nasal dysmorphology may persist in individuals born with CLP despite surgical interventions. 7-18 year old individuals born with unilateral and bilateral CLP (n = 50) were retrospectively assessed using cone beam computed tomography. Anterior, middle, and posterior nasal airway volumes were measured on each facial side. Septal deviation was measured at the anterior and posterior nasal spine, and the midpoint between these two locations. Data were evaluated using principal components analysis (PCA), multivariate analysis of variance (MANOVA), and post-hoc ANOVA tests. PCA results show partial separation in high dimensional space along PC1 (48.5% variance) based on age groups and partial separation along PC2 (29.8% variance) based on CLP type and septal deviation patterns. MANOVA results indicate that age (P = 0.007) and CLP type (P ≤ 0.001) significantly affect nasal airway volume and septal deviation. ANOVA results indicate that anterior nasal volume is significantly affected by age (P ≤ 0.001), whereas septal deviation patterns are significantly affected by CLP type (P ≤ 0.001). Age and CLP type affect nasal airway volume and septal deviation patterns. Nasal airway volumes tend to be reduced on the clefted sides of the face relative to non-clefted sides of the face. Nasal airway volumes tend to strongly increase with age, whereas septal deviation values tend to increase only slightly with age. These results suggest that functional nasal breathing may be impaired in individuals born with the unilateral and bilateral CLP deformity. © 2014 Wiley Periodicals, Inc.

  10. Altered Functional Connectivity of Insular Subregions in Alzheimer’s Disease

    PubMed Central

    Liu, Xingyun; Chen, Xiaodan; Zheng, Weimin; Xia, Mingrui; Han, Ying; Song, Haiqing; Li, Kuncheng; He, Yong; Wang, Zhiqun

    2018-01-01

    Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer’s disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients. PMID:29695961

  11. Glioneuronal tumor with neuropil-like islands of the spinal cord with diffuse leptomeningeal neuraxis dissemination.

    PubMed

    Ruppert, Bree; Welsh, Cynthia T; Hannah, Jessica; Giglio, Pierre; Rumboldt, Zoran; Johnson, Ian; Fortney, John; Jenrette, Joseph M; Patel, Sunil; Scheithauer, Bernd W

    2011-09-01

    A 54-year-old Caucasian female presented with a 1 year history of intermittent numbness of the left leg progressing to bilateral, lower extremity sensory loss that advanced to include impaired vibration and proprioception. The subsequent thoracic spine magnetic resonance imaging (MRI) scan revealed a heterogeneous, avidly enhancing, centrally situated spinal cord mass involving T7 through T10 in association with thick linear enhancement of the anterior and posterior cord surfaces extending both superiorly and inferiorly. Both the cervical and lumbar spine MRI demonstrated diffuse leptomeningeal disease as well. A brain MRI revealed focal leptomeningeal enhancement in the left and right sylvian fissures, the suprasellar cistern, and the posterior fossa; a pattern consistent with metastatic disease. The patient underwent a T6-T10 laminectomy for tumor biopsy and debulking. Histology revealed a WHO grade III glioneuronal tumor with rosetted neuropil-like islands. Synaptophysin and neurofilament (NF) positive staining was noted within the neural appearing component, whereas, glial fibrillary acidic protein (GFAP) immunopositivity was evident in the fibrillary astrocytoma component of the tumor. The Ki-67 labeling index was 7%. This tumor pattern, now included in the 2007 World Health Organization (WHO) classification of central nervous system tumours as a pattern variation of anaplastic astrocytoma (Kleihues et al. In: Louis et al. (eds) WHO classification of tumours of the central nervous system, 2007), was first described in a four-case series by Teo et al. in 1999. The majority of subsequently reported cases described them as primary tumors of the cerebrum. Herein, we report a unique example of a spinal glioneuronal tumor with neuropil-like islands with associated leptomeningeal dissemination involving the entire craniospinal axis.

  12. Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength.

    PubMed

    Vingerhoets, Guy; Acke, Frederic; Alderweireldt, Ann-Sofie; Nys, Jo; Vandemaele, Pieter; Achten, Eric

    2012-04-01

    We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Copyright © 2011 Wiley Periodicals, Inc.

  13. Clinical application of the right sidelying respiratory left adductor pull back exercise.

    PubMed

    Boyle, Kyndall L

    2013-06-01

    Lumbopelvic-femoral conditions are common and may be associated with asymmetrical musculoskeletal and respiratory impairments and postural mal-alignment called a Left Anterior Interior Chain (AIC) pattern. An inherent pattern of asymmetry involves the trunk/ribs/spine/pelvis/hip joints and includes the tendency to stand on the right leg and shift the center of gravity to the right which may result for example, in a tight left posterior hip capsule, poorly approximated left hip, long/weak left adductors, internal obliques (IO) and transverse abdominus (TA), short/strong/over active paraspinals and muscles on the right anterior outlet (adductors, levator ani and obturator internus), a left rib flare and a decreased respiratory diaphragm zone of apposition (ZOA). A therapeutic exercise technique that can address impairments associated with postural asymmetry may be beneficial in improving function, reducing and/or eliminating pain causation, and improving breathing. The Right Sidelying Left Respiratory Adductor Pull Back is an exercise designed to affect alignment of the lumbopelvic-femoral region by influencing the left posterior ischiofemoral ligament, ZOA and right anterior outlet and left anterior inlet (rectus femoris, sartorius), activating/shortening the left adductors, left IO/TA's and inhibiting/lengthening the paraspinals, bilaterally. The exercise technique is often used by Physical Therapists, Physical Therapist assistants and Athletic Trainers as an initial exercise to positively affect position/alignment of the lumbopelvic-femoral region, referred to as "repositioning," by clinicians who use it. Four published case studies have used similar exercises to address the above impairments associated with a Left AIC pattern and in each 100% improvement in function and pain intensity was described. This particular exercise technique is relatively new and warrants future research.

  14. Correlation of Beta Angle with Antero-Posterior Dysplasia Indicators and FMA: An Institution Based Cephalometric Study.

    PubMed

    Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Sumit Kumar; Yadav, Achla Bharti

    2016-11-01

    Beta angle utilizes three skeletal landmarks - point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. The present study was designed to evaluate the correlation of Beta angle with point A-Nasion-point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit's appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit's appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology.

  15. Correlation of Beta Angle with Antero-Posterior Dysplasia Indicators and FMA: An Institution Based Cephalometric Study

    PubMed Central

    Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Achla Bharti

    2016-01-01

    Introduction Beta angle utilizes three skeletal landmarks – point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. Aim The present study was designed to evaluate the correlation of Beta angle with point A–Nasion–point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit’s appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Materials and Methods Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit’s appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Results Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Conclusion Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology. PMID:28050509

  16. Altered Functional Connectivity of Insular Subregions in Alzheimer's Disease.

    PubMed

    Liu, Xingyun; Chen, Xiaodan; Zheng, Weimin; Xia, Mingrui; Han, Ying; Song, Haiqing; Li, Kuncheng; He, Yong; Wang, Zhiqun

    2018-01-01

    Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer's disease (AD). However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI) data including 32 AD patients and 38 healthy controls (HCs). By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC) and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1) an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN); (2) a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN); (3) a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN). In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN) regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN), suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients.

  17. The generation of vertebral segmental patterning in the chick embryo.

    PubMed

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-06-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  18. MR arthrography of the posterior labrocapsular complex: relationship with glenohumeral joint alignment and clinical posterior instability.

    PubMed

    Tung, Glenn A; Hou, David D

    2003-02-01

    The purpose of our study was to investigate the relationship between tears of the posterior labrocapsular complex and glenohumeral alignment on MR arthrography and the presence and extent of posterior labrocapsular tears in patients with posterior instability. Posterior labrocapsular tears identified on 24 MR arthrograms and surgically confirmed were evaluated for length of tear and labrocapsular avulsion. These examinations and a comparison cohort of 70 normal MR arthrograms with normal findings were also evaluated for humeral head position relative to the glenoid fossa. Medical records were reviewed for clinical diagnosis of posterior instability and history of shoulder trauma. The position of the humeral head relative to the glenoid was significantly more posterior in patients with posterior labral tear than in patients with a normal posterior labrum (4.9 mm versus 0.7 mm; p < 0.0001). The mean length (+/- SD) of posterior labral tear was 15.9 +/- 1.7 mm, and a direct correlation was found between tear length and posterior humeral translation (r = -0.65; p = 0.002). Posterior labral tears were significantly longer (18.6 vs 13.1 mm; p = 0.04), and posterior humeral translation was greater (6.4 vs 3.4 mm; p = 0.006) in patients with labrocapsular avulsion than in those without avulsion. Twelve (50%) of the patients with posterior labrocapsular tear had posterior instability, and 10 (83%) had a history of macrotrauma. On MR arthrography, the mean posterior humeral translation was greater (6.2 mm +/- 0.08; p = 0.019), posterior labral tears were longer (19.4 mm +/- 1.7; p = 0.0008), and labrocapsular avulsion was more common (83%; p = 0.0001) in patients with posterior instability than in patients who had a posterior labral tear but a clinically stable shoulder. Clinical posterior instability is associated with excessive posterior humeral translation, long posterior labral tears, and posterior labrocapsular avulsion.

  19. Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation

    PubMed Central

    2017-01-01

    Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the “pair-rule” genes, are still not well understood at the system level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic “gap” inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries and explains the aetiology of the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggests that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods. PMID:28953896

  20. Mate choice and body pattern variations in the Crown Butterfly fish Chaetodon paucifasciatus (Chaetodontidae)

    PubMed Central

    Levy, Keren; Lerner, Amit; Shashar, Nadav

    2014-01-01

    ABSTRACT Mate choice is an important ecological behavior in fish, and is often based on visual cues of body patterns. The Crown Butterfly fish Chaetodon paucifasciatus (Chaetodontidae) is a monogamist, territorial species; it swims in close proximity to its partner throughout most of its life. This species is characterized by a pattern of 6–8 vertical black stripes on a white background, on both sides of its body. Our aim was to define spatial features (variations) in body patterns by evaluating the level of dissimilarity between both sides of each individual fish, and the level of dissimilarity between patterns of different individuals. In addition, we tested whether the fish are attracted to or reject specific features of the body patterns. Features were defined and counted using photographs of body patterns. Attraction to or rejection of specific features were tested behaviorally using a dual-choice experiment of video animations of individuals swimming over a coral-reef background. We found that the patterns of each fish and sides of the body were no less dissimilar, compared intraspecificly to other fish, and that each side pattern was unique and distinguishable. Variations in the patterns occurred mostly in the last three posterior stripes. Individuals were mainly attracted to conspecifics with multiple crossing patterns (two or more consecutive crossings), and rejected patterns with holes. Our results suggest that in this species the unique body pattern of each fish is used for conspecific identification of mates and intruders. PMID:25432516

  1. Changes in EEG alpha power to different disgust elicitors: the specificity of mutilations.

    PubMed

    Sarlo, Michela; Buodo, Giulia; Poli, Silvia; Palomba, Daniela

    2005-07-15

    It is unclear in the literature whether the various disgust elicitors are differentially processed by the brain and/or able to elicit distinct psychophysiological response patterns. On the other hand, disgusting stimuli depicting mutilations have been proved to elicit a distinct autonomic response pattern and to demand greater attentional resources, as compared with other unpleasant visual stimuli. In this EEG study, 34 participants viewed 4 film-clips depicting surgery, cockroach invasion, human attack and neutral landscape during EEG recording, and then rated the clips for valence, arousal and the basic emotions. Independent of location, the highest cortical activation was found during the viewing of the surgery scene. Moreover, the above activation was prominent over the right posterior regions.

  2. The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke.

    PubMed

    Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi; Lee, Hyunkeun

    2015-12-01

    To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position.

  3. Molecular mechanisms underlying the exceptional adaptations of batoid fins.

    PubMed

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R; Shubin, Neil H

    2015-12-29

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies.

  4. Learning to tune the antero-posterior propulsive forces during walking: a necessary skill for mastering upright locomotion in toddlers.

    PubMed

    Bril, Blandine; Dupuy, Lucile; Dietrich, Gilles; Corbetta, Daniela

    2015-10-01

    This study examines the process of learning to walk from a functional perspective. To move forward, one must generate and control propulsive forces. To achieve this, it is necessary to create and tune a distance between the centre of mass (CoM) and the centre of pressure (CoP) along the antero-posterior axis. We hypothesize that learning to walk consists of learning how to calibrate these self-generated propulsive forces to control such distance. We investigated this question with six infants (three girls and three boys) who we followed up weekly for the first 8 weeks after the onset of walking and then biweekly until they reached 14-16 weeks of walking experience. The infants' walking patterns (kinematics and propelling forces) were captured via synched motion analysis and force plate. The results show that the distance between the CoM and the CoP along the antero-posterior axis increased rapidly during the first months of learning to walk and that this increase was correlated with an increase in velocity. The initial small values of (CoM-CoP) observed at walking onset, coupled with small velocity are interpreted as the solution infants adopted to satisfy a compromise between the need to generate propulsive forces to move forward while simultaneously controlling the disequilibrium resulting from creating a with distance between the CoM and CoP.

  5. A new species of Allobates (Anura: Aromobatidae) from the Tapajós River basin, Pará State, Brazil.

    PubMed

    Lima, Albertina P; Simões, Pedro Ivo; Kaefer, Igor Luis

    2014-12-02

    We describe a new species of Allobates from the south of eastern Amazonia, Brazil. This species inhabits fluvial springs and the banks of small streams in terra-firme forests along the Tapajós River basin. Average snout-to-vent length is 17.78 mm (range 16.09-19.59 mm) among males and 19.50 mm (range 17.97-20.84 mm) among females. Surface of dorsum is marked by a distinct dark color pattern, with three convex areas, triangle and diamond-shaped. The species has a diffuse pale dorsolateral line (absent in some specimens), while the oblique lateral bar is defined. Dark-brown transversal stripes are present on femoral and tibial dorsal surfaces, which align with each other in live specimens when at rest. Tadpoles have short papillae on anterior (8-10 papillae on each side) and posterior labium (>30 papillae). Posterior labium is projected to the front, hiding posterior tooth rows. Eggs are deposited in nests on rolled or cranked dead leaves on the forest floor. Egg membranes and jelly-nests are transparent. Advertisement calls are mainly characterized by the continuous emission of single notes that might shift sporadically to note-pairs, emitted during short periods. Notes are split by regular silent intervals, with peak frequency ranging between 4273-4867 Hz. 

  6. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study.

    PubMed

    Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris

    2012-11-01

    Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine discriminations) or based on previous visits to those landmarks (requiring episodic details). An ROI analysis of the hippocampus showed that all three conditions activated the hippocampus bilaterally. Fine-grained spatial judgments recruited an additional region of the right posterior hippocampus, while episodic judgments recruited an additional region of the right anterior hippocampus, and a more extensive region along the length of the left hippocampus. To examine whole-brain patterns of activity, Partial Least Squares (PLS) analysis was used to identify sets of brain regions whose activity covaried with the three conditions. All three comparison judgments recruited the default mode network including the posterior cingulate/retrosplenial cortex, middle frontal gyrus, hippocampus, and precuneus. Fine-grained spatial judgments also recruited additional regions of the precuneus, parahippocampal cortex and the supramarginal gyrus. Episodic judgments recruited the posterior cingulate and medial frontal lobes as well as the angular gyrus. These results are discussed in terms of their implications for theories of hippocampal function and spatial and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The spectrum of injuries resulting from posterior abdominal stab wounds: a South African experience

    PubMed Central

    Oosthuizen, GV; Clarke, DL

    2015-01-01

    Introduction The spectrum of injury associated with anterior abdominal stab wounds (SWs) is well established. The literature on the spectrum of organ injury associated with SWs to the posterior abdomen, however, is limited. Methods We reviewed our experience of 105 consecutive patients who had established indications for laparotomy managed over a 4-year period in a high volume trauma service in South Africa. Results Of the 105 patients, 97 (92%) were male and the overall mean age was 24 years. Fifty-seven patients (54%) had immediate indications for laparotomy. The remaining 48 patients (46%) initially underwent active clinical observation and the indications for laparotomy became apparent during the observation period. Of the 105 laparotomies performed, 94 (90%) were positive and 11 (10%) were negative. Of the 94 positive laparotomies, 92 were therapeutic and 2 were non-therapeutic. A total of 176 organ injuries were identified: 50 (53%) of the 94 patients sustained a single organ injury while the remaining 44 (47%) sustained multiple organ injuries. The most commonly injured organs were the colon (n=63), spleen (n=21) and kidney (n=19). Conclusions The pattern of intra-abdominal injuries secondary to SWs to the posterior abdomen is different to that seen with the anterior abdomen. Colonic injury is most commonly encountered, followed by injuries to the spleen and kidney. Clinicians must remain vigilant because of the potential for occult injuries. PMID:26263933

  8. The spectrum of injuries resulting from posterior abdominal stab wounds: a South African experience.

    PubMed

    Kong, V Y; Oosthuizen, G V; Clarke, D L

    2015-05-01

    The spectrum of injury associated with anterior abdominal stab wounds (SWs) is well established. The literature on the spectrum of organ injury associated with SWs to the posterior abdomen, however, is limited. We reviewed our experience of 105 consecutive patients who had established indications for laparotomy managed over a 4-year period in a high volume trauma service in South Africa. Of the 105 patients, 97 (92%) were male and the overall mean age was 24 years. Fifty-seven patients (54%) had immediate indications for laparotomy. The remaining 48 patients (46%) initially underwent active clinical observation and the indications for laparotomy became apparent during the observation period. Of the 105 laparotomies performed, 94 (90%) were positive and 11 (10%) were negative. Of the 94 positive laparotomies, 92 were therapeutic and 2 were non-therapeutic. A total of 176 organ injuries were identified: 50 (53%) of the 94 patients sustained a single organ injury while the remaining 44 (47%) sustained multiple organ injuries. The most commonly injured organs were the colon (n=63), spleen (n=21) and kidney (n=19). The pattern of intra-abdominal injuries secondary to SWs to the posterior abdomen is different to that seen with the anterior abdomen. Colonic injury is most commonly encountered, followed by injuries to the spleen and kidney. Clinicians must remain vigilant because of the potential for occult injuries.

  9. Ultrasound-guided chest biopsies.

    PubMed

    Middleton, William D; Teefey, Sharlene A; Dahiya, Nirvikar

    2006-12-01

    Pulmonary nodules that are surrounded by aerated lung cannot be visualized with sonography. Therefore, percutaneous biopsy must be guided with computed tomography or fluoroscopy. Although this restriction only applies to central lung nodules, it has permeated referral patterns for other thoracic lesions and has retarded the growth of ultrasound-guided interventions. Nevertheless, sonography is an extremely flexible modality that can expeditiously guide many biopsy procedures in the thorax. Peripheral pulmonary nodules can be successfully biopsied with success rates exceeding 90% and complications rates of less than 5%. Orienting the probe parallel to the intercostal space facilitates biopsies of peripheral pulmonary nodules. Anterior mediastinal masses that extend to the parasternal region are often easily approachable provided the internal mammary vessels, costal cartilage, and deep great vessels are identified and avoided. Superior mediastinal masses can be sampled from a suprasternal or supraclavicular approach. Phased array probes or tightly curved arrays may provide improved access for biopsies in this location. Posterior mediastinal masses are more difficult to biopsy with ultrasound guidance because of the overlying paraspinal muscles. However, when posterior mediastinal masses extend into the posterior medial pleural region, they can be biopsied with ultrasound guidance. Because many lung cancers metastasize to the supraclavicular nodes, it is important to evaluate the supraclavicular region when determining the best approach to obtain a tissue diagnosis. When abnormal supraclavicular nodes are present, they often are the easiest and safest lesions to biopsy.

  10. Nasal anatomy of the non-mammaliaform cynodont Brasilitherium riograndensis (Eucynodontia, Therapsida) reveals new insight into mammalian evolution.

    PubMed

    Ruf, Irina; Maier, Wolfgang; Rodrigues, Pablo G; Schultz, Cesar L

    2014-11-01

    The mammalian nasal cavity is characterized by a unique anatomy with complex internal features. The evolution of turbinals was correlated with endothermic and macrosmatic adaptations in therapsids and in early mammals, which is still apparent in their twofold function (warming and moistening of air, olfaction). Fossil evidence for the transformation from the nonmammalian to the mammalian nasal cavity pattern has been poor and inadequate. Ossification of the cartilaginous nasal capsule and turbinals seems to be a feature that occurred only very late in synapsid evolution but delicate ethmoidal bones are rarely preserved. Here we provide the first µCT investigation of the nasal cavity of the advanced non-mammaliaform cynodont Brasilitherium riograndensis from the Late Triassic of Southern Brazil, a member of the sister-group of mammaliaforms, in order to elucidate a critical anatomical transition in early mammalian evolution. Brasilitherium riograndensis already had at least partially ossified turbinals as remnants of the nasoturbinal and the first ethmoturbinal are preserved. The posterior nasal septum is partly ossified and contributes to a mesethmoid. The nasal cavity is posteriorly expanded and forms a distinctive pars posterior (ethmoidal recess) that is ventrally separated from the nasopharyngeal duct by a distinct lamina terminalis. Thus, our observations clearly demonstrate that principal features of the mammalian nasal cavity were already present in the sister-group of mammaliaforms. © 2014 Wiley Periodicals, Inc.

  11. Disturbed default mode network connectivity patterns in Alzheimer's disease associated with visual processing.

    PubMed

    Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2014-01-01

    Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.

  12. Molecular mechanisms underlying the exceptional adaptations of batoid fins

    PubMed Central

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R.; Shubin, Neil H.

    2015-01-01

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  13. The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke

    PubMed Central

    Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi

    2015-01-01

    Objective To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Methods Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. Results The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. Conclusion The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position. PMID:26798614

  14. Brain connectome modularity in weight-restored anorexia nervosa and body dysmorphic disorder

    PubMed Central

    Zhang, A; Leow, A; Zhan, L; GadElkarim, J; Moody, T; Khalsa, S; Strober, M; Feusner, JD

    2017-01-01

    Background Anorexia nervosa (AN) and body dysmorphic disorder (BDD) frequently co-occur, and have several overlapping phenomenological features. Little is known about their shared neurobiology. Aims To compare modular organization of brain structural connectivity. Methods We acquired diffusion-weighted magnetic resonance imaging data on unmedicated individuals with BDD (n=29), weight-restored AN (n=24), and healthy controls (HC) (n=31). We constructed connectivity matrices using whole-brain white matter tractography, and compared modular structures across groups. Results AN showed abnormal modularity involving frontal, basal ganglia, and posterior cingulate nodes. There was a trend in BDD for similar abnormalities, but no significant differences compared with AN. In AN, poor insight correlated with longer path length in right caudal anterior cingulate and right posterior cingulate. Conclusions Abnormal network organization patterns in AN, partially shared with BDD, may have implications for understanding integration between reward and habit/ritual formation, as well as conflict monitoring/error detection. PMID:27429183

  15. Insights into bird wing evolution and digit specification from polarizing region fate maps.

    PubMed

    Towers, Matthew; Signolet, Jason; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-08-09

    The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.

  16. The neural correlates of semantic richness: evidence from an fMRI study of word learning.

    PubMed

    Ferreira, Roberto A; Göbel, Silke M; Hymers, Mark; Ellis, Andrew W

    2015-04-01

    We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Stress analysis of the mandible by 3D FEA in normal human being under three loading conditions].

    PubMed

    Sun, Jian; Zhang, Fu-qiang; Wang, Dong-wei; Yu, Jia; Wang, Cheng-tao

    2004-02-01

    The condition and character of stress distribution in the mandibular in normal human being during centric, protrusive, laterotrusive occlusion were analysed. The three-dimensional finite element model of the mandibular was developed by helica CT scanning and CAD/CAM software, and three-dimensional finite element stress analysis was done by ANSYS software. Three-dimensional finite element model of the mandibular was generated. Under these three occlusal conditions, the stress of various regions in the mandible were distributed unequally, and the stress feature was different;while the stress of corresponding region in bilateral mandibular was in symmetric distribution. The stress value of condyle neck, the posterior surface of coronoid process and mandibular angle were high. The material properties of mandible were closely correlated to the value of stress. Stress distribution were similar according to the three different loading patterns, but had different effects on TMJ joint. The concentrated areas of stress were in the condyle neck, the posterior surface of coronoid process and mandibular angle.

  18. Germ plasm anchoring is a dynamic state that requires persistent trafficking.

    PubMed

    Sinsimer, Kristina S; Lee, Jack J; Thiberge, Stephan Y; Gavis, Elizabeth R

    2013-12-12

    Localized cytoplasmic determinants packaged as ribonucleoprotein (RNP) particles direct embryonic patterning and cell fate specification in a wide range of organisms. Once established, the asymmetric distributions of such RNP particles must be maintained, often over considerable developmental time. A striking example is the Drosophila germ plasm, which contains RNP particles whose localization to the posterior of the egg during oogenesis results in their asymmetric inheritance and segregation of germline from somatic fates in the embryo. Although actin-based anchoring mechanisms have been implicated, high-resolution live imaging revealed persistent trafficking of germ plasm RNP particles at the posterior cortex of the Drosophila oocyte. This motility relies on cortical microtubules, is mediated by kinesin and dynein motors, and requires coordination between the microtubule and actin cytoskeletons. Finally, we show that RNP particle motility is required for long-term germ plasm retention. We propose that anchoring is a dynamic state that renders asymmetries robust to developmental time and environmental perturbations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Vertical land motion controls regional sea level rise patterns on the United States east coast since 1900

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.

    2017-12-01

    Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.

  20. Hypoglycemia-occipital syndrome: a specific neurologic syndrome following neonatal hypoglycemia?

    PubMed

    Karimzadeh, Parvaneh; Tabarestani, Sepideh; Ghofrani, Mohammad

    2011-02-01

    This study attempted to elaborate the existence of a specific neurologic pattern observed in children who experienced neonatal hypoglycemia. Twenty-seven patients with seizure and history of neonatal hypoglycemia were compared with 28 children suffering from idiopathic occipital epilepsy. In both groups the most common type of seizure activities included eye movements and impaired consciousness responding well to treatment; however, ictal vomiting was more common in controls. Subjects were in epileptic and nonepileptic groups. Ninety percent of cases showed abnormal signal of the posterior head region on magnetic resonance imaging (MRI). A large number showed posterior abnormalities on electroencephalography (EEG). Visual loss with abnormal visual evoked potential was the most frequent visual finding. Fifty-five percent showed mild psychomotor retardation. This study demonstrates that neonatal hypoglycemia can induce a syndrome with a specific clinical spectrum consisting of epilepsy, visual disturbances, and psychomotor retardation. Hypoglycemia-occipital syndrome is an entity without statistically significant semiologic differences from the idiopathic type.

  1. Sequential sensory and decision processing in posterior parietal cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J

    2017-01-01

    Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332

  2. ECoG sleep-waking rhythms and bodily activity in the cerveau isolé rat.

    PubMed

    Nakata, K; Kawamura, H

    1986-01-01

    In rats with a high mesencephalic transection, isolating both the locus coeruleus and raphe nuclei from the forebrain, Electrocorticogram (ECoG) and Electromyogram (EMG) of the neck muscles were continuously recorded. Normal sleep-waking ECoG changes with a significant circadian rhythm reappeared in 4 to 9 days after transection. Neck muscle EMG and bodily movements were independent of the ECoG changes and did not show any significant circadian rhythm. In these high mesencephalic rats with sleep-waking ECoG changes, large bilateral hypothalamic lesions were made by passing DC current either in the preoptic area or in the posterior hypothalamus. After the preoptic area lesions the amount of low voltage fast ECoG per day markedly increased, whereas after the posterior hypothalamic lesions, the total amount of low voltate fast wave per day decreased showing long-lasting slow wave sleep pattern. These results support an idea that the forebrain, especially in the hypothalamus including the preoptic area, a mechanism inducing sleep-waking ECoG changes is localized.

  3. Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2)

    NASA Technical Reports Server (NTRS)

    Schubert, Michael; Meulemans, Daniel; Bronner-Fraser, Marianne; Holland, Linda Z.; Holland, Nicholas D.

    2003-01-01

    To explore the evolution of myogenic regulatory factors in chordates, we isolated two MyoD family genes (AmphiMRF1 and AmphiMRF2) from amphioxus. AmphiMRF1 is first expressed at the late gastrula in the paraxial mesoderm. As the first somites form, expression is restricted to their myotomal region. In the early larva, expression is strongest in the most anterior and most posterior somites. AmphiMRF2 transcription begins at mid/late gastrula in the paraxial mesoderm, but never spreads into its most anterior region. Through much of the neurula stage, AmphiMRF2 expression is strong in the myotomal region of all somites except the most anterior pair; by late neurula expression is downregulated except in the most posterior somites forming just rostral to the tail bud. These two MRF genes of amphioxus have partly overlapping patterns of mesodermal expression and evidently duplicated independent of the diversification of the vertebrate MRF family.

  4. Functional subregions of the human entorhinal cortex

    PubMed Central

    Maass, Anne; Berron, David; Libby, Laura A; Ranganath, Charan; Düzel, Emrah

    2015-01-01

    The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC. DOI: http://dx.doi.org/10.7554/eLife.06426.001 PMID:26052749

  5. Electropalatographic and perceptual analysis of the speech of Cantonese children with cleft palate.

    PubMed

    Whitehill, T; Stokes, S; Hardcastle, B; Gibbon, F

    1995-01-01

    This study used electropalatographic and perceptual analysis to investigate the speech of two Cantonese children with repaired cleft palate. Some features of their speech, as identified from the perceptual analysis, have been previously reported as being typical of children with cleft palate. For example, fricatives and affricates were vulnerable to disruption, and obstruent sounds were judged by listeners to have posterior placement. However, some apparently language-specific characteristics were identified in the Cantonese-speaking children. First there was a relatively high incidence of initial consonant deletion, and for one subject /s/ and /f/ targets were produced as bilabial fricatives. EPG error patterns for target lingual obstruents were largely similar to those reported to occur in English- and Japanese-speaking children. In particular, broader and more posterior tongue-palate contact was observed, and intrasubject variability was noted. There was also evidence of simultaneous labial/velar and alveolar/velar constriction for labial and velar targets respectively. The clinical implications of the findings are discussed.

  6. Feelings of shame, embarrassment and guilt and their neural correlates: A systematic review.

    PubMed

    Bastin, Coralie; Harrison, Ben J; Davey, Christopher G; Moll, Jorge; Whittle, Sarah

    2016-12-01

    This systematic review aimed to provide a comprehensive summary of the current literature on the neurobiological underpinnings of the experience of the negative moral emotions: shame, embarrassment and guilt. PsycINFO, PubMed and MEDLINE were used to identify existing studies. Twenty-one functional and structural magnetic resonance imaging and positron emission tomography studies were reviewed. Although studies differed considerably in methodology, their findings highlight both shared and distinct patterns of brain structure/function associated with these emotions. Shame was more likely to be associated with activity in the dorsolateral prefrontal cortex, posterior cingulate cortex and sensorimotor cortex; embarrassment was more likely to be associated with activity in the ventrolateral prefrontal cortex and amygdala; guilt was more likely to be associated with activity in ventral anterior cingulate cortex, posterior temporal regions and the precuneus. Although results point to some common and some distinct neural underpinnings of these emotions, further research is required to replicate findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Relationships between age and dental attrition in Australian aboriginals.

    PubMed

    Richards, L C; Miller, S L

    1991-02-01

    Tooth wear scores (ratios of exposed dentin to total crown area) were calculated from dental casts of Australian Aboriginal subjects of known age from three populations. Linear regression equations relating attrition scores to age were derived. The slope of the regression line reflects the rate of tooth wear, and the intercept is related to the timing of first exposure of dentin. Differences in morphology between anterior and posterior teeth are reflected in a linear relationship between attrition scores and age for anterior teeth but a logarithmic relationship for posterior teeth. Correlations between age and attrition range from less than 0.40 for third molars (where differences in the eruption and occlusion of the teeth resulted in different patterns of wear) to greater than 0.80 for the premolars and first molars. Because of the generally high correlations between age and attrition, it is possible to estimate age from the extent of tooth wear with confidence limits of the order of +/- 10 years.

  8. Arthroscopic partial meniscectomy of a posteriorly flipped superior leaflet in a horizontal medial meniscus tear using a posterior transseptal portal.

    PubMed

    Jang, Ki-Mo; Ahn, Jin Hwan; Wang, Joon Ho

    2012-03-07

    This article describes a case of an arthroscopic partial meniscectomy of a posteriorly flipped superior leaflet in a horizontal medial meniscus tear using the posterior transseptal portal. An arthroscopic partial meniscectomy for bucket handle or flap tears in medial or lateral compartments using ordinary portals is a relatively common procedure in irreparable cases. However, the posterior compartment of the knee is not readily accessible through ordinary arthroscopic portals. Therefore, it has been considered a blind spot. Through the posterior transseptal portal, surgeons can achieve excellent arthroscopic visualization of the posterior compartment and easily perform arthroscopic procedures of the posterior compartment of the knee. A 48-year-old woman presented with a 1-year history of pain in the medial aspect of the right knee joint. Preoperative magnetic resonance imaging revealed a thinning of the medial meniscus posterior horn in coronal images and a sharp-edged triangle arising from the medial meniscus posterior horn between the medial femoral condyle and medial meniscus posterior horn on sagittal images (flipped-over sign). During the arthroscopic procedure, we found that the flipped leaflet was displaced posteriorly and was not mobile between the medial femoral condyle and medial meniscus posterior horn. Partial meniscectomy for a posteriorly displaced fragment can be performed successfully using the posterior transseptal portal. The posterior transseptal portal is useful for an arthroscopic partial meniscectomy of a posteriorly flipped leaflet in the posterior compartment of the knee. Copyright 2012, SLACK Incorporated.

  9. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: An atlas-based diffusion imaging study

    PubMed Central

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Guzman, Ximena Stecher; Stevenson, David K.; Barnea-Goraly, Naama

    2014-01-01

    At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW ≤ 1500 g, GA ≤ 32 weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40 weeks (34.7–38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace b0.006 mm2 s−1 and FA >0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal–spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was demonstrated by a majority of regions, the strongest correlations were observed in the anterior limb of the internal capsule, a region undergoing early stages of myelination at near-term age, in which FA increased (r = .433, p = .003) and MD (r = –.545, p = .000) and RD (r = –.540, p = .000) decreased with PMA-at-scan. No correlation with PMA-at-scan was observed in the CC or SLF, regions that myelinate later in infancy. Regional patterns of higher FA and lower RD were observed at this near-term age, suggestive of more advanced microstructural development in posterior compared to anterior regions within the CR, CC, and IC and in central compared to peripheral WM structures. Evidence of region-specific rates of microstructural development was observed. Temporal–spatial patterns of WM microstructure development at near-term age have important implications for interpretation of near-term DTI and for identification of aberrations in typical developmental trajectories that may signal future impairment. PMID:24091089

  10. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Guzman, Ximena Stecher; Stevenson, David K; Barnea-Goraly, Naama

    2014-02-01

    At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW≤1500g, GA≤32weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40weeks (34.7-38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace <0.006mm(2)s(-1) and FA >0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal-spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was demonstrated by a majority of regions, the strongest correlations were observed in the anterior limb of the internal capsule, a region undergoing early stages of myelination at near-term age, in which FA increased (r=.433, p=.003) and MD (r=-.545, p=.000) and RD (r=-.540, p=.000) decreased with PMA-at-scan. No correlation with PMA-at-scan was observed in the CC or SLF, regions that myelinate later in infancy. Regional patterns of higher FA and lower RD were observed at this near-term age, suggestive of more advanced microstructural development in posterior compared to anterior regions within the CR, CC, and IC and in central compared to peripheral WM structures. Evidence of region-specific rates of microstructural development was observed. Temporal-spatial patterns of WM microstructure development at near-term age have important implications for interpretation of near-term DTI and for identification of aberrations in typical developmental trajectories that may signal future impairment. © 2013.

  11. Morphologic, biometric, and isoenzyme characterization of Trichuris suis.

    PubMed

    Oliveros, R; Cutillas, C; Arias, P; Guevara, D

    1998-06-01

    Trichuris suis isolates were collected from the cecum of Sus scrofa domestica (pig) and S. s. scrofa (wild boar). Morphology and biometry studies were carried out. Morphology studies showed the existence of typical caudal papillae in males of T. suis from wild boars, but no other difference was observed in the biometric parameters (total length, esophageal length, posterior-portion body length, and spicular length) of T. suis isolated from either host. Individual extracts were subjected to malate dehydrogenase (MDH), malic enzyme (ME), glucose 6-phosphate dehydrogenase (G6PD), lactate dehydrogenase (LDH), and superoxide dismutase (SOD) isoenzyme analysis following starch-gel electrophoresis, and the isoenzyme patterns were compared with those obtained from other species of trichurids. MDH, ME, G6PD, LDH, and SOD isoenzyme patterns were identical for T. suis from both hosts. MDH isoenzyme patterns were characterized by the presence of one cathodic isoenzyme. ME, G6PD, and LDH isoenzyme patterns indicated the presence of three phenotypes, whereas the SOD isoenzyme pattern showed only one phenotype characterized by the existence of two (anodic and cathodic) bands. Different LDH and SOD isoenzyme patterns observed for T. suis, T. ovis, and T. skrjabini confirm once more that isoenzyme patterns have potential as a diagnostic tool for differentiation of different species of Trichuris.

  12. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

    PubMed Central

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889

  13. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    PubMed

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  14. Bony landmark between the attachment of the medial meniscus posterior root and the posterior cruciate ligament: CT and MR imaging assessment.

    PubMed

    Fujii, Masataka; Furumatsu, Takayuki; Miyazawa, Shinichi; Kodama, Yuya; Hino, Tomohito; Kamatsuki, Yusuke; Ozaki, Toshifumi

    2017-08-01

    (1) To reveal the prevalence of the bony recess (posterior dimple) and (2) to determine the position of the posterior dimple on the tibial plateau using three-dimensional computed tomography (3DCT). In this study, a retrospective review of 112 patients was performed to identify the posterior dimple and to evaluate its position on 3DCT. Magnetic resonance images (MRIs) were also used to determine the positional relationship among the posterior cruciate ligament (PCL), medial meniscus posterior insertion (MMPI), and posterior dimple. The posterior dimple was observed in 100 of 112 knees (89.3%) on 3DCT. The center of the posterior dimple was 13.6 ± 0.8 mm from the medial tibial eminence apex. MRI showed that the posterior dimple separated the tibial attachment of the PCL and MMPI. This is the first study to discuss the prevalence and position of the bony recess in the posterior intercondylar fossa.

  15. Electrocortical activity distinguishes between uphill and level walking in humans.

    PubMed

    Bradford, J Cortney; Lukos, Jamie R; Ferris, Daniel P

    2016-02-01

    The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.

  16. The 'WiFi' otoplasty : Combined concentric posterior microchondrectomies and sutures for correction of prominent ears.

    PubMed

    Hendrickx, Benoit I M M; Hamdi, Moustapha; Zeltzer, Assaf; Greensmith, Andrew

    2018-06-01

    Prominent ears are by far the most common congenital ear deformity. Many techniques have been described using one or a combination of 3 basic methods: cartilage cutting, cartilage weakening and pure cartilage shaping techniques. The ideal otoplasty technique should yield a natural correction of the deformity, with low recurrence rates and with little risk of complications. A new cartilage shaping technique using closing wedge concentric microchondrectomies through an entirely posterior approach is presented. Between 2006 and 2017, 200 bilateral otoplasties using this 'WiFi' pattern technique were performed. This technique combined with Mustarde sutures is based on the excision of concentric partial thickness cartilage wedges designed in the pattern of the WiFi symbol. There were no major complications such as anterior skin necrosis and no returns to theatre for infections or haematomas. 3 patients (1.5%) had complete recurrence of the deformity and 10 patients (5%) had to undergo a minor revision for recurrence at the upper pole. 5 patients have had exposure of the end of the permanent upper pole scapho-temporal suture more than 3 months after surgery requiring simple outpatient suture trimming/removal without any recurrence of results. Palpable or bridging sutures were present upon clinical examination in 10 patients (5%) but did not require revision surgery. Here, we describe a fast, safe and reliable technique for otoplasty with no need for extensive dissection, which is applicable to the full range of deformity. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. Anatomy of Language Impairments in Primary Progressive Aphasia

    PubMed Central

    Rogalski, Emily; Cobia, Derin; Harrison, Theresa M.; Wieneke, Christina; Thompson, Cynthia K; Weintraub, Sandra; Mesulam, M.-Marsel

    2011-01-01

    Primary progressive aphasia (PPA) is a clinical dementia syndrome characterized by progressive decline in language function but relative sparing of other cognitive domains. There are three recognized PPA variants: agrammatic, semantic, and logopenic. Although each PPA subtype is characterized by the nature of the principal deficit, individual patients frequently display subtle impairments in additional language domains. The present study investigated the distribution of atrophy related to performance in specific language domains (i.e., grammatical processing, semantic processing, fluency, and sentence repetition) across PPA variants to better understand the anatomical substrates of language. Results showed regionally specific relationships, primarily in the left hemisphere, between atrophy and impairments in language performance. Most notable was the neuroanatomical distinction between fluency and grammatical processing. Poor fluency was associated with regions dorsal to the traditional boundaries of Broca’s area in the inferior frontal sulcus and the posterior middle frontal gyrus, whereas grammatical processing was associated with more widespread atrophy, including the inferior frontal gyrus and supramarginal gyrus. Repetition performance was correlated with atrophy in the posterior superior temporal gyrus. The correlation of atrophy with semantic processing impairment was localized to the anterior temporal poles. Atrophy patterns were more closely correlated with domain-specific performance than with subtype. These results show that PPA reflects a selective disruption of the language network as a whole, with no rigid boundaries between subtypes. Further, these atrophy patterns reveal anatomical correlates of language that could not have been surmised in patients with aphasia resulting from cerebrovascular lesions. PMID:21368046

  18. Anatomy of language impairments in primary progressive aphasia.

    PubMed

    Rogalski, Emily; Cobia, Derin; Harrison, Theresa M; Wieneke, Christina; Thompson, Cynthia K; Weintraub, Sandra; Mesulam, M-Marsel

    2011-03-02

    Primary progressive aphasia (PPA) is a clinical dementia syndrome characterized by progressive decline in language function but relative sparing of other cognitive domains. There are three recognized PPA variants: agrammatic, semantic, and logopenic. Although each PPA subtype is characterized by the nature of the principal deficit, individual patients frequently display subtle impairments in additional language domains. The present study investigated the distribution of atrophy related to performance in specific language domains (i.e., grammatical processing, semantic processing, fluency, and sentence repetition) across PPA variants to better understand the anatomical substrates of language. Results showed regionally specific relationships, primarily in the left hemisphere, between atrophy and impairments in language performance. Most notable was the neuroanatomical distinction between fluency and grammatical processing. Poor fluency was associated with regions dorsal to the traditional boundaries of Broca's area in the inferior frontal sulcus and the posterior middle frontal gyrus, whereas grammatical processing was associated with more widespread atrophy, including the inferior frontal gyrus and supramarginal gyrus. Repetition performance was correlated with atrophy in the posterior superior temporal gyrus. The correlation of atrophy with semantic processing impairment was localized to the anterior temporal poles. Atrophy patterns were more closely correlated with domain-specific performance than with subtype. These results show that PPA reflects a selective disruption of the language network as a whole, with no rigid boundaries between subtypes. Further, these atrophy patterns reveal anatomical correlates of language that could not have been surmised in patients with aphasia resulting from cerebrovascular lesions.

  19. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response.

    PubMed

    Gurley, Kyle A; Elliott, Sarah A; Simakov, Oleg; Schmidt, Heiko A; Holstein, Thomas W; Sánchez Alvarado, Alejandro

    2010-11-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. 3D in vivo femoro-tibial kinematics of tri-condylar total knee arthroplasty during kneeling activities.

    PubMed

    Nakamura, Shinichiro; Sharma, Adrija; Kobayashi, Masahiko; Ito, Hiromu; Nakamura, Kenji; Zingde, Sumesh M; Nakamura, Takashi; Komistek, Richard D

    2014-01-01

    Kneeling position can serve as an important posture, providing stability and balance from a standing position to sitting on the floor or vice-versa. The purpose of the current study was to determine the kinematics during kneeling activities after subjects were implanted with a tri-condylar total knee arthroplasty. Kinematics was evaluated in 54 knees using fluoroscopy and a three-dimensional model fitting approach. The average knee flexion at before contact status, at complete contact and at maximum flexion was 98.1±9.0°, 107.2±6.7°, and 139.6±12.3°, respectively. On average, there was no gross anterior displacement from before contact status to complete contact. Only slight posterior rollback motion of both condyles from complete contact to maximum flexion was observed. Three of 39 (7.7%) knees experienced anterior movement of both condyles more than 2mm from before contact status to complete contact. Reverse rotation pattern from before contact status to complete contact and then normal rotation pattern from complete contact to maximum flexion were observed. Condylar lift-off greater than 1.0 mm was observed in 45 knees (83.3%). The presence of the ball-and-socket joint articulation provides sufficient antero-posterior stability in these designs to enable the patients to kneel safely without the incidence of any dislocation. This study suggests a safe implant design for kneeling. © 2013.

Top