Sample records for posteriori error analysis

  1. An Analysis of a Finite Element Method for Convection-Diffusion Problems. Part II. A Posteriori Error Estimates and Adaptivity.

    DTIC Science & Technology

    1983-03-01

    AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for

  2. A POSTERIORI ERROR ANALYSIS OF TWO STAGE COMPUTATION METHODS WITH APPLICATION TO EFFICIENT DISCRETIZATION AND THE PARAREAL ALGORITHM.

    PubMed

    Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff

    2016-01-01

    We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.

  3. A-posteriori error estimation for second order mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter

    2012-06-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  4. A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    DTIC Science & Technology

    2014-04-01

    Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Holst, Submitted for publication ...TR-14-33 A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics...Problems Approved for public release, distribution is unlimited. April 2014 HDTRA1-09-1-0036 Donald Estep and Michael

  5. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  6. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  7. An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.

    ERIC Educational Resources Information Center

    De Ayala, R. J.; And Others

    Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…

  8. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  9. Evaluation of the impact of observations on blended sea surface winds in a two-dimensional variational scheme using degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Xiang, Jie; Fei, Jianfang; Wang, Yi; Liu, Chunxia; Li, Yuanxiang

    2017-12-01

    This paper presents an evaluation of the observational impacts on blended sea surface winds from a two-dimensional variational data assimilation (2D-Var) scheme. We begin by briefly introducing the analysis sensitivity with respect to observations in variational data assimilation systems and its relationship with the degrees of freedom for signal (DFS), and then the DFS concept is applied to the 2D-Var sea surface wind blending scheme. Two methods, a priori and a posteriori, are used to estimate the DFS of the zonal ( u) and meridional ( v) components of winds in the 2D-Var blending scheme. The a posteriori method can obtain almost the same results as the a priori method. Because only by-products of the blending scheme are used for the a posteriori method, the computation time is reduced significantly. The magnitude of the DFS is critically related to the observational and background error statistics. Changing the observational and background error variances can affect the DFS value. Because the observation error variances are assumed to be uniform, the observational influence at each observational location is related to the background error variance, and the observations located at the place where there are larger background error variances have larger influences. The average observational influence of u and v with respect to the analysis is about 40%, implying that the background influence with respect to the analysis is about 60%.

  10. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  11. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  12. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  13. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  14. Using meta-information of a posteriori Bayesian solutions of the hypocentre location task for improving accuracy of location error estimation

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2015-06-01

    The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. Although estimating of the earthquake foci location is relatively simple, a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling and a priori uncertainties. In this paper, we addressed this task when statistics of observational and/or modelling errors are unknown. This common situation requires introduction of a priori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland, we propose an approach based on an analysis of Shanon's entropy calculated for the a posteriori distribution. We show that this meta-characteristic of the a posteriori distribution carries some information on uncertainties of the solution found.

  15. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  16. A-posteriori error estimation for the finite point method with applications to compressible flow

    NASA Astrophysics Data System (ADS)

    Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio

    2017-08-01

    An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

  17. On the implementation of an accurate and efficient solver for convection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Tien

    In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.

  18. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  19. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE PAGES

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    2017-02-05

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  20. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  1. A Posteriori Finite Element Bounds for Sensitivity Derivatives of Partial-Differential-Equation Outputs. Revised

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume

    1998-01-01

    We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.

  2. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and a-Posteriori Error Estimation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald

    2015-11-30

    This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.

  3. Analysis of the Efficiency of an A-Posteriori Error Estimator for Linear Triangular Finite Elements

    DTIC Science & Technology

    1991-06-01

    Release 1.0, NOETIC Tech. Corp., St. Louis, Missouri, 1985. [28] R. VERFURTH, FEMFLOW-user guide. Version 1, Report, Universitiit Zirich, 1989. [29] R... study and research for foreign students in numerical mathematics who are supported by foreign governments or exchange agencies (Fulbright, etc

  4. Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

    DOE PAGES

    Brown, Judith A.; Bishop, Joseph E.

    2016-07-20

    An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less

  5. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    NASA Astrophysics Data System (ADS)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  6. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  7. A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    DTIC Science & Technology

    2013-06-24

    Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Hoist, Submitted for publication . • Finite...1996. [20] C. LANCZOS, Linear Differential Operators, Dover Publications , Mineola, NY, 1997. [21] G.I. MARCHUK, Adjoint Equations and Analysis of...NUMBER(S) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code) The public reporting burden for this collection of information is

  8. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  9. Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule

    NASA Astrophysics Data System (ADS)

    Jin, Qinian; Wang, Wei

    2018-03-01

    The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.

  10. An Anisotropic A posteriori Error Estimator for CFD

    NASA Astrophysics Data System (ADS)

    Feijóo, Raúl A.; Padra, Claudio; Quintana, Fernando

    In this article, a robust anisotropic adaptive algorithm is presented, to solve compressible-flow equations using a stabilized CFD solver and automatic mesh generators. The association includes a mesh generator, a flow solver, and an a posteriori error-estimator code. The estimator was selected among several choices available (Almeida et al. (2000). Comput. Methods Appl. Mech. Engng, 182, 379-400; Borges et al. (1998). "Computational mechanics: new trends and applications". Proceedings of the 4th World Congress on Computational Mechanics, Bs.As., Argentina) giving a powerful computational tool. The main aim is to capture solution discontinuities, in this case, shocks, using the least amount of computational resources, i.e. elements, compatible with a solution of good quality. This leads to high aspect-ratio elements (stretching). To achieve this, a directional error estimator was specifically selected. The numerical results show good behavior of the error estimator, resulting in strongly-adapted meshes in few steps, typically three or four iterations, enough to capture shocks using a moderate and well-distributed amount of elements.

  11. Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)

    NASA Astrophysics Data System (ADS)

    Kasibhatla, P.

    2004-12-01

    In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.

  12. Mesh refinement in finite element analysis by minimization of the stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1989-01-01

    Most finite element packages provide means to generate meshes automatically. However, the user is usually confronted with the problem of not knowing whether the mesh generated is appropriate for the problem at hand. Since the accuracy of the finite element results is mesh dependent, mesh selection forms a very important step in the analysis. Indeed, in accurate analyses, meshes need to be refined or rezoned until the solution converges to a value so that the error is below a predetermined tolerance. A-posteriori methods use error indicators, developed by using the theory of interpolation and approximation theory, for mesh refinements. Some use other criterions, such as strain energy density variation and stress contours for example, to obtain near optimal meshes. Although these methods are adaptive, they are expensive. Alternatively, a priori methods, until now available, use geometrical parameters, for example, element aspect ratio. Therefore, they are not adaptive by nature. An adaptive a-priori method is developed. The criterion is that the minimization of the trace of the stiffness matrix with respect to the nodal coordinates, leads to a minimization of the potential energy, and as a consequence provide a good starting mesh. In a few examples the method is shown to provide the optimal mesh. The method is also shown to be relatively simple and amenable to development of computer algorithms. When the procedure is used in conjunction with a-posteriori methods of grid refinement, it is shown that fewer refinement iterations and fewer degrees of freedom are required for convergence as opposed to when the procedure is not used. The mesh obtained is shown to have uniform distribution of stiffness among the nodes and elements which, as a consequence, leads to uniform error distribution. Thus the mesh obtained meets the optimality criterion of uniform error distribution.

  13. Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling

    NASA Astrophysics Data System (ADS)

    Dȩbski, Wojciech

    2008-07-01

    Many aspects of earthquake source dynamics like dynamic stress drop, rupture velocity and directivity, etc. are currently inferred from the source time functions obtained by a deconvolution of the propagation and recording effects from seismograms. The question of the accuracy of obtained results remains open. In this paper we address this issue by considering two aspects of the source time function deconvolution. First, we propose a new pseudo-spectral parameterization of the sought function which explicitly takes into account the physical constraints imposed on the sought functions. Such parameterization automatically excludes non-physical solutions and so improves the stability and uniqueness of the deconvolution. Secondly, we demonstrate that the Bayesian approach to the inverse problem at hand, combined with an efficient Markov Chain Monte Carlo sampling technique, is a method which allows efficient estimation of the source time function uncertainties. The key point of the approach is the description of the solution of the inverse problem by the a posteriori probability density function constructed according to the Bayesian (probabilistic) theory. Next, the Markov Chain Monte Carlo sampling technique is used to sample this function so the statistical estimator of a posteriori errors can be easily obtained with minimal additional computational effort with respect to modern inversion (optimization) algorithms. The methodological considerations are illustrated by a case study of the mining-induced seismic event of the magnitude M L ≈3.1 that occurred at Rudna (Poland) copper mine. The seismic P-wave records were inverted for the source time functions, using the proposed algorithm and the empirical Green function technique to approximate Green functions. The obtained solutions seem to suggest some complexity of the rupture process with double pulses of energy release. However, the error analysis shows that the hypothesis of source complexity is not justified at the 95% confidence level. On the basis of the analyzed event we also show that the separation of the source inversion into two steps introduces limitations on the completeness of the a posteriori error analysis.

  14. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald; El-Azab, Anter; Pernice, Michael

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less

  15. Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Brown, Judith Alice

    In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less

  16. Adaptive reduction of constitutive model-form error using a posteriori error estimation techniques

    DOE PAGES

    Bishop, Joseph E.; Brown, Judith Alice

    2018-06-15

    In engineering practice, models are typically kept as simple as possible for ease of setup and use, computational efficiency, maintenance, and overall reduced complexity to achieve robustness. In solid mechanics, a simple and efficient constitutive model may be favored over one that is more predictive, but is difficult to parameterize, is computationally expensive, or is simply not available within a simulation tool. In order to quantify the modeling error due to the choice of a relatively simple and less predictive constitutive model, we adopt the use of a posteriori model-form error-estimation techniques. Based on local error indicators in the energymore » norm, an algorithm is developed for reducing the modeling error by spatially adapting the material parameters in the simpler constitutive model. The resulting material parameters are not material properties per se, but depend on the given boundary-value problem. As a first step to the more general nonlinear case, we focus here on linear elasticity in which the “complex” constitutive model is general anisotropic elasticity and the chosen simpler model is isotropic elasticity. As a result, the algorithm for adaptive error reduction is demonstrated using two examples: (1) A transversely-isotropic plate with hole subjected to tension, and (2) a transversely-isotropic tube with two side holes subjected to torsion.« less

  17. Certified dual-corrected radiation patterns of phased antenna arrays by offline–online order reduction of finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de

    2015-10-15

    This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.

  18. Population pharmacokinetics and maximum a posteriori probability Bayesian estimator of abacavir: application of individualized therapy in HIV-infected infants and toddlers

    PubMed Central

    Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne

    2012-01-01

    AIMS To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration–time curve (AUC) targeted dosage and individualize therapy. METHODS The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation–estimation method. RESULTS The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 l h−1 (RSE 6.3%), apparent central volume of distribution 4.94 l (RSE 28.7%), apparent peripheral volume of distribution 8.12 l (RSE14.2%), apparent intercompartment clearance 1.25 l h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. CONCLUSIONS The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC0–t was developed from the final model and can be used routinely to optimize individual dosing. PMID:21988586

  19. B-spline goal-oriented error estimators for geometrically nonlinear rods

    DTIC Science & Technology

    2011-04-01

    respectively, for the output functionals q2–q4 (linear and nonlinear with the trigonometric functions sine and cosine) in all the tests considered...of the errors resulting from the linear, quadratic and nonlinear (with trigonometric functions sine and cosine) outputs and for p = 1, 2. If the... Portugal . References [1] A.T. Adams. Sobolev Spaces. Academic Press, Boston, 1975. [2] M. Ainsworth and J.T. Oden. A posteriori error estimation in

  20. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  1. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  2. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  3. An a-posteriori finite element error estimator for adaptive grid computation of viscous incompressible flows

    NASA Astrophysics Data System (ADS)

    Wu, Heng

    2000-10-01

    In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.

  4. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  5. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  6. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  7. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  8. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  9. Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, G. M.

    2002-01-01

    We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.

  10. Quality assessment and control of finite element solutions

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Babuska, Ivo

    1987-01-01

    Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.

  11. Maximum a posteriori resampling of noisy, spatially correlated data

    NASA Astrophysics Data System (ADS)

    Goff, John A.; Jenkins, Chris; Calder, Brian

    2006-08-01

    In any geologic application, noisy data are sources of consternation for researchers, inhibiting interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated, ungoverned) application. We present here an alternative to filtering: a newly developed method for correcting noise in data by finding the "best" value given available information. The motivating rationale is that data points that are close to each other in space cannot differ by "too much," where "too much" is governed by the field covariance. Data with large uncertainties will frequently violate this condition and therefore ought to be corrected, or "resampled." Our solution for resampling is determined by the maximum of the a posteriori density function defined by the intersection of (1) the data error probability density function (pdf) and (2) the conditional pdf, determined by the geostatistical kriging algorithm applied to proximal data values. A maximum a posteriori solution can be computed sequentially going through all the data, but the solution depends on the order in which the data are examined. We approximate the global a posteriori solution by randomizing this order and taking the average. A test with a synthetic data set sampled from a known field demonstrates quantitatively and qualitatively the improvement provided by the maximum a posteriori resampling algorithm. The method is also applied to three marine geology/geophysics data examples, demonstrating the viability of the method for diverse applications: (1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties; (2) mean grain size data from the Adriatic Sea, which is a combination of both analytic (low uncertainty) and word-based (higher uncertainty) sources; and (3) side-scan backscatter data from the Martha's Vineyard Coastal Observatory which are, as is typical for such data, affected by speckle noise. Compared to filtering, maximum a posteriori resampling provides an objective and optimal method for reducing noise, and better preservation of the statistical properties of the sampled field. The primary disadvantage is that maximum a posteriori resampling is a computationally expensive procedure.

  12. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  13. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    DOE PAGES

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett; ...

    2017-01-01

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  14. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  15. Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations: Theory and Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.

  16. Influence of erroneous patient records on population pharmacokinetic modeling and individual bayesian estimation.

    PubMed

    van der Meer, Aize Franciscus; Touw, Daniël J; Marcus, Marco A E; Neef, Cornelis; Proost, Johannes H

    2012-10-01

    Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maximum a posteriori Bayesian (MAPB) estimation. A total of 1123 patient records of neonates who were administered vancomycin were used for population PK modeling by iterative 2-stage Bayesian (ITSB) analysis. Cut-off values for weighted residuals were tested for exclusion of records from the analysis. A simulation study was performed to assess the influence of erroneous records on population modeling and individual MAPB estimation. Also the cut-off values for weighted residuals were tested in the simulation study. Errors in registration have limited the influence on outcomes of population PK modeling but can have detrimental effects on individual MAPB estimation. A population PK model created from a data set with many registration errors has little influence on subsequent MAPB estimates for precisely recorded data. A weighted residual value of 2 for concentration measurements has good discriminative power for identification of erroneous records. ITSB analysis and its individual estimates are hardly affected by most registration errors. Large registration errors can be detected by weighted residuals of concentration.

  17. Evaluation of Space-Based Constraints on Global Nitrogen Oxide Emissions with Regional Aircraft Measurements over and Downwind of Eastern North America

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Sioris, Christopher E.; Chance, Kelly; Ryerson, Thomas B.; Flocke, Frank M.; Bertram, Timothy H.; Wooldridge, Paul J.; Cohen, Ronald C.; Neuman, J. Andy; Swanson, Aaron

    2006-01-01

    We retrieve tropospheric nitrogen dioxide (NO 2) columns for May 2004 to April 2005 from the SCIAMACHY satellite instrument to derive top-down emissions of nitrogen oxides (NO(x) = NO + NO2) via inverse modeling with a global chemical transport model (GEOS-Chem). Simulated NO 2 vertical profiles used in the retrieval are evaluated with airborne measurements over and downwind of North America (ICARTT); a northern midlatitude lightning source of 1.6 Tg N/yr minimizes bias in the retrieval. Retrieved NO2 columns are validated (r2 = 0.60, slope = 0.82) with coincident airborne in situ measurements. The top-down emissions are combined with a priori information from a bottom-up emission inventory with error weighting to achieve an improved a posteriori estimate of the global distribution of surface NOx emissions. Our a posteriori NOx emission inventory for land surface NOx emissions (46.1 Tg N/yr) is 22% larger than the GEIA-based a priori bottom-up inventory for 1998, a difference that reflects rising anthropogenic emissions, especially from East Asia A posteriori NOx emissions for East Asia (9.8 Tg N/yr) exceed those from other continents. The a posteriori inventory improves the GEOS-Chem simulation of NOx, peroxyacetylnitrate, and nitric acid with respect to airborne in situ measurements over and downwind of New York City. The a posteriori is 7% larger than the EDGAR 3.2FT2000 global inventory, 3% larger than the NEI99 inventory for the United States, and 68% larger than a regional inventory for 2000 for eastern Asia. SCIAMACHY NO2 columns over the North Atlantic show a weak plume from lightning NO(x).

  18. Population pharmacokinetics and maximum a posteriori probability Bayesian estimator of abacavir: application of individualized therapy in HIV-infected infants and toddlers.

    PubMed

    Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne

    2012-04-01

    Abacavir is used to treat HIV infection in both adults and children. The recommended paediatric dose is 8 mg kg(-1) twice daily up to a maximum of 300 mg twice daily. Weight was identified as the central covariate influencing pharmacokinetics of abacavir in children. A population pharmacokinetic model was developed to describe both once and twice daily pharmacokinetic profiles of abacavir in infants and toddlers. Standard dosage regimen is associated with large interindividual variability in abacavir concentrations. A maximum a posteriori probability Bayesian estimator of AUC(0-) (t) based on three time points (0, 1 or 2, and 3 h) is proposed to support area under the concentration-time curve (AUC) targeted individualized therapy in infants and toddlers. To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration-time curve (AUC) targeted dosage and individualize therapy. The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation-estimation method. The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 () h−1 (RSE 6.3%), apparent central volume of distribution 4.94 () (RSE 28.7%), apparent peripheral volume of distribution 8.12 () (RSE14.2%), apparent intercompartment clearance 1.25 () h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC(0-) (t) was developed from the final model and can be used routinely to optimize individual dosing. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  19. [Methods of a posteriori identification of food patterns in Brazilian children: a systematic review].

    PubMed

    Carvalho, Carolina Abreu de; Fonsêca, Poliana Cristina de Almeida; Nobre, Luciana Neri; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2016-01-01

    The objective of this study is to provide guidance for identifying dietary patterns using the a posteriori approach, and analyze the methodological aspects of the studies conducted in Brazil that identified the dietary patterns of children. Articles were selected from the Latin American and Caribbean Literature on Health Sciences, Scientific Electronic Library Online and Pubmed databases. The key words were: Dietary pattern; Food pattern; Principal Components Analysis; Factor analysis; Cluster analysis; Reduced rank regression. We included studies that identified dietary patterns of children using the a posteriori approach. Seven studies published between 2007 and 2014 were selected, six of which were cross-sectional and one cohort, Five studies used the food frequency questionnaire for dietary assessment; one used a 24-hour dietary recall and the other a food list. The method of exploratory approach used in most publications was principal components factor analysis, followed by cluster analysis. The sample size of the studies ranged from 232 to 4231, the values of the Kaiser-Meyer-Olkin test from 0.524 to 0.873, and Cronbach's alpha from 0.51 to 0.69. Few Brazilian studies identified dietary patterns of children using the a posteriori approach and principal components factor analysis was the technique most used.

  20. Optimal full motion video registration with rigorous error propagation

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn

    2014-06-01

    Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.

  1. Assessment of Person Fit Using Resampling-Based Approaches

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2016-01-01

    De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…

  2. On Multi-Dimensional Unstructured Mesh Adaption

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1999-01-01

    Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.

  3. Analysis of the geophysical data using a posteriori algorithms

    NASA Astrophysics Data System (ADS)

    Voskoboynikova, Gyulnara; Khairetdinov, Marat

    2016-04-01

    The problems of monitoring, prediction and prevention of extraordinary natural and technogenic events are priority of modern problems. These events include earthquakes, volcanic eruptions, the lunar-solar tides, landslides, falling celestial bodies, explosions utilized stockpiles of ammunition, numerous quarry explosion in open coal mines, provoking technogenic earthquakes. Monitoring is based on a number of successive stages, which include remote registration of the events responses, measurement of the main parameters as arrival times of seismic waves or the original waveforms. At the final stage the inverse problems associated with determining the geographic location and time of the registration event are solving. Therefore, improving the accuracy of the parameters estimation of the original records in the high noise is an important problem. As is known, the main measurement errors arise due to the influence of external noise, the difference between the real and model structures of the medium, imprecision of the time definition in the events epicenter, the instrumental errors. Therefore, posteriori algorithms more accurate in comparison with known algorithms are proposed and investigated. They are based on a combination of discrete optimization method and fractal approach for joint detection and estimation of the arrival times in the quasi-periodic waveforms sequence in problems of geophysical monitoring with improved accuracy. Existing today, alternative approaches to solving these problems does not provide the given accuracy. The proposed algorithms are considered for the tasks of vibration sounding of the Earth in times of lunar and solar tides, and for the problem of monitoring of the borehole seismic source location in trade drilling.

  4. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    PubMed

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Adaptive vibrational configuration interaction (A-VCI): A posteriori error estimation to efficiently compute anharmonic IR spectra

    NASA Astrophysics Data System (ADS)

    Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2016-05-01

    A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.

  6. Adaptive vibrational configuration interaction (A-VCI): A posteriori error estimation to efficiently compute anharmonic IR spectra.

    PubMed

    Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2016-05-28

    A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.

  7. Closed-loop carrier phase synchronization techniques motivated by likelihood functions

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Hinedi, S.; Simon, M.

    1994-01-01

    This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.

  8. A Posteriori Correction of Forecast and Observation Error Variances

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid

    2005-01-01

    Proposed method of total observation and forecast error variance correction is based on the assumption about normal distribution of "observed-minus-forecast" residuals (O-F), where O is an observed value and F is usually a short-term model forecast. This assumption can be accepted for several types of observations (except humidity) which are not grossly in error. Degree of nearness to normal distribution can be estimated by the symmetry or skewness (luck of symmetry) a(sub 3) = mu(sub 3)/sigma(sup 3) and kurtosis a(sub 4) = mu(sub 4)/sigma(sup 4) - 3 Here mu(sub i) = i-order moment, sigma is a standard deviation. It is well known that for normal distribution a(sub 3) = a(sub 4) = 0.

  9. A Ground Flash Fraction Retrieval Algorithm for GLM

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    A Bayesian inversion method is introduced for retrieving the fraction of ground flashes in a set of N lightning observed by a satellite lightning imager (such as the Geostationary Lightning Mapper, GLM). An exponential model is applied as a physically reasonable constraint to describe the measured lightning optical parameter distributions. Population statistics (i.e., the mean and variance) are invoked to add additional constraints to the retrieval process. The Maximum A Posteriori (MAP) solution is employed. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The approach is feasible for N greater than 2000, and retrieval errors decrease as N is increased.

  10. Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations

    NASA Astrophysics Data System (ADS)

    Becker, Roland; Vexler, Boris

    2005-06-01

    We consider the calibration of parameters in physical models described by partial differential equations. This task is formulated as a constrained optimization problem with a cost functional of least squares type using information obtained from measurements. An important issue in the numerical solution of this type of problem is the control of the errors introduced, first, by discretization of the equations describing the physical model, and second, by measurement errors or other perturbations. Our strategy is as follows: we suppose that the user defines an interest functional I, which might depend on both the state variable and the parameters and which represents the goal of the computation. First, we propose an a posteriori error estimator which measures the error with respect to this functional. This error estimator is used in an adaptive algorithm to construct economic meshes by local mesh refinement. The proposed estimator requires the solution of an auxiliary linear equation. Second, we address the question of sensitivity. Applying similar techniques as before, we derive quantities which describe the influence of small changes in the measurements on the value of the interest functional. These numbers, which we call relative condition numbers, give additional information on the problem under consideration. They can be computed by means of the solution of the auxiliary problem determined before. Finally, we demonstrate our approach at hand of a parameter calibration problem for a model flow problem.

  11. Performing a preliminary hazard analysis applied to administration of injectable drugs to infants.

    PubMed

    Hfaiedh, Nadia; Kabiche, Sofiane; Delescluse, Catherine; Balde, Issa-Bella; Merlin, Sophie; Carret, Sandra; de Pontual, Loïc; Fontan, Jean-Eudes; Schlatter, Joël

    2017-08-01

    Errors in hospitals during the preparation and administration of intravenous drugs to infants and children have been reported to a rate of 13% to 84%. This study aimed to investigate the potential for hazardous events that may lead to an accident for preparation and administration of drug injection in a pediatric department and to describe a reduction plan of risks. The preliminary hazard analysis (PHA) method was implemented by a multidisciplinary working group over a period of 5 months (April-August 2014) in infants aged from 28 days to 2 years. The group identified required hazard controls and follow-up actions to reduce the error risk. To analyze the results, the STATCART APR software was used. During the analysis, 34 hazardous situations were identified, among 17 were quoted very critical and drawn 69 risk scenarios. After follow-up actions, the scenarios with unacceptable risk declined from 17.4% to 0%, and these with acceptable under control from 46.4% to 43.5%. The PHA can be used as an aid in the prioritization of corrective actions and the implementation of control measures to reduce risk. The PHA is a complement of the a posteriori risk management already exists. © 2017 John Wiley & Sons, Ltd.

  12. Neural network modeling and an uncertainty analysis in Bayesian framework: A case study from the KTB borehole site

    NASA Astrophysics Data System (ADS)

    Maiti, Saumen; Tiwari, Ram Krishna

    2010-10-01

    A new probabilistic approach based on the concept of Bayesian neural network (BNN) learning theory is proposed for decoding litho-facies boundaries from well-log data. We show that how a multi-layer-perceptron neural network model can be employed in Bayesian framework to classify changes in litho-log successions. The method is then applied to the German Continental Deep Drilling Program (KTB) well-log data for classification and uncertainty estimation in the litho-facies boundaries. In this framework, a posteriori distribution of network parameter is estimated via the principle of Bayesian probabilistic theory, and an objective function is minimized following the scaled conjugate gradient optimization scheme. For the model development, we inflict a suitable criterion, which provides probabilistic information by emulating different combinations of synthetic data. Uncertainty in the relationship between the data and the model space is appropriately taken care by assuming a Gaussian a priori distribution of networks parameters (e.g., synaptic weights and biases). Prior to applying the new method to the real KTB data, we tested the proposed method on synthetic examples to examine the sensitivity of neural network hyperparameters in prediction. Within this framework, we examine stability and efficiency of this new probabilistic approach using different kinds of synthetic data assorted with different level of correlated noise. Our data analysis suggests that the designed network topology based on the Bayesian paradigm is steady up to nearly 40% correlated noise; however, adding more noise (˜50% or more) degrades the results. We perform uncertainty analyses on training, validation, and test data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a posteriori distribution about the peak model. We present a standard deviation error-map at the network output corresponding to the three types of the litho-facies present over the entire litho-section of the KTB. The comparisons of maximum a posteriori geological sections constructed here, based on the maximum a posteriori probability distribution, with the available geological information and the existing geophysical findings suggest that the BNN results reveal some additional finer details in the KTB borehole data at certain depths, which appears to be of some geological significance. We also demonstrate that the proposed BNN approach is superior to the conventional artificial neural network in terms of both avoiding "over-fitting" and aiding uncertainty estimation, which are vital for meaningful interpretation of geophysical records. Our analyses demonstrate that the BNN-based approach renders a robust means for the classification of complex changes in the litho-facies successions and thus could provide a useful guide for understanding the crustal inhomogeneity and the structural discontinuity in many other tectonically complex regions.

  13. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  14. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    NASA Astrophysics Data System (ADS)

    Vira, J.; Sofiev, M.

    2014-08-01

    This paper describes assimilation of trace gas observations into the chemistry transport model SILAM using the 3D-Var method. Assimilation results for year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the Airbase observation database, which provides the observational dataset used in this study. Attention is paid to the background and observation error covariance matrices, which are obtained primarily by iterative application of a posteriori diagnostics. The diagnostics are computed separately for two months representing summer and winter conditions, and further disaggregated by time of day. This allows deriving background and observation error covariance definitions which include both seasonal and diurnal variation. The consistency of the obtained covariance matrices is verified using χ2 diagnostics. The analysis scores are computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values is improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.

  15. High-degree Gravity Models from GRAIL Primary Mission Data

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; hide

    2013-01-01

    We have analyzed Ka?band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance?component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root?mean?square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre?GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter?derived topography are larger than 0.985 between l = 120 and 330. The free?air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre?GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit?track?related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S?band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 micrometers/s for GRGM420A and from 0.03 to 0.06 micrometers/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615+/-0.0000914, k21=0.023915+/-0.0000132, and k22=0.024852+/-0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734+/-0.0015, where the Love number error sigmas are those obtained with VCE.

  16. Ability of the current global observing network to constrain N2O sources and sinks

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.

    2014-12-01

    The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.

  17. A Posteriori Error Bounds for the Empirical Interpolation Method

    DTIC Science & Technology

    2010-03-18

    paramètres (x̄1, x̄2) ≡ µ ∈ DII ≡ [0.4, 0.6]2 et α = 0.1 fixé, les résultats sont similaires au cas d’un seul paramètre (Fig. 2). 1. Introduction...and denote the set of all distinct multi-indices β of dimension P of length I by MPI . The cardinality of MPI is given by card (MPI ) = ( P+I−1 I...operations, and we compute the interpolation errors ‖F (β)(·; τ) − F (β)M (·; τ)‖L∞(Ω), 0 < |β| < p − 1, for all τ ∈ Φ, in O(nΦMN ) ∑p−1 j=0 card (MPj

  18. Effects of using a posteriori methods for the conservation of integral invariants. [for weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.

    1988-01-01

    The nature and effect of using a posteriori adjustments to nonconservative finite-difference schemes to enforce integral invariants of the corresponding analytic system are examined. The method of a posteriori integral constraint restoration is analyzed for the case of linear advection, and the harmonic response associated with the a posteriori adjustments is examined in detail. The conservative properties of the shallow water system are reviewed, and the constraint restoration algorithm applied to the shallow water equations are described. A comparison is made between forecasts obtained using implicit and a posteriori methods for the conservation of mass, energy, and potential enstrophy in the complete nonlinear shallow-water system.

  19. A posteriori model validation for the temporal order of directed functional connectivity maps.

    PubMed

    Beltz, Adriene M; Molenaar, Peter C M

    2015-01-01

    A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).

  20. Multiple-Event Seismic Location Using the Markov-Chain Monte Carlo Technique

    NASA Astrophysics Data System (ADS)

    Myers, S. C.; Johannesson, G.; Hanley, W.

    2005-12-01

    We develop a new multiple-event location algorithm (MCMCloc) that utilizes the Markov-Chain Monte Carlo (MCMC) method. Unlike most inverse methods, the MCMC approach produces a suite of solutions, each of which is consistent with observations and prior estimates of data and model uncertainties. Model parameters in MCMCloc consist of event hypocenters, and travel-time predictions. Data are arrival time measurements and phase assignments. Posteriori estimates of event locations, path corrections, pick errors, and phase assignments are made through analysis of the posteriori suite of acceptable solutions. Prior uncertainty estimates include correlations between travel-time predictions, correlations between measurement errors, the probability of misidentifying one phase for another, and the probability of spurious data. Inclusion of prior constraints on location accuracy allows direct utilization of ground-truth locations or well-constrained location parameters (e.g. from InSAR) that aid in the accuracy of the solution. Implementation of a correlation structure for travel-time predictions allows MCMCloc to operate over arbitrarily large geographic areas. Transition in behavior between a multiple-event locator for tightly clustered events and a single-event locator for solitary events is controlled by the spatial correlation of travel-time predictions. We test the MCMC locator on a regional data set of Nevada Test Site nuclear explosions. Event locations and origin times are known for these events, allowing us to test the features of MCMCloc using a high-quality ground truth data set. Preliminary tests suggest that MCMCloc provides excellent relative locations, often outperforming traditional multiple-event location algorithms, and excellent absolute locations are attained when constraints from one or more ground truth event are included. When phase assignments are switched, we find that MCMCloc properly corrects the error when predicted arrival times are separated by several seconds. In cases where the predicted arrival times are within the combined uncertainty of prediction and measurement errors, MCMCloc determines the probability of one or the other phase assignment and propagates this uncertainty into all model parameters. We find that MCMCloc is a promising method for simultaneously locating large, geographically distributed data sets. Because we incorporate prior knowledge on many parameters, MCMCloc is ideal for combining trusted data with data of unknown reliability. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, Contribution UCRL-ABS-215048

  1. Allowing for MSD prevention during facilities planning for a public service: an a posteriori analysis of 10 library design projects.

    PubMed

    Bellemare, Marie; Trudel, Louis; Ledoux, Elise; Montreuil, Sylvie; Marier, Micheline; Laberge, Marie; Vincent, Patrick

    2006-01-01

    Research was conducted to identify an ergonomics-based intervention model designed to factor in musculoskeletal disorder (MSD) prevention when library projects are being designed. The first stage of the research involved an a posteriori analysis of 10 recent redesign projects. The purpose of the analysis was to document perceptions about the attention given to MSD prevention measures over the course of a project on the part of 2 categories of employees: librarians responsible for such projects and personnel working in the libraries before and after changes. Subjects were interviewed in focus groups. Outcomes of the analysis can guide our ergonomic assessment of current situations and contribute to a better understanding of the way inclusion or improvement of prevention measures can support the workplace design process.

  2. Local-Mesh, Local-Order, Adaptive Finite Element Methods with a Posteriori Error Estimators for Elliptic Partial Differential Equations.

    DTIC Science & Technology

    1981-12-01

    I I I I I o-F--o -- oIl lI I I 0--0------0I Im I I o--G--o ] II I I ...C-0076, the Department of Energy (DOE Grant DE-AC02-77ET53053), The National Science Foundation (Graduate Fellowship), and Yale University. " i o V.IM...element method, the choice of discretization i eft to the user, who must base his decision on experience with similar equations. - In recent years,

  3. An adaptive finite element method for the inequality-constrained Reynolds equation

    NASA Astrophysics Data System (ADS)

    Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha

    2018-07-01

    We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.

  4. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    NASA Astrophysics Data System (ADS)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  5. Application of a posteriori granddaughter and modified granddaughter designs to determine Holstein haplotype effects

    USDA-ARS?s Scientific Manuscript database

    A posteriori and modified granddaughter designs were applied to determine haplotype effects for Holstein bulls and cows with BovineSNP50 genotypes. The a posteriori granddaughter design was applied to 52 sire families, each with '100 genotyped sons with genetic evaluations based on progeny tests. Fo...

  6. Application of a posteriori granddaughter and modified granddaughter designs to determine Holstein haplotype effects

    USDA-ARS?s Scientific Manuscript database

    A posteriori and modified granddaughter designs were applied to determine haplotype effects for Holstein bulls and cows with BovineSNP50 genotypes. The a posteriori granddaughter design was applied to 52 sire families, each with >100 genotyped sons with genetic evaluations based on progeny tests. Fo...

  7. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    NASA Astrophysics Data System (ADS)

    Vira, J.; Sofiev, M.

    2015-02-01

    This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.

  8. An optimization-based framework for anisotropic simplex mesh adaptation

    NASA Astrophysics Data System (ADS)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  9. A posteriori model validation for the temporal order of directed functional connectivity maps

    PubMed Central

    Beltz, Adriene M.; Molenaar, Peter C. M.

    2015-01-01

    A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data). PMID:26379489

  10. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods. Appendix 2

    NASA Technical Reports Server (NTRS)

    Prudhomme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G.; Zang, Thomas A., Jr. (Technical Monitor)

    2002-01-01

    We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.

  11. Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model

    PubMed Central

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848

  12. Single-ping ADCP measurements in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Sammartino, Simone; García Lafuente, Jesús; Naranjo, Cristina; Sánchez Garrido, José Carlos; Sánchez Leal, Ricardo

    2016-04-01

    In most Acoustic Doppler Current Profiler (ADCP) user manuals, it is widely recommended to apply ensemble averaging of the single-pings measurements, in order to obtain reliable observations of the current speed. The random error related to the single-ping measurement is typically too high to be used directly, while the averaging operation reduces the ensemble error of a factor of approximately √N, with N the number of averaged pings. A 75 kHz ADCP moored in the western exit of the Strait of Gibraltar, included in the long-term monitoring of the Mediterranean outflow, has recently served as test setup for a different approach to current measurements. The ensemble averaging has been disabled, while maintaining the internal coordinate conversion made by the instrument, and a series of single-ping measurements has been collected every 36 seconds during a period of approximately 5 months. The huge amount of data has been fluently handled by the instrument, and no abnormal battery consumption has been recorded. On the other hand a long and unique series of very high frequency current measurements has been collected. Results of this novel approach have been exploited in a dual way: from a statistical point of view, the availability of single-ping measurements allows a real estimate of the (a posteriori) ensemble average error of both current and ancillary variables. While the theoretical random error for horizontal velocity is estimated a priori as ˜2 cm s-1 for a 50 pings ensemble, the value obtained by the a posteriori averaging is ˜15 cm s-1, with an asymptotical behavior starting from an averaging size of 10 pings per ensemble. This result suggests the presence of external sources of random error (e.g.: turbulence), of higher magnitude than the internal sources (ADCP intrinsic precision), which cannot be reduced by the ensemble averaging. On the other hand, although the instrumental configuration is clearly not suitable for a precise estimation of turbulent parameters, some hints of the turbulent structure of the flow can be obtained by the empirical computation of zonal Reynolds stress (along the predominant direction of the current) and rate of production and dissipation of turbulent kinetic energy. All the parameters show a clear correlation with tidal fluctuations of the current, with maximum values coinciding with flood tides, during the maxima of the outflow Mediterranean current.

  13. Dietary patterns and risk of colorectal adenoma: a systematic review and meta-analysis of observational studies.

    PubMed

    Godos, J; Bella, F; Torrisi, A; Sciacca, S; Galvano, F; Grosso, G

    2016-12-01

    Current evidence suggests that dietary patterns may play an important role in colorectal cancer risk. The present study aimed to perform a systematic review and meta-analysis of observational studies exploring the association between dietary patterns and colorectal adenomas (a precancerous condition). Pubmed and EMBASE electronic databases were systematically searched to retrieve eligible studies. Only studies exploring the risk or association with colorectal adenomas for the highest versus lowest category of exposure to a posteriori dietary patterns were included in the quantitative analysis. Random-effects models were applied to calculate relative risks (RRs) of colorectal adenomas for high adherence to healthy or unhealthy dietary patterns. Statistical heterogeneity and publication bias were explored. Twelve studies were reviewed. Three studies explored a priori dietary patterns using scores identifying adherence to the Mediterranean, Paleolithic and Dietary Approaches to Stop Hypertension (DASH) diet and reported an association with decreased colorectal adenoma risk. Two studies tested the association with colorectal adenomas between a posteriori dietary patterns showing lower odds of disease related to plant-based compared to meat-based dietary patterns. Seven studies identified 23 a posteriori dietary patterns and the analysis revealed that higher adherence to healthy and unhealthy dietary patterns was significantly associated risk of colorectal adenomas (RR = 0.81, 95% confidence interval = 0.71, 0.94 and RR = 1.24, 95% confidence interval = 1.13, 1.35, respectively) with no evidence of heterogeneity or publication bias. The results of this systematic review and meta-analysis indicate that dietary patterns may be associated with the risk of colorectal adenomas. © 2016 The British Dietetic Association Ltd.

  14. Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.

    2017-12-01

    In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.

  15. An analysis of the convergence of Newton iterations for solving elliptic Kepler's equation

    NASA Astrophysics Data System (ADS)

    Elipe, A.; Montijano, J. I.; Rández, L.; Calvo, M.

    2017-12-01

    In this note a study of the convergence properties of some starters E_0 = E_0(e,M) in the eccentricity-mean anomaly variables for solving the elliptic Kepler's equation (KE) by Newton's method is presented. By using a Wang Xinghua's theorem (Xinghua in Math Comput 68(225):169-186, 1999) on best possible error bounds in the solution of nonlinear equations by Newton's method, we obtain for each starter E_0(e,M) a set of values (e,M) \\in [0, 1) × [0, π ] that lead to the q-convergence in the sense that Newton's sequence (E_n)_{n ≥ 0} generated from E_0 = E_0(e,M) is well defined, converges to the exact solution E^* = E^*(e,M) of KE and further \\vert E_n - E^* \\vert ≤ q^{2^n -1} \\vert E_0 - E^* \\vert holds for all n ≥ 0. This study completes in some sense the results derived by Avendaño et al. (Celest Mech Dyn Astron 119:27-44, 2014) by using Smale's α -test with q=1/2. Also since in KE the convergence rate of Newton's method tends to zero as e → 0, we show that the error estimates given in the Wang Xinghua's theorem for KE can also be used to determine sets of q-convergence with q = e^k \\widetilde{q} for all e \\in [0,1) and a fixed \\widetilde{q} ≤ 1. Some remarks on the use of this theorem to derive a priori estimates of the error \\vert E_n - E^* \\vert after n Kepler's iterations are given. Finally, a posteriori bounds of this error that can be used to a dynamical estimation of the error are also obtained.

  16. Evaluation of Argos Telemetry Accuracy in the High-Arctic and Implications for the Estimation of Home-Range Size

    PubMed Central

    Christin, Sylvain; St-Laurent, Martin-Hugues; Berteaux, Dominique

    2015-01-01

    Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove “bad” locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada), with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements), the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location error needs additional research. PMID:26545245

  17. A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems

    DOE PAGES

    Yadav, Vineet; Michalak, Anna M.; Ray, Jaideep; ...

    2016-10-27

    We study independent verification and quantification of fossil fuel (FF) emissions that constitutes a considerable scientific challenge. By coupling atmospheric observations of CO 2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO 2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlyingmore » processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO 2 measurements over North America. Also, inversions are performed only for the month of January, as predominance of biospheric CO 2 signal relative to FF CO 2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 µmol m -2 s -1 between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.« less

  18. A Variable Step-Size Proportionate Affine Projection Algorithm for Identification of Sparse Impulse Response

    NASA Astrophysics Data System (ADS)

    Liu, Ligang; Fukumoto, Masahiro; Saiki, Sachio; Zhang, Shiyong

    2009-12-01

    Proportionate adaptive algorithms have been proposed recently to accelerate convergence for the identification of sparse impulse response. When the excitation signal is colored, especially the speech, the convergence performance of proportionate NLMS algorithms demonstrate slow convergence speed. The proportionate affine projection algorithm (PAPA) is expected to solve this problem by using more information in the input signals. However, its steady-state performance is limited by the constant step-size parameter. In this article we propose a variable step-size PAPA by canceling the a posteriori estimation error. This can result in high convergence speed using a large step size when the identification error is large, and can then considerably decrease the steady-state misalignment using a small step size after the adaptive filter has converged. Simulation results show that the proposed approach can greatly improve the steady-state misalignment without sacrificing the fast convergence of PAPA.

  19. Multiplicative noise removal via a learned dictionary.

    PubMed

    Huang, Yu-Mei; Moisan, Lionel; Ng, Michael K; Zeng, Tieyong

    2012-11-01

    Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods.

  20. Simple Form of MMSE Estimator for Super-Gaussian Prior Densities

    NASA Astrophysics Data System (ADS)

    Kittisuwan, Pichid

    2015-04-01

    The denoising method that become popular in recent years for additive white Gaussian noise (AWGN) are Bayesian estimation techniques e.g., maximum a posteriori (MAP) and minimum mean square error (MMSE). In super-Gaussian prior densities, it is well known that the MMSE estimator in such a case has a complicated form. In this work, we derive the MMSE estimation with Taylor series. We show that the proposed estimator also leads to a simple formula. An extension of this estimator to Pearson type VII prior density is also offered. The experimental result shows that the proposed estimator to the original MMSE nonlinearity is reasonably good.

  1. Ontology based log content extraction engine for a posteriori security control.

    PubMed

    Azkia, Hanieh; Cuppens-Boulahia, Nora; Cuppens, Frédéric; Coatrieux, Gouenou

    2012-01-01

    In a posteriori access control, users are accountable for actions they performed and must provide evidence, when required by some legal authorities for instance, to prove that these actions were legitimate. Generally, log files contain the needed data to achieve this goal. This logged data can be recorded in several formats; we consider here IHE-ATNA (Integrating the healthcare enterprise-Audit Trail and Node Authentication) as log format. The difficulty lies in extracting useful information regardless of the log format. A posteriori access control frameworks often include a log filtering engine that provides this extraction function. In this paper we define and enforce this function by building an IHE-ATNA based ontology model, which we query using SPARQL, and show how the a posteriori security controls are made effective and easier based on this function.

  2. Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.

    1997-01-01

    A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.

  3. Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias

    USGS Publications Warehouse

    Ruiz-Gutierrez, Viviana; Hooten, Melvin B.; Campbell Grant, Evan H.

    2016-01-01

    Biological monitoring programmes are increasingly relying upon large volumes of citizen-science data to improve the scope and spatial coverage of information, challenging the scientific community to develop design and model-based approaches to improve inference.Recent statistical models in ecology have been developed to accommodate false-negative errors, although current work points to false-positive errors as equally important sources of bias. This is of particular concern for the success of any monitoring programme given that rates as small as 3% could lead to the overestimation of the occurrence of rare events by as much as 50%, and even small false-positive rates can severely bias estimates of occurrence dynamics.We present an integrated, computationally efficient Bayesian hierarchical model to correct for false-positive and false-negative errors in detection/non-detection data. Our model combines independent, auxiliary data sources with field observations to improve the estimation of false-positive rates, when a subset of field observations cannot be validated a posteriori or assumed as perfect. We evaluated the performance of the model across a range of occurrence rates, false-positive and false-negative errors, and quantity of auxiliary data.The model performed well under all simulated scenarios, and we were able to identify critical auxiliary data characteristics which resulted in improved inference. We applied our false-positive model to a large-scale, citizen-science monitoring programme for anurans in the north-eastern United States, using auxiliary data from an experiment designed to estimate false-positive error rates. Not correcting for false-positive rates resulted in biased estimates of occupancy in 4 of the 10 anuran species we analysed, leading to an overestimation of the average number of occupied survey routes by as much as 70%.The framework we present for data collection and analysis is able to efficiently provide reliable inference for occurrence patterns using data from a citizen-science monitoring programme. However, our approach is applicable to data generated by any type of research and monitoring programme, independent of skill level or scale, when effort is placed on obtaining auxiliary information on false-positive rates.

  4. Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case

    NASA Astrophysics Data System (ADS)

    Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann

    2017-04-01

    Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.

  5. The Advantages of Using Planned Comparisons over Post Hoc Tests.

    ERIC Educational Resources Information Center

    Kuehne, Carolyn C.

    There are advantages to using a priori or planned comparisons rather than omnibus multivariate analysis of variance (MANOVA) tests followed by post hoc or a posteriori testing. A small heuristic data set is used to illustrate these advantages. An omnibus MANOVA test was performed on the data followed by a post hoc test (discriminant analysis). A…

  6. Joint inversion of regional and teleseismic earthquake waveforms

    NASA Astrophysics Data System (ADS)

    Baker, Mark R.; Doser, Diane I.

    1988-03-01

    A least squares joint inversion technique for regional and teleseismic waveforms is presented. The mean square error between seismograms and synthetics is minimized using true amplitudes. Matching true amplitudes in modeling requires meaningful estimates of modeling uncertainties and of seismogram signal-to-noise ratios. This also permits calculating linearized uncertainties on the solution based on accuracy and resolution. We use a priori estimates of earthquake parameters to stabilize unresolved parameters, and for comparison with a posteriori uncertainties. We verify the technique on synthetic data, and on the 1983 Borah Peak, Idaho (M = 7.3), earthquake. We demonstrate the inversion on the August 1954 Rainbow Mountain, Nevada (M = 6.8), earthquake and find parameters consistent with previous studies.

  7. Considerations about expected a posteriori estimation in adaptive testing: adaptive a priori, adaptive correction for bias, and adaptive integration interval.

    PubMed

    Raiche, Gilles; Blais, Jean-Guy

    2009-01-01

    In a computerized adaptive test, we would like to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Unfortunately, decreasing the number of items is accompanied by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. The authors suggest that it is possible to reduced the bias, and even the standard error of the estimate, by applying to each provisional estimation one or a combination of the following strategies: adaptive correction for bias proposed by Bock and Mislevy (1982), adaptive a priori estimate, and adaptive integration interval.

  8. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  9. A-Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Problems Coupled Through a Boundary with Non-Matching Grids

    DTIC Science & Technology

    2013-08-01

    both MFE and GFV, are often similar in size. As a gross measure of the effect of geometric projection and of the use of quadrature, we also report the...interest MFE ∑(e,ψ) or GFV ∑(e,ψ). Tables 1 and 2 show this using coarse and fine forward solutions. Table 1. The forward problem with solution (4.1) is run...adjoint data components ψu and ψp are constant everywhere and ψξ = 0. adj. grid MFE ∑(e,ψ) ∑MFEi ratio GFV ∑(e,ψ) ∑GFV i ratio 20x20 : 32x32 1.96E−3

  10. A priori and a posteriori analysis of the flow around a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Cimarelli, A.; Leonforte, A.; Franciolini, M.; De Angelis, E.; Angeli, D.; Crivellini, A.

    2017-11-01

    The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows.

  11. Effects of two classification strategies on a Benthic Community Index for streams in the Northern Lakes and Forests Ecoregion

    USGS Publications Warehouse

    Butcher, Jason T.; Stewart, Paul M.; Simon, Thomas P.

    2003-01-01

    Ninety-four sites were used to analyze the effects of two different classification strategies on the Benthic Community Index (BCI). The first, a priori classification, reflected the wetland status of the streams; the second, a posteriori classification, used a bio-environmental analysis to select classification variables. Both classifications were examined by measuring classification strength and testing differences in metric values with respect to group membership. The a priori (wetland) classification strength (83.3%) was greater than the a posteriori (bio-environmental) classification strength (76.8%). Both classifications found one metric that had significant differences between groups. The original index was modified to reflect the wetland classification by re-calibrating the scoring criteria for percent Crustacea and Mollusca. A proposed refinement to the original Benthic Community Index is suggested. This study shows the importance of using hypothesis-driven classifications, as well as exploratory statistical analysis, to evaluate alternative ways to reveal environmental variability in biological assessment tools.

  12. PSEUDO-CODEWORD LANDSCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; STEPANOV, MIKHAIL

    2007-01-10

    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less

  13. Error Control Techniques for Satellite and Space Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1996-01-01

    In this report, we present the results of our recent work on turbo coding in two formats. Appendix A includes the overheads of a talk that has been given at four different locations over the last eight months. This presentation has received much favorable comment from the research community and has resulted in the full-length paper included as Appendix B, 'A Distance Spectrum Interpretation of Turbo Codes'. Turbo codes use a parallel concatenation of rate 1/2 convolutional encoders combined with iterative maximum a posteriori probability (MAP) decoding to achieve a bit error rate (BER) of 10(exp -5) at a signal-to-noise ratio (SNR) of only 0.7 dB. The channel capacity for a rate 1/2 code with binary phase shift-keyed modulation on the AWGN (additive white Gaussian noise) channel is 0 dB, and thus the Turbo coding scheme comes within 0.7 DB of capacity at a BER of 10(exp -5).

  14. Mean phase predictor for maximum a posteriori demodulator

    NASA Technical Reports Server (NTRS)

    Altes, Richard A. (Inventor)

    1996-01-01

    A system and method for optimal maximum a posteriori (MAP) demodulation using a novel mean phase predictor. The mean phase predictor conducts cumulative averaging over multiple blocks of phase samples to provide accurate prior mean phases, to be input into a MAP phase estimator.

  15. Suboptimal schemes for atmospheric data assimilation based on the Kalman filter

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Cohn, Stephen E.

    1994-01-01

    This work is directed toward approximating the evolution of forecast error covariances for data assimilation. The performance of different algorithms based on simplification of the standard Kalman filter (KF) is studied. These are suboptimal schemes (SOSs) when compared to the KF, which is optimal for linear problems with known statistics. The SOSs considered here are several versions of optimal interpolation (OI), a scheme for height error variance advection, and a simplified KF in which the full height error covariance is advected. To employ a methodology for exact comparison among these schemes, a linear environment is maintained, in which a beta-plane shallow-water model linearized about a constant zonal flow is chosen for the test-bed dynamics. The results show that constructing dynamically balanced forecast error covariances rather than using conventional geostrophically balanced ones is essential for successful performance of any SOS. A posteriori initialization of SOSs to compensate for model - data imbalance sometimes results in poor performance. Instead, properly constructed dynamically balanced forecast error covariances eliminate the need for initialization. When the SOSs studied here make use of dynamically balanced forecast error covariances, the difference among their performances progresses naturally from conventional OI to the KF. In fact, the results suggest that even modest enhancements of OI, such as including an approximate dynamical equation for height error variances while leaving height error correlation structure homogeneous, go a long way toward achieving the performance of the KF, provided that dynamically balanced cross-covariances are constructed and that model errors are accounted for properly. The results indicate that such enhancements are necessary if unconventional data are to have a positive impact.

  16. Validating Affordances as an Instrument for Design and a Priori Analysis of Didactical Situations in Mathematics

    ERIC Educational Resources Information Center

    Sollervall, Håkan; Stadler, Erika

    2015-01-01

    The aim of the presented case study is to investigate how coherent analytical instruments may guide the a priori and a posteriori analyses of a didactical situation. In the a priori analysis we draw on the notion of affordances, as artefact-mediated opportunities for action, to construct hypothetical trajectories of goal-oriented actions that have…

  17. Application of the a posteriori granddaughter design to the Holstein genome

    USDA-ARS?s Scientific Manuscript database

    An a posteriori granddaughter design was applied to determine haplotype effects for the Holstein genome. A total of 52 grandsire families, each with >=100 genotyped sons with genetic evaluations based on progeny tests, were analyzed for 33 traits (milk, fat, and protein yields; fat and protein perce...

  18. Using Symbolic-Logic Matrices To Improve Confirmatory Factor Analysis Techniques.

    ERIC Educational Resources Information Center

    Creighton, Theodore B.; Coleman, Donald G.; Adams, R. C.

    A continuing and vexing problem associated with survey instrument development is the creation of items, initially, that correlate favorably a posteriori with constructs being measured. This study tests the use of symbolic-logic matrices developed by D. G. Coleman (1979) in creating factorially "pure" statistically discrete constructs in…

  19. Finite Volume Methods: Foundation and Analysis

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Ohlberger, Mario

    2003-01-01

    Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.

  20. Bayes Error Rate Estimation Using Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep

    2003-01-01

    The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.

  1. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  2. Determination of quantitative trait variants by concordance via application of the a posteriori granddaughter design to the U.S. Holstein population

    USDA-ARS?s Scientific Manuscript database

    Experimental designs that exploit family information can provide substantial predictive power in quantitative trait variant discovery projects. Concordance between quantitative trait locus genotype as determined by the a posteriori granddaughter design and marker genotype was determined for 29 trai...

  3. Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure

    ERIC Educational Resources Information Center

    Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.

    2006-01-01

    The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…

  4. A posteriori registration and subtraction of periapical radiographs for the evaluation of external apical root resorption after orthodontic treatment.

    PubMed

    Kreich, Eliane Maria; Chibinski, Ana Cláudia; Coelho, Ulisses; Wambier, Letícia Stadler; Zedebski, Rosário de Arruda Moura; de Moraes, Mari Eli Leonelli; de Moraes, Luiz Cesar

    2016-03-01

    This study employed a posteriori registration and subtraction of radiographic images to quantify the apical root resorption in maxillary permanent central incisors after orthodontic treatment, and assessed whether the external apical root resorption (EARR) was related to a range of parameters involved in the treatment. A sample of 79 patients (mean age, 13.5±2.2 years) with no history of trauma or endodontic treatment of the maxillary permanent central incisors was selected. Periapical radiographs taken before and after orthodontic treatment were digitized and imported to the Regeemy software. Based on an analysis of the posttreatment radiographs, the length of the incisors was measured using Image J software. The mean EARR was described in pixels and relative root resorption (%). The patient's age and gender, tooth extraction, use of elastics, and treatment duration were evaluated to identify possible correlations with EARR. The mean EARR observed was 15.44±12.1 pixels (5.1% resorption). No differences in the mean EARR were observed according to patient characteristics (gender, age) or treatment parameters (use of elastics, treatment duration). The only parameter that influenced the mean EARR of a patient was the need for tooth extraction. A posteriori registration and subtraction of periapical radiographs was a suitable method to quantify EARR after orthodontic treatment, and the need for tooth extraction increased the extent of root resorption after orthodontic treatment.

  5. A posteriori noise estimation in variable data sets. With applications to spectra and light curves

    NASA Astrophysics Data System (ADS)

    Czesla, S.; Molle, T.; Schmitt, J. H. M. M.

    2018-01-01

    Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis.

  6. Towards efficient backward-in-time adjoint computations using data compression techniques

    DOE PAGES

    Cyr, E. C.; Shadid, J. N.; Wildey, T.

    2014-12-16

    In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less

  7. Planned Comparisons as Better Alternatives to ANOVA Omnibus Tests.

    ERIC Educational Resources Information Center

    Benton, Roberta L.

    Analyses of data are presented to illustrate the advantages of using a priori or planned comparisons rather than omnibus analysis of variance (ANOVA) tests followed by post hoc or posteriori testing. The two types of planned comparisons considered are planned orthogonal non-trend coding contrasts and orthogonal polynomial or trend contrast coding.…

  8. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.

  9. Weighted Maximum-a-Posteriori Estimation in Tests Composed of Dichotomous and Polytomous Items

    ERIC Educational Resources Information Center

    Sun, Shan-Shan; Tao, Jian; Chang, Hua-Hua; Shi, Ning-Zhong

    2012-01-01

    For mixed-type tests composed of dichotomous and polytomous items, polytomous items often yield more information than dichotomous items. To reflect the difference between the two types of items and to improve the precision of ability estimation, an adaptive weighted maximum-a-posteriori (WMAP) estimation is proposed. To evaluate the performance of…

  10. Marginal Maximum A Posteriori Item Parameter Estimation for the Generalized Graded Unfolding Model

    ERIC Educational Resources Information Center

    Roberts, James S.; Thompson, Vanessa M.

    2011-01-01

    A marginal maximum a posteriori (MMAP) procedure was implemented to estimate item parameters in the generalized graded unfolding model (GGUM). Estimates from the MMAP method were compared with those derived from marginal maximum likelihood (MML) and Markov chain Monte Carlo (MCMC) procedures in a recovery simulation that varied sample size,…

  11. A Posteriori Restoration of Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Brown, R.; Boden, A. F.

    1995-01-01

    The Galileo spacecraft will use lossy data compression for the transmission of its science imagery over the low-bandwidth communication system. The technique chosen for image compression is a block transform technique based on the Integer Cosine Transform, a derivative of the JPEG image compression standard. Considered here are two known a posteriori enhancement techniques, which are adapted.

  12. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    PubMed Central

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  13. Bayesian Orbit Computation Tools for Objects on Geocentric Orbits

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Muinonen, K.; Oszkiewicz, D.

    2013-08-01

    We consider the space-debris orbital inversion problem via the concept of Bayesian inference. The methodology has been put forward for the orbital analysis of solar system small bodies in early 1990's [7] and results in a full solution of the statistical inverse problem given in terms of a posteriori probability density function (PDF) for the orbital parameters. We demonstrate the applicability of our statistical orbital analysis software to Earth orbiting objects, both using well-established Monte Carlo (MC) techniques (for a review, see e.g. [13] as well as recently developed Markov-chain MC (MCMC) techniques (e.g., [9]). In particular, we exploit the novel virtual observation MCMC method [8], which is based on the characterization of the phase-space volume of orbital solutions before the actual MCMC sampling. Our statistical methods and the resulting PDFs immediately enable probabilistic impact predictions to be carried out. Furthermore, this can be readily done also for very sparse data sets and data sets of poor quality - providing that some a priori information on the observational uncertainty is available. For asteroids, impact probabilities with the Earth from the discovery night onwards have been provided, e.g., by [11] and [10], the latter study includes the sampling of the observational-error standard deviation as a random variable.

  14. BAYESIAN PROTEIN STRUCTURE ALIGNMENT.

    PubMed

    Rodriguez, Abel; Schmidler, Scott C

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.

  15. On the accuracy potential of focused plenoptic camera range determination in long distance operation

    NASA Astrophysics Data System (ADS)

    Sardemann, Hannes; Maas, Hans-Gerd

    2016-04-01

    Plenoptic cameras have found increasing interest in optical 3D measurement techniques in recent years. While their basic principle is 100 years old, the development in digital photography, micro-lens fabrication technology and computer hardware has boosted the development and lead to several commercially available ready-to-use cameras. Beyond their popular option of a posteriori image focusing or total focus image generation, their basic ability of generating 3D information from single camera imagery depicts a very beneficial option for certain applications. The paper will first present some fundamentals on the design and history of plenoptic cameras and will describe depth determination from plenoptic camera image data. It will then present an analysis of the depth determination accuracy potential of plenoptic cameras. While most research on plenoptic camera accuracy so far has focused on close range applications, we will focus on mid and long ranges of up to 100 m. This range is especially relevant, if plenoptic cameras are discussed as potential mono-sensorial range imaging devices in (semi-)autonomous cars or in mobile robotics. The results show the expected deterioration of depth measurement accuracy with depth. At depths of 30-100 m, which may be considered typical in autonomous driving, depth errors in the order of 3% (with peaks up to 10-13 m) were obtained from processing small point clusters on an imaged target. Outliers much higher than these values were observed in single point analysis, stressing the necessity of spatial or spatio-temporal filtering of the plenoptic camera depth measurements. Despite these obviously large errors, a plenoptic camera may nevertheless be considered a valid option for the application fields of real-time robotics like autonomous driving or unmanned aerial and underwater vehicles, where the accuracy requirements decrease with distance.

  16. Analysis of trend changes in Northern African palaeo-climate by using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Schütz, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2010-05-01

    Climate variability of Northern Africa is of high interest due to climate-evolutionary linkages under study. The reconstruction of the palaeo-climate over long time scales, including the expected linkages (> 3 Ma), is mainly accessible by proxy data from deep sea drilling cores. By concentrating on published data sets, we try to decipher rhythms and trends to detect correlations between different proxy time series by advanced mathematical methods. Our preliminary data is dust concentration, as an indicator for climatic changes such as humidity, from the ODP sites 659, 721 and 967 situated around Northern Africa. Our interest is in challenging the available time series with advanced statistical methods to detect significant trend changes and to compare different model assumptions. For that purpose, we want to avoid the rescaling of the time axis to obtain equidistant time steps for filtering methods. Additionally we demand an plausible description of the errors for the estimated parameters, in terms of confidence intervals. Finally, depending on what model we restrict on, we also want an insight in the parameter structure of the assumed models. To gain this information, we focus on Bayesian inference by formulating the problem as a linear mixed model, so that the expectation and deviation are of linear structure. By using the Bayesian method we can formulate the posteriori density as a function of the model parameters and calculate this probability density in the parameter space. Depending which parameters are of interest, we analytically and numerically marginalize the posteriori with respect to the remaining parameters of less interest. We apply a simple linear mixed model to calculate the posteriori densities of the ODP sites 659 and 721 concerning the last 5 Ma at maximum. From preliminary calculations on these data sets, we can confirm results gained by the method of breakfit regression combined with block bootstrapping ([1]). We obtain a significant change point around (1.63 - 1.82) Ma, which correlates with a global climate transition due to the establishment of the Walker circulation ([2]). Furthermore we detect another significant change point around (2.7 - 3.2) Ma, which correlates with the end of the Pliocene warm period (permanent El Niño-like conditions) and the onset of a colder global climate ([3], [4]). The discussion on the algorithm, the results of calculated confidence intervals, the available information about the applied model in the parameter space and the comparison of multiple change point models will be presented. [1] Trauth, M.H., et al., Quaternary Science Reviews, 28, 2009 [2] Wara, M.W., et al., Science, Vol. 309, 2005 [3] Chiang, J.C.H., Annual Review of Earth and Planetary Sciences, Vol. 37, 2009 [4] deMenocal, P., Earth and Planetary Science Letters, 220, 2004

  17. Performance and precision of double digestion RAD (ddRAD) genotyping in large multiplexed datasets of marine fish species.

    PubMed

    Maroso, F; Hillen, J E J; Pardo, B G; Gkagkavouzis, K; Coscia, I; Hermida, M; Franch, R; Hellemans, B; Van Houdt, J; Simionati, B; Taggart, J B; Nielsen, E E; Maes, G; Ciavaglia, S A; Webster, L M I; Volckaert, F A M; Martinez, P; Bargelloni, L; Ogden, R

    2018-06-01

    The development of Genotyping-By-Sequencing (GBS) technologies enables cost-effective analysis of large numbers of Single Nucleotide Polymorphisms (SNPs), especially in "non-model" species. Nevertheless, as such technologies enter a mature phase, biases and errors inherent to GBS are becoming evident. Here, we evaluated the performance of double digest Restriction enzyme Associated DNA (ddRAD) sequencing in SNP genotyping studies including high number of samples. Datasets of sequence data were generated from three marine teleost species (>5500 samples, >2.5 × 10 12 bases in total), using a standardized protocol. A common bioinformatics pipeline based on STACKS was established, with and without the use of a reference genome. We performed analyses throughout the production and analysis of ddRAD data in order to explore (i) the loss of information due to heterogeneous raw read number across samples; (ii) the discrepancy between expected and observed tag length and coverage; (iii) the performances of reference based vs. de novo approaches; (iv) the sources of potential genotyping errors of the library preparation/bioinformatics protocol, by comparing technical replicates. Our results showed use of a reference genome and a posteriori genotype correction improved genotyping precision. Individual read coverage was a key variable for reproducibility; variance in sequencing depth between loci in the same individual was also identified as an important factor and found to correlate to tag length. A comparison of downstream analysis carried out with ddRAD vs single SNP allele specific assay genotypes provided information about the levels of genotyping imprecision that can have a significant impact on allele frequency estimations and population assignment. The results and insights presented here will help to select and improve approaches to the analysis of large datasets based on RAD-like methodologies. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. An Iterative Maximum a Posteriori Estimation of Proficiency Level to Detect Multiple Local Likelihood Maxima

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles

    2010-01-01

    In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…

  19. High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik

    2014-11-01

    This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.

  20. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  1. A feasibility study on estimation of tissue mixture contributions in 3D arterial spin labeling sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Pu, Huangsheng; Zhang, Xi; Li, Baojuan; Liang, Zhengrong; Lu, Hongbing

    2017-03-01

    Arterial spin labeling (ASL) provides a noninvasive measurement of cerebral blood flow (CBF). Due to relatively low spatial resolution, the accuracy of CBF measurement is affected by the partial volume (PV) effect. To obtain accurate CBF estimation, the contribution of each tissue type in the mixture is desirable. In general, this can be obtained according to the registration of ASL and structural image in current ASL studies. This approach can obtain probability of each tissue type inside each voxel, but it also introduces error, which include error of registration algorithm and imaging itself error in scanning of ASL and structural image. Therefore, estimation of mixture percentage directly from ASL data is greatly needed. Under the assumption that ASL signal followed the Gaussian distribution and each tissue type is independent, a maximum a posteriori expectation-maximization (MAP-EM) approach was formulated to estimate the contribution of each tissue type to the observed perfusion signal at each voxel. Considering the sensitivity of MAP-EM to the initialization, an approximately accurate initialization was obtain using 3D Fuzzy c-means method. Our preliminary results demonstrated that the GM and WM pattern across the perfusion image can be sufficiently visualized by the voxel-wise tissue mixtures, which may be promising for the diagnosis of various brain diseases.

  2. Adaptive h -refinement for reduced-order models: ADAPTIVE h -refinement for reduced-order models

    DOE PAGES

    Carlberg, Kevin T.

    2014-11-05

    Our work presents a method to adaptively refine reduced-order models a posteriori without requiring additional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it enriches the reduced-basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k-means clustering of the state variables using snapshot data. This method identifies the vectors to split online using a dual-weighted-residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large-scale operationsmore » or full-order-model solves. Furthermore, it enables the reduced-order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced-order model is mathematically equivalent to the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.« less

  3. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  4. Nonlinear BCJR equalizer for suppression of intrachannel nonlinearities in 40 Gb/s optical communications systems.

    PubMed

    Djordjevic, Ivan B; Vasic, Bane

    2006-05-29

    A maximum a posteriori probability (MAP) symbol decoding supplemented with iterative decoding is proposed as an effective mean for suppression of intrachannel nonlinearities. The MAP detector, based on Bahl-Cocke-Jelinek-Raviv algorithm, operates on the channel trellis, a dynamical model of intersymbol interference, and provides soft-decision outputs processed further in an iterative decoder. A dramatic performance improvement is demonstrated. The main reason is that the conventional maximum-likelihood sequence detector based on Viterbi algorithm provides hard-decision outputs only, hence preventing the soft iterative decoding. The proposed scheme operates very well in the presence of strong intrachannel intersymbol interference, when other advanced forward error correction schemes fail, and it is also suitable for 40 Gb/s upgrade over existing 10 Gb/s infrastructure.

  5. VizieR Online Data Catalog: Stellar surface gravity measures of KIC stars (Bastien+, 2016)

    NASA Astrophysics Data System (ADS)

    Bastien, F. A.; Stassun, K. G.; Basri, G.; Pepper, J.

    2016-04-01

    In our analysis we use all quarters from the Kepler mission except for Q0, and we only use the long-cadence light curves. Additionally, we only use the Pre-search Data Conditioning, Maximum A Posteriori (PDC-MAP) light curves, as further discussed in Section 3.4.1. (1 data file).

  6. A posteriori registration and subtraction of periapical radiographs for the evaluation of external apical root resorption after orthodontic treatment

    PubMed Central

    Chibinski, Ana Cláudia; Coelho, Ulisses; Wambier, Letícia Stadler; Zedebski, Rosário de Arruda Moura; de Moraes, Mari Eli Leonelli; de Moraes, Luiz Cesar

    2016-01-01

    Purpose This study employed a posteriori registration and subtraction of radiographic images to quantify the apical root resorption in maxillary permanent central incisors after orthodontic treatment, and assessed whether the external apical root resorption (EARR) was related to a range of parameters involved in the treatment. Materials and Methods A sample of 79 patients (mean age, 13.5±2.2 years) with no history of trauma or endodontic treatment of the maxillary permanent central incisors was selected. Periapical radiographs taken before and after orthodontic treatment were digitized and imported to the Regeemy software. Based on an analysis of the posttreatment radiographs, the length of the incisors was measured using Image J software. The mean EARR was described in pixels and relative root resorption (%). The patient's age and gender, tooth extraction, use of elastics, and treatment duration were evaluated to identify possible correlations with EARR. Results The mean EARR observed was 15.44±12.1 pixels (5.1% resorption). No differences in the mean EARR were observed according to patient characteristics (gender, age) or treatment parameters (use of elastics, treatment duration). The only parameter that influenced the mean EARR of a patient was the need for tooth extraction. Conclusion A posteriori registration and subtraction of periapical radiographs was a suitable method to quantify EARR after orthodontic treatment, and the need for tooth extraction increased the extent of root resorption after orthodontic treatment. PMID:27051635

  7. Variance Difference between Maximum Likelihood Estimation Method and Expected A Posteriori Estimation Method Viewed from Number of Test Items

    ERIC Educational Resources Information Center

    Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.

    2016-01-01

    The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…

  8. Performance enhancement of wireless mobile adhoc networks through improved error correction and ICI cancellation

    NASA Astrophysics Data System (ADS)

    Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar

    2012-12-01

    Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.

  9. Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions

    NASA Astrophysics Data System (ADS)

    Semplice, Matteo; Loubère, Raphaël

    2018-02-01

    In this paper we propose a third order accurate finite volume scheme based on a posteriori limiting of polynomial reconstructions within an Adaptive-Mesh-Refinement (AMR) simulation code for hydrodynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a so-called candidate solution computed at each stage of a third order Runge-Kutta scheme. Such detection may include different properties, derived from physics, such as positivity, from numerics, such as a non-oscillatory behavior, or from computer requirements such as the absence of NaN's. Troubled cell values are discarded and re-computed starting again from the previous time-step using a more dissipative scheme but only locally, close to these cells. By locally decrementing the degree of the polynomial reconstructions from 2 to 0 we switch from a third-order to a first-order accurate but more stable scheme. The entropy indicator sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because if some refinement is needed at the end of a time step, then the current time-step is recomputed with the refined mesh, but only locally, close to the new cells. We show on a large set of numerical tests that this a posteriori limiting procedure coupled with the entropy-based AMR technology can maintain not only optimal accuracy on smooth flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover numerical evidences show that this approach is at least comparable in terms of accuracy and cost to a more classical CWENO approach within the same AMR context.

  10. H-P adaptive methods for finite element analysis of aerothermal loads in high-speed flows

    NASA Technical Reports Server (NTRS)

    Chang, H. J.; Bass, J. M.; Tworzydlo, W.; Oden, J. T.

    1993-01-01

    The commitment to develop the National Aerospace Plane and Maneuvering Reentry Vehicles has generated resurgent interest in the technology required to design structures for hypersonic flight. The principal objective of this research and development effort has been to formulate and implement a new class of computational methodologies for accurately predicting fine scale phenomena associated with this class of problems. The initial focus of this effort was to develop optimal h-refinement and p-enrichment adaptive finite element methods which utilize a-posteriori estimates of the local errors to drive the adaptive methodology. Over the past year this work has specifically focused on two issues which are related to overall performance of a flow solver. These issues include the formulation and implementation (in two dimensions) of an implicit/explicit flow solver compatible with the hp-adaptive methodology, and the design and implementation of computational algorithm for automatically selecting optimal directions in which to enrich the mesh. These concepts and algorithms have been implemented in a two-dimensional finite element code and used to solve three hypersonic flow benchmark problems (Holden Mach 14.1, Edney shock on shock interaction Mach 8.03, and the viscous backstep Mach 4.08).

  11. Hardware Implementation of Serially Concatenated PPM Decoder

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon; Barsoum, Maged; Cheng, Michael; Nakashima, Michael

    2009-01-01

    A prototype decoder for a serially concatenated pulse position modulation (SCPPM) code has been implemented in a field-programmable gate array (FPGA). At the time of this reporting, this is the first known hardware SCPPM decoder. The SCPPM coding scheme, conceived for free-space optical communications with both deep-space and terrestrial applications in mind, is an improvement of several dB over the conventional Reed-Solomon PPM scheme. The design of the FPGA SCPPM decoder is based on a turbo decoding algorithm that requires relatively low computational complexity while delivering error-rate performance within approximately 1 dB of channel capacity. The SCPPM encoder consists of an outer convolutional encoder, an interleaver, an accumulator, and an inner modulation encoder (more precisely, a mapping of bits to PPM symbols). Each code is describable by a trellis (a finite directed graph). The SCPPM decoder consists of an inner soft-in-soft-out (SISO) module, a de-interleaver, an outer SISO module, and an interleaver connected in a loop (see figure). Each SISO module applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to compute a-posteriori bit log-likelihood ratios (LLRs) from apriori LLRs by traversing the code trellis in forward and backward directions. The SISO modules iteratively refine the LLRs by passing the estimates between one another much like the working of a turbine engine. Extrinsic information (the difference between the a-posteriori and a-priori LLRs) is exchanged rather than the a-posteriori LLRs to minimize undesired feedback. All computations are performed in the logarithmic domain, wherein multiplications are translated into additions, thereby reducing complexity and sensitivity to fixed-point implementation roundoff errors. To lower the required memory for storing channel likelihood data and the amounts of data transfer between the decoder and the receiver, one can discard the majority of channel likelihoods, using only the remainder in operation of the decoder. This is accomplished in the receiver by transmitting only a subset consisting of the likelihoods that correspond to time slots containing the largest numbers of observed photons during each PPM symbol period. The assumed number of observed photons in the remaining time slots is set to the mean of a noise slot. In low background noise, the selection of a small subset in this manner results in only negligible loss. Other features of the decoder design to reduce complexity and increase speed include (1) quantization of metrics in an efficient procedure chosen to incur no more than a small performance loss and (2) the use of the max-star function that allows sum of exponentials to be computed by simple operations that involve only an addition, a subtraction, and a table lookup. Another prominent feature of the design is a provision for access to interleaver and de-interleaver memory in a single clock cycle, eliminating the multiple clock-cycle latency characteristic of prior interleaver and de-interleaver designs.

  12. Constraining East Asian CO2 emissions with GOSAT retrievals: methods and policy implications

    NASA Astrophysics Data System (ADS)

    Shim, C.; Henze, D. K.; Deng, F.

    2017-12-01

    The world largest CO2 emissions are from East Asia. However, there are large uncertainties in CO2 emission inventories, mainly because of imperfections in bottom-up statistics and a lack of observations for validating emission fluxes, particularly over China. Here we tried to constrain East Asian CO2 emissions with GOSAT retrievals applying 4-Dvar GEOS-Chem and its adjoint model. We applied the inversion to only the cold season (November - February) in 2009 - 2010 since the summer monsoon and greater transboundary impacts in spring and fall greatly reduced the GOSAT retrievals. In the cold season, the a posteriori CO2 emissions over East Asia generally higher by 5 - 20%, particularly Northeastern China shows intensively higher in a posteriori emissions ( 20%), where the Chinese government is recently focusing on mitigating the air pollutants. In another hand, a posteriori emissions from Southern China are lower 10 - 25%. A posteriori emissions in Korea and Japan are mostly higher by 10 % except over Kyushu region. With our top-down estimates with 4-Dvar CO2 inversion, we will evaluate the current regional CO2 emissions inventories and potential uncertainties in the sectoral emissions. This study will help understand the quantitative information on anthropogenic CO2 emissions over East Asia and will give policy implications for the mitigation targets.

  13. Simultaneous maximum a posteriori longitudinal PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Ellis, Sam; Reader, Andrew J.

    2017-09-01

    Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.

  14. An analysis of the multiple model adaptive control algorithm. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, C. S.

    1978-01-01

    Qualitative and quantitative aspects of the multiple model adaptive control method are detailed. The method represents a cascade of something which resembles a maximum a posteriori probability identifier (basically a bank of Kalman filters) and a bank of linear quadratic regulators. Major qualitative properties of the MMAC method are examined and principle reasons for unacceptable behavior are explored.

  15. Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography

    PubMed Central

    Kasaragod, Deepa; Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki

    2017-01-01

    This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head. PMID:28270974

  16. Kernel Wiener filter and its application to pattern recognition.

    PubMed

    Yoshino, Hirokazu; Dong, Chen; Washizawa, Yoshikazu; Yamashita, Yukihiko

    2010-11-01

    The Wiener filter (WF) is widely used for inverse problems. From an observed signal, it provides the best estimated signal with respect to the squared error averaged over the original and the observed signals among linear operators. The kernel WF (KWF), extended directly from WF, has a problem that an additive noise has to be handled by samples. Since the computational complexity of kernel methods depends on the number of samples, a huge computational cost is necessary for the case. By using the first-order approximation of kernel functions, we realize KWF that can handle such a noise not by samples but as a random variable. We also propose the error estimation method for kernel filters by using the approximations. In order to show the advantages of the proposed methods, we conducted the experiments to denoise images and estimate errors. We also apply KWF to classification since KWF can provide an approximated result of the maximum a posteriori classifier that provides the best recognition accuracy. The noise term in the criterion can be used for the classification in the presence of noise or a new regularization to suppress changes in the input space, whereas the ordinary regularization for the kernel method suppresses changes in the feature space. In order to show the advantages of the proposed methods, we conducted experiments of binary and multiclass classifications and classification in the presence of noise.

  17. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  18. The Effect of Substituting p for alpha on the Unconditional and Conditional Powers of a Null Hypothesis Test.

    ERIC Educational Resources Information Center

    Martuza, Victor R.; Engel, John D.

    Results from classical power analysis (Brewer, 1972) suggest that a researcher should not set a=p (when p is less than a) in a posteriori fashion when a study yields statistically significant results because of a resulting decrease in power. The purpose of the present report is to use Bayesian theory in examining the validity of this…

  19. Automatic Modulation Classification of Common Communication and Pulse Compression Radar Waveforms using Cyclic Features

    DTIC Science & Technology

    2013-03-01

    intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or

  20. A Bayesian Approach to Systematic Error Correction in Kepler Photometric Time Series

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon Michael; VanCleve, J.; Twicken, J. D.; Smith, J. C.; Kepler Science Team

    2011-01-01

    In order for the Kepler mission to achieve its required 20 ppm photometric precision for 6.5 hr observations of 12th magnitude stars, the Presearch Data Conditioning (PDC) software component of the Kepler Science Processing Pipeline must reduce systematic errors in flux time series to the limit of stochastic noise for errors with time-scales less than three days, without smoothing or over-fitting away the transits that Kepler seeks. The current version of PDC co-trends against ancillary engineering data and Pipeline generated data using essentially a least squares (LS) approach. This approach is successful for quiet stars when all sources of systematic error have been identified. If the stars are intrinsically variable or some sources of systematic error are unknown, LS will nonetheless attempt to explain all of a given time series, not just the part the model can explain well. Negative consequences can include loss of astrophysically interesting signal, and injection of high-frequency noise into the result. As a remedy, we present a Bayesian Maximum A Posteriori (MAP) approach, in which a subset of intrinsically quiet and highly-correlated stars is used to establish the probability density function (PDF) of robust fit parameters in a diagonalized basis. The PDFs then determine a "reasonable” range for the fit parameters for all stars, and brake the runaway fitting that can distort signals and inject noise. We present a closed-form solution for Gaussian PDFs, and show examples using publically available Quarter 1 Kepler data. A companion poster (Van Cleve et al.) shows applications and discusses current work in more detail. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  1. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne

    2014-01-01

    Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.

  2. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  3. Maximum a posteriori decoder for digital communications

    NASA Technical Reports Server (NTRS)

    Altes, Richard A. (Inventor)

    1997-01-01

    A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.

  4. Extracting volatility signal using maximum a posteriori estimation

    NASA Astrophysics Data System (ADS)

    Neto, David

    2016-11-01

    This paper outlines a methodology to estimate a denoised volatility signal for foreign exchange rates using a hidden Markov model (HMM). For this purpose a maximum a posteriori (MAP) estimation is performed. A double exponential prior is used for the state variable (the log-volatility) in order to allow sharp jumps in realizations and then log-returns marginal distributions with heavy tails. We consider two routes to choose the regularization and we compare our MAP estimate to realized volatility measure for three exchange rates.

  5. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Subrata; Ravichandran, Lalitha; Brabec, Jiri

    2015-03-21

    As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] and [Brabec et al., J. Chem. Phys., 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the FCI limit is also investigated. Various forms of the USS and simplified diagonal USSD corrections at the SD and SD(T) levels are numerically assessed on several model systems and onmore » the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori BWCC size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like e.g. for the asymmetric vibration mode of ozone.« less

  6. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

    NASA Astrophysics Data System (ADS)

    Eigel, Martin; Marschall, Manuel; Schneider, Reinhold

    2018-03-01

    A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.

  7. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  8. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  9. An Indoor Slam Method Based on Kinect and Multi-Feature Extended Information Filter

    NASA Astrophysics Data System (ADS)

    Chang, M.; Kang, Z.

    2017-09-01

    Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper.

  10. A Method for Retrieving Ground Flash Fraction from Satellite Lightning Imager Data

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2009-01-01

    A general theory for retrieving the fraction of ground flashes in N lightning observed by a satellite-based lightning imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global lightning climatology into separate ground and cloud flash climatologies will improve estimates of lightning nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model predictions.

  11. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  12. A Bayesian approach to tracking patients having changing pharmacokinetic parameters

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Jelliffe, Roger W.

    2004-01-01

    This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.

  13. How important is self-consistency for the dDsC density dependent dispersion correction?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch; Golubev, Nikolay

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical pointmore » of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.« less

  14. Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.

    PubMed

    Rideout, Brendan P; Dosso, Stan E; Hannay, David E

    2013-09-01

    This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.

  15. A method to account for the temperature sensitivity of TCCON total column measurements

    NASA Astrophysics Data System (ADS)

    Niebling, Sabrina G.; Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) consists of ground-based Fourier Transform Spectrometer (FTS) systems all around the world. It achieves better than 0.25% precision and accuracy for total column measurements of CO2 [Wunch et al. (2011)]. In recent years, the TCCON data processing and retrieval software (GGG) has been improved to achieve better and better results (e. g. ghost correction, improved a priori profiles, more accurate spectroscopy). However, a small error is also introduced by the insufficent knowledge of the true temperature profile in the atmosphere above the individual instruments. This knowledge is crucial to retrieve highly precise gas concentrations. In the current version of the retrieval software, we use six-hourly NCEP reanalysis data to produce one temperature profile at local noon for each measurement day. For sites in the mid latitudes which can have a large diurnal variation of the temperature in the lowermost kilometers of the atmosphere, this approach can lead to small errors in the final gas concentration of the total column. Here, we present and describe a method to account for the temperature sensitivity of the total column measurements. We exploit the fact that H2O is most abundant in the lowermost kilometers of the atmosphere where the largest diurnal temperature variations occur. We use single H2O absorption lines with different temperature sensitivities to gain information about the temperature variations over the course of the day. This information is used to apply a posteriori correction of the retrieved gas concentration of total column. In addition, we show that the a posteriori temperature correction is effective by applying it to data from Lamont, Oklahoma, USA (36,6°N and 97,5°W). We chose this site because regular radiosonde launches with a time resolution of six hours provide detailed information of the real temperature in the atmosphere and allow us to test the effectiveness of our correction. References: Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2087-2112, 2011.

  16. A Methodology to Seperate and Analyze a Seismic Wide Angle Profile

    NASA Astrophysics Data System (ADS)

    Weinzierl, Wolfgang; Kopp, Heidrun

    2010-05-01

    General solutions of inverse problems can often be obtained through the introduction of probability distributions to sample the model space. We present a simple approach of defining an a priori space in a tomographic study and retrieve the velocity-depth posterior distribution by a Monte Carlo method. Utilizing a fitting routine designed for very low statistics to setup and analyze the obtained tomography results, it is possible to statistically separate the velocity-depth model space derived from the inversion of seismic refraction data. An example of a profile acquired in the Lesser Antilles subduction zone reveals the effectiveness of this approach. The resolution analysis of the structural heterogeneity includes a divergence analysis which proves to be capable of dissecting long wide-angle profiles for deep crust and upper mantle studies. The complete information of any parameterised physical system is contained in the a posteriori distribution. Methods for analyzing and displaying key properties of the a posteriori distributions of highly nonlinear inverse problems are therefore essential in the scope of any interpretation. From this study we infer several conclusions concerning the interpretation of the tomographic approach. By calculating a global as well as singular misfits of velocities we are able to map different geological units along a profile. Comparing velocity distributions with the result of a tomographic inversion along the profile we can mimic the subsurface structures in their extent and composition. The possibility of gaining a priori information for seismic refraction analysis by a simple solution to an inverse problem and subsequent resolution of structural heterogeneities through a divergence analysis is a new and simple way of defining a priori space and estimating the a posteriori mean and covariance in singular and general form. The major advantage of a Monte Carlo based approach in our case study is the obtained knowledge of velocity depth distributions. Certainly the decision of where to extract velocity information on the profile for setting up a Monte Carlo ensemble is limiting the a priori space. However, the general conclusion of analyzing the velocity field according to distinct reference distributions gives us the possibility to define the covariance according to any geological unit if we have a priori information on the velocity depth distributions. Using the wide angle data recorded across the Lesser Antilles arc, we are able to resolve a shallow feature like the backstop by a robust and simple divergence analysis. We demonstrate the effectiveness of the new methodology to extract some key features and properties from the inversion results by including information concerning the confidence level of results.

  17. Combining experimental and simulation data of molecular processes via augmented Markov models.

    PubMed

    Olsson, Simon; Wu, Hao; Paul, Fabian; Clementi, Cecilia; Noé, Frank

    2017-08-01

    Accurate mechanistic description of structural changes in biomolecules is an increasingly important topic in structural and chemical biology. Markov models have emerged as a powerful way to approximate the molecular kinetics of large biomolecules while keeping full structural resolution in a divide-and-conquer fashion. However, the accuracy of these models is limited by that of the force fields used to generate the underlying molecular dynamics (MD) simulation data. Whereas the quality of classical MD force fields has improved significantly in recent years, remaining errors in the Boltzmann weights are still on the order of a few [Formula: see text], which may lead to significant discrepancies when comparing to experimentally measured rates or state populations. Here we take the view that simulations using a sufficiently good force-field sample conformations that are valid but have inaccurate weights, yet these weights may be made accurate by incorporating experimental data a posteriori. To do so, we propose augmented Markov models (AMMs), an approach that combines concepts from probability theory and information theory to consistently treat systematic force-field error and statistical errors in simulation and experiment. Our results demonstrate that AMMs can reconcile conflicting results for protein mechanisms obtained by different force fields and correct for a wide range of stationary and dynamical observables even when only equilibrium measurements are incorporated into the estimation process. This approach constitutes a unique avenue to combine experiment and computation into integrative models of biomolecular structure and dynamics.

  18. Dietary patterns and cardiovascular risk factors in adolescents and young adults: the Northern Ireland Young Hearts Project.

    PubMed

    McCourt, Hannah J; Draffin, Claire R; Woodside, Jayne V; Cardwell, Chris R; Young, Ian S; Hunter, Steven J; Murray, Liam J; Boreham, Colin A; Gallagher, Alison M; Neville, Charlotte E; McKinley, Michelle C

    2014-11-28

    Dietary pattern (DP) analysis allows examination of the combined effects of nutrients and foods on the markers of CVD. Very few studies have examined these relationships during adolescence or young adulthood. Traditional CVD risk biomarkers were analysed in 12-15-year-olds (n 487; Young Hearts (YH)1) and again in the same individuals at 20-25 years of age (n 487; YH3). Based on 7 d diet histories, in the present study, DP analysis was performed using a posteriori principal component analysis for the YH3 cohort and the a priori Mediterranean Diet Score (MDS) was calculated for both YH1 and YH3 cohorts. In the a posteriori DP analysis, YH3 participants adhering most closely to the 'healthy' DP were found to have lower pulse wave velocity (PWV) and homocysteine concentrations, the 'sweet tooth' DP were found to have increased LDL concentrations, and decreased HDL concentrations, [corrected] the 'drinker/social' DP were found to have lower LDL and homocysteine concentrations, but exhibited a trend towards a higher TAG concentration, and finally the 'Western' DP were found to have elevated homocysteine and HDL concentrations. In the a priori dietary score analysis, YH3 participants adhering most closely to the Mediterranean diet were found to exhibit a trend towards a lower PWV. MDS did not track between YH1 and YH3, and nor was there a longitudinal relationship between the change in the MDS and the change in CVD risk biomarkers. In conclusion, cross-sectional analysis revealed that some associations between DP and CVD risk biomarkers were already evident in the young adult population, namely the association between the healthy DP (and the MDS) and PWV; however, no longitudinal associations were observed between these relatively short time periods.

  19. Robust double gain unscented Kalman filter for small satellite attitude estimation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun

    2017-08-01

    Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).

  20. Practical Aspects of Stabilized FEM Discretizations of Nonlinear Conservation Law Systems with Convex Extension

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Saini, Subhash (Technical Monitor)

    1999-01-01

    This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the POE system. Central to the development of the simplified GLS and DG methods is the Degenerative Scaling Theorem which characterizes right symmetrizes of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobean matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler, Navier-Stokes, and magnetohydrodynamic (MHD) equations. Linear and nonlinear energy stability is proven for the simplified GLS and DG methods. Spatial convergence properties of the simplified GLS and DO methods are numerical evaluated via the computation of Ringleb flow on a sequence of successively refined triangulations. Finally, we consider a posteriori error estimates for the GLS and DG demoralization assuming error functionals related to the integrated lift and drag of a body. Sample calculations in 20 are shown to validate the theory and implementation.

  1. A Critical Reassessment of the Role of Mitochondria in Tumorigenesis

    PubMed Central

    Salas, Antonio; Yao, Yong-Gang; Macaulay, Vincent; Vega, Ana; Carracedo, Ángel; Bandelt, Hans-Jürgen

    2005-01-01

    Background Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results. Methods and Findings In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis. Conclusion The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research. PMID:16187796

  2. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization

    PubMed Central

    Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros

    2017-01-01

    Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K-Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors. PMID:28394268

  3. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization.

    PubMed

    Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros

    2017-04-10

    Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K -Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors.

  4. CANDID: Companion Analysis and Non-Detection in Interferometric Data

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Breitfelder, J.; Le Bouquin, J. B.; Roettenbacher, R. M.; Gieren, W.; Pietrzynski, G.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S.; Kraus, S.

    2015-05-01

    CANDID finds faint companion around star in interferometric data in the OIFITS format. It allows systematically searching for faint companions in OIFITS data, and if not found, estimates the detection limit. The tool is based on model fitting and Chi2 minimization, with a grid for the starting points of the companion position. It ensures all positions are explored by estimating a-posteriori if the grid is dense enough, and provides an estimate of the optimum grid density.

  5. Approaches to the automatic generation and control of finite element meshes

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.

  6. Gaps in content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Antani, Sameer; Long, Rodney

    2007-03-01

    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potentially strong impact in diagnostics, research, and education. Research successes that are increasingly reported in the scientific literature, however, have not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed without sufficient analytical reasoning to the inability of these applications in overcoming the "semantic gap". The semantic gap divides the high-level scene analysis of humans from the low-level pixel analysis of computers. In this paper, we suggest a more systematic and comprehensive view on the concept of gaps in medical CBIR research. In particular, we define a total of 13 gaps that address the image content and features, as well as the system performance and usability. In addition to these gaps, we identify 6 system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application. To illustrate the a posteriori use of our conceptual system, we apply it, initially, to the classification of three medical CBIR implementations: the content-based PACS approach (cbPACS), the medical GNU image finding tool (medGIFT), and the image retrieval in medical applications (IRMA) project. We show that systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.

  7. Evidential analysis of difference images for change detection of multitemporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Yin; Peng, Lijuan; Cremers, Armin B.

    2018-03-01

    In this article, we develop two methods for unsupervised change detection in multitemporal remote sensing images based on Dempster-Shafer's theory of evidence (DST). In most unsupervised change detection methods, the probability of difference image is assumed to be characterized by mixture models, whose parameters are estimated by the expectation maximization (EM) method. However, the main drawback of the EM method is that it does not consider spatial contextual information, which may entail rather noisy detection results with numerous spurious alarms. To remedy this, we firstly develop an evidence theory based EM method (EEM) which incorporates spatial contextual information in EM by iteratively fusing the belief assignments of neighboring pixels to the central pixel. Secondly, an evidential labeling method in the sense of maximizing a posteriori probability (MAP) is proposed in order to further enhance the detection result. It first uses the parameters estimated by EEM to initialize the class labels of a difference image. Then it iteratively fuses class conditional information and spatial contextual information, and updates labels and class parameters. Finally it converges to a fixed state which gives the detection result. A simulated image set and two real remote sensing data sets are used to evaluate the two evidential change detection methods. Experimental results show that the new evidential methods are comparable to other prevalent methods in terms of total error rate.

  8. Constraining the Sulfur Dioxide Degassing Flux from Turrialba Volcano, Costa Rica Using Unmanned Aerial System Measurements

    NASA Technical Reports Server (NTRS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-01-01

    Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d-1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  9. Artificial organisms as tools for the development of psychological theory: Tolman's lesson.

    PubMed

    Miglino, Orazio; Gigliotta, Onofrio; Cardaci, Maurizio; Ponticorvo, Michela

    2007-12-01

    In the 1930s and 1940s, Edward Tolman developed a psychological theory of spatial orientation in rats and humans. He expressed his theory as an automaton (the "schematic sowbug") or what today we would call an "artificial organism." With the technology of the day, he could not implement his model. Nonetheless, he used it to develop empirical predictions which tested with animals in the laboratory. This way of proceeding was in line with scientific practice dating back to Galileo. The way psychologists use artificial organisms in their work today breaks with this tradition. Modern "artificial organisms" are constructed a posteriori, working from experimental or ethological observations. As a result, researchers can use them to confirm a theoretical model or to simulate its operation. But they make no contribution to the actual building of models. In this paper, we try to return to Tolman's original strategy: implementing his theory of "vicarious trial and error" in a simulated robot, forecasting the robot's behavior and conducting experiments that verify or falsify these predictions.

  10. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  11. Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic non-local equation

    DOE PAGES

    Jasra, Ajay; Law, Kody J. H.; Zhou, Yan

    2016-01-01

    Our paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are usedmore » for a priori and a posteriori estimation, respectively, of quantities of interest. Furthermore, these algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.« less

  12. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  13. Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic non-local equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasra, Ajay; Law, Kody J. H.; Zhou, Yan

    Our paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are usedmore » for a priori and a posteriori estimation, respectively, of quantities of interest. Furthermore, these algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.« less

  14. Dipole excitation of surface plasmon on a conducting sheet: Finite element approximation and validation

    NASA Astrophysics Data System (ADS)

    Maier, Matthias; Margetis, Dionisios; Luskin, Mitchell

    2017-06-01

    We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon-polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell's equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions; and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.

  15. MWR3C physical retrievals of precipitable water vapor and cloud liquid water path

    DOE Data Explorer

    Cadeddu, Maria

    2016-10-12

    The data set contains physical retrievals of PWV and cloud LWP retrieved from MWR3C measurements during the MAGIC campaign. Additional data used in the retrieval process include radiosondes and ceilometer. The retrieval is based on an optimal estimation technique that starts from a first guess and iteratively repeats the forward model calculations until a predefined convergence criterion is satisfied. The first guess is a vector of [PWV,LWP] from the neural network retrieval fields in the netcdf file. When convergence is achieved the 'a posteriori' covariance is computed and its square root is expressed in the file as the retrieval 1-sigma uncertainty. The closest radiosonde profile is used for the radiative transfer calculations and ceilometer data are used to constrain the cloud base height. The RMS error between the brightness temperatures is computed at the last iterations as a consistency check and is written in the last column of the output file.

  16. On vital aid: the why, what and how of validation

    PubMed Central

    Kleywegt, Gerard J.

    2009-01-01

    Limitations to the data and subjectivity in the structure-determination process may cause errors in macromolecular crystal structures. Appropriate validation techniques may be used to reveal problems in structures, ideally before they are analysed, published or deposited. Additionally, such tech­niques may be used a posteriori to assess the (relative) merits of a model by potential users. Weak validation methods and statistics assess how well a model reproduces the information that was used in its construction (i.e. experimental data and prior knowledge). Strong methods and statistics, on the other hand, test how well a model predicts data or information that were not used in the structure-determination process. These may be data that were excluded from the process on purpose, general knowledge about macromolecular structure, information about the biological role and biochemical activity of the molecule under study or its mutants or complexes and predictions that are based on the model and that can be tested experimentally. PMID:19171968

  17. Retrieval of stratospheric ozone and nitrogen dioxide profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Haley, Craig Stuart

    2009-12-01

    Key to understanding and predicting the effects of global environmental problems such as ozone depletion and global warming is a detailed understanding of the atmospheric processes, both dynamical and chemical. Essential to this understanding are accurate global data sets of atmospheric constituents with adequate temporal and spatial (vertical and horizontal) resolutions. For this purpose the Canadian satellite instrument OSIRIS (Optical Spectrograph and Infrared Imager System) was launched on the Odin satellite in 2001. OSIRIS is primarily designed to measure minor stratospheric constituents, including ozone (O3) and nitrogen dioxide (NO2), employing the novel limb-scattered sunlight technique, which can provide both good vertical resolution and near global coverage. This dissertation presents a method to retrieve stratospheric O 3 and NO2 from the OSIRIS limb-scatter observations. The retrieval method incorporates an a posteriori optimal estimator combined with an intermediate spectral analysis, specifically differential optical absorption spectroscopy (DOAS). A detailed description of the retrieval method is presented along with the results of a thorough error analysis and a geophysical validation exercise. It is shown that OSIRIS limb-scatter observations successfully produce accurate stratospheric O3 and NO2 number density profiles throughout the stratosphere, clearly demonstrating the strength of the limb-scatter technique. The OSIRIS observations provide an extremely useful data set that is of particular importance for studies of the chemistry of the middle atmosphere. The long OSIRIS record of stratospheric ozone and nitrogen dioxide may also prove useful for investigating variability and trends.

  18. Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components

    NASA Astrophysics Data System (ADS)

    Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad

    2018-02-01

    The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.

  19. Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations

    NASA Astrophysics Data System (ADS)

    Fambri, Francesco; Dumbser, Michael; Zanotti, Olindo

    2017-11-01

    This paper presents an arbitrary high-order accurate ADER Discontinuous Galerkin (DG) method on space-time adaptive meshes (AMR) for the solution of two important families of non-linear time dependent partial differential equations for compressible dissipative flows : the compressible Navier-Stokes equations and the equations of viscous and resistive magnetohydrodynamics in two and three space-dimensions. The work continues a recent series of papers concerning the development and application of a proper a posteriori subcell finite volume limiting procedure suitable for discontinuous Galerkin methods (Dumbser et al., 2014, Zanotti et al., 2015 [40,41]). It is a well known fact that a major weakness of high order DG methods lies in the difficulty of limiting discontinuous solutions, which generate spurious oscillations, namely the so-called 'Gibbs phenomenon'. In the present work, a nonlinear stabilization of the scheme is sequentially and locally introduced only for troubled cells on the basis of a novel a posteriori detection criterion, i.e. the MOOD approach. The main benefits of the MOOD paradigm, i.e. the computational robustness even in the presence of strong shocks, are preserved and the numerical diffusion is considerably reduced also for the limited cells by resorting to a proper sub-grid. In practice the method first produces a so-called candidate solution by using a high order accurate unlimited DG scheme. Then, a set of numerical and physical detection criteria is applied to the candidate solution, namely: positivity of pressure and density, absence of floating point errors and satisfaction of a discrete maximum principle in the sense of polynomials. Furthermore, in those cells where at least one of these criteria is violated the computed candidate solution is detected as troubled and is locally rejected. Subsequently, a more reliable numerical solution is recomputed a posteriori by employing a more robust but still very accurate ADER-WENO finite volume scheme on the subgrid averages within that troubled cell. Finally, a high order DG polynomial is reconstructed back from the evolved subcell averages. We apply the whole approach for the first time to the equations of compressible gas dynamics and magnetohydrodynamics in the presence of viscosity, thermal conductivity and magnetic resistivity, therefore extending our family of adaptive ADER-DG schemes to cases for which the numerical fluxes also depend on the gradient of the state vector. The distinguished high-resolution properties of the presented numerical scheme standout against a wide number of non-trivial test cases both for the compressible Navier-Stokes and the viscous and resistive magnetohydrodynamics equations. The present results show clearly that the shock-capturing capability of the news schemes is significantly enhanced within a cell-by-cell Adaptive Mesh Refinement (AMR) implementation together with time accurate local time stepping (LTS).

  20. A Multidimensional Computerized Adaptive Short-Form Quality of Life Questionnaire Developed and Validated for Multiple Sclerosis: The MusiQoL-MCAT.

    PubMed

    Michel, Pierre; Baumstarck, Karine; Ghattas, Badih; Pelletier, Jean; Loundou, Anderson; Boucekine, Mohamed; Auquier, Pascal; Boyer, Laurent

    2016-04-01

    The aim was to develop a multidimensional computerized adaptive short-form questionnaire, the MusiQoL-MCAT, from a fixed-length QoL questionnaire for multiple sclerosis.A total of 1992 patients were enrolled in this international cross-sectional study. The development of the MusiQoL-MCAT was based on the assessment of between-items MIRT model fit followed by real-data simulations. The MCAT algorithm was based on Bayesian maximum a posteriori estimation of latent traits and Kullback-Leibler information item selection. We examined several simulations based on a fixed number of items. Accuracy was assessed using correlations (r) between initial IRT scores and MCAT scores. Precision was assessed using the standard error measurement (SEM) and the root mean square error (RMSE).The multidimensional graded response model was used to estimate item parameters and IRT scores. Among the MCAT simulations, the 16-item version of the MusiQoL-MCAT was selected because the accuracy and precision became stable with 16 items with satisfactory levels (r ≥ 0.9, SEM ≤ 0.55, and RMSE ≤ 0.3). External validity of the MusiQoL-MCAT was satisfactory.The MusiQoL-MCAT presents satisfactory properties and can individually tailor QoL assessment to each patient, making it less burdensome to patients and better adapted for use in clinical practice.

  1. A Multidimensional Computerized Adaptive Short-Form Quality of Life Questionnaire Developed and Validated for Multiple Sclerosis

    PubMed Central

    Michel, Pierre; Baumstarck, Karine; Ghattas, Badih; Pelletier, Jean; Loundou, Anderson; Boucekine, Mohamed; Auquier, Pascal; Boyer, Laurent

    2016-01-01

    Abstract The aim was to develop a multidimensional computerized adaptive short-form questionnaire, the MusiQoL-MCAT, from a fixed-length QoL questionnaire for multiple sclerosis. A total of 1992 patients were enrolled in this international cross-sectional study. The development of the MusiQoL-MCAT was based on the assessment of between-items MIRT model fit followed by real-data simulations. The MCAT algorithm was based on Bayesian maximum a posteriori estimation of latent traits and Kullback–Leibler information item selection. We examined several simulations based on a fixed number of items. Accuracy was assessed using correlations (r) between initial IRT scores and MCAT scores. Precision was assessed using the standard error measurement (SEM) and the root mean square error (RMSE). The multidimensional graded response model was used to estimate item parameters and IRT scores. Among the MCAT simulations, the 16-item version of the MusiQoL-MCAT was selected because the accuracy and precision became stable with 16 items with satisfactory levels (r ≥ 0.9, SEM ≤ 0.55, and RMSE ≤ 0.3). External validity of the MusiQoL-MCAT was satisfactory. The MusiQoL-MCAT presents satisfactory properties and can individually tailor QoL assessment to each patient, making it less burdensome to patients and better adapted for use in clinical practice. PMID:27057832

  2. The role of a posteriori mathematics in physics

    NASA Astrophysics Data System (ADS)

    MacKinnon, Edward

    2018-05-01

    The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.

  3. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    NASA Astrophysics Data System (ADS)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  4. Breaking Computational Barriers: Real-time Analysis and Optimization with Large-scale Nonlinear Models via Model Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin Thomas; Drohmann, Martin; Tuminaro, Raymond S.

    2014-10-01

    Model reduction for dynamical systems is a promising approach for reducing the computational cost of large-scale physics-based simulations to enable high-fidelity models to be used in many- query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts. While model reduction works well for specialized problems such as linear time-invariant systems, it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for systems with general nonlinearities. This report describes several advances that enable nonlinear reduced-order models (ROMs) to be deployed in a variety of time-critical settings. First, we present an error bound for the Gauss-Newton with Approximatedmore » Tensors (GNAT) nonlinear model reduction technique. This bound allows the state-space error for the GNAT method to be quantified when applied with the backward Euler time-integration scheme. Second, we present a methodology for preserving classical Lagrangian structure in nonlinear model reduction. This technique guarantees that important properties--such as energy conservation and symplectic time-evolution maps--are preserved when performing model reduction for models described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third, we present a novel technique for decreasing the temporal complexity --defined as the number of Newton-like iterations performed over the course of the simulation--by exploiting time-domain data. Fourth, we describe a novel method for refining projection-based reduced-order models a posteriori using a goal-oriented framework similar to mesh-adaptive h -refinement in finite elements. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing the ROM with a 'failsafe' mechanism in the event of insufficient training data. Finally, we present the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced- order-model errors. This enables ROMs to be rigorously incorporated in uncertainty-quantification settings, as the error model can be treated as a source of epistemic uncertainty. This work was completed as part of a Truman Fellowship appointment. We note that much additional work was performed as part of the Fellowship. One salient project is the development of the Trilinos-based model-reduction software module Razor , which is currently bundled with the Albany PDE code and currently allows nonlinear reduced-order models to be constructed for any application supported in Albany. Other important projects include the following: 1. ROMES-equipped ROMs for Bayesian inference: K. Carlberg, M. Drohmann, F. Lu (Lawrence Berkeley National Laboratory), M. Morzfeld (Lawrence Berkeley National Laboratory). 2. ROM-enabled Krylov-subspace recycling: K. Carlberg, V. Forstall (University of Maryland), P. Tsuji, R. Tuminaro. 3. A pseudo balanced POD method using only dual snapshots: K. Carlberg, M. Sarovar. 4. An analysis of discrete v. continuous optimality in nonlinear model reduction: K. Carlberg, M. Barone, H. Antil (George Mason University). Journal articles for these projects are in progress at the time of this writing.« less

  5. Measuring Disability: Comparing the Impact of Two Data Collection Approaches on Disability Rates

    PubMed Central

    Sabariego, Carla; Oberhauser, Cornelia; Posarac, Aleksandra; Bickenbach, Jerome; Kostanjsek, Nenad; Chatterji, Somnath; Officer, Alana; Coenen, Michaela; Chhan, Lay; Cieza, Alarcos

    2015-01-01

    The usual approach in disability surveys is to screen persons with disability upfront and then ask questions about everyday problems. The objectives of this paper are to demonstrate the impact of screeners on disability rates, to challenge the usual exclusion of persons with mild and moderate disability from disability surveys and to demonstrate the advantage of using an a posteriori cut-off. Using data of a pilot study of the WHO Model Disability Survey (MDS) in Cambodia and the polytomous Rasch model, metric scales of disability were built. The conventional screener approach based on the short disability module of the Washington City Group and the a posteriori cut-off method described in the World Disability Report were compared regarding disability rates. The screener led to imprecise rates and classified persons with mild to moderate disability as non-disabled, although these respondents already experienced important problems in daily life. The a posteriori cut-off applied to the general population sample led to a more precise disability rate and allowed for a differentiation of the performance and needs of persons with mild, moderate and severe disability. This approach can be therefore considered as an inclusive approach suitable to monitor the Convention on the Rights of Persons with Disabilities. PMID:26308039

  6. Towards cheaper control centers

    NASA Technical Reports Server (NTRS)

    Baize, Lionel

    1994-01-01

    Today, any approach to the design of new space systems must take into consideration an important constraint, namely costs. This approach is our guideline for new missions and also applies to the ground segment, and particularly to the control center. CNES has carried out a study on a recent control center for application satellites in order to take advantage of the experience gained. This analysis, the purpose of which is to determine, a posteriori, the costs of architecture needs and choices, takes hardware and software costs into account and makes a number of recommendations.

  7. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  8. Communications and information research: Improved space link performance via concatenated forward error correction coding

    NASA Technical Reports Server (NTRS)

    Rao, T. R. N.; Seetharaman, G.; Feng, G. L.

    1996-01-01

    With the development of new advanced instruments for remote sensing applications, sensor data will be generated at a rate that not only requires increased onboard processing and storage capability, but imposes demands on the space to ground communication link and ground data management-communication system. Data compression and error control codes provide viable means to alleviate these demands. Two types of data compression have been studied by many researchers in the area of information theory: a lossless technique that guarantees full reconstruction of the data, and a lossy technique which generally gives higher data compaction ratio but incurs some distortion in the reconstructed data. To satisfy the many science disciplines which NASA supports, lossless data compression becomes a primary focus for the technology development. While transmitting the data obtained by any lossless data compression, it is very important to use some error-control code. For a long time, convolutional codes have been widely used in satellite telecommunications. To more efficiently transform the data obtained by the Rice algorithm, it is required to meet the a posteriori probability (APP) for each decoded bit. A relevant algorithm for this purpose has been proposed which minimizes the bit error probability in the decoding linear block and convolutional codes and meets the APP for each decoded bit. However, recent results on iterative decoding of 'Turbo codes', turn conventional wisdom on its head and suggest fundamentally new techniques. During the past several months of this research, the following approaches have been developed: (1) a new lossless data compression algorithm, which is much better than the extended Rice algorithm for various types of sensor data, (2) a new approach to determine the generalized Hamming weights of the algebraic-geometric codes defined by a large class of curves in high-dimensional spaces, (3) some efficient improved geometric Goppa codes for disk memory systems and high-speed mass memory systems, and (4) a tree based approach for data compression using dynamic programming.

  9. Using psychophysics to ask if the brain samples or maximizes

    PubMed Central

    Acuna, Daniel E.; Berniker, Max; Fernandes, Hugo L.; Kording, Konrad P.

    2015-01-01

    The two-alternative forced-choice (2AFC) task is the workhorse of psychophysics and is used to measure the just-noticeable difference, generally assumed to accurately quantify sensory precision. However, this assumption is not true for all mechanisms of decision making. Here we derive the behavioral predictions for two popular mechanisms, sampling and maximum a posteriori, and examine how they affect the outcome of the 2AFC task. These predictions are used in a combined visual 2AFC and estimation experiment. Our results strongly suggest that subjects use a maximum a posteriori mechanism. Further, our derivations and experimental paradigm establish the already standard 2AFC task as a behavioral tool for measuring how humans make decisions under uncertainty. PMID:25767093

  10. Dietary Patterns, Cognitive Decline, and Dementia: A Systematic Review12

    PubMed Central

    van de Rest, Ondine; Berendsen, Agnes AM; Haveman-Nies, Annemien; de Groot, Lisette CPGM

    2015-01-01

    Nutrition is an important modifiable risk factor that plays a role in the strategy to prevent or delay the onset of dementia. Research on nutritional effects has until now mainly focused on the role of individual nutrients and bioactive components. However, the evidence for combined effects, such as multinutrient approaches, or a healthy dietary pattern, such as the Mediterranean diet, is growing. These approaches incorporate the complexity of the diet and possible interaction and synergy between nutrients. Over the past few years, dietary patterns have increasingly been investigated to better understand the link between diet, cognitive decline, and dementia. In this systematic review we provide an overview of the literature on human studies up to May 2014 that examined the role of dietary patterns (derived both a priori as well as a posteriori) in relation to cognitive decline or dementia. The results suggest that better adherence to a Mediterranean diet is associated with less cognitive decline, dementia, or Alzheimer disease, as shown by 4 of 6 cross-sectional studies, 6 of 12 longitudinal studies, 1 trial, and 3 meta-analyses. Other healthy dietary patterns, derived both a priori (e.g., Healthy Diet Indicator, Healthy Eating Index, and Program National Nutrition Santé guideline score) and a posteriori (e.g., factor analysis, cluster analysis, and reduced rank regression), were shown to be associated with reduced cognitive decline and/or a reduced risk of dementia as shown by all 6 cross-sectional studies and 6 of 8 longitudinal studies. More conclusive evidence is needed to reach more targeted and detailed guidelines to prevent or postpone cognitive decline. PMID:25770254

  11. Whole vertebral bone segmentation method with a statistical intensity-shape model based approach

    NASA Astrophysics Data System (ADS)

    Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer

    2011-03-01

    An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.

  12. Total protein measurement in canine cerebrospinal fluid: agreement between a turbidimetric assay and 2 dye-binding methods and determination of reference intervals using an indirect a posteriori method.

    PubMed

    Riond, B; Steffen, F; Schmied, O; Hofmann-Lehmann, R; Lutz, H

    2014-03-01

    In veterinary clinical laboratories, qualitative tests for total protein measurement in canine cerebrospinal fluid (CSF) have been replaced by quantitative methods, which can be divided into dye-binding assays and turbidimetric methods. There is a lack of validation data and reference intervals (RIs) for these assays. The aim of the present study was to assess agreement between the turbidimetric benzethonium chloride method and 2 dye-binding methods (Pyrogallol Red-Molybdate method [PRM], Coomassie Brilliant Blue [CBB] technique) for measurement of total protein concentration in canine CSF. Furthermore, RIs were determined for all 3 methods using an indirect a posteriori method. For assay comparison, a total of 118 canine CSF specimens were analyzed. For RIs calculation, clinical records of 401 canine patients with normal CSF analysis were studied and classified according to their final diagnosis in pathologic and nonpathologic values. The turbidimetric assay showed excellent agreement with the PRM assay (mean bias 0.003 g/L [-0.26-0.27]). The CBB method generally showed higher total protein values than the turbidimetric assay and the PRM assay (mean bias -0.14 g/L for turbidimetric and PRM assay). From 90 of 401 canine patients, nonparametric reference intervals (2.5%, 97.5% quantile) were calculated (turbidimetric assay and PRM method: 0.08-0.35 g/L (90% CI: 0.07-0.08/0.33-0.39); CBB method: 0.17-0.55 g/L (90% CI: 0.16-0.18/0.52-0.61). Total protein concentration in canine CSF specimens remained stable for up to 6 months of storage at -80°C. Due to variations among methods, RIs for total protein concentration in canine CSF have to be calculated for each method. The a posteriori method of RIs calculation described here should encourage other veterinary laboratories to establish RIs that are laboratory-specific. ©2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  13. THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    2015-09-20

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time wasmore » at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.« less

  14. Estimating and Separating Noise from AIA Images

    NASA Astrophysics Data System (ADS)

    Kirk, Michael S.; Ireland, Jack; Young, C. Alex; Pesnell, W. Dean

    2016-10-01

    All digital images are corrupted by noise and SDO AIA is no different. In most solar imaging, we have the luxury of high photon counts and low background contamination, which when combined with carful calibration, minimize much of the impact noise has on the measurement. Outside high-intensity regions, such as in coronal holes, the noise component can become significant and complicate feature recognition and segmentation. We create a practical estimate of noise in the high-resolution AIA images across the detector CCD in all seven EUV wavelengths. A mixture of Poisson and Gaussian noise is well suited in the digital imaging environment due to the statistical distributions of photons and the characteristics of the CCD. Using state-of-the-art noise estimation techniques, the publicly available solar images, and coronal loop simulations; we construct a maximum-a-posteriori assessment of the error in these images. The estimation and mitigation of noise not only provides a clearer view of large-scale solar structure in the solar corona, but also provides physical constraints on fleeting EUV features observed with AIA.

  15. Speech Enhancement, Gain, and Noise Spectrum Adaptation Using Approximate Bayesian Estimation

    PubMed Central

    Hao, Jiucang; Attias, Hagai; Nagarajan, Srikantan; Lee, Te-Won; Sejnowski, Terrence J.

    2010-01-01

    This paper presents a new approximate Bayesian estimator for enhancing a noisy speech signal. The speech model is assumed to be a Gaussian mixture model (GMM) in the log-spectral domain. This is in contrast to most current models in frequency domain. Exact signal estimation is a computationally intractable problem. We derive three approximations to enhance the efficiency of signal estimation. The Gaussian approximation transforms the log-spectral domain GMM into the frequency domain using minimal Kullback–Leiber (KL)-divergency criterion. The frequency domain Laplace method computes the maximum a posteriori (MAP) estimator for the spectral amplitude. Correspondingly, the log-spectral domain Laplace method computes the MAP estimator for the log-spectral amplitude. Further, the gain and noise spectrum adaptation are implemented using the expectation–maximization (EM) algorithm within the GMM under Gaussian approximation. The proposed algorithms are evaluated by applying them to enhance the speeches corrupted by the speech-shaped noise (SSN). The experimental results demonstrate that the proposed algorithms offer improved signal-to-noise ratio, lower word recognition error rate, and less spectral distortion. PMID:20428253

  16. Slope Estimation in Noisy Piecewise Linear Functions✩

    PubMed Central

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2014-01-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure. PMID:25419020

  17. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  18. Slope Estimation in Noisy Piecewise Linear Functions.

    PubMed

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  19. An efficient method for model refinement in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zirak, A. R.; Khademi, M.

    2007-11-01

    Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.

  20. A posteriori operation detection in evolving software models

    PubMed Central

    Langer, Philip; Wimmer, Manuel; Brosch, Petra; Herrmannsdörfer, Markus; Seidl, Martina; Wieland, Konrad; Kappel, Gerti

    2013-01-01

    As every software artifact, also software models are subject to continuous evolution. The operations applied between two successive versions of a model are crucial for understanding its evolution. Generic approaches for detecting operations a posteriori identify atomic operations, but neglect composite operations, such as refactorings, which leads to cluttered difference reports. To tackle this limitation, we present an orthogonal extension of existing atomic operation detection approaches for detecting also composite operations. Our approach searches for occurrences of composite operations within a set of detected atomic operations in a post-processing manner. One major benefit is the reuse of specifications available for executing composite operations also for detecting applications of them. We evaluate the accuracy of the approach in a real-world case study and investigate the scalability of our implementation in an experiment. PMID:23471366

  1. Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer

    NASA Astrophysics Data System (ADS)

    Shamina, Lyudmila A.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Moryatov, Alexander A.; Orlov, Andrey E.; Kozlov, Sergey V.; Zakharov, Valery P.

    2018-04-01

    In this study we measured spectral features of blood by Raman spectroscopy. Correlation of the obtained spectral data and biochemical studies results is investigated. Analysis of specific spectra allows for identification of informative spectral bands proportional to components whose content is associated with body fluids homeostasis changes at various pathological conditions. Regression analysis of the obtained spectral data allows for discriminating the lung cancer from other tumors with a posteriori probability of 88.3%. The potentiality of applying surface-enhanced Raman spectroscopy with utilized experimental setup for further studies of the body fluids component composition was estimated. The greatest signal amplification was achieved for the gold substrate with a surface roughness of 1 μm. In general, the developed approach of body fluids analysis provides the basis of a useful and minimally invasive method of pathologies screening.

  2. Further discussions on the relationship between cumulated intercepted solar radiation and crop growth

    USGS Publications Warehouse

    Demetriades-Shah, T.H.; Fuchs, M.; Kanemasu, E.T.; Flitcroft, I.D.

    1994-01-01

    A strong correlation exists between intercepted solar radiation and crop growth. We cautioned that many derivations of the functional relationship between solar energy and biomass use cumulated data, and therefore have logical and arithmetic weaknesses. We examined the growth response of plants to solar energy by using rates of change, of both interception and growth. Our analysis revealed that measurements of light interception can only establish the relationship a posteriori. Replacing interception data with normalized random numbers did not change the quality of the relations. Several scientists have contested our views. This article reconfirms the general validity of our analysis and of our conclusions, that it is not possible to determine plant growth on the sole basis of intercepted solar energy.

  3. Excel-Based Tool for Pharmacokinetically Guided Dose Adjustment of Paclitaxel.

    PubMed

    Kraff, Stefanie; Lindauer, Andreas; Joerger, Markus; Salamone, Salvatore J; Jaehde, Ulrich

    2015-12-01

    Neutropenia is a frequent and severe adverse event in patients receiving paclitaxel chemotherapy. The time above a paclitaxel threshold concentration of 0.05 μmol/L (Tc > 0.05 μmol/L) is a strong predictor for paclitaxel-associated neutropenia and has been proposed as a target pharmacokinetic (PK) parameter for paclitaxel therapeutic drug monitoring and dose adaptation. Up to now, individual Tc > 0.05 μmol/L values are estimated based on a published PK model of paclitaxel by using the software NONMEM. Because many clinicians are not familiar with the use of NONMEM, an Excel-based dosing tool was developed to allow calculation of paclitaxel Tc > 0.05 μmol/L and give clinicians an easy-to-use tool. Population PK parameters of paclitaxel were taken from a published PK model. An Alglib VBA code was implemented in Excel 2007 to compute differential equations for the paclitaxel PK model. Maximum a posteriori Bayesian estimates of the PK parameters were determined with the Excel Solver using individual drug concentrations. Concentrations from 250 patients were simulated receiving 1 cycle of paclitaxel chemotherapy. Predictions of paclitaxel Tc > 0.05 μmol/L as calculated by the Excel tool were compared with NONMEM, whereby maximum a posteriori Bayesian estimates were obtained using the POSTHOC function. There was a good concordance and comparable predictive performance between Excel and NONMEM regarding predicted paclitaxel plasma concentrations and Tc > 0.05 μmol/L values. Tc > 0.05 μmol/L had a maximum bias of 3% and an error on precision of <12%. The median relative deviation of the estimated Tc > 0.05 μmol/L values between both programs was 1%. The Excel-based tool can estimate the time above a paclitaxel threshold concentration of 0.05 μmol/L with acceptable accuracy and precision. The presented Excel tool allows reliable calculation of paclitaxel Tc > 0.05 μmol/L and thus allows target concentration intervention to improve the benefit-risk ratio of the drug. The easy use facilitates therapeutic drug monitoring in clinical routine.

  4. Dietary patterns and bone mineral status in young adults: the Northern Ireland Young Hearts Project.

    PubMed

    Whittle, Claire R; Woodside, Jayne V; Cardwell, Chris R; McCourt, Hannah J; Young, Ian S; Murray, Liam J; Boreham, Colin A; Gallagher, Alison M; Neville, Charlotte E; McKinley, Michelle C

    2012-10-28

    Studies of individual nutrients or foods have revealed much about dietary influences on bone. Multiple food or nutrient approaches, such as dietary pattern analysis, could offer further insight but research is limited and largely confined to older adults. We examined the relationship between dietary patterns, obtained by a posteriori and a priori methods, and bone mineral status (BMS; collective term for bone mineral content (BMC) and bone mineral density (BMD)) in young adults (20-25 years; n 489). Diet was assessed by 7 d diet history and BMD and BMC were determined at the lumbar spine and femoral neck (FN). A posteriori dietary patterns were derived using principal component analysis (PCA) and three a priori dietary quality scores were applied (dietary diversity score (DDS), nutritional risk score and Mediterranean diet score). For the PCA-derived dietary patterns, women in the top compared to the bottom fifth of the 'Nuts and Meat' pattern had greater FN BMD by 0·074 g/cm(2) (P = 0·049) and FN BMC by 0·40 g (P = 0·034) after adjustment for confounders. Similarly, men in the top compared to the bottom fifth of the 'Refined' pattern had lower FN BMC by 0·41 g (P = 0·049). For the a priori DDS, women in the top compared to the bottom third had lower FN BMD by 0·05 g/cm(2) after adjustments (P = 0·052), but no other relationships with BMS were identified. In conclusion, adherence to a 'Nuts and Meat' dietary pattern may be associated with greater BMS in young women and a 'Refined' dietary pattern may be detrimental for bone health in young men.

  5. Economic analysis of the first 20 years of universal hepatitis B vaccination program in Italy: an a posteriori evaluation and forecast of future benefits.

    PubMed

    Boccalini, Sara; Taddei, Cristina; Ceccherini, Vega; Bechini, Angela; Levi, Miriam; Bartolozzi, Dario; Bonanni, Paolo

    2013-05-01

    Italy was one of the first countries in the world to introduce a routine vaccination program against HBV for newborns and 12-y-old children. From a clinical point of view, such strategy was clearly successful. The objective of our study was to verify whether, at 20 y from its implementation, hepatitis B universal vaccination had positive effects also from an economic point of view. An a posteriori analysis evaluated the impact that the hepatitis B immunization program had up to the present day. The implementation of vaccination brought an extensive reduction of the burden of hepatitis B-related diseases in the Italian population. As a consequence, the past and future savings due to clinical costs avoided are particularly high. We obtained a return on investment nearly equal to 1 from the National Health Service perspective, and a benefit-to-cost ratio slightly less than 1 for the Societal perspective, considering only the first 20 y from the start of the program. In the longer-time horizon, ROI and BCR values were positive (2.78 and 2.46, respectively). The break-even point was already achieved few years ago for the NHS and for the Society, and since then more and more money is progressively saved. The implementation of universal hepatitis B vaccination was very favorable during the first 20 y of adoption, and further benefits will be increasingly evident in the future. The hepatitis B vaccination program in Italy is a clear example of the great impact that universal immunization is able to provide in the medium-long-term when health care authorities are so wise as to invest in prevention.

  6. Applicability of Kerker preconditioning scheme to the self-consistent density functional theory calculations of inhomogeneous systems

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Wang, Han; Liu, Yu; Gao, Xingyu; Song, Haifeng

    2018-03-01

    The Kerker preconditioner, based on the dielectric function of homogeneous electron gas, is designed to accelerate the self-consistent field (SCF) iteration in the density functional theory calculations. However, a question still remains regarding its applicability to the inhomogeneous systems. We develop a modified Kerker preconditioning scheme which captures the long-range screening behavior of inhomogeneous systems and thus improves the SCF convergence. The effectiveness and efficiency is shown by the tests on long-z slabs of metals, insulators, and metal-insulator contacts. For situations without a priori knowledge of the system, we design the a posteriori indicator to monitor if the preconditioner has suppressed charge sloshing during the iterations. Based on the a posteriori indicator, we demonstrate two schemes of the self-adaptive configuration for the SCF iteration.

  7. A priori and a posteriori approaches for finding genes of evolutionary interest in non-model species: osmoregulatory genes in the kidney transcriptome of the desert rodent Dipodomys spectabilis (banner-tailed kangaroo rat).

    PubMed

    Marra, Nicholas J; Eo, Soo Hyung; Hale, Matthew C; Waser, Peter M; DeWoody, J Andrew

    2012-12-01

    One common goal in evolutionary biology is the identification of genes underlying adaptive traits of evolutionary interest. Recently next-generation sequencing techniques have greatly facilitated such evolutionary studies in species otherwise depauperate of genomic resources. Kangaroo rats (Dipodomys sp.) serve as exemplars of adaptation in that they inhabit extremely arid environments, yet require no drinking water because of ultra-efficient kidney function and osmoregulation. As a basis for identifying water conservation genes in kangaroo rats, we conducted a priori bioinformatics searches in model rodents (Mus musculus and Rattus norvegicus) to identify candidate genes with known or suspected osmoregulatory function. We then obtained 446,758 reads via 454 pyrosequencing to characterize genes expressed in the kidney of banner-tailed kangaroo rats (Dipodomys spectabilis). We also determined candidates a posteriori by identifying genes that were overexpressed in the kidney. The kangaroo rat sequences revealed nine different a priori candidate genes predicted from our Mus and Rattus searches, as well as 32 a posteriori candidate genes that were overexpressed in kidney. Mutations in two of these genes, Slc12a1 and Slc12a3, cause human renal diseases that result in the inability to concentrate urine. These genes are likely key determinants of physiological water conservation in desert rodents. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Knowledge Driven Variable Selection (KDVS) – a new approach to enrichment analysis of gene signatures obtained from high–throughput data

    PubMed Central

    2013-01-01

    Background High–throughput (HT) technologies provide huge amount of gene expression data that can be used to identify biomarkers useful in the clinical practice. The most frequently used approaches first select a set of genes (i.e. gene signature) able to characterize differences between two or more phenotypical conditions, and then provide a functional assessment of the selected genes with an a posteriori enrichment analysis, based on biological knowledge. However, this approach comes with some drawbacks. First, gene selection procedure often requires tunable parameters that affect the outcome, typically producing many false hits. Second, a posteriori enrichment analysis is based on mapping between biological concepts and gene expression measurements, which is hard to compute because of constant changes in biological knowledge and genome analysis. Third, such mapping is typically used in the assessment of the coverage of gene signature by biological concepts, that is either score–based or requires tunable parameters as well, limiting its power. Results We present Knowledge Driven Variable Selection (KDVS), a framework that uses a priori biological knowledge in HT data analysis. The expression data matrix is transformed, according to prior knowledge, into smaller matrices, easier to analyze and to interpret from both computational and biological viewpoints. Therefore KDVS, unlike most approaches, does not exclude a priori any function or process potentially relevant for the biological question under investigation. Differently from the standard approach where gene selection and functional assessment are applied independently, KDVS embeds these two steps into a unified statistical framework, decreasing the variability derived from the threshold–dependent selection, the mapping to the biological concepts, and the signature coverage. We present three case studies to assess the usefulness of the method. Conclusions We showed that KDVS not only enables the selection of known biological functionalities with accuracy, but also identification of new ones. An efficient implementation of KDVS was devised to obtain results in a fast and robust way. Computing time is drastically reduced by the effective use of distributed resources. Finally, integrated visualization techniques immediately increase the interpretability of results. Overall, KDVS approach can be considered as a viable alternative to enrichment–based approaches. PMID:23302187

  9. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    PubMed Central

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  10. Efficiency assessment of using satellite data for crop area estimation in Ukraine

    NASA Astrophysics Data System (ADS)

    Gallego, Francisco Javier; Kussul, Nataliia; Skakun, Sergii; Kravchenko, Oleksii; Shelestov, Andrii; Kussul, Olga

    2014-06-01

    The knowledge of the crop area is a key element for the estimation of the total crop production of a country and, therefore, the management of agricultural commodities markets. Satellite data and derived products can be effectively used for stratification purposes and a-posteriori correction of area estimates from ground observations. This paper presents the main results and conclusions of the study conducted in 2010 to explore feasibility and efficiency of crop area estimation in Ukraine assisted by optical satellite remote sensing images. The study was carried out on three oblasts in Ukraine with a total area of 78,500 km2. The efficiency of using images acquired by several satellite sensors (MODIS, Landsat-5/TM, AWiFS, LISS-III, and RapidEye) combined with a field survey on a stratified sample of square segments for crop area estimation in Ukraine is assessed. The main criteria used for efficiency analysis are as follows: (i) relative efficiency that shows how much time the error of area estimates can be reduced with satellite images, and (ii) cost-efficiency that shows how much time the costs of ground surveys for crop area estimation can be reduced with satellite images. These criteria are applied to each satellite image type separately, i.e., no integration of images acquired by different sensors is made, to select the optimal dataset. The study found that only MODIS and Landsat-5/TM reached cost-efficiency thresholds while AWiFS, LISS-III, and RapidEye images, due to its high price, were not cost-efficient for crop area estimation in Ukraine at oblast level.

  11. Dictionary Learning Algorithms for Sparse Representation

    PubMed Central

    Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.

    2010-01-01

    Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811

  12. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart

    2016-08-07

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less

  13. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    NASA Astrophysics Data System (ADS)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  14. A guide to multi-objective optimization for ecological problems with an application to cackling goose management

    USGS Publications Warehouse

    Williams, Perry J.; Kendall, William L.

    2017-01-01

    Choices in ecological research and management are the result of balancing multiple, often competing, objectives. Multi-objective optimization (MOO) is a formal decision-theoretic framework for solving multiple objective problems. MOO is used extensively in other fields including engineering, economics, and operations research. However, its application for solving ecological problems has been sparse, perhaps due to a lack of widespread understanding. Thus, our objective was to provide an accessible primer on MOO, including a review of methods common in other fields, a review of their application in ecology, and a demonstration to an applied resource management problem.A large class of methods for solving MOO problems can be separated into two strategies: modelling preferences pre-optimization (the a priori strategy), or modelling preferences post-optimization (the a posteriori strategy). The a priori strategy requires describing preferences among objectives without knowledge of how preferences affect the resulting decision. In the a posteriori strategy, the decision maker simultaneously considers a set of solutions (the Pareto optimal set) and makes a choice based on the trade-offs observed in the set. We describe several methods for modelling preferences pre-optimization, including: the bounded objective function method, the lexicographic method, and the weighted-sum method. We discuss modelling preferences post-optimization through examination of the Pareto optimal set. We applied each MOO strategy to the natural resource management problem of selecting a population target for cackling goose (Branta hutchinsii minima) abundance. Cackling geese provide food security to Native Alaskan subsistence hunters in the goose's nesting area, but depredate crops on private agricultural fields in wintering areas. We developed objective functions to represent the competing objectives related to the cackling goose population target and identified an optimal solution first using the a priori strategy, and then by examining trade-offs in the Pareto set using the a posteriori strategy. We used four approaches for selecting a final solution within the a posteriori strategy; the most common optimal solution, the most robust optimal solution, and two solutions based on maximizing a restricted portion of the Pareto set. We discuss MOO with respect to natural resource management, but MOO is sufficiently general to cover any ecological problem that contains multiple competing objectives that can be quantified using objective functions.

  15. The effect of muscle contraction level on the cervical vestibular evoked myogenic potential (cVEMP): usefulness of amplitude normalization.

    PubMed

    Bogle, Jamie M; Zapala, David A; Criter, Robin; Burkard, Robert

    2013-02-01

    The cervical vestibular evoked myogenic potential (cVEMP) is a reflexive change in sternocleidomastoid (SCM) muscle contraction activity thought to be mediated by a saccular vestibulo-collic reflex. CVEMP amplitude varies with the state of the afferent (vestibular) limb of the vestibulo-collic reflex pathway, as well as with the level of SCM muscle contraction. It follows that in order for cVEMP amplitude to reflect the status of the afferent portion of the reflex pathway, muscle contraction level must be controlled. Historically, this has been accomplished by volitionally controlling muscle contraction level either with the aid of a biofeedback method, or by an a posteriori method that normalizes cVEMP amplitude by the level of muscle contraction. A posteriori normalization methods make the implicit assumption that mathematical normalization precisely removes the influence of the efferent limb of the vestibulo-collic pathway. With the cVEMP, however, we are violating basic assumptions of signal averaging: specifically, the background noise and the response are not independent. The influence of this signal-averaging violation on our ability to normalize cVEMP amplitude using a posteriori methods is not well understood. The aims of this investigation were to describe the effect of muscle contraction, as measured by a prestimulus electromyogenic estimate, on cVEMP amplitude and interaural amplitude asymmetry ratio, and to evaluate the benefit of using a commonly advocated a posteriori normalization method on cVEMP amplitude and asymmetry ratio variability. Prospective, repeated-measures design using a convenience sample. Ten healthy adult participants between 25 and 61 yr of age. cVEMP responses to 500 Hz tone bursts (120 dB pSPL) for three conditions describing maximum, moderate, and minimal muscle contraction. Mean (standard deviation) cVEMP amplitude and asymmetry ratios were calculated for each muscle-contraction condition. Repeated measures analysis of variance and t-tests compared the variability in cVEMP amplitude between sides and conditions. Linear regression analyses compared asymmetry ratios. Polynomial regression analyses described the corrected and uncorrected cVEMP amplitude growth functions. While cVEMP amplitude increased with increased muscle contraction, the relationship was not linear or even proportionate. In the majority of cases, once muscle contraction reached a certain "threshold" level, cVEMP amplitude increased rapidly and then saturated. Normalizing cVEMP amplitudes did not remove the relationship between cVEMP amplitude and muscle contraction level. As muscle contraction increased, the normalized amplitude increased, and then decreased, corresponding with the observed amplitude saturation. Abnormal asymmetry ratios (based on values reported in the literature) were noted for four instances of uncorrected amplitude asymmetry at less than maximum muscle contraction levels. Amplitude normalization did not substantially change the number of observed asymmetry ratios. Because cVEMP amplitude did not typically grow proportionally with muscle contraction level, amplitude normalization did not lead to stable cVEMP amplitudes or asymmetry ratios across varying muscle contraction levels. Until we better understand the relationships between muscle contraction level, surface electromyography (EMG) estimates of muscle contraction level, and cVEMP amplitude, the application of normalization methods to correct cVEMP amplitude appears unjustified. American Academy of Audiology.

  16. Adaptive time stepping for fluid-structure interaction solvers

    DOE PAGES

    Mayr, M.; Wall, W. A.; Gee, M. W.

    2017-12-22

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  17. Adaptive time stepping for fluid-structure interaction solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayr, M.; Wall, W. A.; Gee, M. W.

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  18. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  19. Comparison of soft-input-soft-output detection methods for dual-polarized quadrature duobinary system

    NASA Astrophysics Data System (ADS)

    Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan

    2018-02-01

    Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.

  20. Language Recognition via Sparse Coding

    DTIC Science & Technology

    2016-09-08

    a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector

  1. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  2. Development and empirical validation of symmetric component measures of multidimensional constructs: customer and competitor orientation.

    PubMed

    Sørensen, Hans Eibe; Slater, Stanley F

    2008-08-01

    Atheoretical measure purification may lead to construct deficient measures. The purpose of this paper is to provide a theoretically driven procedure for the development and empirical validation of symmetric component measures of multidimensional constructs. Particular emphasis is placed on establishing a formalized three-step procedure for achieving a posteriori content validity. Then the procedure is applied to development and empirical validation of two symmetrical component measures of market orientation, customer orientation and competitor orientation. Analysis suggests that average variance extracted is particularly critical to reliability in the respecification of multi-indicator measures. In relation to this, the results also identify possible deficiencies in using Cronbach alpha for establishing reliable and valid measures.

  3. Control of the transition between regular and mach reflection of shock waves

    NASA Astrophysics Data System (ADS)

    Alekseev, A. K.

    2012-06-01

    A control problem was considered that makes it possible to switch the flow between stationary Mach and regular reflection of shock waves within the dual solution domain. The sensitivity of the flow was computed by solving adjoint equations. A control disturbance was sought by applying gradient optimization methods. According to the computational results, the transition from regular to Mach reflection can be executed by raising the temperature. The transition from Mach to regular reflection can be achieved by lowering the temperature at moderate Mach numbers and is impossible at large numbers. The reliability of the numerical results was confirmed by verifying them with the help of a posteriori analysis.

  4. A Priori and a Posteriori Dietary Patterns during Pregnancy and Gestational Weight Gain: The Generation R Study

    PubMed Central

    Tielemans, Myrte J.; Erler, Nicole S.; Leermakers, Elisabeth T. M.; van den Broek, Marion; Jaddoe, Vincent W. V.; Steegers, Eric A. P.; Kiefte-de Jong, Jessica C.; Franco, Oscar H.

    2015-01-01

    Abnormal gestational weight gain (GWG) is associated with adverse pregnancy outcomes. We examined whether dietary patterns are associated with GWG. Participants included 3374 pregnant women from a population-based cohort in the Netherlands. Dietary intake during pregnancy was assessed with food-frequency questionnaires. Three a posteriori-derived dietary patterns were identified using principal component analysis: a “Vegetable, oil and fish”, a “Nuts, high-fiber cereals and soy”, and a “Margarine, sugar and snacks” pattern. The a priori-defined dietary pattern was based on national dietary recommendations. Weight was repeatedly measured around 13, 20 and 30 weeks of pregnancy; pre-pregnancy and maximum weight were self-reported. Normal weight women with high adherence to the “Vegetable, oil and fish” pattern had higher early-pregnancy GWG than those with low adherence (43 g/week (95% CI 16; 69) for highest vs. lowest quartile (Q)). Adherence to the “Margarine, sugar and snacks” pattern was associated with a higher prevalence of excessive GWG (OR 1.45 (95% CI 1.06; 1.99) Q4 vs. Q1). Normal weight women with higher scores on the “Nuts, high-fiber cereals and soy” pattern had more moderate GWG than women with lower scores (−0.01 (95% CI −0.02; −0.00) per SD). The a priori-defined pattern was not associated with GWG. To conclude, specific dietary patterns may play a role in early pregnancy but are not consistently associated with GWG. PMID:26569303

  5. Pharmacists' role in handling problems with prescriptions for antithrombotic medication in Belgian community pharmacies.

    PubMed

    Desmaele, S; De Wulf, I; Dupont, A G; Steurbaut, S

    2015-08-01

    Community pharmacists have an important task in the follow-up of patients treated with antithrombotics. When delivering these medicines, pharmacists can encounter drug-related problems (DRPs) with substantial clinical and economic impact. To investigate the amount and type of antithrombotic related DRPs as well as how community pharmacists handled these DRPs. Belgian community pharmacies. MSc pharmacy students of six Belgian universities collected data about all DRPs encountered by a pharmacist during ten half days of their pharmacy internship. Data were registered about DRPs detected at delivery and in an a posteriori setting, when consulting the medical history of the patient. Classification of the DRP, cause of the DRP, intervention and result of the intervention were registered. Amount and type of antotrombitocs related DRPs occurring in community pharmacies, as well as how community pharmacists handled these DRPs. 3.1 % of the 15,952 registered DRPs concerned antithrombotics. 79.3 % of these DRPs were detected at delivery and 20.7 % were detected a posteriori. Most antithrombotic-related DRPs concerned problems with the choice of the drug (mainly because of drug-drug interactions) or concerned logistic problems. Almost 80 % of the antithrombotic-related DRPs were followed by an intervention of the pharmacist, mainly at the patient's level, resulting in 90.1 % of these DRPs partially or totally solved. Different DRPs with antithrombotic medication occurred in Belgian community pharmacies. About 20 % was detected in an a posteriori setting, showing the benefit of medication review. Many of the encountered DRPs were of technical nature (60.7 %). These DRPs were time-consuming for the pharmacist to resolve and should be prevented. Most of the DRPs could be solved, demonstrating the added value of the community pharmacist as first line healthcare provider.

  6. ΔT and tidal acceleration values from three european medieval eclipses

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Marco, F. J.

    2011-10-01

    There are many possible reasons for the fact that the rate of rotation of the Earth is slowly decreasing in time, being the most important the tidal friction. Since Universal Time (UT) is a time scale based on the rotation of the Earth and ΔT defined as the difference between the uniform time-scale (Dynamical Time), and the Universal Time, clearly that ΔT will vary with time. The problem is that this variation is not uniform, existing irregular fluctuations. In addition, it is not possible to predict exact values for ΔT, being the only possibility its deduction a posteriori from observations. ΔT is strongly related with occultations and eclipses, because it is used for the calculation of exact times of the event, and for determining the position of the central line or the zone of visibility. In this sense, a value ΔT =3600s is roughly equivalent to a shift of 15. in longitude. Past values of ΔT can be deduced from historical astronomical observations such as ancient eclipses which have been widely studied by F.R. Stephenson [3] and [4] who has even obtained an approximation fitted with cubic splines for ΔT from -500 to +1950. This approximation is nowadays widely used in astronomical calculations. The derived relative error from ΔT obtained from ancient eclipsed is quite large, mainly because of the large width of the totality zone and the inaccuracy in the definition of the observational place. A possibility to partially solve these former problems is the analysis of total eclipse records from multiple sites, which could provide a narrow parameter range. In addition, The conjunct analysis of these astronomical phenomena is useful for determining a range of ΔT in function of the tidal acceleration of the Moon. Further discussion about these eclipses in under review.

  7. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design.

    PubMed

    Bart, Sylvain; Amossé, Joël; Lowe, Christopher N; Mougin, Christian; Péry, Alexandre R R; Pelosi, Céline

    2018-06-21

    Ecotoxicological tests with earthworms are widely used and are mandatory for the risk assessment of pesticides prior to registration and commercial use. The current model species for standardized tests is Eisenia fetida or Eisenia andrei. However, these species are absent from agricultural soils and often less sensitive to pesticides than other earthworm species found in mineral soils. To move towards a better assessment of pesticide effects on non-target organisms, there is a need to perform a posteriori tests using relevant species. The endogeic species Aporrectodea caliginosa (Savigny, 1826) is representative of cultivated fields in temperate regions and is suggested as a relevant model test species. After providing information on its taxonomy, biology, and ecology, we reviewed current knowledge concerning its sensitivity towards pesticides. Moreover, we highlighted research gaps and promising perspectives. Finally, advice and recommendations are given for the establishment of laboratory cultures and experiments using this soil-dwelling earthworm species.

  8. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.

    PubMed

    Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R

    2010-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.

  9. Automatic Lung Lobe Segmentation Using Particles, Thin Plate Splines, and Maximum a Posteriori Estimation

    PubMed Central

    Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.

    2011-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396

  10. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    PubMed

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  11. Comparison of observation level versus 24-hour average atmospheric loading corrections in VLBI analysis

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.; van Dam, T. M.

    2009-04-01

    Variations in the horizontal distribution of atmospheric mass induce displacements of the Earth's surface. Theoretical estimates of the amplitude of the surface displacement indicate that the predicted surface displacement is often large enough to be detected by current geodetic techniques. In fact, the effects of atmospheric pressure loading have been detected in Global Positioning System (GPS) coordinate time series [van Dam et al., 1994; Dong et al., 2002; Scherneck et al., 2003; Zerbini et al., 2004] and very long baseline interferometery (VLBI) coordinates [Rabble and Schuh, 1986; Manabe et al., 1991; van Dam and Herring, 1994; Schuh et al., 2003; MacMillan and Gipson, 1994; and Petrov and Boy, 2004]. Some of these studies applied the atmospheric displacement at the observation level and in other studies, the predicted atmospheric and observed geodetic surface displacements have been averaged over 24 hours. A direct comparison of observation level and 24 hour corrections has not been carried out for VLBI to determine if one or the other approach is superior. In this presentation, we address the following questions: 1) Is it better to correct geodetic data at the observation level rather than applying corrections averaged over 24 hours to estimated geodetic coordinates a posteriori? 2) At the sub-daily periods, the atmospheric mass signal is composed of two components: a tidal component and a non-tidal component. If observation level corrections reduce the scatter of VLBI data more than a posteriori correction, is it sufficient to only model the atmospheric tides or must the entire atmospheric load signal be incorporated into the corrections? 3) When solutions from different geodetic techniques (or analysis centers within a technique) are combined (e.g., for ITRF2008), not all solutions may have applied atmospheric loading corrections. Are any systematic effects on the estimated TRF introduced when atmospheric loading is applied?

  12. Dietary Patterns After the Weaning and Lactation Period Are Associated With Celiac Disease Autoimmunity in Children.

    PubMed

    Barroso, Monica; Beth, Sytske A; Voortman, Trudy; Jaddoe, Vincent W V; van Zelm, Menno C; Moll, Henriette A; Kiefte-de Jong, Jessica C

    2018-06-01

    There have been many studies of associations between infant feeding practices and development of celiac disease during childhood, but few studies have focused on overall diets of young children after the weaning period. We aimed to examine the association between common dietary patterns in infants and the occurrence of celiac disease autoimmunity during childhood. We performed a prospective analysis of data from the Generation R Study that comprised 1997 children born from April 2002 through January 2006 in Rotterdam, the Netherlands. Food consumption around 1 year of age was assessed with a validated food-frequency questionnaire. Dietary data were examined using a priori (based on existing guidelines) and a posteriori (principal component analysis and reduced rank regression) dietary pattern analyses. Five dietary patterns were compared. Celiac disease autoimmunity, determined on the basis of serum concentration of transglutaminase-2 autoantibody (ie, TG2A) below or above 7 U/mL, was evaluated at 6 years. Associations between dietary pattern adherence scores and celiac disease autoimmunity were examined using multivariable logistic regression models. Higher adherence to the a posteriori-derived prudent dietary pattern (high intake of vegetables, vegetable oils, pasta, and grains and low consumption of refined cereals and sweet beverages) at 1 year was significantly associated with lower odds of celiac disease autoimmunity at 6 years (odds ratio, 0.67; 95% confidence interval, 0.53-0.84). No significant associations were found for the 4 remaining dietary patterns. In a prospective study of dietary patterns of young children in the Netherlands, we associated a dietary pattern characterized by high consumption of vegetables and grains and low consumption of refined cereals and sweet beverages, with lower odds of celiac disease autoimmunity. Early-life dietary patterns might therefore be involved in the development of celiac disease during childhood. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  14. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  15. The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study.

    PubMed

    Tsoumpas, C; Polycarpou, I; Thielemans, K; Buerger, C; King, A P; Schaeffter, T; Marsden, P K

    2013-03-21

    Following continuous improvement in PET spatial resolution, respiratory motion correction has become an important task. Two of the most common approaches that utilize all detected PET events to motion-correct PET data are the reconstruct-transform-average method (RTA) and motion-compensated image reconstruction (MCIR). In RTA, separate images are reconstructed for each respiratory frame, subsequently transformed to one reference frame and finally averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are reconstructed by including motion information in the system matrix so that a motion-corrected image is reconstructed directly. Previous theoretical analyses have explained why MCIR is expected to outperform RTA. It has been suggested that MCIR creates less noise than RTA because the images for each separate respiratory frame will be severely affected by noise. However, recent investigations have shown that in the unregularized case RTA images can have fewer noise artefacts, while MCIR images are more quantitatively accurate but have the common salt-and-pepper noise. In this paper, we perform a realistic numerical 4D simulation study to compare the advantages gained by including regularization within reconstruction for RTA and MCIR, in particular using the median-root-prior incorporated in the ordered subsets maximum a posteriori one-step-late algorithm. In this investigation we have demonstrated that MCIR with proper regularization parameters reconstructs lesions with less bias and root mean square error and similar CNR and standard deviation to regularized RTA. This finding is reproducible for a variety of noise levels (25, 50, 100 million counts), lesion sizes (8 mm, 14 mm diameter) and iterations. Nevertheless, regularized RTA can also be a practical solution for motion compensation as a proper level of regularization reduces both bias and mean square error.

  16. Special Issue: Tenth International Conference on Finite Elements in Fluids, Tucson, Arizona.Copyright © 1999 John Wiley & Sons, Ltd.Save Title to My Profile

    E-MailPrint

    Volume 31, Issue 1, Pages 1-406(15 September 1999)

    Preface

    Preface

    NASA Astrophysics Data System (ADS)

    Oden, J. T.; Prudhomme, S.

    1999-09-01

    We present a new approach to deliver reliable approximations of the norm of the residuals resulting from finite element solutions to the Stokes and Oseen equations. The method is based upon a global solve in a bubble space using iterative techniques. This provides an alternative to the classical equilibrated element residual methods for which it is necessary to construct proper boundary conditions for each local problem. The method is first used to develop a global a posteriori error estimator. It is then applied in a strategy to control the numerical error in specific outputs or quantities of interest which are functions of the solutions to the Stokes and Oseen equations. Copyright

  17. Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties

    PubMed Central

    Chi, Eric C.; Lange, Kenneth

    2014-01-01

    Estimation of a covariance matrix or its inverse plays a central role in many statistical methods. For these methods to work reliably, estimated matrices must not only be invertible but also well-conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions towards the sample covariance matrix as the number of samples grows relative to the number of covariates. The utility of the MAP estimator is demonstrated in two standard applications – discriminant analysis and EM clustering – in this sampling regime. PMID:25143662

  18. Parametric inference for biological sequence analysis.

    PubMed

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  19. Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  20. Covariance approximation for fast and accurate computation of channelized Hotelling observer statistics

    NASA Astrophysics Data System (ADS)

    Bonetto, P.; Qi, Jinyi; Leahy, R. M.

    2000-08-01

    Describes a method for computing linear observer statistics for maximum a posteriori (MAP) reconstructions of PET images. The method is based on a theoretical approximation for the mean and covariance of MAP reconstructions. In particular, the authors derive here a closed form for the channelized Hotelling observer (CHO) statistic applied to 2D MAP images. The theoretical analysis models both the Poission statistics of PET data and the inhomogeneity of tracer uptake. The authors show reasonably good correspondence between these theoretical results and Monte Carlo studies. The accuracy and low computational cost of the approximation allow the authors to analyze the observer performance over a wide range of operating conditions and parameter settings for the MAP reconstruction algorithm.

  1. Education, Markets and the Pedagogy of Personalisation

    ERIC Educational Resources Information Center

    Hartley, David

    2008-01-01

    The marketisation of education in England began in the 1980s. It was facilitated by national testing (which gave objective and comparable information to parents), and by the New Public Management (which introduced a posteriori funding and competition among providers). Now a new complementary phase of marketisation is being introduced:…

  2. Mind Your p's and Alphas.

    ERIC Educational Resources Information Center

    Stallings, William M.

    In the educational research literature alpha, the a priori level of significance, and p, the a posteriori probability of obtaining a test statistic of at least a certain value when the null hypothesis is true, are often confused. Explanations for this confusion are offered. Paradoxically, alpha retains a prominent place in textbook discussions of…

  3. Revisiting the “a posteriori” granddaughter design

    USDA-ARS?s Scientific Manuscript database

    An updated search for quantitative trait loci (QTLs) in the Holstein genome was conducted using the a posteriori granddaughter design. The number of Holstein sires with 100 or more genotyped and progeny-tested sons has increased from the previous 52 to 71 for a total of 14,246 sons. The bovine genom...

  4. Seismic Discrimination of Earthquakes and Explosions, with Application to the Southwestern United States

    DTIC Science & Technology

    1979-03-22

    multi-station discriminants than by those based on network averages. In spite of this situ - ation, average a posteriori probabilities were sometimes...Technology, Pasadena, California. Allen, C. R., L. T. Silver, and F. G. Stehi (1960). Agua Blanca fault - a major transverse structure of northern Baja

  5. Using the Pearson Distribution for Synthesis of the Suboptimal Algorithms for Filtering Multi-Dimensional Markov Processes

    NASA Astrophysics Data System (ADS)

    Mit'kin, A. S.; Pogorelov, V. A.; Chub, E. G.

    2015-08-01

    We consider the method of constructing the suboptimal filter on the basis of approximating the a posteriori probability density of the multidimensional Markov process by the Pearson distributions. The proposed method can efficiently be used for approximating asymmetric, excessive, and finite densities.

  6. Lexical Diversity in Writing and Speaking Task Performances

    ERIC Educational Resources Information Center

    Yu, Guoxing

    2010-01-01

    In the rating scales of major international language tests, as well as in automated evaluation systems (e.g. e-rater), a positive relationship is often claimed between lexical diversity, holistic quality of written or spoken discourses, and language proficiency of candidates. This article reports a "posteriori" validation study that analysed a…

  7. A Regional CO2 Observing System Simulation Experiment for the ASCENDS Satellite Mission

    NASA Technical Reports Server (NTRS)

    Wang, J. S.; Kawa, S. R.; Eluszkiewicz, J.; Baker, D. F.; Mountain, M.; Henderson, J.; Nehrkorn, T.; Zaccheo, T. S.

    2014-01-01

    Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 will benefit from the increasing measurement density brought by recent and future additions to the suite of in situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) satellite mission will provide greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions) generated by the WRF-STILT Lagrangian transport model in a regional Bayesian synthesis inversion. The regional Lagrangian framework is well suited to make use of ASCENDS observations to constrain fluxes at high resolution, in this case at 1 degree latitude x 1 degree longitude and weekly for North America. We consider random measurement errors only, modeled as a function of mission and instrument design specifications along with realistic atmospheric and surface conditions. We find that the ASCENDS observations could potentially reduce flux uncertainties substantially at biome and finer scales. At the 1 degree x 1 degree, weekly scale, the largest uncertainty reductions, on the order of 50 percent, occur where and when there is good coverage by observations with low measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller for a 1.57 micron candidate wavelength than for a 2.05 micron wavelength, and are smaller for the higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada). Uncertainty reductions at the annual, biome scale range from 40 percent to 75 percent across our four instrument design cases, and from 65 percent to 85 percent for the continent as a whole. Our uncertainty reductions at various scales are substantially smaller than those from a global ASCENDS inversion on a coarser grid, demonstrating how quantitative results can depend on inversion methodology. The a posteriori flux uncertainties we obtain, ranging from 0.01 to 0.06 Pg C yr-1 across the biomes, would meet requirements for improved understanding of long-term carbon sinks suggested by a previous study.

  8. Structure from Motion (SfM) photogrammetry applied to historical imagery: plug & play?

    NASA Astrophysics Data System (ADS)

    Bakker, Maarten; Lane, Stuart N.

    2017-04-01

    The development of Structure from Motion (SfM) photogrammetry has led to a vast increase and expansion of geomorphological applications. Highly detailed Digital Elevation Models (DEMs) can be efficiently generated from a variety of platforms that cover a large range of spatial scales. For the application of DEMs in geomorphic change analysis, precision and spatial resolution are not of sole importance, but also their accuracy, temporal resolution and temporal coverage. The use of archival imagery may substantially lengthen temporal coverage, allowing quantification of annual to decadal scale landform change. Whilst archival photogrammetry is not new, a question arises as to how applicable SfM methods are as a more cost-effective and straightforward alternative to the conventional approach. Here, we studied a relatively extreme case where we applied SfM techniques to archival aerial imagery, to investigate the decadal evolution of a low relief braided river. The Borgne is an Alpine river in south-west Switzerland which is strongly affected by flow abstraction for hydropower, allowing the fairly straightforward application of photogrammetry on the near-dry river bed. For 8 sets of scanned historical aerial images in the period 1959-2005 we performed Ground Control Point (GCP) assisted bundle adjustment using both classical archival digital photogrammetry (used as a reference dataset) and SfM based photogrammetry. For the SfM method, no further data were used to constrain camera or exterior orientation parameters a priori, but instead we used these for a posteriori verification. The resulting densified point clouds were registered onto a reference surface based on stable areas, allowing the correction for any systematic error in DEMs that may arise from (random) error in the bundle adjustment. The obtained results show that the quality of the SfM based bundle adjustment is similar to that of the classical photogrammetric approach. Next to image scale, the quality is strongly driven by ability of computer vision techniques to extract tie-points, which is controlled by image texture (quantified here using entropy) and image overlap (redundancy). Depending on the used image set, these characteristics may therefore be effectively exploited or pose a limitation for application. The quality of the results aside, we found that the recovered bundle adjustment parameters were not necessarily correct and that there was the possibility for a trade-off, between estimated focal length and camera flying height for example, such that the right results were obtained if not for the right reasons. This highlights the need to assess camera and exterior orientation parameters, and to address systematic errors that may evolve from this. For the latter, we found that point cloud registration is crucial, particularly in a low relief environment such as a braided river, for accurate change quantification and geomorphic interpretation. We conclude that, given a suitable set of images and considering principles of classical photogrammetric analysis, SfM methods can be effectively applied for archival imagery analysis, but that this is by no means a plug and play methodology.

  9. Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions

    NASA Astrophysics Data System (ADS)

    Wrench, Alan A.

    Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).

  10. Evaluation of two methods for using MR information in PET reconstruction

    NASA Astrophysics Data System (ADS)

    Caldeira, L.; Scheins, J.; Almeida, P.; Herzog, H.

    2013-02-01

    Using magnetic resonance (MR) information in maximum a posteriori (MAP) algorithms for positron emission tomography (PET) image reconstruction has been investigated in the last years. Recently, three methods to introduce this information have been evaluated and the Bowsher prior was considered the best. Its main advantage is that it does not require image segmentation. Another method that has been widely used for incorporating MR information is using boundaries obtained by segmentation. This method has also shown improvements in image quality. In this paper, two methods for incorporating MR information in PET reconstruction are compared. After a Bayes parameter optimization, the reconstructed images were compared using the mean squared error (MSE) and the coefficient of variation (CV). MSE values are 3% lower in Bowsher than using boundaries. CV values are 10% lower in Bowsher than using boundaries. Both methods performed better than using no prior, that is, maximum likelihood expectation maximization (MLEM) or MAP without anatomic information in terms of MSE and CV. Concluding, incorporating MR information using the Bowsher prior gives better results in terms of MSE and CV than boundaries. MAP algorithms showed again to be effective in noise reduction and convergence, specially when MR information is incorporated. The robustness of the priors in respect to noise and inhomogeneities in the MR image has however still to be performed.

  11. Probabilistic models in human sensorimotor control

    PubMed Central

    Wolpert, Daniel M.

    2009-01-01

    Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731

  12. Performance Enhancement of MC-CDMA System through Novel Sensitive Bit Algorithm Aided Turbo Multi User Detection

    PubMed Central

    Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan

    2015-01-01

    Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917

  13. Bayesian Recurrent Neural Network for Language Modeling.

    PubMed

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  14. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  15. Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties.

    PubMed

    Ohyu, Shigeharu; Okamoto, Yoshiwo; Kuriki, Shinya

    2002-06-01

    A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.

  16. Jacobian projection reduced-order models for dynamic systems with contact nonlinearities

    NASA Astrophysics Data System (ADS)

    Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.

    2018-02-01

    In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.

  17. Comparison of Grouping Schemes for Exposure to Total Dust in Cement Factories in Korea.

    PubMed

    Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo; Park, Donguk

    2015-08-01

    The purpose of this study was to evaluate grouping schemes for exposure to total dust in cement industry workers using non-repeated measurement data. In total, 2370 total dust measurements taken from nine Portland cement factories in 1995-2009 were analyzed. Various grouping schemes were generated based on work process, job, factory, or average exposure. To characterize variance components of each grouping scheme, we developed mixed-effects models with a B-spline time trend incorporated as fixed effects and a grouping variable incorporated as a random effect. Using the estimated variance components, elasticity was calculated. To compare the prediction performances of different grouping schemes, 10-fold cross-validation tests were conducted, and root mean squared errors and pooled correlation coefficients were calculated for each grouping scheme. The five exposure groups created a posteriori by ranking job and factory combinations according to average dust exposure showed the best prediction performance and highest elasticity among various grouping schemes. Our findings suggest a grouping method based on ranking of job, and factory combinations would be the optimal choice in this population. Our grouping method may aid exposure assessment efforts in similar occupational settings, minimizing the misclassification of exposures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Calibration methods influence quantitative material decomposition in photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Curtis, Tyler E.; Roeder, Ryan K.

    2017-03-01

    Photon-counting detectors and nanoparticle contrast agents can potentially enable molecular imaging and material decomposition in computed tomography (CT). Material decomposition has been investigated using both simulated and acquired data sets. However, the effect of calibration methods on material decomposition has not been systematically investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on quantitative material decomposition. A commerciallyavailable photon-counting spectral micro-CT (MARS Bioimaging) was used to acquire images with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material basis matrix values were determined using multiple linear regression models and material decomposition was performed using a maximum a posteriori estimator. The accuracy of quantitative material decomposition was evaluated by the root mean squared error (RMSE), specificity, sensitivity, and area under the curve (AUC). An increased maximum concentration (range) in the calibration significantly improved RMSE, specificity and AUC. The effects of an increased number of concentrations in the calibration were not statistically significant for the conditions in this study. The overall results demonstrated that the accuracy of quantitative material decomposition in spectral CT is significantly influenced by calibration methods, which must therefore be carefully considered for the intended diagnostic imaging application.

  19. Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensslin, Torsten A.; Frommert, Mona

    2011-05-15

    The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequentmore » reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.« less

  20. SAMSAN- MODERN NUMERICAL METHODS FOR CLASSICAL SAMPLED SYSTEM ANALYSIS

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    SAMSAN was developed to aid the control system analyst by providing a self consistent set of computer algorithms that support large order control system design and evaluation studies, with an emphasis placed on sampled system analysis. Control system analysts have access to a vast array of published algorithms to solve an equally large spectrum of controls related computational problems. The analyst usually spends considerable time and effort bringing these published algorithms to an integrated operational status and often finds them less general than desired. SAMSAN reduces the burden on the analyst by providing a set of algorithms that have been well tested and documented, and that can be readily integrated for solving control system problems. Algorithm selection for SAMSAN has been biased toward numerical accuracy for large order systems with computational speed and portability being considered important but not paramount. In addition to containing relevant subroutines from EISPAK for eigen-analysis and from LINPAK for the solution of linear systems and related problems, SAMSAN contains the following not so generally available capabilities: 1) Reduction of a real non-symmetric matrix to block diagonal form via a real similarity transformation matrix which is well conditioned with respect to inversion, 2) Solution of the generalized eigenvalue problem with balancing and grading, 3) Computation of all zeros of the determinant of a matrix of polynomials, 4) Matrix exponentiation and the evaluation of integrals involving the matrix exponential, with option to first block diagonalize, 5) Root locus and frequency response for single variable transfer functions in the S, Z, and W domains, 6) Several methods of computing zeros for linear systems, and 7) The ability to generate documentation "on demand". All matrix operations in the SAMSAN algorithms assume non-symmetric matrices with real double precision elements. There is no fixed size limit on any matrix in any SAMSAN algorithm; however, it is generally agreed by experienced users, and in the numerical error analysis literature, that computation with non-symmetric matrices of order greater than about 200 should be avoided or treated with extreme care. SAMSAN attempts to support the needs of application oriented analysis by providing: 1) a methodology with unlimited growth potential, 2) a methodology to insure that associated documentation is current and available "on demand", 3) a foundation of basic computational algorithms that most controls analysis procedures are based upon, 4) a set of check out and evaluation programs which demonstrate usage of the algorithms on a series of problems which are structured to expose the limits of each algorithm's applicability, and 5) capabilities which support both a priori and a posteriori error analysis for the computational algorithms provided. The SAMSAN algorithms are coded in FORTRAN 77 for batch or interactive execution and have been implemented on a DEC VAX computer under VMS 4.7. An effort was made to assure that the FORTRAN source code was portable and thus SAMSAN may be adaptable to other machine environments. The documentation is included on the distribution tape or can be purchased separately at the price below. SAMSAN version 2.0 was developed in 1982 and updated to version 3.0 in 1988.

  1. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  2. Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry.

    PubMed

    Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir

    2015-04-01

    In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. SU-F-J-23: Field-Of-View Expansion in Cone-Beam CT Reconstruction by Use of Prior Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, A; Magome, T; Nakano, M

    Purpose: Cone-beam CT (CBCT) has become an integral part of online patient setup in an image-guided radiation therapy (IGRT). In addition, the utility of CBCT for dose calculation has actively been investigated. However, the limited size of field-of-view (FOV) and resulted CBCT image with a lack of peripheral area of patient body prevents the reliability of dose calculation. In this study, we aim to develop an FOV expanded CBCT in IGRT system to allow the dose calculation. Methods: Three lung cancer patients were selected in this study. We collected the cone-beam projection images in the CBCT-based IGRT system (X-ray volumemore » imaging unit, ELEKTA), where FOV size of the provided CBCT with these projections was 410 × 410 mm{sup 2} (normal FOV). Using these projections, CBCT with a size of 728 × 728 mm{sup 2} was reconstructed by a posteriori estimation algorithm including a prior image constrained compressed sensing (PICCS). The treatment planning CT was used as a prior image. To assess the effectiveness of FOV expansion, a dose calculation was performed on the expanded CBCT image with region-of-interest (ROI) density mapping method, and it was compared with that of treatment planning CT as well as that of CBCT reconstructed by filtered back projection (FBP) algorithm. Results: A posteriori estimation algorithm with PICCS clearly visualized an area outside normal FOV, whereas the FBP algorithm yielded severe streak artifacts outside normal FOV due to under-sampling. The dose calculation result using the expanded CBCT agreed with that using treatment planning CT very well; a maximum dose difference was 1.3% for gross tumor volumes. Conclusion: With a posteriori estimation algorithm, FOV in CBCT can be expanded. Dose comparison results suggested that the use of expanded CBCTs is acceptable for dose calculation in adaptive radiation therapy. This study has been supported by KAKENHI (15K08691).« less

  4. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    NASA Astrophysics Data System (ADS)

    Feng, L.; Palmer, P. I.; Yang, Y.; Yantosca, R. M.; Kawa, S. R.; Paris, J.-D.; Matsueda, H.; Machida, T.

    2010-07-01

    We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003-2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modelling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman filter to estimate a posteriori biospheric+biomass burning (BS+BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom 3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS+BB+OC CO2 fluxes over 2004-2006 for GEOS-4 (GEOS-5) meteorology are -4.4±0.9 (-4.2±0.9), -3.9±0.9 (-4.5±0.9), and -5.2±0.9 (-4.9±0.9) Pg C yr-1 , respectively. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992-1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91-2.43 ppm yr-1, depending on latitude, within 0.15 ppm yr-1 (0.2 ppm yr-1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4-5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95-2.19 ppm yr-1) compared to AIRS data which has a trend of 2.21-2.63 ppm yr-1 during 2004-2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.

  5. Measurement of residual chemical shift anisotropies in compressed polymethylmethacrylate gels. Automatic compensation of gel isotropic shift contribution.

    PubMed

    Hallwass, Fernando; Teles, Rubens R; Hellemann, Erich; Griesinger, Christian; Gil, Roberto R; Navarro-Vázquez, Armando

    2018-05-01

    Mechanical compression of polymer gels provides a simple way for the measurement of residual chemical shift anisotropies, which then can be employed, on its own, or in combination with residual dipolar couplings, for structural elucidation purposes. Residual chemical shift anisotropies measured using compression devices needed a posteriori correction to account for the increase of the polymer to solvent ratio inside the swollen gel. This correction has been cast before in terms of a single-free parameter which, as shown here, can be simultaneously optimized along with the components of the alignment tensor while still retaining discriminating power of the different relative configurations as illustrated in the stereochemical analysis of α-santonin and 10-epi-8-deoxycumambrin B. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    PubMed

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application. © 2017 American Association of Physicists in Medicine.

  7. Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmiotti, Giuseppe; Salvatores, Massimo

    2014-04-01

    The Working Party on International Nuclear Data Evaluation Cooperation (WPEC) of the Nuclear Science Committee under the Nuclear Energy Agency (NEA/OECD) established a Subgroup (called “Subgroup 33”) in 2009 on “Methods and issues for the combined use of integral experiments and covariance data.” The first stage was devoted to producing the description of different adjustment methodologies and assessing their merits. A detailed document related to this first stage has been issued. Nine leading organizations (often with a long and recognized expertise in the field) have contributed: ANL, CEA, INL, IPPE, JAEA, JSI, NRG, IRSN and ORNL. In the second stagemore » a practical benchmark exercise was defined in order to test the reliability of the nuclear data adjustment methodology. A comparison of the results obtained by the participants and major lessons learned in the exercise are discussed in the present paper that summarizes individual contributions which often include several original developments not reported separately. The paper provides the analysis of the most important results of the adjustment of the main nuclear data of 11 major isotopes in a 33-group energy structure. This benchmark exercise was based on a set of 20 well defined integral parameters from 7 fast assembly experiments. The exercise showed that using a common shared set of integral experiments but different starting evaluated libraries and/or different covariance matrices, there is a good convergence of trends for adjustments. Moreover, a significant reduction of the original uncertainties is often observed. Using the a–posteriori covariance data, there is a strong reduction of the uncertainties of integral parameters for reference reactor designs, mainly due to the new correlations in the a–posteriori covariance matrix. Furthermore, criteria have been proposed and applied to verify the consistency of differential and integral data used in the adjustment. Finally, recommendations are given for an appropriate use of sensitivity analysis methods and indications for future work are provided.« less

  8. A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area

    PubMed Central

    Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Cabestany, Joan; Català, Andreu

    2013-01-01

    Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU's movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A μSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson's disease symptoms, in gait analysis, and in a fall detection system. PMID:24145917

  9. A wearable inertial measurement unit for long-term monitoring in the dependency care area.

    PubMed

    Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Cabestany, Joan; Català, Andreu

    2013-10-18

    Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU's movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A µSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson's disease symptoms, in gait analysis, and in a fall detection system.

  10. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  11. Using the Coefficient of Confidence to Make the Philosophical Switch from a Posteriori to a Priori Inferential Statistics

    ERIC Educational Resources Information Center

    Trafimow, David

    2017-01-01

    There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…

  12. Accuracy and Variability of Item Parameter Estimates from Marginal Maximum a Posteriori Estimation and Bayesian Inference via Gibbs Samplers

    ERIC Educational Resources Information Center

    Wu, Yi-Fang

    2015-01-01

    Item response theory (IRT) uses a family of statistical models for estimating stable characteristics of items and examinees and defining how these characteristics interact in describing item and test performance. With a focus on the three-parameter logistic IRT (Birnbaum, 1968; Lord, 1980) model, the current study examines the accuracy and…

  13. Software requirements for the study of contextual classifiers and label imperfections

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The software requirements for the study of contextual classifiers and imperfections in the labels are presented. In particular, the requirements are described for updating the posteriori probability of the picture element under consideration using information from its local neighborhood, designing the Fisher classifier, and other required routines. Only the necessary equations are given for the development of software.

  14. Graph edit distance from spectral seriation.

    PubMed

    Robles-Kelly, Antonio; Hancock, Edwin R

    2005-03-01

    This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.

  15. Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Chellappa, R.

    1993-01-01

    We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polarization SAR intensity data into regions or ensembles of pixels of homogeneous and similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR intensity data is combined with a Markov random field for representing the interactions between region labels to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observations. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude data. The MAP classifier is extended to the case in which the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations acquired at two different frequencies and for improving classification accuracy of SAR data.

  16. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation.

    PubMed

    Marcel, Sébastien; Millán, José Del R

    2007-04-01

    In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identification. EEG-based biometry is an emerging research topic and we believe that it may open new research directions and applications in the future. However, very little work has been done in this area and was focusing mainly on person identification but not on person authentication. Person authentication aims to accept or to reject a person claiming an identity, i.e., comparing a biometric data to one template, while the goal of person identification is to match the biometric data against all the records in a database. We propose the use of a statistical framework based on Gaussian Mixture Models and Maximum A Posteriori model adaptation, successfully applied to speaker and face authentication, which can deal with only one training session. We perform intensive experimental simulations using several strict train/test protocols to show the potential of our method. We also show that there are some mental tasks that are more appropriate for person authentication than others.

  17. Information criteria for quantifying loss of reversibility in parallelized KMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gourgoulias, Konstantinos, E-mail: gourgoul@math.umass.edu; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Rey-Bellet, Luc, E-mail: luc@math.umass.edu

    Parallel Kinetic Monte Carlo (KMC) is a potent tool to simulate stochastic particle systems efficiently. However, despite literature on quantifying domain decomposition errors of the particle system for this class of algorithms in the short and in the long time regime, no study yet explores and quantifies the loss of time-reversibility in Parallel KMC. Inspired by concepts from non-equilibrium statistical mechanics, we propose the entropy production per unit time, or entropy production rate, given in terms of an observable and a corresponding estimator, as a metric that quantifies the loss of reversibility. Typically, this is a quantity that cannot bemore » computed explicitly for Parallel KMC, which is why we develop a posteriori estimators that have good scaling properties with respect to the size of the system. Through these estimators, we can connect the different parameters of the scheme, such as the communication time step of the parallelization, the choice of the domain decomposition, and the computational schedule, with its performance in controlling the loss of reversibility. From this point of view, the entropy production rate can be seen both as an information criterion to compare the reversibility of different parallel schemes and as a tool to diagnose reversibility issues with a particular scheme. As a demonstration, we use Sandia Lab's SPPARKS software to compare different parallelization schemes and different domain (lattice) decompositions.« less

  18. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  19. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  20. Protein-ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Zoete, V.; Michielin, O.; Karplus, M.

    2003-12-01

    A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SAS bur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, ΔGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC 50 without reparametrization.

  1. Information criteria for quantifying loss of reversibility in parallelized KMC

    NASA Astrophysics Data System (ADS)

    Gourgoulias, Konstantinos; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2017-01-01

    Parallel Kinetic Monte Carlo (KMC) is a potent tool to simulate stochastic particle systems efficiently. However, despite literature on quantifying domain decomposition errors of the particle system for this class of algorithms in the short and in the long time regime, no study yet explores and quantifies the loss of time-reversibility in Parallel KMC. Inspired by concepts from non-equilibrium statistical mechanics, we propose the entropy production per unit time, or entropy production rate, given in terms of an observable and a corresponding estimator, as a metric that quantifies the loss of reversibility. Typically, this is a quantity that cannot be computed explicitly for Parallel KMC, which is why we develop a posteriori estimators that have good scaling properties with respect to the size of the system. Through these estimators, we can connect the different parameters of the scheme, such as the communication time step of the parallelization, the choice of the domain decomposition, and the computational schedule, with its performance in controlling the loss of reversibility. From this point of view, the entropy production rate can be seen both as an information criterion to compare the reversibility of different parallel schemes and as a tool to diagnose reversibility issues with a particular scheme. As a demonstration, we use Sandia Lab's SPPARKS software to compare different parallelization schemes and different domain (lattice) decompositions.

  2. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  3. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori retrieval distributions. In this work, we apply this general inverse theory approach to extend our analysis of the spectrally-dependent impacts of overlying aerosols on cloud properties over a broad range in cloud optical thickness and droplet effective radius. We investigate the relative impacts of this error source and compare and contrast results to biases and uncertainties in cloud properties induced by varying surface conditions (ocean, land, snow). We perform the analysis for two different measurement accuracies (3% and 0.3%) that are typical of current passive imagers, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [Platnick et al., 2003], and that are expected for future passive imagers, such as the HyperSpectral Imager for Climate Science (HySICS) [Kopp et al., 2010]. Coddington, O., P. Pilewskie, et al., 2010, J. Geophys. Res., 115, doi: 10.1029/2009JD012829. Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004, Q. J. R. Meteorol. Soc., 130, 779-800. Kopp, G., et al., 2010, Hyperspectral Imagery Radiometry Improvements for Visible and Near-Infrared Climate Studies, paper presented at 2010 Earth Science Technology Forum, Arlington, VA, USA. Platnick, S., et al., 2003, IEEE Trans. Geosci. Remote Sens., 41(2), 459- 473.

  4. Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures

    NASA Technical Reports Server (NTRS)

    Jeyapaul, Elbert; Rumsey Christopher

    2013-01-01

    Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.

  5. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  6. Adaptive Mesh Refinement for Microelectronic Device Design

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John; Norton, Charles

    1999-01-01

    Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of the spectrum as well as active device simulations that model charge transport and Maxwell's equations will be presented.

  7. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.

  8. Bayesian inversion of a CRN depth profile to infer Quaternary erosion of the northwestern Campine Plateau (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Beerten, Koen; Vanacker, Veerle; Christl, Marcus; Rogiers, Bart; Wouters, Laurent

    2017-07-01

    The rate at which low-lying sandy areas in temperate regions, such as the Campine Plateau (NE Belgium), have been eroding during the Quaternary is a matter of debate. Current knowledge on the average pace of landscape evolution in the Campine area is largely based on geological inferences and modern analogies. We performed a Bayesian inversion of an in situ-produced 10Be concentration depth profile to infer the average long-term erosion rate together with two other parameters: the surface exposure age and the inherited 10Be concentration. Compared to the latest advances in probabilistic inversion of cosmogenic radionuclide (CRN) data, our approach has the following two innovative components: it (1) uses Markov chain Monte Carlo (MCMC) sampling and (2) accounts (under certain assumptions) for the contribution of model errors to posterior uncertainty. To investigate to what extent our approach differs from the state of the art in practice, a comparison against the Bayesian inversion method implemented in the CRONUScalc program is made. Both approaches identify similar maximum a posteriori (MAP) parameter values, but posterior parameter and predictive uncertainty derived using the method taken in CRONUScalc is moderately underestimated. A simple way for producing more consistent uncertainty estimates with the CRONUScalc-like method in the presence of model errors is therefore suggested. Our inferred erosion rate of 39 ± 8. 9 mm kyr-1 (1σ) is relatively large in comparison with landforms that erode under comparable (paleo-)climates elsewhere in the world. We evaluate this value in the light of the erodibility of the substrate and sudden base level lowering during the Middle Pleistocene. A denser sampling scheme of a two-nuclide concentration depth profile would allow for better inferred erosion rate resolution, and including more uncertain parameters in the MCMC inversion.

  9. Variationally consistent discretization schemes and numerical algorithms for contact problems

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Barbara

    We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of possible applications and show the performance of the space discretization scheme, non-linear solver, adaptive refinement process and time integration.

  10. Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.

    2013-03-01

    Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.

  11. The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, R. M.; Tai, K.-S.

    2013-01-01

    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics.

  12. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.

  13. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Lu, Dan; Ye, Ming; Gunzburger, Max; Webster, Clayton

    2013-10-01

    Bayesian analysis has become vital to uncertainty quantification in groundwater modeling, but its application has been hindered by the computational cost associated with numerous model executions required by exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, a new approach is developed to improve the computational efficiency of Bayesian inference by constructing a surrogate of the PPDF, using an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, this paper utilizes a compactly supported higher-order hierarchical basis to construct the surrogate system, resulting in a significant reduction in the number of required model executions. In addition, using the hierarchical surplus as an error indicator allows locally adaptive refinement of sparse grids in the parameter space, which further improves computational efficiency. To efficiently build the surrogate system for the PPDF with multiple significant modes, optimization techniques are used to identify the modes, for which high-probability regions are defined and components of the aSG-hSC approximation are constructed. After the surrogate is determined, the PPDF can be evaluated by sampling the surrogate system directly without model execution, resulting in improved efficiency of the surrogate-based MCMC compared with conventional MCMC. The developed method is evaluated using two synthetic groundwater reactive transport models. The first example involves coupled linear reactions and demonstrates the accuracy of our high-order hierarchical basis approach in approximating high-dimensional posteriori distribution. The second example is highly nonlinear because of the reactions of uranium surface complexation, and demonstrates how the iterative aSG-hSC method is able to capture multimodal and non-Gaussian features of PPDF caused by model nonlinearity. Both experiments show that aSG-hSC is an effective and efficient tool for Bayesian inference.

  14. On Building an A-Posteriori Index from Survey Data: A Case for Educational Planners' Assessment of Attitudes towards an Educational Innovation.

    ERIC Educational Resources Information Center

    Vazquez-Abad, Jesus; DePauw, Karen

    To simplify data from a large survey, it is desirable to classify subjects according to their attitudes toward certain issues, as measured by questions in the survey. Responses to 12 questions were identified as indicative of attitudes toward deschooling education. These attitudes were explained by means of patterns exhibited within the responses…

  15. At the origins of the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Lattuada, Marcello

    2018-01-01

    During the seventies and eighties a long experimental research program on the quasi-free reactions at low energy was carried out by a small group of nuclear physicists, where Claudio Spitaleri was one of the main protagonists. Nowadays, a posteriori, the results of these studies can be considered an essential step preparatory to the application of the Trojan Horse Method (THM) in Nuclear Astrophysics.

  16. A MAP blind image deconvolution algorithm with bandwidth over-constrained

    NASA Astrophysics Data System (ADS)

    Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong

    2018-03-01

    We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.

  17. Leukocyte Recognition Using EM-Algorithm

    NASA Astrophysics Data System (ADS)

    Colunga, Mario Chirinos; Siordia, Oscar Sánchez; Maybank, Stephen J.

    This document describes a method for classifying images of blood cells. Three different classes of cells are used: Band Neutrophils, Eosinophils and Lymphocytes. The image pattern is projected down to a lower dimensional sub space using PCA; the probability density function for each class is modeled with a Gaussian mixture using the EM-Algorithm. A new cell image is classified using the maximum a posteriori decision rule.

  18. A full-mission data set of H2O and HDO columns from SCIAMACHY 2.3 µm reflectance measurements

    NASA Astrophysics Data System (ADS)

    Schneider, Andreas; Borsdorff, Tobias; aan de Brugh, Joost; Hu, Haili; Landgraf, Jochen

    2018-06-01

    A new data set of vertical column densities of the water vapour isotopologues H2O and HDO from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument for the whole of the mission period from January 2003 to April 2012 is presented. The data are retrieved from reflectance measurements in the spectral range 2339 to 2383 nm with the Shortwave Infrared CO Retrieval (SICOR) algorithm, ignoring atmospheric light scattering in the measurement simulation. The retrievals are validated with ground-based Fourier transform infrared measurements obtained within the Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) project. A good agreement for low-altitude stations is found with an average bias of -3.6×1021 for H2O and -1.0×1018 molec cm-2 for HDO. The a posteriori computed δD shows an average bias of -8 ‰, even though polar stations have a larger negative bias. The latter is due to the large amount of sensor noise in SCIAMACHY in combination with low albedo and high solar zenith angles. To demonstrate the benefit of accounting for light scattering in the retrieval, the quality of the data product fitting effective cloud parameters simultaneously with trace gas columns is evaluated in a dedicated case study for measurements round high-altitude stations. Due to a large altitude difference between the satellite ground pixel and the mountain station, clear-sky scenes yield a large bias, resulting in a δD bias of 125 ‰. When selecting scenes with optically thick clouds within 1000 m above or below the station altitude, the bias in a posteriori δD is reduced from 125 to 44 ‰. The insights from the present study will also benefit the analysis of the data from the new Sentinel-5 Precursor mission.

  19. Identifying uniformly mutated segments within repeats.

    PubMed

    Sahinalp, S Cenk; Eichler, Evan; Goldberg, Paul; Berenbrink, Petra; Friedetzky, Tom; Ergun, Funda

    2004-12-01

    Given a long string of characters from a constant size alphabet we present an algorithm to determine whether its characters have been generated by a single i.i.d. random source. More specifically, consider all possible n-coin models for generating a binary string S, where each bit of S is generated via an independent toss of one of the n coins in the model. The choice of which coin to toss is decided by a random walk on the set of coins where the probability of a coin change is much lower than the probability of using the same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model for given S, subject a uniform prior distribution over the parameters of the model (that represent mutation rates and probabilities of copying events). In the absence of detailed prior knowledge of these parameters, the algorithm can be used to determine whether the a posteriori probability for n=1 is higher than for any other n>1. Our algorithm runs in time O(l4logl), where l is the length of S, through a dynamic programming approach which exploits the assumed convexity of the a posteriori probability for n. Our test can be used in the analysis of long alignments between pairs of genomic sequences in a number of ways. For example, functional regions in genome sequences exhibit much lower mutation rates than non-functional regions. Because our test provides means for determining variations in the mutation rate, it may be used to distinguish functional regions from non-functional ones. Another application is in determining whether two highly similar, thus evolutionarily related, genome segments are the result of a single copy event or of a complex series of copy events. This is particularly an issue in evolutionary studies of genome regions rich with repeat segments (especially tandemly repeated segments).

  20. Image-based topology for sensor gridlocking and association

    NASA Astrophysics Data System (ADS)

    Stanek, Clay J.; Javidi, Bahram; Yanni, Philip

    2002-07-01

    Correlation engines have been evolving since the implementation of radar. In modern sensor fusion architectures, correlation and gridlock filtering are required to produce common, continuous, and unambiguous tracks of all objects in the surveillance area. The objective is to provide a unified picture of the theatre or area of interest to battlefield decision makers, ultimately enabling them to make better inferences for future action and eliminate fratricide by reducing ambiguities. Here, correlation refers to association, which in this context is track-to-track association. A related process, gridlock filtering or gridlocking, refers to the reduction in navigation errors and sensor misalignment errors so that one sensor's track data can be accurately transformed into another sensor's coordinate system. As platforms gain multiple sensors, the correlation and gridlocking of tracks become significantly more difficult. Much of the existing correlation technology revolves around various interpretations of the generalized Bayesian decision rule: choose the action that minimizes conditional risk. One implementation of this principle equates the risk minimization statement to the comparison of ratios of a priori probability distributions to thresholds. The binary decision problem phrased in terms of likelihood ratios is also known as the famed Neyman-Pearson hypothesis test. Using another restatement of the principle for a symmetric loss function, risk minimization leads to a decision that maximizes the a posteriori probability distribution. Even for deterministic decision rules, situations can arise in correlation where there are ambiguities. For these situations, a common algorithm used is a sparse assignment technique such as the Munkres or JVC algorithm. Furthermore, associated tracks may be combined with the hope of reducing the positional uncertainty of a target or object identified by an existing track from the information of several fused/correlated tracks. Gridlocking is typically accomplished with some type of least-squares algorithm, such as the Kalman filtering technique, which attempts to locate the best bias error vector estimate from a set of correlated/fused track pairs. Here, we will introduce a new approach to this longstanding problem by adapting many of the familiar concepts from pattern recognition, ones certainly familiar to target recognition applications. Furthermore, we will show how this technique can lend itself to specialized processing, such as that available through an optical or hybrid correlator.

  1. Error analysis of mathematical problems on TIMSS: A case of Indonesian secondary students

    NASA Astrophysics Data System (ADS)

    Priyani, H. A.; Ekawati, R.

    2018-01-01

    Indonesian students’ competence in solving mathematical problems is still considered as weak. It was pointed out by the results of international assessment such as TIMSS. This might be caused by various types of errors made. Hence, this study aimed at identifying students’ errors in solving mathematical problems in TIMSS in the topic of numbers that considered as the fundamental concept in Mathematics. This study applied descriptive qualitative analysis. The subject was three students with most errors in the test indicators who were taken from 34 students of 8th graders. Data was obtained through paper and pencil test and student’s’ interview. The error analysis indicated that in solving Applying level problem, the type of error that students made was operational errors. In addition, for reasoning level problem, there are three types of errors made such as conceptual errors, operational errors and principal errors. Meanwhile, analysis of the causes of students’ errors showed that students did not comprehend the mathematical problems given.

  2. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  3. A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.

  4. Monitoring tropical vegetation succession with LANDSAT data

    NASA Technical Reports Server (NTRS)

    Robinson, V. B. (Principal Investigator)

    1983-01-01

    The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.

  5. Reconstruction of regional climate and climate change in past decades

    NASA Astrophysics Data System (ADS)

    von Storch, H.; Feser, F.; Weisse, R.; Zahn, M.

    2009-12-01

    Regional climate models, which are constrained by large scale information (spectral nudging) provided by re-analyses, allow for the construction of a mostly homogeneous description of regional weather statistics since about 1950. The potential of this approach has been demonstrated for Northern Europe. That data set, named CoastDat, does not only contain hourly data on atmospheric variables, in particular wind, but also on marine weather, i.e., short term water level, current and sea state variations. Another example is the multi-decadal variability of Polar Lows in the subarctic waters. The utility of such data sets is broad, from risk assessments related to coastal wind and wave conditions, assessment of determining the causes for regional climate change, a-posteriori analysis of the efficiency of environmental legislation (example: lead). In the paper, the methodology is outlined, examples are provided and the utility of the product discussed.

  6. Large scale anomalies in the microwave background: causation and correlation.

    PubMed

    Aslanyan, Grigor; Easther, Richard

    2013-12-27

    Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.

  7. Search for Cross-Correlations of Ultrahigh-Energy Cosmic Rays with BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Blake, S. A.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration

    2006-01-01

    Data taken in stereo mode by the High Resolution Fly's Eye (HiRes) air fluorescence experiment are analyzed to search for correlations between the arrival directions of ultrahigh-energy cosmic rays with the positions of BL Lacertae objects. Several previous claims of significant correlations between BL Lac objects and cosmic rays observed by other experiments are tested. These claims are not supported by the HiRes data. However, we verify a recent analysis of correlations between HiRes events and a subset of confirmed BL Lac objects from the 10th Veron Catalog, and we study this correlation in detail. Due to the a posteriori nature of the search, the significance level cannot be reliably estimated and the correlation must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with statistically independent data.

  8. Geophysical approaches to inverse problems: A methodological comparison. Part 1: A Posteriori approach

    NASA Technical Reports Server (NTRS)

    Seidman, T. I.; Munteanu, M. J.

    1979-01-01

    The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.

  9. Practical Considerations about Expected A Posteriori Estimation in Adaptive Testing: Adaptive A Priori, Adaptive Correction for Bias, and Adaptive Integration Interval.

    ERIC Educational Resources Information Center

    Raiche, Gilles; Blais, Jean-Guy

    In a computerized adaptive test (CAT), it would be desirable to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Decreasing the number of items is accompanied, however, by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. G. Raiche (2000) has…

  10. On the Least-Squares Fitting of Correlated Data: a Priorivs a PosterioriWeighting

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, Joel

    1996-10-01

    One of the methods in common use for analyzing large data sets is a two-step procedure, in which subsets of the full data are first least-squares fitted to a preliminary set of parameters, and the latter are subsequently merged to yield the final parameters. The second step of this procedure is properly a correlated least-squares fit and requires the variance-covariance matrices from the first step to construct the weight matrix for the merge. There is, however, an ambiguity concerning the manner in which the first-step variance-covariance matrices are assessed, which leads to different statistical properties for the quantities determined in the merge. The issue is one ofa priorivsa posterioriassessment of weights, which is an application of what was originally calledinternalvsexternal consistencyby Birge [Phys. Rev.40,207-227 (1932)] and Deming ("Statistical Adjustment of Data." Dover, New York, 1964). In the present work the simplest case of a merge fit-that of an average as obtained from a global fit vs a two-step fit of partitioned data-is used to illustrate that only in the case of a priori weighting do the results have the usually expected and desired statistical properties: normal distributions for residuals,tdistributions for parameters assessed a posteriori, and χ2distributions for variances.

  11. Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Li, Q.; Randerson, J. T.; Liou, K.

    2011-12-01

    We apply a Bayesian linear inversion to derive top-down estimates of biomass burning emissions of black carbon (BC) in the western United States (WUS) for May-November 2006 by inverting surface BC concentrations from the IMPROVE network using the GEOS-Chem chemical transport model. Model simulations are conducted at both 2°×2.5° (globally) and 0.55°×0.66° (nested over North America) horizontal resolutions. We first improve the spatial distributions and seasonal and interannual variations of the BC emissions from the Global Fire Emissions Database (GFEDv2) using MODIS 8-day active fire counts from 2005-2007. The GFEDv2 emissions in N. America are adjusted for three zones: boreal N. America, temperate N. America, and Mexico plus Central America. The resulting emissions are then used as a priori for the inversion. The a posteriori emissions are 2-5 times higher than the a priori in California and the Rockies. Model surface BC concentrations using the a posteriori estimate provide better agreement with IMPROVE observations (~20% increase in the Taylor skill score), including improved ability to capture the observed variability especially during June-July. However, model surface BC concentrations are still biased low by ~30%. Comparisons with the Fire Locating and Modeling of Burning Emissions (FLAMBE) are included.

  12. Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Li, Q.; Randerson, J. T.; CHEN, D.; Zhang, L.; Liou, K.

    2012-12-01

    We apply a Bayesian linear inversion to derive top-down estimates of biomass burning emissions of black carbon (BC) in the western United States (WUS) for May-November 2006 by inverting surface BC concentrations from the IMPROVE network using the GEOS-Chem chemical transport model. Model simulations are conducted at both 2°×2.5° (globally) and 0.5°×0.667° (nested over North America) horizontal resolutions. We first improve the spatial distributions and seasonal and interannual variations of the BC emissions from the Global Fire Emissions Database (GFEDv2) using MODIS 8-day active fire counts from 2005-2007. The GFEDv2 emissions in N. America are adjusted for three zones: boreal N. America, temperate N. America, and Mexico plus Central America. The resulting emissions are then used as a priori for the inversion. The a posteriori emissions are 2-5 times higher than the a priori in California and the Rockies. Model surface BC concentrations using the a posteriori estimate provide better agreement with IMPROVE observations (~50% increase in the Taylor skill score), including improved ability to capture the observed variability especially during June-September. However, model surface BC concentrations are still biased low by ~30%. Comparisons with the Fire Locating and Modeling of Burning Emissions (FLAMBE) are included.

  13. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  14. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio

    2018-04-01

    We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSON, A.R.

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the qualitymore » of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.« less

  16. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  17. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CMS, designed to reduce improper payments in each program based on its analysis of the error causes in... State must take the following actions: (1) Data analysis. States must conduct data analysis such as reviewing clusters of errors, general error causes, characteristics, and frequency of errors that are...

  18. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CMS, designed to reduce improper payments in each program based on its analysis of the error causes in... State must take the following actions: (1) Data analysis. States must conduct data analysis such as reviewing clusters of errors, general error causes, characteristics, and frequency of errors that are...

  19. Low-dimensional Representation of Error Covariance

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan

    2000-01-01

    Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.

  20. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4 : XCO2 retrievals, 2010-2014

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Palmer, Paul I.; Bösch, Hartmut; Parker, Robert J.; Webb, Alex J.; Correia, Caio S. C.; Deutscher, Nicholas M.; Domingues, Lucas G.; Feist, Dietrich G.; Gatti, Luciana V.; Gloor, Emanuel; Hase, Frank; Kivi, Rigel; Liu, Yi; Miller, John B.; Morino, Isamu; Sussmann, Ralf; Strong, Kimberly; Uchino, Osamu; Wang, Jing; Zahn, Andreas

    2017-04-01

    We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4 : XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on the previously reported theory that takes into account that (1) these ratios are less prone to systematic error than either the full-physics data products or the proxy CH4 data products; and (2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA and have a range of independent data including new profile measurements (0-7 km) over the Amazon Basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-to-peak seasonal amplitudes of CO2 than either the a priori or in situ inversion, particularly over the tropics and the southern extratropics. Over the northern extratropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40 % increase over tropical South America and tropical Asia and a smaller decrease over Eurasia and temperate South America. We find no evidence from GOSAT that tropical South American CH4 fluxes were dramatically affected by the two large-scale Amazon droughts. However, we find that GOSAT data are consistent with double seasonal peaks in Amazonian fluxes that are reproduced over the 5 years we studied: a small peak from January to April and a larger peak from June to October, which are likely due to superimposed emissions from different geographical regions.

  1. Post-processing of auditory steady-state responses to correct spectral leakage.

    PubMed

    Felix, Leonardo Bonato; de Sá, Antonio Mauricio Ferreira Leite Miranda; Mendes, Eduardo Mazoni Andrade Marçal; Moraes, Márcio Flávio Dutra

    2009-06-30

    Auditory steady-state responses (ASSRs) are electrical manifestations of brain due to high rate sound stimulation. These evoked responses can be used to assess the hearing capabilities of a subject in an objective, automatic fashion. Usually, the detection protocol is accomplished by frequency-domain techniques, such as magnitude-squared coherence, whose estimation is based on the fast Fourier transform (FFT) of several data segments. In practice, the FFT-based spectrum may spread out the energy of a given frequency to its side bins and this escape of energy in the spectrum is called spectral leakage. The distortion of the spectrum due to leakage may severely compromise statistical significance of objective detection. This work presents an offline, a posteriori method for spectral leakage minimization in the frequency-domain analysis of ASSRs using coherent sampling criterion and interpolation in time. The technique was applied to the local field potentials of 10 Wistar rats and the results, together with those from simulated data, indicate that a leakage-free analysis of ASSRs is possible for any dataset if the methods showed in this paper were followed.

  2. System Biology Approach: Gene Network Analysis for Muscular Dystrophy.

    PubMed

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro

    2018-01-01

    Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.

  3. Error-Analysis for Correctness, Effectiveness, and Composing Procedure.

    ERIC Educational Resources Information Center

    Ewald, Helen Rothschild

    The assumptions underpinning grammatical mistakes can often be detected by looking for patterns of errors in a student's work. Assumptions that negatively influence rhetorical effectiveness can similarly be detected through error analysis. On a smaller scale, error analysis can also reveal assumptions affecting rhetorical choice. Snags in the…

  4. Automatic Error Analysis Using Intervals

    ERIC Educational Resources Information Center

    Rothwell, E. J.; Cloud, M. J.

    2012-01-01

    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  5. Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    NASA Technical Reports Server (NTRS)

    DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.

    2013-01-01

    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).

  6. The impact of response measurement error on the analysis of designed experiments

    DOE PAGES

    Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee

    2016-11-01

    This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less

  7. The impact of response measurement error on the analysis of designed experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee

    This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less

  8. RadVel: General toolkit for modeling Radial Velocities

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-01-01

    RadVel models Keplerian orbits in radial velocity (RV) time series. The code is written in Python with a fast Kepler's equation solver written in C. It provides a framework for fitting RVs using maximum a posteriori optimization and computing robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel can perform Bayesian model comparison and produces publication quality plots and LaTeX tables.

  9. Measurement Error and Equating Error in Power Analysis

    ERIC Educational Resources Information Center

    Phillips, Gary W.; Jiang, Tao

    2016-01-01

    Power analysis is a fundamental prerequisite for conducting scientific research. Without power analysis the researcher has no way of knowing whether the sample size is large enough to detect the effect he or she is looking for. This paper demonstrates how psychometric factors such as measurement error and equating error affect the power of…

  10. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    PubMed

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  12. Effects of Correlated Errors on the Analysis of Space Geodetic Data

    NASA Technical Reports Server (NTRS)

    Romero-Wolf, Andres; Jacobs, C. S.

    2011-01-01

    As thermal errors are reduced instrumental and troposphere correlated errors will increasingly become more important. Work in progress shows that troposphere covariance error models improve data analysis results. We expect to see stronger effects with higher data rates. Temperature modeling of delay errors may further reduce temporal correlations in the data.

  13. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  14. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  15. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  16. The cosmological analysis of X-ray cluster surveys. IV. Testing ASpiX with template-based cosmological simulations

    NASA Astrophysics Data System (ADS)

    Valotti, A.; Pierre, M.; Farahi, A.; Evrard, A.; Faccioli, L.; Sauvageot, J.-L.; Clerc, N.; Pacaud, F.

    2018-06-01

    Context. This paper is the fourth of a series evaluating the ASpiX cosmological method, based on X-ray diagrams, which are constructed from simple cluster observable quantities, namely: count rate (CR), hardness ratio (HR), core radius (rc), and redshift. Aims: Following extensive tests on analytical toy catalogues (Paper III), we present the results of a more realistic study over a 711 deg2 template-based maps derived from a cosmological simulation. Methods: Dark matter haloes from the Aardvark simulation have been ascribed luminosities, temperatures, and core radii, using local scaling relations and assuming self-similar evolution. The predicted X-ray sky-maps were converted into XMM event lists, using a detailed instrumental simulator. The XXL pipeline runs on the resulting sky images, produces an observed cluster catalogue over which the tests have been performed. This allowed us to investigate the relative power of various combinations of the CR, HR, rc, and redshift information. Two fitting methods were used: a traditional Markov chain Monte Carlo (MCMC) approach and a simple minimisation procedure (Amoeba) whose mean uncertainties are a posteriori evaluated by means of synthetic catalogues. The results were analysed and compared to the predictions from the Fisher analysis (FA). Results: For this particular catalogue realisation, assuming that the scaling relations are perfectly known, the CR-HR combination gives σ8 and Ωm at the 10% level, while CR-HR-rc-z improves this to ≤3%. Adding a second HR improves the results from the CR-HR1-rc combination, but to a lesser extent than when adding the redshift information. When all coefficients of the mass-temperature relation (M-T, including scatter) are also fitted, the cosmological parameters are constrained to within 5-10% and larger for the M-T coefficients (up to a factor of two for the scatter). The errors returned by the MCMC, those by Amoeba and the FA predictions are in most cases in excellent agreement and always within a factor of two. We also study the impact of the scatter of the mass-size relation (M-Rc) on the number of detected clusters: for the cluster typical sizes usually assumed, the larger the scatter, the lower the number of detected objects. Conclusions: The present study confirms and extends the trends outlined in our previous analyses, namely the power of X-ray observable diagrams to successfully and easily fit at the same time, the cosmological parameters, cluster physics, and the survey selection, by involving all detected clusters. The accuracy levels quoted should not be considered as definitive. A number of simplifying hypotheses were made for the testing purpose, but this should affect any method in the same way. The next publication will consider in greater detail the impact of cluster shapes (selection and measurements) and of cluster physics on the final error budget by means of hydrodynamical simulations.

  17. Application of the quantum spin glass theory to image restoration.

    PubMed

    Inoue, J I

    2001-04-01

    Quantum fluctuation is introduced into the Markov random-field model for image restoration in the context of a Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of a black and white image restoration by making use of statistical mechanics. We find that the maximum posterior marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the maximum a posteriori estimate or the thermal fluctuation based MPM estimate.

  18. Covariation bias for food-related control is associated with eating disorders symptoms in normal adolescents.

    PubMed

    Mayer, Birgit; Muris, Peter; Kramer Freher, Nancy; Stout, Janne; Polak, Marike

    2012-12-01

    Covariation bias refers to the phenomenon of overestimating the contingency between certain stimuli and negative outcomes, which is considered as a heuristic playing a role in the maintenance of certain types of psychopathology. In the present study, covariation bias was investigated within the context of eating pathology. In a sample of 148 adolescents (101 girls, 47 boys; mean age 15.3 years), a priori and a posteriori contingencies were measured between words referring to control and loss of control over eating behavior, on the one hand, and fear, disgust, positive and neutral outcomes, on the other hand. Results indicated that all adolescents displayed an a priori covariation bias reflecting an overestimation of the contingency of words referring to loss of control over eating behavior and fear- and disgust-relevant outcomes, while words referring to control over eating behavior were more often associated with positive and neutral outcomes. This bias was unrelated to level of eating disorder symptoms. In the case of a posteriori contingency estimates no overall bias could be observed, but some evidence was found indicating that girls with higher levels of eating disorder symptoms displayed a stronger covariation bias. These findings provide further support for the notion that covariation bias is involved in eating pathology, and also demonstrate that this type of cognitive distortion is already present in adolescents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. [Population pharmacokinetics applied to optimising cisplatin doses in cancer patients].

    PubMed

    Ramón-López, A; Escudero-Ortiz, V; Carbonell, V; Pérez-Ruixo, J J; Valenzuela, B

    2012-01-01

    To develop and internally validate a population pharmacokinetics model for cisplatin and assess its prediction capacity for personalising doses in cancer patients. Cisplatin plasma concentrations in forty-six cancer patients were used to determine the pharmacokinetic parameters of a two-compartment pharmacokinetic model implemented in NONMEN VI software. Pharmacokinetic parameter identification capacity was assessed using the parametric bootstrap method and the model was validated using the nonparametric bootstrap method and standardised visual and numerical predictive checks. The final model's prediction capacity was evaluated in terms of accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. Mean population cisplatin clearance is 1.03 L/h with an interpatient variability of 78.0%. Estimated distribution volume at steady state was 48.3 L, with inter- and intrapatient variabilities of 31,3% and 11,7%, respectively. Internal validation confirmed that the population pharmacokinetics model is appropriate to describe changes over time in cisplatin plasma concentrations, as well as its variability in the study population. The accuracy and precision of a posteriori prediction of cisplatin concentrations improved by 21% and 54% compared to a priori prediction. The population pharmacokinetic model developed adequately described the changes in cisplatin plasma concentrations in cancer patients and can be used to optimise cisplatin dosing regimes accurately and precisely. Copyright © 2011 SEFH. Published by Elsevier Espana. All rights reserved.

  20. Slow Learner Errors Analysis in Solving Fractions Problems in Inclusive Junior High School Class

    NASA Astrophysics Data System (ADS)

    Novitasari, N.; Lukito, A.; Ekawati, R.

    2018-01-01

    A slow learner whose IQ is between 71 and 89 will have difficulties in solving mathematics problems that often lead to errors. The errors could be analyzed to where the errors may occur and its type. This research is qualitative descriptive which aims to describe the locations, types, and causes of slow learner errors in the inclusive junior high school class in solving the fraction problem. The subject of this research is one slow learner of seventh-grade student which was selected through direct observation by the researcher and through discussion with mathematics teacher and special tutor which handles the slow learner students. Data collection methods used in this study are written tasks and semistructured interviews. The collected data was analyzed by Newman’s Error Analysis (NEA). Results show that there are four locations of errors, namely comprehension, transformation, process skills, and encoding errors. There are four types of errors, such as concept, principle, algorithm, and counting errors. The results of this error analysis will help teachers to identify the causes of the errors made by the slow learner.

  1. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  2. Addressing the unit of analysis in medical care studies: a systematic review.

    PubMed

    Calhoun, Aaron W; Guyatt, Gordon H; Cabana, Michael D; Lu, Downing; Turner, David A; Valentine, Stacey; Randolph, Adrienne G

    2008-06-01

    We assessed the frequency that patients are incorrectly used as the unit of analysis among studies of physicians' patient care behavior in articles published in high impact journals. We surveyed 30 high-impact journals across 6 medical fields for articles susceptible to unit of analysis errors published from 1994 to 2005. Three reviewers independently abstracted articles using previously published criteria to determine the presence of analytic errors. One hundred fourteen susceptible articles were found published in 15 journals, 4 journals published the majority (71 of 114 or 62.3%) of studies, 40 were intervention studies, and 74 were noninterventional studies. The unit of analysis error was present in 19 (48%) of the intervention studies and 31 (42%) of the noninterventional studies (overall error rate 44%). The frequency of the error decreased between 1994-1999 (N = 38; 65% error) and 2000-2005 (N = 76; 33% error) (P = 0.001). Although the frequency of the error in published studies is decreasing, further improvement remains desirable.

  3. First-order approximation error analysis of Risley-prism-based beam directing system.

    PubMed

    Zhao, Yanyan; Yuan, Yan

    2014-12-01

    To improve the performance of a Risley-prism system for optical detection and measuring applications, it is necessary to be able to determine the direction of the outgoing beam with high accuracy. In previous works, error sources and their impact on the performance of the Risley-prism system have been analyzed, but their numerical approximation accuracy was not high. Besides, pointing error analysis of the Risley-prism system has provided results for the case when the component errors, prism orientation errors, and assembly errors are certain. In this work, the prototype of a Risley-prism system was designed. The first-order approximations of the error analysis were derived and compared with the exact results. The directing errors of a Risley-prism system associated with wedge-angle errors, prism mounting errors, and bearing assembly errors were analyzed based on the exact formula and the first-order approximation. The comparisons indicated that our first-order approximation is accurate. In addition, the combined errors produced by the wedge-angle errors and mounting errors of the two prisms together were derived and in both cases were proved to be the sum of errors caused by the first and the second prism separately. Based on these results, the system error of our prototype was estimated. The derived formulas can be implemented to evaluate beam directing errors of any Risley-prism beam directing system with a similar configuration.

  4. Influence of Tooth Spacing Error on Gears With and Without Profile Modifications

    NASA Technical Reports Server (NTRS)

    Padmasolala, Giri; Lin, Hsiang H.; Oswald, Fred B.

    2000-01-01

    A computer simulation was conducted to investigate the effectiveness of profile modification for reducing dynamic loads in gears with different tooth spacing errors. The simulation examined varying amplitudes of spacing error and differences in the span of teeth over which the error occurs. The modification considered included both linear and parabolic tip relief. The analysis considered spacing error that varies around most of the gear circumference (similar to a typical sinusoidal error pattern) as well as a shorter span of spacing errors that occurs on only a few teeth. The dynamic analysis was performed using a revised version of a NASA gear dynamics code, modified to add tooth spacing errors to the analysis. Results obtained from the investigation show that linear tip relief is more effective in reducing dynamic loads on gears with small spacing errors but parabolic tip relief becomes more effective as the amplitude of spacing error increases. In addition, the parabolic modification is more effective for the more severe error case where the error is spread over a longer span of teeth. The findings of this study can be used to design robust tooth profile modification for improving dynamic performance of gear sets with different tooth spacing errors.

  5. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    NASA Astrophysics Data System (ADS)

    Feng, L.; Palmer, P. I.; Yang, Y.; Yantosca, R. M.; Kawa, S. R.; Paris, J.-D.; Matsueda, H.; Machida, T.

    2011-03-01

    We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003-2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modeling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Filter to estimate a posteriori biospheric+biomass burning (BS + BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004-2006 for GEOS-4 (GEOS-5) meteorology are -4.4 ± 0.9 (-4.2 ± 0.9), -3.9 ± 0.9 (-4.5 ± 0.9), and -5.2 ± 0.9 (-4.9 ± 0.9) PgC yr-1, respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004-2006 are estimated to be 4.0 ± 0.9 (4.2 ± 0.9), 4.8 ± 0.9 (4.2 ± 0.9), and 3.8 ± 0.9 (4.1 ± 0.9) PgC yr-1, respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS-5) meteorology is equal to 12.5 (12.4) PgC, agreeing with other recent top-down estimates (12-13 PgC). The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992-1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91-2.43 ppm yr-1 (parts per million per year), depending on latitude, within 0.15 ppm yr-1 (0.2 ppm yr-1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4-5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95-2.19 ppm yr-1) compared to AIRS data which has a trend of 2.21-2.63 ppm yr-1 during 2004-2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.

  6. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  7. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.

    PubMed

    Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi

    2016-05-01

    Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual segmentation approach.

  8. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.

  9. On the thresholds in modeling of high flows via artificial neural networks - A bootstrapping analysis

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Trichakis, I.

    2012-04-01

    Considering the growing interest in simulating hydrological phenomena with artificial neural networks (ANNs), it is useful to figure out the potential and limits of these models. In this study, the main objective is to examine how to improve the ability of an ANN model to simulate extreme values of flow utilizing a priori knowledge of threshold values. A three-layer feedforward ANN was trained by using the back propagation algorithm and the logistic function as activation function. By using the thresholds, the flow was partitioned in low (x < μ), medium (μ ≤ x ≤ μ + 2σ) and high (x > μ + 2σ) values. The employed ANN model was trained for high flow partition and all flow data too. The developed methodology was implemented over a mountainous river catchment (the Mesochora catchment in northwestern Greece). The ANN model received as inputs pseudo-precipitation (rain plus melt) and previous observed flow data. After the training was completed the bootstrapping methodology was applied to calculate the ANN confidence intervals (CIs) for a 95% nominal coverage. The calculated CIs included only the uncertainty, which comes from the calibration procedure. The results showed that an ANN model trained specifically for high flows, with a priori knowledge of the thresholds, can simulate these extreme values much better (RMSE is 31.4% less) than an ANN model trained with all data of the available time series and using a posteriori threshold values. On the other hand the width of CIs increases by 54.9% with a simultaneous increase by 64.4% of the actual coverage for the high flows (a priori partition). The narrower CIs of the high flows trained with all data may be attributed to the smoothing effect produced from the use of the full data sets. Overall, the results suggest that an ANN model trained with a priori knowledge of the threshold values has an increased ability in simulating extreme values compared with an ANN model trained with all the data and a posteriori knowledge of the thresholds.

  10. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  11. The Infinitesimal Jackknife with Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.

    2012-01-01

    The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…

  12. Color lensless digital holographic microscopy with micrometer resolution.

    PubMed

    Garcia-Sucerquia, Jorge

    2012-05-15

    Color digital lensless holographic microscopy with micrometer resolution is presented. Multiwavelength illumination of a biological sample and a posteriori color composition of the amplitude images individually reconstructed are used to obtain full-color representation of the microscopic specimen. To match the sizes of the reconstructed holograms for each wavelength, a reconstruction algorithm that allows for choosing the pixel size at the reconstruction plane independently of the wavelength and the reconstruction distance is used. The method is illustrated with experimental results.

  13. Wealth dynamics in a sentiment-driven market

    NASA Astrophysics Data System (ADS)

    Goykhman, Mikhail

    2017-12-01

    We study dynamics of a simulated world with stock and money, driven by the externally given processes which we refer to as sentiments. The considered sentiments influence the buy/sell stock trading attitude, the perceived price uncertainty, and the trading intensity of all or a part of the market participants. We study how the wealth of market participants evolves in time in such an environment. We discuss the opposite perspective in which the parameters of the sentiment processes can be inferred a posteriori from the observed market behavior.

  14. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  15. A Posteriori Quantification of Rate-Controlling Effects from High-Intensity Turbulence-Flame Interactions Using 4D Measurements

    DTIC Science & Technology

    2016-11-22

    Unclassified REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1...compact at all conditions tested, as indicated by the overlap of OH and CH2O distributions. 5. We developed analytical techniques for pseudo- Lagrangian ...condition in a constant density flow requires that the flow divergence is zero, ∇ · ~u = 0. Three smoothing schemes were examined, a moving average (i.e

  16. Effects of Tropospheric Spatio-Temporal Correlated Noise on the Analysis of Space Geodetic Data

    NASA Technical Reports Server (NTRS)

    Romero-Wolf, A. F.; Jacobs, C. S.

    2011-01-01

    The standard VLBI analysis models measurement noise as purely thermal errors modeled according to uncorrelated Gaussian distributions. As the price of recording bits steadily decreases, thermal errors will soon no longer dominate. It is therefore expected that troposphere and instrumentation/clock errors will increasingly become more dominant. Given that both of these errors have correlated spectra, properly modeling the error distributions will become more relevant for optimal analysis. This paper will discuss the advantages of including the correlations between tropospheric delays using a Kolmogorov spectrum and the frozen ow model pioneered by Treuhaft and Lanyi. We will show examples of applying these correlated noise spectra to the weighting of VLBI data analysis.

  17. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  18. Analysis of measured data of human body based on error correcting frequency

    NASA Astrophysics Data System (ADS)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  19. Error Analysis in Mathematics. Technical Report #1012

    ERIC Educational Resources Information Center

    Lai, Cheng-Fei

    2012-01-01

    Error analysis is a method commonly used to identify the cause of student errors when they make consistent mistakes. It is a process of reviewing a student's work and then looking for patterns of misunderstanding. Errors in mathematics can be factual, procedural, or conceptual, and may occur for a number of reasons. Reasons why students make…

  20. Error analysis in stereo vision for location measurement of 3D point

    NASA Astrophysics Data System (ADS)

    Li, Yunting; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Location measurement of 3D point in stereo vision is subjected to different sources of uncertainty that propagate to the final result. For current methods of error analysis, most of them are based on ideal intersection model to calculate the uncertainty region of point location via intersecting two fields of view of pixel that may produce loose bounds. Besides, only a few of sources of error such as pixel error or camera position are taken into account in the process of analysis. In this paper we present a straightforward and available method to estimate the location error that is taken most of source of error into account. We summed up and simplified all the input errors to five parameters by rotation transformation. Then we use the fast algorithm of midpoint method to deduce the mathematical relationships between target point and the parameters. Thus, the expectations and covariance matrix of 3D point location would be obtained, which can constitute the uncertainty region of point location. Afterwards, we turned back to the error propagation of the primitive input errors in the stereo system and throughout the whole analysis process from primitive input errors to localization error. Our method has the same level of computational complexity as the state-of-the-art method. Finally, extensive experiments are performed to verify the performance of our methods.

  1. Multi-frame super-resolution with quality self-assessment for retinal fundus videos.

    PubMed

    Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P

    2014-01-01

    This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.

  2. Ecoregions and ecodistricts: Ecological regionalizations for the Netherlands' environmental policy

    NASA Astrophysics Data System (ADS)

    Klijn, Frans; de Waal, Rein W.; Oude Voshaar, Jan H.

    1995-11-01

    For communicating data on the state of the environment to policy makers, various integrative frameworks are used, including regional integration. For this kind of integration we have developed two related ecological regionalizations, ecoregions and ecodistricts, which are two levels in a series of classifications for hierarchically nested ecosystems at different spatial scale levels. We explain the compilation of the maps from existing geographical data, demonstrating the relatively holistic, a priori integrated approach. The resulting maps are submitted to discriminant analysis to test the consistancy of the use of mapping characteristics, using data on individual abiotic ecosystem components from a national database on a 1-km2 grid. This reveals that the spatial patterns of soil, groundwater, and geomorphology correspond with the ecoregion and ecodistrict maps. Differences between the original maps and maps formed by automatically reclassifying 1-km2 cells with these discriminant components are found to be few. These differences are discussed against the background of the principal dilemma between deductive, a priori integrated, and inductive, a posteriori, classification.

  3. Improved Topographic Mapping Through Multi-Baseline SAR Interferometry with MAP Estimation

    NASA Astrophysics Data System (ADS)

    Dong, Yuting; Jiang, Houjun; Zhang, Lu; Liao, Mingsheng; Shi, Xuguo

    2015-05-01

    There is an inherent contradiction between the sensitivity of height measurement and the accuracy of phase unwrapping for SAR interferometry (InSAR) over rough terrain. This contradiction can be resolved by multi-baseline InSAR analysis, which exploits multiple phase observations with different normal baselines to improve phase unwrapping accuracy, or even avoid phase unwrapping. In this paper we propose a maximum a posteriori (MAP) estimation method assisted by SRTM DEM data for multi-baseline InSAR topographic mapping. Based on our method, a data processing flow is established and applied in processing multi-baseline ALOS/PALSAR dataset. The accuracy of resultant DEMs is evaluated by using a standard Chinese national DEM of scale 1:10,000 as reference. The results show that multi-baseline InSAR can improve DEM accuracy compared with single-baseline case. It is noteworthy that phase unwrapping is avoided and the quality of multi-baseline InSAR DEM can meet the DTED-2 standard.

  4. Estimating clinical chemistry reference values based on an existing data set of unselected animals.

    PubMed

    Dimauro, Corrado; Bonelli, Piero; Nicolussi, Paola; Rassu, Salvatore P G; Cappio-Borlino, Aldo; Pulina, Giuseppe

    2008-11-01

    In an attempt to standardise the determination of biological reference values, the International Federation of Clinical Chemistry (IFCC) has published a series of recommendations on developing reference intervals. The IFCC recommends the use of an a priori sampling of at least 120 healthy individuals. However, such a high number of samples and laboratory analysis is expensive, time-consuming and not always feasible, especially in veterinary medicine. In this paper, an alternative (a posteriori) method is described and is used to determine reference intervals for biochemical parameters of farm animals using an existing laboratory data set. The method used was based on the detection and removal of outliers to obtain a large sample of animals likely to be healthy from the existing data set. This allowed the estimation of reliable reference intervals for biochemical parameters in Sarda dairy sheep. This method may also be useful for the determination of reference intervals for different species, ages and gender.

  5. Back to Normal! Gaussianizing posterior distributions for cosmological probes

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2014-05-01

    We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.

  6. Prediction possibilities of Arosa total ozone

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1987-01-01

    Using the periodicities obtained by a Maximum Entropy Spectral Analysis (MESA) of the Arosa total ozone data ( CC') series for 1932 1971, the values predicted for 1972 onwards were compared with the observed values of the ( AD) series. A change of level was noticed, with the observed ( AD) values lower by about 7 D.U. Also, the matching was poor in 1980, 1981, 1982. In the monthly values, the most prominent periodicity was the annual wave, comprising some 80% variance. In the 12 month running averages, the annual wave was eliminated and the most prominent periodicity was T=3.7 years, encompassing roundly 20% variance. This and other periodicities at T=4.7, 5.4, 6.2, 10 and 16 years were all statistically significant at a 3.5δ a priori i.e., 2δ a posteriori level. However, the predictions from these were unsatisfactory, probably because some of these periodicities may be transient i.e., changing amplitudes and/or phases with time. Thus, no meaningful prediction seem possible for Arosa total ozone.

  7. The rural-urban effect on spatial genetic structure of type II Toxoplasma gondii strains involved in human congenital toxoplasmosis, France, 2002-2009.

    PubMed

    Ajzenberg, Daniel; Collinet, Frédéric; Aubert, Dominique; Villena, Isabelle; Dardé, Marie-Laure; Devillard, Sébastien

    2015-12-01

    Congenital toxoplasmosis involves Toxoplasma gondii type II strains in 95% of cases in France. We used spatial principal component analysis (sPCA) and 15 microsatellite markers to investigate the spatial genetic structure of type II strains involved in 240 cases of congenital toxoplasmosis in France from 2002 through 2009. Mailing addresses of patients were geo-referenced a posteriori in decimal degrees and categorized into urban or rural areas of residence. No spatial genetic structure was found for type II strains that infected mothers who were living in urban areas, but a global spatial genetic structure was found for those that infected mothers who were living in a rural environment. Our results suggest that sources of infection by T. gondii are different in rural and urban areas in France, and advocate for targeted messages in the prevention of toxoplasmosis according to the type of residence of susceptible people. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Social support, stress, health, and academic success in Ghanaian adolescents: a path analysis.

    PubMed

    Glozah, Franklin N; Pevalin, David J

    2014-06-01

    The aim of this study is to gain a better understanding of the role psychosocial factors play in promoting the health and academic success of adolescents. A total of 770 adolescent boys and girls in Senior High Schools were randomly selected to complete a self-report questionnaire. School reported latest terminal examination grades were used as the measure of academic success. Structural equation modelling indicated a relatively good fit to the posteriori model with four of the hypothesised paths fully supported and two partially supported. Perceived social support was negatively related to stress and predictive of health and wellbeing but not academic success. Stress was predictive of health but not academic success. Finally, health and wellbeing was able to predict academic success. These findings have policy implications regarding efforts aimed at promoting the health and wellbeing as well as the academic success of adolescents in Ghana. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  9. Joint deconvolution and classification with applications to passive acoustic underwater multipath.

    PubMed

    Anderson, Hyrum S; Gupta, Maya R

    2008-11-01

    This paper addresses the problem of classifying signals that have been corrupted by noise and unknown linear time-invariant (LTI) filtering such as multipath, given labeled uncorrupted training signals. A maximum a posteriori approach to the deconvolution and classification is considered, which produces estimates of the desired signal, the unknown channel, and the class label. For cases in which only a class label is needed, the classification accuracy can be improved by not committing to an estimate of the channel or signal. A variant of the quadratic discriminant analysis (QDA) classifier is proposed that probabilistically accounts for the unknown LTI filtering, and which avoids deconvolution. The proposed QDA classifier can work either directly on the signal or on features whose transformation by LTI filtering can be analyzed; as an example a classifier for subband-power features is derived. Results on simulated data and real Bowhead whale vocalizations show that jointly considering deconvolution with classification can dramatically improve classification performance over traditional methods over a range of signal-to-noise ratios.

  10. Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles.

    PubMed

    Cesàro, Attilio; Bellich, Barbara; Borgogna, Massimiliano

    2012-04-01

    The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate "a posteriori" the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder-order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical-thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.

  11. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less

  12. Cost-effectiveness evaluation of vaccination against Haemophilus influenzae invasive diseases in France.

    PubMed

    Livartowski, A; Boucher, J; Detournay, B; Reinert, P

    1996-04-01

    A cost-effectiveness analysis of a vaccination program against Haemophilus influenzae type b (Hib) was conducted using French epidemiological data. The vaccine would be added as a fifth valence to the tetravalent vaccines (DTCP) widely used in France. The permanent sequelae of the Hib invasive diseases which might be avoided by vaccination were weighted to determine Quality Adjusted Life Years gained. In a stable French population of 3,746,000 children aged < 5 years old (1990), and for a followup period of ten years, the cost-effectiveness ratio of such a program for the French national health insurance system would equal 54,084 FF per year of life added or 34,050 FF per QALY. The net cost of the program during that period would be 1.02 billion FF for the French national health insurance system and 920 million FF for patients' families. Comparison of these projections with available information supports, a posteriori, the decision of the French government to authorize the licensing of the pentavalent vaccine.

  13. Interpreting Epidemiological Evidence in the Presence of Multiple Endpoints: An Alternative Analytic Approach using the 9-Year Follow-up of the Seychelles Child Development Study

    PubMed Central

    van Wijngaarden, Edwin; Myers, Gary J.; Thurston, Sally W.; Shamlaye, Conrad F.; Davidson, Philip W.

    2012-01-01

    Purpose The potential for ill-informed causal inference is a major concern in published longitudinal studies evaluating impaired neurological function in children prenatally exposed to background levels of methyl mercury (MeHg). These studies evaluate a large number of developmental tests. We propose an alternative analysis strategy that reduces the number of comparisons tested in these studies. Methods Using data from the 9-year follow-up of 643 children in the Seychelles Child Development Study (SCDS), we grouped 18 individual endpoints into one overall ordinal outcome variable as well as by developmental domains. Subsequently, ordinal logistic regression analyses were performed. Results We did not find an association between prenatal MeHg exposure and developmental outcomes at 9 years of age. Conclusion Our proposed framework is more likely to result in a balanced interpretation of a posteriori associations. In addition, this new strategy should facilitate the use of complex epidemiological data in quantitative risk assessment. PMID:19205720

  14. Interpreting epidemiological evidence in the presence of multiple endpoints: an alternative analytic approach using the 9-year follow-up of the Seychelles child development study.

    PubMed

    van Wijngaarden, Edwin; Myers, Gary J; Thurston, Sally W; Shamlaye, Conrad F; Davidson, Philip W

    2009-08-01

    The potential for ill-informed causal inference is a major concern in published longitudinal studies evaluating impaired neurological function in children prenatally exposed to background levels of methyl mercury (MeHg). These studies evaluate a large number of developmental tests. We propose an alternative analysis strategy that reduces the number of comparisons tested in these studies. Using data from the 9-year follow-up of 643 children in the Seychelles child development study, we grouped 18 individual endpoints into one overall ordinal outcome variable as well as by developmental domains. Subsequently, ordinal logistic regression analyses were performed. We did not find an association between prenatal MeHg exposure and developmental outcomes at 9 years of age. Our proposed framework is more likely to result in a balanced interpretation of a posteriori associations. In addition, this new strategy should facilitate the use of complex epidemiological data in quantitative risk assessment.

  15. High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek

    2018-04-01

    This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.

  16. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    DOE PAGES

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less

  17. Robust Statistical Fusion of Image Labels

    PubMed Central

    Landman, Bennett A.; Asman, Andrew J.; Scoggins, Andrew G.; Bogovic, John A.; Xing, Fangxu; Prince, Jerry L.

    2011-01-01

    Image labeling and parcellation (i.e. assigning structure to a collection of voxels) are critical tasks for the assessment of volumetric and morphometric features in medical imaging data. The process of image labeling is inherently error prone as images are corrupted by noise and artifacts. Even expert interpretations are subject to subjectivity and the precision of the individual raters. Hence, all labels must be considered imperfect with some degree of inherent variability. One may seek multiple independent assessments to both reduce this variability and quantify the degree of uncertainty. Existing techniques have exploited maximum a posteriori statistics to combine data from multiple raters and simultaneously estimate rater reliabilities. Although quite successful, wide-scale application has been hampered by unstable estimation with practical datasets, for example, with label sets with small or thin objects to be labeled or with partial or limited datasets. As well, these approaches have required each rater to generate a complete dataset, which is often impossible given both human foibles and the typical turnover rate of raters in a research or clinical environment. Herein, we propose a robust approach to improve estimation performance with small anatomical structures, allow for missing data, account for repeated label sets, and utilize training/catch trial data. With this approach, numerous raters can label small, overlapping portions of a large dataset, and rater heterogeneity can be robustly controlled while simultaneously estimating a single, reliable label set and characterizing uncertainty. The proposed approach enables many individuals to collaborate in the construction of large datasets for labeling tasks (e.g., human parallel processing) and reduces the otherwise detrimental impact of rater unavailability. PMID:22010145

  18. Controlling the Rate of GWAS False Discoveries

    PubMed Central

    Brzyski, Damian; Peterson, Christine B.; Sobczyk, Piotr; Candès, Emmanuel J.; Bogdan, Malgorzata; Sabatti, Chiara

    2017-01-01

    With the rise of both the number and the complexity of traits of interest, control of the false discovery rate (FDR) in genetic association studies has become an increasingly appealing and accepted target for multiple comparison adjustment. While a number of robust FDR-controlling strategies exist, the nature of this error rate is intimately tied to the precise way in which discoveries are counted, and the performance of FDR-controlling procedures is satisfactory only if there is a one-to-one correspondence between what scientists describe as unique discoveries and the number of rejected hypotheses. The presence of linkage disequilibrium between markers in genome-wide association studies (GWAS) often leads researchers to consider the signal associated to multiple neighboring SNPs as indicating the existence of a single genomic locus with possible influence on the phenotype. This a posteriori aggregation of rejected hypotheses results in inflation of the relevant FDR. We propose a novel approach to FDR control that is based on prescreening to identify the level of resolution of distinct hypotheses. We show how FDR-controlling strategies can be adapted to account for this initial selection both with theoretical results and simulations that mimic the dependence structure to be expected in GWAS. We demonstrate that our approach is versatile and useful when the data are analyzed using both tests based on single markers and multiple regression. We provide an R package that allows practitioners to apply our procedure on standard GWAS format data, and illustrate its performance on lipid traits in the North Finland Birth Cohort 66 cohort study. PMID:27784720

  19. Controlling the Rate of GWAS False Discoveries.

    PubMed

    Brzyski, Damian; Peterson, Christine B; Sobczyk, Piotr; Candès, Emmanuel J; Bogdan, Malgorzata; Sabatti, Chiara

    2017-01-01

    With the rise of both the number and the complexity of traits of interest, control of the false discovery rate (FDR) in genetic association studies has become an increasingly appealing and accepted target for multiple comparison adjustment. While a number of robust FDR-controlling strategies exist, the nature of this error rate is intimately tied to the precise way in which discoveries are counted, and the performance of FDR-controlling procedures is satisfactory only if there is a one-to-one correspondence between what scientists describe as unique discoveries and the number of rejected hypotheses. The presence of linkage disequilibrium between markers in genome-wide association studies (GWAS) often leads researchers to consider the signal associated to multiple neighboring SNPs as indicating the existence of a single genomic locus with possible influence on the phenotype. This a posteriori aggregation of rejected hypotheses results in inflation of the relevant FDR. We propose a novel approach to FDR control that is based on prescreening to identify the level of resolution of distinct hypotheses. We show how FDR-controlling strategies can be adapted to account for this initial selection both with theoretical results and simulations that mimic the dependence structure to be expected in GWAS. We demonstrate that our approach is versatile and useful when the data are analyzed using both tests based on single markers and multiple regression. We provide an R package that allows practitioners to apply our procedure on standard GWAS format data, and illustrate its performance on lipid traits in the North Finland Birth Cohort 66 cohort study. Copyright © 2017 by the Genetics Society of America.

  20. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method.

    PubMed

    Choleau, C; Klein, J C; Reach, G; Aussedat, B; Demaria-Pesce, V; Wilson, G S; Gifford, R; Ward, W K

    2002-08-01

    Calibration, i.e. the transformation in real time of the signal I(t) generated by the glucose sensor at time t into an estimation of glucose concentration G(t), represents a key issue for the development of a continuous glucose monitoring system. To compare two calibration procedures. In the one-point calibration, which assumes that I(o) is negligible, S is simply determined as the ratio I/G, and G(t) = I(t)/S. The two-point calibration consists in the determination of a sensor sensitivity S and of a background current I(o) by plotting two values of the sensor signal versus the concomitant blood glucose concentrations. The subsequent estimation of G(t) is given by G(t) = (I(t)-I(o))/S. A glucose sensor was implanted in the abdominal subcutaneous tissue of nine type 1 diabetic patients during 3 (n = 2) and 7 days (n = 7). The one-point calibration was performed a posteriori either once per day before breakfast, or twice per day before breakfast and dinner, or three times per day before each meal. The two-point calibration was performed each morning during breakfast. The percentages of points present in zones A and B of the Clarke Error Grid were significantly higher when the system was calibrated using the one-point calibration. Use of two one-point calibrations per day before meals was virtually as accurate as three one-point calibrations. This study demonstrates the feasibility of a simple method for calibrating a continuous glucose monitoring system.

  1. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.

  2. Restoration and analysis of amateur movies from the Kennedy assassination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breedlove, J.R.; Cannon, T.M.; Janney, D.H.

    1980-01-01

    Much of the evidence concerning the assassination of President Kennedy comes from amateur movies of the presidential motorcade. Two of the most revealing movies are those taken by the photographers Zapruder and Nix. Approximately 180 frames of the Zapruder film clearly show the general relation of persons in the presidential limousine. Many of the frames of interest were blurred by focus problems or by linear motion. The method of cepstral analysis was used to quantitatively measure the blur, followed by maximum a posteriori (MAP) restoration. Descriptions of these methods, complete with before-and-after examples from selected frames are given. The framesmore » were then available for studies of facial expressions, hand motions, etc. Numerous allegations charge that multiple gunmen played a role in an assassination plot. Multispectral analyses, adapted from studies of satellite imagery, show no evidence of an alleged rifle in the Zapruder film. Lastly, frame-averaging is used to reduce the noise in the Nix movie prior to MAP restoration. The restoration of the reduced-noise average frame more clearly shows that at least one of the alleged gunmen is only the light-and-shadow pattern beneath the trees.« less

  3. Reconstructing the free-energy landscape of Met-enkephalin using dihedral principal component analysis and well-tempered metadynamics

    NASA Astrophysics Data System (ADS)

    Sicard, François; Senet, Patrick

    2013-06-01

    Well-Tempered Metadynamics (WTmetaD) is an efficient method to enhance the reconstruction of the free-energy surface of proteins. WTmetaD guarantees a faster convergence in the long time limit in comparison with the standard metadynamics. It still suffers, however, from the same limitation, i.e., the non-trivial choice of pertinent collective variables (CVs). To circumvent this problem, we couple WTmetaD with a set of CVs generated from a dihedral Principal Component Analysis (dPCA) on the Ramachandran dihedral angles describing the backbone structure of the protein. The dPCA provides a generic method to extract relevant CVs built from internal coordinates, and does not depend on the alignment to an arbitrarily chosen reference structure as usual in Cartesian PCA. We illustrate the robustness of this method in the case of a reference model protein, the small and very diffusive Met-enkephalin pentapeptide. We propose a justification a posteriori of the considered number of CVs necessary to bias the metadynamics simulation in terms of the one-dimensional free-energy profiles associated with Ramachandran dihedral angles along the amino-acid sequence.

  4. Reconstructing the free-energy landscape of Met-enkephalin using dihedral principal component analysis and well-tempered metadynamics.

    PubMed

    Sicard, François; Senet, Patrick

    2013-06-21

    Well-Tempered Metadynamics (WTmetaD) is an efficient method to enhance the reconstruction of the free-energy surface of proteins. WTmetaD guarantees a faster convergence in the long time limit in comparison with the standard metadynamics. It still suffers, however, from the same limitation, i.e., the non-trivial choice of pertinent collective variables (CVs). To circumvent this problem, we couple WTmetaD with a set of CVs generated from a dihedral Principal Component Analysis (dPCA) on the Ramachandran dihedral angles describing the backbone structure of the protein. The dPCA provides a generic method to extract relevant CVs built from internal coordinates, and does not depend on the alignment to an arbitrarily chosen reference structure as usual in Cartesian PCA. We illustrate the robustness of this method in the case of a reference model protein, the small and very diffusive Met-enkephalin pentapeptide. We propose a justification a posteriori of the considered number of CVs necessary to bias the metadynamics simulation in terms of the one-dimensional free-energy profiles associated with Ramachandran dihedral angles along the amino-acid sequence.

  5. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    NASA Astrophysics Data System (ADS)

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  6. Pose determination of a blade implant in three dimensions from a single two-dimensional radiograph.

    PubMed

    Toti, Paolo; Barone, Antonio; Marconcini, Simone; Menchini-Fabris, Giovanni Battista; Martuscelli, Ranieri; Covani, Ugo

    2018-05-01

    The aim of the study was to introduce a mathematical method to estimate the correct pose of a blade by evaluating the radiographic features obtained from a single two-dimensional image. Blade-form implant bed preparation was performed using the piezosurgery device, and placement was attained with the use of magnetic mallet. The pose determination of the blade was described by means of three consecutive rotations defined by three angles of orientation (triplet φ, θ and ψ). Retrospective analysis on periapical radiographs was performed. This method was used to compare implant (axial length along the marker, i.e. the implant structure) vs angular correction factor (a trigonometric function of the triplet). The accuracy of the method was tested by generating two-dimensional radiographic simulations of the blades, which were then compared with the images of the implants as appearing on the real radiographs. Two patients had to be excluded from further evaluation because the values of the estimated pose angles showed a too-wide range to be effective for a good standardization of serial radiographs: intrapatient range from baseline to 1-year survey was > of a threshold determined by the clinicians (30°). The linear dependence between implant (CF°) and angular correction factor (CF^) was estimated by a robust linear regression, yielding the following coefficients: slope, 0.908; intercept, -0.092; and coefficient of determination, 0.924. The absolute error in accuracy was -0.29 ± 4.35, 0.23 ± 3.81 and 0.64 ± 1.18°, respectively, for the angles φ, θ and ψ. The present theoretical and experimental study established the possibility of determining, a posteriori, a unique triplet of angles (φ, θ and ψ) which described the pose of a blade upon a single two-dimensional radiograph, and of suggesting a method to detect cases in which the standardized geometric projection failed. The angular correction of the bone level yielded results very close to those obtained with an internal marker related to the implant length.

  7. Safety and Performance Analysis of the Non-Radar Oceanic/Remote Airspace In-Trail Procedure

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Munoz, Cesar A.

    2007-01-01

    This document presents a safety and performance analysis of the nominal case for the In-Trail Procedure (ITP) in a non-radar oceanic/remote airspace. The analysis estimates the risk of collision between the aircraft performing the ITP and a reference aircraft. The risk of collision is only estimated for the ITP maneuver and it is based on nominal operating conditions. The analysis does not consider human error, communication error conditions, or the normal risk of flight present in current operations. The hazards associated with human error and communication errors are evaluated in an Operational Hazards Analysis presented elsewhere.

  8. Error Analysis of Brailled Instructional Materials Produced by Public School Personnel in Texas

    ERIC Educational Resources Information Center

    Herzberg, Tina

    2010-01-01

    In this study, a detailed error analysis was performed to determine if patterns of errors existed in braille transcriptions. The most frequently occurring errors were the insertion of letters or words that were not contained in the original print material; the incorrect usage of the emphasis indicator; and the incorrect formatting of titles,…

  9. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  10. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  11. Error Analysis: Past, Present, and Future

    ERIC Educational Resources Information Center

    McCloskey, George

    2017-01-01

    This commentary will take an historical perspective on the Kaufman Test of Educational Achievement (KTEA) error analysis, discussing where it started, where it is today, and where it may be headed in the future. In addition, the commentary will compare and contrast the KTEA error analysis procedures that are rooted in psychometric methodology and…

  12. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  13. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  14. A simple, objective analysis scheme for scatterometer data. [Seasat A satellite observation of wind over ocean

    NASA Technical Reports Server (NTRS)

    Levy, G.; Brown, R. A.

    1986-01-01

    A simple economical objective analysis scheme is devised and tested on real scatterometer data. It is designed to treat dense data such as those of the Seasat A Satellite Scatterometer (SASS) for individual or multiple passes, and preserves subsynoptic scale features. Errors are evaluated with the aid of sampling ('bootstrap') statistical methods. In addition, sensitivity tests have been performed which establish qualitative confidence in calculated fields of divergence and vorticity. The SASS wind algorithm could be improved; however, the data at this point are limited by instrument errors rather than analysis errors. The analysis error is typically negligible in comparison with the instrument error, but amounts to 30 percent of the instrument error in areas of strong wind shear. The scheme is very economical, and thus suitable for large volumes of dense data such as SASS data.

  15. Associations of Mediterranean Diet and a Posteriori Derived Dietary Patterns with Breast and Lung Cancer Risk: A Case-Control Study.

    PubMed

    Krusinska, Beata; Hawrysz, Iwona; Wadolowska, Lidia; Slowinska, Malgorzata Anna; Biernacki, Maciej; Czerwinska, Anna; Golota, Janusz Jacek

    2018-04-11

    Lung cancer in men and breast cancer in women are the most commonly diagnosed cancers in Poland and worldwide. Results of studies involving dietary patterns (DPs) and breast or lung cancer risk in European countries outside the Mediterranean Sea region are limited and inconclusive. This study aimed to develop a 'Polish-adapted Mediterranean Diet' ('Polish-aMED') score, and then study the associations between the 'Polish-aMED' score and a posteriori -derived dietary patterns with breast or lung cancer risk in adult Poles. This pooled analysis of two case-control studies involved 560 subjects (280 men, 280 women) aged 40-75 years from Northeastern Poland. Diagnoses of breast cancer in 140 women and lung cancer in 140 men were found. The food frequency consumption of 21 selected food groups was collected using a 62-item Food Frequency Questionnaire (FFQ)-6. The 'Polish-adapted Mediterranean Diet' score which included eight items-vegetables, fruit, whole grain, fish, legumes, nuts and seeds-as well as the ratio of vegetable oils to animal fat and red and processed meat was developed (range: 0-8 points). Three DPs were identified in a Principal Component Analysis: 'Prudent', 'Non-healthy', 'Dressings and sweetened-low-fat dairy'. In a multiple logistic regression analysis, two models were created: crude, and adjusted for age, sex, type of cancer, Body Mass Index (BMI), socioeconomic status (SES) index, overall physical activity, smoking status and alcohol abuse. The risk of breast or lung cancer was lower in the average (3-5 points) and high (6-8 points) levels of the 'Polish-aMED' score compared to the low (0-2 points) level by 51% (odds ratio (OR): 0.49; 95% confidence interval (Cl): 0.30-0.80; p < 0.01; adjusted) and 63% (OR: 0.37; 95% Cl: 0.21-0.64; p < 0.001; adjusted), respectively. In the middle and upper tertiles compared to the bottom tertile of the 'Prudent' DP, the risk of cancer was lower by 38-43% (crude) but was not significant after adjustment for confounders. In the upper compared to the bottom tertile of the 'Non-healthy' DP, the risk of cancer was higher by 65% (OR: 1.65; 95% Cl: 1.05-2.59; p < 0.05; adjusted). In conclusion, the Polish adaptation of the Mediterranean diet could be considered for adults living in non-Mediterranean countries for the prevention of the breast or lung cancers. Future studies should explore the role of a traditional Mediterranean diet fitted to local dietary patterns of non-Mediterranean Europeans in cancer prevention.

  16. Associations of Mediterranean Diet and a Posteriori Derived Dietary Patterns with Breast and Lung Cancer Risk: A Case-Control Study

    PubMed Central

    Krusinska, Beata; Hawrysz, Iwona; Wadolowska, Lidia; Slowinska, Malgorzata Anna; Biernacki, Maciej; Czerwinska, Anna; Golota, Janusz Jacek

    2018-01-01

    Lung cancer in men and breast cancer in women are the most commonly diagnosed cancers in Poland and worldwide. Results of studies involving dietary patterns (DPs) and breast or lung cancer risk in European countries outside the Mediterranean Sea region are limited and inconclusive. This study aimed to develop a ‘Polish-adapted Mediterranean Diet’ (‘Polish-aMED’) score, and then study the associations between the ‘Polish-aMED’ score and a posteriori-derived dietary patterns with breast or lung cancer risk in adult Poles. This pooled analysis of two case-control studies involved 560 subjects (280 men, 280 women) aged 40–75 years from Northeastern Poland. Diagnoses of breast cancer in 140 women and lung cancer in 140 men were found. The food frequency consumption of 21 selected food groups was collected using a 62-item Food Frequency Questionnaire (FFQ)-6. The ‘Polish-adapted Mediterranean Diet’ score which included eight items—vegetables, fruit, whole grain, fish, legumes, nuts and seeds—as well as the ratio of vegetable oils to animal fat and red and processed meat was developed (range: 0–8 points). Three DPs were identified in a Principal Component Analysis: ‘Prudent’, ‘Non-healthy’, ‘Dressings and sweetened-low-fat dairy’. In a multiple logistic regression analysis, two models were created: crude, and adjusted for age, sex, type of cancer, Body Mass Index (BMI), socioeconomic status (SES) index, overall physical activity, smoking status and alcohol abuse. The risk of breast or lung cancer was lower in the average (3–5 points) and high (6–8 points) levels of the ‘Polish-aMED’ score compared to the low (0–2 points) level by 51% (odds ratio (OR): 0.49; 95% confidence interval (Cl): 0.30–0.80; p < 0.01; adjusted) and 63% (OR: 0.37; 95% Cl: 0.21–0.64; p < 0.001; adjusted), respectively. In the middle and upper tertiles compared to the bottom tertile of the ‘Prudent’ DP, the risk of cancer was lower by 38–43% (crude) but was not significant after adjustment for confounders. In the upper compared to the bottom tertile of the ‘Non-healthy’ DP, the risk of cancer was higher by 65% (OR: 1.65; 95% Cl: 1.05–2.59; p < 0.05; adjusted). In conclusion, the Polish adaptation of the Mediterranean diet could be considered for adults living in non-Mediterranean countries for the prevention of the breast or lung cancers. Future studies should explore the role of a traditional Mediterranean diet fitted to local dietary patterns of non-Mediterranean Europeans in cancer prevention. PMID:29641468

  17. Operational Hydrological Forecasting During the Iphex-iop Campaign - Meet the Challenge

    NASA Technical Reports Server (NTRS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa D.; Barros, Ana P.

    2016-01-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basins outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  18. Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge

    NASA Astrophysics Data System (ADS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa; Barros, Ana P.

    2016-10-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  19. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.

  20. Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis. Revision 1.12

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher

    1997-01-01

    We proposed a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and is required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and amplification or bias correction of forecast anomalies. Characterizing and decomposing forecast error in this way has two important applications, which we term the assessment application and the objective analysis application. For the assessment application, our approach results in new objective measures of forecast skill which are more in line with subjective measures of forecast skill and which are useful in validating models and diagnosing their shortcomings. With regard to the objective analysis application, meteorological analysis schemes balance forecast error and observational error to obtain an optimal analysis. Presently, representations of the error covariance matrix used to measure the forecast error are severely limited. For the objective analysis application our approach will improve analyses by providing a more realistic measure of the forecast error. We expect, a priori, that our approach should greatly improve the utility of remotely sensed data which have relatively high horizontal resolution, but which are indirectly related to the conventional atmospheric variables. In this project, we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically, we study the forecast errors of the sea level pressure (SLP) and 500 hPa geopotential height fields for forecasts of the short and medium range. Since the forecasts are generated by the GEOS (Goddard Earth Observing System) data assimilation system with and without ERS 1 scatterometer data, these preliminary studies serve several purposes. They (1) provide a testbed for the use of the distortion representation of forecast errors, (2) act as one means of validating the GEOS data assimilation system and (3) help to describe the impact of the ERS 1 scatterometer data.

  1. Failure analysis and modeling of a multicomputer system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Subramani, Sujatha Srinivasan

    1990-01-01

    This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).

  2. Simultaneous Control of Error Rates in fMRI Data Analysis

    PubMed Central

    Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David

    2015-01-01

    The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730

  3. Methods of automatic nucleotide-sequence analysis. Multicomponent spectrophotometric analysis of mixtures of nucleic acid components by a least-squares procedure

    PubMed Central

    Lee, Sheila; McMullen, D.; Brown, G. L.; Stokes, A. R.

    1965-01-01

    1. A theoretical analysis of the errors in multicomponent spectrophotometric analysis of nucleoside mixtures, by a least-squares procedure, has been made to obtain an expression for the error coefficient, relating the error in calculated concentration to the error in extinction measurements. 2. The error coefficients, which depend only on the `library' of spectra used to fit the experimental curves, have been computed for a number of `libraries' containing the following nucleosides found in s-RNA: adenosine, guanosine, cytidine, uridine, 5-ribosyluracil, 7-methylguanosine, 6-dimethylaminopurine riboside, 6-methylaminopurine riboside and thymine riboside. 3. The error coefficients have been used to determine the best conditions for maximum accuracy in the determination of the compositions of nucleoside mixtures. 4. Experimental determinations of the compositions of nucleoside mixtures have been made and the errors found to be consistent with those predicted by the theoretical analysis. 5. It has been demonstrated that, with certain precautions, the multicomponent spectrophotometric method described is suitable as a basis for automatic nucleotide-composition analysis of oligonucleotides containing nine nucleotides. Used in conjunction with continuous chromatography and flow chemical techniques, this method can be applied to the study of the sequence of s-RNA. PMID:14346087

  4. Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis

    NASA Technical Reports Server (NTRS)

    Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.

    2017-01-01

    This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.

  5. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  6. Using the in-line component for fixed-wing EM 1D inversion

    NASA Astrophysics Data System (ADS)

    Smiarowski, Adam

    2015-09-01

    Numerous authors have discussed the utility of multicomponent measurements. Generally speaking, for a vertical-oriented dipole source, the measured vertical component couples to horizontal planar bodies while the horizontal in-line component couples best to vertical planar targets. For layered-earth cases, helicopter EM systems have little or no in-line component response and as a result much of the in-line signal is due to receiver coil rotation and appears as noise. In contrast to this, the in-line component of a fixed-wing airborne electromagnetic (AEM) system with large transmitter-receiver offset can be substantial, exceeding the vertical component in conductive areas. This paper compares the in-line and vertical response of a fixed-wing airborne electromagnetic (AEM) system using a half-space model and calculates sensitivity functions. The a posteriori inversion model parameter uncertainty matrix is calculated for a bathymetry model (conductive layer over more resistive half-space) for two inversion cases; use of vertical component alone is compared to joint inversion of vertical and in-line components. The joint inversion is able to better resolve model parameters. An example is then provided using field data from a bathymetry survey to compare the joint inversion to vertical component only inversion. For each inversion set, the difference between the inverted water depth and ship-measured bathymetry is calculated. The result is in general agreement with that expected from the a posteriori inversion model parameter uncertainty calculation.

  7. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-11-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.

  8. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  9. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  10. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  11. Error Analysis and Validation for Insar Height Measurement Induced by Slant Range

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, T.; Fan, W.; Geng, X.

    2018-04-01

    InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.

  12. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  13. Error Pattern Analysis Applied to Technical Writing: An Editor's Guide for Writers.

    ERIC Educational Resources Information Center

    Monagle, E. Brette

    The use of error pattern analysis can reduce the time and money spent on editing and correcting manuscripts. What is required is noting, classifying, and keeping a frequency count of errors. First an editor should take a typical page of writing and circle each error. After the editor has done a sufficiently large number of pages to identify an…

  14. A Study of Reading Errors Using Goodman's Miscue Analysis and Cloze Procedure.

    ERIC Educational Resources Information Center

    Farren, Sean N.

    A study of 11 boys, aged 12 to 14 with low reading ability, was conducted to discover what kinds of errors they made and whether or not differences might exist between error patterns in silent and oral reading. Miscue analysis was used to test oral reading while cloze procedures were used to test silent reading. Errors were categorized according…

  15. Some Deep Structure Manifestations in Second Language Errors of English Voiced and Voiceless "th."

    ERIC Educational Resources Information Center

    Moustafa, Margaret Heiss

    Native speakers of Egyptian Arabic make errors in their pronunciation of English that cannot always be accounted for by a contrastive analysis of Egyptian analysis of Egyptain Arabic and English. This study focuses on three types of errors in the pronunciation of voiced and voiceless "th" made by fluent speakers of English. These errors were noted…

  16. Analyzing human errors in flight mission operations

    NASA Technical Reports Server (NTRS)

    Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef

    1993-01-01

    A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.

  17. Data Analysis & Statistical Methods for Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.

  18. General model for the pointing error analysis of Risley-prism system based on ray direction deviation in light refraction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing

    2016-09-01

    The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.

  19. Spelling Errors of Dyslexic Children in Bosnian Language with Transparent Orthography

    ERIC Educational Resources Information Center

    Duranovic, Mirela

    2017-01-01

    The purpose of this study was to explore the nature of spelling errors made by children with dyslexia in Bosnian language with transparent orthography. Three main error categories were distinguished: phonological, orthographic, and grammatical errors. An analysis of error type showed 86% of phonological errors, 10% of orthographic errors, and 4%…

  20. Using integrated models to minimize environmentally induced wavefront error in optomechanical design and analysis

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  1. [Character of refractive errors in population study performed by the Area Military Medical Commission in Lodz].

    PubMed

    Nowak, Michał S; Goś, Roman; Smigielski, Janusz

    2008-01-01

    To determine the prevalence of refractive errors in population. A retrospective review of medical examinations for entry to the military service from The Area Military Medical Commission in Lodz. Ophthalmic examinations were performed. We used statistic analysis to review the results. Statistic analysis revealed that refractive errors occurred in 21.68% of the population. The most commen refractive error was myopia. 1) The most commen ocular diseases are refractive errors, especially myopia (21.68% in total). 2) Refractive surgery and contact lenses should be allowed as the possible correction of refractive errors for military service.

  2. Implementation of an experimental program to investigate the performance characteristics of OMEGA navigation

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.

    1974-01-01

    A theoretical formulation of differential and composite OMEGA error is presented to establish hypotheses about the functional relationships between various parameters and OMEGA navigational errors. Computer software developed to provide for extensive statistical analysis of the phase data is described. Results from the regression analysis used to conduct parameter sensitivity studies on differential OMEGA error tend to validate the theoretically based hypothesis concerning the relationship between uncorrected differential OMEGA error and receiver separation range and azimuth. Limited results of measurement of receiver repeatability error and line of position measurement error are also presented.

  3. Evaluation of errors in quantitative determination of asbestos in rock

    NASA Astrophysics Data System (ADS)

    Baietto, Oliviero; Marini, Paola; Vitaliti, Martina

    2016-04-01

    The quantitative determination of the content of asbestos in rock matrices is a complex operation which is susceptible to important errors. The principal methodologies for the analysis are Scanning Electron Microscopy (SEM) and Phase Contrast Optical Microscopy (PCOM). Despite the PCOM resolution is inferior to that of SEM, PCOM analysis has several advantages, including more representativity of the analyzed sample, more effective recognition of chrysotile and a lower cost. The DIATI LAA internal methodology for the analysis in PCOM is based on a mild grinding of a rock sample, its subdivision in 5-6 grain size classes smaller than 2 mm and a subsequent microscopic analysis of a portion of each class. The PCOM is based on the optical properties of asbestos and of the liquids with note refractive index in which the particles in analysis are immersed. The error evaluation in the analysis of rock samples, contrary to the analysis of airborne filters, cannot be based on a statistical distribution. In fact for airborne filters a binomial distribution (Poisson), which theoretically defines the variation in the count of fibers resulting from the observation of analysis fields, chosen randomly on the filter, can be applied. The analysis in rock matrices instead cannot lean on any statistical distribution because the most important object of the analysis is the size of the of asbestiform fibers and bundles of fibers observed and the resulting relationship between the weights of the fibrous component compared to the one granular. The error evaluation generally provided by public and private institutions varies between 50 and 150 percent, but there are not, however, specific studies that discuss the origin of the error or that link it to the asbestos content. Our work aims to provide a reliable estimation of the error in relation to the applied methodologies and to the total content of asbestos, especially for the values close to the legal limits. The error assessments must be made through the repetition of the same analysis on the same sample to try to estimate the error on the representativeness of the sample and the error related to the sensitivity of the operator, in order to provide a sufficiently reliable uncertainty of the method. We used about 30 natural rock samples with different asbestos content, performing 3 analysis on each sample to obtain a trend sufficiently representative of the percentage. Furthermore we made on one chosen sample 10 repetition of the analysis to try to define more specifically the error of the methodology.

  4. Exploring the Phenotype of Phonological Reading Disability as a Function of the Phonological Deficit Severity: Evidence from the Error Analysis Paradigm in Arabic

    ERIC Educational Resources Information Center

    Taha, Haitham; Ibrahim, Raphiq; Khateb, Asaid

    2014-01-01

    The dominant error types were investigated as a function of phonological processing (PP) deficit severity in four groups of impaired readers. For this aim, an error analysis paradigm distinguishing between four error types was used. The findings revealed that the different types of impaired readers were characterized by differing predominant error…

  5. Errors Analysis of Solving Linear Inequalities among the Preparatory Year Students at King Saud University

    ERIC Educational Resources Information Center

    El-khateeb, Mahmoud M. A.

    2016-01-01

    The purpose of this study aims to investigate the errors classes occurred by the Preparatory year students at King Saud University, through analysis student responses to the items of the study test, and to identify the varieties of the common errors and ratios of common errors that occurred in solving inequalities. In the collection of the data,…

  6. A Study on Mutil-Scale Background Error Covariances in 3D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zhang, Xubin; Tan, Zhe-Min

    2017-04-01

    The construction of background error covariances is a key component of three-dimensional variational data assimilation. There are different scale background errors and interactions among them in the numerical weather Prediction. However, the influence of these errors and their interactions cannot be represented in the background error covariances statistics when estimated by the leading methods. So, it is necessary to construct background error covariances influenced by multi-scale interactions among errors. With the NMC method, this article firstly estimates the background error covariances at given model-resolution scales. And then the information of errors whose scales are larger and smaller than the given ones is introduced respectively, using different nesting techniques, to estimate the corresponding covariances. The comparisons of three background error covariances statistics influenced by information of errors at different scales reveal that, the background error variances enhance particularly at large scales and higher levels when introducing the information of larger-scale errors by the lateral boundary condition provided by a lower-resolution model. On the other hand, the variances reduce at medium scales at the higher levels, while those show slight improvement at lower levels in the nested domain, especially at medium and small scales, when introducing the information of smaller-scale errors by nesting a higher-resolution model. In addition, the introduction of information of larger- (smaller-) scale errors leads to larger (smaller) horizontal and vertical correlation scales of background errors. Considering the multivariate correlations, the Ekman coupling increases (decreases) with the information of larger- (smaller-) scale errors included, whereas the geostrophic coupling in free atmosphere weakens in both situations. The three covariances obtained in above work are used in a data assimilation and model forecast system respectively, and then the analysis-forecast cycles for a period of 1 month are conducted. Through the comparison of both analyses and forecasts from this system, it is found that the trends for variation in analysis increments with information of different scale errors introduced are consistent with those for variation in variances and correlations of background errors. In particular, introduction of smaller-scale errors leads to larger amplitude of analysis increments for winds at medium scales at the height of both high- and low- level jet. And analysis increments for both temperature and humidity are greater at the corresponding scales at middle and upper levels under this circumstance. These analysis increments improve the intensity of jet-convection system which includes jets at different levels and coupling between them associated with latent heat release, and these changes in analyses contribute to the better forecasts for winds and temperature in the corresponding areas. When smaller-scale errors are included, analysis increments for humidity enhance significantly at large scales at lower levels to moisten southern analyses. This humidification devotes to correcting dry bias there and eventually improves forecast skill of humidity. Moreover, inclusion of larger- (smaller-) scale errors is beneficial for forecast quality of heavy (light) precipitation at large (small) scales due to the amplification (diminution) of intensity and area in precipitation forecasts but tends to overestimate (underestimate) light (heavy) precipitation .

  7. A Western Dietary Pattern Increases Prostate Cancer Risk: A Systematic Review and Meta-Analysis.

    PubMed

    Fabiani, Roberto; Minelli, Liliana; Bertarelli, Gaia; Bacci, Silvia

    2016-10-12

    Dietary patterns were recently applied to examine the relationship between eating habits and prostate cancer (PC) risk. While the associations between PC risk with the glycemic index and Mediterranean score have been reviewed, no meta-analysis is currently available on dietary patterns defined by "a posteriori" methods. A literature search was carried out (PubMed, Web of Science) to identify studies reporting the relationship between dietary patterns and PC risk. Relevant dietary patterns were selected and the risks estimated were calculated by a random-effect model. Multivariable-adjusted odds ratios (ORs), for a first-percentile increase in dietary pattern score, were combined by a dose-response meta-analysis. Twelve observational studies were included in the meta-analysis which identified a "Healthy pattern" and a "Western pattern". The Healthy pattern was not related to PC risk (OR = 0.96; 95% confidence interval (CI): 0.88-1.04) while the Western pattern significantly increased it (OR = 1.34; 95% CI: 1.08-1.65). In addition, the "Carbohydrate pattern", which was analyzed in four articles, was positively associated with a higher PC risk (OR = 1.64; 95% CI: 1.35-2.00). A significant linear trend between the Western ( p = 0.011) pattern, the Carbohydrate ( p = 0.005) pattern, and the increment of PC risk was observed. The small number of studies included in the meta-analysis suggests that further investigation is necessary to support these findings.

  8. Why Is Rainfall Error Analysis Requisite for Data Assimilation and Climate Modeling?

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.

    2004-01-01

    Given the large temporal and spatial variability of precipitation processes, errors in rainfall observations are difficult to quantify yet crucial to making effective use of rainfall data for improving atmospheric analysis, weather forecasting, and climate modeling. We highlight the need for developing a quantitative understanding of systematic and random errors in precipitation observations by examining explicit examples of how each type of errors can affect forecasts and analyses in global data assimilation. We characterize the error information needed from the precipitation measurement community and how it may be used to improve data usage within the general framework of analysis techniques, as well as accuracy requirements from the perspective of climate modeling and global data assimilation.

  9. An Error Analysis for the Finite Element Method Applied to Convection Diffusion Problems.

    DTIC Science & Technology

    1981-03-01

    D TFhG-]NOLOGY k 4b 00 \\" ) ’b Technical Note BN-962 AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION PROBLEM by I...Babu~ka and W. G. Szym’czak March 1981 V.. UNVI I Of- ’i -S AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD P. - 0 w APPLIED TO CONVECTION DIFFUSION ...AOAO98 895 MARYLAND UNIVYCOLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/G 12/I AN ERROR ANALYIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONV..ETC (U

  10. Defining near misses: towards a sharpened definition based on empirical data about error handling processes.

    PubMed

    Kessels-Habraken, Marieke; Van der Schaaf, Tjerk; De Jonge, Jan; Rutte, Christel

    2010-05-01

    Medical errors in health care still occur frequently. Unfortunately, errors cannot be completely prevented and 100% safety can never be achieved. Therefore, in addition to error reduction strategies, health care organisations could also implement strategies that promote timely error detection and correction. Reporting and analysis of so-called near misses - usually defined as incidents without adverse consequences for patients - are necessary to gather information about successful error recovery mechanisms. This study establishes the need for a clearer and more consistent definition of near misses to enable large-scale reporting and analysis in order to obtain such information. Qualitative incident reports and interviews were collected on four units of two Dutch general hospitals. Analysis of the 143 accompanying error handling processes demonstrated that different incident types each provide unique information about error handling. Specifically, error handling processes underlying incidents that did not reach the patient differed significantly from those of incidents that reached the patient, irrespective of harm, because of successful countermeasures that had been taken after error detection. We put forward two possible definitions of near misses and argue that, from a practical point of view, the optimal definition may be contingent on organisational context. Both proposed definitions could yield large-scale reporting of near misses. Subsequent analysis could enable health care organisations to improve the safety and quality of care proactively by (1) eliminating failure factors before real accidents occur, (2) enhancing their ability to intercept errors in time, and (3) improving their safety culture. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  12. Reevaluating Recovery: Perceived Violations and Preemptive Interventions on Emergency Psychiatry Rounds

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Almeida, Carlos; Patel, Vimla L.

    2007-01-01

    Objective Contemporary error research suggests that the quest to eradicate error is misguided. Error commission, detection, and recovery are an integral part of cognitive work, even at the expert level. In collaborative workspaces, the perception of potential error is directly observable: workers discuss and respond to perceived violations of accepted practice norms. As perceived violations are captured and corrected preemptively, they do not fit Reason’s widely accepted definition of error as “failure to achieve an intended outcome.” However, perceived violations suggest the aversion of potential error, and consequently have implications for error prevention. This research aims to identify and describe perceived violations of the boundaries of accepted procedure in a psychiatric emergency department (PED), and how they are resolved in practice. Design Clinical discourse from fourteen PED patient rounds was audio-recorded. Excerpts from recordings suggesting perceived violations or incidents of miscommunication were extracted and analyzed using qualitative coding methods. The results are interpreted in relation to prior research on vulnerabilities to error in the PED. Results Thirty incidents of perceived violations or miscommunication are identified and analyzed. Of these, only one medication error was formally reported. Other incidents would not have been detected by a retrospective analysis. Conclusions The analysis of perceived violations expands the data available for error analysis beyond occasional reported adverse events. These data are prospective: responses are captured in real time. This analysis supports a set of recommendations to improve the quality of care in the PED and other critical care contexts. PMID:17329728

  13. An investigation of error characteristics and coding performance

    NASA Technical Reports Server (NTRS)

    Ebel, William J.; Ingels, Frank M.

    1993-01-01

    The first year's effort on NASA Grant NAG5-2006 was an investigation to characterize typical errors resulting from the EOS dorn link. The analysis methods developed for this effort were used on test data from a March 1992 White Sands Terminal Test. The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a convolutional inner code versus a Reed Solomon only code scheme has been investigated as well as the effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types. The work effort consisted of development of software that allows simulation studies with the appropriate coding schemes plus either simulated data with errors or actual data with errors. The software program is entitled Communication Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and interleavers.

  14. An error analysis perspective for patient alignment systems.

    PubMed

    Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann

    2013-09-01

    This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.

  15. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

    PubMed Central

    Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar

    2015-01-01

    Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485

  16. Estimation for the Linear Model With Uncertain Covariance Matrices

    NASA Astrophysics Data System (ADS)

    Zachariah, Dave; Shariati, Nafiseh; Bengtsson, Mats; Jansson, Magnus; Chatterjee, Saikat

    2014-03-01

    We derive a maximum a posteriori estimator for the linear observation model, where the signal and noise covariance matrices are both uncertain. The uncertainties are treated probabilistically by modeling the covariance matrices with prior inverse-Wishart distributions. The nonconvex problem of jointly estimating the signal of interest and the covariance matrices is tackled by a computationally efficient fixed-point iteration as well as an approximate variational Bayes solution. The statistical performance of estimators is compared numerically to state-of-the-art estimators from the literature and shown to perform favorably.

  17. Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.

    PubMed

    Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia

    2017-06-01

    Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.

  18. Evaluation and error apportionment of an ensemble of ...

    EPA Pesticide Factsheets

    Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII.The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact

  19. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    NASA Technical Reports Server (NTRS)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  20. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Treesearch

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  1. Hartman Testing of X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  2. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  3. Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2008-01-01

    The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…

  4. Mark-Up-Based Writing Error Analysis Model in an On-Line Classroom.

    ERIC Educational Resources Information Center

    Feng, Cheng; Yano, Yoneo; Ogata, Hiroaki

    2000-01-01

    Describes a new component called "Writing Error Analysis Model" (WEAM) in the CoCoA system for teaching writing composition in Japanese as a foreign language. The Weam can be used for analyzing learners' morphological errors and selecting appropriate compositions for learners' revising exercises. (Author/VWL)

  5. Exploratory Factor Analysis of Reading, Spelling, and Math Errors

    ERIC Educational Resources Information Center

    O'Brien, Rebecca; Pan, Xingyu; Courville, Troy; Bray, Melissa A.; Breaux, Kristina; Avitia, Maria; Choi, Dowon

    2017-01-01

    Norm-referenced error analysis is useful for understanding individual differences in students' academic skill development and for identifying areas of skill strength and weakness. The purpose of the present study was to identify underlying connections between error categories across five language and math subtests of the Kaufman Test of…

  6. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  7. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  8. MO-FG-202-06: Improving the Performance of Gamma Analysis QA with Radiomics- Based Image Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, L; Nyflot, M; Ford, E

    2016-06-15

    Purpose: The use of gamma analysis for IMRT quality assurance has well-known limitations. Traditionally, a simple thresholding technique is used to evaluated passing criteria. However, like any image the gamma distribution is rich in information which thresholding mostly discards. We therefore propose a novel method of analyzing gamma images that uses quantitative image features borrowed from radiomics, with the goal of improving error detection. Methods: 368 gamma images were generated from 184 clinical IMRT beams. For each beam the dose to a phantom was measured with EPID dosimetry and compared to the TPS dose calculated with and without normally distributedmore » (2mm sigma) errors in MLC positions. The magnitude of 17 intensity histogram and size-zone radiomic features were derived from each image. The features that differed most significantly between image sets were determined with ROC analysis. A linear machine-learning model was trained on these features to classify images as with or without errors on 180 gamma images.The model was then applied to an independent validation set of 188 additional gamma distributions, half with and half without errors. Results: The most significant features for detecting errors were histogram kurtosis (p=0.007) and three size-zone metrics (p<1e-6 for each). The sizezone metrics detected clusters of high gamma-value pixels under mispositioned MLCs. The model applied to the validation set had an AUC of 0.8, compared to 0.56 for traditional gamma analysis with the decision threshold restricted to 98% or less. Conclusion: A radiomics-based image analysis method was developed that is more effective in detecting error than traditional gamma analysis. Though the pilot study here considers only MLC position errors, radiomics-based methods for other error types are being developed, which may provide better error detection and useful information on the source of detected errors. This work was partially supported by a grant from the Agency for Healthcare Research and Quality, grant number R18 HS022244-01.« less

  9. Cost-Effectiveness Analysis of an Automated Medication System Implemented in a Danish Hospital Setting.

    PubMed

    Risør, Bettina Wulff; Lisby, Marianne; Sørensen, Jan

    To evaluate the cost-effectiveness of an automated medication system (AMS) implemented in a Danish hospital setting. An economic evaluation was performed alongside a controlled before-and-after effectiveness study with one control ward and one intervention ward. The primary outcome measure was the number of errors in the medication administration process observed prospectively before and after implementation. To determine the difference in proportion of errors after implementation of the AMS, logistic regression was applied with the presence of error(s) as the dependent variable. Time, group, and interaction between time and group were the independent variables. The cost analysis used the hospital perspective with a short-term incremental costing approach. The total 6-month costs with and without the AMS were calculated as well as the incremental costs. The number of avoided administration errors was related to the incremental costs to obtain the cost-effectiveness ratio expressed as the cost per avoided administration error. The AMS resulted in a statistically significant reduction in the proportion of errors in the intervention ward compared with the control ward. The cost analysis showed that the AMS increased the ward's 6-month cost by €16,843. The cost-effectiveness ratio was estimated at €2.01 per avoided administration error, €2.91 per avoided procedural error, and €19.38 per avoided clinical error. The AMS was effective in reducing errors in the medication administration process at a higher overall cost. The cost-effectiveness analysis showed that the AMS was associated with affordable cost-effectiveness rates. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less

  11. System review: a method for investigating medical errors in healthcare settings.

    PubMed

    Alexander, G L; Stone, T T

    2000-01-01

    System analysis is a process of evaluating objectives, resources, structure, and design of businesses. System analysis can be used by leaders to collaboratively identify breakthrough opportunities to improve system processes. In healthcare systems, system analysis can be used to review medical errors (system occurrences) that may place patients at risk for injury, disability, and/or death. This study utilizes a case management approach to identify medical errors. Utilizing an interdisciplinary approach, a System Review Team was developed to identify trends in system occurrences, facilitate communication, and enhance the quality of patient care by reducing medical errors.

  12. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  13. Anatomic, clinical, and neuropsychological correlates of spelling errors in primary progressive aphasia.

    PubMed

    Shim, Hyungsub; Hurley, Robert S; Rogalski, Emily; Mesulam, M-Marsel

    2012-07-01

    This study evaluates spelling errors in the three subtypes of primary progressive aphasia (PPA): agrammatic (PPA-G), logopenic (PPA-L), and semantic (PPA-S). Forty-one PPA patients and 36 age-matched healthy controls were administered a test of spelling. The total number of errors and types of errors in spelling to dictation of regular words, exception words and nonwords, were recorded. Error types were classified based on phonetic plausibility. In the first analysis, scores were evaluated by clinical diagnosis. Errors in spelling exception words and phonetically plausible errors were seen in PPA-S. Conversely, PPA-G was associated with errors in nonword spelling and phonetically implausible errors. In the next analysis, spelling scores were correlated to other neuropsychological language test scores. Significant correlations were found between exception word spelling and measures of naming and single word comprehension. Nonword spelling correlated with tests of grammar and repetition. Global language measures did not correlate significantly with spelling scores, however. Cortical thickness analysis based on MRI showed that atrophy in several language regions of interest were correlated with spelling errors. Atrophy in the left supramarginal gyrus and inferior frontal gyrus (IFG) pars orbitalis correlated with errors in nonword spelling, while thinning in the left temporal pole and fusiform gyrus correlated with errors in exception word spelling. Additionally, phonetically implausible errors in regular word spelling correlated with thinning in the left IFG pars triangularis and pars opercularis. Together, these findings suggest two independent systems for spelling to dictation, one phonetic (phoneme to grapheme conversion), and one lexical (whole word retrieval). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error

    PubMed Central

    Hwang, Heungsun; Takane, Yoshio; Jung, Kwanghee

    2017-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone to the errors as well. We propose to extend GSCA to account for errors in indicators explicitly. This extension, called GSCAM, considers both common and unique parts of indicators, as postulated in common factor analysis, and estimates a weighted composite of indicators with their unique parts removed. Adding such unique parts or uniqueness terms serves to account for measurement errors in indicators in a manner similar to common factor analysis. Simulation studies are conducted to compare parameter recovery of GSCAM and existing methods. These methods are also applied to fit a substantively well-established model to real data. PMID:29270146

  15. Analyse des erreurs et grammaire generative: La syntaxe de l'interrogation en francais (Error Analysis and Generative Grammar: The Syntax of Interrogation in French).

    ERIC Educational Resources Information Center

    Py, Bernard

    A progress report is presented of a study which applies a system of generative grammar to error analysis. The objective of the study was to reconstruct the grammar of students' interlanguage, using a systematic analysis of errors. (Interlanguage refers to the linguistic competence of a student who possesses a relatively systematic body of rules,…

  16. Behind Human Error: Cognitive Systems, Computers and Hindsight

    DTIC Science & Technology

    1994-12-01

    evaluations • Organize and/or conduct workshops and conferences CSERIAC is a Department of Defense Information Analysis Cen- ter sponsored by the Defense...Process 185 Neutral Observer Criteria 191 Error Analysis as Causal Judgment 193 Error as Information 195 A Fundamental Surprise 195 What is Human...Kahnemann, 1974), and in risk analysis (Dougherty and Fragola, 1990). The discussions have continued in a wide variety of forums, includ- ing the

  17. Wave analysis of a plenoptic system and its applications

    NASA Astrophysics Data System (ADS)

    Shroff, Sapna A.; Berkner, Kathrin

    2013-03-01

    Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.

  18. Ontology of gaps in content-based image retrieval.

    PubMed

    Deserno, Thomas M; Antani, Sameer; Long, Rodney

    2009-04-01

    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the "semantic gap." The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of "gaps" in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.

  19. Accuracy improvement of the H-drive air-levitating wafer inspection stage based on error analysis and compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Liu, Pinkuan

    2018-04-01

    In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.

  20. Error rate information in attention allocation pilot models

    NASA Technical Reports Server (NTRS)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  1. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer.

    PubMed

    Malkassian, Anthony; Nerini, David; van Dijk, Mark A; Thyssen, Melilotus; Mante, Claude; Gregori, Gerald

    2011-04-01

    Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics. For data analysis, a manual clustering is usually performed a posteriori: data are displayed on histograms and scatterplots, and group discrimination is made by drawing and combining regions (gating). The purpose of this study is to provide greater objectivity in the data analysis by applying a nonmanual and consistent method to automatically discriminate clusters of particles. In other words, we seek for partitioning methods based on the optical fingerprints of each particle. As the CytoSense is able to record the full pulse shape for each variable, it quickly generates a large and complex dataset to analyze. The shape, length, and area of each curve were chosen as descriptors for the analysis. To test the developed method, numerical experiments were performed on simulated curves. Then, the method was applied and validated on phytoplankton cultures data. Promising results have been obtained with a mixture of various species whose optical fingerprints overlapped considerably and could not be accurately separated using manual gating. Copyright © 2011 International Society for Advancement of Cytometry.

  2. High-frequency video capture and a computer program with frame-by-frame angle determination functionality as tools that support judging in artistic gymnastics.

    PubMed

    Omorczyk, Jarosław; Nosiadek, Leszek; Ambroży, Tadeusz; Nosiadek, Andrzej

    2015-01-01

    The main aim of this study was to verify the usefulness of selected simple methods of recording and fast biomechanical analysis performed by judges of artistic gymnastics in assessing a gymnast's movement technique. The study participants comprised six artistic gymnastics judges, who assessed back handsprings using two methods: a real-time observation method and a frame-by-frame video analysis method. They also determined flexion angles of knee and hip joints using the computer program. In the case of the real-time observation method, the judges gave a total of 5.8 error points with an arithmetic mean of 0.16 points for the flexion of the knee joints. In the high-speed video analysis method, the total amounted to 8.6 error points and the mean value amounted to 0.24 error points. For the excessive flexion of hip joints, the sum of the error values was 2.2 error points and the arithmetic mean was 0.06 error points during real-time observation. The sum obtained using frame-by-frame analysis method equaled 10.8 and the mean equaled 0.30 error points. Error values obtained through the frame-by-frame video analysis of movement technique were higher than those obtained through the real-time observation method. The judges were able to indicate the number of the frame in which the maximal joint flexion occurred with good accuracy. Using the real-time observation method as well as the high-speed video analysis performed without determining the exact angle for assessing movement technique were found to be insufficient tools for improving the quality of judging.

  3. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  4. JPL-ANTOPT antenna structure optimization program

    NASA Technical Reports Server (NTRS)

    Strain, D. M.

    1994-01-01

    New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.

  5. Implications of Error Analysis Studies for Academic Interventions

    ERIC Educational Resources Information Center

    Mather, Nancy; Wendling, Barbara J.

    2017-01-01

    We reviewed 13 studies that focused on analyzing student errors on achievement tests from the Kaufman Test of Educational Achievement-Third edition (KTEA-3). The intent was to determine what instructional implications could be derived from in-depth error analysis. As we reviewed these studies, several themes emerged. We explain how a careful…

  6. A Conjoint Analysis Framework for Evaluating User Preferences in Machine Translation

    PubMed Central

    Kirchhoff, Katrin; Capurro, Daniel; Turner, Anne M.

    2013-01-01

    Despite much research on machine translation (MT) evaluation, there is surprisingly little work that directly measures users’ intuitive or emotional preferences regarding different types of MT errors. However, the elicitation and modeling of user preferences is an important prerequisite for research on user adaptation and customization of MT engines. In this paper we explore the use of conjoint analysis as a formal quantitative framework to assess users’ relative preferences for different types of translation errors. We apply our approach to the analysis of MT output from translating public health documents from English into Spanish. Our results indicate that word order errors are clearly the most dispreferred error type, followed by word sense, morphological, and function word errors. The conjoint analysis-based model is able to predict user preferences more accurately than a baseline model that chooses the translation with the fewest errors overall. Additionally we analyze the effect of using a crowd-sourced respondent population versus a sample of domain experts and observe that main preference effects are remarkably stable across the two samples. PMID:24683295

  7. Analysis of Free-Space Coupling to Photonic Lanterns in the Presence of Tilt Errors

    DTIC Science & Technology

    2017-05-01

    Analysis of Free- Space Coupling to Photonic Lanterns in the Presence of Tilt Errors Timothy M. Yarnall, David J. Geisler, Curt M. Schieler...Massachusetts Avenue Cambridge, MA 02139, USA Abstract—Free space coupling to photonic lanterns is more tolerant to tilt errors and F -number mismatch than...these errors. I. INTRODUCTION Photonic lanterns provide a means for transitioning from the free space regime to the single-mode fiber (SMF) regime by

  8. Quotation accuracy in medical journal articles-a systematic review and meta-analysis.

    PubMed

    Jergas, Hannah; Baethge, Christopher

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.

  9. ATC operational error analysis.

    DOT National Transportation Integrated Search

    1972-01-01

    The primary causes of operational errors are discussed and the effects of these errors on an ATC system's performance are described. No attempt is made to specify possible error models for the spectrum of blunders that can occur although previous res...

  10. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    PubMed

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  11. Comprehensive analysis of a medication dosing error related to CPOE.

    PubMed

    Horsky, Jan; Kuperman, Gilad J; Patel, Vimla L

    2005-01-01

    This case study of a serious medication error demonstrates the necessity of a comprehensive methodology for the analysis of failures in interaction between humans and information systems. The authors used a novel approach to analyze a dosing error related to computer-based ordering of potassium chloride (KCl). The method included a chronological reconstruction of events and their interdependencies from provider order entry usage logs, semistructured interviews with involved clinicians, and interface usability inspection of the ordering system. Information collected from all sources was compared and evaluated to understand how the error evolved and propagated through the system. In this case, the error was the product of faults in interaction among human and system agents that methods limited in scope to their distinct analytical domains would not identify. The authors characterized errors in several converging aspects of the drug ordering process: confusing on-screen laboratory results review, system usability difficulties, user training problems, and suboptimal clinical system safeguards that all contributed to a serious dosing error. The results of the authors' analysis were used to formulate specific recommendations for interface layout and functionality modifications, suggest new user alerts, propose changes to user training, and address error-prone steps of the KCl ordering process to reduce the risk of future medication dosing errors.

  12. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback

    PubMed Central

    Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.

    2017-01-01

    Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038

  13. Impact and quantification of the sources of error in DNA pooling designs.

    PubMed

    Jawaid, A; Sham, P

    2009-01-01

    The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.

  14. Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Per

    1999-10-01

    We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.

  15. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  16. Validation of Metrics as Error Predictors

    NASA Astrophysics Data System (ADS)

    Mendling, Jan

    In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.

  17. Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation

    NASA Astrophysics Data System (ADS)

    Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver

    2014-03-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.

  18. Incorporating priors on expert performance parameters for segmentation validation and label fusion: a maximum a posteriori STAPLE

    PubMed Central

    Commowick, Olivier; Warfield, Simon K

    2010-01-01

    In order to evaluate the quality of segmentations of an image and assess intra- and inter-expert variability in segmentation performance, an Expectation Maximization (EM) algorithm for Simultaneous Truth And Performance Level Estimation (STAPLE) was recently developed. This algorithm, originally presented for segmentation validation, has since been used for many applications, such as atlas construction and decision fusion. However, the manual delineation of structures of interest is a very time consuming and burdensome task. Further, as the time required and burden of manual delineation increase, the accuracy of the delineation is decreased. Therefore, it may be desirable to ask the experts to delineate only a reduced number of structures or the segmentation of all structures by all experts may simply not be achieved. Fusion from data with some structures not segmented by each expert should be carried out in a manner that accounts for the missing information. In other applications, locally inconsistent segmentations may drive the STAPLE algorithm into an undesirable local optimum, leading to misclassifications or misleading experts performance parameters. We present a new algorithm that allows fusion with partial delineation and which can avoid convergence to undesirable local optima in the presence of strongly inconsistent segmentations. The algorithm extends STAPLE by incorporating prior probabilities for the expert performance parameters. This is achieved through a Maximum A Posteriori formulation, where the prior probabilities for the performance parameters are modeled by a beta distribution. We demonstrate that this new algorithm enables dramatically improved fusion from data with partial delineation by each expert in comparison to fusion with STAPLE. PMID:20879379

  19. Nutrition and healthy ageing: the key ingredients.

    PubMed

    Kiefte-de Jong, Jessica C; Mathers, John C; Franco, Oscar H

    2014-05-01

    Healthy longevity is a tangible possibility for many individuals and populations, with nutritional and other lifestyle factors playing a key role in modulating the likelihood of healthy ageing. Nevertheless, studies of effects of nutrients or single foods on ageing often show inconsistent results and ignore the overall framework of dietary habits. Therefore, the use of dietary patterns (e.g. a Mediterranean dietary pattern) and the specific dietary recommendations (e.g. dietary approaches to stop hypertension, Polymeal and the American Healthy Eating Index) are becoming more widespread in promoting lifelong health. A posteriori defined dietary patterns are described frequently in relation to age-related diseases but their generalisability is often a challenge since these are developed specifically for the population under study. Conversely, the dietary guidelines are often developed based on prevention of disease or nutrient deficiency, but often less attention is paid to how well these dietary guidelines promote health outcomes. In the present paper, we provide an overview of the state of the art of dietary patterns and dietary recommendations in relation to life expectancy and the risk of age-related disorders (with emphasis on cardiometabolic diseases and cognitive outcomes). According to both a posteriori and a priori dietary patterns, some key 'ingredients' can be identified that are associated consistently with longevity and better cardiometabolic and cognitive health. These include high intake of fruit, vegetables, fish, (whole) grains and legumes/pulses and potatoes, whereas dietary patterns rich in red meat and sugar-rich foods have been associated with an increased risk of mortality and cardiometabolic outcomes.

  20. Incorporating priors on expert performance parameters for segmentation validation and label fusion: a maximum a posteriori STAPLE.

    PubMed

    Commowick, Olivier; Warfield, Simon K

    2010-01-01

    In order to evaluate the quality of segmentations of an image and assess intra- and inter-expert variability in segmentation performance, an Expectation Maximization (EM) algorithm for Simultaneous Truth And Performance Level Estimation (STAPLE) was recently developed. This algorithm, originally presented for segmentation validation, has since been used for many applications, such as atlas construction and decision fusion. However, the manual delineation of structures of interest is a very time consuming and burdensome task. Further, as the time required and burden of manual delineation increase, the accuracy of the delineation is decreased. Therefore, it may be desirable to ask the experts to delineate only a reduced number of structures or the segmentation of all structures by all experts may simply not be achieved. Fusion from data with some structures not segmented by each expert should be carried out in a manner that accounts for the missing information. In other applications, locally inconsistent segmentations may drive the STAPLE algorithm into an undesirable local optimum, leading to misclassifications or misleading experts performance parameters. We present a new algorithm that allows fusion with partial delineation and which can avoid convergence to undesirable local optima in the presence of strongly inconsistent segmentations. The algorithm extends STAPLE by incorporating prior probabilities for the expert performance parameters. This is achieved through a Maximum A Posteriori formulation, where the prior probabilities for the performance parameters are modeled by a beta distribution. We demonstrate that this new algorithm enables dramatically improved fusion from data with partial delineation by each expert in comparison to fusion with STAPLE.

Top