Postflight hardware evaluation 360T021 (RSRM-21, STS-45), revision A
NASA Technical Reports Server (NTRS)
Maccauly, Linda E.
1992-01-01
The Final Postflight Hardware Evaluation Report 360T021 (RSRM-21, STS-45) is included. All observed hardware conditions were documented on Postflight Observation Reports (PFOR's) and included in Appendices A through E. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report represents a summary of the 360T021 hardware evaluation.
Postflight hardware evaluation 360T026 (RSRM-26, STS-47)
NASA Technical Reports Server (NTRS)
Nielson, Greg
1993-01-01
The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the 360T026 (STS-47) Redesigned Solid Rocket Motor (RSRM) flight set is provided. All observed hardware conditions were documented on PFOR's and are included in Appendices A, B, and C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64203), represents a summary of the 360T026 hardware evaluation. The as-flown hardware configuration is documented in TWR-60472. Disassembly evaluation photograph numbers are logged in TWA-1987. The 360T026 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on 12 April 1993. Detailed evaluations were performed in accordance with the Clearfield Postflight Engineering Evaluation Plan (PEEP), TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable CPT and tracked through the PFAR system.
Final postflight hardware evaluation report RSRM-28 (STS-53)
NASA Technical Reports Server (NTRS)
Starrett, William David, Jr.
1993-01-01
The final report for the Clearfield disassembly evaluation and a continuation of the KSC postflight assessment for the RSRM-28 (STS-53) RSRM flight set is presented. All observed hardware conditions were documented on PFOR's and are included in Appendices A through C. Appendices D and E contain the measurements and safety factor data for the nozzle and insulation components. This report, along with the KSC Ten-Day Postflight Hardware Evaluation Report (TWR-64215), represents a summary of the RSRM-28 hardware evaluation. The as-flown hardware configuration is documented in TWR-63638. Disassembly evaluation photograph numbers are logged in TWA-1989. The RSRM-28 flight set disassembly evaluations described were performed at the RSRM Refurbishment Facility in Clearfield, Utah. The final factory joint demate occurred on July 15, 1993. Additional time was required to perform the evaluation of the stiffener rings per special issue 4.1.5.2 because of the washout schedule. The release of this report was after completion of all special issues per program management direction. Detailed evaluations were performed in accordance with the Clearfield PEEP, TWR-50051, Revision A. All observations were compared against limits that are also defined in the PEEP. These limits outline the criteria for categorizing the observations as acceptable, reportable, or critical. Hardware conditions that were unexpected and/or determined to be reportable or critical were evaluated by the applicable team and tracked through the PFAR system.
Final postflight hardware evaluation report RSRM-32 (STS-57)
NASA Technical Reports Server (NTRS)
Nielson, Greg
1993-01-01
This document is the final report for the postflight assessment of the RSRM-32 (STS-57) flight set. This report presents the disassembly evaluations performed at the Thiokol facilities in Utah and is a continuation of the evaluations performed at KSC (TWR-64239). The PEEP for this assessment is outlined in TWR-50051, Revision B. The PEEP defines the requirements for evaluating RSRM hardware. Special hardware issues pertaining to this flight set requiring additional or modified assessment are outlined in TWR-64237. All observed hardware conditions were documented on PFOR's which are included in Appendix A. Observations were compared against limits defined in the PEEP. Any observation that was categorized as reportable or had no defined limits was documented on a preliminary PFAR by the assessment engineers. Preliminary PFAR's were reviewed by the Thiokol SPAT Executive Board to determine if elevation to PFAR's was required.
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation is presented of the operational and engineering aspects of the second Skylab flight. Other areas described include: the performance of experimental hardware; the crew's evaluation of the flight; medical aspects; and hardware anomalies.
Effects of long-term exposure on LDEF fastener assemblies
NASA Astrophysics Data System (ADS)
Spear, Steve; Dursch, Harry
1992-09-01
This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.
Effects of long-term exposure on LDEF fastener assemblies
NASA Technical Reports Server (NTRS)
Spear, Steve; Dursch, Harry
1992-01-01
This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.
NASA Technical Reports Server (NTRS)
Pippin, Gary
1997-01-01
This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.
Summary of materials and hardware performance on LDEF
NASA Technical Reports Server (NTRS)
Dursch, Harry; Pippin, Gary; Teichman, Lou
1993-01-01
A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.
Solid Rocket Booster (SRB) Flight System Integration at Its Best
NASA Technical Reports Server (NTRS)
Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Analysis of selected materials flown on interior locations of the Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Smith, H. A.; Nelson, K. M.; Eash, D.; Pippin, H. G.
1994-01-01
This report documents the post-flight condition of selected hardware taken from interior locations on the Long Duration Exposure Facility (LDEF). This hardware was generally in excellent condition. Outgassing data is presented for heat shrink tubing and fiberglass composite shims. Variation in total mass loss (TML) values for heat shrink tubing were correlated with location. Nylon grommets were evaluated for mechanical integrity; slight embrittlement was observed for flight specimens. Multi-layer insulation blankets, wire bundles, and paints in non-exposed interior locations were all in visibly good condition. Silicon-containing contaminant films were observed on silver-coated hex nuts at the space- and Earth-end interior locations.
Development and characteristics of the hardware for Skylab experiment S015
NASA Technical Reports Server (NTRS)
Thirolf, R. G.
1975-01-01
Details are given regarding the hardware for the Skylab S015 experiment, which was designed to detect the effects of zero gravity on cell growth rates. Experience gained in hardware-related considerations is presented for use of researchers concerned with future research of this type and further study of the S015 results. Brief descriptions are given of the experiment hardware, the hardware configuration for the critical design review, the major configuration changes, the final configuration, and the postflight review and analysis. An appendix describes pertinent documentation, film, and hardware that are available to qualified researchers; sources for additional or special information are given.
LDEF systems special investigation group overview
NASA Technical Reports Server (NTRS)
Mason, Jim; Dursch, Harry
1995-01-01
The Systems Special Investigation Group (Systems SIG), formed by the LDEF Project Office to perform post-flight analysis of LDEF systems hardware, was chartered to investigate the effects of the extended LDEF mission on both satellite and experiment systems and to coordinate and integrate all systems related analyses performed during post-flight investigations. The Systems SIG published a summary report in April, 1992 titled 'Analysis of Systems Hardware Flown on LDEF - Results of the Systems Special Investigation Group' that described findings through the end of 1991. The Systems SIG, unfunded in FY 92 and FY93, has been funded in FY 94 to update this report with all new systems related findings. This paper provides a brief summary of the highlights of earlier Systems SIG accomplishments and describes tasks the Systems SIG has been funded to accomplish in FY 94.
Accomplishments in bioastronautics research aboard International Space Station.
Uri, John J; Haven, Cynthia P
2005-01-01
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. c2005 Published by Elsevier Ltd.
Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229
NASA Technical Reports Server (NTRS)
Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)
1997-01-01
Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.
Apollo experience report: Mission evaluation team postflight documentation
NASA Technical Reports Server (NTRS)
Dodson, J. W.; Cordiner, D. H.
1975-01-01
The various postflight reports prepared by the mission evaluation team, including the final mission evaluation report, report supplements, anomaly reports, and the 5-day mission report, are described. The procedures for preparing each report from the inputs of the various disciplines are explained, and the general method of reporting postflight results is discussed. Recommendations for postflight documentation in future space programs are included. The official requirements for postflight documentation and a typical example of an anomaly report are provided as appendixes.
Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet
NASA Technical Reports Server (NTRS)
Holladay, Jon; McClendon, Randy (Technical Monitor)
2002-01-01
The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.
The US Experiments Flown on the Soviet Biosatellite Cosmos 1887
NASA Technical Reports Server (NTRS)
Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)
1990-01-01
Cosmos 1887, a biosatellite containing biological and radiation experiments from the Soviet Union, the United States and seven other countries, was launched on September 29, 1987. One Rhesus monkey's feeder stopped working two days into the flight and a decision was made to terminate the mission after 12 1/2 days. The biosatellite returned to Earth on October 12, 1987. A system malfunction, during the reentry procedure, caused the Cosmos 1887 spacecraft to land approximately 1800 miles beyond the intended landing site and delayed the start of the postflight procedures by approximately 44 hours. Further information on the conditions at landing and postflight activities is included in the Mission Operations portion of this document. U.S. and U.S.S.R. specialists jointly conducted 26 experiments on this mission, including the postflight transfer of data, hardware and biosamples to the U.S.
Surveys of ISS Returned Hardware for MMOD Impacts
NASA Technical Reports Server (NTRS)
Hyde, James; Christiansen, E.; Lear, D.; Nagy, K.
2017-01-01
Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center in Houston has performed 26 post-flight inspections on space exposed hardware that have been returned from the International Space Station. Data on 1,024 observations of MMOD damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of Scanning Electron Microscopy (SEM) analysis to discern impactor source is included in the database. This paper will summarize the post-flight MMOD inspections, and focus on two inspections in particular: (1) Pressurized Mating Adapter-2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed damages, and (2) Airlock shield panels returned in 2010 after 8.7 years exposure with 58 MMOD damages. Feature sizes from the observed data are compared to predictions using the Bumper risk assessment code.
NASA Technical Reports Server (NTRS)
Hoffman, William C., III
1996-01-01
Determining deterioration characteristics of the Space Shuttle crew escape system pyrotechnic components loaded with hexanitrostilbene would enable us to establish a hardware life-limit for these items, so we could better plan our equipment use and, possibly, extend the useful life of the hardware. We subjected components to accelerated-age environments to determine degradation characteristics and established a hardware life-limit based upon observed and calculated trends. We extracted samples using manufacturing lots currently installed in the Space Shuttle crew escape system and from other NASA programs. Hardware included in the study consisted of various forms and ages of mild detonating fuse, linear shaped charge, and flexible confined detonating cord. The hardware types were segregated into 5 groups. One was subjected to detonation velocity testing for a baseline. Two were first subjected to prolonged 155 F heat exposure, and the other two were first subjected to 255 F, before undergoing detonation velocity testing and/or chromatography analysis. Test results showed no measurable changes in performance to allow a prediction of an end of life given the storage and elevated temperature environments the hardware experiences. Given the lack of a definitive performance trend, coupled with previous tests on post-flight Space Shuttle hardware showing no significant changes in chemical purity or detonation velocity, we recommend a safe increase in the useful life of the hardware to 20 years, from the current maximum limits of 10 and 15 years, depending on the hardware.
Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.
2011-01-01
The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.
Flight set 360L003 instrumentation final test report, volume 9
NASA Technical Reports Server (NTRS)
1989-01-01
Post-flight instrumentation hardware and data evaluation for 360L003 is summarized. The 360L003 motors were equipped with Developmental Flight Instrumentation (DFI), Operational Flight Instrumentation (OFI), and Ground Environmental Instrumentation (GEI). The DFI was designed to measure strain, temperature, pressure, and vibration at various locations on the motor during flight. The DFI is used to validate engineering models in a flight environment. The OFI consists of six Operational Pressure Tranducers which monitor chamber pressure during flight. These pressure transducers are used in the SRB separation cue. GEI measures the motor case, igniter flange, and nozzle temperature prior to launch.
Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success
NASA Technical Reports Server (NTRS)
Moore, D. R.; Phelps, W. J.
2011-01-01
The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.
Post-Flight Data Analysis Tool
NASA Technical Reports Server (NTRS)
George, Marina
2018-01-01
A software tool that facilitates the retrieval and analysis of post-flight data. This allows our team and other teams to effectively and efficiently analyze and evaluate post-flight data in order to certify commercial providers.
ESA hardware for plant research on the International Space Station
NASA Astrophysics Data System (ADS)
Brinckmann, E.
The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform on which long-term and shorter experiments with plants will be performed on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for in-flight 1 g controls and for studies with acceleration levels from 0.001 g to 2.0 g. Several experiments are in preparation investigating gravity relating to gene expression, gravisensing and phototropism of Arabidopsis thaliana and lentil roots. The experiment-specific hardware provides growth chambers for seedlings and whole A. thaliana plants and is connected to the EMCS Life Support System. Besides in-flight video observation, the experiments will be evaluated post-flight by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. About two years after the EMCS launch, ESA's Biolab will be launched in the European "Columbus" Module. In a similar way as in EMCS, Biolab will accommodate experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments are presented in this communication.
The Evolution of Exercise Hardware on ISS: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Buxton, R. E.; Kalogera, K. L.; Hanson, A. M.
2017-01-01
During 16 years in low-Earth orbit, the suite of exercise hardware aboard the International Space Station (ISS) has matured significantly. Today, the countermeasure system supports an array of physical-training protocols and serves as an extensive research platform. Future hardware designs are required to have smaller operational envelopes and must also mitigate known physiologic issues observed in long-duration spaceflight. Taking lessons learned from the long history of space exercise will be important to successful development and implementation of future, compact exercise hardware. The evolution of exercise hardware as deployed on the ISS has implications for future exercise hardware and operations. Key lessons learned from the early days of ISS have helped to: 1. Enhance hardware performance (increased speed and loads). 2. Mature software interfaces. 3. Compare inflight exercise workloads to pre-, in-, and post-flight musculoskeletal and aerobic conditions. 4. Improve exercise comfort. 5. Develop complimentary hardware for research and operations. Current ISS exercise hardware includes both custom and commercial-off-the-shelf (COTS) hardware. Benefits and challenges to this approach have prepared engineering teams to take a hybrid approach when designing and implementing future exercise hardware. Significant effort has gone into consideration of hardware instrumentation and wearable devices that provide important data to monitor crew health and performance.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John
2011-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.
First incremental buy for Increment 2 of the Space Transportation System (STS)
NASA Technical Reports Server (NTRS)
1989-01-01
Thiokol manufactured and delivered 9 flight motors to KSC on schedule. All test flights were successful. All spent SRMs were recovered. Design, development, manufacture, and delivery of required transportation, handling, and checkout equipment to MSFC and to KSC were completed on schedule. All items of data required by DPD 400 were prepared and delivered as directed. In the system requirements and analysis area, the point of departure from Buy 1 to the operational phase was developed in significant detail with a complete set of transition documentation available. The documentation prepared during the Buy 1 program was maintained and updated where required. The following flight support activities should be continued through other production programs: as-built materials usage tracking on all flight hardware; mass properties reporting for all flight hardware until sample size is large enough to verify that the weight limit requirements were met; ballistic predictions and postflight performance assessments for all production flights; and recovered SRM hardware inspection and anomaly identification. In the safety, reliability, and quality assurance area, activities accomplished were assurance oriented in nature and specifically formulated to prevent problems and hardware failures. The flight program to date has adequately demonstrated the success of this assurance approach. The attention focused on details of design, analysis, manufacture, and inspection to assure the production of high-quality hardware has resulted in the absence of flight failures. The few anomalies which did occur were evaluated, design or manufacturing changes incorporated, and corrective actions taken to preclude recurrence.
Accomplishments in Bioastronautics Research Aboard International Space Station
NASA Technical Reports Server (NTRS)
Uri, John J.
2003-01-01
The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.
NASA Technical Reports Server (NTRS)
Ross, C. L.
1973-01-01
Information necessary for successful performance of the observer's function in the White Light Coronagraph portion of the Apollo Telescope Mount experiments is presented. The pre-flight, in-flight, and post-flight operations required to perform the S-052 experiment are described. A discussion of the scientific objectives of the experiment and a description of the hardware are provided.
NASA Technical Reports Server (NTRS)
Kerstman, Eric
2011-01-01
International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.
Research program for experiment M133
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1972-01-01
The development of the automatic data-acquisition and sleep-analysis system is reported. The purpose was consultation and evaluation in the transition of the Skylab M133 Sleep-Monitoring Experiment equipment from prototype of flight status; review of problems associated with acquisition and on-line display of data in near-real time via spacecraft telemetry; and development of laboratory facilities and design of equipment to assure reliable playback and analysis of analog data. The existing prototype system modified, and the changes improve the performance of the analysis circuitry and increase its reliability. These modifications are useful for pre- and postflight analysis, but are not now proposed for the inflight system. There were improvements in the EEG recording cap, some of which will be incorporated into the flight hardware.
Alloy undercooling experiments
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Matson, Douglas M.
1995-01-01
The research accomplished during 1995 can be organized into three parts. The first task involves analyzing the results of microgravity experiments carried out using TEMPUS hardware during the IML-2 mission on STS-65. The second part was to finalize ground-based experimentation which supported the above flight sample analysis. The final part was to provide technical support for post-flight mission activities specifically aimed at improving TEMPUS performance for potential future missions.
In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition
NASA Technical Reports Server (NTRS)
Parang, M.; Crocker, D. S.
1991-01-01
The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.
2016-01-01
Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.
Description, characteristics and testing of the NASA airborne radar
NASA Technical Reports Server (NTRS)
Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.
1991-01-01
Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.
Space Shuttle STS-1 SRB damage investigation
NASA Technical Reports Server (NTRS)
Nevins, C. D.
1982-01-01
The physical damage incurred by the solid rocket boosters during reentry on the initial space shuttle flight raised the question of whether the hardware, as designed, would yield the low cost per flight desired. The damage was quantified, the cause determined and specific design changes recommended which would preclude recurrence. Flight data, postflight analyses, and laboratory hardware examinations were used. The resultant findings pointed to two principal causes: failure of the aft skirt thermal curtain at the onset of reentry aerodynamic heating, and overloading of the aft shirt stiffening rings during water impact. Design changes were recommended on both the thermal curtain and the aft skirt structural members to prevent similar damage on future missions.
The Skylab sleep monitoring experiment - Methodology and initial results
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Delucchi, M. R.; Shumate, W. H.; Booher, C. R.
1975-01-01
The sleep monitoring experiment permitted an objective evaluation of sleep characteristics during the first two manned Skylab flights. Hardware located onboard the spacecraft accomplished data acquisition, analysis, and preservation, thereby permitting near-real-time evaluation of sleep during the flights and more detailed postmission analysis. The crewman studied during the 28-Day Mission showed some decrease in total sleep time and an increase in the percentage of Stage 4 sleep, while the subject in the 59-Day Mission exhibited little change in total sleep time and a small decrease in Stage 4 and REM sleep. Some disruption of sleep characteristics was seen in the final days of both missions, and both subjects exhibited decreases in REM-onset latency in the immediate postflight period. The relatively minor changes seen were not of the type nor magnitude which might be expected to be associated with significant degradation of performance capability.
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.
2013-01-01
Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.
Apollo experience report: Postflight testing of command modules
NASA Technical Reports Server (NTRS)
Hamilton, D. T.
1973-01-01
Various phases of the postflight testing of the command modules used in the Apollo Program are presented. The specific tasks to be accomplished by the task force recovery teams, the National Aeronautics and Space Administration Lyndon B. Johnson Space Center, (formerly the Manned Spacecraft Center) and the cognizant contractors/subcontractors are outlined. The means and methods used in postflight testing and how such activities evolved during the Apollo Program and were tailored to meet specific test requirements are described. Action taken to resolve or minimize problems or anomalies discovered during the flight, the postflight test phase, or mission evaluation is discussed.
MS Musgrave handled hardware in the FWD MDDK
2014-04-09
51F-13-021 (29 July-6 Aug 1985) --- Astronaut Story Musgrave, STS51F mission specialist, is seen hitching a zero-g ride on a blood centrifuge on the middeck of the space shuttle Challenger. "The centrifuge got more workout than just separation of our blood," crewmate John Bartoe, payload specialist, later told a gathering of media representatives at the 51F post-flight press conference, referring to Musgrave's off-duty antics. Photo credit: NASA
2014-06-10
Commander Steve Swanson harvests plants for the VEG-01 investigation. He is harvesting them on the Maintenance Work Area (MWA) in the Node 2/Harmony. The Veg-01 hardware validation test investigation utilizes the Veggie facility on ISS. This investigation will assess on-orbit function and performance of the Veggie,and focus on the growth and development of Outredgeous Lettuce (Lactuca sativa ) seedlings in the spaceflight environment and the effects of the spaceflight environment on composition of microbial flora on the Veggie-grown plants and the Veggie facility. Lettuce plants are harvested on-orbit, frozen at <-80oC and returned to the ground for post-flight evaluation. Microbial sampling swabs will be taken of the Veggie facility and plant material, frozen and returned to the ground for environmental microbiological examination. Rooting pillows and water sample syringes will also be returned for microbial sampling and root analysis.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
NASA Technical Reports Server (NTRS)
Steele, John; Rector, tony; Gazda, Daniel; Lewis, John
2009-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of postflight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives was implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit components, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements. The intent of this paper is to summarize the findings of that evaluation, and to outline updated schedules for A/L CLR use and component life.
Modifications to the rapid melt/rapid quench and transparent polymer video furnaces for the KC-135
NASA Technical Reports Server (NTRS)
Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.
1990-01-01
Given here is a summary of tasks performed on two furnace systems, the Transparent Polymer (TPF) and the Rapid Melt/Rapid Quench (RMRQ) furnaces, to be used aboard NASA's KC-135. It was determined that major changes were needed for both furnaces to operate according to the scientific investigators' experiment parameters. Discussed here are what the problems were, what was required to solve the problems, and possible future enhancements. It was determined that the enhancements would be required for the furnaces to perform at their optimal levels. Services provided include hardware and software modifications, Safety DataPackage documentation, ground based testing, transportation to and from Ellington Air Field, operation of hardware during KC-135 flights, and post-flight data processing.
Extravehicular activity welding experiment
NASA Technical Reports Server (NTRS)
Watson, J. Kevin
1989-01-01
The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.
Apollo Soyuz, mission evaluation report
NASA Technical Reports Server (NTRS)
1975-01-01
The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.
Vectorcardiographic results from Skylab medical experiment M092: Lower body negative pressure
NASA Technical Reports Server (NTRS)
Hoffler, G. W.; Johnson, R. L.; Nicogossian, A. E.; Bergman, S. A., Jr.; Jackson, M. M.
1977-01-01
Electrocardiographic interval changes suggesting effects of increased vagal tone were observed early in some Gemini crewmembers. Preflight versus postflight amplitude differences appeared in electrocardiograms of several of the early Apollo crewmembers. In preflight and postflight crew evaluations of the last three Apollo flights, quantitative postflight vectorcardiographic changes were for the first time determined in American space crews. Changes not considered related to heart rate were mainly those of increased P and QRS vector magnitudes and orientation shifts. But since most of these postflight findings resembled those observed with the orthostatic stress of lower body negative pressure, it was inferred then that upon their return from space, these Apollo astronauts exhibited exaggerated responses to orthostasis in the vectorcardiogram as well as in measures of cardiovascular hemodynamics.
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.;
2015-01-01
INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.
NASA Technical Reports Server (NTRS)
Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.
2015-01-01
Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen Sharing Program. Together, the RR validation flight successfully demonstrates the capability to support long-duration experimentation on the ISS to achieve both basic science and biomedical objectives.
NASA Technical Reports Server (NTRS)
Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.
2016-01-01
INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their contribution to post-flight cases. Prior history of back pain included back pain recorded in the medical record within 3 years prior to launch. Landing vehicle was included in the model to discern if more astronauts experienced back pain or injury following a Shuttle or Soyuz landing. Onboard exercise countermeasures were noted for those astronauts who had a mission following 2009 deployment of the Advanced Resistive Exercise Device (aRED) (EXP 19 to 41). T-test and chi-squared tests were performed to evaluate the association between each individual risk factor and post-flight case. Logistic regression was used to evaluate the combined contribution of all the risk factors on post-flight cases. Separate models were calculated for cases reported by R + 45 and R + 1y. RESULTS During the study time period, there were 13 post-flight cases reported by R + 45 and an additional 5 reported by R + 1y. Most of these cases have been reported since EXP 19 with 10 cases by R + 45 and 4 by R + 1y. Individual risk factors of age, sex, landing vehicle, and prior military service were not significantly associated with post-flight cases identified at R + 45 or R + 1y (p greater than 0.05). Having back pain or injury within 3 years prior to launch significantly increased the likelihood of becoming a case by R + 1y (p = 0.041), but not at R+45 (p=0.204). Additionally, astronauts who experienced onboard exercise countermeasures that included aRED had a significantly increased risk of becoming a case at R + 45 (p = 0.024) and R + 1y (p=0.003). Multiple logistic regression evaluating all the risk factors for cases identified no significant risk factors at either the R + 45 or R + 1y time period (p greater than 0.05). Overall model fit was poor for both the R + 45 (R(exp 2) = 0.132) and R + 1y (R(exp 2) = 0.186) cases showing that there are risk factors not represented in our model. CONCLUSIONS Regardless of cause, post-flight cases are reported more often since aRED was deployed in 2009. This may reflect improved documentation or unidentified risk factors. No spaceflight risk factor explains the data fully. Post-flight cases are probably due to multi-faceted factors that are not easily elucidated in the medical data.
Versatile fluid-mixing device for cell and tissue microgravity research applications.
Wilfinger, W W; Baker, C S; Kunze, E L; Phillips, A T; Hammerstedt, R H
1996-01-01
Microgravity life-science research requires hardware that can be easily adapted to a variety of experimental designs and working environments. The Biomodule is a patented, computer-controlled fluid-mixing device that can accommodate these diverse requirements. A typical shuttle payload contains eight Biomodules with a total of 64 samples, a sealed containment vessel, and a NASA refrigeration-incubation module. Each Biomodule contains eight gas-permeable Silastic T tubes that are partitioned into three fluid-filled compartments. The fluids can be mixed at any user-specified time. Multiple investigators and complex experimental designs can be easily accommodated with the hardware. During flight, the Biomodules are sealed in a vessel that provides two levels of containment (liquids and gas) and a stable, investigator-controlled experimental environment that includes regulated temperature, internal pressure, humidity, and gas composition. A cell microencapsulation methodology has also been developed to streamline launch-site sample manipulation and accelerate postflight analysis through the use of fluorescent-activated cell sorting. The Biomodule flight hardware and analytical cell encapsulation methodology are ideally suited for temporal, qualitative, or quantitative life-science investigations.
TVD, Linnehan collects data during LMS-1 Spacelab mission
1996-07-09
STS078-430-009 (20 June-7 July 1996) --- Astronaut Richard M. Linnehan, mission specialist, performs a test on his leg using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the leg in this particular view. The TVD hardware is also used to measure arm muscle forces and velocity at the bicep and tricep areas. Crewmembers for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.
1970-01-01
This chart details Skylab's Vectorcardiogram experiment and facility, a medical study to measure the activity of the heart by recording electric signals (vectorcardiographic potentials) of each astronaut during preflight, inflight, and post-flight periods and obtain information on changes in heart functions induced by flight conditions. Vectorcardiograms were taken with a bicycle ergometer (part of Experiment M171) at regular intervals throughout the mission while the crewmen were at rest, and before, during, and after specific exercise periods. This instrument enabled an astronaut to exercise at selected levels of energy consumption. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Performance analysis of the ascent propulsion system of the Apollo spacecraft
NASA Technical Reports Server (NTRS)
Hooper, J. C., III
1973-01-01
Activities involved in the performance analysis of the Apollo lunar module ascent propulsion system are discussed. A description of the ascent propulsion system, including hardware, instrumentation, and system characteristics, is included. The methods used to predict the inflight performance and to establish performance uncertainties of the ascent propulsion system are discussed. The techniques of processing the telemetered flight data and performing postflight performance reconstruction to determine actual inflight performance are discussed. Problems that have been encountered and results from the analysis of the ascent propulsion system performance during the Apollo 9, 10, and 11 missions are presented.
Pulmonary function evaluation during the Skylab and Apollo-Soyuz missions.
Sawin, C F; Nicogossian, A E; Rummel, J A; Michel, E L
1976-02-01
Previous experience during Apollo postflight exercise testing indicated no major changes in pulmonary function. Pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic normal gravity environments, but no previous study has reported on men exposed to an environment that was both normoxic at 258 torr total pressure and at null gravity as encountered in Skylab. Forced vital capacity (FVC) was measured during the preflight and postflight periods of the Skylab 2 mission. Inflight measurements of vital capacity (VC) were obtained during the last 2 weeks of the second manned mission (Skylab 3). More detailed pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination (RV), closing volume (CV), VC, FVC and its derivatives. In addition, VC was measured in flight at regular intervals during the Skylab 4 mission. Vital capacity was decreased slightly (-10%) in flight in all Skylab 4 crewmen. No major preflight-to-postflight changes were observed. The Apollo-Soyuz Test Project (ASTP) crewmen were studied using equipment and procedures similar to those employed during Skylab 4. Postflight evaluation of the ASTP crewmen was complicated by their inadvertent exposure to nitrogen tetroxide gas fumes upon reentry.
Pulmonary function evaluation during the Skylab and Apollo-Soyuz missions
NASA Technical Reports Server (NTRS)
Sawin, C. F.; Nicogossian, A. E.; Rummel, J. A.; Michel, E. L.
1976-01-01
Previous experience during Apollo postflight exercise testing indicated no major changes in pulmonary function. Pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic normal gravity environments, but no previous study has reported on men exposed to an environment that was both normoxic at 258 torr total pressure and at null gravity as encountered in Skylab. Forced vital capacity (FVC) was measured during the preflight and postflight periods of the Skylab 2 mission. Inflight measurements of vital capacity (VC) were obtained during the last 2 weeks of the second manned mission (Skylab 3). More detailed pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination (RV), closing volume (CV), VC, FVC and its derivatives. In addition, VC was measured in flight at regular intervals during the Skylab 4 mission. Vital capacity was decreased slightly (-10%) in flight in all Skylab 4 crewmen. No major preflight-to-postflight changes were observed. The Apollo-Soyuz Test Project (ASTP) crewmen were studied using equipment and procedures similar to those employed during Skylab 4. Postflight evaluation of the ASTP crewmen was complicated by their inadvertent exposure to nitrogen tetroxide gas fumes upon reentry.
Postflight analysis for Delta Program Mission no. 113: COS-B Mission
NASA Technical Reports Server (NTRS)
1976-01-01
On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Basdogan, C.; Bloomberg, J. J.; Layne, C. S.
1996-01-01
We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
McDonald, P V; Basdogan, C; Bloomberg, J J; Layne, C S
1996-11-01
We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
Neurolab: Final Report for the Ames Research Center Payload
NASA Technical Reports Server (NTRS)
Maese, A. Christopher (Editor); Ostrach, Louis H. (Editor); Dalton, Bonnie P. (Technical Monitor)
2002-01-01
Neurolab, the final Spacelab mission, launched on STS-90 on April 17, 1998, was dedicated to studying the nervous system. NASA cooperated with domestic and international partners to conduct the mission. ARC's (Ames Research Center's) Payload included 15 experiments designed to study the adaptation and development of the nervous system in microgravity. The payload had the largest number of Principal and Co-Investigators, largest complement of habitats and experiment unique equipment flown to date, and most diverse distribution of live specimens ever undertaken by ARC, including rodents, toadfish, swordtail fish, water snails, hornweed and crickets To facilitate tissue sharing and optimization of science objectives, investigators were grouped into four science discipline teams: Neuronal Plasticity, Mammalian Development, Aquatic, and Neurobiology. Several payload development challenges were experienced and required an extraordinary effort, by all involved, to meet the launch schedule. With respect to hardware and the total amount of recovered science, Neurolab was regarded as an overall success. However, a high mortality rate in one rodent group and several hardware anomalies occurred inflight that warranted postflight investigations. Hardware, science, and operations lessons were learned that should be taken into consideration by payload teams developing payloads for future Shuttle missions and the International Space Station.
Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?
NASA Technical Reports Server (NTRS)
Sibonga, Jean
2008-01-01
The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.
TVD, Thirsk collects data during LMS-1 Spacelab mission
1996-07-09
STS078-304-018 (20 June - 7 July 1996) --- Payload specialist Robert B. Thirsk, representing the Canadian Space Agency (CSA), performs a test on his arm using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the bicep and tricep in this particular view. The TVD hardware is also used to measure leg muscle forces and velocity at the ankle and elbow joints. Crew members for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.
Surveys of Returned ISS Hardware for MMMOD Impacts
NASA Technical Reports Server (NTRS)
Hyde, J. L.; Christiansen, E. L.; Lear, D. M.; Nagy, K.; Berger, E. L.
2017-01-01
Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center (JSC) in Houston has performed 35 post-flight inspections on space exposed hardware returned from the International Space Station (ISS). Data on 1,188 observations of micrometeoroid and orbital debris (MMOD) damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of energy dispersive X-ray spectroscopic analysis to discern impactor source are included in the database when available. This paper will focus on two inspections, the Pressurized Mating Adapter 2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed impact features, and two Airlock shield panels returned in 2010 after 8.75 years exposure with 58 MMOD impacts. Feature sizes from the observed data are compared to predictions using the Bumper 3 risk assessment code.
Spinal Health during Unloading and Reloading Associated with Spaceflight
Green, David A.; Scott, Jonathan P. R.
2018-01-01
Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD) herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus, may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound) and pre- and post-flight (MRI) imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial) loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity). Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation) for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF) a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical. PMID:29403389
Spinal Health during Unloading and Reloading Associated with Spaceflight.
Green, David A; Scott, Jonathan P R
2017-01-01
Spinal elongation and back pain are recognized effects of exposure to microgravity, however, spinal health has received relatively little attention. This changed with the report of an increased risk of post-flight intervertebral disc (IVD) herniation and subsequent identification of spinal pathophysiology in some astronauts post-flight. Ground-based analogs, particularly bed rest, suggest that a loss of spinal curvature and IVD swelling may be factors contributing to unloading-induced spinal elongation. In flight, trunk muscle atrophy, in particular multifidus , may precipitate lumbar curvature loss and reduced spinal stability, but in-flight (ultrasound) and pre- and post-flight (MRI) imaging have yet to detect significant IVD changes. Current International Space Station missions involve short periods of moderate-to-high spinal (axial) loading during running and resistance exercise, superimposed upon a background of prolonged unloading (microgravity). Axial loading acting on a dysfunctional spine, weakened by anatomical changes and local muscle atrophy, might increase the risk of damage/injury. Alternatively, regular loading may be beneficial. Spinal pathology has been identified in-flight, but there are few contemporary reports of in-flight back injury and no recent studies of post-flight back injury incidence. Accurate routine in-flight stature measurements, in- and post-flight imaging, and tracking of pain and injury (herniation) for at least 2 years post-flight is thus warranted. These should be complemented by ground-based studies, in particular hyper buoyancy floatation (HBF) a novel analog of spinal unloading, in order to elucidate the mechanisms and risk of spinal injury, and to evaluate countermeasures for exploration where injury could be mission critical.
Bioassay of body fluids, experiment M005
NASA Technical Reports Server (NTRS)
Dietlein, L. F.; Harris, E. S.
1971-01-01
Preflight and postflight urine and plasma samples from the Gemini 7 and Gemini 9 crewmembers were analyzed. Electrolyte and water retention observed immediately postflight was consistent with the assumption that the Gauer-Henry atrial reflex was responsive to a change from the weightless to the unit-gravity environment. Immediately postflight, plasma 17-hydroxycorticosteroid concentrations were increased and plasma uric acid concentration was decreased. The increased excretion of 17-hydroxycorticosteroids immediately postflight probably was caused by the stress of entry. The postflight increase of plasma protein, and the slightly smaller increase of plasma electrolytes postflight, was consistent with an inflight water and electrolyte loss that resulted in postflight retention of water and electrolytes.
NASA Technical Reports Server (NTRS)
Parks, Kelsey
2010-01-01
Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.
Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography.
Wood, Scott J; Paloski, William H; Clark, Jonathan B
2015-12-01
Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (± 20° at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember's ability to automatically recover from unexpected support-surface perturbations. The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.
Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.
Verheyden, B; Beckers, F; Couckuyt, K; Liu, J; Aubert, A E
2007-12-01
Astronauts commonly return from space with altered short-term cardiovascular dynamics and blunted baroreflex sensitivity. Although many studies have addressed this issue, post-flight effects on the dynamic circulatory control remain incompletely understood. It is not clear how long the cardiovascular system needs to recover from spaceflight as most post-flight investigations only extended between a few days and 2 weeks. In this study, we examined the effect of short-duration spaceflight (1-2 weeks) on respiratory-mediated cardiovascular rhythms in five cosmonauts. Two paced-breathing protocols at 6 and 12 breaths min(-1) were performed in the standing and supine positions before spaceflight, and after 1 and 25 days upon return. Dynamic baroreflex function was evaluated by transfer function analysis between systolic pressure and the RR intervals. Post-flight orthostatic blood pressure control was preserved in all cosmonauts. In the standing position after spaceflight there was an increase in heart rate (HR) of approx. 20 beats min(-1) or more. Averaged for all five cosmonauts, respiratory sinus dysrhythmia and transfer gain reduced to 40% the day after landing, and had returned to pre-flight levels after 25 days. Low-frequency gain decreased from 6.6 (3.4) [mean (SD)] pre-flight to 3.9 (1.6) post-flight and returned to 5.7 (1.3) ms mmHg(-1) after 25 days upon return to Earth. Unlike alterations in the modulation of HR, blood pressure dynamics were not significantly different between pre- and post-flight sessions. Our results indicate that short-duration spaceflight reduces respiratory modulation of HR and decreases cardiac baroreflex gain without affecting post-flight arterial blood pressure dynamics. Altered respiratory modulation of human autonomic rhythms does not persist until 25 days upon return to Earth.
MIT-KSC space life sciences telescience testbed
NASA Technical Reports Server (NTRS)
1989-01-01
A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.
NASA Technical Reports Server (NTRS)
1990-01-01
The performance of the thermal protection system, field joint protection system, and systems tunnel components of flight set 360L007 is presented as evaluated by postflight hardware inspection. The condition of both motors was similar to previous flights. Four aft edge strikes were noted on the ground environment instrumentation thermal protection system. The hits all left a clean substrate, indicating that the damage was caused by nozzle severance debris and/or water impact. No National Space Transportation System debris criteria for missing thermal protection system were violated. Two problem reports were written against the field joint protection system. The first concerned two cracks in the K5NA closeout over the trunnion/vent valve location on the left-hand aft field joint. A similar condition was observed on Flight 5 (360H005). The second problem report referred to a number of small surface cracks between two impact marks on the left-hand forward field joint. Neither area exhibited loose material or any abnormal heat effects, and they have no impact on flight safety.
Postural equilibrium following exposure to weightless space flight
NASA Technical Reports Server (NTRS)
Homick, J. L.; Reschke, M. F.
1977-01-01
Postural equilibrium performance by Skylab crewmen following exposure to weightlessness of 28, 59, and 84 days respectively was evaluated using a modified version of a quantitative ataxia test developed by Graybiel and Fregly (1966). Performance for this test was measured under two sets of conditions. In the first, the crewman was required to maintain postural equilibrium on narrow metal rails (or floor) with his eyes open. In the second condition, he attempted to balance with his eyes closed. A comparison of the preflight and postflight data indicated moderate postflight decrements in postural equilibrium in three of the crewmen during the eyes open test condition. In the eyes-closed condition, a considerable decrease in ability to maintain balance on the rails was observed postflight for all crewmen tested. The magnitude of the change was most pronounced during the first postflight test day. Improvement was slow; however, on the basis of data obtained, recovery of preflight baseline levels of performance was evidently complete at the end of approximately two weeks for all crewmen. The findings are explained in terms of functional alterations in the kinesthetic, touch, vestibular and neuromuscular sensory mechanisms induced by the prolonged absence of a normal 1-G gravitational environment.
NASA Technical Reports Server (NTRS)
Bergman, S. A., Jr.; Johnson, R. L.; Hoffler, G. W.
1977-01-01
Devices and techniques for measuring and analyzing systolic time intervals and quantitative phonocardiograms were initiated during Apollo 17. The data show that the systolic time interval from Apollo 17 crewmen remained elevated longer postflight than the response criteria of heart rate, blood pressure, and percent change in leg volume all of which had returned to preflight levels by the second day postflight. Although the systolic time interval values were only slightly outside the preflight fiducial limits, this finding suggested that: the analysis of systolic time intervals may help to identify the mechanisms of postflight orthostatic intolerance by virtue of measuring ventricular function more directly and, the noninvasive technique may prove useful in determining the extent and duration of cardiovascular instability after long duration space flight. The systolic time intervals obtained on the Apollo 17 crewmen during lower body negative pressure were similar to those noted in patients with significant heart disease.
Determination of cardiac size from chest roentgenograms following Skylab missions
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Gowen, R. J.
1974-01-01
Decreased cardiothoracic transverse diameter ratios following Mercury, Gemini and Apollo space flights have been reported previously. To evaluate further changes in cardiac size, standard posteroanterior chest films in systole and diastole were obtained before flight and within a few hours after recovery on each of the Skylab astronauts. Postflight chest X-rays were visually compared to the preflight roentgenograms for possible changes in pulmonary vasculature, lung parenchyma, bony or soft tissue structures. From these roentgenograms the following measurements were obtained: cardiac and thoracic transverse diameters, cardiothoracic transverse diameter ratio, cardiac area from the product of both diagonal diameters, cardiac silhouette area by planimetry, thoracic cage area and cardiothoracic area ratio. The postflight frontal cardiac silhouette sizes were significantly decreased when compared with the respective preflight values (P0.05 or 0.01). The observed changes are thought to be related to postflight decrease in the intracardiac chamber volume.
Pulmonary function evaluation during and following Skylab space flights
NASA Technical Reports Server (NTRS)
Sawin, C. F.; Nicogossian, A. E.; Schachter, A. P.; Rummel, J. A.; Michel, E. L.
1974-01-01
Previous experience during the Apollo postflight exercise testing indicated no major changes in pulmonary function. Although pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic environments, few studies have dealt with normoxic environments at reduced total pressure as encountered during the Skylab missions. Forced vital capacity was measured during the preflight and postflight periods of the Skylab 2 mission. Initial in-flight measurements of vital capacity were obtained during the last two weeks of the second manned mission (Skylab 3). Comprehensive pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination, closing volume, vital capacity, and forced vital capacity and its derivatives. In addition, comprehensive in-flight vital capacity measurements were made during the Skylab 4 mission. Vital capacity was decreased slightly during flight in all Skylab 4 crewmen. No major preflight to postflight changes were observed in the other parameters.
NASA Technical Reports Server (NTRS)
Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary
2016-01-01
Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.
Petersen, Nora; Lambrecht, Gunda; Scott, Jonathan; Hirsch, Natalie; Stokes, Maria; Mester, Joachim
2017-01-01
Postflight reconditioning of astronauts is understudied. Despite a rigorous, daily inflight exercise countermeasures programme during six months in microgravity (μG) on-board the International Space Station (ISS), physiological impairments occur and postflight reconditioning is still required on return to Earth. Such postflight programmes are implemented by space agency reconditioning specialists. Case Description and Assessments: A 38 year old male European Space Agency (ESA) crewmember's pre- and postflight (at six and 21 days after landing) physical performance from a six-month mission to ISS are described. muscle strength (squat and bench press 1 Repetition Maximum) and power (vertical jump), core muscle endurance and hip flexibility (Sit and Reach, Thomas Test). In-flight, the astronaut undertook a rigorous daily (2-h) exercise programme. The 21 day postflight reconditioning exercise concept focused on motor control and functional training, and was delivered in close co-ordination by the ESA physiotherapist and exercise specialist to provide the crewmember with comprehensive reconditioning support. Despite an intensive inflight exercise programme for this highly motivated crewmember, postflight performance showed impairments at R+6 for most parameters, all of which recovered by R+21 except muscular power (jump tests). Regardless of intense inflight exercise countermeasures and excellent compliance to postflight reconditioning, postflight performance showed impairments at R+6 for most parameters. Complex powerful performance tasks took longer to return to preflight values. Research is needed to develop optimal inflight and postflight exercise programmes to overcome the negative effects of microgravity and return the astronaut to preflight status as rapidly as possible. Copyright © 2016 Elsevier Ltd. All rights reserved.
Postflight Quiet Stance Stability of Astronauts Following Recovery From a Simulated Fall
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Harm, D. L.; Kulecz, W.; Mulavara, A. P.; Fiedler, M. J.;
2010-01-01
INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior plane. Implementation of an interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes has allowed the investigation of postural instability by characterizing dynamic stabilographic sway patterns. METHODS: Six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior (AP) and medial-lateral (ML) center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. RESULTS/CONCLUSION: While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low-impact study complement the data measured with computerized dynamic posturography.
Human cellular immune responsiveness following space flight
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Dardano, J. R.
1983-01-01
Peripheral circulating lymphocytes were separated from astronaut blood samples three times before and two times after the first four US Space Shuttle flights. The ability of the in vitro T lymphocytes to respond to Phytohemagglutinin by blastogenesis was found to be reduced for each crewmember following spaceflight. In addition, the astronauts experienced a postflight increase in neutrophils and a decrease in eosinophils. These postflight changes in leukocytes are shown to increase with subjectively-evaluated increases in the incidence of inflight stress, indicating that stress, and not hypogravity, is likely to be the major effector of these changes.
[Visual–manual tracking after long spaceflight].
2016-01-01
This study presents the results of the pre- and postflight clinical and physiological examination (CPE) and scientific experiment “Sensory Adaptation-2” carried out in Yu.A. Gagarin Research & Test Cosmonaut Training Center. There were examined 14 Russian cosmonauts, crewmembers of long-term international spaceflights ISS-28/29 to ISS 36/37, who were in microgravity from 159 to 195 days. Age of the cosmonauts was 35–50 years. Studies were conducted twice before space flight (baseline), and on days R+1(2), R+4(5), and R+8(9) after landing. In the study of visual–manual tracking (VMT), eye movements were recorded by the electrooculography method (EOG), hand movements - by a joystick using biological visual feedback (on the screen represented the current angle/position of a joystick). Examinations were conducted using computerized stimulation programs, which were presented on the screen of the hardware-software complex "Sensomotor". Examinations of the VMT took place in the dialog mode and included the following sections: a) EOG-calibration; b) visual-manual tracking within ±10° on the screen with blank background (smooth linear and sinusoidal movement of a point target with a frequency of 0.16 Hz in the vertical and horizontal directions). There were evaluated time, amplitude, and velocity characteristics of visual and manual tracking (VT and MT), including the effectiveness (EC) and gain (GC) coefficients which were calculated respectively, as the ratio of amplitude and velocity of the visual stimulus (target). A study of the vestibular function (VF) was performed before and after space flight using videooculography. There were assessed static torsion otolith–cervical–ocular reflex, dynamic vestibular–cervical–ocular reactions, vestibular reactivity, spontaneous eye movements. Study of VF in the first postflight has shown a sharp decrease (up to its complete absence) of static vestibular excitability (otolith reflex) accompanied by the increased dynamic reactivity of the vestibular system. Study of VTM has shown a significant decrease of gain and effectiveness/amplitud of VT in the first days postflight, as well as correlation between the parameters of VF and MT, between the VF and VT, and no found correlation between parameters of VF and MT. It was found that the conditions of space flight (microgravity) have a greater impact on the accuracy of the VT than the accuracy of MT. Full return of characteristics of the VMT and VF to the baseline was observed on R+8(9) days after space flight.
Postflight Analysis of the Apollo 14 Cryogenic Oxygen System
NASA Technical Reports Server (NTRS)
Rule, D. D.
1972-01-01
A postflight analysis of the Apollo 14 cryogenic oxygen system is presented. The subjects discussed are: (1) methods of analysis, (2) stratification and heat transfer, (3) flight analysis, (4) postflight analysis, and (5) determination of model parameters.
SKYLAB (SL)-3 - EXPERIMENT HARDWARE
1973-11-08
S74-19677 (April 1974) --- This crystal of Germanium Selenide (GeSe) was grown under weightless conditions in an electric furnace aboard the Skylab space station. Experiment M556, Vapor Growth of IV-VI Compounds, was conducted as a comparative test of GeSe crystals grown on Earth and those grown in a weightless environment. Skylab postflight results indicate that crystals grown in a zero-gravity situation demonstrate greater growth and better composite structure than those grown in ground-bases laboratories. The GeSe crystal shown here is 20 millimeters long, the largest crystal ever grown on Earth or in space. Principal Investigator for Experiment M556 is Dr. Harry Wiedemaier, Rensselaer Polytechnic Institute, Troy, New York. (See NASA photograph S74-19676 for an example of an Earth-grown Germanium Selenide crystal.) Photo credit: NASA
Prediction of muscle performance during dynamic repetitive movement
NASA Technical Reports Server (NTRS)
Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.
2003-01-01
BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.
Iizuka, Naotaka; Awano, Shuji; Ansai, Toshihiro
2012-01-01
This study aimed to verify whether salivary α-amylase enzyme activity (Amy) is useful as a biomarker of stress in pilots working in a stressful environment. The subjects in this study were nine Japan air self-defense force pilots who participated in Iraq reconstruction support activity in Kuwait. Amy was measured using a portable salivary amylase monitor at preflight, postflight, and on stand-by day. In addition, the state-trait anxiety inventory was administered with state scores (STAI-S) compared to Amy levels. There were greater differences in Amy levels at baseline compared to STAI-S scores between subjects on the stand-by day. Amy levels at preflight tended to increase compared to those on stand-by day as did STAI-S. The change in Amy level at postflight varied among the pilots. The Amy levels of four subjects at postflight were elevated compared to levels at preflight, while the STAI-S scores for all pilots at postflight were lower than at preflight. This study suggests that the Amy level of pilots can reflect subtle individual differences in response to the psychological and physiological stress of a flight task. Thus, monitoring Amy level may be useful for stress evaluation of pilots working in a stressful environment, providing data that might be used as an impetus for addressing stress management for this population. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.
2010-01-01
Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.
Quantitative histochemistry of rat lumbar vertebrae following spaceflight
NASA Technical Reports Server (NTRS)
Eurell, J. A.; Kazarian, L. E.
1983-01-01
The histochemical effects of the return to gravity immediately and 6 and 29 days following spaceflight on the bone of rat vertebral bodies were investigated. No significant change in the calcium salt content of the vertebrae was found immediately postflight, although 6 days later it was significantly decreased. The calcium content was found to have returned to normal by 29 days postflight. While postflight collagen content was not significantly altered, keratosulfate was found to be significantly higher in trabecular bone of rats immediately postflight and 6 days postflight. In addition, chondroitin sulfate was found to be increased in vertebral bone on days 6 and 29 postflight. These findings indicate that bone turnover slows in vertebrae during spaceflight allowing bone aging, which support the contention that a form of osteolysis begins immediately upon return to gravity to remove components of old bone at which time mineral levels decrease and levels of chondroitin and keratkosulfates shift. It was found that the osteolysis phase was quickly followed by new bone replacement which was completed before 29 days postspaceflight.
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
Muscle Feasibility for Cosmos Rhesus
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.
1994-01-01
The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.
Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space
Indo, Hiroko P.; Majima, Hideyuki J.; Terada, Masahiro; Suenaga, Shigeaki; Tomita, Kazuo; Yamada, Shin; Higashibata, Akira; Ishioka, Noriaki; Kanekura, Takuro; Nonaka, Ikuya; Hawkins, Clare L.; Davies, Michael J.; Clair, Daret K. St; Mukai, Chiaki
2016-01-01
The effects of long-term exposure to extreme space conditions on astronauts were investigated by analyzing hair samples from ten astronauts who had spent six months on the International Space Station (ISS). Two samples were collected before, during and after their stays in the ISS; hereafter, referred to as Preflight, Inflight and Postflight, respectively. The ratios of mitochondrial (mt) to nuclear (n) DNA and mtRNA to nRNA were analyzed via quantitative PCR. The combined data of Preflight, Inflight and Postflight show a significant reduction in the mtDNA/nDNA in Inflight, and significant reductions in the mtRNA/nRNA ratios in both the Inflight and Postflight samples. The mtRNA/mtDNA ratios were relatively constant, except in the Postflight samples. Using the same samples, the expression of redox and signal transduction related genes, MnSOD, CuZnSOD, Nrf2, Keap1, GPx4 and Catalase was also examined. The results of the combined data from Preflight, Inflight and Postflight show a significant decrease in the expression of all of the redox-related genes in the samples collected Postflight, with the exception of Catalase, which show no change. This decreased expression may contribute to increased oxidative stress Inflight resulting in the mitochondrial damage that is apparent Postflight. PMID:27982062
Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim
2016-01-01
To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.
Independent Orbiter Assessment (IOA): Analysis of the instrumentation subsystem
NASA Technical Reports Server (NTRS)
Howard, B. S.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Instrumentation Subsystem are documented. The Instrumentation Subsystem (SS) consists of transducers, signal conditioning equipment, pulse code modulation (PCM) encoding equipment, tape recorders, frequency division multiplexers, and timing equipment. For this analysis, the SS is broken into two major groupings: Operational Instrumentation (OI) equipment and Modular Auxiliary Data System (MADS) equipment. The OI equipment is required to acquire, condition, scale, digitize, interleave/multiplex, format, and distribute operational Orbiter and payload data and voice for display, recording, telemetry, and checkout. It also must provide accurate timing for time critical functions for crew and payload specialist use. The MADS provides additional instrumentation to measure and record selected pressure, temperature, strain, vibration, and event data for post-flight playback and analysis. MADS data is used to assess vehicle responses to the flight environment and to permit correlation of such data from flight to flight. The IOA analysis utilized available SS hardware drawings and schematics for identifying hardware assemblies and components and their interfaces. Criticality for each item was assigned on the basis of the worst-case effect of the failure modes identified.
Dynamic posture analysis of Spacelab-1 crew members
NASA Technical Reports Server (NTRS)
Anderson, D. J.; Reschke, M. F.; Homick, J. E.; Werness, S. A.
1986-01-01
Dynamic posture testing was conducted on the science crew of the Spacelab-1 mission on a single axis linear motion platform. Tests took place in pre- and post-flight sessions lasting approximately 20 min each. The pre-flight tests were widely spaced over the several months prior to the mission while the post-flight tests were conducted over the first, second, fourth, and sixth days after landing. Two of the crew members were also tested on the day of landing. Consistent with previous postural testing conducted on flight crews, these crew members were able to complete simple postural tasks to an acceptable level even in the first few hours after landing. Our tests were designed to induce dynamic postural responses using a variety of stimuli and from these responses, evaluate subtle changes in the postural control system which had occurred over the duration of the flight. Periodic sampling post-flight allowed us to observe the time course of readaptation to terrestrial life. Our observations of hip and shoulder position, when subjected to careful analysis, indicated modification of the postural response from pre- to post-flight and that demonstrable adjustments in the dynamic control of their postural systems were taking place in the first few days after flight. For transient stimuli where the platform on which they were asked to stand quickly moved a few centimeters fore or aft then stopped, ballistic or open loop 'programs' would closely characterize the response. During these responses the desired target position was not always achieved and of equal importance not always properly corrected some 15 seconds after the platform ceased to move. The persistent observation was that the subjects had a much stronger dependence on visual stabilization post-flight than pre-flight. This was best illustrated by a slow or only partial recovery to an upward posture after a transient base-of-support movement with eyes open. Postural responses to persistent wideband pseudorandom base-of-support translation were modeled as time invarient linear systems arrived at by Kalman adaptive filter techniques. Derived model parameters such as damping factor and fundamental frequency of the closed loop system showed significant modification between pre- and post-flight. This phenomenon is best characterized by movement of the poles toward increasing stability. While pre-flight data tended to show shoulders and hips moving in phase with each other, post-flight data showed a more disjoint behavior.(ABSTRACT TRUNCATED AT 400 WORDS).
NASA Technical Reports Server (NTRS)
Knauber, R. N.
1982-01-01
A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.
Popova, I A; Grigor'ev, A I
1992-01-01
Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.
NASA Technical Reports Server (NTRS)
Barnett, R. D.; Gowen, R. J.; Carroll, D. R.
1975-01-01
The cardiovascular responses of the Apollo crewmen associated with postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability to the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. This report details the equipment, signal processing and analysis of the leg volume data obtained from the M092 experiment of the Skylab 3 Mission.
Post flight press conference for the STS-7 mission
NASA Technical Reports Server (NTRS)
1983-01-01
Two of the three mission specialists for STS-7 field questions from the press during the post-flight press conference in JSC's main auditorium on July 1, 1983. Left to right are John M. Fabian and Dr. Norman E. Thagard (35419); Portrait view of Fabian during the STS-7 post-flight press conference (35420); Portrait view of mission specialist Dr. Sally K. Ride during the STS-7 post-flight press conference (35421); Portrait view of STS-7 pilot Frederick H. Hauck during the post-flight press conference (35422); Portrait view of STS-7 crew commander Robert L. Crippen during the post-flight press conference (35423); Three STS-7 crew members listen to questions from news reporters. They are, left to right, Crippen, Hauck, and Ride (35424); The first five person shuttle crew and first woman crew member greet the news media. Members are, left to right, Crippen, Hauck, Ride, Fabian and Thagard (35425).
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie; Roy, Roland R.; Hodgson, John A.
1993-01-01
The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight.
Recovery of postural equilibrium control following space flight
NASA Technical Reports Server (NTRS)
Paloski, William H.; Reschke, Millard F.; Black, F. Owen; Dow, R. S.
1999-01-01
DSO 605 represents the first large study of balance control following spaceflight. Data collected during DSO 605 confirm the theory that postural ataxia following short duration spaceflight is of vestibular origin. We used the computerized dynamic posturography technique developed by Nashner et al. to study the role of the vestibular system in balance control in astronauts during quiet stance before and after spaceflight. Our results demonstrate unequivocally that balance control is disrupted in all astronauts immediately after return from space. The most severely affected returning crew members performed in the same way as vestibular deficient patients exposed to this test battery. We conclude that otolith mediated spatial reference provided by the terrestrial gravitational force vector is not used by the astronauts balance control systems immediately after spaceflight. Because the postflight ataxia appears to be mediated primarily by CNS adaptation to the altered vestibular inputs caused by loss of gravitational stimulation, we believe that intermittent periods of exposure to artificial gravity may provide an effective in-flight countermeasure. Specifically, we propose that in-flight centrifugation will allow crew members to retain their terrestrial sensory-motor adapted states while simultaneously developing microgravity adapted states. The dual-adapted astronaut should be able to make the transition from microgravity to unit gravity with minimal sensory-motor effects. We have begun a ground based program aimed at developing short arm centrifuge prescriptions designed to optimize adaptation to altered gravitational environments. Results from these experiments are expected to lead directly to in-flight evaluation of the proposed centrifuge countermeasure. Because our computerized dynamic posturography system was able to (1) quantify the postflight postural ataxia reported by crew members and observed by flight surgeons and scientists, (2) track the recovery of normal (preflight) balance control, (3) differentiate between rookie and veteran subjects, and (4) provide normative and clinical databases for comparison, and because our study successfully characterized postflight balance control recovery in a large cross-section of Shuttle crew members, we recommend that this system and protocol be adopted as a standard dependent measure for evaluating the efficacy of countermeasures and/or evaluating the postflight effects of changing mission durations or activities.
Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Myers, Jerry; Licata, Angelo
2015-01-01
Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement, the contribution of space flight quality changes is much less clear, indicating more granular assessments, such as Finite Element modeling, may be needed to further assess the risks in these scenarios.
Walk on Floor Eyes Closed Test as a Measure of Postflight Ataxia
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Fisher, E. A.; Kofman, I. S.; Cerisano, J. M.; Harm, D.L.; Peters, B. T.; Bloomberg, J. J.
2010-01-01
INTRODUCTION: Astronauts returning from space flight universally exhibit impaired posture and locomotion. Measurement of this impairment is an evolving process. The walk on the floor line test with the eyes closed (WOFEC) provides a unique procedure for quantifying postflight ataxia. Data from a modified WOFEC were obtained as part of an ongoing NASA interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate astronaut postflight functional performance. METHODS: Seven astronauts (5 short duration with flights of 12-16 days; 2 long duration crewmembers with flights of 6 months) were tested twice before flight, on landing day (short duration only), and 1, 6, and 30 days after flight. The WOFEC consisted of walking for 10 steps (repeated twice) with the feet heel to toe in tandem, arms folded across the chest and the eyes closed. The performance metric (scored by three examiners from video) was the percentage of correct steps completed over the three trials. A step was not counted as correct if the crewmember sidestepped, opened their eyes, or paused for more than three seconds between steps. RESULTS/ CONCLUSIONS: There was a significant decrease in percentage of correct steps on landing day (short duration crew) and on first day following landing (long duration) with partial recovery the following day, and full recovery beginning on day sixth after flight. Both short and long duration fliers appeared to be unaware of foot position relative to their bodies or the floor. Postflight, deviation from a straight path was common, and the test for two crewmembers elicited motion sickness symptoms. These data clearly demonstrate the sensorimotor challenges facing crewmembers after returning from spaceflight. The WOFEC test has value providing the investigator or crew surgeon with a simple method to quantify vestibular ataxia, as well as providing instant feedback of postural ataxia without the use of complex test equipment.
Post-test navigation data analysis techniques for the shuttle ALT
NASA Technical Reports Server (NTRS)
1975-01-01
Postflight test analysis data processing techniques for shuttle approach and landing tests (ALT) navigation data are defined. Postfight test processor requirements are described along with operational and design requirements, data input requirements, and software test requirements. The postflight test data processing is described based on the natural test sequence: quick-look analysis, postflight navigation processing, and error isolation processing. Emphasis is placed on the tradeoffs that must remain open and subject to analysis until final definition is achieved in the shuttle data processing system and the overall ALT plan. A development plan for the implementation of the ALT postflight test navigation data processing system is presented. Conclusions are presented.
Skylab experiment performance evaluation manual. Appendix F: Experiment M551 Metals melting (MSFC)
NASA Technical Reports Server (NTRS)
Byers, M. S.
1973-01-01
Analyses for Experiment M551 Metals Melting (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
Skylab experiment performance evaluation manual. Appendix H: Experiment M553 sphere forming (MSFC)
NASA Technical Reports Server (NTRS)
Thomas, O. H., Jr.
1973-01-01
Analyses for Experiment M553 Sphere Forming (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
What Happens to bone health during and after spaceflight?
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.
2006-01-01
Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.
International Space Station Medical Project
NASA Technical Reports Server (NTRS)
Starkey, Blythe A.
2008-01-01
The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.
Cholesterol in serum lipoprotein fractions after spaceflight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.
1988-01-01
Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.
Skylab experiment performance evaluation manual. Appendix K: Experiment S009 nuclear emulsion (MSFC)
NASA Technical Reports Server (NTRS)
Meyers, J. E.
1972-01-01
A series of analyses are presented for Experiment S009, nuclear emulsion (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and postflight conditions. Experiment contingency plan workaround procedure and malfunction analyses are included in order to assist in making the experiment operationally successful.
NASA Technical Reports Server (NTRS)
Purushotham, K. S.
1972-01-01
A series is presented of analyses for Experiment S183, Ultraviolet Panorama (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
NASA Technical Reports Server (NTRS)
Purushotham, K. S.
1972-01-01
A series of analyses is presented for experiment T003, inflight aerosol analysis, to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
NASA Technical Reports Server (NTRS)
Purushotham, K. S.
1972-01-01
A series of analyses for Experiment T002, Navigation Sightings (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
NASA Technical Reports Server (NTRS)
Tonetti, B. B.
1973-01-01
Analyses for Experiment T027, Contamination Measurement Sample Array (MSFC), to be used for evaluating the performance of the Skylab corrollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
Integration and Test of Shuttle Small Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.
2003-01-01
Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
Apollo Lesson Sampler: Apollo 13 Lessons Learned
NASA Technical Reports Server (NTRS)
Interbartolo, Michael A.
2008-01-01
This CD-ROM contains a two-part case study of the Apollo 13 accident. The first lesson contains an overview of the electrical system hardware on the Apollo spacecraft, providing a context for the details of the oxygen tank explosion, and the failure chain reconstruction that led to the conditions present at the time of the accident. Given this background, the lesson then covers the tank explosion and immediate damage to the spacecraft, and the immediate response of Mission Control to what they saw. Part 2 of the lesson picks up shortly after the explosion of the oxygen tank on Apollo 13, and discusses how Mission Control gained insight to and understanding of the damage in the aftermath. Impacts to various spacecraft systems are presented, along with Mission Control's reactions and plans for in-flight recovery leading to a successful entry. Finally, post-flight vehicle changes are presented along with the lessons learned.
NASA Astrophysics Data System (ADS)
Lawman, Adam; Straub, Jeremy; Kerlin, Scott
2015-05-01
This paper presents work conducted in preparation for a suborbital test flight to test an inertial measurement unit's (IMU's) ability to serve as a position determination mechanism in a GPS-denied environment. Because the IMU could potentially be used at several points during flight, it is not guaranteed that a GPS fix can be used to reset the IMU after the stresses of launch. Due to this, the specific goal of this work is to characterize whether a rocket launch disrupts the IMU-based position knowledge to the extent that it is unusable. This paper discusses preparations for a sub-orbital launch mission to this end. It include a description of the hardware and software used. A discussion of the data logging mechanism and the onboard and post-flight processing which is required to compare the GPS fixes and IMU-generated positions is also presented. Finally, the utility of an IMU capable of maintaining position awareness during launch is discussed.
Development of Test Protocols for International Space Station Particulate Filters
NASA Technical Reports Server (NTRS)
Green, Robert D.; Vijayakumar, R.; Agui, Juan H.
2014-01-01
Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High- Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. Over the years, the service life of these filters has been re-evaluated based on limited post-flight tests of returned filters and risk factors. On earth, a well designed and installed HEPA filter will last for several years, e.g. in industrial and research clean room applications. Test methods for evaluating these filters are being developed on the basis of established test protocols used by the industry and the military. This paper will discuss the test methods adopted and test results on prototypes of the ISS filters. The results will assist in establishing whether the service life can be extended for these filters. Results from unused filters that have been in storage will also be presented to ascertain the shelf life and performance deterioration, if any and determine if the shelf life may be extended.
Altered astronaut lower limb and mass center kinematics in downward jumping following space flight
NASA Technical Reports Server (NTRS)
Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.
1997-01-01
Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system. Fewer subjects showed "stiff" behavior after space flight, where contractions in the phase-plane portraits pointed to an increase in control bandwidth. The changes appeared to result from adaptive modifications in the control of lower limb impedance. A simple 2nd-order model of the vertical COM motion indicated that changes in the effective vertical stiffness of the legs can predict key features of the postflight performance. Compliant responses may reflect inflight adaptation due to altered demands on the postural control system in microgravity, while stiff behavior may result from overcompensation postflight for the presumed reduction in limb stiffness inflight.
The Apollo-Soyuz Test Project: Medical report
NASA Technical Reports Server (NTRS)
Nicogossian, A. E. (Compiler)
1977-01-01
The results of the clinical aspects as well as the preflight and postflight research studies that were performed on the astronauts are presented. Because of the compromised postflight crew health status, not all postflight research procedures could be accomplished. This compromise was the result of the anomalous entrance of toxic gas into the spacecraft cabin during the earth landing sequence. Despite the exposure, the medical data collected are of sufficient interest to warrant inclusion in this official ASTP Medical Report.
Flight results from a study of aided inertial navigation applied to landing operations
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Carson, T. M.; Merrick, R. B.; Schmidt, S. F.; Conrad, B.
1973-01-01
An evaluation is presented of the approach and landing performance of a Kalman filter aided inertial navigation system using flight data obtained from a series of approaches and landings of the CV-340 aircraft at an instrumented test area. A description of the flight test is given, in which data recorded included: (1) accelerometer signals from the platform of an INS; (2) three ranges from the Ames-Cubic Precision Ranging System; and (3) radar and barometric altimeter signals. The method of system evaluation employed was postflight processing of the recorded data using a Kalman filter which was designed for use on the XDS920 computer onboard the CV-340 aircraft. Results shown include comparisons between the trajectories as estimated by the Kalman filter aided system and as determined from cinetheodolite data. Data start initialization of the Kalman filter, operation at a practical data rate, postflight modeling of sensor errors and operation under the adverse condition of bad data are illustrated.
Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
NASA Technical Reports Server (NTRS)
Byers, M. S.
1973-01-01
Analyses for Experiment M555, Gallium Arsenide Single Crystal Growth (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
NASA Technical Reports Server (NTRS)
Ade, Carl J.; Moore, A. D.
2014-01-01
Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.
Optimal technique for maximal forward rotating vaults in men's gymnastics.
Hiley, Michael J; Jackson, Monique I; Yeadon, Maurice R
2015-08-01
In vaulting a gymnast must generate sufficient linear and angular momentum during the approach and table contact to complete the rotational requirements in the post-flight phase. This study investigated the optimization of table touchdown conditions and table contact technique for the maximization of rotation potential for forwards rotating vaults. A planar seven-segment torque-driven computer simulation model of the contact phase in vaulting was evaluated by varying joint torque activation time histories to match three performances of a handspring double somersault vault by an elite gymnast. The closest matching simulation was used as a starting point to maximize post-flight rotation potential (the product of angular momentum and flight time) for a forwards rotating vault. It was found that the maximized rotation potential was sufficient to produce a handspring double piked somersault vault. The corresponding optimal touchdown configuration exhibited hip flexion in contrast to the hyperextended configuration required for maximal height. Increasing touchdown velocity and angular momentum lead to additional post-flight rotation potential. By increasing the horizontal velocity at table touchdown, within limits obtained from recorded performances, the handspring double somersault tucked with one and a half twists, and the handspring triple somersault tucked became theoretically possible. Copyright © 2015 Elsevier B.V. All rights reserved.
Space flight and neurovestibular adaptation
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.
1994-01-01
Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.
Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions
NASA Technical Reports Server (NTRS)
Reschke, Millard; Somers, Jeffrey T.; Leigh, R. John; Krnavek, Jody M.; Kornilova, Ludmila; Kozlovskaya, Inessa; Bloomberg, Jacob J.; Paloski, William H.
2004-01-01
Square-wave jerks (SWJs) are small, involuntary saccades that disrupt steady fixation. We report the case of an astronaut (approximately 140 d on orbit) who showed frequent SWJs, especially postflight, but who showed no impairment of vision or decrement of postflight performance. These data support the view that SWJs do not impair vision because they are paired movements, consisting of a small saccade away from the fixation position followed, within 200 ms, by a corrective saccade that brings the eye back on target. Since many returning astronauts show a decrement of dynamic visual function during postflight locomotion, it seems possible that frequent SWJs improved this astronaut's visual function by providing postsaccadic enhancement of visual fixation, which aided postflight performance. Certainly, frequent SWJs did not impair performance in this astronaut, who had no other neurological disorder.
Mission Safety Evaluation Report for STS-43, Postflight Edition
NASA Technical Reports Server (NTRS)
Hill, William C.; Finkel, Seymour I.
1991-01-01
Some of the topics covered include: (1) an STS-43 mission summary; (2) safety risks factors/issues; (3) resolved STS-43 safety risk factors; (4) STS-40 inflight anomalies; (5) STS-37 inflight anomalies; and (6) STS-43 inflight anomalies. Background information and a list of acronyms are also presented.
Mission Safety Evaluation Report for STS-32, Postflight Edition
NASA Technical Reports Server (NTRS)
Hill, William C.; Finkel, Seymour I.
1990-01-01
The topics covered include: (1) an STS-32 mission summary; (2) safety risk factors/issues; (3) resolved STS-32 safety risk factors; (4) STS-32 inflight anomalies; (5) STS-28 inflight anomalies; and (6) STS-32 inflight anomalies. Background information and a list of acronyms are also presented.
Long duration exposure facility post-flight thermal analysis, part 1
NASA Technical Reports Server (NTRS)
Berrios, William M.; Sampair, Thomas R.
1992-01-01
Results of the post-flight thermal analysis of the Long Duration Exposure Facility (LDEF) mission are presented. The LDEF mission thermal analysis was verified by comparing the thermal model results to flight data from the LDEF Thermal Measurements System (THERM). Post-flight calculated temperature uncertainties have been reduced to under +/- 18 F from the pre-flight uncertainties of +/- 40 F. The THERM consisted of eight temperature sensors, a shared tape recorder, a standard LDEF flight battery, and an electronics control box. The temperatures were measured at selected locations on the LDEF structure interior during the first 390 days of flight and recorded for post-flight analysis. After the LDEF retrieval from Space on 12 Jan. 1990, the tape recorder was recovered from the spacecraft and the data reduced for comparison to the LDEF predicted temperatures. The LDEF mission temperatures were calculated prior to the LDEF deployment on 7 Apr. 1980, and updated after the LDEF retrieval with the following actual flight parameter data: including thermal fluxes, spacecraft attitudes, thermal coatings degradation, and contamination effects. All updated data used for the calculation of post-flight temperatures is also presented in this document.
NASA Technical Reports Server (NTRS)
Waters, Wendy W.; Ziegler, Michael G.; Meck, Janice V.
2002-01-01
About 20% of astronauts suffer postspaceflight presyncope. We studied pre- to postflight (5- to 16-day missions) cardiovascular responses to standing in 35 astronauts to determine differences between 1) men and women and 2) presyncopal and nonpresyncopal groups. The groups were presyncopal women, presyncopal men, and nonpresyncopal men based on their ability to stand for 10 min postflight. Preflight, women and presyncopal men had low vascular resistance, with the women having the lowest. Postflight, women experienced higher rates of presyncope (100 vs. 20%; P = 0.001) and greater losses of plasma volume (20 vs. 7%; P < 0.05) than men. Also, presyncopal subjects had lower standing mean arterial pressure (P < or = 0.001) and vascular resistance (P < 0.05), smaller increases in norepinephrine (P < or = 0.058) and greater increases in epinephrine (P < or = 0.058) than nonpresyncopal subjects. Presyncopal subjects had a strong dependence on plasma volume to maintain standing stroke volume. These findings suggest that postflight presyncope is greatest in women, and this can be ascribed to a combination of inherently low-resistance responses, a strong dependence on volume status, and relative hypoadrenergic responses. Conversely, high vascular resistance and postflight hyperadrenergic responses prevent presyncope.
Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success
NASA Technical Reports Server (NTRS)
Moore, Dennis R.; Phelps, Willie J.
2011-01-01
The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large hardware segments. The reusable solid rocket motor achieved significant reliability via process control, ground test programs, and postflight assessment. Process control is mandatory for a solid rocket motor as an acceptance test of the delivered product is not feasible. Process control included process failure modes and effects analysis, statistical process control, witness panels, and process product integrity audits. Material controls and inspections were maintained throughout the sub tier vendors. Material fingerprinting was employed to assess any drift in delivered material properties. The RSRM maintained both full scale and sub-scale test articles. These enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. These unique challenges, features of the reusable solid rocket motor, materials and manufacturing issues, and design improvements will be discussed in the paper.
NASA Technical Reports Server (NTRS)
Charles, John B.; Platts, S. H.
2011-01-01
The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.
BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight
NASA Astrophysics Data System (ADS)
Andreev-Andrievskiy, Alexander; Popova, Anfisa; Lloret, Jean-Christophe; Aubry, Patrick; Borovik, Anatoliy; Tsvirkun, Daria; Vinogradova, Olga; Ilyin, Eugeniy; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine
2017-05-01
Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings.
NASA Technical Reports Server (NTRS)
Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.
2018-01-01
Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.
Space flight and changes in spatial orientation
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.
1992-01-01
From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebel, J
2004-02-27
Without stable hardware any program will fail. The frustration and expense of supporting bad hardware can drain an organization, delay progress, and frustrate everyone involved. At Stanford Linear Accelerator Center (SLAC), we have created a testing method that helps our group, SLAC Computer Services (SCS), weed out potentially bad hardware and purchase the best hardware at the best possible cost. Commodity hardware changes often, so new evaluations happen periodically each time we purchase systems and minor re-evaluations happen for revised systems for our clusters, about twice a year. This general framework helps SCS perform correct, efficient evaluations. This article outlinesmore » SCS's computer testing methods and our system acceptance criteria. We expanded the basic ideas to other evaluations such as storage, and we think the methods outlined in this article has helped us choose hardware that is much more stable and supportable than our previous purchases. We have found that commodity hardware ranges in quality, so systematic method and tools for hardware evaluation were necessary. This article is based on one instance of a hardware purchase, but the guidelines apply to the general problem of purchasing commodity computer systems for production computational work.« less
NASA Technical Reports Server (NTRS)
Meyers, J. E.
1973-01-01
A series of analyses for Experiment T027/S073, contamination measurement, photometer and gegenschein/zodiacal light (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditons is presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.
NASA Technical Reports Server (NTRS)
Knauber, R. N.
1982-01-01
This report describes a FORTRAN IV coded computer program for post-flight evaluation of a launch vehicle upper stage on-off reaction control system. Aerodynamic and thrust misalignment disturbances are computed as well as the total disturbing moments in pitch, yaw, and roll. Effective thrust misalignment angle time histories of the rocket booster motor are calculated. Disturbing moments are integrated and used to estimate the required control system total inpulse. Effective control system specific inpulse is computed for the boost and coast phases using measured control fuel useage. This method has been used for more than fifteen years for analyzing the NASA Scout launch vehicle second and third-stage reaction control system performance. The computer program is set up in FORTRAN IV for a CDC CYBER 175 system. With slight modification it can be used on other machines having a FORTRAN compiler. The program has optional CALCOMP plotting output. With this option the program requires 19K words of memory and has 786 cards. Running time on a CDC CYBER 175 system is less than three (3) seconds for a typical problem.
[Reproductive function of the male rat after a flight on the Kosmos-1129 biosatellite].
Serova, L V; Denisova, L A; Apanasenko, Z I; Kuznetsova, M A; Meĭzerov, E S
1982-01-01
Male rats that were flown for 18.5 days on Cosmos-1129 were mated postflight with intact females. The mating 5 days postflight when the ejaculate consisted of spermatozoids that were exposed to zero-g effects in the mature stage yielded the litter which lagged behind the controls with respect to the growth and development during the first postnatal month. The mating 2.5-3 months postflight when the ejaculate consisted of spermatozoids that were exposed to zero-g effects at the stem cell stage yielded the litter which did not differ from the control.
Highly efficient, very low-thrust transfer to geosynchronous orbit - Exact and approximate solutions
NASA Astrophysics Data System (ADS)
Redding, D. C.
1984-04-01
An overview is provided of the preflight, postflight, and accuracy analysis of the Titan IIIC launch vehicle that injects payloads into geosynchronous orbits. The postflight trajectory reconstruction plays an important role in determining payload injection accuracy. Furthermore, the postflight analysis provides useful information about the characteristics of measuring instruments subjected to a flight environment. Suitable approaches for meeting mission specifications, trajectory requirements, and instrument constraints are considered, taking into account the importance of preflight trajectory analysis activities. Gimbal flip avoidance algorithms in the flight software, and considerable beta gimbal analysis ensures a singularity-free trajectory.
Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction
NASA Technical Reports Server (NTRS)
McCluskey, R.
2004-01-01
Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a p<0.05 was considered significant. Results: There were no significant linear correlations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.
NASA Technical Reports Server (NTRS)
Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Beloozerova, I. N.
1994-01-01
Fourteen days of active head movements in microgravity appear to modify the gain and neural adaptation properties of the horizontal semicircular canals in the rhesus monkey. This is the first demonstration of adaptive plasticity in the sensory receptor. Reversing prisms, for example, do not modify the gain of the primary afferent response. Pulse yaw rotation, sinusoidal rotation, and sum of sinusoidal rotation testing during the first day following recovery revealed that the gain of a sample of afferents was significantly greater than the gain derived from afferent responses obtained during pre-flight and control monkey testing. There was no strong evidence of tilt sensitivity in the sample of afferents that we tested either during the pre-flight or control tests or during the first day post-flight. Two irregular afferents tested on postflight day 2 showed changes with tilt but the responses were not systematic. The spontaneous discharge did not change following flight. Mean firing rate and coefficient of variation remained constant during the post flight tests and was near the value measured during pre flight tests. The change in gain of horizontal canal afferents might be adaptive. The animals were required to look at a target for food. This required active head and eye movements. Active head movements have been shown to be hypometric and eye movements have been shown to be hypermetric during the first few days of past Cosmos flights (see introduction). It might be that the increased gain in the horizontal semicircular canals permit accurate target acquisition during hypometric head movements by driving the eyes to greater angles for smaller angles of head movement. The mechanism by which the semicircular canals recalibrate (increase their gain) is unknown. The efferent vestibular system is a logical candidate. Horizontal nystagmus during rotation about an earth vertical axis with the horizontal semicircular canals in the plane of rotation produced the same response during postflight day 1 and post-flight day 9. But when the head was pitched down 45? the nystagmus slow phase velocity was greater and the duration was about twice during post-flight day 1. Apparently, this response involving the interaction of the horizontal and vertical semicircular canals and the otoliths did not recalibrate during post-flight day 1. The 'DC' bias of the slow phase velocity of the horizontal nystagmus during constant velocity horizontal axis rotation was roughly 4 times for one flight monkey and roughly 2 times for the other on post-flight day 1 compared to post-flight day 9. These results suggest that the otolith mediated response during constant velocity rotation also did not recalibrate on post-flight day 1.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.
2006-01-01
Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.
NASA Technical Reports Server (NTRS)
Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.
1993-01-01
The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Bloomberg, J. J.; Layne, C. S.
1997-01-01
We present a review of converging sources of evidence which suggest that the differences between loading histories experienced in 1-g and weightlessness are sufficient to stimulate adaptation in mechanical impedance of the musculoskeletal system. As a consequence of this adaptive change we argue that we should observe changes in the ability to attenuate force transmission through the musculoskeletal system both during and after space flight. By focusing attention on the relation between human sensorimotor activity and support surfaces, the importance of controlling mechanical energy flow through the musculoskeletal system is demonstrated. The implications of such control are discussed in light of visual-vestibular function in the specific context of head and gaze control during postflight locomotion. Evidence from locomotory biomechanics, visual-vestibular function, ergonomic evaluations of human vibration, and specific investigations of locomotion and head and gaze control after space flight, is considered.
14 CFR Appendix A to Part 33 - Instructions for Continued Airworthiness
Code of Federal Regulations, 2013 CFR
2013-01-01
... degree of complexity requiring specialized maintenance techniques, test equipment, or expertise. The... Limitations section must also prescribe the mandatory post-flight inspections and maintenance actions... adequacy of the instructions for mandatory post-flight inspections and maintenance actions prescribed under...
14 CFR Appendix A to Part 33 - Instructions for Continued Airworthiness
Code of Federal Regulations, 2014 CFR
2014-01-01
... degree of complexity requiring specialized maintenance techniques, test equipment, or expertise. The... Limitations section must also prescribe the mandatory post-flight inspections and maintenance actions... adequacy of the instructions for mandatory post-flight inspections and maintenance actions prescribed under...
14 CFR Appendix A to Part 33 - Instructions for Continued Airworthiness
Code of Federal Regulations, 2010 CFR
2010-01-01
... degree of complexity requiring specialized maintenance techniques, test equipment, or expertise. The... Limitations section must also prescribe the mandatory post-flight inspections and maintenance actions... adequacy of the instructions for mandatory post-flight inspections and maintenance actions prescribed under...
NASA Technical Reports Server (NTRS)
Mendez, C. M.; Foy, M.; Mason, S.; Wear, M. L.; Meyers, V.; Law, J.; Alexander, D.; Van Baalen, M.
2014-01-01
Understanding the nuances in clinical data is critical in developing a successful data analysis plan. Carbon dioxide (CO2) data are collected on board the International Space Station (ISS) in a continuous stream. Clinical data on ISS are primarily collected via conversations between individual crewmembers and NASA Flight Surgeons during weekly Private Medical Conferences (PMC). Law, et.al, 20141 demonstrated a statistically significant association between weekly average CO2 levels on ISS and self-reported headaches over the reporting period from March 14, 2001 to May 31, 2012. The purpose of this analysis is to describe the evaluation of a possible association between visual changes and CO2 levels on ISS and to discuss challenges in developing an appropriate analysis plan. METHODS & PRELIMINARY RESULTS: A first analysis was conducted following the same study design as the published work on CO2 and self-reported headaches1; substituting self-reported changes in visual acuity in place of self-reported headaches. The analysis demonstrated no statistically significant association between visual impairment characterized by vision symptoms self-reported during PMCs and ISS average CO2 levels over ISS missions. Closer review of the PMC records showed that vision outcomes are not well-documented in terms of clinical severity, timing of onset, or timing of resolution, perhaps due to the incipient nature of vision changes. Vision has been monitored in ISS crewmembers, pre- and post-flight, using standard optometry evaluations. In-flight visual assessments were limited early in the ISS program, primarily consisting of self-perceived changes reported by crewmembers. Recently, on-orbit capabilities have greatly improved. Vision data ranges from self-reported post-flight changes in visual acuity, pre- to postflight changes identified during fundoscopic examination, and in-flight progression measured by advanced on-orbit clinical imaging capabilities at predetermined testing intervals. In contrast, CO2 data are recorded in a continuous stream over time; however, for the initial analysis this data was categorized into weekly averages.
Apollo 15 mission report, supplement 4: Descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.; Wood, S. C.
1972-01-01
The results of a postflight analysis of the LM-10 Descent Propulsion System (DPS) during the Apollo 15 Mission are reported. The analysis determined the steady state performance of the DPS during the descent phase of the manned lunar landing. Flight measurement discrepancies are discussed. Simulated throttle performance results are cited along with overall performance results. Evaluations of the propellant quantity gaging system, propellant loading, pressurization system, and engine are reported. Graphic illustrations of the evaluations are included.
Development of Testing Methodologies to Evaluate Postflight Locomotor Performance
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.
2006-01-01
Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).
Integration and Test for Small Shuttle Payloads
NASA Technical Reports Server (NTRS)
Wright, Michael R.; Day, John H. (Technical Monitor)
2001-01-01
Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
The Gravity of LBNP Exercise: Lessons Learned from Identical Twins in Bed for 30 Days
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Groppo, Eli R.; Lee, Stuart M. C.; Watenpaugh, Donald; Schneider, Suzanne; O'Leary, Deborah; Smith, Scott M.; Steinbach, Gregory C.; Tanaka, Kunihiko; Kimura, Shinji;
2002-01-01
Microgravity leads to cardiovascular deconditioning in humans, which is manifested by post-flight reduction of orthostatic tolerance and upright exercise capacity. During upright posture on Earth, blood pressures are greater in the feet than at heart or head levels due to gravity's effects on columns of blood in the body. During exposure to Microgravity, all gravitational blood pressures disappear. Presently, there is no exercise hardware available for space flight to provide gravitational blood pressures to tissues of the lower body. We hypothesized that 40 minutes of supine treadmill running per day in a LBNP chamber at 1.0 to 1.2 body weight (approximately 50 - 60 mm Hg LBNP) with a 5 min resting, nonexercise LBNP exposure at 50 mm Hg after the exercise session will maintain aerobic fitness orthostatic tolerance, and selected parameters of musculoskeletal function during 30 days of bed rest (simulated microgravity). This paper is an interim report of some of our findings on 16 subjects.
Physiological studies on air tanker pilots flying forest fire retardant missions.
DOT National Transportation Integrated Search
1968-10-01
Pre-flight and post-flight studies were carried out on five air tanker pilots; in-flight studies were carried out on four of these five pilots. Pre- and post-flight studies consisted of a questionnaire and determinations of blood pressure, psychomoto...
Risk of Microgravity-Induced Visual Impairment and Elevated Intracranial Pressure (VIIP)
NASA Technical Reports Server (NTRS)
Otto, Christian
2011-01-01
Eight cases identified, represent 23.5% of the 34 crewmembers flown on the ISS, with inflight visual changes and pre-to-postflight refractive changes. In some cases, the changes were transient while in others they are persistent with varying degrees of visual impairment. (1) Decreased intraocular pressure (IOP) postflight was observed in 3 cases. (2) Fundoscopic exams revealed postflight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and presence of cotton wool spots in 3 cases. (3) Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema and documented retinal nerve fiber layer thickening (4 cases). (4) Findings from MRI examinations showed posterior globe flattening (5 cases) and optic nerve sheath distension (6 cases). (5) Opening cerebrospinal fluid (CSF) pressure was elevated in 4 cases postflight reflecting raised intracranial pressure. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes in astronauts.
Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.
2011-01-01
Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).
Research opportunities on immunocompetence in space
NASA Technical Reports Server (NTRS)
Beisel, W. R. (Editor); Talbot, J. M. (Editor)
1985-01-01
The most significant of the available data on the effects of space flight on immunocompetences and the potential operational and clinical significance of reported changes are as follows: (1) reduced postflight blastogenic response of peripheral lymphocytes from space crew members; (2) postflight neutrophilia persisting up to 7 days; (3) gingival inflammation of the Skylab astronauts; (4) postflight lymphocytopenia, eosinopenia, and monocytopenia; (5) modifications and shifts in the microflora of space crews and spacecraft; and (6) microbial contamination of cabin air and drinking water. These responses and data disclose numerous gaps in the knowledge that is essential for an adequate understanding of space-related changes in immunocompetence.
Nicogossian, A; Hoffler, G W; Johnson, R L; Gowen, R J
1976-04-01
A simple method to estimate cardiac size from single frontal plane chest roentgenograms has been described. Pre- and postflight chest X-rays from Apollo 17, and Skylab 2 and 3 have been analyzed for changes in the cardiac silhouette size. The data obtained from the computed cardiothoracic areal ratios compared well with the clinical cardiothoracic diametral ratios (r = .86). Though an overall postflight decrease in cardiac size is evident, the mean difference was not statistically significant (n = 8). The individual decreases in the cardiac silhouette size postflight are thought to be due to decrements in intracardiac chamber volumes rather than in myocardial muscle mass.
NASA Technical Reports Server (NTRS)
Nicogossian, A.; Hoffler, G. W.; Johnson, R. L.; Gowen, R. J.
1976-01-01
A simple method to estimate cardiac size from single frontal plane chest roentgenograms has been described. Pre- and postflight chest X-rays from Apollo 17, and Skylab 2 and 3 have been analyzed for changes in the cardiac silhouette size. The data obtained from the computed cardiothoracic areal ratios compared well with the clinical cardiothoracic diametral ratios (r = .86). Though an overall postflight decrease in cardiac size is evident, the mean difference was not statistically significant (n = 8). The individual decreases in the cardiac silhouette size postflight are thought to be due to decrements in intracardiac chamber volumes rather than in myocardial muscle mass.
Services provided in support of the planetary quarantine requirements
NASA Technical Reports Server (NTRS)
Favero, M. S.
1973-01-01
The microbiological studies of the Apollo 17 command module pre- and postflight samples are reported. A total of 20 types of microorganisms were identified on preflight and 14 on postflight samples. Changes in biochemical character due to subculture and storage of Bacillus isolates are also reported.
Disruption of postural readaptation by inertial stimuli following space flight
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.
1999-01-01
Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.
CATE: A Case Study of an Interdisciplinary Student-Led Microgravity Experiment
NASA Astrophysics Data System (ADS)
Colwell, J. E.; Dove, A.; Lane, S. S.; Tiller, C.; Whitaker, A.; Lai, K.; Hoover, B.; Benjamin, S.
2015-12-01
The Collisional Accretion Experiment (CATE) was designed, built, and flown on NASA's C-9 parabolic flight airplane in less than a year by an interdisciplinary team of 6 undergraduate students under the supervision of two faculty. CATE was selected in the initial NASA Undergraduate Student Instrument Project (USIP) solicitation in the Fall of 2013, and the experiment flight campaign was in July 2014. The experiment studied collisions between different particle populations at low velocities (sub-m/s) in a vacuum and microgravity to gain insight into processes in the protoplanetary disk and planetary ring systems. Faculty provided the experiment concept and key experiment design parameters, and the student team developed the detailed hardware design for all components, manufactured and tested hardware, operated the experiment in flight, and analyzed data post-flight. Students also developed and led an active social media campaign and education and public outreach campaign to engage local high school students in the project. The ability to follow an experiment through from conception to flight was a key benefit for undergraduate students whose available time for projects such as this is frequently limited to their junior and senior years. Key factors for success of the program included having an existing laboratory infrastructure and experience in developing flight payloads and an intrinsically simple experiment concept. Students were highly motivated, in part, by their sense of technical and scientific ownership of the project, and this engagement was key to the project's success.
Chemical Method of Urine Volume Measurement
NASA Technical Reports Server (NTRS)
Petrack, P.
1967-01-01
A system has been developed and qualified as flight hardware for the measurement of micturition volumes voided by crewmen during Gemini missions. This Chemical Urine Volume Measurement System (CUVMS) is used for obtaining samples of each micturition for post-flight volume determination and laboratory analysis for chemical constituents of physiological interest. The system is versatile with respect to volumes measured, with a capacity beyond the largest micturition expected to be encountered, and with respect to mission duration of inherently indefinite length. The urine sample is used for the measurement of total micturition volume by a tracer dilution technique, in which a fixed, predetermined amount of tritiated water is introduced and mixed into the voided urine, and the resulting concentration of the tracer in the sample is determined with a liquid scintillation spectrometer. The tracer employed does not interfere with the analysis for the chemical constituents of the urine. The CUVMS hardware consists of a four-way selector valve in which an automatically operated tracer metering pump is incorporated, a collection/mixing bag, and tracer storage accumulators. The assembled system interfaces with a urine receiver at the selector valve inlet, sample bags which connect to the side of the selector valve, and a flexible hose which carries the excess urine to the overboard drain connection. Results of testing have demonstrated system volume measurement accuracy within the specification limits of +/-5%, and operating reliability suitable for system use aboard the GT-7 mission, in which it was first used.
Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission
NASA Technical Reports Server (NTRS)
1971-01-01
A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.
The human cardiovascular system in the absence of gravity
NASA Technical Reports Server (NTRS)
Bungo, M. W.; Charles, J. B.
1985-01-01
The data collected from a Space Shuttle crew to investigate cardiovascular changes due to microgravity are presented. The experimental procedures which involved preflight, immediate postflight, and one week following postflight echocardiograms of 13 individuals are described. The immediate postflight results reveal a 20 percent decrease in stroke volume, a 16 percent decrease in left ventricular diastolic volume index (LVDVI), no change in systolic volume, blood pressure, or cardiac index, and a 24 percent increase in heart rate. One week later a 17 percent stroke volume increase, a 29 percent increase in cardiac index, and normal blood pressure, and LVDVI were observed. It is concluded that upon reexposure to gravity a readaptation process for the cardiovascular system occurs.
NASA Technical Reports Server (NTRS)
Friedman, R.
1972-01-01
The recommendations of the Joint Working Group on Space Biology and Medicine are reported. The exchange of information for the U.S. included the pre- and postflight medical requirements and flight crew health stabilization program for Apollo 16. The U.S.S.R. presentations detailed the medical findings of the Soyuz/Salyut mission, including the postflight autopsy results. The causes of death of the cosmonauts were the occurrence of hypoxia and gaseous embolism. A significant development resulting from the meeting was the agreement that the Joint Working Group strive toward the development of common pre- and postflight medical examination procedures for flight crews for direct comparison of U.S. and U.S.S.R. data.
Space shuttle inflight and postflight fluid shifts measured by leg volume changes.
Moore, T P; Thornton, W E
1987-09-01
This is a study of the inflight and postflight leg volume changes associated with spaceflight on Space Shuttle missions. The results of this study show an inflight volume loss of 2 L from lower extremities, 1 L from each leg, representing an 11.6% volume change. The vast majority of this change appears to be a shift in body fluids, both intravascular and extravascular. The fluid shift occurs rapidly on Mission Day 1 (MD-1), with it being essentially complete by 6 to 10 h. The regional origin of shift and leg volume change shows a far greater absolute volume (708 ml vs. 318 ml) and percentage (69% vs. 31%) of the total change coming from the thigh as compared to the lower leg. Postflight, the return of fluid to the lower extremities occurs rapidly with the majority of volume return complete within 1.5 h postlanding. At 1 week postflight there is a residual leg volume decrement of 283 ml or 3.2% that is probably due to tissue loss secondary to atrophic deconditioning and weight loss.
Orion Exploration Flight Test Post-Flight Inspection and Analysis
NASA Technical Reports Server (NTRS)
Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.
2017-01-01
The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.
Space Shuttle inflight and postflight fluid shifts measured by leg volume changes
NASA Technical Reports Server (NTRS)
Moore, Thomas P.; Thornton, William E.
1987-01-01
This is a study of the inflight and postflight leg volume changes associated with spaceflight on Space Shuttle missions. The results show an inflight volume loss of 2 l from the lower extremities, 1 l from each leg, representing an 11.6 percent volume change. The vast majority of this change appears to be a shift in body fluids, both intravascular and extravascular. The fluid shift occurs mostly on Mission Day One and is essentially complete by 6 to 10 hr. The regional origin of shift and leg volume changes shows a far greater absolute volume (708 ml vs. 318 ml) and percentage (69 percent vs. 31 percent) of the total change coming from the higher as compared to the lower leg. Postflight, the return of fluid to the lower extremities occurs rapidly with the majority of volume return complete within 1.5 hr postlanding. At 1 week postflight, there is a residual leg volume decrement of 283 ml or 3.2 percent that is probably due to tissue loss secondary to atrophic deconditioning and weight loss.
Effect of prolonged space flight on cardiac function and dimensions
NASA Technical Reports Server (NTRS)
Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.
1974-01-01
Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.
Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2011-01-01
To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role.
Gazenko, O G; Demin, N N; Panov, A N; Rubinskaia, N L; Tigranian, R A
1976-01-01
On the 2nd postflight day the activity of neutral protamine peptide hydrolase of different compartments of the rat brain did not differ from the control level. With respect to the protein and RNA content and concentration motoneurons of anterior horns of the spinal cord and their glial-cells-satellites of rats exposed to the ground-based synchronous experiment did not differ from those of vivarium controls, except cells of the supraoptic nucleus. That was found on the 2nd and 27th postflight days. On the 2nd postflight day the protein and RNA concentration in neurons decreased and the protein concentration and content in gliocytes lowered; the RNA concentration and content in Purkinje cells of the cerebellum became reduced. On the 27th postflight day the RNA concentration in neurons of the supraoptic nucleus remained diminished whereas the protein content increased; in spinal motoneurons the protein concentration decreased and in adjacent gliocytes the protein concentration and content lowered. All the above changes made no more than 15% of the control values.
Flight motor set 360L009 (STS-36). Volume 1: System overview
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
Flight Motor Set 360L009, as part of NASA Space Shuttle Mission STS-36, a Department of Defence mission, was launched after two launch attempts. One launch was scrubbed following the failure of a ground-based Range Safety computer and one was scrubbed due to cloud cover at the return to launch landing site. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. There were no debris concerns from either motor. All ballistic and mass property parameters that could be assessed, closely matched the predicted values and were well within the required contract item specification levels. All field joint heaters and igniter joint heaters performed without anomalies. Evaluation of the ground environment instrumentation measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria violations occurred. Postflight inspection again verified nominal performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated that both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints. Recommendations were made concerning improved thermal modeling and measurements. The rationale for these recommendations and complete result details are presented.
Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight
NASA Technical Reports Server (NTRS)
Serrador, J. M.; Shoemaker, J. K.; Brown, T. E.; Kassam, M. S.; Bondar, R. L.; Schlegel, T. T.
2000-01-01
The effects of brief but repeated bouts of micro- and hypergravity on cerebrovascular responses to head-up tilt (HUT) were examined in 13 individuals after (compared to before) parabolic flight. Middle cerebral artery mean flow velocity (MCA MFV; transcranial Doppler ultrasound), eye level blood pressure (BP) and end tidal CO(2) (P(ET)CO(2)) were measured while supine and during 80 degrees HUT for 30 min or until presyncope. In the postflight tests subjects were classified as being orthostatically tolerant (OT) (n = 7) or intolerant (OI) (n = 6). BP was diminished with HUT in the OT group in both tests (p < 0.05) whereas postflight BP was not different from supine in the OI group. Postflight compared to preflight, the reduction in P(ET)CO(2) with HUT (p < 0.05) increased in both groups, although significantly so only in the OI group (p < 0.05). The OI group also had a significant decrease in supine MCA MFV postflight (p < 0.05) that was unaccompanied by a change in supine P(ET)CO(2). The decrease in MCA MFV that occurred during HUT in both groups preflight (p < 0.05) was accentuated only in the OI group postflight, particularly during the final 30 s of HUT (p < 0.05). However, this accentuated decrease in MCA MFV was not correlated to the greater decrease in P(ET)CO(2) during the same period (R = 0.20, p = 0.42). Although cerebral vascular resistance (CVR) also increased in the OI group during the last 30 s of HUT postflight (p < 0.05), the dynamic autoregulatory gain was not simultaneously changed. Therefore, we conclude that in the OI individuals, parabolic flight was associated with cerebral hypoperfusion following a paradoxical augmentation of CVR by a mechanism that was not related to changes in autoregulation nor strictly to changes in P(ET)CO(2).
Sensorimotor adaptations to microgravity in humans.
Edgerton, V R; McCall, G E; Hodgson, J A; Gotto, J; Goulet, C; Fleischmann, K; Roy, R R
2001-09-01
Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.
Sensorimotor adaptations to microgravity in humans
NASA Technical Reports Server (NTRS)
Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.
2001-01-01
Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.
Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment
NASA Technical Reports Server (NTRS)
Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.
1995-01-01
Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.
Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission
NASA Technical Reports Server (NTRS)
1972-01-01
A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.
Shuttle program: OFT ascent/descent ancillary data requirements document
NASA Technical Reports Server (NTRS)
Bond, A. C., Jr.; Knoedler, J.
1980-01-01
Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of the orbital flight test (OFT) flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. The A/D ancillary data support for OFT mission evaluation activities is confined to providing postflight position, velocity, attitude, and associated navigation and attitude derived parameters for the Orbiter over particular flight phases and time intervals.
Evaluation of Galvanic Vestibular Stimulation System
NASA Technical Reports Server (NTRS)
Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.;
2017-01-01
Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance) similar to what astronauts experience during transitions to new gravitational environments. Stochastic electrical stimulation can be applied to the vestibular system through electrodes placed over the mastoid process behind the ears in the binaural configuration resulting in stimulation in the mediolateral (side-to-side) plane. An additional electrode can be placed over the bony landmark of the tip of the c7 spinous process for the double monaural configuration, which will cause stimulation in the anteroposterior (forward-backward) plane. A portable constant current bipolar stimulator with subject isolation was designed and built to deliver the stimulus. The unit is powered using a 3.7 V battery pack and designed to produce currents up to 5 mA. The stimulator, controlled by a Raspberry Pi 3 computer, offers several stimulus signal generation options including a standalone mode, which uses onboard signal files stored on the flash memory card. Stochastic stimulation signals will be generated in 0-30 Hz frequency bandwidth. Stimulation amplitude can be increased incrementally to a maximum amplitude of 5.0 mA (e.g., 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 mA). In control trials, subjects will be experiencing vestibular stimulation with 0-mA current applied through the electrodes. The system will be evaluated at various levels of stimulation and in both the binaural and double monaural electrode configurations. One of the objectives is to identify stimulation levels producing effects most comparable to the post-flight disturbances. This is a pilot study that will set the stage for a larger, more comprehensive study that will investigate wider aspects of post-flight sensorimotor dysfunction and set sensorimotor standards for crew health.
Development of an Integrated Sensorimotor Countermeasure Suite for Spaceflight Operations
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Caldwell, E. E. (Inventor); Feiveson, A. H.; Kreutzberg, G. A.; Miller, C. A.; Mulavara, A. P.; Oddsson, L. I. E.; Peters, B. T.; Ploutz-Synder, L. L.;
2017-01-01
Astronauts experience Postflight disturbances in postural and locomotor control due to sensorimotor adaptation to the unique environment of spaceflight. These alterations might have adverse consequences if a rapid egress were required following a Mars landing or on return to Earth after a water landing. Currently, no operational countermeasure is targeted to mitigate Postflight balance and locomotor dysfunction.
Embedded, real-time UAV control for improved, image-based 3D scene reconstruction
Jean Liénard; Andre Vogs; Demetrios Gatziolis; Nikolay Strigul
2016-01-01
Unmanned Aerial Vehicles (UAVs) are already broadly employed for 3D modeling of large objects such as trees and monuments via photogrammetry. The usual workflow includes two distinct steps: image acquisition with UAV and computationally demanding postflight image processing. Insufficient feature overlaps across images is a common shortcoming in post-flight image...
THE EFFECT OF FEEDBACK ON THE ACCURACY OF CHECKLIST COMPLETION DURING INSTRUMENT FLIGHT TRAINING
Rantz, William G; Dickinson, Alyce M; Sinclair, Gilbert A; Van Houten, Ron
2009-01-01
This study examined whether pilots completed airplane checklists more accurately when they receive postflight graphic and verbal feedback. Participants were 8 college students who are pilots with an instrument rating. The task consisted of flying a designated flight pattern using a personal computer aviation training device (PCATD). The dependent variables were the number of checklist items completed correctly. A multiple baseline design across pairs of participants with withdrawal of treatment was employed in this study. During baseline, participants were given postflight technical feedback. During intervention, participants were given postflight graphic feedback on checklist use and praise for improvements along with technical feedback. The intervention produced near perfect checklist performance, which was maintained following a return to the baseline conditions. PMID:20190914
NASA Technical Reports Server (NTRS)
Barnett, R. D.; Gowen, R. J.; Carroll, D. R.
1975-01-01
The design of the leg volume measuring system employed for the M092 portion of the Skylab missions required the development of a system sensitive to large and small volume changes at the calf of the leg. These changes in volume were produced in response to the orthostatic stress of a Lower Body Negative Pressure Device (LBNPD) or by venous occlusion. The cardiovascular responses of the Apollo crewman associated with the postflight evaluations indicate varying decrements of orthostatic tolerance. The postflight changes indicate a slightly diminished ability of the cardiovascular system to function effectively against gravity following exposure to weightlessness. The objective of the Skylab LBNP experiments (M092) was to provide information about the magnitude and time course of the cardiovascular changes associated with prolonged periods of exposure to weightlessness. The equipment, signal processing, and analysis of the leg volume data obtained from the M092 experiment of the Skylab 2 Mission are described.
NASA Technical Reports Server (NTRS)
Young, Leighton E.
1993-01-01
Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.
BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight.
Andreev-Andrievskiy, Alexander; Popova, Anfisa; Lloret, Jean-Christophe; Aubry, Patrick; Borovik, Anatoliy; Tsvirkun, Daria; Vinogradova, Olga; Ilyin, Eugeniy; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine
2017-05-01
Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
2007-06-22
Following its landing on June 22, 2007, the Space Shuttle Atlantis is towed from the runway at Edwards Air Force Base to NASA Dryden's Mate-Demate Device (MDD) for post-flight processing in preparation for its return to the Kennedy Space Center in Florida.
Mader, Thomas H; Gibson, C Robert; Otto, Christian A; Sargsyan, Ashot E; Miller, Neil R; Subramanian, Prem S; Hart, Stephen F; Lipsky, William; Patel, Nimesh B; Lee, Andrew G
2017-06-01
Several ophthalmic findings including optic disc swelling, globe flattening and choroidal folds have been observed in astronauts following long-duration space flight. The authors now report asymmetric choroidal expansion, disc swelling and optic disc morphologic changes in a 45-year-old astronaut which occurred during long-duration space flight and persisted following his space mission. Case study of ocular findings in an astronaut documented during and after a long-duration space flight of approximately 6 months. Before, during and after his spaceflight, he underwent complete eye examination, including fundus photography, ultrasound, and optical coherence tomography. We documented asymmetric choroidal expansion inflight that largely resolved by 30 days postflight, asymmetric disc swelling observed inflight that persisted for over 180 days postflight, asymmetric optic disc morphologic changes documented inflight by OCT that persisted for 630 days postflight and asymmetric globe flattening that began inflight and continued 660 days postflight. Lumbar puncture opening pressures obtained at 7 and 365 days post-mission were 22 and 16 cm H20 respectively. The persistent asymmetric findings noted above, coupled with the lumbar puncture opening pressures, suggest that prolonged microgravity exposure may have produced asymmetric pressure changes within the perioptic subarachnoid space.
A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.
2009-01-01
NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.
Aerothermal environment induced by mismatch at the SSME main combustion chamber-nozzle joint
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.; O'Farrell, J. M.; Olive, T. A.; Brown, G. B.; Holt, J. B.
1990-01-01
The computational study reported here is motivated by a Space Shuttle main engine hardware problem detected in post-flight and post-test inspections. Of interest are the potential for hot gas ingestion into the joint (G15) at the main combustion chamber-to-nozzle interface and the effect of particular goemetric nonuniformities on that gas ingestion. The flowfield in the G15 region involves supersonic flow past a rounded forward facing step preceded by a deep narrow cavity. This paper describes the physical problem associated with joint G15 and computational investigations of the G15 aerothermal environment. The associated flowfield was simulated in two and three space dimensions using the United Solutions Algorithm (USA) computational fluid dynamics code series. A benchmark calculation of experimentally measured supersonic flow over of a square cavity was performed to demonstrate the accuracy of the USA code in analyzing flows similar to the G15 computational flowfield. The G15 results demonstrate the mechanism for hot gas ingestion into the joint and reveal the sensitivity to salient geometric nonuniformities.
Evolutionary Design of a Robotic Material Defect Detection System
NASA Technical Reports Server (NTRS)
Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)
2002-01-01
During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.
Scanning and Transmission Electron Microscopy of High Temperature Materials
NASA Technical Reports Server (NTRS)
1994-01-01
Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.
Launch and landing site science processing for ISS utilization
NASA Astrophysics Data System (ADS)
Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy
2000-01-01
Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .
Psychophysiological investigations of the biomedical problems of manned spaceflight
NASA Technical Reports Server (NTRS)
1993-01-01
The Final Report on psychophysiological investigations of the biomedical problems of manned spaceflight is presented. In the first project, statistical analyses of human autonomic data were performed. The objectives were the following: to establish a relational data base containing human psychophysiological data obtained from Shuttle flight experiments and ground-based research over a 20 year period; to enable multi-user access and retrieval of these data for subsequent analyses and for possible inclusion in the proposed Life Sciences Data Archive; and to enable/conduct statistical analyses across several experiments on large subject populations which can thereby provide definitive answers to questions on human autonomic and behavioral responses and adaptation to environmental stressors on Earth and in space. The second project studied motion sickness. The objectives were: to test/develop hardware and procedures to be incorporated into preflight training of crewmembers of Spacelab-J; and to examine spin-off applications of AFT. The third project studied orthostatic intolerance. The objective was to test the feasibility of applying autogenic-feedback training as a potential treatment for postflight orthostatic intolerance.
Complication Rates in Altitude Restricted Patients Following Aeromedical Evacuation
2016-04-01
humidity and temperature , reduced barometric pressure and oxygen levels, increased vibration, trapped gas expansion, and serious n oise, not to...correlated to PFC and PFC-100 rates. This finding suggests that aggressive prescribing of CARs may have a salutary effect on postflight complication...suggests that aggressive prescribing of CARs may have a salutary effect on postflight complication rates and bears further investigation. KEYWORDS: cabin
NASA Technical Reports Server (NTRS)
Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.
1979-01-01
A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.
Sleep monitoring - The second manned Skylab mission
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Shumate, W. H.; Booher, C. R.; Salamy, J. G.
1976-01-01
Sleep patterns were monitored in one subject aboard each of the manned Skylab missions. In all three subjects stage 3 sleep increased during the flight and consistently decreased postflight. Stage REM was elevated, and REM latency decreased in the late postflight period. The number of awakenings remained the same or decreased during flight. No changes were observed which could be expected to adversely affect performance capability.
The Measurement of Pilot Workload.
1983-01-01
measures produced two clusters for the easiest and inter - mediate flights (inflight and postflight) and four for the most difficult flight. Zn the...technique is intended for use ’n evaluating the potential impact associated with changes in cockpit procedures and instru- mentation. The technique would...for pitch, roll, and, to a certain extent, elevation changes . The cockpit is equipped with (1) Collins FD 109 Flight Director, (2) AP 106 Auto Pilot
NASA Technical Reports Server (NTRS)
Morton, Thomas L.; Ferguson, Dale C.
1997-01-01
In order to test their reactivity with Atomic Oxygen, twenty five materials were flown on the EOIM-3 (Evaluation of Oxygen Interactions with Materials) portion of the STS-46 Mission. These materials include refractory metals, candidate insulation materials, candidate radiator coatings, and a selection of miscellaneous materials. This report documents the results of the pre- and post-flight analysis of these materials.
Midodrine as a Countermeasure to Orthostatic Hypotension Immediately After Space Shuttle Landing
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Stenger, Michael B.; Ribeiro, L. Christine; Lee, Stuart M. C.
2010-01-01
Midodrine prevents post-space flight orthostatic intolerance when testing is conducted in a controlled laboratory setting within 2-4 hours after Space Shuttle landing. It is unknown if midodrine is as effective during re-entry and immediately following landing. METHODS: Cardiovascular responses to 10 minutes of 80 head-up tilt in five male astronauts were compared before and immediately after Space Shuttle missions. Preflight tests were conducted in the Johnson Space Center Cardiovascular Laboratory without midodrine. Post-flight testing was performed in the Crew Transport Vehicle on the Space Shuttle runway within 60 minutes of landing; midodrine was self-administered before re-entry. Survival analysis was performed (Gehan-Breslow test) to compare presyncope rates pre- to post-flight. Cardiovascular responses (last minute standing minus supine) to tilt before and after space flight were compared using paired t-tests. RESULTS: Midodrine did not prevent post-flight orthostatic hypotension in two of the five astronauts, but the rate of presyncope across the group did not increase (p=0.17) from pre- to post-flight. Also, although the change in heart rate from supine to the last minute of standing was not affected by space flight, systolic blood pressure decreased more (p=0.05) and diastolic blood pressure tended to decrease (p=0.08) after space flight. CONCLUSIONS: Accurate interpretation of the current results requires that similar data be collected in control subjects (without midodrine) on the CTV. However, drug interaction concerns with commonly used anti-emetics and potentiation of prolonged QTc intervals observed in long duration astronauts make the routine use of midodrine for immediate post-flight orthostatic hypotension unlikely. 2
Immune Dysregulation Following Short versus Long Duration Space Flight. Version 03
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Stowe, Raymond P.; Pierson, Duane L.; Sams, Clarence F.
2007-01-01
Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration-class missions. A comprehensive immune assessment was recently performed on 13 short duration Space Shuttle crewmembers and 8 long duration International Space Station (ISS) crewmembers. Statistically significant post-flight phenotype alterations (as compared to pre-flight baseline) for the Shuttle crewmembers included: granulocytosis, increased percentage of B cells, reduced percentage of NK cells, elevated CD4/CD8 ratio, elevated levels of memory CD4+ T cells, and a CD8+ T cell shift to a less differentiated state. For the Shuttle crewmembers, T cell function was surprisingly elevated post-flight, among both the CD4+ and CD8+ subsets. This is likely an acute stress response in less-deconditioned crewmembers. The percentage of CD4+/IL-2+, CD4+/IFNg+ and CD8+/IFNg+ T cells were all decreased at landing. Culture secreted IFNg production was significantly decreased at landing, whereas production of Th2 cytokines was largely unchanged. It was found that the IFNg:IL-10 ratio was obviously declined in the Shuttle crewmembers immediately post-flight. A similar pattern of alterations were observed for the long duration ISS crewmembers. In contrast to Shuttle crewmembers, the ISS crewmembers demonstrated a dramatic reduction in T cell function immediately post-flight. This may be related to the effect of acute landing stress in conjunction with prolonged deconditioning associated with extended flight. The reduction in IFNg:IL-10 ratio (Th2 shift) was also observed post-flight in the ISS crewmembers to a much higher degree. These data indicate consistent peripheral phenotype changes and altered cytokine production profiles occur following space travel of both short and long duration.
Cardiovascular function in space flight
NASA Astrophysics Data System (ADS)
Nicgossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.
Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L+O), but did become significant by the second day postflight (L+2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.
Cardiovascular function in space flight
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.; Nicgossian, A. E.
1991-01-01
Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L + O), but did become significant by the second day postflight (L + 2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.
Spaceflight-induced changes in white matter hyperintensity burden in astronauts.
Alperin, Noam; Bagci, Ahmet M; Lee, Sang H
2017-11-21
To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.
Saturn 5 Launch Vehicle Flight Evaluation Report, AS-510, Apollo 15 Mission
NASA Technical Reports Server (NTRS)
1971-01-01
A postflight analysis of the Apollo 15 flight is presented. The performance of the launch vehicle, spacecraft, and lunar roving vehicle are discussed. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are tabulated.
Medical evaluations on the KC-135 1990 flight report summary
NASA Technical Reports Server (NTRS)
Lloyd, Charles W.; Guess, Terrell M.; Whiting, Charles W.; Doarn, Charles R.
1991-01-01
The medical investigations completed on the KC-135 during FY 1990 in support of the development of the Health Maintenance Facility and Medical Operations are discussed. The experiments are comprised of engineering evaluations of medical hardware and medical procedures. The investigating teams are made up of both medical and engineering personnel responsible for the development of medical hardware and medical operations. The hardware evaluated includes dental equipment, a coagulation analyzer, selected pharmaceutical aerosol devices, a prototype air/fluid separator, a prototype packaging and stowage system for medical supplies, a microliter metering system, and a workstation for minor surgical procedures. The results of these engineering evaluations will be used in the design of fleet hardware as well as to identify hardware specific training requirements.
Apollo experience report: Mission planning for lunar module descent and ascent
NASA Technical Reports Server (NTRS)
Bennett, F. V.
1972-01-01
The premission planning, the real-time situation, and the postflight analysis for the Apollo 11 lunar descent and ascent are described. A comparison between premission planning and actual results is included. A navigation correction capability, developed from Apollo 11 postflight analysis was used successfully on Apollo 12 to provide the first pinpoint landing. An experience summary, which illustrates typical problems encountered by the mission planners, is also included.
Unification of some biochemical methods of research in the pre- and post-flight periods
NASA Technical Reports Server (NTRS)
Tigranyan, R. A.
1980-01-01
The biochemical methods for determination of various parameters and factors during pre- and post-flight periods, as used by American and Soviet teams dealing with space flight medicine are compared. The emphasis is on the exchange of information on the study of the blood and urine content of space travelers before and after space flight. A series of electrolytic, enzymatic, and hormonal factors is discussed.
Bagrosky, Brian M; Hayes, Kari L; Koo, Phillip J; Fenton, Laura Z
2013-08-01
Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using (18)F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in patients with suspected spinal hardware infection. Because pneumonia was diagnosed as often as spinal hardware infection, initial chest radiography should also be performed.
Nutritional Aspects of Crewmembers' Cardiovascular Health Indicated by Dietary Lipids
NASA Technical Reports Server (NTRS)
Thurston, Marcelle A.
1999-01-01
This summer's project examined the relationships between dietary and physiological factors on serum lipoproteins using data from past United States astronauts. Nutritional assessment was required to determine whether a relationship existed between dietary intake and risk of cardiovascular disease (CVD) in crewmembers. Risk for CVD was assessed by the measurement of preflight, inflight, and postflight serum lipoproteins. The purpose of this project was to evaluate the dietary practices of past crewmembers before and during flight, and to examine their relationship with blood indicators of lipid status. Because of mortality and morbidity associated with CVD, such assessments are critical for the maintenance of astronaut health before, during, and after space flight. It was anticipated that the results from this project would assess the effects space flight and diet have on cardiovascular health, thus, defining the adequacy of the current dietary recommendations during space travel. It was hypothesized that the mean preflight serum lipoproteins compared to mean postflight serum lipoproteins would not be statistically different and that the current inflight diet is adequate in nutrient content, having little or no effect on lipoprotein levels.
Results from the testing and analysis of LDEF batteries
NASA Technical Reports Server (NTRS)
Spear, Steve; Dursch, Harry; Johnson, Chris
1992-01-01
Batteries were used on the Long Duration Exposure Facility (LDEF) to provide power to both the active experiments and the experiment support equipment such as the Experiment Initiative System, Experiment Power and Data System (data acquisition system), and the Environment Exposure Control Canisters. Three different types of batteries were used: lithium sulfur dioxide (LiSO2), lithium carbon monofluoride (LiCF), and nickel cadmium (NiCd). A total of 92 LiSO2, 10 LiCF, and 1 NiCd batteries were flown on the LDEF. In addition, approximately 20 LiSO2 batteries were kept in cold storage at NASA LaRC. The various investigations and post-flight analyses of the flight and control batteries are reviewed. The primary objectives of these studies was to identify degradation modes (if any) of the batteries and to provide information useful to future spacecraft missions. Systems SIG involvement in the post-flight evaluation of LDEF batteries was two-fold: (1) to fund SAFT (original manufacturer of the LiSO2 batteries) to perform characterization of 13 LiSO2 batteries (10 flight and 3 control batteries); and (2) to integrate investigator results.
A normal incidence X-ray telescope
NASA Technical Reports Server (NTRS)
Golub, Leon
1987-01-01
The postflight performance evaluation of the X-ray telescope was summarized. All payload systems and subsystems performed well within acceptable limits, with the sole exception of the light-blocking prefilters. Launch, flight and recovery were performed in a fully satisfactory manner. The payload was recovered in a timely manner and in excellent condition. The prefilter performance analysis showed that no X-ray images were detected on the processed flight film. Recommendations for improved performance are listed.
NASA Technical Reports Server (NTRS)
1973-01-01
The requirements for processing, packaging, testing, and shipment of foods selected for use in the Apollo food system are presented. Specific foodstuffs chosen from the following categories are discussed: (1) soups; (2) juices; (3) breads; (4) meat and poultry products; (5) fruits and nuts; (6) desserts; and (7) beverages. Food procurement for the mobile quarantine facility and for Apollo preflight and postflight activities is also discussed.
NASA Technical Reports Server (NTRS)
Wilkinson, J. P.
1990-01-01
The performance of the thermal protection system, field joint protection system, and systems tunnel components of Flight Set 360L006, are documented, as evaluated by postflight hardware inspection. The condition of both motors was similar to previous flights. Sixteen aft edge hits were noted on the ground environment instrumentation thermal protection system. Each hit left a clean substrate, indicating that the damage was caused by nozzle severance debris and/or water impact. No National Space and Transporation System debris criteria for missing thermal protection system were violated. One 5.0 by 1.0 in. unbond was observed on the left hand center field joint K5NA closeout and was elevated to an in-flight anomaly (STS-34-M-4) by the NASA Ice/Debris team. Aft edge damage to the K5NA and an associated black streak indicate that burning debris from the nozzle severance system was the likely cause of the damage. Minor divots caused by debris were seen on previous flights, but this is the first occurrence of a K5NA unbond. Since the unbond occurred after booster separation there is no impact on flight safety and no corrective actions was taken. The right hand center field joint primary heater failed the dielectric withstanding voltage test after joint closeout. The heater was then disabled by opening the circuit breaker, and the redundant heater was used. The redundant heater performed nominally during the launch countdown. A similar condition occurred on Flight 4 when a secondary joint heater failed the dielectric withstanding voltage test.
Fluid shifts in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, William E.; Moore, Thomas P.; Pool, Sam L.
1987-01-01
Studies of leg volumes in space by multiple girth measurements showed reductions of 1.9 l (12.8 percent of leg volume), with 1.1 l from the nondominant leg, on Skylab 4. On landing, 65 percent of postflight leg volume increase was complete at 1.5 h. Measurement of the dominant leg during the equivalent period on Shuttle showed a mean loss of 0.9 l which was 90-percent complete at 150 min. Postflight increases were 87-percent complete at 1.5 h postlanding. Mass measurements during and after Skylab 4 showed a loss of 2.5 kg over the first 4 d on orbit, with a gain of 2.7 kg over the first 4 d of recovery. These changes are assumed to be tissue fluids secondary to changes in hydrostatic pressures and are much greater than those seen in bed rest. Rate and magnitude of inflight and postflight changes have significant operational impact.
Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight
NASA Technical Reports Server (NTRS)
Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar;
2017-01-01
Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
Evaluation and Treatment of Essential Hypertension During Short Duration Space Flight
NASA Technical Reports Server (NTRS)
Rossum, Alfred C.; Baisden, Dennis L.
2000-01-01
During the last four decades of manned space flight, two individuals have successfully flown in space with the preflight diagnosis of essential hypertension (HTN). Treatment of this disease process in the astronaut population warrants special consideration particularly when selecting medication for a mission. A retrospective review of data offers two different clinical scenarios involving the treatment, or lack thereof, for essential hypertension during space flight. Case I; A Caucasian quinquagenerian diagnosed with HTN one year prior to the mission obtained flight certification after a negative diagnostic workup. The patient was placed on a diuretic. Preflight isolated blood pressure (BP) measurements averaged 138/102. Inflight, the patient electively declined medication. A 36-hour BP monitor revealed an average value of 124/87. Postflight, BP measurements returned to preflight BP values. Case II: A Caucasian quatrogenerian diagnosed with HTN 6 months prior to launch completed flight training after a negative diagnostic workup. The patient was placed on an ACE inhibiter. Preflight BP measurements averaged 130/80. Inflight, isolated BP measurements were considerably less. Normotensive values were obtained postflight. In both cases, BP values inflight were lower than pre or postflight values. Yelle et al has confirmed similar findings in the normotensive astronaut population. Spaceflight may result in fluid shifting, mild dehydration, electrolyte imbalance, orthostatic hypotension, and increased heart rates. Based on these factors, certain classes of antihypertensive agents such as vasodilators, beta-blockers, and diuretics are excluded from consideration as a primary therapeutic modality. To date, Ace Inhibitors are viewed as the more acceptable drug of choice during spaceflight. Newer classes of drugs may also provide additional choices. Presently, astronauts developing uncomplicated HTN may continue their careers when treated with the appropriate class of continue their careers when treated with the appropriate class of antihypertensive medication.
Pilot Field Test: Performance of a Sit-to-Stand Test After Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Phillips, T. R.; Rukavishnikov, I. V.; Kitov, V. V.; Lysova, N. Yu; Lee, S. M. C.; Stenger, M. B.;
2016-01-01
BACKGROUND: Astronauts returning from the International Space Station are met by a team of recovery personnel typically providing physical assistance and medical support immediately upon landing. That is because long-duration spaceflight impacts astronauts' functional abilities. Future expeditions to planets or asteroids beyond the low Earth orbit, however, may require crewmembers to egress the vehicle and perform other types of physical tasks unassisted. It is therefore important to characterize the extent and longevity of functional deficits experienced by astronauts in order to design safe exploration class missions. Pilot Field Test (PFT) experiment conducted with participation of ISS crewmembers traveling on Soyuz expeditions 34S - 41S comprised several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond. METHODS: The first test in the PFT battery sequence, and also the least demanding one from the sensorimotor perspective, was a Sit-to-Stand test. Test subjects were seated in the chair and had to stand up on command and remain standing for ten seconds. The subjects were instructed to stand up unassisted as quickly as they were able to, while maintaining postural control. Synchronized wireless inertial sensors mounted on the head, chest, lower back, wrists, and ankles were used to continuously log body kinematics. Crewmembers' blood pressure and heart rate were monitored and recorded with the Portapres and Polar systems. Each session was recorded with a digital video camera. During data collections occurring within the 24-hour postflight period, crewmembers were also asked to (1) evaluate their perceived motion sickness symptoms on a 20-point scale before and after completion of the test and (2) estimate how heavy they felt compared to their normal (preflight) body weight. Consent to participate in PFT was obtained from 18 crewmembers (11 US Orbital Segment [USOS] astronauts and 7 Russian cosmonauts). For 10 subjects, the first set of data was collected in the medical tent in Soyuz landing zone (1-2 hours after landing); the other 8 subjects were tested at the Kazakhstan deployment airport (4-5 hours after landing). 8 of the 11 astronauts were tested twice more within the first 24 hours postflight, at a refueling stop on the way to Houston (approximately 13 hours after landing) and at the Johnson Space Center (approximately 24 hours after landing). Later postflight data were collected in the first two weeks on some crewmembers. Finally, 6 astronauts were tested 60+ days after landing to establish a delayed baseline. RESULTS/DISCUSSION: Two of the 18 PFT participants felt too ill to attempt any tests in Kazakhstan (at either the landing zone or deployment airport). The remaining test subjects completed the Sit-to-Stand test and their reported motion sickness scores were unaffected by this task. The task completion times and body kinematics data analysis are currently underway. Preliminary analysis of astronaut data shows a steep improvement in the time to complete the task on the second data take, and in some cases, the trend continues through day six postflight. Head and trunk pitch angles and pitch rates were also examined and increases in all measures are evident throughout the observed recovery period (60+ days postflight). Interesting patterns of head and trunk pitch coordination have also emerged. One of the data analysis objectives is comparison of initial postflight performance and recovery of experienced crewmembers and first-time fliers. Another one - possible differences in performance between USOS and Russian crewmembers.
Implementation of COTs Hardware in Non-Critical Space Applications: A Brief Tutorial
NASA Technical Reports Server (NTRS)
Yoder, Geoffrey L.
2004-01-01
Approaches used for manned applications include limited items such as CD-players evaluated for safety to high criticality applications where the COTs hardware is evaluated on a case-by-case basis for the application and commensurate screening and qualification testing. COTS hardware is successfully implemented in both the International Space Station and Space Shuttle but requires evaluation and modifications for the application. Screening and qualification of COTs hardware used in critical applications may need to be more extensive and stringent than traditional military screening. Evaluation for: a) Suitability for the application; b) Safety; c) Reliability and maintainability; and d) Workmanship.
Neuroendocrine and Immune System Responses with Spaceflights
NASA Technical Reports Server (NTRS)
Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.
1996-01-01
Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T-lymphocytes and natural killer cells are decreased with post-flight conditions. Of the lymphokines, interleukin-2 production, lymphocyte responsiveness, and the activity of natural killer cells are consistently reduced post-flight. Limited head-down tilt (HDT) data suggest it is an effective simulation model for microgravity investigations. Neuroendocrine and pharmacological countermeasures are virtually nonexistent arid should become high priority items for future research. Although exercise has the potential to be an effective countermeasure for various neuroen-docrine-immune responses in microgravity, this concept must be tested before flights to Mars are scheduled.
Blaber, Andrew P; Bondar, Roberta L; Kassam, Mahmood S
2004-01-01
Background Upon return from space many astronauts experience symptoms of orthostatic intolerance. Research has implicated altered autonomic cardiovascular regulation due to spaceflight with further evidence to suggest that there might be pre-flight autonomic indicators of post-flight orthostatic intolerance. We used heart rate variability (HRV) to determine whether autonomic regulation of the heart in astronauts who did or did not experience post-flight orthostatic intolerance was different pre-flight and/or was differentially affected by short duration (8 – 16 days) spaceflight. HRV data from ten-minute stand tests collected from the 29 astronauts 10 days pre-flight, on landing day and three days post-flight were analysed using coarse graining spectral analysis. From the total power (PTOT), the harmonic component was extracted and divided into high (PHI: >0.15 Hz) and low (PLO: = 0.15 Hz) frequency power regions. Given the distribution of autonomic nervous system activity with frequency at the sinus node, PHI/PTOT was used as an indicator of parasympathetic activity; PLO/PTOT as an indicator of sympathetic activity; and, PLO/PHI as an estimate of sympathovagal balance. Results Twenty-one astronauts were classified as finishers, and eight as non-finishers, based on their ability to remain standing for 10 minutes on landing day. Pre-flight, non-finishers had a higher supine PHI/PTOT than finishers. Supine PHI/PTOT was the same pre-flight and on landing day in the finishers; whereas, in the non-finishers it was reduced. The ratio PLO/PHI was lower in non-finishers compared to finishers and was unaffected by spaceflight. Pre-flight, both finishers and non-finishers had similar supine values of PLO/PTOT, which increased from supine to stand. Following spaceflight, only the finishers had an increase in PLO/PTOT from supine to stand. Conclusions Both finishers and non-finishers had an increase in sympathetic activity with stand on pre-flight, yet only finishers retained this response on landing day. Non-finishers also had lower sympathovagal balance and higher pre-flight supine parasympathetic activity than finishers. These results suggest pre-flight autonomic status and post-flight impairment in autonomic control of the heart may contribute to orthostatic intolerance. The mechanism by which higher pre-flight parasympathetic activity might contribute to post-flight orthostatic intolerance is not understood and requires further investigation. PMID:15113425
Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G
NASA Technical Reports Server (NTRS)
Recktenwald, M. R.; Hodgson, J. A.; Roy, R. R.; Riazanski, S.; McCall, G. E.; Kozlovskaya, I.; Washburn, D. A.; Fanton, J. W.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)
1999-01-01
Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.
NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a
NASA Technical Reports Server (NTRS)
2001-01-01
NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a spectacular flight of the X-38 prototype for a crew recovery vehicle that may be built for the International Space Station. The X-38 tested atmospheric flight characteristics on December 13, 2001, in a descent from 45,000 feet to Rogers Dry Lake at the NASA Dryden Flight Research Center/Edwards Air Force Base complex in California.
TC-2 post Helios experiment data review. [postflight systems analysis of spacecraft performance
NASA Technical Reports Server (NTRS)
1975-01-01
Data are presented from a systems postflight analysis of the Centaur Launch Vehicle and Helios. Also given is a comparison of data from preflight analyses. Topics examined are: (1) propellant behavior; (2) helium usage; (3) propellant tank pressurization; (4) propellant tank thermodynamics; (5) component heating; thermal control; and thermal protection system; (6) main engine system; (7) H2O2 consumption; (8) boost pump post-meco performance; and (9) an overview of other systems.
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.
1986-01-01
Tests of otolith function were performed pre-flight and post-flight on the science crew of the first Spacelab Mission with a rail-mounted linear acceleration sled. Four tests were performed using horizontal lateral (y-axis) acceleration: perception of linear motion, a closed loop nulling task, dynamic ocular torsion, and lateral eye deviations. The motion perception test measured the time to detect the onset and direction of near threshold accelerations. Post-flight measures of threshold and velocity constant obtained during the days immediately following the mission showed no consistent pattern of change among the four crewmen compared to their pre-flight baseline other than an increased variability of response. In the closed loop nulling task, crewmen controlled the motion of the sled and attempted to null a computer-generated random disturbance motion. When performed in the light, no difference in ability was noted between pre-flight and post-flight. In the dark, however, two of the four crewmen exhibited somewhat enhanced performance post-flight. Dynamic ocular torsion was measured in response to sinusoidal lateral acceleration which produces a gravitionertial stimulus equivalent to lateral head tilt without rotational movement of the head. Results available for two crewmen suggest a decreased amplitude of sinusoidal ocular torsion when measured on the day of landing (R+0) and an increasing amplitude when measured during the week following the mission.
Medical evaluations on the KC-135 1991 flight report summary
NASA Technical Reports Server (NTRS)
Lloyd, Charles W.
1993-01-01
The medical investigations completed on the KC-135 during FY 1991 in support of the development of the Health Maintenance Facility and Medical Operations are presented. The experiments consisted of medical and engineering evaluations of medical hardware and procedures and were conducted by medical and engineering personnel. The hardware evaluated included prototypes of a crew medical restraint system and advanced life support pack, a shuttle orbiter medical system, an airway medical accessory kit, a supplementary extended duration orbiter medical kit, and a surgical overhead canopy. The evaluations will be used to design flight hardware and identify hardware-specific training requirements. The following procedures were evaluated: transport of an ill or injured crewmember at man-tended capability, surgical technique in microgravity, transfer of liquids in microgravity, advanced cardiac life support using man-tended capability Health Maintenance Facility hardware, medical transport using a model of the assured crew return vehicle, and evaluation of delivery mechanisms for aerosolized medications in microgravity. The results of these evaluation flights allow for a better understanding of the types of procedures that can be performed in a microgravity environment.
Prediction of Muscle Performance During Dynamic Repetitive Exercise
NASA Technical Reports Server (NTRS)
Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.
2002-01-01
A method for predicting human muscle performance was developed. Eight test subjects performed a repetitive dynamic exercise to failure using a Lordex spinal machine. Electromyography (EMG) data was collected from the erector spinae. Evaluation of the EMG data using a 5th order Autoregressive (AR) model and statistical regression analysis revealed that an AR parameter, the mean average magnitude of AR poles, can predict performance to failure as early as the second repetition of the exercise. Potential applications to the space program include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and future real-time monitoring capability during Extravehicular Activity.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis was conducted of the space shuttle propulsion systems to define the onboard checkout and monitoring function. A baseline space shuttle vehicle and mission were used to establish the techniques and approach for defining the requirements. The requirements were analyzed to formulate criteria for implementing the functions of preflight checkout, performance monitoring, fault isolation, emergency detection, display, data storage, postflight evaluation, and maintenance retest.
NASA Technical Reports Server (NTRS)
Oman, C. M.; Lichtenberg, B. K.; Mccoy, R. K.; Money, K. E.
1986-01-01
Three cases of motion sickness that occurred on Spacelab-1 are described. The relation between head movements and symptom intensity is examined. The effects of visual, tactile, and proprioceptive orientation cues on motion sickness are studied. The effectiveness of the drugs used is evaluated and it is observed that the drugs reduce the frequency of vomiting and overall discomfort. Preflight and postflight motion sickness susceptibility data are presented.
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Mulavara, Ajitkumar; Peters, Brian T.; Rescheke, Millard F.; Wood, Scott; Lawrence, Emily; Koffman, Igor; Ploutz-Snyder, Lori; Spiering, Barry A.; Feeback, Daniel L.;
2009-01-01
This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.
[Volume Homeostasis and Renal Function in Rats Exposed to Simulated and Actual Microgravity
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.
1993-01-01
This project has investigated mechanisms that influence alterations in compartmental fluid and electrolyte balance in microgravity and evaluates countermeasures to control renal fluid and electrolyte losses. Determining the alterations due to space flight in fluid compartments and renal function is an important component in understanding long term adaptation to spaceflight and the contribution to post-flight orthostatic intolerance. Four definition phase studies and two studies examining neuro-humoral and vascular mechanisms have been completed.
Flight motor set 360L008 (STS-32R). Volume 1: System overview
NASA Technical Reports Server (NTRS)
Garecht, D. M.
1990-01-01
Flight motor set 360L008 was launched as part of NASA space shuttle mission STS-32R. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. All ballistic contract end item specification parameters were verified with the exception of ignition interval and rise rates, which could not be verified due to elimination of developmental flight instrumentation. But the available low sample rate data showed nominal propulsion performance. All ballistic and mass property parameters closely matched the predicted values and were well within the required contract end item specification levels that could be assessed. All field joint heaters and igniter joint heaters performed without anomalies. Redesigned field joint heaters and the redesigned left-hand igniter heater were used on this flight. The changes to the heaters were primarily to improve durability and reducing handling damage. Evaluation of the ground environment instrumentation measurements again verified thermal mode analysis data and showed agreement with predicted environmental effects. No launch commit criteria violation occurred. Postflight inspection again verified superior performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints. Recommendations were made concerning improved thermal modeling and measurements. The rationale for these recommendations and complete result details are presented.
NASA Astrophysics Data System (ADS)
Menicucci, Alessandra; Drolshagen, Gerhard; Kuitunen, Juha; Butenko, Yuriy; Mooney, Cathal
2013-08-01
DEBIE2 (Debris-in-orbit-evaluator) was launched in February 2008 as part of the European Technology Exposure Facility (EuTEF) and installed on the exterior of Columbus on ISS. DEBIE2 is an active detector, composed by 3 sensor units able to monitor the sub-micron micro-meteoroid and debris population in space. Each DEBIE sensor consists of a thin aluminium foil coupled with 2 wire grids sensitive to the plasma generated by particles impacting on the foil where also 2 piezoelectric sensors are glued. If the particle penetrates the foil, this can be detected by a third electron plasma detector located just behind the foil. The combination of these information allows to estimate the micro-particles and debris fluxes. EuTEF and DEBIE2 were retrieved after 18 months in flight and returned to Earth with the Space Shuttle Mission STS-128. In this paper, the results of the analysis of in-flight impact data are presented as well as the comparison with the models. The DEBIE2 sensor pointing the Zenith direction, was found to have one wire of the upper grid cut in two pieces by an impact. The postflight analysis focused on this sensor and included optical and SEM/EDX scanning. The results from this inspection will be also presented in this paper.
Brain structural plasticity with spaceflight.
Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D
2016-01-01
Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.
Preflight, In-Flight, and Postflight Imaging of the Cervical and Lumbar Spine in Astronauts.
Harrison, Michael F; Garcia, Kathleen M; Sargsyan, Ashot E; Ebert, Douglas; Riascos-Castaneda, Roy F; Dulchavsky, Scott A
2018-01-01
Back pain is a common complaint during spaceflight that is commonly attributed to intervertebral disc swelling in microgravity. Ultrasound (US) represents the only imaging modality on the International Space Station (ISS) to assess its etiology. The present study investigated: 1) The agreement and correlation of spinal US assessments as compared to results of pre- and postflight MRI studies; and 2) the trend in intervertebral disc characteristics over the course of spaceflight to ISS. Seven ISS astronauts underwent pre- and postflight US examinations that included anterior disc height and anterior intervertebral angles with comparison to pre- and postflight MRI results. In-flight US images were analyzed for changes in disc height and angle. Statistical analysis included repeated measures ANOVA with Bonferroni post hoc analysis, Bland-Altman plots, and Pearson correlation. Bland-Altman plots revealed significant disagreement between disc heights and angles for MRI and US measurements while significant Pearson correlations were found in MRI and US measurements for lumbar disc height (r2 = 0.83) and angle (r2 = 0.89), but not for cervical disc height (r2 = 0.26) or angle (r2 = 0.02). Changes in anterior intervertebral disc angle-initially increases followed by decreases-were observed in the lumbar and cervical spine over the course of the long-duration mission. The cervical spine demonstrated a loss of total disc height during in-flight assessments (∼0.5 cm). Significant disagreement but significant correlation was noted between US and MRI measurements of disc height and angle. Consistency in imaging modality is important for trending measurements and more research related to US technique is required.Harrison MF, Garcia KM, Sargsyan AE, Ebert D, Riascos-Castaneda RF, Dulchavsky SA. Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp Med Hum Perform. 2018; 89(1):32-40.
Back pain in space and post-flight spine injury: Mechanisms and countermeasure development
NASA Astrophysics Data System (ADS)
Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.
2013-05-01
During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical, metabolic, and kinematic spinal changes in the lumbar spine may aid further development of countermeasures to prevent lumbar back pain in microgravity and reduce the incidence of HNPs post-flight.
2007-06-23
The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.
Flight Analysis of an Autonomously Navigated Experimental Lander for High Altitude Recovery
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Niehaus, Justin; Goodenow, Debra; Dunker, Storm; Montague, David
2016-01-01
First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000ft MSL to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000ft, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000lbs to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the system's performance, gondola load data, and serve as a reference point for subsequent missions.
Flight Analysis of an Autonomously Navigated Experimental Lander
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Niehaus, Justin; Goodenow, Debra; Dunker, Storm; Montague, David
2016-01-01
First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000 feet Mean Sea Level (MSL) to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000 feet, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000 pounds to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the systems performance, gondola load data, and serve as a reference point for subsequent missions.
Traffic Aware Planner (TAP) Flight Evaluation
NASA Technical Reports Server (NTRS)
Maris, John M.; Haynes, Mark A.; Wing, David J.; Burke, Kelly A.; Henderson, Jeff; Woods, Sharon E.
2014-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that has the potential to achieve significant fuel and time savings when it is embedded in the data-rich Next Generation Air Transportation System (NextGen) airspace. To address a key step towards the operational deployment of TAP and the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR), a system evaluation was conducted in a representative flight environment in November, 2013. Numerous challenges were overcome to achieve this goal, including the porting of the foundational Autonomous Operations Planner (AOP) software from its original simulation-based, avionics-embedded environment to an Electronic Flight Bag (EFB) platform. A flight-test aircraft was modified to host the EFB, the TAP application, an Automatic Dependent Surveillance Broadcast (ADS-B) processor, and a satellite broadband datalink. Nine Evaluation Pilots conducted 26 hours of TAP assessments using four route profiles in the complex eastern and north-eastern United States airspace. Extensive avionics and video data were collected, supplemented by comprehensive inflight and post-flight questionnaires. TAP was verified to function properly in the live avionics and ADS-B environment, characterized by recorded data dropouts, latency, and ADS-B message fluctuations. Twelve TAP-generated optimization requests were submitted to ATC, of which nine were approved, and all of which resulted in fuel and/or time savings. Analysis of subjective workload data indicated that pilot interaction with TAP during flight operations did not induce additional cognitive loading. Additionally, analyses of post-flight questionnaire data showed that the pilots perceived TAP to be useful, understandable, intuitive, and easy to use. All program objectives were met, and the next phase of TAP development and evaluations with partner airlines is in planning for 2015.
Zone-forming fungi experiment MA-147
NASA Technical Reports Server (NTRS)
Rogers, T. D.; Taylor, G. R.; Brower, M. E.
1976-01-01
Streptomyces levoris was used as an experimental microorganism during the Apollo Soyuz Test Project to study specific biological considerations that may be influenced by space flight factors. Preflight, inflight, and postflight growth rates of the cultures were compared by photographing the specimens at regular intervals. Preliminary results based on visual comparison of the photographic data indicate that an increased growth rate occurred during space flight in two of eight flight specimens. The increased growth rate continued in the two specimens during the postflight period until termination of the experiment. Radiation effects may be responsible for the absence of spores in two areas of the last spore ring that was formed during the inflight period in one of the flight cultures; however, the radiation studies related to this experiment have not been completed. Distinct morphological differences in spore rings were observed when postflight spore rings were compared with inflight spore rings. Factors that are related to space flight recovery and reentry into earth gravity may have effected these alterations.
Structure and Function of the Snail Statocyst System after a 16-Day Flight on Foton-M-2
NASA Technical Reports Server (NTRS)
Balaban, P. M.; Malyshev, A. Y.; Zakharov, I. S.; Aseev, N. A.; Bravarenko, N. I.; Ierusalimsky, V. N.; Samarova, A. I.; Vorontzov, D. D.; Popova, Y.; Boyle, R.
2006-01-01
In terrestrial gastropod snail Helix lucorum L. we studied the changes after a 16-day exposure to microgravity in: behavior, neural responses to adequate motion stimulation, intersensory interactions between the photosensory pathways and the statocyst receptors, and in expression of the HPeP gene in the statocyst receptors. In behavioral experiments it was found that the latency of body position change to sudden orientation change (flip from horizontal to downwards position) was significantly reduced in the postflight snails. Extracellularly recorded neural responses of the statocyst nerve to adequate motion stimulation in the postflight snails were independent of the motion direction while in the control animals an orientation selectivity was observed. Significant differences in the HPeP gene mRNA expression pattern in the statocyst receptor neurons were observed in postflight (30h) and control snails. Obtained results confirm the possibility to elucidate the influence of microgravity exposure on mechanisms and function of gravireceptors using this simple model animal.
Changes in toe clearance during treadmill walking after long-duration spaceflight.
Miller, Christopher A; Peters, Brian T; Brady, Rachel R; Richards, Jason R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J
2010-10-01
Astronauts exhibit sensorimotor changes upon return from long-duration spaceflight that can result in altered gait kinematics and possibly an increased risk of tripping. Toe trajectory during locomotion is a precise motor control task involving both legs, thus providing a composite metric of locomotor control. The purpose of this study was to determine whether astronauts are at an increased risk of tripping after their return from long-duration spaceflight. This was accomplished by assessing the pre- to postflight changes in toe clearance during treadmill walking. Ten crewmembers walked on a treadmill while performing a visual-acuity task pre- and postflight. In the three subjects on whom landing day data were available, each exhibited a characteristic of increased tripping risk on landing day: either a decreased median toe clearance or an increased interquartile range (a measure of variance). For all crewmembers, toe clearance median and interquartile range were not significantly different from preflight for the other postflight sessions (the earliest being 1 d after landing). A follow-up analysis showed that changes in foot pitch, ankle dorsiflexion, and pelvis roll angles were significant predictors of changes in toe clearance. The landing-day observations indicated an increased risk of tripping, which may pose a hazard during locomotion immediately upon return to Earth, especially in an emergency scenario. However, tripping risk on subsequent days was not different than preflight. The joint angle analysis suggested that the crewmembers tried to reestablish their normal walking pattern postflight, instead of developing a new motor control strategy.
Temperature Regulation in Crewmembers After a 115-Day Space Flight
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Williams, W. J.; Siconolfi, S. F.; Gonzalez, R.; Greenleaf, J. E.; Mikhavlov, V.; Kobzev, Y.; Fortney, S. M.
1996-01-01
Impaired thermoregulation, which has been observed during exercise following bed rest, may significantly impact crewmembers during space flight operations by decreasing exercise capacity and orthostatic tolerance. Impaired temperature regulation would cause higher levels of core temperature, due to an attenuated cutaneous vasodilatory reflex and sweating response, for a given oxygen consumption. Two mate crewmembers of the Mir 18 mission performed supine cycle exercise se (20 min @ 40% and 20 min @ 65% preflight VO2pk) 145 days preflight and 5 days postflight. Core temperature (Tcore) was measured by an ingestible telemetry pill, skin blood flow (SBF) by laser Doppler velocimetry, and sweat rate (SR) by dew point hygrometry. Tcore at the time of test termination was similar (37.8 C) for both subjects before and after flight despite a shorter test duration (40 vs 28-29 minutes) postflight. The slopes of the SBF/Tcore relationship (Subj 1: 396 vs 214; Subj 2: 704 vs 143 Perfusion Unit/degC) and SR/Tcore relationship (Subj 1: 4.5 vs 2.1; Subj 2: 11.0 vs 3.6mg/min/sq cm/degC) were reduced postflight. Tcore thresholds for both SR (Subj 1: 37.4 vs 37.6; Subj 2: 37.6 vs 37.6 C) and SBF (Subj 1: 37.3 vs 37.5; Subj 2: 37.6 vs 37.7 C) were similar pre- to postflight. For these 2 crewmembers, it appeared that thermoregulation during exercise was impaired as evidenced by compromised heat loss responses after long-duration space flight.
Circulating parathyroid hormone and calcitonin in rats after spaceflight
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Fung, Paul; Popova, Irina A.; Morey-Holton, Emily R.; Grindeland, Richard E.
1992-01-01
Parathyroid hormone and calcithonin, two major calcium-regulating hormones, were measured in the plasma of five experimental groups of rats to evaluate postflight calcium homeostasis after the 14-day Cosmos 2044 flight. Parathyroid hormone values were slightly higher in the flight animals (F) than in the appropriate cage and diet controls (S) (44 +/- 21 vs 21 +/- 4 pg/ml, P less than 0.05), but they were the same as in the vivarium controls (V), which had different housing and feeding schedules. The difference in F and V (22 +/- 11 vs 49 +/- 16 pg/ml, P less than 0.05) was most likely due to failure of circulating calcitonin in F to show the normal age-dependent increase which was demonstrated in age-matched controls in a separate experiment. Basal values for parathyroid hormone and calcitonin were unchanged after 2 wk of hindlimb suspension, a flight simulation model, in age-matched and younger rats. From a time course experiment serum calcium was higher and parathyroid hormone lower after 4 wk than in ambulatory controls. Postflight circulating levels of parathyroid hormone appear to reflect disturbances in calcium homeostasis from impaired renal function of undetermined cause, whereas levels of calcitonin reflect depression of a normal growth process.
Development of Training Programs to Optimize Planetary Ambulation
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Miller, C. A.; Brady, R.; Warren, L. E.; Rutley, T. M.; Kozlovskaya, I. B.
2007-01-01
Astronauts experience disturbances in functional mobility following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. Despite significant time spent performing in-flight exercise routines, these training programs have not been able to mitigate postflight alterations in postural and locomotor function. Therefore, the goal of our two inter-related projects (NSBRI-ground based and ISS flight study, "Mobility") is to develop and test gait training programs that will serve to optimize functional mobility during the adaptation period immediately following space flight, thereby improving the safety and efficiency of planetary ambulation. The gait training program entails manipulating the sensory conditions of treadmill exercise to systematically challenge the balance and gait control system. This enhances the overall adaptability of locomotor function enabling rapid reorganization of gait control to respond to ambulation in different gravitational environments. To develop the training program, we are conducting a series of ground-based studies evaluating the training efficacy associated with variation in visual flow, body loading, and support surface stability during treadmill walking. We will also determine the optimal method to present training stimuli within and across training sessions to maximize both the efficacy and efficiency of the training procedure. Results indicate that variations in both visual flow and body unloading during treadmill walking leads to modification in locomotor control and can be used as effective training modalities. Additionally, the composition and timing of sensory challenges experienced during each training session has significant impact on the ability to rapidly reorganize locomotor function when exposed to a novel sensory environment. We have developed the capability of producing support surface variation during gait training by mounting a treadmill on a six-degree-of-freedom motion device. This hardware development will allow us to evaluate the efficacy of this type of training in conjunction with variation in visual flow and body unloading.
Evaluation of methods for determining hardware projected life
NASA Technical Reports Server (NTRS)
1971-01-01
An investigation of existing methods of predicting hardware life is summarized by reviewing programs having long life requirements, current research efforts on long life problems, and technical papers reporting work on life predicting techniques. The results indicate that there are no accurate quantitative means to predict hardware life for system level hardware. The effectiveness of test programs and the cause of hardware failures is considered.
Space processing applications rocket project SPAR 4, engineering report
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler)
1980-01-01
The materials processing experiments in space, conducted on the SPAR 4 Black Brant VC rocket, are described and discussed. The SPAR 4 payload configuration, the rocket performance, and the flight sequence are reported. The results, analyses, and anomalies of the four experiments are discussed. The experiments conducted were the uniform dispersions of crystallization processing, the contained polycrstalline solidification in low gravity, the containerless processing of ferromagnetic materials, and the containerless processing technology. The instrumentation operations, payload power relay anomaly, relay postflight operational test, and relay postflight shock test are reported.
NASA Technical Reports Server (NTRS)
Brinker, David J.; Hickey, John R.; Scheiman, David A.
1993-01-01
The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.
Cardiovascular responses to microgravity - Adaptation, maladjustment, and countermeasures
NASA Technical Reports Server (NTRS)
Gaffney, F. Andrew
1989-01-01
Humans have worked in space for up to 237 days without significant inflight limitations, although major cardiovascular disability is seen following space flight of even a few days duration. Most of the cardiovascular research on microgravity deconditioning has been observational in character. Detailed studies of mechanisms and causes of postflight exercise intolerance, low blood pressure and fainting in astronauts and cosmonauts have not been done, despite almost 30 years of manned space flight. A review of possible mechanisms of postflight cardiovascular deconditioning and directions for study is provided.
Apollo experience report: Flight anomaly resolution
NASA Technical Reports Server (NTRS)
Lobb, J. D.
1975-01-01
The identification of flight anomalies, the determination of their causes, and the approaches taken for corrective action are described. Interrelationships of the broad range of disciplines involved with the complex systems and the team concept employed to ensure timely and accurate resolution of anomalies are discussed. The documentation techniques and the techniques for management of anomaly resolution are included. Examples of specific anomalies are presented in the original form of their progressive documentation. Flight anomaly resolution functioned as a part of the real-time mission support and postflight testing, and results were included in the postflight documentation.
Hematology and immunology studies - The second manned Skylab mission
NASA Technical Reports Server (NTRS)
Kimzey, S. L.; Johnson, P. C.; Ritzman, S. E.; Mengel, C. E.
1976-01-01
The hematologic and immunologic functions of the Skylab 3 astronauts were monitored during the preflight, inflight, and postflight phases of the mission. Plasma protein profiles showed high consistency in all phases. A transient suppression of lymphocyte responsiveness was observed postflight. A reduction in the circulating blood volume due to drops in both the plasma volume and red cell mass was found. The loss of red cell mass is most likely a suppressed erythrypoiesis. The functional integrity of the circulating red cells did not appear to be compromised in the course of flight.
2007-06-25
Lit by sunlight filtered through the smoke of a distant forest fire, the Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.
Development of low cost custom hybrid microcircuit technology
NASA Technical Reports Server (NTRS)
Perkins, K. L.; Licari, J. J.
1981-01-01
Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.
Role of premission testing in the National Missile Defense system
NASA Astrophysics Data System (ADS)
Tillman, Janice V.; Atkinson, Beverly
2001-09-01
The purpose of the National Missile Defense (NMD) system is to provide detection, discrimination, engagement, interception, and negation of ballistic missile attacks targeted at the United States (U.S.), including Alaska and Hawaii. This capability is achieved through the integration of weapons, sensors, and a battle management, command, control and communications (BMC3) system. The NMD mission includes surveillance, warning, cueing, and engagement of threat objects prior to potential impact on U.S. targets. The NMD Acquisition Strategy encompasses an integrated test program using Integrated Ground Tests (IGTs), Integrated Flight Tests (IFTs), Risk Reduction Flights (RRFs), Pre Mission Tests (PMTs), Command and Control (C2) Simulations, and other Specialty Tests. The IGTs utilize software-in-the-loop/hardware-in-the-loop (SWIL / HWIL) and digital simulations. The IFTs are conducted with targets launched from Vandenberg Air Force Base (VAFB) and interceptors launched from Kwajalein Missile Range (KMR). The RRFs evaluate NMD BMC3 and NMD sensor functional performance and integration by leveraging planned Peacekeeper and Minuteman III operational test flights and other opportunities without employing the NMD interceptor. The PMTs are nondestructive System-level tests representing the use of NMD Element Test Assets in their IFT configuration and are conducted to reduce risks in achieving the IFT objectives. Specifically, PMTs are used to reduce integration, interface, and performance risks associated with Flight Tests to ensure that as much as possible, the System is tested without expending a target or an interceptor. This paper examines several critical test planning and analysis functions as they relate to the NMD Integrated Flight Test program and, in particular, to Pre-Mission Testing. Topics to be discussed include: - Flight-test program planning; - Pre-Test Integration activities; and - Test Execution, Analysis, and Post-Flight Reconstruction.
Flight Motor Set 360T010 (STS-31R). Volume 1: System Overview
NASA Technical Reports Server (NTRS)
Garecht, Diane
1990-01-01
Flight motor set 360T010 was launched at approximately 7:34 a.m. CST (090:114:12:33:50.990 GMT) on 24 Apr. 1990 after one launch attempt (attempt on 10 Apr. 1990 was scrubbed following an indication of erratic operation of the Orbiter No. 1 Auciliary Power Unit No. 1). There were no problems with the solid rocket motor launches, overall motor performance was excellent. There were no debris concerns from either motor. Nearly all ballistic contract end item specification parameters were verified with the exception of ignition interval, pressure rise rate, and ignition time thrust imbalance. These could not be verified due to elimination of developmental flight instrumentation on 360L004 (STS-30R) and subsequent, but low sample rate data that were available showed nominal propulsion performance. All ballistic and mass property parameters that could be assessed closely matched the predicted values and were well within the required contract end item specification levels. All field joint heaters and igniter joint heaters performed without anomalies. Evaluation of the ground environment instrumentation measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria violations occurred. Postflight inspection again verified nominal performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints.
Flight motor set 360L007 (STS-33R)
NASA Technical Reports Server (NTRS)
Garecht, Diane
1990-01-01
Flight motor set 360L007 was launched as part of NASA space shuttle mission STS-33R. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. There were no debris concerns for either motor. Both motors exhibited unbonds on one factory joint weatherseal. All ballistics contract end item specification parameters were verified, with the exception of ignition interval and rise rates. Ignition interval and rise rates could not be verified due to the elimination of developmental flight instrumentation from fourth flight and subsequent, but the low sample rate data that were available showed nominal propulsion performance. All ballistic and mass property parameters closely matched the predicted values and were well within the required contract end item specification levels that could be assessed. All 108 Ground Environment Instrumentation (GEI) measurements performed properly throughout the prelaunch phase. Evaluation of the GEI measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria thermal violations occurred. All joint heaters operated normally, but a high voltage reading was noted on the left hand aft heater, which was immediately determined to be a voltage sensor error and not a heater anomaly due to no current increase. Postflight inspection again verified superior performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints.
NASA Technical Reports Server (NTRS)
Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William
1999-01-01
Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.
Oxidant damage during and after spaceflight
NASA Technical Reports Server (NTRS)
Stein, T. P.; Leskiw, M. J.
2000-01-01
The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.
Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres
Widrick, J J; Knuth, S T; Norenberg, K M; Romatowski, J G; Bain, J L W; Riley, D A; Karhanek, M; Trappe, S W; Trappe, T A; Costill, D L; Fitts, R H
1999-01-01
Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 ± 0.02 vs. 0.99 ± 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 ± 0.02 vs. 0.64 ± 0.02 fibre lengths s−1) than pre-flight type I fibres. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (μN (fibre length) s−1). The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power. PMID:10200437
Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres
NASA Technical Reports Server (NTRS)
Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.;
1999-01-01
1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power.
Measuring human performance on NASA's microgravity aircraft
NASA Technical Reports Server (NTRS)
Morris, Randy B.; Whitmore, Mihriban
1993-01-01
Measuring human performance in a microgravity environment will aid in identifying the design requirements, human capabilities, safety, and productivity of future astronauts. The preliminary understanding of the microgravity effects on human performance can be achieved through evaluations conducted onboard NASA's KC-135 aircraft. These evaluations can be performed in relation to hardware performance, human-hardware interface, and hardware integration. Measuring human performance in the KC-135 simulated environment will contribute to the efforts of optimizing the human-machine interfaces for future and existing space vehicles. However, there are limitations, such as limited number of qualified subjects, unexpected hardware problems, and miscellaneous plane movements which must be taken into consideration. Examples for these evaluations, the results, and their implications are discussed in the paper.
Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation
NASA Technical Reports Server (NTRS)
Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.
2010-01-01
INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The results demonstrate astronauts adaptive capabilities and full performance recovery within days after flight.
Chang, Douglas G; Healey, Robert M; Snyder, Alexander J; Sayson, Jojo V; Macias, Brandon R; Coughlin, Dezba G; Bailey, Jeannie F; Parazynski, Scott E; Lotz, Jeffrey C; Hargens, Alan R
2016-12-15
Prospective case series. Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station. The long-term objective of this project is to promote spine health and prevent spinal injury during space missions and here on Earth. National Aeronautics and Space Administration (NASA) crewmembers have a 4.3 times higher risk of herniated IVDs, compared with the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in approximately 5 cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Six NASA crewmembers were imaged supine with a 3 Tesla magnetic resonance imaging. Imaging was conducted preflight, immediately postflight, and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle, and posterior sections of all lumbar levels. Repeated measures analysis of variance was used to determine significance at P < 0.05, followed by post-hoc testing. Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the postflight loss occurred during the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared with preflight values. In contrast, lumbar IVD heights were not appreciably different at any time point. The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days postflight in a terrestrial environment, but it remained incomplete compared with preflight levels. 4.
NASA Technical Reports Server (NTRS)
Fisher, E. A.; Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.; Harm, D. L.
2010-01-01
INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postflight ataxia can be quantified easily by using the walk on the floor line test with the eyes closed (WOFEC). Data from a modified WOFEC were obtained as part of an ongoing interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both postflight functional performance of astronauts and related physiological changes. METHODS Five astronauts with flight durations of 12 to 16 days participated in this study. Performance measurements were obtained in 2 preflight sessions, on landing day, and 1, 6, and 30 days after landing. The WOFEC test consisted of walking with the feet placed heel to toe in tandem, arms folded across the chest and eyes closed, for 10 steps. A trial was initiated after the eyes were closed and the front foot was aligned with the rear foot. The performance metric was the average percentage of correct steps completed over 3 trials. A step was not counted as correct if the crewmember sidestepped, opened eyes, or paused for more than 3 seconds between steps. Step accuracy was scored independently by 3 examiners. RESULTS Immediately after landing subjects seemed to be unaware of their foot position relative to their body or the floor. The percentage of correct steps was significantly decreased on landing day. Partial recovery was observed the next day, and full recovery to baseline on the sixth day post landing. CONCLUSION These data clearly demonstrate the sensorimotor challenges facing crewmembers after they return from space flight. Although this simple test is intended to complement the FTT battery of tests, it has some stand-alone value as it provides investigators with a means to quantify vestibular ataxia as well as provide instant feedback on postural stability without the use of complex test equipment.
Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Navidi, Meena; Deftos, Leonard; Thierry-Palmer, Myrtle; Dotsenko, Rita; Bigbee, Allison; Grindeland, Richard E.
2002-01-01
The calcium endocrine system of nonhuman primates can be influenced by chairing for safety and the weightless environment of spaceflight. The serum of two rhesus monkeys flown on the Bion 11 mission was assayed pre- and postflight for vitamin D metabolites, parathyroid hormone, calcitonin, parameters of calcium homeostasis, cortisol, and indexes of renal function. Results were compared with the same measures from five monkeys before and after chairing for a flight simulation study. Concentrations of 1,25-dihydroxyvitamin D were 72% lower after the flight than before, and more than after chairing on the ground (57%, P < 0.05). Decreases in parathyroid hormone did not reach significance. Calcitonin showed modest decreases postflight (P < 0.02). Overall, effects of spaceflight on the calcium endocrine system were similar to the effects of chairing on the ground, but were more pronounced. Reduced intestinal calcium absorption, losses in body weight, increases in cortisol, and higher postflight blood urea nitrogen were the changes in flight monkeys that distinguished them from the flight simulation study animals.
NASA Technical Reports Server (NTRS)
Yates, B. J.; Kerman, I. A.
1998-01-01
Even after short spaceflights, most astronauts experience at least some postflight reduction of orthostatic tolerance; this problem is severe in some subjects. The mechanisms leading to postflight orthostatic intolerance are not well-established, but have traditionally been thought to include the following: changes in leg hemodynamics, alterations in baroreceptor reflex gain, decreases in exercise tolerance and aerobic fitness, hypovolemia, and altered sensitivity of beta-adrenergic receptors in the periphery. Recent studies have demonstrated that signals from vestibular otolith organs play an important role in regulating blood pressure during changes in posture in a 1-g environment. Because spaceflight results in plastic changes in the vestibular otolith organs and in the processing of inputs from otolith receptors, it is possible that another contributing factor to postflight orthostatic hypotension is alterations in the gain of vestibular influences on cardiovascular control. Preliminary data support this hypothesis, although controlled studies will be required to determine the relationship between changes in the vestibular system and orthostatic hypotension following exposure to microgravity. Copyright 1998 Elsevier Science B.V.
Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL-3 rats
NASA Technical Reports Server (NTRS)
Roberts, W. E.; Fielder, P. J.; Rosenoer, L. M.; Maese, A. C.; Gonsalves, M. R.; Morey, E. R.; Morey-Holton, E. R. (Principal Investigator)
1987-01-01
Five small (55 days old, 196 +/- 5 g) (mean +/- SE) and five large (83 days old, 382 +/- 4 g) Sprague-Dawley strain, specific pathogen-free rats were exposed to a 7-day spaceflight and 12-h postflight recovery period. As measured in 3-micron sections, periodontal ligament (PDL) fibroblastlike cells were classified according to nuclear size: A + A' (40-79), B (80-119), C (120-169), and D (greater than or equal to 170 microns 3). Since the histogenesis sequence is A----A'----C----D----osteoblast, the relative incidence of A + A' to C + D is an osteogenic index. No difference in A + A' or C + D cells in small rats may reflect partial recovery of preosteoblast formation (A----C) during the 12-h postflight period. Large flight rats demonstrated increased numbers of A + A', indicating an inhibition of preosteoblast formation (A----C). At least in the older group, a 7-day flight is adequate to reduce PDL osteogenic potential (inhibition in PDL osteoblast differentiation and/or specific attrition of C + D cells) that does not recover by 12-h postflight.
Operations to Research: Communication of Lessons Learned
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2009-01-01
This presentation explores ways to build upon previous spaceflight experience and communicate this knowledge to prepare for future exploration. An operational approach is highlighted, focusing on selection and retention standards (disease screening and obtaining medical histories); pre-, in-, and post-flight monitoring (establishing degrees of bone loss, skeletal muscle loss, cardiovascular deconditioning, medical conditions, etc.); prevention, mitigation, or treatment (in-flight countermeasures); and, reconditioning, recovery, and reassignment (post-flight training regimen, return to pre-flight baseline and flight assignment). Experiences and lessons learned from the Apollo, Skylab, Shuttle, Shuttle-Mir, International Space Station, and Orion missions are outlined.
NASA Technical Reports Server (NTRS)
Demboski, John T.; Pilmanis, Andrew A.
1994-01-01
In both the aviation and space environments, decompression sickness (DCS) is an operational limitation. Hyperbaric recompression is the most efficacious treatment for altitude DCS. However, the inherent recompression of descent to ground level while breathing oxygen is in itself therapy for altitude DCS. If pain-only DCS occurs during a hypobaric exposure, and the symptoms resolver during descent, ground level post-flight breathing of 100% O2 for 2 hours (GLO2) is considered sufficient treatment by USAF Regulation 161-21. The effectiveness of the GLO2 treatment protocol is defined.
Apollo 13 Debrief - Postflight
1970-04-21
S70-35747 (20 April 1970) --- The three crew men of the problem plagued Apollo 13 mission are photographed during the first day of their postflight debriefing activity at the Manned Spacecraft Center (MSC). Left to right, are astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot. The apparent rupture of oxygen tank number two in the Apollo 13 Service Module (SM) and the subsequent damage forced the three astronauts to use the Lunar Module (LM) as a "lifeboat" to return home safely after their moon landing was canceled.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.;
2011-01-01
Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.
The Western Aeronautical Test Range. Chapter 10 Tools
NASA Technical Reports Server (NTRS)
Knudtson, Kevin; Park, Alice; Downing, Robert; Sheldon, Jack; Harvey, Robert; Norcross, April
2011-01-01
The Western Aeronautical Test Range (WATR) staff at the NASA Dryden Flight Research Center is developing a translation software called Chapter 10 Tools in response to challenges posed by post-flight processing data files originating from various on-board digital recorders that follow the Range Commanders Council Inter-Range Instrumentation Group (IRIG) 106 Chapter 10 Digital Recording Standard but use differing interpretations of the Standard. The software will read the date files regardless of the vendor implementation of the source recorder, displaying data, identifying and correcting errors, and producing a data file that can be successfully processed post-flight
[Study of the growth and development of Chlorella on "Kosmos-1887"].
Sychev, V N; Levinskikh, M A; Livanskaia, O G
1989-01-01
The growth, development and population characteristics of Chlorella cells flown for 13 days in space were investigated during their postflight cultivation. The growth rate of flown algae did not differ from that of ground-based controls in terms of increases in the cell number and biomass. All basic parameters of the specimens (generation time, number of developing autospores, time ratio of developmental phases) were ontogentically normal. Exposure of the algae to space flight as a component of the algobacterial cenosis--fish autotrophic-heterotrophic system produced no significant effect of the population or individual specimens during their postflight cultivation.
Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.
2011-01-01
Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.
Cardiovascular function in space flight
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.
1990-01-01
Postflight orthostatic intolerance and cardiac hemodynamics associated with manned space flight have been investigated on seven STS missions. Orthostatic heart rates appear to be influenced by the mission duration. The rates increase during the first 7-10 days of flight and recover partially after that. Fluid loading is used as a countermeasure to the postflight orthostatic intolerance. The carotid baroreceptor function shows only slight responsiveness to orthostatic stimulation. Plots of the baroreceptor function are presented. It is concluded that an early adaptation to the space flight conditions involves a fluid shift and that the subsequent alterations in the neutral controlling mechanisms contribute to the orthoststic intolerance.
MSFC Skylab corollary experiment systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
Evaluations are presented of the performances of corollary experiment hardware developed by the George C. Marshall Space Flight Center and operated during the three manned Skylab missions. Also presented are assessments of the functional adequacy of the experiment hardware and its supporting systems, and indications are given as to the degrees by which experiment constraints and interfaces were met. It is shown that most of the corollary experiment hardware performed satisfactorily and within design specifications.
Flight Set 360T004 (STS-30) Insulation Component, Interim Release, Volume 3
NASA Technical Reports Server (NTRS)
Passman, James A.
1989-01-01
The insulation component of the Redesigned Solid Rocket Motor (RSRM) is discussed. The results of all visual evaluations and a thermal safety factor analysis are given. The data contained here supersedes the interim release and the insulation data presented in the Clearfield 10 day report. The objective is to document the postflight condition of the internal and external insulation of nozzle to case joints, the case field joints, the igniter to case joints, and the acreage insulation which made up RSRM-4A and RSRM-4B.
Neuromapping: Inflight Evaluation of Cognition and Adaptability
NASA Technical Reports Server (NTRS)
Kofman, I. S.; De Dios, Y. E.; Lawrence, K.; Schade, A.; Reschke, M. F.; Bloomberg, J. J.; Wood, S. J.; Mulavara, A. P.; Seidle, R. D.
2016-01-01
In consideration of the health and performance of crewmembers during flight and postflight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Previous studies investigating sensorimotor adaptation to the microgravity environment longitudinally inflight have shown reduction in the ability to perform complex dual tasks. In this study we perform a series of tests investigating the longitudinal effects of adaptation to the microgravity environment and how it affects spatial cognition, manual visuo-motor adaption and dual tasking.
Hematology and immunology studies
NASA Technical Reports Server (NTRS)
Kimzey, S. L.
1977-01-01
A coordinated series of experiments were conducted to evaluate immunologic and hemotologic system responses of Skylab crewmen to prolonged space flights. A reduced PHA responsiveness was observed on recovery, together with a reduced number of T-cells, with both values returning to normal 3 to 5 days postflight. Subnormal red cell count, hemoglobin concentration, and hematocrit values also returned gradually to preflight limits. Most pronounced changes were found in the shape of red blood cells during extended space missions with a rapid reversal of these changes upon reentry into a normal gravitational environment.
EVA Training and Development Facilities
NASA Technical Reports Server (NTRS)
Cupples, Scott
2016-01-01
Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.
Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Alewine, Neal Jon
1993-01-01
Multiple instruction rollback (MIR) is a technique to provide rapid recovery from transient processor failures and was implemented in hardware by researchers and slow in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs were also developed which remove rollback data hazards directly with data flow manipulations, thus eliminating the need for most data redundancy hardware. Compiler-assisted techniques to achieve multiple instruction rollback recovery are addressed. It is observed that data some hazards resulting from instruction rollback can be resolved more efficiently by providing hardware redundancy while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations were conducted which indicate improved efficiency over previous hardware-based and compiler-based schemes. Various enhancements to the compiler transformations and to the data redundancy hardware developed for the compiler-assisted MIR scheme are described and evaluated. The final topic deals with the application of compiler-assisted MIR techniques to aid in exception repair and branch repair in a speculative execution architecture.
Field evaluation of highway safety hardware maintenance guidelines.
DOT National Transportation Integrated Search
1987-01-01
The objective of this study was to evaluate with field tests, a procedure developed for the Federal Highway Administration for determining frequencies at which highway safety hardware needs to be inspected and repaired. The frequencies arrived at wer...
Evaluation of the electromechanical properties of the cardiovascular system
NASA Technical Reports Server (NTRS)
Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.
1974-01-01
Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.
STS-40 descent BET products: Development and results
NASA Technical Reports Server (NTRS)
Oakes, Kevin F.; Wood, James S.; Findlay, John T.
1991-01-01
Descent Best Estimate Trajectory (BET) Data were generated for the final Orbiter Experiments Flight, STS-40. This report discusses the actual development of these post-flight products: the inertial BET, the Extended BET, and the Aerodynamic BET. Summary results are also included. The inertial BET was determined based on processing Tracking and Data Relay Satellite (TDRSS) coherent Doppler data in conjunction with observations from eleven C-band stations, to include data from the Kwajalein Atoll and the usual California coastal radars, as well as data from five cinetheodolite cameras in the vicinity of the runways at EAFB. The anchor epoch utilized for the trajectory reconstruction was 53,904 Greenwich Mean Time (GMT) seconds which corresponds to an altitude at epoch of approximately 708 kft. Atmospheric data to enable development of an Extended BET for this mission were upsurped from the JSC operational post-flight BET. These data were evaluated based on Space Shuttle-derived considerations as well as model comparisons. The Aerodynamic BET includes configuration information, final mass properties, and both flight-determined and predicted aerodynamic performance estimates. The predicted data were based on the final pre-operational databook, updated to include flight determined incrementals based on an earlier ensemble of flights. Aerodynamic performance comparisons are presented and correlated versus statistical results based on twenty-two previous missions.
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
Posturography and locomotor tests of dynamic balance after long-duration spaceflight.
Cohen, Helen S; Kimball, Kay T; Mulavara, Ajitkumar P; Bloomberg, Jacob J; Paloski, William H
2012-01-01
The currently approved objective clinical measure of standing balance in astronauts after space flight is the Sensory Organization Test battery of computerized dynamic posturography. No tests of walking balance are currently approved for standard clinical testing of astronauts. This study determined the sensitivity and specificity of standing and walking balance tests for astronauts before and after long-duration space flight. Astronauts were tested on an obstacle avoidance test known as the Functional Mobility Test (FMT) and on the Sensory Organization Test using sway-referenced support surface motion with eyes closed (SOT 5) before and six months after (n=15) space flight on the International Space Station. They were tested two to seven days after landing. Scores on SOT tests decreased and scores on FMT increased significantly from pre- to post-flight. In other words, post-flight scores were worse than pre-flight scores. SOT and FMT scores were not significantly related. ROC analyses indicated supra-clinical cut-points for SOT 5 and for FMT. The standard clinical cut-point for SOT 5 had low sensitivity to post-flight astronauts. Higher cut-points increased sensitivity to post-flight astronauts but decreased specificity to pre-flight astronauts. Using an FMT cut-point that was moderately highly sensitive and highly specific plus SOT 5 at the standard clinical cut-point was no more sensitive than SOT 5, alone. FMT plus SOT 5 at higher cut-points was more specific and more sensitive. The total correctly classified was highest for FMT, alone, and for FMT plus SOT 5 at the highest cut-point. These findings indicate that standard clinical comparisons are not useful for identifying problems. Testing both standing and walking balance will be more likely to identify balance deficits.
Multiple latent viruses reactivate in astronauts during Space Shuttle missions.
Mehta, S K; Laudenslager, M L; Stowe, R P; Crucian, B E; Sams, C F; Pierson, D L
2014-10-01
Latent virus reactivation and diurnal salivary cortisol and dehydroepiandrosterone were measured prospectively in 17 astronauts (16 male and 1 female) before, during, and after short-duration (12-16 days) Space Shuttle missions. Blood, urine, and saliva samples were collected during each of these phases. Antiviral antibodies and viral load (DNA) were measured for Epstein-Barr virus (EBV), varicella-zoster virus (VZV), and cytomegalovirus (CMV). Three astronauts did not shed any virus in any of their samples collected before, during, or after flight. EBV was shed in the saliva in all of the remaining 14 astronauts during all 3 phases of flight. Seven of the 14 EBV-shedding subjects also shed VZV during and after the flight in their saliva samples, and 8 of 14 EBV-shedders also shed CMV in their urine samples before, during, and after flight. In 6 of 14 crewmembers, all 3 target viruses were shed during one or more flight phases. Both EBV and VZV DNA copies were elevated during the flight phase relative to preflight or post-flight levels. EBV DNA in peripheral blood was increased preflight relative to post-flight. Eighteen healthy controls were also included in the study. Approximately 2-5% of controls shed EBV while none shed VZV or CMV. Salivary cortisol measured preflight and during flight were elevated relative to post-flight. In contrast DHEA decreased during the flight phase relative to both preflight and post-flight. As a consequence, the molar ratio of the area under the diurnal curve of cortisol to DHEA with respect to ground (AUCg) increased significantly during flight. This ratio was unrelated to viral shedding. In summary, three herpes viruses can reactivate individually or in combination during spaceflight. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.
2000-01-01
BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.
Post Flight Reconditioning for US Astronauts Returning from the International Space Station
NASA Technical Reports Server (NTRS)
Nieschwitz, Bruce; Guilliams, Mark E.; Hoellen, David; Loehr, Jim
2011-01-01
Prior to spaceflight, each astronaut undergoes medical requirement testing to establish a preflight baseline for physiologic functions. Astronauts returning from the International Space Station can experience deficits in all or some of the following areas: aerobic capacity, muscular strength, power, endurance, stamina, bone, balance, agility, coordination, orthostatic tolerances, proprioception, neurovestibular function and flexibility. These losses occur from living in microgravity and are consistent with deficits seen in terrestrial, de-conditioning individuals. Since 2001, the Astronaut Strength, Conditioning and Rehabilitation (ASCR) specialists have administered a reconditioning program, focusing on all deficits, which improves the physical condition of all returning astronauts. In most cases, astronauts have reached or surpassed their preflight physical condition. Purpose: This presentation will describe and explain the postflight reconditioning program for returning astronauts. Methods: The postflight reconditioning program is designed to stress the body systems that affect the following: aerobic capacity, muscular strength, power, endurance, stamina, bone, balance, agility, coordination, orthostatic tolerances, proprioception, neurovestibular function and flexibility. Postflight reconditioning begins on landing day, is scheduled for two hours per day, 7 days a week for 45 days and is tailored to the specific needs of the astronaut. Initially the program focuses on basic ambulation, cardiovascular endurance, strength, balance, flexibility and proprioception. The program advances through 45 days and specific attention is given to each astronaut s overall condition, testing results, medical status, and assigned duties after their mission. Conclusion: Astronauts will experience noticeable deficits in their physical condition after living in microgravity for an extended length of time. After completing postflight reconditioning, it is shown that astronauts have regained, and in most cases improved upon, their preflight baseline condition.
Impaired cerebrovascular autoregulation and reduced CO₂ reactivity after long duration spaceflight.
Zuj, K A; Arbeille, Ph; Shoemaker, J K; Blaber, A P; Greaves, D K; Xu, D; Hughson, R L
2012-06-15
Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO(2). Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 ± 49 days on ISS. Preflight testing (30-60 days before launch) was compared with postflight testing on landing day (n = 4) or the morning 1 (n = 2) or 2 days (n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BP(MCA)) and expired CO(2) were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BP(MCA)/CBFV). Cerebrovascular autoregulation and CO(2) reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO(2) were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during -20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BP(MCA) (P = 0.017). The postflight responses to CO(2) were reduced for CBFV (P = 0.056) and CVRi (P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO(2) reactivity.
Distributed digital signal processors for multi-body structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K.
1990-01-01
Several digital filter designs were investigated which may be used to process sensor data from large space structures and to design digital hardware to implement the distributed signal processing architecture. Several experimental tests articles are available at NASA Langley Research Center to evaluate these designs. A summary of some of the digital filter designs is presented, an evaluation of their characteristics relative to control design is discussed, and candidate hardware microcontroller/microcomputer components are given. Future activities include software evaluation of the digital filter designs and actual hardware inplementation of some of the signal processor algorithms on an experimental testbed at NASA Langley.
Materials And Processes Technical Information System (MAPTIS) LDEF materials database
NASA Technical Reports Server (NTRS)
Davis, John M.; Strickland, John W.
1992-01-01
The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.
Comparison of Spacecraft Contamination Models with Well-Defined Flight Experiment
NASA Technical Reports Server (NTRS)
Pippin, G. H.
1998-01-01
The report presents analyzed surface areas on particular experiment trays from the Long Duration Exposure Facility (LDEF) for silicone-based molecular contamination. The trays for examination were part of the Ultra-Heavy Cosmic Ray Experiment (UHCRE). These particular trays were chosen because each tray was identical to the others in construction, and the materials on each tray were well known, documented, and characterized. In particular, a known specific source of silicone contamination was present on each tray. Only the exposure conditions varied from tray to tray. The results of post-flight analyses of surfaces of three trays were compared with the predictions of the three different spacecraft molecular contamination models. Phase one tasks included: 1) documenting the detailed geometry of the hardware; 2) determining essential properties of the anodized aluminum, Velcro(Tm), silverized Teflon(Tm), silicone gaskets, and DC6-1104(Tm) silicone adhesive materials used to make the trays, tray covers, and thermal control blankets; 3) selecting and removing areas from each tray; and 4) beginning surface analysis of the selected tray walls. Phase two tasks included: 1) completion of surface analysis measurements of the selected tray surface, 2) obtaining auger depth profiles at selected locations, and 3) running versions of the ISEM, MOFLUX, and PLIMP (Plume Impingement) contamination prediction models and making comparisons with experimental results.
Space Shuttle Program: STS-1 Medical Report
NASA Technical Reports Server (NTRS)
1981-01-01
The necessity for developing medical standards addressing individual classes of Shuttle crew positions is discussed. For the U.S. manned program the conclusion of the Apollo era heralded the end of water recovery operations and the introduction of land-based medical operations. This procedural change marked a significant departure from the accepted postflight medical recovery and evaluation techniques. All phases of the missions required careful re-evaluation, identification of potential impact on preexisting medical operational techniques, and development of new methodologies which were carefully evaluated and tested under simulated conditions. Significant coordination was required between the different teams involved in medical operations. Additional dimensions were added to the concepts of medical operations, by the introduction of different toxic substances utilized by the Space Transportation Systems especially during ground operations.
NASA Technical Reports Server (NTRS)
Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.
2015-01-01
Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing Program. Together, these validation flight findings demonstrate the capability to support long-duration RR on the ISS to achieve both basic science and biomedical objectives.
MSFC Skylab structures and mechanical systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
A performance analysis for structural and mechanical major hardware systems and components is presented. Development background testing, modifications, and requirement adjustments are included. Functional narratives are provided for comparison purposes as are predicted design performance criterion. Each item is evaluated on an individual basis: that is, (1) history (requirements, design, manufacture, and test); (2) in-orbit performance (description and analysis); and (3) conclusions and recommendations regarding future space hardware application. Overall, the structural and mechanical performance of the Skylab hardware was outstanding.
Medical emergencies at a major international airport: in-flight symptoms and ground-based follow-up.
Chan, Shu B; Hogan, Teresita M; Silva, Julio C
2002-10-01
There is limited recent data about the treatments and outcomes of commercial airline passengers who suffer in-flight medical symptoms resulting in subsequent EMS evaluation. The study objectives are to determine incidence, post-flight treatments, outcomes, morbidity, and mortality of these in-flight medical emergencies (IFMEs). A 1-yr retrospective study of emergency medical service (EMS), emergency department (ED), and inpatient hospital records of IFME patients from Chicago O'Hare International Airport was completed. All commercial passengers or crew with in-flight medical symptoms who subsequently activated the EMS system on flight arrival are included in the study. The main outcome measures are: in-flight sudden deaths, post-flight mortality, hospital admission rate, ICU admission rate, ED procedures, inpatient procedures, and discharge diagnoses. There were 744 IFMEs for an incidence of 21.3 per million passengers per year. The hospital admission rate was 24.5%. The ICU admission rate was 5.9%. There were five in-flight sudden deaths and six in-hospital deaths for an overall mortality rate of 0.3 per million passengers per year. Emergency stabilization procedures were required on 4.8% of patients. Cardiac emergencies accounted for 29.1% of inpatient diagnoses and 13.1% of all discharge diagnoses. The incidence of in-flight medical emergencies is small but these IFMEs are potentially lethal. Although the majority of IFME patients have uneventful outcomes, there is associated morbidity and mortality. These included in-flight deaths, in-hospital deaths, and emergency procedures. Cardiac emergencies were the most common of serious EMS evaluated in-flight medical emergencies.
Flight motor set 360L006 (STS-34). Volume 1: System overview
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
Flight motor set 360L006 was launched at approximately 11:54 a.m. Central Daylight Time (CDT) on 18 October 1989 as part of NASA space shuttle mission STS-34. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. All ballistic contract end item (CEI) specification parameters were verified with the exceptions of ignition interval and rise rates. Ignition interval and rise rates could not be verified due to the elimination of developmental flight instrumentation from fourth flight and subsequent, but the low sample rate data that were available showed nominal propulsion performance. All ballistic and mass property parameters closely matched the predicted values and were well within the required CEI specification levels that could be assessed, with the exception of the RH-motor vacuum-delivered specific impulse. It exceeds the upper-limit CEI specification due to a bias imposed on the raw data by the OPT/Taber gage measurement differences. Evaluation of the ground environment instrumentation measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria thermal violations occurred. Postflight inspection again verified superior performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight, although splashdown loads tore the left-hand, 45-deg actuator bracket from the nozzle. All combustion gas was contained by insulation in the field and nozzle-to-case joints. Recommendations were made concerning improved thermal modeling and measurements. The rationale for these recommendations, the disposition of all anomalies, and complete result details are contained.
FPGA Based Reconfigurable ATM Switch Test Bed
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Jones, Robert E.
1998-01-01
Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.
Organizational Analysis of the United States Army Evaluation Center
2014-12-01
analysis of qualitative or quantitative data obtained from design reviews, hardware inspections, M&S, hardware and software testing , metrics review... Research Development Test & Evaluation (RDT&E) appropriation account. The Defense Acquisition Portal ACQuipedia website describes RDT&E as “ one of the... research , design , development, test and evaluation, production, installation, operation, and maintenance; data collection; processing and analysis
Utilizing Flight Data to Update Aeroelastic Stability Estimates
NASA Technical Reports Server (NTRS)
Lind, Rick; Brenner, Marty
1997-01-01
Stability analysis of high performance aircraft must account for errors in the system model. A method for computing flutter margins that incorporates flight data has been developed using robust stability theory. This paper considers applying this method to update flutter margins during a post-flight or on-line analysis. Areas of modeling uncertainty that arise when using flight data with this method are investigated. The amount of conservatism in the resulting flutter margins depends on the flight data sets used to update the model. Post-flight updates of flutter margins for an F/A-18 are presented along with a simulation of on-line updates during a flight test.
Space flight and oxidative stress
NASA Technical Reports Server (NTRS)
Stein, T. P.
2002-01-01
Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.
Bone Density Following Three Years of Recovery from Long-Duration Space-Flight
NASA Technical Reports Server (NTRS)
Amin, S.; Achenbach, S. J.; Atkinson, E. J.; Sibonga, J.
2010-01-01
Bone loss during long-duration space flight is well recognized, but the long-term implications on bone health following return from flight remain unclear. Among US crew who were involved in long-duration missions in space (Mir and ISS), we have previously shown that at approximately 12 months following return, men, but not women, had BMD values at most sites that were still lower than would be expected had they not been exposed to a prolonged period of microgravity. We now extend our observations to 3 years of follow-up post-flight. Using their age, pre-flight BMD and follow-up time, post-flight BMD values for each US crew were predicted based on the model developed from the community sample. We found BMD measures to be either stable or improve by 3 years relative to their immediate post-flight BMD, however only total hip BMD still remains significantly lower than would be expected had they not been exposed to microgravity. Among male US crew, who have had their BMD measured following at least 3 years of recovery post long-duration flight, they continue to have lower BMD at the hip than would be expected, raising potential concerns regarding future hip fracture risk.
NASA Technical Reports Server (NTRS)
Waters, Wendy W.; Ziegler, Michael G.; Meck, Janice V.
2001-01-01
About 20% of astronauts suffer post-spaceflight presyncope, but the underlying etiology remains elusive. We studied responses to standing in 36 astronauts before and after spaceflight (5- 16 days). Individuals were separated into presyncopal women, presyncopal men, and non-presyncopal men based on their ability to stand for 10 min postflight. Preflight, presyncopal women and presyncopal men had low vascular resistance, with the women having the lowest. Postflight, women experienced significantly higher rates of presyncope (P<0.01) and significantly greater losses of plasma volume than the men (P<0.05). Both presyncopal women and men had lower standing arterial pressure (P<=0.001) and vascular resistance (P<0.05), smaller increases in norepinephrine (P<=0.058) and greater increases in epinephrine (P<=0.058) than nonpresyncopal men. Both presyncopal groups had a strong dependence (P<=0.05) on plasma volume to maintain standing stroke volume. These findings suggest that postflight presyncope is ascribed to a combination of inherently low resistance responses, a strong dependence on volume status, and spaceflight-induced hypoadrenergic responses. In contrast, high vascular resistance and spaceflight-induced hyperadrenergic responses prevent presyncope.
Changes in monkey horizontal semicircular canal afferent responses after spaceflight
NASA Technical Reports Server (NTRS)
Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaia, I. B.; Sirota, M. G.; Iakushin, S. B.; Beloozerova, I. N.
1992-01-01
Extracellular responses from single horizontal semicircular canal afferents in two rhesus monkeys were studied after recovery from a 14-day biosatellite (Cosmos 2044) orbital spaceflight. On the 1st postflight day, the mean gain for 9 different horizontal canal afferents, tested using one or several different passive yaw rotation waveforms, was nearly twice that for 20 horizontal canal afferents similarly tested during preflight and postflight control studies. Adaptation of the afferent response to passive yaw rotation on the 1st postflight day was also greater. These results suggest that at least one component of the vestibular end organ (the semicircular canals) is transiently modified after exposure to 14 days of microgravity. It is unclear whether the changes are secondary to other effects of microgravity, such as calcium loss, or an adaptive response. If the response is adaptive, then this report is the first evidence that the response of the vestibular end organ may be modified (presumably by the central nervous system via efferent connections) after prolonged unusual vestibular stimulation. If this is the case, the sites of plasticity of vestibular responses may not be exclusively within central nervous system vestibular structures, as previously believed.
NASA Astrophysics Data System (ADS)
Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.
2011-04-01
Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.
NASA Technical Reports Server (NTRS)
Cowings, P. S.; Toscano, W. B.; Miller, N. E.; Pickering, T. G.; Shapiro, D.
1994-01-01
Postflight orthostatic intolerance has been identified as a serious biomedical problem associated with long duration exposure to microgravity in space. High priority has been given to the development of countermeasures for this disorder which are both effective and practical. A considerable body of clinical research has demonstrated that people can be taught to increase their own blood pressure voluntarily and that this is an effective treatment for chronic Orthostatic intolerance in paralyzed patients. The present pilot study was designed to examine the feasibility of adding training in control of blood pressure to an existing preflight training program designed to facilitate astronaut adaptation to microgravity. Using in operant conditioning procedure, Autogenic-Feedback Training (AFT), three men and two women participated in four to nine (15-30 training sessions). At the end of training ranged between 20 and 50 mm Hg under both supine and 450 head-up tilt conditions. These findings suggest that AFT may be a useful alternative treatment or supplement to existing approaches for preventing postflight Orthostatic intolerance. Further, the use of operant conditioning methods for training cardiovascular responses may contribute to the general understanding of the mechanisms of orthostatic intolerance.
NASA Astrophysics Data System (ADS)
Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob
2012-07-01
Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth's gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight. Eighteen astronauts performed two tests of locomotion before and after 6 months of space flight: a treadmill walking test to examine vestibular reflexive mechanisms controlling head movement control and a functional mobility test to investigate overall functional locomotor ability. Postflight sessions were given on days 1, 2, 4, 7 after their return. Subjects walked on a treadmill driven at 1.8 m/s while performing a visual task. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Astronauts showed a heterogeneous response pattern of both increases and decreases in the amplitude of HP movement. We investigated the underlying mechanisms of this heterogeneity in postflight responses in head movement control by examining data obtained using the same experimental test paradigm on a vestibular clinical population (VC) and in normal subjects undergoing adaptation to acute body load support unloading. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the VC patients the HP movements were significantly decreased. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation of the converging vestibular and body load-sensing somatosensory systems. To investigate changes in functional mobility astronaut subjects walked at their preferred pace around an obstacle course consisting of several pylons and obstacles set up on a foam floor, which provided an unstable walking surface. Subjects were instructed to walk around the course as fast as possible without touching any of the objects on the course for a total of six individual trials per test session. One of the dependent measures was time to complete the course (TCC, sec). The learning rate over the six trials performed on preflight and the first day after landing (micro curve) was used to characterize the immediate compensatory strategic response. The learning rate over the six trials of the postflight test days (macro curve) was used to characterize the longer-term plastic response. Adaptation to space flight led to a 52% increase in TCC one day after landing. Recovery to pre-flight scores took an average of two weeks after landing. Subjects showed both strategic and plastic recovery patterns based on the slopes obtained from the micro and macro curves compared to preflight. A regression analysis revealed a significant correlation between the slope values of the macro and micro curves indicating a relationship between strategic and plastic recovery processes. Results showed that both strategic and plastic motor learning processes play a role in postflight restoration of functional mobility and showed a dynamic interplay between these two mechanisms during postflight recovery. These results suggest that gait adaptability training programs which are being developed to facilitate adaptive transition to planetary environments, coupled with low levels of electrical stimulation of the vestibular system, can be optimized to engage both strategic and plastic processes to facilitate rapid restoration of postflight functional mobility.
2007-08-07
LCROSS flight hardware in clean room at Ames N-240. EEL personnel fabricating testing components with Jerry Wang of Ames, Engineering Evaluation labLCROSS flight hardware in clean room at Ames N-240. EEL personnel fabricating testing components with Jerry Wang of Ames, Engineering Evaluation lab
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Rains, George E.
2011-01-01
Recent changes in the overall NASA vision has resulted in further cost and schedule challenges for the Orion program. As a result, additional scrutiny has been focused on the use of new developments for hardware in the environmental control and life support systems. This paper will examine the Orion architecture as it is envisioned to support missions to the International Space Station and future exploration missions and determine what if any functions can be satisfied through the use of existing, heritage hardware designs. An initial evaluation of each component is included and where a heritage component was deemed likely further details are examined. Key technical parameters, mass, volume and vibration loads are a few of the specific items that are evaluated. Where heritage hardware has been identified that may be substituted in the Orion architecture a discussion of key requirement changes that may need to be made as well as recommendation to further evaluate applicability are noted.
International Space Station alpha remote manipulator system workstation controls test report
NASA Astrophysics Data System (ADS)
Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick
1994-05-01
Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.
International Space Station alpha remote manipulator system workstation controls test report
NASA Technical Reports Server (NTRS)
Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick
1994-01-01
Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.
Safe to Fly: Certifying COTS Hardware for Spaceflight
NASA Technical Reports Server (NTRS)
Fichuk, Jessica L.
2011-01-01
Providing hardware for the astronauts to use on board the Space Shuttle or International Space Station (ISS) involves a certification process that entails evaluating hardware safety, weighing risks, providing mitigation, and verifying requirements. Upon completion of this certification process, the hardware is deemed safe to fly. This process from start to finish can be completed as quickly as 1 week or can take several years in length depending on the complexity of the hardware and whether the item is a unique custom design. One area of cost and schedule savings that NASA implements is buying Commercial Off the Shelf (COTS) hardware and certifying it for human spaceflight as safe to fly. By utilizing commercial hardware, NASA saves time not having to develop, design and build the hardware from scratch, as well as a timesaving in the certification process. By utilizing COTS hardware, the current detailed certification process can be simplified which results in schedule savings. Cost savings is another important benefit of flying COTS hardware. Procuring COTS hardware for space use can be more economical than custom building the hardware. This paper will investigate the cost savings associated with certifying COTS hardware to NASA s standards rather than performing a custom build.
Medical Support and Findings of the Skylab Program
NASA Technical Reports Server (NTRS)
Johnston, Richard S.; Dietlein, Lawrence F.
1975-01-01
Specific equipment used in carrying out Skylab medical experiments is outlined and illustrated. Also included are reviews of the techniques, frequency, and protocols of the tests designed to study the long term effects of weightlessness on the human body. In-flight investigations were an evaluation of the cardiovascular system, a study of metabolic activity, investigations in the field of neurophysiology, the determination of changes in body fluids, a precise measurement of total body metabolism, and a study of crew performance by use of a time and motion experiment. Significant data obtained from in-flight and postflight tests are outlined.
An active thermal control surfaces experiment. [spacecraft temperature determination
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Brown, M. J.
1979-01-01
An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.
Mission safety evaluation report for STS-35: Postflight edition
NASA Technical Reports Server (NTRS)
Hill, William C.; Finkel, Seymour I.
1991-01-01
Space Transportation System 35 (STS-35) safety risk factors that represent a change from previous flights that had an impact on this flight, and factors that were unique to this flight are discussed. While some changes to the safety risk baseline since the previous flight are included to highlight their significance in risk level change, the primary purpose is to insure that changes which were too late too include in formal changes through the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) and Hazard Analysis process are documented along with the safety position, which includes the acceptance rationale.
Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination
2012-01-01
Background Principal component analysis (PCA) has been widely employed for automatic neuronal spike sorting. Calculating principal components (PCs) is computationally expensive, and requires complex numerical operations and large memory resources. Substantial hardware resources are therefore needed for hardware implementations of PCA. General Hebbian algorithm (GHA) has been proposed for calculating PCs of neuronal spikes in our previous work, which eliminates the needs of computationally expensive covariance analysis and eigenvalue decomposition in conventional PCA algorithms. However, large memory resources are still inherently required for storing a large volume of aligned spikes for training PCs. The large size memory will consume large hardware resources and contribute significant power dissipation, which make GHA difficult to be implemented in portable or implantable multi-channel recording micro-systems. Method In this paper, we present a new algorithm for PCA-based spike sorting based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the inherent memory requirements of GHA while keeping the accuracy of spike sorting by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of large hardware storage requirements, the proposed algorithm can lead to ultra-low hardware resources and power consumption of hardware implementations, which is critical for the future multi-channel micro-systems. Both clinical and synthetic neural recording data sets were employed for evaluating the accuracy of the stream-based Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter and the computational complexity of the eigenfilter were rigorously evaluated and compared with conventional PCA algorithms. Field programmable logic arrays (FPGAs) were employed to implement the proposed algorithm, evaluate the hardware implementations and demonstrate the reduction in both power consumption and hardware memories achieved by the streaming computing Results and discussion Results demonstrate that the stream-based eigenfilter can achieve the same accuracy and is 10 times more computationally efficient when compared with conventional PCA algorithms. Hardware evaluations show that 90.3% logic resources, 95.1% power consumption and 86.8% computing latency can be reduced by the stream-based eigenfilter when compared with PCA hardware. By utilizing the streaming method, 92% memory resources and 67% power consumption can be saved when compared with the direct implementation of GHA. Conclusion Stream-based Hebbian eigenfilter presents a novel approach to enable real-time spike sorting with reduced computational complexity and hardware costs. This new design can be further utilized for multi-channel neuro-physiological experiments or chronic implants. PMID:22490725
NASA Technical Reports Server (NTRS)
Alexander, W. C.; Leach, C. S.; Fischer, C. L.
1975-01-01
The objectives of the biochemical studies conducted for the Apollo program were (1) to provide routine laboratory data for assessment of preflight crew physical status and for postflight comparisons; (2) to detect clinical or pathological abnormalities which might have required remedial action preflight; (3) to discover as early as possible any infectious disease process during the postflight quarantine periods following certain missions; and (4) to obtain fundamental medical knowledge relative to man's adjustment to and return from the space flight environment. The accumulated data presented suggest that these requirements were met by the program described. All changes ascribed to the space flight environment were subtle, whereas clinically significant changes were consistent with infrequent illnesses unrelated to the space flight exposure.
Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.
2016-01-01
NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.
NASA Technical Reports Server (NTRS)
Gay, Robert S.; Holt, Greg N.; Zanetti, Renato
2016-01-01
This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.
Catalogs of Space Shuttle earth observations photography
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh; Helfert, Michael
1990-01-01
A review is presented of postflight cataloging and indexing activities of mission data obtained from Space Shuttle earth observations photography. Each Space Shuttle mission acquires 1300-4400 photographs of the earth that are reviewed and interpreted by a team of photointerpreters and cataloging specialists. Every photograph's manual and electronic set of plots is compared for accuracy of its locational coordinates. This cataloging activity is a critical and principal part of postflight activity and ensures that the database is accurate, updated and consequently made meaningful for further utilization in the applications and research communities. A final product in the form of a Catalog of Space Shuttle Earth Observations Handheld Photography is published for users of this database.
Orbiter thermal protection system
NASA Technical Reports Server (NTRS)
Dotts, R. L.; Curry, D. M.; Tillian, D. J.
1985-01-01
The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.
Neural readaptation to Earth's gravity following return from space.
Boyle, R; Mensinger, A F; Yoshida, K; Usui, S; Intravaia, A; Tricas, T; Highstein, S M
2001-10-01
The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.
Neural readaptation to Earth's gravity following return from space
NASA Technical Reports Server (NTRS)
Boyle, R.; Mensinger, A. F.; Yoshida, K.; Usui, S.; Intravaia, A.; Tricas, T.; Highstein, S. M.
2001-01-01
The consequence of exposure to microgravity on the otolith organs was studied by recording the responses of vestibular nerve afferents supplying the utricular otolith organ to inertial accelerations in four toadfish, Opsanus tau, sequentially for 5 days following two National Aeronautics and Space Administration shuttle orbital flights. Within the first day postflight, the magnitude of response to an applied translation was on average three times greater than for controls. The reduced gravitational acceleration in orbit apparently resulted in an upregulation of the sensitivity of utricular afferents. By 30 h postflight, responses were statistically similar to control. The time course of return to normal afferent sensitivity parallels the reported decrease in vestibular disorientation in astronauts following return from space.
Komolova, G S; Troitskaia, E N; Egorov, I A; Tigranian, R A
1982-01-01
Changes in nucleic acid metabolism of the spleen and liver of rats flown for 18.5 days on Cosmos-112 were investigated. Postflight changes in the liver RNA synthesis after an additional stress effect (immobilization) in the flown rats were expressed to a lesser degree than in the controls. The DNA synthesis remained essentially at the preflight level. The tissue content of nucleic acids suggests that postflight the dystrophic changes induced by the additional stress effect increased. It is very likely that an exposure to space flight effects contributes to the depletion of compensatory mechanisms maintaining the normal level of metabolic processes.
Kurkina, L M; Tigranian, R A
1982-01-01
The content of ammonia, glutamine, urea, glutamic acid, aspartic acid, and GABA was measured to study nitrogen metabolism. Soon after recovery (6-10 hours after recovery) the content of the above compounds in brain tissues increased, except for GABA whose content decreased. Similar but more marked changes were seen in the brain of control rats exposed to a repeated immobilization stress-effect. These changes were still greater in the flight rats exposed to a repeated immobilization stress-effect postflight. It is suggested that the postflight changes of the above parameters of nitrogen metabolism are induced by stress-agents inherent in space flight and recovery.
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa
2014-01-01
Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between pre- and postflight means.
Jump-Down Performance Alterations after Space Flight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.
2011-01-01
INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements in astronauts abilities to maintain balance and achieve a postural stability upon landing from a jump early after flight. However, the jump landing adaptation process often begins after the first jump with full recovery of most performance parameters within days after space flight. As expected, performance of ISS astronauts on the first day after flight was similar to that of Shuttle crewmembers on landing day.
Chang, DG; Healey, RM; Snyder, AJ; Sayson, JV; Macias, BR; Coughlin, DG; Bailey, JF; Parazynski, SE; Lotz, JC; Hargens, AR
2017-01-01
Study Design Prospective case series Objective Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station (ISS). The long-term objective of this project is to promote spine health and prevent spinal injury during space missions as well as here on Earth. Summary of Background NASA crewmembers have a 4.3 times higher risk of herniated IVDs, compared to the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in ~5cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Methods Six NASA crewmembers were imaged supine with a 3T MRI. Imaging was conducted pre-flight, immediately post-flight and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle and posterior sections of all lumbar levels. Repeated measures ANOVA was used to determine significance at p<0.05, followed by post-hoc testing. Results Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the post-flight loss occurred over the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared to pre-flight values. In contrast, lumbar IVD heights were not appreciably different at any time point. Conclusions The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days post-flight in a terrestrial environment, but it remained incomplete compared to pre-flight levels. PMID:27779600
Physiological Factors Contributing to Postflight Changes in Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.;
2009-01-01
Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R+1, R+6 and R+30. Using a multivariate regression model we will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.
Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Hardin, Andy
2011-01-01
Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.
Experimental Modification of Rat Pituitary Growth Hormone Cell Function During and After Spaceflight
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Salada, T.; Nye, P.; Grossman, E. J.; Lane, P. K.; Grindeland, R. E.
1996-01-01
Space-flown rats show a number of flight-induced changes in the structure and function of pituitary Growth Hormone (GH) cells after in vitro postflight testing. To evaluate the possible effects of microgravity on GH cells themselves, freshly dispersed rat anterior pituitary gland cells were seeded into vials containing serum +/- 1 micron HydroCortisone (HC) before flight. Five different cell preparations were used: the entire mixed-cell population of various hormone-producing cell types, cells of density less than 1.071 g/sq cm (band 1), cells of density greater than 1.071 g/sq cm (band 2), and cells prepared from either the dorsal or ventral part of the gland. Relative to ground control samples, bioactive GH released from dense cells during flight was reduced in HC-free medium but was increased in HC-containing medium. Band I and mixed cells usually showed opposite HC-dependent responses. Release of bioactive GH from ventral flight cells was lower; postflight responses to GH-releasing hormone challenge were reduced, and the cytoplasmic area occupied by GH in the dense cells was greater. Collectively, the data show that the chemistry and cellular makeup of the culture system modifies the response of GH cells to microgravity. As such, these cells offer a system to identify gravisensing mechanisms in secretory cells in future microgravity research.
The OTOLITH Experiment - Assessment of Otolith Function During Postflight Re-adaption
NASA Technical Reports Server (NTRS)
Clarke, A. H.; Wood, S. J.; Schoenfeld, U.
2010-01-01
The ongoing "Otolith" experiment is designed to comprehensively assess the otolith function during the re-adaptation phase after spaceflight. The novel protocol includes unilateral testing of each of the two otolith organs the utricle and the saccule. To assess utricle function, the otolith-ocular response (OOR) and the subjective visual vertical (SVV) are measured during unilateral centrifugation, which permits independent stimulation of the right and left ear. Measurement of the unilateral otolith-ocular response (uOOR) yields information on the response behaviour of the right and left peripheral utricles, whereas the SVV reflects the behaviour of the entire pathway from the peripheral otolith receptors to the vestibular cortex. Thus, by comparative evaluation of the results from the two tests, the degree of peripheral versus central adaptation during the post-flight period can be determined. To assess unilateral saccule function, vestibular evoked myogenic potentials (VEMP) are recorded. Since the saccules are predominantly aligned to gravity, and interplay with the antigravity muscles, it is hypothesised that these potentials shall be altered after spaceflight. To date the study has been conducted with 5 of a planned 8 short-flight Shuttle astronauts. Preliminary results will be discussed together with those from clinical studies of dizziness patients, where the same test protocol is employed. ACKNOWLEDGEMENT This work is supported by the German Aerospace Center (Grant DLR W130729) and is conducted under the auspices of ESA, in cooperation with NASA.
Crewmember Performance Before, During, And After Spaceflight
Kelly, Thomas H; Hienz, Robert D; Zarcone, Troy J; Wurster, Richard M; Brady, Joseph V
2005-01-01
The development of technologies for monitoring the welfare of crewmembers is a critical requirement for extended spaceflight. Behavior analytic methodologies provide a framework for studying the performance of individuals and groups, and brief computerized tests have been used successfully to examine the impairing effects of sleep, drug, and nutrition manipulations on human behavior. The purpose of the present study was to evaluate the feasibility and sensitivity of repeated performance testing during spaceflight. Four National Aeronautics and Space Administration crewmembers were trained to complete computerized questionnaires and performance tasks at repeated regular intervals before and after a 10-day shuttle mission and at times that interfered minimally with other mission activities during spaceflight. Two types of performance, Digit-Symbol Substitution trial completion rates and response times during the most complex Number Recognition trials, were altered slightly during spaceflight. All other dimensions of the performance tasks remained essentially unchanged over the course of the study. Verbal ratings of Fatigue increased slightly during spaceflight and decreased during the postflight test sessions. Arousal ratings increased during spaceflight and decreased postflight. No other consistent changes in rating-scale measures were observed over the course of the study. Crewmembers completed all mission requirements in an efficient manner with no indication of clinically significant behavioral impairment during the 10-day spaceflight. These results support the feasibility and utility of computerized task performances and questionnaire rating scales for repeated measurement of behavior during spaceflight. PMID:16262187
Design and evaluation of a fault-tolerant multiprocessor using hardware recovery blocks
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Shin, K. G.
1982-01-01
A fault-tolerant multiprocessor with a rollback recovery mechanism is discussed. The rollback mechanism is based on the hardware recovery block which is a hardware equivalent to the software recovery block. The hardware recovery block is constructed by consecutive state-save operations and several state-save units in every processor and memory module. When a fault is detected, the multiprocessor reconfigures itself to replace the faulty component and then the process originally assigned to the faulty component retreats to one of the previously saved states in order to resume fault-free execution. A mathematical model is proposed to calculate both the coverage of multi-step rollback recovery and the risk of restart. A performance evaluation in terms of task execution time is also presented.
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Toscano, William B.; Miller, Neil E.; Pickering, Thomas G.; Shapiro, David
1993-01-01
Postflight orthostatic intolerance was identified as a serious biomedical problem associated with long duration exposure to microgravity in space. High priority was given to the development of countermeasures for this disorder which are both effective and practical. A considerable body of clinical research demonstrated that people can be taught to increase their own blood pressure voluntarily and that this is an effective treatment for chronic orthostatic intolerance in paralyzed patients. The present pilot study was designed to examine the feasibility of adding training in control of blood pressure to an existing preflight training program designed to facilitate astronaut adaptation to microgravity. Using an operant conditioning procedure, Autogenic-Feedback Training (AFT), three men and two women participated in four to nine (15-30 training sessions). At the end of training, the average increase in systolic and diastolic pressure, as well as mean arterial pressures that the subjects made, ranged between 20 and 5O mmHg under both supine and 45 deg head-up tilt conditions. These findings suggest that AFT may be a useful alternative treatment or supplement to existing approaches for preventing postflight orthostatic intolerance. Further, the use of operant conditioning methods for training cardiovascular responses may contribute to the general understanding of the mechanisms of orthostatic intolerance.
Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark
2014-01-01
The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.
Post-flight test results of acousto-optic modulator devices subjected to space exposure
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Trivedi, Sudhir; Rosemeier, Jolanta; Diestler, Mark
2014-09-01
The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 modulewas brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation.
Independent Orbiter Assessment (IOA): Analysis of the pyrotechnics subsystem
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Pyrotechnics hardware. The IOA analysis process utilized available pyrotechnics hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
An evaluation of Skylab habitability hardware
NASA Technical Reports Server (NTRS)
Stokes, J.
1974-01-01
For effective mission performance, participants in space missions lasting 30-60 days or longer must be provided with hardware to accommodate their personal needs. Such habitability hardware was provided on Skylab. Equipment defined as habitability hardware was that equipment composing the food system, water system, sleep system, waste management system, personal hygiene system, trash management system, and entertainment equipment. Equipment not specifically defined as habitability hardware but which served that function were the Wardroom window, the exercise equipment, and the intercom system, which was occasionally used for private communications. All Skylab habitability hardware generally functioned as intended for the three missions, and most items could be considered as adequate concepts for future flights of similar duration. Specific components were criticized for their shortcomings.
DEVELOPMENT OF AN INFLIGHT COUNTERMEASURE TO MITIGATE POSTFLIGHT GAIT DYSFUNCTION
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Cohen, H. S.; Richards, J. T.; Miller, C. A.
2005-01-01
Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instrumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates a subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.
Development of an Inflight Countermeasure to Mitigate Postflight Gait Dysfunction
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.
2005-01-01
Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates s. subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.
Evaluation of wheelchair seating system crashworthiness: "drop hook"-type seat attachment hardware.
Bertocci, G; Ha, D; Deemer, E; Karg, P
2001-04-01
To evaluate the crashworthiness of commercially available hardware that attaches seat surfaces to the wheelchair frame. A low cost static crashworthiness test procedure that simulates a frontal impact motor vehicle crash. Safety testing laboratory. Eleven unique sets of drop-hook hardware made of carbon steel (4), stainless steel (4), and aluminum (3). Replicated seat-loading conditions associated with a 20g/48 kph frontal impact. Test criterion for seat loading was 16,680 N (3750 lb). Failure load and deflection of seat surface. None of the hardware sets tested met the crashworthiness test criterion. All failed at less than 50% of the load that seating hardware could be exposed to in a 20g/48 kph frontal impact. The primary failure mode was excessive deformation, leading to an unstable seat support surface. Results suggest that commercially available seating drop hooks may be unable to withstand loading associated with a frontal crash and may not be the best option for use with transport wheelchairs.
Development of a Novel Space Flight Plan to Monitor Female Mice Fertility Using Reduced Crew Time
NASA Technical Reports Server (NTRS)
Christenson, Lane; Hong, Xiaoman; Alwood, Joshua S.; Ronca, April E.; Tash, Joseph S.; Talyansky, Yuli
2017-01-01
Ovarian estrogen impacts the normal homeostatic and metabolic processes of all tissues and organ systems within the body: particularly, but not limited to canonical space-flight impacted systems: bone, muscle, immune, wound repair, and cardiovascular. Effects of space flight on the ovarian estrogen production are therefore critical to our understanding of all space flight experiments using female mice, the current paradigm being used on the International Space Station (ISS). Recently, we demonstrated that vaginal wall histology could be used to determine the stage of the estrous cycle in female mice at the time of sacrifice in space. Moreover, this robust technique was completed following two post-flight freezethaw procedures of the carcasses (RR1 experiment). Thus, this technique represents a viable mechanism to determine the estrous cycle status of the female at the time of sacrifice and can be completed in a manner that does not impact primary experimental objectives. We propose that vaginal wall histology become a standard procedure completed on all mice sacrificed in space and that the individual estrous status of each animal be shared with all investigators. While evidence of estrous cyclicity was present in long-term (33 day) RR1 mice, fertility of female mice exposed to weightlessness remains unknown. In preparation for an upcoming funded NASA flight investigating the effects of long duration spaceflight on female fertility, we have refined our experimental design to minimize crew flight time and to accommodate the duration of Dragon capsule berth. These refinements maintain all our proposed primary and secondary experimental objectives. Briefly, in order to evaluate fertility, we will super ovulate mice using standard procedures (PMSG hCG), followed by collection of reproductive tract after follicular stimulation alone (PMSG) or following ovulation (hCG). Ovarian folliculogenesis and ovulation rate will be determined in fixed tissues following return in order to determine fertility. Ovarian and uterine tissues will also be evaluated by hormonal and gene expression profiling using quantitative approaches (radioimmunoassays, western blots, digital droplet PCR). Comparisons will be made to contemporary vivarium and Rodent Research Hardware Transporter and Habitat housed animals maintained on earth. Supported by NNX15AB48G to JST.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
A Simple Postflight Measure of Postural Atania in Astronauts
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Harm, D. I.; Kofman, I. S.; Wood, S. J.; Bloomberg, J. J.
2011-01-01
Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior (AP) plane. The current investigation, as a part of a larger functional study, concentrated on characterizing postural instability using dynamic stabilographic sway patterns in both the AP and medial-lateral (ML) planes. To accomplish this goal, six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior and ML center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day postflight for both long-duration and short-duration crewmembers. Dynamic postural stability characteristics obtained in this low-impact study complement the data measured with computerized dynamic posturography.
NASA Technical Reports Server (NTRS)
Clement, Gilles; Wood, Scott J.
2010-01-01
This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.
Comprehensive Astronaut Immune Assessment Following a Short-Duration Space Flight
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Yetman, Deborah; Pierson, Duane; Sams, Clarence
2006-01-01
Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration class missions. As a part of an ongoing NASA flight experiment assessing viral immunity (DSO-500), a generalized immune assessment was performed on 3 crewmembers who participated in the recent STS-114 Space Shuttle mission. The following assays were performed: (1) comprehensive immunophenotype analysis; (2) T cell function/intracellular cytokine profiles; (4) secreted Th1/Th2 cytokine profiles via cytometric bead array. Immunophenotype analysis included a leukocyte differential, lymphocyte subsets, T cell subsets, cytotoxic/effector CD8+ T cells, memory/naive T cell subsets and constitutively activated T cells. Study timepoints were L-180, L-65, L-10, R+0, R+3 and R+14. Detailed data are presented in the poster text. As expected from a limited number of human subjects, data tended to vary with respect to most parameters. Specific post-flight alterations were as follows (subject number in parentheses): Granulocytosis (2/3), reduced NK cells (3/3), elevated CD4/CD8 ratio (3/3), general CD8+ phenotype shift to a less differentiated phenotype (3/3), elevated levels of memory CD4+ T cells (3/3), loss of L-selectin on T cell subsets (3/3), increased levels of activated T cells (2/3), reduced IL-2 producing T cell subsets (3/3), levels of IFNg producing T cells were unchanged. CD8+ T cell expression of the CD69 activation markers following whole blood stimulation with SEA+SEB were dramatically reduced postflight (3/3), whereas other T cell function assessments were largely unchanged. Cytometric bead array assessment of secreted T cell cytokines was performed, following whole blood stimulation with either CD3/CD28 antibodies or PMA+ionomycin for 48 hours. Specific cytokines assessed were IFNg, TNFa, IL-2, IL-4, IL-5, IL-10. Following CD3/CD28 stimulation, all three crewmembers had a mission-associated reduction in the levels of secreted IFNg. One crewmember had a post-flight inversion in the IFNg/IL-10 ratio postflight, which trended back to baseline by R+14. Detailed cytokine data are presented in the poster text. This testing regimen was designed to correlate immunophenotype changes (thought to correspond to specific in-vivo immune responses or pathogenesis), against altered leukocyte function and cytokine profiles. In-flight studies are required to determine if post-flight alterations are reflective of the in-flight condition, or are a response to landing and readaptation.
Studies of Vestibular Neurons in Normal, Hyper- and Hypogravity
NASA Technical Reports Server (NTRS)
Correia, Manning J.
1996-01-01
During the past year, pre-, in- and postflight studies were conducted in association with the Axon project for Bion 10 (Cosmos 2229). Recordings were made during pre- and postflight studies, from 118 horizontal semicircular canal afferents and 27 vestibular nucleus neurons in 7 rhesus monkeys; 137 pulse rotation protocols alone were executed (548 acceleration and deceleration responses were curve fit). Usable data was obtained from 127 horizontal afferents concerning their spontaneous discharge. Curve fits and analysis was made of sinusoidal and sum of sinusoidal responses from 42 and 35 horizontal afferents, respectively. Also recordings were made from neurons inflight from the two flight animals. The mean spontaneous rate varied from 128 spikes/sec. during preflight to 92 spikes/sec during postflight (day 5) - a change of 28%. In direct contrast to the results of Cosmos 2044, the best fitted neural adaptation operator (k) and the gain of the pulse response were decreased during post flight when compared to preflight. Surprisingly, the best fitted gain and k values for the sum of sines were slightly elevated during post flight tests. The gain and phase of single sine responses were compared for pre- and post flight tests and compared to a larger population of afferents. In contrast to Cosmos 2044 results where on the first day of post flight testing the gains of the best fitted sine response were skewed toward the higher values of the Miles and Braitman distribution, the gain of the best fitted sine responses during the first day of post flight testing (day 2) during Cosmos 2229 were exactly on the mode of the Miles and Braitman distribution. Thus, at least for the periodic stimuli, (pulses and sine waves) we found no change in gain and neural adaptation during post flight testing following Cosmos 2229. This conclusion is different from the one derived following the Cosmos 2044 flight. Cosmos flight 2229 differed from Cosmos flight 2044 in several significant ways: For example, during preflight, (1) The animals preflight training was different (less well trained on the gaze task) and (2) the animals were exposed to more experimental manipulations (surgical and rotational). Inflight, (1) the animals were required to make a pointing gesture (motor response) in association with eye movements to obtain reward, (2) the inflight diet was different (more balanced), (3) the feeder for one of the animals clogged following 9 days of flight resulting in evident dehydration and probably less head motion exposure in that monkey and (4) there was limited video taping of the monkeys in space. During postflight, (1) we were unable to test the flight animals until 26 hours postflight as compared to 14.5 hours during Cosmos 2044, (2) the animals received significantly more exposure to motion stimuli during postflight testing than during Cosmos 2044. These differences in the vestibular environment will require analysis of several parameters other than just neural and eye movement responses. For example, computer programs will have to be written and used to recover and quantify the number of head movements made by each animal during flight. This activity is critical to the production of neural adaptation and increased gain.
Neuromorphic Computing for Very Large Test and Evaluation Data Analysis
2014-05-01
analysis and utilization of newly available hardware- based artificial neural network chips. These two aspects of the program are complementary. The...neuromorphic architectures research focused on long term disruptive technologies with high risk but revolutionary potential. The hardware- based neural...today. Overall, hardware- based neural processing research allows us to study the fundamental system and architectural issues relevant for employing
Initial Incidence of White Matter Hyperintensities on MRI in Astronauts
NASA Technical Reports Server (NTRS)
Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter
2016-01-01
Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to increased WMH.
Real-Time Data Processing Onboard Remote Sensor Platforms: Annual Review #3 Data Package
NASA Technical Reports Server (NTRS)
Cook, Sid; Harsanyi, Joe
2003-01-01
The current program status reviewed by this viewgraph presentation includes: 1) New Evaluation Results; 2) Algorithm Improvement Investigations; 3) Electronic Hardware Design; 4) Software Hardware Interface Design.
Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.
2015-01-01
NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.
Bone Density Following Long Duration Space Flight and Recovery
NASA Technical Reports Server (NTRS)
Amin, Shreyasee; Achenbach, Sara J.; Atkinson, Elizabeth J.; Melton, L. Joseph; Khosla, Sundeep; Sibonga, Jean
2010-01-01
At approx.12 months, Bone Mineral Density (BMD) at most sites in men remained lower than would be predicted, raising concerns for long-term bone health consequences following space flight. Additional analyses based on longer follow-up are being conducted. Although the N is too small for definitive conclusions, women had lower rates of loss at load-bearing sites of the hip and spine immediately post-flight relative to men and smaller differences between observed vs. predicted BMD at most sites, both immediately and 12 months post-flight, relative to men. The role of other exposures/risk factors need to be explored to further understand these possible gender differences in BMD loss and recovery following long-duration space flight.
[Intensity of DNA synthesis in animal organs after a flight on the Kosmos-782 biosatellite].
Guseĭnov, F T; Egorov, I A; Komolova, G S; Tigranian, R A
1979-01-01
With respect to H3-thymidine incorporation the rate of DNA synthesis in the liver, spleen and thymus of rats was determined in flight and synchronous rats. Six hours post-flight the rate of H3-thymidine incorporation into the liver of flight rats did not differ from the normal (vivarium controls) and was 50% higher than in the synchronous rats. In the spleen and thymus of flight animals this parameter was 60 and 33% below the norm. Similar but less pronounced changes in the spleen were found in the synchronous rats. Twenty-five days postflight the rate of DNA synthesis in lymph organs recovered completely and tended to increase, whereas in the liver it remained significantly below the norm.
An extended BET format for La RC shuttle experiments: Definition and development
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Henry, M. W.
1981-01-01
A program for shuttle post-flight data reduction is discussed. An extended Best Estimate Trajectory (BET) file was developed. The extended format results in some subtle changes to the header record. The major change is the addition of twenty-six words to each data record. These words include atmospheric related parameters, body axis rate and acceleration data, computed aerodynamic coefficients, and angular accelerations. These parameters were added to facilitate post-flight aerodynamic coefficient determinations as well as shuttle entry air data sensor analyses. Software (NEWBET) was developed to generate the extended BET file utilizing the previously defined ENTREE BET, a dynamic data file which may be either derived inertial measurement unit data or aerodynamic coefficient instrument package data, and some atmospheric information.
Independent Orbiter Assessment (IOA): Analysis of the communication and tracking subsystem
NASA Technical Reports Server (NTRS)
Gardner, J. R.; Robinson, W. M.; Trahan, W. H.; Daley, E. S.; Long, W. C.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Communication and Tracking hardware. The IOA analysis process utilized available Communication and Tracking hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Hubble Space Telescope Fine Guidance Sensor Post-Flight Bearing Inspection
NASA Technical Reports Server (NTRS)
Pellicciotti, J.; Loewenthal, S.; Jones, W., Jr.; Jumper, M.
2004-01-01
Aerospace mechanism engineering success stories often, if not always, consist of overcoming developmental, test and flight anomalies. Many times it is these anomalies that stimulate technology growth and more reliable future systems. However, one must learn from these to achieve an ultimately successful mission. It is not often that a spacecraft engineer is able to inspect hardware that has flown in orbit for several years. However, in February 1997, the Fine Guidance Sensor-1 (FGS-1) was removed from the Hubble Space Telescope (HST) and returned to NASA Goddard Space Flight Center (GSFC) during the second Servicing Mission (SM2). At the time of removal, FGS-1 had nearly 7 years of service and the bearings in the Star Selector Servos (SSS) had accumulated approximately 25 million Coarse Track (CT) cycles. The main reason for its replacement was due to a bearing torque anomaly leading to stalling of the B Star Selector Servo (SSS-B) when reversing direction during a vehicle offset maneuver, referred to herein as a Reversal Bump (RB). The returned HST FGS SSS bearings were disassembled for post-service condition assessment to better understand the actual cause of the torque spikes, identify potential process/design improvements, and provide information for remedial on-orbit operation modifications. The methods and technology utilized for this inspection are not unique to this system and can be adapted to most investigations at varying stages of the mechanism life from development, through testing, to post flight evaluation. The systematic methods used for the HST Fine Guidance Sensor (FGS) SSS and specific findings are the subjects presented in this paper. The lessons learned include the importance of cleanliness and handling for precision instrument bearings and the potential effects from contamination. The paper describes in detail, the analytical techniques used for the SSS and their importance in this investigation. Inspection analytical data and photographs are included throughout the paper.
Hubble Space Telescope Fine Guidance Sensor Post-Flight Bearing Inspection
NASA Technical Reports Server (NTRS)
Pellicciotti, Joseph; Loewenthal, Stu; Jones, William, Jr.; Jumper, Mike
2004-01-01
Aerospace mechanism engineering success stories often, if not always, consist of overcoming developmental, test and flight anomalies. Many times it is these anomalies that stimulate technology growth and more reliable future systems. However, one must learn from these to achieve an ultimately successful mission. It is not often that a spacecraft engineer is able to inspect hardware that has flown in orbit for several years. However, in February 1997, the Fine Guidance Sensor-I (FGS-1) was removed from the Hubble Space Telescope (HST) and returned to NASA Goddard Space Flight Center (GSFC) during the second Servicing Mission (SM2). At the time of removal, FGS-1 had nearly 7 years of service and the bearings in the Star Selector Servos (SSS) had accumulated approximately 25 million Coarse Track (CT) cycles. The main reason for its replacement was due to a bearing torque anomaly leading to stalling of the B Star Selector Servo (SSS-B) when reversing direction during a vehicle offset maneuver, referred to herein as a Reversal Bump (RB). The returned HST FGS SSS bearings were disassembled for post-service condition assessment to better understand the actual cause of the torque spikes, identify potential process/design improvements, and provide information for remedial on-orbit operation modifications. The methods and technology utilized for this inspection are not unique to this system and can be adapted to most investigation ai varying stages of the mechanism life from development, through testing, io post night evaluation. The systematic methods used for the HST Fine Guidance Sensor (FGS) SSS and specific findings are the subjects presented in this paper. The lessons learned include the importance of cleanliness and handling for precision instrument bearings and the potential effects from contamination. The paper describes in detail, the analytical techniques used for the SSS and their importance in this investigation. Inspection analytical data and photographs are included throughout the paper.
The Impact of Flight Hardware Scavenging on Space Logistics
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.
2011-01-01
For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.
NASA Technical Reports Server (NTRS)
Campbell, L. F., Jr.
1981-01-01
The purpose and format of a panel session that addressed the procedures by which the hardware components of geographic information systems are evaluated and selected are described. State agencies from Alaska, Colorado, Montana, and Washington were represented and the topic was discussed within the general context of information requirements in land management decision making.
Treatment efficacy of intramuscular promethazine for Space Motion Sickness
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Jennings, Richard T.; Beck, Bradley G.; Bagian, James P.
1993-01-01
Intramuscular promethazine and its efficacy in the treatment of Space Motion Sickness (SMS) were evaluated using standardized questions administered during postflight debriefings to crewmembers immediately after their first Shuttle flight. The comparison showed that 25 percent of crewmembers treated with IM promethazine were 'sick' on flight day 2, compared to 50 percent of crewmembers who did not receive promethazine, 90 percent reported immediate symptom relief as well. Untreated crewmembers typically have slow symptom resolution over 72-96 h, and those treated with oral scopolamine/dextroamphetamine show delayed symptom development. This study suggests that intramuscular promethazine is an effective treatment for SMS and merits continued use and further controlled investigations.
Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight
NASA Technical Reports Server (NTRS)
Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.
1991-01-01
The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.
NASA Technical Reports Server (NTRS)
Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven
2009-01-01
NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).
Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
Barker, Lee; Mamich, Harvey; McGregor, John
2016-01-01
On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.
Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight
NASA Technical Reports Server (NTRS)
Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.
2008-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize that performance on the closed-loop tilt control task will be improved with this tactile display feedback of tilt orientation. The current plans include testing on eight crewmembers following Space Shuttle missions or short stay onboard the International Space Station. Measurements are obtained pre-flight at L-120 (plus or minus 30), L-90 (plus or minus 30), and L-30, (plus or minus 10) days and post-flight at R+0, R+1, R+2 or 3, R+4 or 5, and R+8 days. Pre-and post-flight testing (from R+1 on) is performed in the Neuroscience Laboratory at the NASA Johnson Space Center on both the Tilt-Translation Device and a variable radius centrifuge. A second variable radius centrifuge, provided by DLR for another joint ESA-NASA project, has been installed at the Baseline Data Collection Facility at Kennedy Space Center to collect data immediately after landing. ZAG was initiated with STS-122/1E and the first post-flight testing will take place after STS-123/1JA landing.
NASA Technical Reports Server (NTRS)
Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.
1989-01-01
The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.
Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem
NASA Technical Reports Server (NTRS)
Sinclair, Susan; Graham, L.; Richard, Bill; Saxon, H.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs.
Carbon Monoxide Exposure in Norwegian Rescue Helicopters.
Busch, Michael
2015-01-01
Exposure to exhaust fumes from combustion engines can lead to carbon monoxide (CO) poisoning. Sea King Rescue helicopter crews are frequently subjected to engine exhaust. This study investigates the extent of CO exposure and potential for intoxication for flight crews during standard operational training procedures. Over a 2-week period, rescue helicopter flight crews were monitored for exposure to exhaust fumes and clinical symptoms of CO intoxication by means of a written survey and measurements of carboxyhemoglobin saturation (SpCO) with a handheld pulse CO oximeter (RAD-57; Masimo, Irvine, CA). Normal ranges for SpCO were defined as ≤ 4%. Sixty-nine completed surveys and 138 SpCO measurements of 37 crewmembers were included in the study. Sixty-four percent (n = 44) experienced subjective exposure to engine exhaust during training. Clinical symptoms were reported in 8.6% (n = 6) and included exhaustion (n = 4), headache (n = 1), and nausea (n = 1). Twenty-nine percent (n = 20) showed postflight SpCO levels outside the normal range (≥ 4%). The maximum postflight SpCO level among all measurements was 7%. Exposure to engine fumes is common, even more so during open cargo door operations. However, clinical symptoms are infrequent and mild. Toxic SpCO levels were not reached in this study, but approximately one third of postflight SpCO levels were outside the normal range. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Neuromuscular activation patterns during treadmill walking after space flight
NASA Technical Reports Server (NTRS)
Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.
1997-01-01
Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.
Moore, Steven T; Clément, Gilles; Dai, Mingjai; Raphan, Theodore; Solomon, David; Cohen, Bernard
2003-01-01
In this paper we review space flight experiments performed by our laboratory. Rhesus monkeys were tested before and after 12 days in orbit on COSMOS flights 2044 (1989) and 2229 (1992-1993). There was a long-lasting decrease in post-flight ocular counter-rolling (70%) and vergence (50%) during off-vertical axis rotation. In one animal, the orientation of optokinetic after-nystagmus shifted by 28 degrees from the spatial vertical towards the body vertical early post-flight. Otolith-ocular and perceptual responses were also studied in four astronauts on the 17-day Neurolab shuttle mission (STS-90) in 1998. Ocular counter-rolling was unchanged in response to 1-g and 0.5-g Gy centrifugation during and after flight and to post-flight static roll tilts relative to pre-flight values. Orientation of the optokinetic nystagmus eye velocity axis to gravito-inertial acceleration (GIA) during centrifugation was also unaltered by exposure to microgravity. Perceptual orientation to the GIA was maintained in-flight, and subjects did not report sensation of translation during constant velocity centrifugation. These studies suggest that percepts and ocular responses to tilt are determined by sensing the body vertical relative to the GIA. The findings also raise the possibility that 'artificial gravity' during the Neurolab flight counteracted adaptation of these otolith-ocular responses.
Achilles Tendon Reflex (ATR) in response to short exposures of microgravity and hypergravity
NASA Technical Reports Server (NTRS)
Fujii, M.; Jaweed, M.
1992-01-01
Previous studies indicate that latency and amplitude of the Achilles tendon reflex (ATR) are reduced after exposure to microgravity for 28 days. The objective of this study was to quantitatively measure the latency of ATR during brief (20 sec) exposure to microgravity in KC-135 parabolic flights. Methods: The ATR was elicited in ten men during parabolic flight with the ankle held neutrally, planarflexed, and dorsiflexed. During flight, the ATR was elicited during the zero G and 1.8 G phases. Postflight testing was performed flying back to the airfield. Latencies to onset of the ATR were calculated and analyses of variance were performed to determine the effect of gravity and ankle position on latency. Result: The mean latencies for zero-G, 1.8-G and postflight with the ankle in the neutral position were 32.7 plus or minus 0.5 ms, and 33.1 plus or minus 0.7 ms respectively, which were not significantly different. There was a trend toward prolongation of latencies postflight. The mean latency for those who were motion sick was 32.1 plus or minus 0.1 ms compared to 34.0 plus or minus 0.3 ms for those who were not sick. Conclusions: These studies indicate that neither the level of gravity nor ankle position significantly affected the latency of the ATR.
Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture
NASA Technical Reports Server (NTRS)
Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.
2003-01-01
This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.
14 CFR 61.127 - Flight proficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... a single-engine class rating: (i) Preflight preparation; (ii) Preflight procedures; (iii) Airport...; and (xi) Postflight procedures. (7) For a lighter-than-air category rating with an airship class...
14 CFR 61.127 - Flight proficiency.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a single-engine class rating: (i) Preflight preparation; (ii) Preflight procedures; (iii) Airport...; and (xi) Postflight procedures. (7) For a lighter-than-air category rating with an airship class...
14 CFR 61.127 - Flight proficiency.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a single-engine class rating: (i) Preflight preparation; (ii) Preflight procedures; (iii) Airport...; and (xi) Postflight procedures. (7) For a lighter-than-air category rating with an airship class...
14 CFR 61.127 - Flight proficiency.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a single-engine class rating: (i) Preflight preparation; (ii) Preflight procedures; (iii) Airport...; and (xi) Postflight procedures. (7) For a lighter-than-air category rating with an airship class...
14 CFR 61.127 - Flight proficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a single-engine class rating: (i) Preflight preparation; (ii) Preflight procedures; (iii) Airport...; and (xi) Postflight procedures. (7) For a lighter-than-air category rating with an airship class...
NASA Technical Reports Server (NTRS)
Brown, K. L.; Bertsch, P. J.
1986-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Preosteoblast production in Cosmos 2044 rats - Short-term recovery of osteogenic potential
NASA Technical Reports Server (NTRS)
Garetto, Lawrence P.; Morey, Emily R.; Durnova, G. N.; Kaplanskii, A. S.; Roberts, W. E.
1992-01-01
The influence of a 13.8-day spaceflight and about 8.5-11 h of recovery at 1 g on fibro blastlike osteoblast precursor cells was assessed in the periodontal ligament of rat maxillary first molars. Preosteoblasts (C + D cells), less differentiated progenitor cells (A + A prime cells), and nonosteogenic fibroblastlike cells (B cells) were identified by nuclear volume analysis. No differences were observed among flight, synchronous vivarium, and basal control groups in the A + A prime or C + D cell compartments. Compared with previous spaceflight experiments, the present data are consistent with a postflight response to replinish preosteoblasts and restore periodontal ligament osteogenic potential. These data emphasize the need to unequivocally determine the flight effect by killing the animals in-flight and further assess the postflight recovery phenomenon.
Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane; Sams, Clarence; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather
2010-01-01
The objective of this NASA Short-Duration Bioastronautics Investigation (SDBI) was to assess spaceflight-associated immune dysregulation. Many previous studies have investigated this phenomenon post-flight, and found altered distribution and function of the peripheral leukocyte populations. Alterations in cytokine production profiles have also been reported. Unfortunately, post-flight data may be altered by the stress associated with high-G re-entry and readaptation to unit gravity following deconditioning. Therefore, the current study collected blood and saliva samples from crewmembers immediately before landing, and returned those samples to Earth for terrestrial analysis. Assays include peripheral comprehensive immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. A total of 18 short duration crewmembers completed the study and the final data will be presented.
Apollo 13 Debrief - Postflight
1970-04-21
S70-35748 (20 April 1970) --- Dr. Donald K. Slayton (center foreground), MSC director of flight crew operations, talks with Dr. Wernher von Braun (right), famed rocket expert, at an Apollo 13 postflight debriefing session. The three crewmen of the problem-plagued Apollo 13 mission (left to right) in the background are astronauts James A Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot. The apparent rupture of oxygen tank number two in the Apollo 13 Service Module (SM) and the subsequent damage forced the three astronauts to use the Lunar Module (LM) as a "lifeboat" to return home safely after their moon landing was canceled. Dr. von Braun is the deputy associate administrator for planning of the National Aeronautics and Space Administration (NASA).
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, Anthony P.; Young, Laurence R.; Merfeld, Daniel M.
1991-01-01
Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.
Perception of linear acceleration in weightlessness
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.; Merfeld, D. M.
1990-01-01
Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear "sleds" in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.
NASA Technical Reports Server (NTRS)
Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian
2015-01-01
NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.
Feasibility study of the solar scientific instruments for Spacelab/Orbiter
NASA Technical Reports Server (NTRS)
Leritz, J.; Rasser, T.; Stone, E.; Lockhart, B.; Nobles, W.; Parham, J.; Eimers, D.; Peterson, D.; Barnhart, W.; Schrock, S.
1981-01-01
The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab.
Independent Orbiter Assessment (IOA): Analysis of the mechanical actuation subsystem
NASA Technical Reports Server (NTRS)
Bacher, J. L.; Montgomery, A. D.; Bradway, M. W.; Slaughter, W. T.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). The IOA analysis process utilized available MAS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.
Hardware Development Process for Human Research Facility Applications
NASA Technical Reports Server (NTRS)
Bauer, Liz
2000-01-01
The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as well as modifications needed to meet program requirements. Options are consolidated and the hardware development team reaches a hardware development decision point. Within budget and schedule constraints, the team must decide whether or not to complete the hardware as an in-house, subcontract with vendor, or commercial-off-the-shelf (COTS) development. An in-house development indicates NASA personnel or a contractor builds the hardware at a NASA site. A subcontract development is completed off-site by a commercial company. A COTS item is a vendor product available by ordering a specific part number. The team evaluates the pros and cons of each development path. For example, in-bouse developments utilize existing corporate knowledge regarding bow to build equipment for use in space. However, technical expertise would be required to fully understand the medical equipment capabilities, such as for an ultrasound system. It may require additional time and funding to gain the expertise that commercially exists. The major benefit of subcontracting a hardware development is the product is delivered as an end-item and commercial expertise is utilized. On the other hand, NASA has limited control over schedule delays. The final option of COTS or modified COTS equipment is a compromise between in-house and subcontracts. A vendor product may exist that meets all functional requirements but req uires in-house modifications for successful operation in a space environment. The HRF utilizes equipment developed using all of the paths described: inhouse, subcontract, and modified COTS.
Hardware Evaluation of the Horizontal Exercise Fixture with Weight Stack
NASA Technical Reports Server (NTRS)
Newby, Nate; Leach, Mark; Fincke, Renita; Sharp, Carwyn
2009-01-01
HEF with weight stack seems to be a very sturdy and reliable exercise device that should function well in a bed rest training setting. A few improvements should be made to both the hardware and software to improve usage efficiency, but largely, this evaluation has demonstrated HEF's robustness. The hardware offers loading to muscles, bones, and joints, potentially sufficient to mitigate the loss of muscle mass and bone mineral density during long-duration bed rest campaigns. With some minor modifications, the HEF with weight stack equipment provides the best currently available means of performing squat, heel raise, prone row, bench press, and hip flexion/extension exercise in a supine orientation.
CCISS, Vascular and BP Reg: Canadian space life science research on ISS
NASA Astrophysics Data System (ADS)
Hughson, Richard L.; Shoemaker, J. Kevin; Arbeille, Philippe
2014-11-01
A comprehensive goal of the Canadian Space Agency studies (CCISS, Vascular and BP Reg) has been to investigate the efficacy of current exercise countermeasures to maintain cardiovascular and cerebrovascular health on return to Earth after up to 6-months in space. Results from the CCISS experiments revealed no significant change of in-flight heart rate during daily activities or sleep, and small, but variable between astronauts, post-flight elevation. The between astronaut differences were exaggerated during measurement of spontaneous baroreflex slope, which was reduced post-flight (P<0.05) during paced breathing with 3 astronauts having significant correlations between reduced baroreflex and reduced RR-interval (consistent with reduced fitness). Cerebrovascular autoregulation and CO2 response were mildly impaired after flight. Some loss of in-flight fitness of astronauts in Vascular was reflected by the increase in HR at a work rate of 161±46 W of 12.3±10.5 bpm, 10.4±5.9 bpm and 13.4±5.7 bpm for early-flight, late-flight and R+1, respectively. On return to gravity, changes in resting heart rate for supine (5.9±3.5 bpm), sit (8.1±3.3 bpm) and stand (10.3±10.0 bpm) were small but variable between individuals (from -5 bpm to +20 bpm in post-flight standing) and not related to the change in exercise heart rate. In Vascular astronauts, pulse wave transit time measured to the finger tended to be reduced post-flight and carotid artery distensibility was significantly reduced (P=0.03, and n=6). The heart rate and baroreflex data suggest that some astronauts return with cardiovascular deconditioning in spite of the exercise regimes. However, greater arterial stiffness is common among all astronauts studied to date. The new CSA project, BP Reg, will monitor inflight blood pressure in an attempt to identify astronauts in greater need for countermeasures. Future research should focus on whether Vascular changes in astronauts might make them an appropriate model to study the mechanisms of arterial aging on Earth.
NASA Technical Reports Server (NTRS)
Fu, Qi; Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Diedrich, Andre; Cox, James F.; Zuckerman, Julie H.; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi;
2002-01-01
Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts approximately 72 and 23 days before, and on landing day after the 16 day Neurolab (STS-90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre-, in- and post-flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (+/- S.E.M.) baseline heart rates and arterial pressures were similar among pre-, in- and post-flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post- than pre-flight (112 +/- 6 vs. 99 +/- 5 mmHg, P = 0.088). Contraction-induced rises in heart rate were similar pre-, in- and post-flight. MSNA was higher post-flight in all subjects before static handgrip (26 +/- 4 post- vs. 15 +/- 4 bursts min(-1) pre-flight, P = 0.017). Contraction-evoked peak MSNA responses were not different before, during, and after spaceflight (41 +/- 4, 38 +/- 5 and 46 +/- 6 bursts min(-1), all P > 0.05). MSNA during post-handgrip circulatory arrest was higher post- than pre- or in-flight (41 +/- 1 vs. 33 +/- 3 and 30 +/- 5 bursts min(-1), P = 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in-flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.
Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.
2011-01-01
The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e.g., sensory aids) will have both space and Earth-based applications. Early postflight field tests are recommended to provide the evidence base for best practices for future commercial flight programs. Learning Objective: Overview of the Space Shuttle Program regarding adaptive changes in sensorimotor function, including what was learned from research, what was implemented for medical operations, and what is recommended for commercial flights.
Fundamentals of Hardware. Curriculum Improvement Project. Region II.
ERIC Educational Resources Information Center
Onabajo, Femi
This course curriculum is intended for use by community college instructors and administrators in implementing a fundamentals in hardware course. A student's course syllabus provides this information: credit hours, catalog description, prerequisites, required text, instructional process, objectives, student evaluation, and class schedule. A…
STS-26 Post-Flight Crew Press Conference
NASA Technical Reports Server (NTRS)
1988-01-01
This video tape contains footage selected and narrated by the STS-26 crew including launch, TDRS-C/IUS (Tracking and Data Relay Satellite C / Inertial Upper Stage) deployment, onboard activities, and landing.
Support of ASTP/KOSMOS fundulus embryo development experiment
NASA Technical Reports Server (NTRS)
Fuller, P. M.; Keefe, J. R.
1977-01-01
Results from the Kosmos Biosatellite 782 flight are presented. Experiments with fish hatchlings are discussed along with postflight observation and testing. The preparation of fertilized eggs for the experiments is described.
Management of a CFD organization in support of space hardware development
NASA Technical Reports Server (NTRS)
Schutzenhofer, L. A.; Mcconnaughey, P. K.; Mcconnaughey, H. V.; Wang, T. S.
1991-01-01
The management strategy of NASA-Marshall's CFD branch in support of space hardware development and code validation implements various elements of total quality management. The strategy encompasses (1) a teaming strategy which focuses on the most pertinent problem, (2) quick-turnaround analysis, (3) the evaluation of retrofittable design options through sensitivity analysis, and (4) coordination between the chief engineer and the hardware contractors. Advanced-technology concepts are being addressed via the definition of technology-development projects whose products are transferable to hardware programs and the integration of research activities with industry, government agencies, and universities, on the basis of the 'consortium' concept.
Motion compensation in digital subtraction angiography using graphics hardware.
Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim
2006-07-01
An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.
Damage Tolerance of Composites
NASA Technical Reports Server (NTRS)
Hodge, Andy
2007-01-01
Fracture control requirements have been developed to address damage tolerance of composites for manned space flight hardware. The requirements provide the framework for critical and noncritical hardware assessment and testing. The need for damage threat assessments, impact damage protection plans, and nondestructive evaluation are also addressed. Hardware intended to be damage tolerant have extensive coupon, sub-element, and full-scale testing requirements in-line with the Building Block Approach concept from the MIL-HDBK-17, Department of Defense Composite Materials Handbook.
Mycological studies housed in the Apollo 16 microbial ecology evaluation device
NASA Technical Reports Server (NTRS)
Volz, P. A.
1973-01-01
Survival, death, and phenotype count have yielded variation in the number of fungi recovered from the controls and the flight exposed cuvettes during preliminary analysis of postflight first phase data. Also the preliminary analysis was indicative that fungi exposed to specific space flight conditions demonstrated variable survival rates and phenotype counts. Specific space flight conditions included full light space exposure for Chaetomium globosum, exposure at 300- and 254-nanometer wavelengths for Rhodotorula rubra, full light and 280-nanometer wavelength exposure for Trichophyton terrestre, and 254-nanometer wavelength exposure for Saccharomyces cerevisiae. In general, phenotype counts for flight cuvettes and survival rates for control cuvettes were higher compared with the remaining cuvettes.
Independent Orbiter Assessment (IOA): Analysis of the DPS subsystem
NASA Technical Reports Server (NTRS)
Lowery, H. J.; Haufler, W. A.; Pietz, K. C.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) is presented. The IOA approach features a top-down analysis of the hardware to independently determine failure modes, criticality, and potential critical items. The independent analysis results corresponding to the Orbiter Data Processing System (DPS) hardware are documented. The DPS hardware is required for performing critical functions of data acquisition, data manipulation, data display, and data transfer throughout the Orbiter. Specifically, the DPS hardware consists of the following components: Multiplexer/Demultiplexer (MDM); General Purpose Computer (GPC); Multifunction CRT Display System (MCDS); Data Buses and Data Bus Couplers (DBC); Data Bus Isolation Amplifiers (DBIA); Mass Memory Unit (MMU); and Engine Interface Unit (EIU). The IOA analysis process utilized available DPS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the extensive redundancy built into the DPS the number of critical items are few. Those identified resulted from premature operation and erroneous output of the GPCs.
NASA Technical Reports Server (NTRS)
Patton, Jeff A.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Evaluation of pressurized water cleaning systems for hardware refurbishment
NASA Technical Reports Server (NTRS)
Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.
1995-01-01
Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'
Clinical aspects of crew health
NASA Technical Reports Server (NTRS)
Hawkins, W. R.; Zieglschmid, J. F.
1975-01-01
Medical procedures and findings for Apollo astronauts in the preflight, inflight, and postflight phases of the Apollo missions are described in detail. Preflight medical examinations, inflight monitoring and medications, crew illnesses, and clinical findings are summarized.
Chao, Chun-Tang; Maneetien, Nopadon; Wang, Chi-Jo; Chiou, Juing-Shian
2014-01-01
This paper presents the design and evaluation of the hardware circuit for electronic stethoscopes with heart sound cancellation capabilities using field programmable gate arrays (FPGAs). The adaptive line enhancer (ALE) was adopted as the filtering methodology to reduce heart sound attributes from the breath sounds obtained via the electronic stethoscope pickup. FPGAs were utilized to implement the ALE functions in hardware to achieve near real-time breath sound processing. We believe that such an implementation is unprecedented and crucial toward a truly useful, standalone medical device in outpatient clinic settings. The implementation evaluation with one Altera cyclone II-EP2C70F89 shows that the proposed ALE used 45% resources of the chip. Experiments with the proposed prototype were made using DE2-70 emulation board with recorded body signals obtained from online medical archives. Clear suppressions were observed in our experiments from both the frequency domain and time domain perspectives.
Changes in total body water during spaceflight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Inners, L. D.; Charles, John B.
1991-01-01
Total body water (TBW) changes occurring in humans as a consequence of prolonged exposure to microgravity were measured in five male crewmembers of Space Shuttle missions STS-61C and STS-26. It was found that the inflight mean TBW values were significantly different from the preflight and postflight values, while the preflight TBW values were not significantly different from the postflight values. It was also found that individuals may differ in the rate at which they respond to weightlessness. Of the three crewmen who reported experiencing no symptoms of space motion sickness (SMS), two had not exhibited a decrease of TBW at the time of measurements (24 hrs after launch), while the two crewmen who reported SMS of intermediate severity showed a decrease of several kg by 24 hrs, suggesting that dehydration might be an important factor affecting the rate of TBW decrease.
Immunological analyses of U.S. Space Shuttle crewmembers
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Neale, L. S.; Dardano, J. R.
1986-01-01
Changes in the immunoresponsiveness of 'T' lymphocytes following space flight have been reported previously. Additional data collected before and after 11 Shuttle space flights show that absolute lymphocyte numbers, lymphocyte blastogenic capability, and eosinophil percent in the peripheral blood of crewmembers are generally depressed postflight. These responses resemble those associated with physical and emotional stress and may not be related to flight per se. Additional data from Space Shuttle flights 41B and 41D, involving 11 crewmembers, indicate a postflight decrease in cells reacting with 'B' lymphocyte and monocyte monoclonal antibody tags. Further, the loss of 'T' lymphocyte blast capability correlates with the decreased monocyte count (correlation coefficient = 0.697). This finding implies that the previously reported loss of blastogenic capability may be a function of decreased monocyte control, as noted in several nonspaceflight related studies.
NASA Technical Reports Server (NTRS)
Fischer, G. L.; Daniels, J. C.; Levin, W. C.; Kimzey, S. L.; Cobb, E. K.; Ritzmann, S. E.
1972-01-01
The present studies were undertaken to assess the effects of the environment of space flights on the cellular division of the human immune system. Peripheral blood absolute lymphocyte counts were determined at various preflight and postflight intervals for the 21 crewmen of Apollo Missions 7-13. Mean lymphocyte numbers tended to exhibit a delayed significant but fluctuating increase shortly after recovery, although a variety of responses was seen in individual astronauts. The in vitro reactivity of lymphocytes, reflected by RNA and DNA synthesis rates by unstimulated and PHA-stimulated lymphocytes tissue-cultured preflight and postflight from the same participants, was found to remain within previously established normal ranges. These results indicate that functional integrity of cellular immune potential as reflected by in vitro techniques is maintained during this spaceflight experience.
The LDEF ultra heavy cosmic ray experiment
NASA Technical Reports Server (NTRS)
Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.
1991-01-01
The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.
Validation of Centrifugation as a Countermeasure for Otolith Deconditioning During Spaceflight
NASA Technical Reports Server (NTRS)
Moore, Steven T.
2004-01-01
In contrast to previous studies, post-flight measures of both otolith-ocular function and orthostatic tolerance were unimpaired in four payload crewmembers exposed to artificial gravity generated by in-flight centrifugation during the Neurolab (STS-90) mission. The aim of the current proposal is to obtain control measures of otolith and orthostatic function following short duration missions, utilizing the centrifugation and autonomic testing techniques developed for the Neurolab mission, from astronauts who have not been exposed to in-flight centrifugation. This will enable a direct comparison with data obtained from the Neurolab crew. Deficits in otolith-ocular reflexes would support the hypothesis that intermittent exposure to in-flight centripetal acceleration is a countermeasure for otolith deconditioning. Furthermore, a correlation between post-flight otolith deconditioning and orthostatic intolerance would establish an otolithic basis for this condition.
Exercise cardiac output following Skylab missions - The second manned Skylab mission
NASA Technical Reports Server (NTRS)
Buderer, M. C.; Mauldin, D. G.; Rummel, J. A.; Michel, E. L.; Sawin, C. F.
1976-01-01
Cardiac output was measured during preflight and postflight exercise-stress tests on the Skylab astronauts. In the postflight tests immediately following the 28-, 59-, and 84-d earth orbital missions, the astronauts exhibited an approximate 30% decrease in cardiac output coupled with an approximate 50% decrease in cardiac stroke volume during exercise. These changes were accompanied by elevated heart rates and significant increases in total systemic peripheral vascular resistance. Mean arterial pressure was unchanged. All parameters returned to normal preflight values within 30 d of the end of the orbital period. Duration of the zero-G exposure did not appear to influence either the magnitude of the hemodynamic changes or the time-course of their return to normal. These results are discussed in relation to other cardiovascular findings and possible mechanisms responsible for the observations are outlined.
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.
1994-01-01
Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.
The effect of space radiation on the induction of chromosome damage
NASA Technical Reports Server (NTRS)
George, K.; Wu, H.; Willingham, V.; Cucinotta, F. A.
2001-01-01
To obtain information on the cytogenetic damage caused by space radiation, chromosome exchanges in lymphocytes from crewmembers of long-term Mir missions, and a shorter duration shuttle mission, were examined using fluorescence in situ hybridization. A significant increase in chromosomal aberrations was observed after the long duration flights. The ratio of aberrations identified as complex was higher post-flight for some crewmembers, which is thought to be an indication of exposure to high-LET radiation. Ground-based studies have shown that the frequency of aberrations measured post-flight could be influenced by a mitotic delay in cells damaged by high-LET radiation and this effect could lower biological dose estimates. To counteract this effect, prematurely condensed chromosome (PCC) spreads were collected. Frequencies of aberrations in PCC were compared with those in metaphase spreads.
Visual Impairment and Intracranial Hypertension: An Emerging Spaceflight Risk
NASA Technical Reports Server (NTRS)
Taddeo, Terrance A.
2010-01-01
During recent long duration missions to the International Space Station (ISS) crewmembers have reported changes in visual acuity or visual field defects. Exams in the postflight period revealed changes to the visual system and elevated intracranial pressures. As a result, NASA Space Medicine has added a number of tests to be performed in the preflight, inflight and postflight periods for ISS and shuttle missions with the goal of determining the processes at work and any potential mitigation strategies. This discussion will acquaint you with the changes that NASA has made to its medical requirements in order to address the microgravity induced intracranial hypertension and associated visual changes. Key personnel have been assembled to provide you information on this topic. Educational Objectives: Provide an overview of the current Medical Operations requirements and the mitigation steps taken to operationally address the issue.
[Effect of space flight on the Kosmos-1129 biosatellite on enzyme activity of the rat liver].
Nemeth, S; Tigranian, R A
1983-01-01
After the 18.5 day Cosmos-1129 flight the activity of 7 glucocorticoid-stimulated enzymes of the rat liver was measured. Immediately postflight the activity of tyrosine aminotransferase, tryptophan pyrolase and serine dehydrogenase increased. These enzymes rapidly (within several hours) react to increased glucocorticoids. The activity of aspartate and alanine aminotransferases also increased. These enzymes require many days of a continuous effect of glucocorticoids. The glycogen concentration in the rat liver also grew. At R + 6 the activity of tryptophan pyrolase and serine dehydrogenase decreased and that of the other enzymes returned to normal. The immobilization stress applied postflight led to an increased activity of tyrosine aminotransferase and tryptophan pyrolase. This study gives evidence that after space flight rats are in an acute stress state, evidently, produced by the biosatellite recovery.
Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Doxey-Gasway, D. D.; Reschke, M. F.
1995-01-01
Results of previous studies suggested that the vestibular mediated postural instability observed in astronauts upon return to earth from orbital spaceflight may be exacerbated by an increased weighting of visual inputs for spatial orientation and control of movement. This study was performed to better understand the roles of visual and somatosensory contributions to recovery of normal sensori-motor postural control in returning astronauts. Preflight and postflight, 23 astronaut volunteers were presented randomly with three trials of six sensory organization test (SOT) conditions in the EquiTest system test battery. Sagittal plane center-of-gravity (COG) excursions computed from ground reaction forces were significantly higher on landing day than preflight for those test conditions presenting sway-referenced visual and/or somatosensory orientation cues. The ratio of summed peak-to-peak COG sway amplitudes on the two sway-referenced vision tests (SOTs 3 + 6) compared to the two eyes closed tests (SOTs 2 + 5) was increased on landing day, indicating an increased reliance on visual orientation cues for postural control. The ratio of peak-to-peak COG excursions on sway-referenced surfaces (SOTs 4, 5 & 6) to an earth fixed support surfaces (SOTs 1, 2 & 3) increased even more after landing suggesting primary reliance on somatosensory orientation cues for recovery of postflight postural stability. Readaptation to sway-referenced support surfaces took longer than readaptation to sway-referenced vision. The increased reliance on visual and somatosensory inputs disappeared in all astronauts 4-8 days following return to earth.
Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.; Troutman, P. A.; Waters, L. A.; Findlay, J. T.
1985-01-01
The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated.
Protein kinetics during and after long-duration spaceflight on MIR
NASA Technical Reports Server (NTRS)
Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Donaldson, M. R.; Larina, I.
1999-01-01
Human spaceflight is associated with a loss of body protein. Bed rest studies suggest that the reduction in the whole body protein synthesis (PS) rate should be approximately 15%. The objectives of this experiment were to test two hypotheses on astronauts and cosmonauts during long-duration (>3 mo) flights on MIR: that 1) the whole body PS rate will be reduced and 2) dietary intake and the PS rate should be increased postflight because protein accretion is occurring. The 15N glycine method was used for measuring whole body PS rate before, during, and after long-duration spaceflight on the Russian space station MIR. Dietary intake was measured together with the protein kinetics. Results show that subjects lost weight during flight (4.64 +/- 1.0 kg, P < 0.05). Energy intake was decreased inflight (2,854 +/- 268 vs. 2,145 +/- 190 kcal/day, n = 6, P < 0.05), as was the PS rate (226 +/- 24 vs. 97 +/- 11 g protein/day, n = 6, P < 0.01). The reduction in PS correlated with the reduction in energy intake (r2 = 0.86, P < 0.01, n = 6). Postflight energy intake and PS returned to, but were not increased over, the preflight levels. We conclude that the reduction in PS found was greater than predicted from ground-based bed rest experiments because of the shortfall in dietary intake. The expected postflight anabolic state with increases in dietary intake and PS did not occur during the first 2 wk after landing.
Linguistic geometry for technologies procurement
NASA Astrophysics Data System (ADS)
Stilman, Boris; Yakhnis, Vladimir; Umanskiy, Oleg; Boyd, Ron
2005-05-01
In the modern world of rapidly rising prices of new military hardware, the importance of Simulation Based Acquisition (SBA) is hard to overestimate. With SAB, DOD would be able to test, develop CONOPS for, debug, and evaluate new conceptual military equipment before actually building the expensive hardware. However, only recently powerful tools for real SBA have been developed. Linguistic Geometry (LG) permits full-scale modeling and evaluation of new military technologies, combinations of hardware systems and concepts of their application. Using LG tools, the analysts can create a gaming environment populated with the Blue forces armed with the new conceptual hardware as well as with appropriate existing weapons and equipment. This environment will also contain the intelligent enemy with appropriate weaponry and, if desired, with a conceptual counters to the new Blue weapons. Within such LG gaming environment, the analyst can run various what-ifs with the LG tools providing the simulated combatants with strategies and tactics solving their goals with minimal resources spent.
Evaluation of control parameters for Spray-In-Air (SIA) aqueous cleaning for shuttle RSRM hardware
NASA Technical Reports Server (NTRS)
Davis, S. J.; Deweese, C. D.
1995-01-01
HD-2 grease is deliberately applied to Shuttle Redesigned Solid Rocket Motor (RSRM) D6AC steel hardware parts as a temporary protective coating for storage and shipping. This HD-2 grease is the most common form of surface contamination on RSRM hardware and must be removed prior to subsequent surface treatment. Failure to achieve an acceptable level of cleanliness (HD-2 calcium grease removal) is a common cause of defect incidence. Common failures from ineffective cleaning include poor adhesion of surface coatings, reduced bond performance of structural adhesives, and failure to pass cleanliness inspection standards. The RSRM hardware is currently cleaned and refurbished using methyl chloroform (1,1,1-trichloroethane). This chlorinated solvent is mandated for elimination due to its ozone depleting characteristics. This report describes an experimental study of an aqueous cleaning system (which uses Brulin 815 GD) as a replacement for methyl chloroform. Evaluation of process control parameters for this cleaner are discussed as well as cleaning mechanisms for a spray-in-air process.
Hardware test program for evaluation of baseline range/range rate sensor concept
NASA Technical Reports Server (NTRS)
1985-01-01
The Hardware Test Program for evaluation of the baseline range/range rate sensor concept was initiated 11 September 1984. This ninth report covers the period 12 May through 11 June 1885. A contract amendment adding a second phase has extended the Hardware Test Program through 10 December 1985. The objective of the added program phase is to establish range and range measurement accuracy and radar signature characteristics for a typical spacecraft target. Phase I of the Hardware Test Program was designed to reduce the risks associated with the Range/Range Rate (R/R) Sensor baseline design approach. These risks are associated with achieving the sensor performance required for the two modes of operation, the Interrupted CW (ICW) mode for initial acquisition and tracking to close-in ranges, and the CW mode, providing coverage during the final docking maneuver. The risks associated with these modes of operation have to do with the realization of adequate sensitivity to operate to their individual maximum ranges.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Phelps, James E.; Wallsom, Richard E.
1992-01-01
This report presents results of tests performed in neutral buoyancy by two pressure-suited test subjects to simulate Extravehicular Activity (EVA) tasks associated with the on-orbit construction and repair of a precision reflector spacecraft. Two complete neutral buoyancy assemblies of the test article (tetrahedral truss with three attached reflector panels) were performed. Truss joint hardware, two different panel attachment hardware concepts, and a panel replacement tool were evaluated. The test subjects found the operation and size of the truss joint hardware to be acceptable. Both panel attachment concepts were found to be EVA compatible, although one concept was judged by the test subjects to be considerably easier to operate. The average time to install a panel from a position within arm's reach of the test subjects was 1 min 14 sec. The panel replacement tool was used successfully to demonstrate the removal and replacement of a damaged reflector panel in 10 min 25 sec.
Exercise Countermeasure Hardware Evolution on ISS: The First Decade.
Korth, Deborah W
2015-12-01
The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases, the exercise unit with the most operational history was the unit installed on the ISS.
Ha, D; Bertocci, G; Deemer, E; van Roosmalen, L; Karg, P
2000-01-01
Automotive seats are tested for compliance with federal motor vehicle safety standards (FMVSS) to assure safety during impact. Many wheelchair users rely upon their wheelchairs to serve as vehicle seats. However, the crashworthiness of these wheelchairs during impact is often unknown. This study evaluated the crashworthiness of five combinations of wheelchair back support surfaces and attachment hardware using a static test procedure simulating crash loading conditions. The crashworthiness was tested by applying a simulated rearward load to each seat-back system. The magnitude of the applied load was established through computer simulation and biodynamic calculations. None of the five tested wheelchair back supports withstood the simulated crash loads. All failures were associated with attachment hardware.
On the use of inexact, pruned hardware in atmospheric modelling
Düben, Peter D.; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V.; Palmer, T. N.
2014-01-01
Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz ‘96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models. PMID:24842031
NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.;
2015-01-01
Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.
Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health
NASA Technical Reports Server (NTRS)
2004-01-01
Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.
NASA Technical Reports Server (NTRS)
Saiidi, M. J.; Duffy, R. E.; Mclaughlin, T. D.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Plant reproduction in spaceflight environments
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Porterfield, D. M.
1997-01-01
Because plant reproduction is a complex developmental process there are many possible sites of perturbation by the unusual environments of orbital spacecraft. Previous long-duration experiments on Soviet platforms shared features of slowed development through the vegetative stage of plant growth and aborted reproductive function. Our goal has been to understand how special features of the spaceflight environment impact physiological function and reproductive development. In a series of short-duration experiments in the Shuttle mid-deck we studied early reproductive development in Arabidopsis thaliana. Pollen and ovule development aborted at an early stage in the first experiment on STS-54 which utilized closed plant growth chambers. Post-flight analysis suggested that the plants may have been carbon dioxide limited. Subsequent experiments utilized carbon dioxide enrichment (on STS-51) and cabin air flow-through with an air exchange system (on STS-68). Both modifications allowed pollen and ovule development to occur normally on orbit, and full reproductive development up to the stage of an immature seed occurred on STS-68. However, analysis of plant roots from these experiments demonstrated a limitation in rootzone aeration in the spaceflight material that was not mitigated by these procedures. In the future, additional resources (crew time, upgraded flight hardware, and special platforms) will invite more elaborate, long-duration experimentation. On the ISS, a variable speed centrifuge and upgraded plant habitats will permit detailed experiments on the role of gravity in shaping the plant micro-environment, and what influence this plays during reproduction.
Research to Operations: The Critical Transition
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer A.
2009-01-01
Space Life Sciences Directorate (SLSD) specializes in transitioning technology and knowledge to medical operations. This activity encompasses funding a spectrum of research and technology efforts, such as understanding fundamental biological mechanisms altered by microgravity and executing technology watches for state of the art diagnostic imaging equipment. This broad spectrum approach to fulfilling the need to protect crewmember health and performance during long and short duration missions to the International Space Station, moon and Mars is made possible by having a line of site between research and operations. Currently, SLSD's line of site is articulated in a transition to medical practice (TMP) process. This process is designed to shepherd information and knowledge gained through fundamental and mechanistic research toward the development of an operational solution such as a pre-flight selection criteria; an in-flight countermeasure, monitoring capability or treatment; or a post-flight reconditioning program. The TMP process is also designed to assist with the customization of mature hardware or technology for NASA specific use. The benefits of this process are that the concept of operational usability is interjected early in the research, design, or acquisition phase, and stakeholders are involved early to identify requirements and also periodically asked to assess requirements compliance of research or technology development project. Currently a device known as the actiwatch is being assessed for the final transition to operational use. Specific examples of research to operations transition success help to illustrate the process and bolster communication between the research and medical operations communities.
Ku-band system design study and TDRSS interface analysis
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Mckenzie, T. M.; Choi, H. J.; Tsang, C. S.; An, S. H.
1983-01-01
The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated.
Development of Enhanced Avionics Flight Hardware Selection Process
NASA Technical Reports Server (NTRS)
Smith, K.; Watson, G. L.
2003-01-01
The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.
NASA Technical Reports Server (NTRS)
Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.
2007-01-01
Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.
Garcia, Kathleen M; Harrison, Michael F; Sargsyan, Ashot E; Ebert, Douglas; Dulchavsky, Scott A
2018-04-01
Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight. © 2017 by the American Institute of Ultrasound in Medicine.
NASA Technical Reports Server (NTRS)
Taylor, Bruce C.
1993-01-01
Orthostatic intolerance, following space flight, has received substantial attention because of the possibility that it compromises astronaut safety and reduces the ability of astronauts to function at peak performance levels upon return to a one-g environment. Many pre- and post-flight studies are performed to evaluate changes in hemodynamic responses to orthostatic challenges after shuttle missions. The purpose of this present project is to validate bioimpedance as a means to acquire stroke volume and other hemodynamic information in these studies. In this study, ten male and ten female subjects were subjected to simultaneous measurements of thoracic bioimpedance and Doppler ultrasonic velocimetry under supine, 10 degree head down and 30 degree head up conditions. Paired measurements were made during six periods of five seconds breath holding, over a two minute period, for each of the three positions. Stroke volume was calculated by three bioimpedance techniques and ultrasonic Doppler.
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
14 CFR 437.53 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition after...
Hardware Removal in Craniomaxillofacial Trauma
Cahill, Thomas J.; Gandhi, Rikesh; Allori, Alexander C.; Marcus, Jeffrey R.; Powers, David; Erdmann, Detlev; Hollenbeck, Scott T.; Levinson, Howard
2015-01-01
Background Craniomaxillofacial (CMF) fractures are typically treated with open reduction and internal fixation. Open reduction and internal fixation can be complicated by hardware exposure or infection. The literature often does not differentiate between these 2 entities; so for this study, we have considered all hardware exposures as hardware infections. Approximately 5% of adults with CMF trauma are thought to develop hardware infections. Management consists of either removing the hardware versus leaving it in situ. The optimal approach has not been investigated. Thus, a systematic review of the literature was undertaken and a resultant evidence-based approach to the treatment and management of CMF hardware infections was devised. Materials and Methods A comprehensive search of journal articles was performed in parallel using MEDLINE, Web of Science, and ScienceDirect electronic databases. Keywords and phrases used were maxillofacial injuries; facial bones; wounds and injuries; fracture fixation, internal; wound infection; and infection. Our search yielded 529 articles. To focus on CMF fractures with hardware infections, the full text of English-language articles was reviewed to identify articles focusing on the evaluation and management of infected hardware in CMF trauma. Each article’s reference list was manually reviewed and citation analysis performed to identify articles missed by the search strategy. There were 259 articles that met the full inclusion criteria and form the basis of this systematic review. The articles were rated based on the level of evidence. There were 81 grade II articles included in the meta-analysis. Result Our meta-analysis revealed that 7503 patients were treated with hardware for CMF fractures in the 81 grade II articles. Hardware infection occurred in 510 (6.8%) of these patients. Of those infections, hardware removal occurred in 264 (51.8%) patients; hardware was left in place in 166 (32.6%) patients; and in 80 (15.6%) cases, there was no report as to hardware management. Finally, our review revealed that there were no reported differences in outcomes between groups. Conclusions Management of CMF hardware infections should be performed in a sequential and consistent manner to optimize outcome. An evidence-based algorithm for management of CMF hardware infections based on this critical review of the literature is presented and discussed. PMID:25393499
Payne, Michael W C; Williams, David R; Trudel, Guy
2007-07-01
The weightless environment of space imposes specific physiologic adaptations on healthy astronauts. On return to Earth, these adaptations manifest as physical impairments that necessitate a period of rehabilitation. Physiologic changes result from unloading in microgravity and highly correlate with those seen in relatively immobile terrestrial patient populations such as spinal cord, geriatric, or deconditioned bed-rest patients. Major postflight impairments requiring rehabilitation intervention include orthostatic intolerance, bone demineralization, muscular atrophy, and neurovestibular symptoms. Space agencies are preparing for extended-duration missions, including colonization of the moon and interplanetary exploration of Mars. These longer-duration flights will result in more severe and more prolonged disability, potentially beyond the point of safe return to Earth. This paper will review and discuss existing space rehabilitation plans for major postflight impairments. Evidence-based rehabilitation interventions are imperative not only to facilitate return to Earth but also to extend the safe duration of exposure to a physiologically hostile microgravity environment.
HYDICE postflight data processing
NASA Astrophysics Data System (ADS)
Aldrich, William S.; Kappus, Mary E.; Resmini, Ronald G.; Mitchell, Peter A.
1996-06-01
The hyperspectral digital imagery collection experiment (HYDICE) sensor records instrument counts for scene data, in-flight spectral and radiometric calibration sequences, and dark current levels onto an AMPEX DCRsi data tape. Following flight, the HYDICE ground data processing subsystem (GDPS) transforms selected scene data from digital numbers (DN) to calibrated radiance levels at the sensor aperture. This processing includes: dark current correction, spectral and radiometric calibration, conversion to radiance, and replacement of bad detector elements. A description of the algorithms for post-flight data processing is presented. A brief analysis of the original radiometric calibration procedure is given, along with a description of the development of the modified procedure currently used. Example data collected during the 1995 flight season, but uncorrected and processed, are shown to demonstrate the removal of apparent sensor artifacts (e.g., non-uniformities in detector response over the array) as a result of this transformation.
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1994-01-01
The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.
Canadian medical experiments on Shuttle Flight 41-G
NASA Technical Reports Server (NTRS)
Watt, D. G. D.; Money, K. E.; Bondar, R. L.; Thirsk, R. B.; Garneau, M.
1985-01-01
During the 41-G mission, two payload specialist astronauts took part in six Canadian medical experiments designed to measure how the human nervous system adapts to weightlessness, and how this might contribute to space motion sickness. Similar tests conducted pre-flight provided base-line data, and post-flight experiments examined re-adaptation to the ground. No changes were detected in the vestibulo-ocular reflex during this 8-day mission. Pronounced proprioceptive illusions were experienced, especially immediately post-flight. Tactile acuity was normal in the fingers and toes, but the ability to judge limb position was degraded. Estimates of the locations of familiar targets were grossly distorted in the absence of vision. There were no differences in taste thresholds or olfaction. Despite pre-flight tests showing unusual susceptibility to motion sickness, the Canadian payload specialist turned out to be less susceptible than normal on-orbit. Re-adaptation to the normal gravity environment occurred within the first day after landing.
NASA Technical Reports Server (NTRS)
Bennett, C. H.
1981-01-01
The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.
Pollard-Wright, Holly M; Wright, Mark T; Warren, Jeffrey M
2010-12-01
Prerelease reconditioning improves the chance of survival of rehabilitating raptors. Reconditioning may also help to rehabilitate waterfowl, including those that are threatened or endangered, especially if the birds are released during periods of migration. A flying harness, creance, remote-controlled launcher, and portable tower were used to create a means of reconditioning a rehabilitating 5-month-old female wild mallard duck (Anas platyrhynchos) that had been housed in a rehabilitation center for 7 weeks while recovering from an injury. Pre- and postflight serum lactate levels, body condition index scores, and controlled flight distances were used to assess the bird's degree of conditioning. Postflight serum lactate levels never returned to preflight levels and were not deemed a reliable indicator of physical fitness. However, the mallard showed an increase in endurance and strength as well as improved body condition index scores over the course of the reconditioning program.
IRVE-II Post-Flight Trajectory Reconstruction
NASA Technical Reports Server (NTRS)
O'Keefe, Stephen A.; Bose, David M.
2010-01-01
NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations
Vectorcardiographic changes during extended space flight
NASA Technical Reports Server (NTRS)
Smith, R. F.; Stanton, K.; Stoop, D.; Brown, D.; Janusz, W.; King, P.
1974-01-01
To assess the effects of space flight on cardiac electrical properties, vectorcardiograms were taken on the 9 Skylab astronauts during the flights of 28, 59, and 84 days. The Frank lead system was used and observations were made at rest; during 25%, 50% and 75% of maximum exercise; during a short pulse of exercise (150 watts, 2 minutes); and after exercise. Data from 131 in-flight tests were analyzed by computer and compared to preflight and postflight values. Statistically significant increase in QRS vector magnitude (six of nine crewmen); T vector magnitude (five of nine crewmen); and resting PR interval duration (six of nine crewmen) occurred. During exercise the PR interval did not differ from preflight. Exercise heart rates inflight were the same as preflight, but increased in the immediate postflight period. With the exception of the arrhythmias, no deleterious vectorcardiographic changes were observed during the Skylab missions.
NASA Technical Reports Server (NTRS)
Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan
2009-01-01
The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA
Update of the Bisphosphonate ISS Flight Experiment
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackelford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert;
2014-01-01
The bisphosphonate study is an international collaboration between the NASA and JAXA space agencies to investigate the potential value of antiresorptive drugs to mitigate the well-established bone changes associated with long-duration spaceflight. Our hypothesis is that an antiresorptive drug in combination with in-flight exercise will ameliorate bone loss and hypercalcuria during long-duration spaceflight. We have completed data analysis for 7 crewmembers treated with alendronate during flight and 3 of 10 controls without treatment. We previously reported the pre/postflight changes in bone density and the pre versus in-flight changes in various biomarkers in crewmembers taking alendronate during flight. The purpose of this report is to compare these results with the 12- month follow-up data. The table below presents these data as a percentage change from baseline either immediately postflight or in-flight (biochemical markers) with a 1-year follow-up.
Organization and use of a Software/Hardware Avionics Research Program (SHARP)
NASA Technical Reports Server (NTRS)
Karmarkar, J. S.; Kareemi, M. N.
1975-01-01
The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.
Software-implemented fault insertion: An FTMP example
NASA Technical Reports Server (NTRS)
Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.
1987-01-01
This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.
Compiling quantum circuits to realistic hardware architectures using temporal planners
NASA Astrophysics Data System (ADS)
Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy
2018-04-01
To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.
Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system
NASA Technical Reports Server (NTRS)
Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs.
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.; Waters, L. A.; Troutman, P. A.; Findlay, J. T.
1985-01-01
Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Wood, S. J.; Cohen, H. S.; Bloomberg, J. J.
2012-01-01
Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth s gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight.
Reduction in Dynamic Visual Acuity Reveals Gaze Control Changes Following Spaceflight
NASA Technical Reports Server (NTRS)
Peters, Brian T.; Brady, Rachel A.; Miller, Chris; Lawrence, Emily L.; Mulavara Ajitkumar P.; Bloomberg, Jacob J.
2010-01-01
INTRODUCTION: Exposure to microgravity causes adaptive changes in eye-head coordination that can lead to altered gaze control. This could affect postflight visual acuity during head and body motion. The goal of this study was to characterize changes in dynamic visual acuity after long-duration spaceflight. METHODS: Dynamic Visual Acuity (DVA) data from 14 astro/cosmonauts were collected after long-duration (6 months) spaceflight. The difference in acuity between seated and walking conditions provided a metric of change in the subjects ability to maintain gaze fixation during self-motion. In each condition, a psychophysical threshold detection algorithm was used to display Landolt ring optotypes at a size that was near each subject s acuity threshold. Verbal responses regarding the orientation of the gap were recorded as the optotypes appeared sequentially on a computer display 4 meters away. During the walking trials, subjects walked at 6.4 km/h on a motorized treadmill. RESULTS: A decrement in mean postflight DVA was found, with mean values returning to baseline within 1 week. The population mean showed a consistent improvement in DVA performance, but it was accompanied by high variability. A closer examination of the individual subject s recovery curves revealed that many did not follow a pattern of continuous improvement with each passing day. When adjusted on the basis of previous long-duration flight experience, the population mean shows a "bounce" in the re-adaptation curve. CONCLUSION: Gaze control during self-motion is altered following long-duration spaceflight and changes in postflight DVA performance indicate that vestibular re-adaptation may be more complex than a gradual return to normal.
Animal models and their importance to human physiological responses in microgravity
NASA Technical Reports Server (NTRS)
Tipton, C. M.
1996-01-01
Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.
Chao, Chun-Tang
2014-01-01
This paper presents the design and evaluation of the hardware circuit for electronic stethoscopes with heart sound cancellation capabilities using field programmable gate arrays (FPGAs). The adaptive line enhancer (ALE) was adopted as the filtering methodology to reduce heart sound attributes from the breath sounds obtained via the electronic stethoscope pickup. FPGAs were utilized to implement the ALE functions in hardware to achieve near real-time breath sound processing. We believe that such an implementation is unprecedented and crucial toward a truly useful, standalone medical device in outpatient clinic settings. The implementation evaluation with one Altera cyclone II–EP2C70F89 shows that the proposed ALE used 45% resources of the chip. Experiments with the proposed prototype were made using DE2-70 emulation board with recorded body signals obtained from online medical archives. Clear suppressions were observed in our experiments from both the frequency domain and time domain perspectives. PMID:24790573
Evaluation methodologies for an advanced information processing system
NASA Technical Reports Server (NTRS)
Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.
1984-01-01
The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.
Integrated Resistance and Aerobic Training Study - Sprint
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Moore, Alan; Ryder, Jeffrey; Everett, Meg; Bloomberg, Jacob; Sibonga, Jean; Shackelford, Linda; Platts, Steven; Martin, David; Ploutz-Snyder, Robert;
2010-01-01
Space flight causes reductions in fitness/health: (1) Cardiovascular -- reduced VO2max, cardiac output (2) Bone -- reduced bone mineral density (3) Muscle -- reduced mass, strength and endurance. Exercise is the primary countermeasure to protect against these changes and was made operational before completely mature. Research continues to identify most effective/efficient exercise programs. Crew medical tests (cardio, muscle, bone) do not yield sufficient information to fine tune the effectiveness of exercise programs, thus there is a need for more detailed testing aimed at identifying the most effective training program. The objective of this program was to obtain detailed information about crew physical fitness pre-and post-flight and evaluate new evidence based exercise prescription with higher intensity, lower duration and frequency.
NASA Technical Reports Server (NTRS)
Callahan, P. X.; Schatte, C.; Grindeland, R. E.; Bowman, G.; Lencki, W. A.
1985-01-01
Engineering and biological data gathered with the research animal holding facilities (RAHFs) used on the Spacelab 3 mission are summarized. The animals totaled 24 rats and two squirrel monkeys. The RAHFs included biotelemetry, cameras and environmental monitoring equipment. The primary mission goal was engineering evaluation of the RAHFs and ancillary equipment. Tightly-fitted seals were found to be a necessity for keeping waste and food particles from contaminating the Spacelab equipment. All the rats returned with little muscle tone and suppressed immune systems. The monkeys displayed highly individual responses to spaceflight. Both species exhibited reduced abilities to maintain meticulously clean furs in weightlessness. Details of several physiological changes detected during post-flight autopsies are provided.
NASA Technical Reports Server (NTRS)
Miller, Darcy
2000-01-01
Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.
NASA Astrophysics Data System (ADS)
Ruby, Michael
In the last decades scanning probe microscopy and spectroscopy have become well-established tools in nanotechnology and surface science. This opened the market for many commercial manufacturers, each with different hardware and software standards. Besides the advantage of a wide variety of available hardware, the diversity may software-wise complicate the data exchange between scientists, and the data analysis for groups working with hardware developed by different manufacturers. Not only the file format differs between manufacturers, but also the data often requires further numerical treatment before publication. SpectraFox is an open-source and independent tool which manages, processes, and evaluates scanning probe spectroscopy and microscopy data. It aims at simplifying the documentation in parallel to measurement, and it provides solid evaluation tools for a large number of data.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, M. Omair; Sievers, Michael; Standley, Shaun
2012-01-01
Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.
Evaluation of RSRM case hardware fretting concerns
NASA Technical Reports Server (NTRS)
Swauger, Thomas R.
1990-01-01
Fretting corrosion was first noted on Shuttle flight STS-26. This flight was the first usage of the Redesigned Solid Rocket Motor (RSRM). The occurrence of fretting has since been observed on both the field and factory joints of the RSRM. Fretting is a form of corrosion that occurs at the interface between contacting, highly loaded, metal surfaces when exposed to slight relative vibratory motions. The engineering effort performed to evaluate the effect of fretting on the RSRM case hardware is summarized. Based on the results of this evaluation, several conclusions were made concerning flight safety. Also, recommendations were made concerning trending the effects of multiple generations of fretting damage.
Fast Fourier Transform Spectral Analysis Program
NASA Technical Reports Server (NTRS)
Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.
1969-01-01
Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.
NASA Technical Reports Server (NTRS)
1972-01-01
Mission analysis is discussed, including the consolidation and expansion of mission equipment and experiment characteristics, and determination of simplified shuttle flight schedule. Parametric analysis of standard space hardware and preliminary shuttle/payload constraints analysis are evaluated, along with the cost impact of low cost standard hardware.
Benchmarking and Hardware-In-The-Loop Operation of a 2014 MAZDA SkyActiv (SAE 2016-01-1007)
Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge tech...
Real-time computing platform for spiking neurons (RT-spike).
Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael
2006-07-01
A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.
Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.
2010-01-01
A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.
Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia
NASA Astrophysics Data System (ADS)
Macho, L.; Fickova, M.; Lichardus, B.; Kvetnansky, R.; Carrey, R. M.; Grigoriev, A.; Popova, I. A.; Tigranian, R. A.; Noskov, V. B.
The changes of hormones in plasma involved in the body fluid regulation were studied in human subjects during and after space flights in relation to redistribution of body fluids in the state of weightlessness. Since hypokinesia was used as a model for simulation of some effects of the stay in microgravity the plasma hormone levels in rats exposed to hypokinesia were also investigated. Plasma aldosterone values showed great individual variations during the first inflight days, the increased levels were observed with prolongation of space flights. The important elevation was found in the recovery period, however it was interesting to note, that in some cosmonauts with repeated exposure to space flight, the postflight plasma aldosterone levels were not elevated. The urine excretion of aldosterone was increased inflight, however in postflight period the decrease or increase were found in the first 1-5 days. The increase of plasma renin activity was observed in flight and postflight period. The rats were exposed to hypokinesia (forced restriction of motor activity) for 1, 7 and 60 days and urine was collected during last 24 hours. The animals were sacrificed and the concentration of electrolytes and of levels of corticosterone aldosteron (A), ANF and plasma-renin activity (PRA) were determined in plasma. In urine excretion of sodium and potassium were estimated. An important increase of plasma renin activity and aldosterone concentration was found after short-term hypokinesia (1 day). These hormonal values appear to decrease with time (7 days) and are not significantly different from controls after long-term hypokinesia (60 days). A decrease of values ANF in plasma was observed after 1 and 7 days hypokinesia. After prolonged hypokinesia a decrease of sodium plasma concentration was observed. The excretion of sodium in urine was higher in long-term hypokinetic animals. There were no significant changes of plasma potassium levels in rats exposed to hypokinesia, however the urinary excretion of potassium was elevated. In rats exposed to hypokinesia for 7 and 60 days an increase of urine osmolality was observed. The results of hormone and electrolyte determination in plasma of cosmonauts after space flight and in experimental animals after hypokinesia suggested that in evaluation of relations between the changes of hormone levels and electrolyte in plasma and urine other factors like emotional stress working load; altered diurnal cycles should be considered in interpretation of homeostatic response of fluid and electrolyte metabolism to space flight conditions.
Store-operate-coherence-on-value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Heidelberger, Philip; Kumar, Sameer
A system, method and computer program product for performing various store-operate instructions in a parallel computing environment that includes a plurality of processors and at least one cache memory device. A queue in the system receives, from a processor, a store-operate instruction that specifies under which condition a cache coherence operation is to be invoked. A hardware unit in the system runs the received store-operate instruction. The hardware unit evaluates whether a result of the running the received store-operate instruction satisfies the condition. The hardware unit invokes a cache coherence operation on a cache memory address associated with the receivedmore » store-operate instruction if the result satisfies the condition. Otherwise, the hardware unit does not invoke the cache coherence operation on the cache memory device.« less
Compiler-assisted multiple instruction rollback recovery using a read buffer
NASA Technical Reports Server (NTRS)
Alewine, N. J.; Chen, S.-K.; Fuchs, W. K.; Hwu, W.-M.
1993-01-01
Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe computers to provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have also been developed which remove rollback data hazards directly with data-flow transformations. This paper focuses on compiler-assisted techniques to achieve multiple instruction rollback recovery. We observe that some data hazards resulting from instruction rollback can be resolved efficiently by providing an operand read buffer while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations indicate improved efficiency over previous hardware-based and compiler-based schemes.
Laser light scattering instrument advanced technology development
NASA Technical Reports Server (NTRS)
Wallace, J. F.
1993-01-01
The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.
NASA Technical Reports Server (NTRS)
1978-01-01
The concept of decentralized (remote) neighborhood offices, linked together through a self-sustaining communications network for exchanging voice messages, video images, and digital data was quantitatively evaluated. Hardware and procedures for the integrated multifunctional system were developed. The configuration of the neighborhood office center (NOC) is explained, its production statistics given, and an experiment for NOC network integration via satellite is described. The hardware selected for the integration NOC/management information system is discussed, and the NASA teleconferencing network is evaluated.
Evaluating geographic information systems technology
Guptill, Stephen C.
1989-01-01
Computerized geographic information systems (GISs) are emerging as the spatial data handling tools of choice for solving complex geographical problems. However, few guidelines exist for assisting potential users in identifying suitable hardware and software. A process to be followed in evaluating the merits of GIS technology is presented. Related standards and guidelines, software functions, hardware components, and benchmarking are discussed. By making users aware of all aspects of adopting GIS technology, they can decide if GIS is an appropriate tool for their application and, if so, which GIS should be used.
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained in the NASA FMEA/CIL documentation. This report documents the results of the independent analysis of the EPD and C/RMS (both port and starboard) hardware. The EPD and C/RMS subsystem hardware provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow or guillotine and jettison two (one port and one starboard) RMSs. The EPD and C/RMS subsystem is subdivided into the four following functional divisions: Remote Manipulator Arm; Manipulator Deploy Control; Manipulator Latch Control; Manipulator Arm Shoulder Jettison; and Retention Arm Jettison. The IOA analysis process utilized available EPD and C/RMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based on the severity of the effect for each failure mode.
Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem
NASA Technical Reports Server (NTRS)
Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
An automatic speech recognition system with speaker-independent identification support
NASA Astrophysics Data System (ADS)
Caranica, Alexandru; Burileanu, Corneliu
2015-02-01
The novelty of this work relies on the application of an open source research software toolkit (CMU Sphinx) to train, build and evaluate a speech recognition system, with speaker-independent support, for voice-controlled hardware applications. Moreover, we propose to use the trained acoustic model to successfully decode offline voice commands on embedded hardware, such as an ARMv6 low-cost SoC, Raspberry PI. This type of single-board computer, mainly used for educational and research activities, can serve as a proof-of-concept software and hardware stack for low cost voice automation systems.
Smooth Pursuit Saccade Amplitude Modulation During Exposure to Microgravity
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Sayenko, D. G.; Sayenko, I.; Somers, J. T.; Paloski, W. H.
2002-01-01
Russian investigators have reported changes in pursuit tracking of a vertically moving point stimulus during space flight. Early in microgravity, changes were manifested by decreased eye movement amplitude (undershooting) and the appearance of correction saccades. As the flight progressed, pursuit of the moving point stimulus deteriorated while associated saccadic movements were unchanged. Immediately postflight there was an improved execution of active head movements indicating that the deficiencies in pursuit function noted in microgravity may be of central origin. In contrast, tests of two cosmonauts showed that horizontal and vertical smooth pursuit were unchanged inflight. However, results of corresponding saccadic tasks showed a tendency toward the overshooting of a horizontal target early inflight with high accuracy developing later inflight, accompanied by an increased saccade velocity and a trend toward decreased saccade latency. Based on these equivocal results, we have further investigated the effects of space flight on the smooth pursuit mechanism during and after short duration flight, and postflight on returning MIR crewmembers. Sinusoidal target movement was presented horizontally at frequencies of 0.33 and 1.0 Hz. Subjects were asked to perform two trials for each stimulus combination: (1) moving eyes-only (EO) and (2) moving eyes and head (EH) with the target motion. Peak amplitude was 30 deg for 0.33 Hz trials and 15 deg for the 1.0 Hz trials. The relationship between saccade amplitude and peak velocity were plotted as a main sequence for each phase of flight, and linear regression analysis allowed us to determine the slope of each main sequence plot. The linear slopes were then combined for each flight phase for each individual subject. The main sequence for both EO and EH trials at both the 0.33 and 1.0 Hz frequencies during flight for the short duration flyers showed a reduction in saccade velocity and amplitude when compared to the preflight main sequence . This difference in the regression slopes between flight phase, head/eye condition (EO or EH), and pursuit target frequency was observed across all subjects (statistically significant at the p<0.02, df= 2). It is interesting to note that postflight for the short duration flyers there was an immediate recovery to the preflight main sequence across all trials. There were no significant differences observed between the preflight slopes for either head movement condition (EO vs. EH). When the immediate postflight (R+O) regression slopes were compared with the preflight slopes, there was a tendency (not significant) for both saccade amplitude and peak velocity to increase during the postflight testing. This tendency had vanished by R+ 1. Of particular interest was the redistribution of saccades during the latter stages of the flight and immediately postflight in the EO condition. At the 1.0 Hz frequency the saccades tended to be clustered near the lowest target velocity. It was also interesting to note that gaze performance (eye in skull + head in space) was consistently better during the EH condition; a finding also observed by our Russian colleagues. As the results of the long duration flight become available we expect that they will not only show that postflight effects will be similar to those observed during the short duration flights, but will also last for a greater period of time following flight. It is not clear what mechanism is responsible for the decreased peak saccadic velocity during flight unless the change is related to the control of retinal slip. For example, it is possible that saccades will tend to initially undershoot their targets by a small percentage and these saccades are then followed, if vision is available, by a small augmenting corrective saccade. It has been postulated that the functional significance of this undershooting tendency is to maintain the spatial representation of the target on the same side of the fovea (as opposedo racing across the fovea) and hence in the same cerebral hemisphere that initiated the primary saccade thus minimizing delays caused by an intra-hemispheric transfer of information . One could also speculate that with saccade velocities greater than normal, additional corrective saccades would be required to bring the target back on the fovea. A less plausible explanation of our findings could be fatigue. Yet it seems unlikely that our subjects would show lower velocities on all inflight test days while showing increased saccade velocities immediately following space flight where fatigue is usually the greatest. Finally, the redistribution effect noted late inflight is likely caused by adaptive changes. Overall, corrective saccades appeared to be used in maintaining gaze on target; reducing retinal slip and assisting space travelers in maintaining clear vision throughout the different phases of the space flight.
DISTA: a portable software solution for 3D compilation of photogrammetric image blocks
NASA Astrophysics Data System (ADS)
Boochs, Frank; Mueller, Hartmut; Neifer, Markus
2001-04-01
A photogrammetric evaluation system used for the precise determination of 3D-coordinates from blocks of large metric images will be presented. First, the motivation for the development is shown, which is placed in the field of processing tools for photogrammetric evaluation tasks. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing a complete processing chain for all elementary photogrammetric tasks ranging from preparatory steps over the formation of image blocks up to the automatic and interactive 3D-evaluation within digital stereo models. The presented system is based on PC-hardware equipped with off the shelf graphics boards and uses an object oriented design. The specific needs of a flexible measuring system and the corresponding requirements which have to be met by the system are shown. Important aspects as modularity and hardware independence and their value for the solution are shown. The design of the software will be presented and first results with a prototype realised on a powerful PC-hardware configuration will be featured
Force sharing in high-power parallel servo-actuators
NASA Technical Reports Server (NTRS)
Neal, T. P.
1974-01-01
The various existing force sharing schemes were examined by conducting a literature survey. A list of potentially applicable concepts was compiled from this survey, and a brief analysis was then made of each concept, which resulted in two competing schemes being selected for in-depth evaluation. A functional design of the equalization logic for the two schemes was undertaken and specific space shuttle application was chosen for experimental evaluation. The application was scaled down so that existing hardware could be utilized. Next, an analog computer study was conducted to evaluate the more important characteristics of the two competing force sharing schemes. On the basis of the computers study, a final configuration was selected. A load simulator was then designed to evaluate this configuration on actual hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-02-01
This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
A SOPC-BASED Evaluation of AES for 2.4 GHz Wireless Network
NASA Astrophysics Data System (ADS)
Ken, Cai; Xiaoying, Liang
In modern systems, data security is needed more than ever before and many cryptographic algorithms are utilized for security services. Wireless Sensor Networks (WSN) is an example of such technologies. In this paper an innovative SOPC-based approach for the security services evaluation in WSN is proposed that addresses the issues of scalability, flexible performance, and silicon efficiency for the hardware acceleration of encryption system. The design includes a Nios II processor together with custom designed modules for the Advanced Encryption Standard (AES) which has become the default choice for various security services in numerous applications. The objective of this mechanism is to present an efficient hardware realization of AES using very high speed integrated circuit hardware description language (Verilog HDL) and expand the usability for various applications. As compared to traditional customize processor design, the mechanism provides a very broad range of cost/performance points.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.
2012-01-01
As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.
Neck muscle activity in fighter pilots wearing night-vision equipment during simulated flight.
Ang, Björn O; Kristoffersson, Mats
2013-02-01
Night-vision goggles (NVG) in jet fighter aircraft appear to increase the risk of neck strain due to increased neck loading. The present aim was, therefore, to evaluate the effect on neck-muscle activity and subjective ratings of head-worn night-vision (NV) equipment in controlled simulated flights. Five experienced fighter pilots twice flew a standardized 2.5-h program in a dynamic flight simulator; one session with NVG and one with standard helmet mockup (control session). Each session commenced with a 1-h simulation at 1 Gz followed by a 1.5-h dynamic flight with repeated Gz profiles varying between 3 and 7 Gz and including aerial combat maneuvers (ACM) at 3-5 Gz. Large head-and-neck movements under high G conditions were avoided. Surface electromyographic (EMG) data was simultaneously measured bilaterally from anterior neck, upper and lower posterior neck, and upper shoulder muscles. EMG activity was normalized as the percentage of pretest maximal voluntary contraction (%MVC). Head-worn equipment (helmet comfort, balance, neck mobility, and discomfort) was rated subjectively immediately after flight. A trend emerged toward greater overall neck muscle activity in NV flight during sustained ACM episodes (10% vs. 8% MVC for the control session), but with no such effects for temporary 3-7 Gz profiles. Postflight ratings for NV sessions emerged as "unsatisfactory" for helmet comfort/neck discomfort. However, this was not significant compared to the control session. Helmet mounted NV equipment caused greater neck muscle activity during sustained combat maneuvers, indicating increased muscle strain due to increased neck loading. In addition, postflight ratings indicated neck discomfort after NV sessions, although not clearly increased compared to flying with standard helmet mockup.
Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation.
Moore, Steven T; MacDougall, Hamish G; Peters, Brian T; Bloomberg, Jacob J; Curthoys, Ian S; Cohen, Helen S
2006-10-01
In this study locomotor and gaze dysfunction commonly observed in astronauts following spaceflight were modeled using two Galvanic vestibular stimulation (GVS) paradigms: (1) pseudorandom, and (2) head-coupled (proportional to the summed vertical linear acceleration and yaw angular velocity obtained from a head-mounted Inertial Measurement Unit). Locomotor and gaze function during GVS were assessed by tests previously used to evaluate post-flight astronaut performance; dynamic visual acuity (DVA) during treadmill locomotion at 80 m/min, and navigation of an obstacle course. During treadmill locomotion with pseudorandom GVS there was a 12% decrease in coherence between head pitch and vertical translation at the step frequency relative to the no GVS condition, which was not significantly different to the 15% decrease in coherence observed in astronauts following shuttle missions. This disruption in head stabilization likely resulted in a decrease in DVA equivalent to the reduction in acuity observed in astronauts 6 days after return from extended missions aboard the International Space Station (ISS). There were significant increases in time-to-completion of the obstacle course during both pseudorandom (21%) and head-coupled (14%) GVS, equivalent to an ISS astronaut 5 days post-landing. An attempt to suppress head movement was evident during both pseudorandom and head-coupled GVS while negotiating the obstacle course, with a 20 and 16%, decrease in head pitch and yaw velocity, respectively. The results of this study demonstrate that pseudorandom GVS generates many of the salient features of post-flight locomotor dysfunction observed in astronauts following short and long duration missions. An ambulatory GVS system may prove a useful adjunct to the current pre-flight astronaut training regimen.
Convertino, Victor A; Cooke, William H
2005-09-01
Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.
NASA Technical Reports Server (NTRS)
Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.
1993-01-01
We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.
Sensitive Quantitative Assessment of Balance Disorders
NASA Technical Reports Server (NTRS)
Paloski, Willilam H.
2007-01-01
Computerized dynamic posturography (CDP) has become a standard technique for objectively quantifying balance control performance, diagnosing the nature of functional impairments underlying balance disorders, and monitoring clinical treatment outcomes. We have long used CDP protocols to assess recovery of sensory-motor function in astronauts following space flight. The most reliable indicators of post-flight crew performance are the sensory organization tests (SOTs), particularly SOTs 5 and 6, which are sensitive to changes in availability and/or utilization of vestibular cues. We have noted, however, that some astronauts exhibiting obvious signs of balance impairment after flight are able to score within clinical norms on these tests, perhaps as a result of adopting competitive strategies or by their natural skills at substituting alternate sensory information sources. This insensitivity of the CDP protocol could underestimate of the degree of impairment and, perhaps, lead to premature release of those crewmembers to normal duties. To improve the sensitivity of the CDP protocol we have introduced static and dynamic head tilt SOT trials into our protocol. The pattern of postflight recovery quantified by the enhanced CDP protocol appears to more aptly track the re-integration of sensory-motor function, with recovery time increasing as the complexity of sensory-motor/biomechanical task increases. The new CDP protocol therefore seems more suitable for monitoring post-flight sensory-motor recovery and for indicating to crewmembers and flight surgeons fitness for return to duty and/or activities of daily living. There may be classes of patients (e.g., athletes, pilots) having motivation and/or performance characteristics similar to astronauts whose sensory-motor treatment outcomes would also be more accurately monitored using the enhanced CDP protocol. Furthermore, the enhanced protocol may be useful in early detection of age-related balance disorders.
Home Cervical Traction to Reduce Neck Pain in Fighter Pilots.
Chumbley, Eric M; O'Hair, Nicole; Stolfi, Adrienne; Lienesch, Christopher; McEachen, James C; Wright, Bruce A
2016-12-01
Most fighter pilots report cervical pain during their careers. Recommendations for remediation lack evidence. We sought to determine whether regular use of a home cervical traction device could decrease reported cervical pain in F-15C pilots. An institutional review board-approved, Health Insurance Portability and Accountability Act-compliant, controlled crossover study was undertaken with 21 male F-15C fighter pilots between February and June 2015. Of the 21 subjects, 12 completed 6 wk each of traction and control, while logging morning, postflying, and post-traction pain. Pain was compared with paired t-tests between the periods, from initial pain scores to postflying, and postflying to post-traction. In the traction phase, initial pain levels increased postflight, from 1.2 (0.7) to 1.6 (1.0) Subsequent post-traction pain levels decreased to 1.3 (0.9), with a corresponding linear decrease in pain relative to pain reported postflight. The difference in pain levels after traction compared to initial levels was not significant, indicating that cervical traction was effective in alleviating flying-related pain. Control pain increased postflight from 1.4 (0.9) to 1.9 (1.3). Daily traction phase pain was lower than the control, but insignificant. To our knowledge, this is the first study of home cervical traction to address fighter pilots' cervical pain. We found a small but meaningful improvement in daily pain rating when using cervical traction after flying. These results help inform countermeasure development for pilots flying high-performance aircraft. Further study should clarify the optimal traction dose and timing in relation to flying.Chumbley EM, O'Hair N, Stolfi A, Lienesch C, McEachen JC, Wright BA. Home cervical traction to reduce neck pain in fighter pilots. Aerosp Med Hum Perform. 2016; 87(12):1010-1015.