Co-registration of In-Vivo Human MRI Brain Images to Postmortem Histological Microscopic Images
Singh, M.; Rajagopalan, A.; Kim, T.-S.; Hwang, D.; Chui, H.; Zhang, X.-L.; Lee, A.-Y.; Zarow, C.
2009-01-01
Certain features such as small vascular lesions seen in human MRI are detected reliably only in postmortem histological samples by microscopic imaging. Co-registration of these microscopically detected features to their corresponding locations in the in-vivo images would be of great benefit to understanding the MRI signatures of specific diseases. Using non-linear Polynomial transformation, we report a method to co-register in-vivo MRIs to microscopic images of histological samples drawn off the postmortem brain. The approach utilizes digital photographs of postmortem slices as an intermediate reference to co-register the MRIs to microscopy. The overall procedure is challenging due to gross structural deformations in the postmortem brain during extraction and subsequent distortions in the histological preparations. Hemispheres of the brain were co-registered separately to mitigate these effects. Approaches relying on matching single-slices, multiple-slices and entire volumes in conjunction with different similarity measures suggested that using four slices at a time in combination with two sequential measures, Pearson correlation coefficient followed by mutual information, produced the best MRI-postmortem co-registration according to a voxel mismatch count. The accuracy of the overall registration was evaluated by measuring the 3D Euclidean distance between the locations of microscopically identified lesions on postmortem slices and their MRI-postmortem co-registered locations. The results show a mean 3D displacement of 5.1 ± 2.0 mm between the in-vivo MRI and microscopically determined locations for 21 vascular lesions in 11 subjects. PMID:19169415
Milner, Danny A.; Valim, Clarissa; Luo, Robert; Playforth, Krupa B.; Kamiza, Steve; Molyneux, Malcolm E.; Seydel, Karl B.; Taylor, Terrie E.
2012-01-01
Background The conventional clinical case definition of cerebral malaria (CM) is imprecise but specificity is improved by a definitive clinical feature such as retinopathy or confirming sequestration of parasites in a post-mortem examination of the brain. A full autopsy is often not possible, since it is costly and may encounter resistance of the deceased's family. Methods We have assessed the use of a cytological smear of brain tissue, obtained post-mortem by supraorbital sampling, for the purpose of quantifying cerebral sequestration in children with fatal malaria in Blantyre, Malawi. We have compared this method to histological quantification of parasites at autopsy. Results The number of parasites present on cytological smears correlated with the proportion of vessels parasitized as assessed by histology of fixed and stained brain tissue. Use of cytological results in addition to the standard clinical case definition increases the specificity of the clinical case definition alone from 48.3% to 100% with a minimal change in sensitivity. Conclusions Post-mortem supraorbital sampling of brain tissue improves the specificity of the diagnosis of fatal cerebral malaria and provides accurate quantitative estimates of cerebral sequestration. This tool can be of great value in clinical, pathogenetic, and epidemiological research studies on cerebral malaria. PMID:22291197
Skov, Louise; Holm, Karen Marie Dollerup; Johansen, Sys Stybe; Linnet, Kristian
2016-09-01
To interpret postmortem toxicology results, reference concentrations for non-toxic and toxic levels are needed. Usually, measurements are performed in blood, but because of postmortem redistribution phenomena this may not be optimal. Rather, measurement in the target organ of psychoactive drugs, the brain, might be considered. Here we present reference concentrations of femoral blood and brain tissue of selected benzodiazepines (BZDs). Using LC-MS/MS, we quantified alprazolam, bromazepam, chlordiazepoxide, diazepam, and the metabolites desmethyldiazepam, oxazepam and temazepam in postmortem femoral blood and brain tissue in 104 cases. BZDs were judged to be unrelated to the cause of death in 88 cases and contributing to death in 16 cases. No cases were found with cause of death solely attributed to BZD poisoning. All BZDs investigated tended to have higher concentrations in brain than in blood with median brain-blood ratios ranging from 1.1 to 2.3. A positive correlation between brain and blood concentrations was found with R(2) values from 0.51 to 0.95. Our reported femoral blood concentrations concur with literature values, but sparse information on brain concentration was available. Drug-metabolite ratios were similar in brain and blood for most compounds. Duplicate measurements of brain samples showed that the pre-analytical variation in brain (5.9%) was relatively low, supporting the notion that brain tissue is a suitable postmortem specimen. The reported concentrations in both brain and blood can be used as reference values when evaluating postmortem cases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu
2012-01-01
Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359
Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review
Trépanier, M O; Hopperton, K E; Mizrahi, R; Mechawar, N; Bazinet, R P
2016-01-01
Schizophrenia is a psychiatric disorder which has a lifetime prevalence of ~1%. Multiple candidate mechanisms have been proposed in the pathogenesis of schizophrenia. One such mechanism is the involvement of neuroinflammation. Clinical studies, including neuroimaging, peripheral biomarkers and randomized control trials, have suggested the presence of neuroinflammation in schizophrenia. Many studies have also measured markers of neuroinflammation in postmortem brain samples from schizophrenia patients. The objective of this study was to conduct a systematic search of the literature on neuroinflammation in postmortem brains of schizophrenia patients indexed in MEDLINE, Embase and PsycINFO. Databases were searched up until 20th March 2016 for articles published on postmortem brains in schizophrenia evaluating microglia, astrocytes, glia, cytokines, the arachidonic cascade, substance P and other markers of neuroinflammation. Two independent reviewers extracted the data. Out of 5385 articles yielded by the search, 119 articles were identified that measured neuroinflammatory markers in schizophrenic postmortem brains. Glial fibrillary acidic protein expression was elevated, lower or unchanged in 6, 6 and 21 studies, respectively, and similar results were obtained for glial cell densities. On the other hand, microglial markers were increased, lower or unchanged in schizophrenia in 11, 3 and 8 studies, respectively. Results were variable across all other markers, but SERPINA3 and IFITM were consistently increased in 4 and 5 studies, respectively. Despite the variability, some studies evaluating neuroinflammation in postmortem brains in schizophrenia suggest an increase in microglial activity and other markers such as SERPINA3 and IFITM. Variability across studies is partially explained by multiple factors including brain region evaluated, source of the brain, diagnosis, age at time of death, age of onset and the presence of suicide victims in the cohort. PMID:27271499
Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids.
Ondruschka, Benjamin; Sieber, Monique; Kirsten, Holger; Franke, Heike; Dressler, Jan
2018-05-05
Until now, it is impossible to identify a fatal traumatic brain injury (TBI) before post-mortem radiological investigations or an autopsy take place. It would be preferable to have an additional diagnostic tool like post-mortem biochemistry to get greater insight into the pathological pathways and survival times after sustaining TBI. Cerebrospinal fluid (CSF) and serum samples of 84 autopsy cases were collected from forensic autopsies with post-mortem intervals (PMI) of up to 148 h. The cases were categorized into a fatal TBI case group (n=42) and non-TBI controls (n=42). The values of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and neutrophil gelatinase-associated lipocalin (NGAL) were analyzed by means of quantitative chemiluminescent multiplex immunoassays. The main results indicate that the usage of liquid samples with good macroscopic quality is more relevant for meaningful biomarker analyses than the length of the PMI. All three proteins were shown to differentiate TBI fatalities from the controls in CSF. In serum, only GFAP could be shown to be able to identify TBI cases. This study is the first approach to measure the three proteins together in CSF and serum in autopsy cases. Determined threshold values may differentiate between fatal TBI and control cases. The presented results emphasize the possible use of post-mortem biochemistry as a supplemental tool in everyday forensic routine.
Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M; Grinberg, Lea T
2017-04-15
Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.
In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measuredmore » by autoradiography.« less
Usability of Immunohistochemistry in Forensic Samples With Varying Decomposition.
Lesnikova, Iana; Schreckenbach, Marc Niclas; Kristensen, Maria Pihlmann; Papanikolaou, Liv Lindegaard; Hamilton-Dutoit, Stephen
2018-05-24
Immunohistochemistry (IHC) is an important diagnostic tool in anatomic and surgical pathology but is used less frequently in forensic pathology. Degradation of tissue because of postmortem decomposition is believed to be a major limiting factor, although it is unclear what impact such degradation actually has on IHC staining validity. This study included 120 forensic autopsy samples of liver, lung, and brain tissues obtained for diagnostic purposes. The time from death to autopsy ranged between 1 and more than 14 days. Samples were prepared using the tissue microarray technique. The antibodies chosen for the study included KL1 (for staining bile duct epithelium), S100 (for staining glial cells and myelin), vimentin (for endothelial cells in cerebral blood vessels), and CD45 (for pulmonary lymphocytes). Slides were evaluated by light microscopy. Immunohistochemistry reactions were scored according to a system based on the extent and intensity of the positive stain. An overall correlation between the postmortem interval and the IHC score for all tissue samples was found. Samples from decedents with a postmortem interval of 1 to 3 days showed positive staining with all antibodies, whereas samples from decedents with a longer postmortem interval showed decreased staining rates. Our results suggest that IHC analysis can be successfully used for postmortem diagnosis in a range of autopsy samples showing lesser degrees of decomposition.
Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A.; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M.
2017-01-01
Background Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. New method Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Results Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. Comparison with existing methods We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. Conclusion The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. PMID:28267565
Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam
2015-12-01
Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance. © 2015 Wiley Periodicals, Inc.
Twenty-first century brain banking. Processing brains for research: the Columbia University methods
del Amaya, Maria Pilar; Keller, Christian E.
2007-01-01
Carefully categorized postmortem human brains are crucial for research. The lack of generally accepted methods for processing human postmortem brains for research persists. Thus, brain banking is essential; however, it cannot be achieved at the cost of the teaching mission of the academic institution by routing brains away from residency programs, particularly when the autopsy rate is steadily decreasing. A consensus must be reached whereby a brain can be utilizable for diagnosis, research, and teaching. The best diagnostic categorization possible must be secured and the yield of samples for basic investigation maximized. This report focuses on integrated, novel methods currently applied at the New York Brain Bank, Columbia University, New York, which are designed to reach accurate neuropathological diagnosis, optimize the yield of samples, and process fresh-frozen samples suitable for a wide range of modern investigations. The brains donated for research are processed as soon as possible after death. The prosector must have a good command of the neuroanatomy, neuropathology, and the protocol. One half of each brain is immersed in formalin for performing the thorough neuropathologic evaluation, which is combined with the teaching task. The contralateral half is extensively dissected at the fresh state. The anatomical origin of each sample is recorded using the map of Brodmann for the cortical samples. The samples are frozen at −160°C, barcode labeled, and ready for immediate disbursement once categorized diagnostically. A rigorous organization of freezer space, coupled to an electronic tracking system with its attached software, fosters efficient access for retrieval within minutes of any specific frozen samples in storage. This report describes how this achievement is feasible with emphasis on the actual processing of brains donated for research. PMID:17985145
Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime
2017-06-01
This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.
Nitrobenzodiazepines: Postmortem brain and blood reference concentrations.
Skov, Louise; Holm, Karen Marie Dollerup; Linnet, Kristian
2016-11-01
Reference concentrations are needed to evaluate postmortem toxicology results and usually femoral blood is the specimen of choice. However, brain tissue has been suggested as a viable alternative specimen, since postmortem blood concentrations can be difficult to interpret due to postmortem redistribution, among other factors. Here we present reference concentrations of postmortem brain and femoral blood of the nitrobenzodiazepines clonazepam, flunitrazepam, and nitrazepam that are of particular interest since they commonly are converted to their corresponding 7-aminometabolites in the postmortem situation. The drugs and metabolites were quantified in both matrices using LC-MS-MS in 69 cases. In 63 cases the compounds were judged not to have been of significance for the death (C cases), whereas they were considered to have been a contributing factor in 6 cases (B cases). No cases were observed with a nitrobenzodiazepine being the sole cause of death (A cases). The brain-blood ratios for clonazepam and nitrazepam were 5.5 and 4.7, respectively, while the brain-blood ratios for the 7-aminometabolites ranged from 0.4 to 0.5. Flunitrazepam only occurred as the 7-aminometabolite. A positive correlation between brain and blood concentrations was found with Spearman's rank correlation coefficients (r s ) ranging from 0.77 to 0.96. The measured femoral blood concentrations agree with literature values, but only few brain concentrations were available for comparison. The drug-metabolite ratios for clonazepam and nitrazepam were 10-12 times higher in brain than in blood. The pre-analytical variation in brain of 5.9% was fairly low, suggesting that brain tissue is a useful alternative to blood. The reported brain and femoral blood concentrations serve as reference values in postmortem investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wonodi, Ikwunga; Stine, O. Colin; Sathyasaikumar, Korrapati V.; Roberts, Rosalinda C.; Mitchell, Braxton D.; Hong, L. Elliot; Kajii, Yasushi; Thaker, Gunvant K.; Schwarcz, Robert
2013-01-01
Context Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. Objectives To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Design Case-control postmortem and clinical study. Setting Maryland Brain Collection, outpatient clinics. Participants Postmortem specimens from schizophrenia patients (n=32) and control donors (n=32) and a clinical sample of schizophrenia patients (n=248) and healthy controls (n=228). Main Outcome Measures Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). Results In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Conclusion Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits. PMID:21727251
Wonodi, Ikwunga; Stine, O Colin; Sathyasaikumar, Korrapati V; Roberts, Rosalinda C; Mitchell, Braxton D; Hong, L Elliot; Kajii, Yasushi; Thaker, Gunvant K; Schwarcz, Robert
2011-07-01
Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, is an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors and modulates glutamate, dopamine, and acetylcholine signaling. Cortical kynurenic acid concentrations are elevated in the brain and cerebrospinal fluid of schizophrenia patients. The proximal cause may be an impairment of kynurenine 3-monooxygenase (KMO), a rate-limiting enzyme at the branching point of the kynurenine pathway. To examine KMO messenger RNA expression and KMO enzyme activity in postmortem tissue from the frontal eye field (FEF; Brodmann area 6) obtained from schizophrenia individuals compared with healthy control individuals and to explore the relationship between KMO single-nucleotide polymorphisms and schizophrenia oculomotor endophenotypes. Case-control postmortem and clinical study. Maryland Brain Collection, outpatient clinics. Postmortem specimens from schizophrenia patients (n = 32) and control donors (n = 32) and a clinical sample of schizophrenia patients (n = 248) and healthy controls (n = 228). Comparison of quantitative KMO messenger RNA expression and KMO enzyme activity in postmortem FEF tissue between schizophrenia patients and controls and association of KMO single-nucleotide polymorphisms with messenger RNA expression in postmortem FEF and schizophrenia and oculomotor endophenotypes (ie, smooth pursuit eye movements and oculomotor delayed response). In postmortem tissue, we found a significant and correlated reduction in KMO gene expression and KMO enzyme activity in the FEF in schizophrenia patients. In the clinical sample, KMO rs2275163 was not associated with a diagnosis of schizophrenia but showed modest effects on predictive pursuit and visuospatial working memory endophenotypes. Our results provide converging lines of evidence implicating reduced KMO activity in the etiopathophysiology of schizophrenia and related neurocognitive deficits.
Bentil, Sarah A; Dupaix, Rebecca B
2014-02-01
The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (<6h, 24h, 3 days, and 1 week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.
Postmortem Brain: An Underutilized Substrate for Studying Severe Mental Illness
McCullumsmith, Robert E; Hammond, John H; Shan, Dan; Meador-Woodruff, James H
2014-01-01
We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness. PMID:24091486
Lintas, Carla; Sacco, Roberto; Persico, Antonio M
2016-01-01
Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.
Association between polychlorinated biphenyls and Parkinson's disease neuropathology.
Hatcher-Martin, Jaime M; Gearing, Marla; Steenland, Kyle; Levey, Allan I; Miller, Gary W; Pennell, Kurt D
2012-10-01
Polychlorinated biphenyls (PCBs) are synthetic chemicals primarily used as coolants and insulators in electrical equipment. Although banned for several decades, PCBs continue to exist in the environment because of their long half-life, continued presence in items produced before the ban, and poor disposal practices. Epidemiological and experimental studies have identified exposure to PCBs as a potential risk factor for Parkinson's disease, perhaps more so in females. The objective of this work was to examine the association between PCB levels in post-mortem human brain tissue and the diagnosis of Parkinson's disease, as well as the degree of nigral depigmentation. We also sought to determine if this association was more significant when patients were stratified by sex. Post-mortem brain samples from control patients and those diagnosed with Parkinson's disease were obtained from the Emory University Brain Bank and from the Nun Study. Concentrations of eight prevalent PCB congeners were extracted from post-mortem brain tissue and analyzed using gas chromatography-mass spectrometry. PCB congeners 153 and 180 were significantly elevated in the brains of Parkinson's disease patients. When stratified by sex, the female Parkinson's disease group demonstrated significantly elevated concentrations of total PCBs and specifically congeners 138, 153, and 180 compared to controls, whereas PCB concentrations in males were not significantly different between control and Parkinson's disease groups. In a separate population of women (Nun Study) who had no clinical signs or symptoms of PD, elevated concentrations total PCB and congeners 138, 153 and 180 were also observed in post-mortem brain tissue exhibiting moderate nigral depigmentation compared to subjects with mild or no depigmentation. These quantitative data demonstrate an association between brain PCB levels and Parkinson's disease-related pathology. Furthermore, these data support epidemiological and laboratory studies reporting a link between PCB exposure and an increased risk for Parkinson's disease, including greater susceptibility of females. Copyright © 2012 Elsevier Inc. All rights reserved.
Association between polychlorinated biphenyls and Parkinson’s disease neuropathology
Hatcher-Martin, Jaime M.; Gearing, Marla; Steenland, Kyle; Levey, Allan I.; Miller, Gary W.; Pennell, Kurt D.
2012-01-01
Polychlorinated biphenyls (PCBs) are synthetic chemicals primarily used as coolants and insulators in electrical equipment. Although banned for several decades, PCBs continue to exist in the environment because of their long half-life, continued presence in items produced before the ban, and poor disposal practices. Epidemiological and experimental studies have identified exposure to PCBs as a potential risk factor for Parkinson’s disease, perhaps more so in females. The objective of this work was to examine the association between PCB levels in post-mortem human brain tissue and the diagnosis of Parkinson’s disease, as well as the degree of nigral depigmentation. We also sought to determine if this association was more significant when patients were stratified by sex. Post-mortem brain samples from control patients and those diagnosed with Parkinson’s disease were obtained from the Emory University Brain Bank and from the Nun Study. Concentrations of eight prevalent PCB congeners were extracted from post-mortem brain tissue and analyzed using gas chromatography-mass spectrometry. PCB congeners 153 and 180 were significantly elevated in the brains of Parkinson’s disease patients. When stratified by sex, the female Parkinson’s disease group demonstrated significantly elevated concentrations of total PCBs and specifically congeners 138, 153, and 180 compared to controls, whereas PCB concentrations in males were not significantly different between control and Parkinson’s disease groups. In a separate population of women (Nun Study) who had no clinical signs or symptoms of PD, elevated concentrations total PCB and congeners 138, 153 and 180 were also observed in post-mortem brain tissue exhibiting moderate nigral depigmentation compared to subjects with mild or no depigmentation. These quantitative data demonstrate an association between brain PCB levels and Parkinson’s disease-related pathology. Furthermore, these data support epidemiological and laboratory studies reporting a link between PCB exposure and an increased risk for Parkinson’s disease, including greater susceptibility of females. PMID:22906799
The Sun Health Research Institute Brain Donation Program: Description and Eexperience, 1987–2007
Sue, Lucia I.; Walker, Douglas G.; Roher, Alex E.; Lue, LihFen; Vedders, Linda; Connor, Donald J.; Sabbagh, Marwan N.; Rogers, Joseph
2008-01-01
The Brain Donation Program at Sun Health Research Institute has been in continual operation since 1987, with over 1000 brains banked. The population studied primarily resides in the retirement communities of northwest metropolitan Phoenix, Arizona. The Institute is affiliated with Sun Health, a nonprofit community-owned and operated health care provider. Subjects are enrolled prospectively to allow standardized clinical assessments during life. Funding comes primarily from competitive grants. The Program has made short postmortem brain retrieval a priority, with a 2.75-h median postmortem interval for the entire collection. This maximizes the utility of the resource for molecular studies; frozen tissue from approximately 82% of all cases is suitable for RNA studies. Studies performed in-house have shown that, even with very short postmortem intervals, increasing delays in brain retrieval adversely affect RNA integrity and that cerebrospinal fluid pH increases with postmortem interval but does not predict tissue viability. PMID:18347928
[Postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pigs].
Liu, Wei; Da, Qing; Shen, Min
2012-06-01
To investigate the postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pig, and to provide method and evidence for forensic identification and clinical diagnosis and treatment. Guinea pigs were intragastric administrated with 100, 50, 15 microg/kg tetrodotoxin, respectively. The poisoning symptoms were observed. The samples of heart, liver, spleen, lung, kidney, brain, stomach, intestines, bile, heart blood and urine were collected. The concentrations of tetrodotoxin in tissues and body fluids were measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). After administrated with tetrodotoxin, all guinea pigs came out poisoning signs including tachypnea, weary and dead finally. Tetrodotoxin concentrations in lung, stomach, intestines and urine were higher, followed by blood, heart and brain. The concentration in bile was the lowest. Postmortem distribution of tetrodotoxin in guinea pig is uneven. The concentration in the lung, stomach, intestines, urine and heart blood are higher, those tissues could be used for diagnosis of tetrodotoxin poisoning.
Zhang, Rong; Zhang, Tong; Ali, Ali Muhsen; Al Washih, Mohammed; Pickard, Benjamin; Watson, David G
2016-01-01
Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizophrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14 with metabolite searching against an in-house database. There was no clear discrimination between the controls and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively identified metabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on the basis of this small sample set to be some commonality between metabolic perturbations resulting from diabetes and from SDB.
Dysbindin-1 and NRG-1 gene expression in immortalized lymphocytes from patients with schizophrenia.
Yamamori, Hidenaga; Hashimoto, Ryota; Verrall, Louise; Yasuda, Yuka; Ohi, Kazutaka; Fukumoto, Motoyuki; Umeda-Yano, Satomi; Ito, Akira; Takeda, Masatoshi
2011-07-01
The dysbindin-1 and neuregulin-1 (NRG-1) genes are related to schizophrenia. Expression studies in postmortem brains have revealed lower expression of dysbindin-1 and higher expression of NRG-1 in brain tissue from subjects with schizophrenia. In addition to the difficulty of sampling, the use of postmortem brain tissues is not ideal because these tissues are heterogeneous with respect to biochemical parameters, lifetime history of medications and physiological status at the time of death. In contrast, medication and environmental influences that could mask the genetic basis of differences in RNA expression are removed in immortalized lymphocytes by culturing. Only a few microarray analysis studies using immortalized lymphocytes in schizophrenia have been reported, and whether immortalized lymphocytes are an appropriate alternative to neuronal tissue remains controversial. In this study, we measured the mRNA expression levels of dysbindin-1, NRG-1 and two other genes (NPY1R and GNAO1) in immortalized lymphocytes from 45 patients with schizophrenia and 45 controls using real-time quantitative reverse transcriptase-PCR. No difference was observed between patients and controls with respect to the expression of dysbindin-1, NRG-1, NPY1R or GNAO1 gene. Our findings suggest that the gene expression profile of immortalized lymphocyte from schizophrenic patients is different from that in postmortem brain tissue at least with respect to the dysbindin-1 and NRG-1 genes.
Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit
2011-01-01
Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.
A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.
Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S
2018-01-01
This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.
Caragounis, E-C; Gisslén, M; Lindh, M; Nordborg, C; Westergren, S; Hagberg, L; Svennerholm, B
2008-02-01
HIV-1 infects the central nervous system (CNS) early in the course of infection. However, it is not known to what extent the virus evolves independently within the CNS and whether the HIV-RNA in cerebrospinal fluid (CSF) reflects the viral population replicating within the brain parenchyma or the systemic infection. The aim of this study was to investigate HIV-1 evolution in the CNS and the origin of HIV-1 in CSF. Longitudinally derived paired blood and CSF samples and post-mortem samples from CSF, brain and spleen were collected over a period of up to 63 months from three HIV-1 infected men receiving antiretroviral treatment and presenting with symptoms of AIDS dementia complex (ADC). Phylogenetic analyses of HIV-1 V3, reverse transcriptase (RT) and protease sequences from patient isolates suggest compartmentalization with distinct viral strains in blood, CSF and brain. We found a different pattern of RT and accessory protease mutations in the systemic infection compared to the CNS. We conclude that HIV-1 may to some extent evolve independently in the CNS and the viral population in CSF mainly reflects the infection in the brain parenchyma in patients with ADC. This is of importance in understanding HIV pathogenesis and can have implications on treatment of HIV-1 patients.
Weickert, Cynthia Shannon; Rothmond, Debora A; Purves-Tyson, Tertia D
2018-01-01
Schizophrenia is a disabling disease impacting millions of people around the world, for which there is no known cure. Current antipsychotic treatments for schizophrenia mainly target psychotic symptoms, do little to ameliorate social or cognitive deficits, have side-effects that cause weight gain, and diabetes and 30% of people do not respond. Thus, better therapeutics for schizophrenia aimed at the route biologic changes are needed and discovering the underlying neurobiology is key to this quest. Postmortem brain studies provide the most direct and detailed way to determine the pathophysiology of schizophrenia. This chapter outlines steps that can be taken to ensure the best-quality molecular data from postmortem brain tissue are obtained. In this chapter, we also discuss targeted and high-throughput methods for examining gene and protein expression and some of the strengths and limitations of each method. We briefly consider why gene and protein expression changes may not always concur within brain tissue. We conclude that postmortem brain research that investigates gene and protein expression in well-characterized and matched brain cohorts provides an important foundation to be considered when interpreting data obtained from studies of living schizophrenia patients. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.
1989-01-01
The effect of a number of antemortem and postmortem factors on ({sup 3}H)MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years ({sup 3}H)MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.
The national DBS brain tissue network pilot study: need for more tissue and more standardization.
Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S
2011-08-01
Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to facilitate advanced molecular studies and progenitor cell retrieval.
Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A
2014-10-01
Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.
Hasegawa, Atsuko; Yamada, Chikako; Tani, Miho; Hirano, Shun-ichiro; Tokumoto, Yasuhito; Miyake, Jun
2009-06-01
To match the demand of regenerative medicine for nerve system, collection of stem cells from the post-mortem body is one of the most practical ways. In this study, the storage condition of the post-mortem body was examined. We prepared neural stem/progenitor cells (NSPCs) from post-mortem rat brains stored at different temperatures. When brains were stored at 4 degrees C, for one week, we were able to obtain neurospheres (a spheroid body containing NSPCs) by stimulation of cells with epidermal growth factor (EGF). Incremental increases in storage temperature decreased the rate of appearance of neurospheres. Within 48 h at 15 degrees C, 24 h at 25 degrees C, in both condition, we were able to recover NSPCs from post-mortem rat brains. At 15 degrees C, 90% of neurosphere-forming activity was lost within 24 h. However, even after 24 h at 25 degrees C, 2% neurosphere-forming activity remained. After 6 h of death, there was very little difference between the rates of NSPC recovery at 4 degrees C and 25 degrees C. Addition of caspase inhibitors to both the rat brain storage solution and the NSPC culture medium increased the rate of neurosphere-forming activity. In particular, an inhibitor of caspase-8 activity increased the NSPC recovery rate approximately three-fold, with no accompanying detrimental effects on neural differentiation in vitro.
Gizaw, Solomon T; Ohashi, Tetsu; Tanaka, Masakazu; Hinou, Hiroshi; Nishimura, Shin-Ichiro
2016-08-01
Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal control sera can facilitate the discovery research of highly sensitive and reliable serum biomarkers for an early diagnosis of AD. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.
Mitchell, Michelle M.; Woods, Rima; Chi, Lai-Har; Schmidt, Rebecca J.; Pessah, Isaac N.; Kostyniak, Paul J.; LaSalle, Janine M.
2013-01-01
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) that bioaccumulate in lipid-rich tissues are of concern as developmental neurotoxicants. Epigenetic mechanisms such as DNA methylation act at the interface of genetic and environmental factors implicated in autism-spectrum disorders. The relationship between POP levels and DNA methylation patterns in individuals with and without neurodevelopmental disorders has not been previously investigated. In this study, a total of 107 human frozen post-mortem brain samples were analyzed for 8 PCBs and 7 PBDEs by GC-micro electron capture detector and GC/MS using negative chemical ionization. Human brain samples were grouped as neurotypical controls (n=43), neurodevelopmental disorders with known genetic basis (n=32, including Down, Rett, Prader-Willi, Angelman, and 15q11-q13 duplication syndromes), and autism of unknown etiology (n=32). Unexpectedly, PCB 95 was significantly higher in the genetic neurodevelopmental group, but not idiopathic autism, as compared to neurotypical controls. Interestingly, samples with detectable PCB 95 levels were almost exclusively those with maternal 15q11-q13 duplication (Dup15q) or deletion in Prader-Willi syndrome. When sorted by birth year, Dup15q samples represented five out of six of genetic neurodevelopmental samples born after the 1976 PCB ban exhibiting detectable PCB 95 levels. Dup15q was the strongest predictor of PCB 95 exposure over age, gender, or year of birth. Dup15q brain showed lower levels of repetitive DNA methylation measured by LINE-1 pyrosequencing, but methylation levels were confounded by year of birth. These results demonstrate a novel paradigm by which specific POPs may predispose to genetic copy number variation of 15q11-q13. PMID:22930557
Ex vivo MR volumetry of human brain hemispheres.
Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos
2014-01-01
The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.
Ex-vivo MR Volumetry of Human Brain Hemispheres
Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos
2013-01-01
Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751
Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.
2009-01-01
Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553
Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G
2009-01-01
Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.
DNA and RNA profiling of excavated human remains with varying postmortem intervals.
van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T
2016-11-01
When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.
Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John
2016-01-01
Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168
Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, J John
2016-06-01
We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. © 2016 Wiley Periodicals, Inc.
Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
Liu, Wanzhao; Chaurette, Joanna; Pfister, Edith L; Kennington, Lori A; Chase, Kathryn O; Bullock, Jocelyn; Vonsattel, Jean Paul G; Faull, Richard L M; Macdonald, Douglas; DiFiglia, Marian; Zamore, Phillip D; Aronin, Neil
2013-01-01
Huntington's disease is caused by expansion of CAG trinucleotide repeats in the first exon of the huntingtin gene, which is essential for both development and neurogenesis. Huntington's disease is autosomal dominant. The normal allele contains 6 to 35 CAG triplets (average, 18) and the mutant, disease-causing allele contains >36 CAG triplets (average, 42). We examined 279 postmortem brain samples, including 148 HD and 131 non-HD controls. A total of 108 samples from 87 HD patients that are heterozygous at SNP rs362307, with a normal allele (18 to 27 CAG repeats) and a mutant allele (39 to 73 CAG repeats) were used to measure relative abundance of mutant and wild-type huntingtin mRNA. We used allele-specific, quantitative RT-PCR based on SNP heterozygosity to estimate the relative amount of mutant versus normal huntingtin mRNA in postmortem brain samples from patients with Huntington's disease. In the cortex and striatum, the amount of mRNA from the mutant allele exceeds that from the normal allele in 75% of patients. In the cerebellum, no significant difference between the two alleles was evident. Brain tissues from non-HD controls show no significant difference between two alleles of huntingtin mRNAs. Allelic differences were more pronounced at early neuropathological grades (grades 1 and 2) than at late grades (grades 3 and 4). More mutant HTT than normal could arise from increased transcription of mutant HTT allele, or decreased clearance of mutant HTT mRNA, or both. An implication is that equimolar silencing of both alleles would increase the mutant HTT to normal HTT ratio.
Montaldo, Paolo; Chaban, Badr; Lally, Peter J; Sebire, Neil J; Taylor, Andrew M; Thayyil, Sudhin
2015-11-01
Post-mortem (PM) magnetic resonance imaging (MRI) is increasingly used as an alternative to conventional autopsy in babies dying from neonatal encephalopathy. However, the confounding effect of post-mortem changes on the detection of ante-mortem ischemic injury is unclear. We examined whether quantitative MR measurements can accurately distinguish ante-mortem ischemic brain injury from artifacts using post-mortem MRI. We compared PM brain MRI (1.5 T Siemens, Avanto) in 7 infants who died with neonatal encephalopathy (NE) of presumed hypoxic-ischemic origin with 7 newborn infants who had sudden unexplained neonatal death (SUND controls) without evidence of hypoxic-ischemic brain injury at autopsy. We measured apparent diffusion coefficients (ADCs), T1-weighted signal intensity ratios (SIRs) compared to vitreous humor and T2 relaxation times from 19 predefined brain areas typically involved in neonatal encephalopathy. There were no differences in mean ADC values, SIRs on T1-weighted images or T2 relaxation times in any of the 19 predefined brain areas between NE and SUND infants. All MRI images showed loss of cortical gray/white matter differentiation, loss of the normal high signal intensity (SI) in the posterior limb of the internal capsule on T1-weighted images, and high white matter SI on T2-weighted images. Normal post-mortem changes may be easily mistaken for ante-mortem ischemic injury, and current PM MRI quantitative assessment cannot reliably distinguish these. These findings may have important implications for appropriate interpretation of PM imaging findings, especially in medico-legal practice. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.
2004-02-01
About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain
Decreased Brain pH as a Shared Endophenotype of Psychiatric Disorders
Hagihara, Hideo; Catts, Vibeke S; Katayama, Yuta; Shoji, Hirotaka; Takagi, Tsuyoshi; Huang, Freesia L; Nakao, Akito; Mori, Yasuo; Huang, Kuo-Ping; Ishii, Shunsuke; Graef, Isabella A; Nakayama, Keiichi I; Shannon Weickert, Cynthia; Miyakawa, Tsuyoshi
2018-01-01
Although the brains of patients with schizophrenia and bipolar disorder exhibit decreased brain pH relative to those of healthy controls upon postmortem examination, it remains controversial whether this finding reflects a primary feature of the diseases or is a result of confounding factors such as medication and agonal state. To date, systematic investigation of brain pH has not been undertaken using animal models that can be studied without confounds inherent in human studies. In the present study, we first reevaluated the pH of the postmortem brains of patients with schizophrenia and bipolar disorder by conducting a meta-analysis of existing data sets from 10 studies. We then measured pH, lactate levels, and related metabolite levels in brain homogenates from five neurodevelopmental mouse models of psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorder. All mice were drug naive with the same agonal state, postmortem interval, and age within each strain. Our meta-analysis revealed that brain pH was significantly lower in patients with schizophrenia and bipolar disorder than in control participants, even when a few potential confounding factors (postmortem interval, age, and history of antipsychotic use) were considered. In animal experiments, we observed significantly lower pH and higher lactate levels in the brains of model mice relative to controls, as well as a significant negative correlation between pH and lactate levels. Our findings suggest that lower pH associated with increased lactate levels is not a mere artifact, but rather implicated in the underlying pathophysiology of schizophrenia and bipolar disorder. PMID:28776581
Zivković, Vladimir; Nikolić, Slobodan; Babić, Dragan; Juković, Fehim
2011-12-01
Some of the fatally injured car occupants could have had both blunt rupture of thoracic aorta with great amount of intrapleural blood, and pontomedullar laceration of brain-stem as well, with both injuries being fatal. The aim of this study was to answer if all intrapleural bleeding in these cases was antemortem, or the bleeding could also be partially postmortem. We observed the group of 66 cases of blunt aortic rupture: 21 case with brain-stem laceration, and 45 cases without it. The average amount of intrapleural bleeding in cases without brain-stem laceration (1993 ± 831 mL) was significantly higher than in those with this injury (1100 ± 708 mL) (t = 4.252, df = 64, P = 0.000). According to our results, in cases of the thoracic aorta rupture with concomitant brain-stem laceration, the amount of intrapleural bleeding less than 1500 mL, should be considered mostly as postmortem in origin, and in such cases, only the brain-stem injury should be considered as cause of death.
Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.
Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V
2018-03-01
The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.
[F-18]-AV-1451 binding correlates with postmortem neurofibrillary tangle Braak staging.
Marquié, Marta; Siao Tick Chong, Michael; Antón-Fernández, Alejandro; Verwer, Eline E; Sáez-Calveras, Nil; Meltzer, Avery C; Ramanan, Prianca; Amaral, Ana C; Gonzalez, Jose; Normandin, Marc D; Frosch, Matthew P; Gómez-Isla, Teresa
2017-10-01
[F-18]-AV-1451, a PET tracer specifically developed to detect brain neurofibrillary tau pathology, has the potential to facilitate accurate diagnosis of Alzheimer's disease (AD), staging of brain tau burden and monitoring disease progression. Recent PET studies show that patients with mild cognitive impairment and AD dementia exhibit significantly higher in vivo [F-18]-AV-1451 retention than cognitively normal controls. Importantly, PET patterns of [F-18]-AV-1451 correlate well with disease severity and seem to match the predicted topographic Braak staging of neurofibrillary tangles (NFTs) in AD, although this awaits confirmation. We studied the correlation of autoradiographic binding patterns of [F-18]-AV-1451 and the stereotypical spatiotemporal pattern of progression of NFTs using legacy postmortem brain samples representing different Braak NFT stages (I-VI). We performed [F-18]-AV-1451 phosphor-screen autoradiography and quantitative tau measurements (stereologically based NFT counts and biochemical analysis of tau pathology) in three brain regions (entorhinal cortex, superior temporal sulcus and visual cortex) in a total of 22 cases: low Braak (I-II, n = 6), intermediate Braak (III-IV, n = 7) and high Braak (V-VI, n = 9). Strong and selective [F-18]-AV-1451 binding was detected in all tangle-containing regions matching precisely the observed pattern of PHF-tau immunostaining across the different Braak stages. As expected, no signal was detected in the white matter or other non-tangle containing regions. Quantification of [F-18]-AV-1451 binding was very significantly correlated with the number of NFTs present in each brain region and with the total tau and phospho-tau content as reported by Western blot and ELISA. [F-18]-AV-1451 is a promising biomarker for in vivo quantification of brain tau burden in AD. Neuroimaging-pathologic studies conducted on postmortem material from individuals imaged while alive are now needed to confirm these observations.
Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.
Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G
1998-01-01
The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.
De Letter, Els A; Clauwaert, Karine M; Belpaire, Frans M; Lambert, Willy E; Van Bocxlaer, Jan F; Piette, Michel H A
2002-08-01
Post-mortem redistribution is known to influence blood and tissue levels of various drugs. An animal model was used in an attempt to elucidate this problem for the amphetamine analogue, 3,4-methylenedioxymethamphetamine (MDMA). Rabbits received 1 mg/kg MDMA intravenously (iv) and were killed 2 h later in order to simulate the state of complete distribution in the body. MDMA and 3,4-methylenedioxyamphetamine (MDA) concentrations were determined in blood, urine, bile, vitreous humour, and various tissues (eye globe walls, brain, cardiac muscle, lungs, liver, kidneys, iliopsoas muscle and adipose tissue) using a high pressure liquid chromatographic (HPLC) procedure with fluorescence detection. In the first group (control group, sampling immediately post mortem) considerable MDMA concentrations were found in the brain and both lungs. In addition, our data indicate the elimination of MDMA by hepatic biotransformation and excretion via the bile. When the animals were preserved either 24 or 72 h post mortem (second group), an increase of MDMA and MDA levels in the liver and the eye globe walls was noticed. In the lungs, on the other hand, they tended to decline as a function of increasing post-mortem interval. MDMA levels in cardiac and iliopsoas muscle were fairly comparable and remained stable up to 72 h after death. In the third group, ligation of the large vessels around the heart took place immediately post mortem, but significant differences in blood and tissue MDMA concentrations between rabbits of group 2 and 3 could not be demonstrated. We therefore conclude that post-mortem redistribution of MDMA at the cellular level (viz. by pure diffusion gradient from higher to lower concentrations) is more important than its redistribution via the vascular pathway. Finally, MDA levels were relatively low in all samples, thus indicating that this is not a major metabolite in the rabbit, at least within the first 2 h after administration.
Autism BrainNet: A network of postmortem brain banks established to facilitate autism research.
Amaral, David G; Anderson, Matthew P; Ansorge, Olaf; Chance, Steven; Hare, Carolyn; Hof, Patrick R; Miller, Melissa; Nagakura, Ikue; Pickett, Jane; Schumann, Cynthia; Tamminga, Carol
2018-01-01
Autism spectrum disorder (ASD or autism) is a neurodevelopmental condition that affects over 1% of the population worldwide. Developing effective preventions and treatments for autism will depend on understanding the genetic perturbations and underlying neuropathology of the disorder. While evidence from magnetic resonance imaging and other noninvasive techniques points to altered development and organization of the autistic brain, these tools lack the resolution for identifying the cellular and molecular underpinnings of the disorder. Postmortem studies of high-quality human brain tissue currently represent the only viable option to pursuing these types of studies. However, the availability of high-quality ASD brain tissue has been extremely limited. Here we describe the establishment of a privately funded tissue bank, Autism BrainNet, a network of brain collection sites that work in a coordinated fashion to develop an adequate library of human postmortem brain tissues. Autism BrainNet was initiated as a collaboration between the Simons Foundation and Autism Speaks, and is currently funded by the Simons Foundation Autism Research Initiative. Autism BrainNet has collection sites (nodes) in California, Texas, New York, and Massachusetts; an affiliated, international node is located in Oxford, England. All donations to this network become part of a consolidated pool of tissue that is distributed to qualified investigators worldwide to carry out autism research. An essential component of this program is a widespread outreach program that highlights the need for postmortem brain donations to families affected by autism, led by the Autism Science Foundation. Challenges include an outreach campaign that deals with a disorder beginning in early childhood, collecting an adequate number of donations to deal with the high level of biologic heterogeneity of autism, and preparing this limited resource for optimal distribution to the greatest number of investigators. Copyright © 2018 Elsevier B.V. All rights reserved.
Metabolic half-life of somatostatin and peptidase activities are altered in Alzheimer's disease.
Weber, S J; Louis, R B; Trombley, L; Bissette, G; Davies, P; Davis, T P
1992-01-01
Several reports have described decreased immunoreactive somatostatin levels in specific regions of post-mortem brain tissue from patients diagnosed with senile dementia of the Alzheimer type (SDAT). In an attempt to determine if the metabolism of somatostatin is also altered as a result of SDAT, we examined the regional metabolic half-life of somatostatin-28 (SS-28) and somatostatin-14 (SS-14). The activity of the following peptidases was also determined: neutral endopeptidase E.C. 3.4.24.11; metalloendopeptidase E.C. 3.4.24.15; carboxypeptidase E (E.C. 3.4.17.10); and trypsin-like serine protease. The metabolic half-life of SS-28 was significantly reduced in post-mortem Brodmann Area 22 of SDAT tissue. This decrease in SS-28 metabolic half-life was correlated with a significant increase in trypsin-like serine protease activity in the same SDAT brain region. The formation rate of SS-14 from SS-28 incubated with Brodmann Area 22 homogenates was also increased in SDAT tissues as compared to controls. A regional variation in neutral endopeptidase E.C. 3.4.24.11 was also noted in both controls and SDAT samples. Although postmortem intervals of samples varied significantly, no effect was seen on any biochemical parameter measured. Results from this study provide evidence that a correlation can be made between changes in metabolic half-life somatostatin and alterations in neuropeptidase activities due to SDAT. As these data show alterations in both proteolytic metabolism and peptidase activities, many other biologically active peptide substrates could also be affected in SDAT.
Bryant, Alex K; Moore, David J; Burdo, Tricia H; Lakritz, Jessica R; Gouaux, Ben; Soontornniyomkij, Virawudh; Achim, Cristian L; Masliah, Eliezer; Grant, Igor; Levine, Andrew J; Ellis, Ronald J
2017-04-24
Higher plasma soluble cluster of differentiation (CD)163 (sCD163), shed by monocytes and macrophages, correlates with neurocognitive impairment in HIV infection. We hypothesized that higher antemortem plasma or cerebrospinal fluid (CSF) sCD163 would be associated with greater postmortem neurodegeneration and/or microgliosis. Retrospective, postmortem observational study. We measured sCD163 levels in antemortem plasma (n = 54) and CSF (n = 32) samples from 74 HIV-seropositive participants (median 5 months before death) who donated their brains to research at autopsy. Postmortem, we quantified markers of synaptodendritic damage (microtubule-associated protein 2, synaptophysin), microgliosis [human leukocyte antigen DR (HLA-DR), ionized calcium-binding adaptor molecule 1], astrocytosis (glial fibrillary acidic protein), and impaired protein clearance (β-amyloid) in frontal cortex, hippocampus, putamen, and internal capsule. Multivariable least-squares regression was used to evaluate the association between plasma or CSF sCD163 and histological measures, correcting for multiple comparisons. Higher plasma sCD163 was associated with lower microtubule-associated protein 2 in frontal cortex [B = -0.23, 95% confidence interval (CI) -0.41 to -0.06, P = 0.04], putamen (B = 0.32, 95% CI -0.52 to -0.12, P = 0.02), and hippocampus (B = -0.23, 95% CI -0.35 to -0.10, P = 0.01), and with lower synaptophysin in hippocampus (B = -0.25, 95% CI -0.42 to -0.03, P = 0.02) but not putamen or frontal cortex (P > 0.05). Higher plasma sCD163 was associated with higher HLA-DR in putamen (B = 0.17, 95% CI 0.08 to 0.26, P = 0.008). CSF sCD163 was not associated with any histological measure (P > 0.05). Higher plasma sCD163 in life is associated with greater synaptodendritic damage and microglial activation in cortical and subcortical brain regions.
Ex-vivo quantitative susceptibility mapping of human brain hemispheres
Kotrotsou, Aikaterini; Tamhane, Ashish A.; Dawe, Robert J.; Kapasi, Alifiya; Leurgans, Sue E.; Schneider, Julie A.; Bennett, David A.; Arfanakis, Konstantinos
2017-01-01
Ex-vivo brain quantitative susceptibility mapping (QSM) allows investigation of brain characteristics at essentially the same point in time as histopathologic examination, and therefore has the potential to become an important tool for determining the role of QSM as a diagnostic and monitoring tool of age-related neuropathologies. In order to be able to translate the ex-vivo QSM findings to in-vivo, it is crucial to understand the effects of death and chemical fixation on brain magnetic susceptibility measurements collected ex-vivo. Thus, the objective of this work was twofold: a) to assess the behavior of magnetic susceptibility in both gray and white matter of human brain hemispheres as a function of time postmortem, and b) to establish the relationship between in-vivo and ex-vivo gray matter susceptibility measurements on the same hemispheres. Five brain hemispheres from community-dwelling older adults were imaged ex-vivo with QSM on a weekly basis for six weeks postmortem, and the longitudinal behavior of ex-vivo magnetic susceptibility in both gray and white matter was assessed. The relationship between in-vivo and ex-vivo gray matter susceptibility measurements was investigated using QSM data from eleven older adults imaged both antemortem and postmortem. No systematic change in ex-vivo magnetic susceptibility of gray or white matter was observed over time postmortem. Additionally, it was demonstrated that, gray matter magnetic susceptibility measured ex-vivo may be well modeled as a linear function of susceptibility measured in-vivo. In conclusion, magnetic susceptibility in gray and white matter measured ex-vivo with QSM does not systematically change in the first six weeks after death. This information is important for future cross-sectional ex-vivo QSM studies of hemispheres imaged at different postmortem intervals. Furthermore, the linear relationship between in-vivo and ex-vivo gray matter magnetic susceptibility suggests that ex-vivo QSM captures information linked to antemortem gray matter magnetic susceptibility, which is important for translation of ex-vivo QSM findings to in-vivo. PMID:29261693
A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts
Shatil, Anwar S.; Matsuda, Kant M.; Figley, Chase R.
2016-01-01
Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air–tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental setup for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains. PMID:27965620
Ugarte, Ana; Corbacho, David; Aymerich, María S; García-Osta, Ana; Cuadrado-Tejedor, Mar; Oyarzabal, Julen
2018-04-19
Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.
Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; Matsuoka, Isao; García-Sevilla, Jesús A
2018-06-01
Adenosine signaling plays a complex role in multiple physiological processes in the brain, and its dysfunction has been implicated in pathophysiology of neuropsychiatric diseases such as schizophrenia and affective disorders. In the present study, the coupling between adenosine A 1 receptor and G-protein was assessed by means of two [ 35 S]GTPγS binding assays, i.e., conventional filtration method and [ 35 S]GTPγS binding/immunoprecipitation in rat and human brain membranes. The latter method provides information about adenosine A 1 receptor-mediated Gα i-3 activation in rat as well as human brain membranes. On the other hand, adenosine-stimulated [ 35 S]GTPγS binding determined with conventional assay derives from functional activation of Gα i/o proteins (not restricted only to Gα i-3 ) coupled to adenosine A 1 receptors. The determination of adenosine concentrations in the samples used in the present study indicates the possibility that the assay mixture under our experimental conditions contains residual endogenous adenosine at nanomolar concentrations, which was also suggested by the results on the effects of adenosine receptor antagonists on basal [ 35 S]GTPγS binding level. The effects of adenosine deaminase (ADA) on basal binding also support the presence of adenosine. Nevertheless, the varied patterns of ADA discouraged us from adding ADA into assay medium routinely. The concentration-dependent increases elicited by adenosine were determined in 40 subjects without any neuropsychiatric disorders. The increases in %E max values determined by conventional assay according to aging and postmortem delay should be taken into account in future studies focusing on the effects of psychiatric disorders on adenosine A 1 receptor/G-protein interaction in postmortem human brain tissue.
Loss of chromosome Y in blood, but not in brain, of suicide completers.
Kimura, Atsushi; Hishimoto, Akitoyo; Otsuka, Ikuo; Okazaki, Satoshi; Boku, Shuken; Horai, Tadasu; Izumi, Takeshi; Takahashi, Motonori; Ueno, Yasuhiro; Shirakawa, Osamu; Sora, Ichiro
2018-01-01
Men have a higher rate of completed suicide than women, which suggests that sex chromosome abnormalities may be related to the pathophysiology of suicide. Recent studies have found an aberrant loss of chromosome Y (LOY) in various diseases; however, no study has investigated whether there is an association between LOY and suicide. The purpose of this study was to determine whether LOY occurs in men who completed suicide. Our study consisted of 286 male Japanese subjects comprised of 140 suicide completers without severe physical illness (130 post-mortem samples of peripheral blood and 10 brains) and 146 age-matched control subjects (130 peripheral blood samples from healthy individuals and 16 post-mortem brains). LOY was measured as the chromosome Y/chromosome X ratio of the fluorescent signal of co-amplified short sequences from the Y-X homologous amelogenin genes (AMELY and AMELX). Regression analyses showed that LOY in the blood of suicide completers was significantly more frequent than that found in controls (odds ratio = 3.50, 95% confidence interval = 1.21-10.10), but not in the dorsolateral prefrontal cortex (DLPFC) region of brain. Normal age-dependent LOY in blood was found in healthy controls (r = -0.353, p < 0.001), which was not seen in suicide completers (r = -0.119, p = 0.177). DLPFC tissue had age-dependent LOY (B = -0.002, p = 0.015), which was independent of phenotype. To our knowledge, this is the first study demonstrating that LOY in blood is associated with suicide completion. In addition, our findings are the first to also indicate that age-dependent LOY may occur not only in blood, but also in specific brain regions.
NASA Astrophysics Data System (ADS)
Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.
2018-02-01
The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.
Palm, Christoph; Axer, Markus; Gräßel, David; Dammers, Jürgen; Lindemeyer, Johannes; Zilles, Karl; Pietrzyk, Uwe; Amunts, Katrin
2009-01-01
Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography. PMID:20461231
Yin, Honglei; Pantazatos, Spiro P; Galfalvy, Hanga; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, John J
2016-04-01
Gamma-amino butyric acid (GABA) and glutamate are the major inhibitory and excitatory neurotransmitters in the mammalian central nervous system, respectively, and have been associated with suicidal behavior and major depressive disorder (MDD). We examined the relationship between genotype, brain transcriptome, and MDD/suicide for 24 genes involved in GABAergic and glutamatergic signaling. In part 1 of the study, 119 candidate SNPs in 24 genes (4 transporters, 4 enzymes, and 16 receptors) were tested for associations with MDD and suicidal behavior in 276 live participants (86 nonfatal suicide attempters with MDD and 190 non-attempters of whom 70% had MDD) and 209 postmortem cases (121 suicide deaths of whom 62% had MDD and 88 sudden death from other causes of whom 11% had MDD) using logistic regression adjusting for sex and age. In part 2, RNA-seq was used to assay isoform-level expression in dorsolateral prefrontal cortex of 59 postmortem samples (21 with MDD and suicide, 9 MDD without suicide, and 29 sudden death non-suicides and no psychiatric illness) using robust regression adjusting for sex, age, and RIN score. In part 3, SNPs with subthreshold (uncorrected) significance levels below 0.05 for an association with suicidal behavior and/or MDD in part 1 were tested for eQTL effects in prefrontal cortex using the Brain eQTL Almanac (www.braineac.org). No SNPs or transcripts were significant after adjustment for multiple comparisons. However, a protein coding transcript (ENST00000414552) of the GABA A receptor, gamma 2 (GABRG2) had lower brain expression postmortem in suicide (P = 0.01) and evidence for association with suicide death (P = 0.03) in a SNP that may be an eQTL in prefrontal cortex (rs424740, P = 0.02). These preliminary results implicate GABRG2 in suicide and warrant further investigation and replication in larger samples. © 2016 Wiley Periodicals, Inc.
Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David
2006-02-01
Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.
Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D
2014-07-23
A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).
Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J
2017-01-01
Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z = -2.89; P = .004) and was preserved among eldest individuals older than 85 years of age who remained cognitively intact. When controlling for age, loss of perivascular AQP4 localization was associated with increased amyloid-β burden (R2 = 0.15; P = .003) and increasing Braak stage (R2 = 0.14; P = .006). In this study, altered AQP4 expression was associated with aging brains. Loss of perivascular AQP4 localization may be a factor that renders the aging brain vulnerable to the misaggregation of proteins, such as amyloid-β, in neurodegenerative conditions such as AD.
Gavrilov, Yury V; Ellison, Brian A; Yamamoto, Mihoko; Reddy, Hasini; Haybaeck, Johannes; Mignot, Emmanuel; Baumann, Christian R; Scammell, Thomas E; Valko, Philipp O
2016-05-01
To examine the integrity of sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO) in postmortem brains of narcolepsy type 1 patients. Postmortem examination of five narcolepsy and eight control brains. VLPO galanin neuron count did not differ between narcolepsy patients (11,151 ± 3,656) and controls (13,526 ± 9,544). A normal number of galanin-immunoreactive VLPO neurons in narcolepsy type 1 brains at autopsy suggests that VLPO cell loss is an unlikely explanation for the sleep fragmentation that often accompanies the disease. © 2016 Associated Professional Sleep Societies, LLC.
Oxidative Damage in Parkinson’s Disease
2005-01-01
inhibitors of MMPs, TIMP-1 and TIMP-2 in postmortem brain tissue of progressive supranuclear palsy . J Neurol Sci 2004; 218:39-45. Martinat C, Shendelman S...inhibitors of MMPs, TIMP-1 and TIMP-2 in postmortem brain tissue of progressive supranuclear palsy . J Neurol Sci 2004; 218:39-45. Martinat C...excess can have serious neurologi- effects at the higher dosages needed to overcome the In Viva Iron Chelation Prevents MPTP Toxicity 905 A 0 20 in
Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan
2015-01-01
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869
Single cell gene expression profiling in Alzheimer's disease.
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
2006-07-01
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson's case.
Marquié, Marta; Verwer, Eline E; Meltzer, Avery C; Kim, Sally Ji Who; Agüero, Cinthya; Gonzalez, Jose; Makaretz, Sara J; Siao Tick Chong, Michael; Ramanan, Prianca; Amaral, Ana C; Normandin, Marc D; Vanderburg, Charles R; Gomperts, Stephen N; Johnson, Keith A; Frosch, Matthew P; Gómez-Isla, Teresa
2017-10-19
[F-18]-AV-1451 is a novel positron emission tomography (PET) tracer with high affinity to neurofibrillary tau pathology in Alzheimer's disease (AD). PET studies have shown increased tracer retention in patients clinically diagnosed with dementia of AD type and mild cognitive impairment in regions that are known to contain tau lesions. In vivo uptake has also consistently been observed in midbrain, basal ganglia and choroid plexus in elderly individuals regardless of their clinical diagnosis, including clinically normal whose brains are not expected to harbor tau pathology in those areas. We and others have shown that [F-18]-AV-1451 exhibits off-target binding to neuromelanin, melanin and blood products on postmortem material; and this is important for the correct interpretation of PET images. In the present study, we further investigated [F-18]-AV-1451 off-target binding in the first autopsy-confirmed Parkinson's disease (PD) subject who underwent antemortem PET imaging. The PET scan showed elevated [F-18]-AV-1451 retention predominantly in inferior temporal cortex, basal ganglia, midbrain and choroid plexus. Neuropathologic examination confirmed the PD diagnosis. Phosphor screen and high resolution autoradiography failed to show detectable [F-18]-AV-1451 binding in multiple brain regions examined with the exception of neuromelanin-containing neurons in the substantia nigra, leptomeningeal melanocytes adjacent to ventricles and midbrain, and microhemorrhages in the occipital cortex (all reflecting off-target binding), in addition to incidental age-related neurofibrillary tangles in the entorhinal cortex. Additional legacy postmortem brain samples containing basal ganglia, choroid plexus, and parenchymal hemorrhages from 20 subjects with various neuropathologic diagnoses were also included in the autoradiography experiments to better understand what [F-18]-AV-1451 in vivo positivity in those regions means. No detectable [F-18]-AV-1451 autoradiographic binding was present in the basal ganglia of the PD case or any of the other subjects. Off-target binding in postmortem choroid plexus samples was only observed in subjects harboring leptomeningeal melanocytes within the choroidal stroma. Off-target binding to parenchymal hemorrhages was noticed in postmortem material from subjects with cerebral amyloid angiopathy. The imaging-postmortem correlation analysis in this PD case reinforces the notion that [F-18]-AV-1451 has strong affinity for neurofibrillary tau pathology but also exhibits off-target binding to neuromelanin, melanin and blood components. The robust off-target in vivo retention in basal ganglia and choroid plexus, in the absence of tau deposits, meningeal melanocytes or any other identifiable binding substrate by autoradiography in the PD case reported here, also suggests that the PET signal in those regions may be influenced, at least in part, by biological or technical factors that occur in vivo and are not captured by autoradiography.
Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [ 11 C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Viehweger, Adrian; Riffert, Till; Dhital, Bibek; Knösche, Thomas R; Anwander, Alfred; Stepan, Holger; Sorge, Ina; Hirsch, Wolfgang
2014-10-01
Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm(2). Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R(2) = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state.
Kitchen, A D; Newham, J A
2011-05-01
Whilst some of the assays used for serological screening of post-mortem blood samples from deceased tissue donors in some countries have been specifically validated by the manufacturer for this purpose, a significant number of those currently in use globally have not. Although specificity has previously been considered a problem in the screening of such samples, we believe that ensuring sensitivity is more important. The aim of this study was to validate a broader range of assays for the screening of post-mortem blood samples from deceased tissue donors. Six microplate immunoassays currently in use within National Health Service Blood and Transplant (NHSBT) for the screening of blood, tissue and stem cell donations were included. Representative samples from confirmed positive donors were titrated in screen negative post-mortem samples in parallel with normal pooled negative serum to determine if there was any inhibition with the post-mortem samples. There were no significant differences seen (P < 0.005) between the dilution curves obtained for the positive samples diluted in post-mortem samples and normal pooled sera. Although small numbers of samples were studied, it can be surmised that the post-mortem blood samples from deceased tissue donors, collected according to United Kingdom guidelines, are a suitable substrate for the assays evaluated. No diminution of reactivity was seen when dilution with sera from deceased donors was compared to dilution using pooled serum from live donors. In the absence of genuine low titre positive post-mortem samples, the use of samples spiked with various levels of target material provides a means of qualifying serological screening assays used by NHSBT for the screening of post-mortem blood samples from deceased tissue donors.
Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS.
González, R Gilberto; Fell, Robert; He, Julian; Campbell, Jennifer; Burdo, Tricia H; Autissier, Patrick; Annamalai, Lakshmanan; Taheri, Faramarz; Parker, Termara; Lifson, Jeffrey D; Halpern, Elkan F; Vangel, Mark; Masliah, Eliezer; Westmoreland, Susan V; Williams, Kenneth C; Ratai, Eva-Maria
2018-01-01
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
NASA Astrophysics Data System (ADS)
Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw
2014-01-01
We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.
Mardal, Marie; Johansen, Sys Stybe; Thomsen, Ragnar; Linnet, Kristian
2017-09-01
Three case reports are presented, including autopsy findings and toxicological screening results, which were tested positive for the potent hallucinogenic drug lysergic acid diethylamide (LSD). LSD and its main metabolites were quantified in brain tissue and femoral blood, and furthermore hematoma and urine when available. LSD, its main metabolite 2-oxo-3-hydroxy-LSD (oxo-HO-LSD), and iso-LSD were quantified in biological samples according to a previously published procedure involving liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). LSD was measured in the brain tissue of all presented cases at a concentration level from 0.34-10.8μg/kg. The concentration level in the target organ was higher than in peripheral blood. Additional psychoactive compounds were quantified in blood and brain tissue, though all below toxic concentration levels. The cause of death in case 1 was collision-induced brain injury, while it was drowning in case 2 and 3 and thus not drug intoxication. However, the toxicological findings could help explain the decedent's inability to cope with brain injury or drowning incidents. The presented findings could help establish reference concentrations in brain samples and assist in interpretation of results from forensic drug screening in brain tissue. This is to the author's knowledge the first report of LSD, iso-LSD, and oxo-HO-LSD measured in brain tissue samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan
2015-08-01
Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.
De Reuck, J L; Deramecourt, V; Auger, F; Durieux, N; Cordonnier, C; Devos, D; Defebvre, L; Moreau, C; Caparros-Lefebvre, D; Leys, D; Maurage, C A; Pasquier, F; Bordet, R
2014-07-01
Accumulation of iron (Fe) is often detected in brains of people suffering from neurodegenerative diseases. However, no studies have compared the Fe load between these disease entities. The present study investigates by T2*-weighted gradient-echo 7.0 T magnetic resonance imaging (MRI) the Fe content in post-mortem brains with different neurodegenerative and cerebrovascular diseases. One hundred and fifty-two post-mortem brains, composed of 46 with Alzheimer's disease (AD), 37 with frontotemporal lobar degeneration (FTLD), 11 with amyotrophic lateral sclerosis, 13 with Lewy body disease, 14 with progressive supranuclear palsy, 16 with vascular dementia (VaD) and 15 controls without a brain disease, were examined. The Fe load was determined semi-quantitatively on T2*-weighted MRI serial brain sections in the claustrum, caudate nucleus, putamen, globus pallidus, thalamus, subthalamic nucleus, hippocampus, mamillary body, lateral geniculate body, red nucleus, substantia nigra and dentate nucleus. The disease diagnosis was made on subsequent neuropathological examination. The Fe load was significantly increased in the claustrum, caudate nucleus and putamen of FTLD brains and to a lesser degree in the globus pallidus, thalamus and subthalamic nucleus. In the other neurodegenerative diseases no Fe accumulation was observed, except for a mild increase in the caudate nucleus of AD brains. In VaD brains no Fe increase was detected. Only FTLD displays a significant Fe load, suggesting that impaired Fe homeostasis plays an important role in the pathogenesis of this heterogeneous disease entity. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Sieber, Monique; Dreßler, Jan; Franke, Heike; Pohlers, Dirk; Ondruschka, Benjamin
2018-04-01
Traumatic brain injury (TBI) is a very common entity that leads to numerous fatalities all over the world. Therefore, forensic pathologists are in desperate need of supplemental methodological tools for the diagnosis of TBI in everyday practice besides the standard autopsy. The present study determined post-mortem neuron specific enolase (NSE) and S100 calcium-binding protein B (S100B) levels as biological markers of an underlying TBI in autopsy cases. Paired serum and CSF samples of 92 fatalities were collected throughout routine autopsies. Afterwards, the marker levels were assessed using commercially available immunoassays (ECLIA, Roche Diagnostics). For statistical analysis, we compared the TBI cases to three control groups (sudden natural death by acute myocardial infarction, traumatic death without impact on the head, cerebral hypoxia). Moreover, the TBI cases were subdivided according to their survival time of the trauma. Brain specimens have been collected and stained immunohistochemically against the aforementioned proteins to illustrate their typical cellular staining patterns with an underlying TBI compared to non-TBI fatalities. CSF NSE and S100B levels were elevated after TBI compared to all control groups (p < 0.001). Although this finding can already be investigated among the TBI cases dying immediately subsequent to the trauma, the marker levels in CSF increase with longer survival times until a peak level within the first three days after trauma. There is a strong correlation between both marker levels in CSF (r = 0.67). The presence or absence of cerebral tissue contusion following the initial trauma does not seem to affect the CSF levels of both proteins (p > 0.05). Post-mortem serum levels of both proteins were not elevated in TBI cases compared to controls (p > 0.05). Former elaborated cut-off values in CSF were confirmed and were only exceeded when a TBI survival time of at least 30 min was reached. The present results report that post-mortem NSE and S100B CSF levels are significantly elevated subsequent to a fatal TBI. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)
NASA Astrophysics Data System (ADS)
Christov, Alexander; Ottman, Todd; Grammas, Paula
2004-07-01
Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (P<0.001) in the spectral region from 465 to 490 nm were detected in brain resistance vessel samples from AD patients compared to the normal individuals. Results from western blot analysis showed elevated levels of type I and type III collagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.
Altered transition metal homeostasis in Niemann-Pick disease, Type C1
Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.
2014-01-01
The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124
Sarcomere length influences postmortem proteolysis of excised bovine semitendinosus muscle.
Weaver, A D; Bowker, B C; Gerrard, D E
2008-08-01
The interaction between sarcomere length and postmortem proteolysis as related to meat tenderness is not clear. The extent of thick and thin filament overlap alters actomyosin binding and may alter substrate availability during aging-induced tenderization. The objective of this study was to determine the influence of sarcomere length on proteolytic degradation in beef. Strips from bovine semitendinosus were either stretched 40% and restrained or allowed to shorten unrestrained in an ice bath. After rigor completion, 0.6-cm cross sections were fabricated and were randomly assigned to 2, 4, 7, or 10 d of aging treatments. Myofibrils were isolated for sarcomere length determination. Samples were collected and frozen for shear force analysis, and muscle proteins were extracted for SDS-PAGE and Western blotting analyses to determine troponin T (TnT) proteolysis. Sarcomere length was greater (P < 0.01) in stretched muscle samples compared with shortened samples (2.57 vs. 1.43 microm, respectively). Correspondingly, shear force values were greater (P < 0.05) in shortened samples than stretched samples. Western blots revealed the presence of 3 major intact TnT bands that diminished with time postmortem and 4 bands (TnT degradation products) that accumulated during postmortem storage. Quantification of intact TnT showed increased (P < 0.05) proteolysis at 4 and 7 d postmortem in samples with long sarcomeres. By 10 d, only traces of the greatest molecular weight intact TnT band were evident in both shortened and stretched samples, suggesting this TnT band may be more susceptible to proteolysis than other intact TnT bands. Degradation products of TnT appeared earlier postmortem in samples with long sarcomeres. The 30-kDa TnT fragment appeared after 7 d of postmortem storage in samples with long sarcomeres but not until 10 d in muscle containing short sarcomeres. Collectively, these data show that postmortem TnT proteolysis is sarcomere length-dependent and suggest that thick and thin filament overlap may influence the postmortem aging process in beef.
Lee, Mary R; Schwandt, Melanie L; Sankar, Vignesh; Suchankova, Petra; Sun, Hui; Leggio, Lorenzo
2017-11-01
Animal and human evidence supports a role for oxytocin in alcohol-seeking behaviors. There is interest, therefore, in targeting the oxytocin pathway as a new pharmacologic approach to treat alcohol use disorder. To this end, it is important to understand the effect of alcohol use disorder on endogenous oxytocin in brain regions that are relevant for the initiation and maintenance of alcohol use disorder. We examined human post-mortem brain tissue from males with alcohol use disorder (n=11) compared to nonalcohol dependent male controls (n=16). We a priori targeted five brain regions that in rodent studies, are projection areas for oxytocin neurons: nucleus accumbens, amygdala, hippocampus, ventral tegmental area and prefrontal cortex. Fold change in mRNA levels of oxytocin peptide and receptor were measured in each of the brain regions studied. Fold change for oxytocin peptide mRNA was significantly elevated in the prefrontal cortex of subjects with alcohol use disorder compared to controls (uncorrected p=0.0001; FDR-corrected p=0.001). For the entire sample of 27 subjects, there was a significant positive correlation between the fold change in oxytocin peptide mRNA in the prefrontal cortex and both daily alcohol intake (r 2 =0.38; p=0.002) and drinks per week (r 2 =0.24; p=0.02). Results are discussed in light of the previous animal and human literature on changes in the endogenous oxytocin system as an effect of chronic alcohol exposure. Copyright © 2017. Published by Elsevier Ltd.
Sheldrick, A; Camara, S; Ilieva, M; Riederer, P; Michel, T M
2017-10-01
The neurotrophic factors (NTF) hypothesis of depression was postulated nearly a decade ago and is nowadays widely acknowledged. Previous reports suggest that cerebral concentrations of NTF may be reduced in suicide victims who received minimal or no antidepressant pharmacotherapy. Recent evidence suggests that antidepressant treatment may improve or normalise cerebral concentrations of neurotrophic factors. Therefore, we examined the concentration of brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) in different brain regions (cortex, cingulate gyrus, thalamus, hippocampus, putamen and nucleus caudatus) of 21 individuals - 7 patients of which 4 patients with major depressive disorder (MDD) and overall age 86.8±5 years who received antidepressant pharmacotherapy (selective serotonin re-uptake inhibitors [SSRI]; tricyclic antidepressants [TCA]), 3 patients with MDD without antidepressant treatment and overall age 84.3±5 years versus 14 unaffected subjects at age 70.3±13.8. We detected significant elevation of BDNF (parietal cortex) and NT3 (parietal, temporal and occipital cortex, cingulate gyrus, thalamus, putamen and nucleus caudatus regions) in MDD patients who received antidepressant medication compared to MDD untreated patients and controls. Moreover, we detected a significant decrease of NT3 levels in the parietal cortex of patients suffering from MDD non-treated patients without treatment compared to healthy individuals. Although the limited statistical power due to the small sample size in this proof of concept study corroborates data from previous studies, which show that treatment with antidepressants mediates alterations in neuroplasticity via the action of NTF. However, more research using post-mortem brain tissue with larger samples needs to be carried out as well as longitudinal studies to further verify these results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The art of matching brain tissue from patients and controls for postmortem research.
Bao, Ai-Min; Swaab, Dick F
2018-01-01
The quality of postmortem research depends strongly on a thorough clinical investigation and documentation of the patient's disorder and therapies. In addition, a systematic and professional neuropathologic investigation of both cases and controls is absolutely crucial. In the experience of the Netherlands Brain Bank (NBB), about 20% of clinical neurologic diagnoses, despite being made in first-rate clinics, have to be revised or require an extra diagnosis after a complete and thorough review by the NBB. The neuropathology examination may reveal for instance that the "controls" already have preclinical neurodegenerative alterations. In postmortem studies the patient and control groups must be matched for as many of the known confounding factors as possible. This is necessary to make the groups as similar as possible, except for the topic being investigated. Confounding factors are present before, during, and after death. They are respectively: (1) genetic background, systemic diseases, duration and gravity of illness, medicines and addictive compounds used, age, sex, gender identity, sexual orientation, circadian and seasonal fluctuations, lateralization; (2) agonal state, stress of dying; and (3) postmortem delay, freezing procedures, fixation and storage time. Consequently, a brain bank should have a large number of controls at its disposal for appropriate matching. If matching fails for some confounders, then their influence may be determined by statistical methods such as analysis of variance or regression models. Copyright © 2018 Elsevier B.V. All rights reserved.
Differences in sampling techniques on total post-mortem tryptase.
Tse, R; Garland, J; Kesha, K; Elstub, H; Cala, A D; Ahn, Y; Stables, S; Palmiere, C
2018-05-01
The measurement of mast cell tryptase is commonly used to support the diagnosis of anaphylaxis. In the post-mortem setting, the literature recommends sampling from peripheral blood sources (femoral blood) but does not specify the exact sampling technique. Sampling techniques vary between pathologists, and it is unclear whether different sampling techniques have any impact on post-mortem tryptase levels. The aim of this study is to compare the difference in femoral total post-mortem tryptase levels between two sampling techniques. A 6-month retrospective study comparing femoral total post-mortem tryptase levels between (1) aspirating femoral vessels with a needle and syringe prior to evisceration and (2) femoral vein cut down during evisceration. Twenty cases were identified, with three cases excluded from analysis. There was a statistically significant difference (paired t test, p < 0.05) between mean post-mortem tryptase by aspiration (10.87 ug/L) and by cut down (14.15 ug/L). The mean difference between the two methods was 3.28 ug/L (median, 1.4 ug/L; min, - 6.1 ug/L; max, 16.5 ug/L; 95% CI, 0.001-6.564 ug/L). Femoral total post-mortem tryptase is significantly different, albeit by a small amount, between the two sampling methods. The clinical significance of this finding and what factors may contribute to it are unclear. When requesting post-mortem tryptase, the pathologist should consider documenting the exact blood collection site and method used for collection. In addition, blood samples acquired by different techniques should not be mixed together and should be analyzed separately if possible.
Autism spectrum disorder: neuropathology and animal models.
Varghese, Merina; Keshav, Neha; Jacot-Descombes, Sarah; Warda, Tahia; Wicinski, Bridget; Dickstein, Dara L; Harony-Nicolas, Hala; De Rubeis, Silvia; Drapeau, Elodie; Buxbaum, Joseph D; Hof, Patrick R
2017-10-01
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Love, Seth; Miners, J Scott
2017-07-15
The contribution of vascular disease to cognitive impairment is under-recognized and the pathogenesis is poorly understood. This information gap has multiple causes, including a lack of post-mortem validation of clinical diagnoses of vascular cognitive impairment (VCI) or vascular dementia (VaD), the exclusion of cases with concomitant neurodegenerative disease when diagnosing VCI/VaD, and a lack of standardization of neuropathological assessment protocols for vascular disease. Other contributors include a focus on end-stage destructive lesions to the exclusion of more subtle types of diffuse brain injury, on structural abnormalities of arteries and arterioles to the exclusion of non-structural abnormalities and capillary damage, and the use of post-mortem sampling strategies that are biased towards the identification of neurodegenerative pathologies. Recent studies have demonstrated the value of detailed neuropathology in characterizing vascular contributions to cognitive impairment (e.g. in diabetes), and highlight the importance of diffuse white matter changes, capillary damage and vasoregulatory abnormalities in VCI/VaD. The use of standardized, evidence-based post-mortem assessment protocols and the inclusion of biochemical as well as morphological methods in neuropathological studies should improve the accuracy of determination of the contribution of vascular disease to cognitive impairment and clarify the relative contribution of different pathogenic processes to the tissue damage. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
[External post-mortem examination].
Hartwig, S
2016-09-01
The external post-mortem examination in Germany is a non-delegable medical duty for determination of death, identity of the deceased, cause of death, manner of death, time of death and notifiable infectious diseases. Within the framework of rescue service missions the physician is limited to ascertaining that death has occurred. The determination of death must be reliable and is automatically followed by a complete external post-mortem examination of the body, if necessary by another physician. The certain signs of death are livor mortis, rigor mortis and putrefaction. Reliable features for the occurrence of death are injuries which are not compatible with life and brain death. The external post-mortem examination is the basis for the decision on whether further criminal investigations are necessary. The external post-mortem examination and the accompanying death certification must always be meticulously carried out.
Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus.
Gonzalez-Riano, Carolina; Tapia-González, Silvia; García, Antonia; Muñoz, Alberto; DeFelipe, Javier; Barbas, Coral
2017-08-01
Understanding the human brain is the ultimate goal in neuroscience, but this is extremely challenging in part due to the fact that brain tissue obtained from autopsy is practically the only source of normal brain tissue and also since changes at different levels of biological organization (genetic, molecular, biochemical, anatomical) occur after death due to multiple mechanisms. Here we used metabolomic and anatomical techniques to study the possible relationship between post-mortem time (PT)-induced changes that may occur at both the metabolomics and anatomical levels in the same brains. Our experiments have mainly focused on the hippocampus of the mouse. We found significant metabolomic changes at 2 h PT, whereas the integrity of neurons and glia, at the anatomical/ neurochemical level, was not significantly altered during the first 5 h PT for the majority of histological markers.
Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection.
Sousa, Anastácio Q; Cavalcante, Diane I M; Franco, Luciano M; Araújo, Fernanda M C; Sousa, Emília T; Valença-Junior, José Telmo; Rolim, Dionne B; Melo, Maria E L; Sindeaux, Pedro D T; Araújo, Marialva T F; Pearson, Richard D; Wilson, Mary E; Pompeu, Margarida M L
2017-07-01
Postmortem examination of 7 neonates with congenital Zika virus infection in Brazil revealed microcephaly, ventriculomegaly, dystrophic calcifications, and severe cortical neuronal depletion in all and arthrogryposis in 6. Other findings were leptomeningeal and brain parenchymal inflammation and pulmonary hypoplasia and lymphocytic infiltration in liver and lungs. Findings confirmed virus neurotropism and multiple organ infection.
ERIC Educational Resources Information Center
Azmitia, E. C.; Saccomano, Z. T.; Alzoobaee, M. F.; Boldrini, M.; Whitaker-Azmitia, P. M.
2016-01-01
In the current work, we conducted an immunocytochemical search for markers of ongoing neurogenesis (e.g. nestin) in auditory cortex from postmortem sections of autism spectrum disorder (ASD) and age-matched control donors. We found nestin labeling in cells of the vascular system, indicating blood vessels plasticity. Evidence of angiogenesis was…
Schwabenlander, Marc; Stepaniuk, Kevin; Carstensen, Michelle; Armién, Aníbal G
2016-01-01
We describe significant brain, craniofacial, and dental lesions in a free-ranging wolf (Canis lupus) involved in a human attack. On postmortem examination, the wolf presented asymmetric atrophy and bone remodeling affecting the mandible, incisive, maxilla, lacrimal, palatine, frontal, and ethmoid bones. There was an asymmetrical skeletal malocclusion and dental abnormalities including rotated, malpositioned, partially erupted teeth, and an odontogenic cyst associated with an unerupted canine tooth. Brain changes were bilateral loss and atrophy of extensive cortex regions including olfactory bulb, peduncles, and tract, and the frontal lobe. We highlight the relevance of a thorough postmortem examination of wildlife to elucidate disease-based abnormal behavior as the reason for human-animal conflict.
De Reuck, Jacques; Devos, David; Moreau, Caroline; Auger, Florent; Durieux, Nicolas; Deramecourt, Vincent; Pasquier, Florence; Maurage, Claude-Alain; Cordonnier, Charlotte; Leys, Didier; Bordet, Regis
2017-12-01
Amyotrophic lateral sclerosis (ALS) is associated with frontotemporal lobar degeneration (FTLD) in 15% of the cases. A neuropathological continuity between ALS and FTLD-TDP is suspected. The present post-mortem 7.0-tesla magnetic resonance imaging (MRI) study compares the topographic distribution of iron (Fe) deposition and the incidence of small cerebrovascular lesions in ALS and in FTLD brains. Seventy-eight post-mortem brains underwent 7.0-tesla MRI. The patients consisted of 12 with ALS, 38 with FTLD, and 28 controls. Three ALS brains had minor FTLD features. Three coronal sections of a cerebral hemisphere were submitted to T2 and T2* MRI sequences. The amount of Fe deposition in the deep brain structures and the number of small cerebrovascular lesions was determined in ALS and the subtypes of FTLD compared to control brains, with neuropathological correlates. A significant increase of Fe deposition was observed in the claustrum, caudate nucleus, globus pallidus, thalamus, and subthalamic nucleus of the FTLD-FUS and FTLD-TDP groups, while in the ALS one, the Fe increase was only observed in the caudate and the subthalamic nuclei. White matter changes were only significantly more severe in the FTLD compared to those in ALS and in controls brains. Cortical micro-bleeds were increased in the frontal and temporal lobes of FTLD as well as of ALS brains compared to controls. Cortical micro-infarcts were, on the other hand, more frequent in the control compared to the ALS and FTLD groups. The present study supports the assumption of a neuropathological continuity between ALS and FTLD and illustrates the favourable vascular risk profile in these diseases.
Hamazaki, K; Maekawa, M; Toyota, T; Dean, B; Hamazaki, T; Yoshikawa, T
2017-01-01
Studies investigating the relationship between n-3 polyunsaturated fatty acid (PUFA) levels and psychiatric disorders have thus far focused mainly on analyzing gray matter, rather than white matter, in the postmortem brain. In this study, we investigated whether PUFA levels showed abnormalities in the corpus callosum, the largest area of white matter, in the postmortem brain tissue of patients with schizophrenia, bipolar disorder, or major depressive disorder. Fatty acids in the phospholipids of the postmortem corpus callosum were evaluated by thin-layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to some previous studies, no significant differences were found in the levels of PUFAs or other fatty acids in the corpus callosum between patients and controls. A subanalysis by sex gave the same results. No significant differences were found in any PUFAs between suicide completers and non-suicide cases regardless of psychiatric disorder diagnosis. Patients with psychiatric disorders did not exhibit n-3 PUFAs deficits in the postmortem corpus callosum relative to the unaffected controls, and the corpus callosum might not be involved in abnormalities of PUFA metabolism. This area of research is still at an early stage and requires further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Quantification of endocannabinoids in postmortem brain of schizophrenic subjects.
Muguruza, Carolina; Lehtonen, Marko; Aaltonen, Niina; Morentin, Benito; Meana, J Javier; Callado, Luis F
2013-08-01
Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. Copyright © 2013 Elsevier B.V. All rights reserved.
Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R.; Olah, Marta; Mantingh-Otter, Ietje J.; Van Dam, Debby; De Deyn, Peter P.; den Dunnen, Wilfred; Eggen, Bart J. L.; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration. PMID:28713239
Mata, Dani C; Davis, John F; Figueroa, Ariana K; Stanford, Mary June
2016-01-01
An ultra performance liquid chromatography triple quadrupole mass spectrometry (LC-MS-MS) method for the quantification of 14 benzodiazepines and three sedative hypnotics is presented. The fast and inexpensive assay was developed for California's Orange County Crime Lab for use in antemortem (AM) and postmortem casework. The drugs were rapidly cleaned up from AM blood, postmortem blood, urine, liver, brain and stomach contents using DPX(®) Weak Anion Exchange (DPX WAX) tips fitted on a pneumatic extractor, which can process up to 48 samples at one time. Assay performance was determined for validation based on recommendations by the Scientific Working Group for Forensic Toxicology for linearity, limit of quantitation, limit of detection, bias, precision (within run and between run), dilution integrity, carry-over, selectivity, recovery, ion suppression and extracted sample stability. Linearity was verified using the therapeutic and toxic ranges of all 17 analytes. Final verification of the method was confirmed by four analysts using 20 blind matrix matched samples. All results were within 20% of each other and the expected value. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Spectrum of Disease in Chronic Traumatic Encephalopathy
ERIC Educational Resources Information Center
McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.
2013-01-01
Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging…
Martínez-Ramírez, Jorge A; Strien, Juliane; Walther, Grit; Peters, Frank T
2016-05-01
Fungi colonizing cadavers are capable of drug metabolism and may thus change the metabolite pattern or concentration of drugs in forensic postmortem samples. The purpose of this study was to check for the presence of such changes by searching fungi-specific metabolites of four model drugs (amitriptyline, metoprolol, mirtazapine, and zolpidem) in decomposed postmortem blood samples from 33 cases involving these drugs. After isolation and identification of fungal strains present in the samples, each isolate was incubated in Sabouraud medium at 25°C for up to 120h with each model drug. One part of the supernatants was directly analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), another after liquid-liquid extraction with chlorobutane and concentration. From 21 out of 33 decomposed postmortem blood samples (64%) a total of 30 different strains could be isolated, one from the class of Ascomycete and the rest belonging to 15 species from 8 different genera (number of species): Aspergillus (2), Botrytis (1), Candida (8), Fusarium (1), Mucor (1), Penicillium (1), and Rodothorula (1). In the in vitro studies, these microorganisms were found capable of N-demethylation and N-oxidation of amitriptyline and mirtazapine, O-demethylation followed by side chain oxidation of metoprolol as well as hydroxylation of all four-model drugs. In two of the postmortem blood samples, from which the fungi Aspergillus jensenii, Candida parapsilosis. and Mucor circinelloides had been isolated, a fungi-specific hydroxy zolpidem metabolite was detected. The presence of this metabolite in postmortem samples likely indicates postmortem fungal biodegradation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
De Reuck, Jacques L; Cordonnier, Charlotte; Deramecourt, Vincent; Auger, Florent; Durieux, Nicolas; Bordet, Regis; Maurage, Claude-Alain; Leys, Didier; Pasquier, Florence
2013-01-01
This study aims to determine the distribution and to quantify microbleeds (MBs) in postmortem brains of patients with Alzheimer disease (AD) on T2*-weighted gradient-echo 7.0 T magnetic resonance imaging. Twenty-eight AD brains were compared with 5 controls. The AD brains were subdivided further: 18 without and 10 with additional severe cerebral amyloid angiopathy (AD-CAA). The distribution and the number of cortical focal signal intensity losses, representing MBs, were assessed on coronal sections at the frontal, the central, and the occipital level of a cerebral hemisphere. MBs prevailed in the central sections (P=0.005) of AD brains without CAA, whereas in AD-CAA brains, they were more frequent in all coronal sections (P≤0.002). They prevailed in the deep cortical layers of the AD brains and of the controls (P≤0.03). They were significantly increased in all cortical layers of the AD-CAA brains (P≤0.04), compared with the controls. MBs prevalence in brains of AD patients had a different topographic distribution according to the absence or presence of severe CAA.
The use of histology in 638 coronial post-mortem examinations of adults: an audit.
Langlois, Neil E I
2006-10-01
An audit was performed to determine the effectiveness of histological sampling of forensic post-mortem cases based on a review of three years' data, which comprised 638 adult autopsy cases. During the study period organs and tissues that appeared macroscopically normal and abnormal were extensively sampled. Histology was regarded as in some way contributory (providing, altering or confirming a cause of death) 53% of the time. The use of histology provided the cause of death in 49 (24%) of the 203 cases not given a cause of death after the completion of the macroscopic examination. When an interim cause of death had been supplied following the completion of the gross examination it was changed in 4.8% of cases, but there were no changes of the manner of death. The majority of the histological diagnoses or discrepancies involved the lungs and the heart. All diagnoses relevant to determining the cause of death would have been made if samples had been taken only from the left ventricle, right ventricle, coronary arteries, lungs, kidneys and brain with any tissue or organ that appeared abnormal macroscopically. A macroscopically identified abnormality that appeared to have been responsible for death was not sampled in 20 cases; consequently, more attention will be paid to sampling macroscopically abnormal tissues. As a result of this audit histology sampling practice has been revised and will be re-audited in the future.
Kim, Hyung-Wook; Rapoport, Stanley I; Rao, Jagadeesh S
2009-01-01
Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of mood, and is associated with cognitive decline. There is evidence of excitotoxicity, neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD patients. These observations suggest that BD pathology may be associated with apoptosis as well as with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of the pro-apoptotic (Bax, BAD, Caspase-9 and Caspase-3) and anti-apoptotic factors (BDNF and Bcl-2), and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem brain from 10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed significant increases in protein and mRNA levels of the pro-apoptotic factors and significant decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin. These differences may contribute to brain atrophy and progressive cognitive changes in BD. PMID:19945534
CX3CR1 is dysregulated in blood and brain from schizophrenia patients.
Bergon, Aurélie; Belzeaux, Raoul; Comte, Magali; Pelletier, Florence; Hervé, Mylène; Gardiner, Erin J; Beveridge, Natalie J; Liu, Bing; Carr, Vaughan; Scott, Rodney J; Kelly, Brian; Cairns, Murray J; Kumarasinghe, Nishantha; Schall, Ulrich; Blin, Olivier; Boucraut, José; Tooney, Paul A; Fakra, Eric; Ibrahim, El Chérif
2015-10-01
The molecular mechanisms underlying schizophrenia remain largely unknown. Although schizophrenia is a mental disorder, there is increasing evidence to indicate that inflammatory processes driven by diverse environmental factors play a significant role in its development. With gene expression studies having been conducted across a variety of sample types, e.g., blood and postmortem brain, it is possible to investigate convergent signatures that may reveal interactions between the immune and nervous systems in schizophrenia pathophysiology. We conducted two meta-analyses of schizophrenia microarray gene expression data (N=474) and non-psychiatric control (N=485) data from postmortem brain and blood. Then, we assessed whether significantly dysregulated genes in schizophrenia could be shared between blood and brain. To validate our findings, we selected a top gene candidate and analyzed its expression by RT-qPCR in a cohort of schizophrenia subjects stabilized by atypical antipsychotic monotherapy (N=29) and matched controls (N=31). Meta-analyses highlighted inflammation as the major biological process associated with schizophrenia and that the chemokine receptor CX3CR1 was significantly down-regulated in schizophrenia. This differential expression was also confirmed in our validation cohort. Given both the recent data demonstrating selective CX3CR1 expression in subsets of neuroimmune cells, as well as behavioral and neuropathological observations of CX3CR1 deficiency in mouse models, our results of reduced CX3CR1 expression adds further support for a role played by monocyte/microglia in the neurodevelopment of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
Rao, Jagadeesh Sridhara; Kim, Hyung-Wook; Harry, Gaylia Jean; Rapoport, Stanley Isaac; Reese, Edmund Arthur
2013-01-01
Schizophrenia (SZ) is a progressive, neuropsychiatric disorder associated with cognitive impairment. A number of brain alterations have been linked to cognitive impairment, including neuroinflammation, excitotoxicity, increased arachidonic acid (AA) signaling and reduced synaptic protein. On this basis, we tested the hypothesis that SZ pathology is associated with these pathological brain changes. To do this, we examined postmortem frontal cortex from 10 SZ patients and 10 controls and measured protein and mRNA levels of cytokines, and astroglial, microglial, neuroinflammatory excitotoxic, AA cascade, apoptotic and synaptic markers. Mean protein and mRNA levels of interleukin-1β, tumor necrosis factor-α, glial acidic fibrillary protein (GFAP), a microglial marker CD11b, and nuclear factor kappa B subunits were significantly increased in SZ compared with control brain. Protein and mRNA levels of cytosolic and secretory phospholipase A2 and cyclooxygenase were significantly elevated in postmortem brains from SZ patients. N-methyl-D-aspartate receptor subunits 1 and 2B, inducible nitric oxide synthase and c-FOS were not significantly different. In addition, reduced protein and mRNA levels of brain-derived neurotrophic factor, synaptophysin and drebrin were found in SZ compared with control frontal cortex. Increased neuroinflammation and AA cascade enzyme markers with synaptic protein loss could promote disease progression and cognitive defects in SZ patients. Drugs that downregulate these changes might be considered for new therapies in SZ. PMID:23566496
Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C
2018-01-18
Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to increased water content in the white matter. Periependymal cytochrome C oxidase deficiency could explain prominent periventricular impairment. © 2018 by American Journal of Neuroradiology.
A new viewpoint: running a nonprofit brain bank as a business.
Rademaker, Sonja H M; Huitinga, Inge
2018-01-01
It has become clear over the past decades that studying postmortem human brain tissue is one of the most effective ways to increase our knowledge of the pathogenesis and etiology of neuropathologic and psychiatric diseases. Many breakthroughs in neuroscience have depended on the availability of human brain tissue. However, the process of brain banking presents many different challenges, including the high cost that is associated with collecting the samples and with providing the diagnostics, storage, and distribution. Funding is generally from research and facility grants and donations but all are irregular, uncertain, and only cover the costs for a determined period of time. For professional brain banks with extensive prospective donor programs and that are open-access it can be very beneficial to draft a business plan to achieve long-term sustainability. Such a business plan should identify the interests of the stakeholders and address the implementation of cost efficiency and cost recovery systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Postmortem Fluid and Tissue Concentrations of THC, 11-OH-THC and THC-COOH.
Saenz, Sunday R; Lewis, Russell J; Angier, Mike K; Wagner, Jarrad R
2017-07-01
Marijuana is the most commonly abused illicit drug worldwide. Marijuana is used for its euphoric and relaxing properties. However, marijuana use has been shown to result in impaired memory, cognitive skills and psychomotor function. The Federal Aviation Administration's Civil Aerospace Medical Institute conducts toxicological analysis on aviation fatalities. Due to severe trauma associated with aviation accidents, blood is not always available; therefore, the laboratory must rely on specimens other than blood for toxicological analysis in ~30-40% of cases. However, the postmortem distribution of cannabinoids has not been well characterized. The purpose of this research is to evaluate the distribution of Δ9-tetrahydrocannabinol (THC), and its metabolites, 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and THC-COOH, in postmortem fluid and tissue specimens from 11 fatal aviation accident cases (2014-2015) previously found positive for cannabinoids. Specimens evaluated, when available, included: blood, urine, vitreous humor, liver, lung, kidney, spleen, muscle, brain, heart and bile. We developed and validated (following SWGTOX guidelines) a sensitive and robust method using solid-phase extraction and liquid chromatography-tandem mass spectrometry to identify and quantify THC, 11-OH-THC and THC-COOH in postmortem fluids and tissues. The method readily identified and quantified these cannabinoids in postmortem fluids and tissues below 1 ng/mL. Qualitative cannabinoid results within each case were comparable between blood and non-blood specimens. However, there was no consistent distribution of the cannabinoids between blood and any other fluids or tissues. Therefore, while quantitative interpretation of non-blood postmortem fluid and tissues samples is not prudent, a majority of the non-blood specimens tested could be suitable alternative/supplemental choices for qualitative cannabinoid detection. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Skrobot, Olivia A; Attems, Johannes; Esiri, Margaret; Hortobágyi, Tibor; Ironside, James W; Kalaria, Rajesh N; King, Andrew; Lammie, George A; Mann, David; Neal, James; Ben-Shlomo, Yoav; Kehoe, Patrick G; Love, Seth
2016-11-01
There are no generally accepted protocols for post-mortem assessment in cases of suspected vascular cognitive impairment. Neuropathologists from seven UK centres have collaborated in the development of a set of vascular cognitive impairment neuropathology guidelines (VCING), representing a validated consensus approach to the post-mortem assessment and scoring of cerebrovascular disease in relation to vascular cognitive impairment. The development had three stages: (i) agreement on a sampling protocol and scoring criteria, through a series of Delphi method surveys; (ii) determination of inter-rater reliability for each type of pathology in each region sampled (Gwet's AC2 coefficient); and (iii) empirical testing and validation of the criteria, by blinded post-mortem assessment of brain tissue from 113 individuals (55 to 100 years) without significant neurodegenerative disease who had had formal cognitive assessments within 12 months of death. Fourteen different vessel and parenchymal pathologies were assessed in 13 brain regions. Almost perfect agreement (AC2 > 0.8) was found when the agreed criteria were used for assessment of leptomeningeal, cortical and capillary cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microhaemorrhage, larger haemorrhage, fibrinoid necrosis, microaneurysms, perivascular space dilation, perivascular haemosiderin leakage, and myelin loss. There was more variability (but still reasonably good agreement) in assessment of the severity of arteriolosclerosis (0.45-0.91) and microinfarcts (0.52-0.84). Regression analyses were undertaken to identify the best predictors of cognitive impairment. Seven pathologies-leptomeningeal cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microinfarcts, arteriolosclerosis, perivascular space dilation and myelin loss-predicted cognitive impairment. Multivariable logistic regression determined the best predictive models of cognitive impairment. The preferred model included moderate/severe occipital leptomeningeal cerebral amyloid angiopathy, moderate/severe arteriolosclerosis in occipital white matter, and at least one large infarct (area under the receiver operating characteristic curve 77%). The presence of 0, 1, 2 or 3 of these features resulted in predicted probabilities of vascular cognitive impairment of 16%, 43%, 73% or 95%, respectively. We have developed VCING criteria that are reproducible and clinically predictive. Assuming our model can be validated in an independent dataset, we believe that this will be helpful for neuropathologists in reporting a low, intermediate or high likelihood that cerebrovascular disease contributed to cognitive impairment.10.1093/brain/aww214_video_abstractaww214_video_abstract. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies
van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C
2017-01-01
Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400
Pearson, Brandon L; Corley, Michael J; Vasconcellos, Amy; Blanchard, D Caroline; Blanchard, Robert J
2013-04-15
Abnormal cellular growth and organization have been characterized in postmortem tissue from brains of autistic individuals, suggestive of pathology in a critical neurogenic niche, the subventricular zone (SVZ) of the brain lateral ventricles (LV). We examined cellular organization, cell proliferation, and constituents of the extracellular matrix such as N-sulfated heparan sulfate (HS) and laminin (LAM) in postmortem brain tissue from the LV-SVZ of young to elderly individuals with autism (n=4) and age-matched typically developing (TD) individuals (n=4) using immunofluorescence techniques. Strong and systematic reductions in HS immunofluorescence were observed in the LV-SVZ of the TD individuals with increasing age. For young through mature, but not elderly, autistic pair members, HS was reduced compared to their matched TDs. Cellular proliferation (Ki67+) was higher in the autistic individual of the youngest age-matched pair. These preliminary data suggesting that HS may be reduced in young to mature autistic individuals are in agreement with previous findings from the BTBR T+tf/J mouse, an animal model of autism; from mice with genetic modifications reducing HS; and with genetic variants in HS-related genes in autism. They suggest that aberrant extracellular matrix glycosaminoglycan function localized to the subventricular zone of the lateral ventricles may be a biomarker for autism, and potentially involved in the etiology of the disorder. Copyright © 2013 Elsevier B.V. All rights reserved.
Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS
Gagliano, Sarah A.; Ptak, Carolyn; Mak, Denise Y.F.; Shamsi, Mehrdad; Oh, Gabriel; Knight, Joanne; Boutros, Paul C.; Petronis, Arturas
2016-01-01
Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%–7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs. PMID:27087318
Attitudes Concerning Postmortem Organ Donation: A Multicenter Survey in Various German Cohorts.
Uhlig, Constantin E; Böhringer, Daniel; Hirschfeld, Gerrit; Seitz, Berthold; Schmidt, Hartmut
2015-10-13
The aim of this study was to characterize postmortem organ donation attitudes in various German cohorts. Employees of 2 German cities and 2 German university hospitals, employees of a German automobile enterprise, and members of a German Medical Society were administered a questionnaire about postmortem organ and tissue donation attitudes. Demographic data and general attitudes were questioned and focused on: I) willingness to donate organs, II) holding a donor card, and III) having discussed the topic with the family. Of 5291 participants, 65.2% reported favoring postmortem organ donation. Missing negative experiences, the idea that donation is helpful, a non-medical professional environment, excellent general health, gender, agreement with the brain-death paradigm, and age significantly influenced the participants' attitudes. Participants were more likely to possess donor cards and had discussed more often with family members if they agreed with the brain-death paradigm and considered donation to be helpful. Males and older participants were the most likely to neglect donor cards, and Catholics, Protestants, and participants with poor health were the least likely to donate organs. Interest in receiving more information was expressed by 38.1% and 50.6% of participants refusing donation of all or of specific organs, respectively, and suggested the internet (60.0%) and family doctors (35.0%) as preferred sources of information. Public campaigns in Germany should focus on males and older people as regards donor cards, and females, younger, and religiously affiliated persons as regards the general willingness to donate organs postmortem.
2010-01-01
Background Various clinical protocols have been developed to aid in the clinical diagnosis of classical bovine spongiform encephalopathy (BSE), which is confirmed by postmortem examinations based on vacuolation and accumulation of disease-associated prion protein (PrPd) in the brain. The present study investigated the occurrence and progression of sixty selected clinical signs and behaviour combinations in 513 experimentally exposed cattle subsequently categorised postmortem as confirmed or unconfirmed BSE cases. Appropriate undosed or saline inoculated controls were examined similarly and the data analysed to explore the possible occurrence of BSE-specific clinical expression in animals unconfirmed by postmortem examinations. Results Based on the display of selected behavioural, sensory and locomotor changes, 20 (67%) orally dosed and 17 (77%) intracerebrally inoculated pathologically confirmed BSE cases and 21 (13%) orally dosed and 18 (6%) intracerebrally inoculated but unconfirmed cases were considered clinical BSE suspects. None of 103 controls showed significant signs and were all negative on diagnostic postmortem examinations. Signs indicative of BSE suspects, particularly over-reactivity and ataxia, were more frequently displayed in confirmed cases with vacuolar changes in the brain. The display of several BSE-associated signs over time, including repeated startle responses and nervousness, was significantly more frequent in confirmed BSE cases compared to controls, but these two signs were also significantly more frequent in orally dosed cattle unconfirmed by postmortem examinations. Conclusions The findings confirm that in experimentally infected cattle clinical abnormalities indicative of BSE are accompanied by vacuolar changes and PrPd accumulation in the brainstem. The presence of more frequently expressed signs in cases with vacuolar changes is consistent with this pathology representing a more advanced stage of disease. That BSE-like signs or sign combinations occur in inoculated animals that were not confirmed as BSE cases by postmortem examinations requires further study to investigate the potential causal relationship with prion disease. PMID:21143919
Gavrilov, Yury V.; Ellison, Brian A.; Yamamoto, Mihoko; Reddy, Hasini; Haybaeck, Johannes; Mignot, Emmanuel; Baumann, Christian R.; Scammell, Thomas E.; Valko, Philipp O.
2016-01-01
Study Objectives: To examine the integrity of sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO) in postmortem brains of narcolepsy type 1 patients. Methods: Postmortem examination of five narcolepsy and eight control brains. Results: VLPO galanin neuron count did not differ between narcolepsy patients (11,151 ± 3,656) and controls (13,526 ± 9,544). Conclusions: A normal number of galanin-immunoreactive VLPO neurons in narcolepsy type 1 brains at autopsy suggests that VLPO cell loss is an unlikely explanation for the sleep fragmentation that often accompanies the disease. Citation: Gavrilov YV, Ellison BA, Yamamoto M, Reddy H, Haybaeck J, Mignot E, Baumann CR, Scammell TE, Valko PO. Disrupted sleep in narcolepsy: exploring the integrity of galanin neurons in the ventrolateral preoptic area. SLEEP 2016;39(5):1059–1062. PMID:26951397
Neuronal Type-Specific Gene Expression Profiling and Laser-Capture Microdissection
Pietersen, Charmaine Y.; Lim, Maribel P.; Macey, Laurel; Woo, Tsung-Ung W.; Sonntag, Kai C.
2014-01-01
The human brain is an exceptionally heterogeneous structure. In order to gain insight into the neurobiological basis of neural circuit disturbances in various neurologic or psychiatric diseases, it is often important to define the molecular cascades that are associated with these disturbances in a neuronal type-specific manner. This can be achieved by the use of laser microdissection, in combination with molecular techniques such as gene expression profiling. To identify neurons in human postmortem brain tissue, one can use the inherent properties of the neuron, such as pigmentation and morphology or its structural composition through immunohistochemistry (IHC). Here, we describe the isolation of homogeneous neuronal cells and high-quality RNA from human postmortem brain material using a combination of rapid IHC, Nissl staining, or simple morphology with Laser-Capture Microdissection (LCM) or Laser Microdissection (LMD). PMID:21761317
Neuronal type-specific gene expression profiling and laser-capture microdissection.
Pietersen, Charmaine Y; Lim, Maribel P; Macey, Laurel; Woo, Tsung-Ung W; Sonntag, Kai C
2011-01-01
The human brain is an exceptionally heterogeneous structure. In order to gain insight into the neurobiological basis of neural circuit disturbances in various neurologic or psychiatric diseases, it is often important to define the molecular cascades that are associated with these disturbances in a neuronal type-specific manner. This can be achieved by the use of laser microdissection, in combination with molecular techniques such as gene expression profiling. To identify neurons in human postmortem brain tissue, one can use the inherent properties of the neuron, such as pigmentation and morphology or its structural composition through immunohistochemistry (IHC). Here, we describe the isolation of homogeneous neuronal cells and high-quality RNA from human postmortem brain material using a combination of rapid IHC, Nissl staining, or simple morphology with Laser-Capture Microdissection (LCM) or Laser Microdissection (LMD).
White Matter Glial Pathology in Autism
2014-09-01
Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0302 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory A. Ordway...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Methods used to directly study the autism brain include brain imaging in living patients and...pathology studies using postmortem brain tissues from deceased autism spectrum disorder (ASD) donors. These methods typically focus on brain regions
NASA Astrophysics Data System (ADS)
Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.
2015-03-01
Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.
Dettinger, Lisa; Powell, James W.; Seiders, Melanie; Condori, Rene Edgar Condori; Griesser, Richard; Okogi, Kenneth; Carlos, Maria; Pesko, Kendra; Breckenridge, Mike; Simon, Edson Michael M.; Chu, Maria Yna Joyce V.; Davis, April D.; Brunt, Scott J.; Orciari, Lillian; Yager, Pamela; Carson, William C.; Hartloge, Claire; Saliki, Jeremiah T.; Deldari, Mojgan; Hsieh, Kristina; Wadhwa, Ashutosh; Wilkins, Kimberly; Rabideau, Patricia; Gruhn, Nina; Cadet, Rolain; Isloor, Shrikrishna; Nath, Sujith S.; Joseph, Tomy; Gao, Jinxin; Wallace, Ryan; Reynolds, Mary; Olson, Victoria A.
2018-01-01
Rabies is a fatal zoonotic disease that requires fast, accurate diagnosis to prevent disease in an exposed individual. The current gold standard for post-mortem diagnosis of human and animal rabies is the direct fluorescent antibody (DFA) test. While the DFA test has proven sensitive and reliable, it requires high quality antibody conjugates, a skilled technician, a fluorescence microscope and diagnostic specimen of sufficient quality. The LN34 pan-lyssavirus real-time RT-PCR assay represents a strong candidate for rabies post-mortem diagnostics due to its ability to detect RNA across the diverse Lyssavirus genus, its high sensitivity, its potential for use with deteriorated tissues, and its simple, easy to implement design. Here, we present data from a multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from Africa, the Americas, Asia, Europe, and the Middle East were tested. The LN34 assay exhibited low variability in repeatability and reproducibility studies and was capable of detecting viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. The LN34 assay displayed high diagnostic specificity (99.68%) and sensitivity (99.90%) when compared to the DFA test, and no DFA positive samples were negative by the LN34 assay. The LN34 assay produced definitive findings for 80 samples that were inconclusive or untestable by DFA; 29 were positive. Five samples were inconclusive by the LN34 assay, and only one sample was inconclusive by both tests. Furthermore, use of the LN34 assay led to the identification of one false negative and 11 false positive DFA results. Together, these results demonstrate the reliability and robustness of the LN34 assay and support a role for the LN34 assay in improving rabies diagnostics and surveillance. PMID:29768505
Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan
2017-06-01
Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.
Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem
Freeman, Sara M.; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.
2017-01-01
Intranasal oxytocin affects a suite of human social behaviors, including trust, eye contact, and emotion recognition. However, it is unclear where oxytocin receptors (OXTR) and the structurally related vasopressin 1a receptors (AVPR1a) are expressed in the human brain. We have previously described a reliable, pharmacologically informed receptor autoradiography protocol for visualizing these receptors in postmortem primate brain tissue. We used this technique in human brainstem tissue to identify the neural targets of oxytocin and vasopressin. To determine binding selectivity of the OXTR radioligand and AVPR1a radioligand, sections were incubated in four conditions: radioligand alone, radioligand with the selective AVPR1a competitor SR49059, and radioligand with a low or high concentration of the selective OXTR competitor ALS-II-69. We found selective OXTR binding in the spinal trigeminal nucleus, a conserved region of OXTR expression in all primate species investigated to date. We found selective AVPR1a binding in the nucleus prepositus, an area implicated in eye gaze stabilization. The tissue's postmortem interval was not correlated with either the specific or nonspecific binding of either radioligand, indicating that it will not likely be a factor in similar postmortem studies. This study provides critical data for future studies of OXTR and AVPR1a in human brain tissue. PMID:26911439
Mukai, Motoko; Gonser, Rusty A.; Wingfield, John C.; London, Sarah E.; Tuttle, Elaina M.; Clayton, David F.
2014-01-01
Emberizid sparrows (emberizidae) have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain) as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species. PMID:24883256
2010-01-01
Background Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. Case presentation A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. Conclusions The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans. PMID:20064229
Scheurer, Eva; Ith, Michael; Dietrich, Daniel; Kreis, Roland; Hüsler, Jürg; Dirnhofer, Richard; Boesch, Chris
2005-05-01
Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs. Copyright 2004 John Wiley & Sons, Ltd.
Post-sampling release of free fatty acids - effects of heat stabilization and methods of euthanasia.
Jernerén, Fredrik; Söderquist, Marcus; Karlsson, Oskar
2015-01-01
The field of lipid research has made progress and it is now possible to study the lipidome of cells and organelles. A basic requirement of a successful lipid study is adequate pre-analytical sample handling, as some lipids can be unstable and postmortem changes can cause substantial accumulation of free fatty acids (FFAs). The aim of the present study was to investigate the effects of conductive heat stabilization and euthanasia methods on FFA levels in the rat brain and liver using liquid chromatography tandem mass spectrometry. The analysis of brain homogenates clearly demonstrated phospholipase activity and time-dependent post-sampling changes in the lipid pool of snap frozen non-stabilized tissue. There was a significant increase in FFAs already at 2min, which continued over time. Heat stabilization was shown to be an efficient method to reduce phospholipase activity and ex vivo lipolysis. Post-sampling effects due to tissue thawing and sample preparation induced a massive release of FFAs (up to 3700%) from non-stabilized liver and brain tissues compared to heat stabilized tissue. Furthermore, the choice of euthanasia method significantly influenced the levels of FFAs in the brain. The FFAs were decreased by 15-44% in the group of animals euthanized by pentobarbital injection compared with CO2 inhalation or decapitation. Our results highlight the importance of considering euthanasia methods and pre-analytical treatment in lipid analysis, factors which may otherwise interfere with the outcome of the experiments. Copyright © 2014 Elsevier Inc. All rights reserved.
Zahr, Natalie M; Luong, Richard; Sullivan, Edith V; Pfefferbaum, Adolf
2010-11-01
In rodent and human studies, ethanol (EtOH) exposure is associated with elevated brain levels of the magnetic resonance spectroscopy (MRS) signal representing choline-containing compounds (Cho). One interpretation of elevated brain Cho is that it is a marker of neuroinflammation, and some evidence suggests that EtOH exposure promotes neuroinflammation. This study aimed to determine whether binge EtOH exposure (intragastric 3 g/kg 25% EtOH every 8 hours for 4 days) would induce the expression of certain cytokines in blood, liver, or brain, thereby supporting the neuroinflammation hypothesis of elevated Cho. Ten of 18 wild-type male Wistar rats (~322 g at baseline) were exposed to EtOH and attained average blood alcohol levels of ~315 mg/dl across 4 days. Blood for cytokine immunoassays was collected at baseline, after 5 doses of EtOH (binge), and immediately preceding euthanasia either 4 or 24 hours after the last dose of EtOH. Blood was additionally assayed for the levels of thiamine and liver enzymes; liver histopathology was performed postmortem; and tissue from liver and 6 brain regions was assayed for the potential induction of 7 cytokines. There were no group effects on the levels of thiamine or its phosphate derivatives, thiamine monophosphate or thiamine diphosphate. ANOVAs of liver enzyme levels indicated that only alkaline phosphatase (ALP) levels were higher in the EtOH group than in control group at binge; ALP elevations, however, are difficult to explain in the absence of changes in the levels of additional liver enzymes. Postmortem liver pathology provided evidence for minimal microvesicular lipidosis and portocentric fibrosis in the EtOH group. Group effects on the levels of the measured cytokines in the blood (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13, and GRO/CXCL1) were not significant. Similarly, postmortem evaluation of liver cytokines did not reveal group effects. Postmortem evaluation of the 7 cytokines in 6 brain regions (anterior cerebellar vermis, cingulate cortex, frontal cortex, hippocampus, hypothalamus, striatum) also failed to identify group effects. A single 4-day bout of binge EtOH exposure alone was insufficient to induce the expression of 7 cytokines in blood, liver, or 6 brain regions of wild-type Wistar rats. Alternative interpretations for elevations in brain Cho in response to a 4-day binge EtOH treatment are therefore necessary and may include induction of cytokines not measured herein or other noninflammatory mechanisms. Copyright © 2010 by the Research Society on Alcoholism.
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei
2015-01-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250
Blood creatinine level in postmortem cases.
Nishida, Atsushi; Funaki, Hironao; Kobayashi, Masaki; Tanaka, Yuka; Akasaka, Yoshihisa; Kubo, Toshikazu; Ikegaya, Hiroshi
2015-05-01
Blood chemical analysis for the diagnosis of diseases in forensic cases should be conducted in the same way as for clinical cases. However, it is sometimes difficult to obtain serum samples in forensic cases because of postmortem changes such as hemolysis and putrefaction. This study aimed to evaluate renal function in postmortem cases by blood creatinine analysis. The blood creatinine level was measured by high performance liquid chromatography (HPLC) using whole blood samples taken from 77 postmortem cases, and the relationships between blood creatinine level, postmortem interval, and cause of death were examined. The median blood creatinine level was found to be 1.15 mg/dL, with no significant differences between blood samples taken from different parts of the body. The blood creatinine level was stable for 3 days after death and gradually increased after that period, in line with a previous study using enzymatic analysis that found the serum creatinine level was stable in the early postmortem period. The blood creatinine level was high in the cases of blunt injury, intoxication, and in deaths caused by fire. This was considered to reflect acute renal dysfunction. However, the postmortem blood creatinine level remained higher than the clinical normal value despite omitting cases with renal dysfunction from the analysis. Therefore, we next investigated the change in postmortem creatinine levels in mice and found that the blood creatinine level increased with the emergence of rigor mortis. Our findings indicate that HPLC is useful in the postmortem evaluation of renal function even in the cases where serum cannot be obtained. However, the presence of rigor mortis should be considered in the evaluation of blood creatinine values. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Hematocrit Measurement with R2* and Quantitative Susceptibility Mapping in Postmortem Brain.
Walsh, A J; Sun, H; Emery, D J; Wilman, A H
2018-05-24
Noninvasive venous oxygenation quantification with MR imaging will improve the neurophysiologic investigation and the understanding of the pathophysiology in neurologic diseases. Available MR imaging methods are limited by sensitivity to flow and often require assumptions of the hematocrit level. In situ postmortem imaging enables evaluation of methods in a fully deoxygenated environment without flow artifacts, allowing direct calculation of hematocrit. This study compares 2 venous oxygenation quantification methods in in situ postmortem subjects. Transverse relaxation (R2*) mapping and quantitative susceptibility mapping were performed on a whole-body 4.7T MR imaging system. Intravenous measurements in major draining intracranial veins were compared between the 2 methods in 3 postmortem subjects. The quantitative susceptibility mapping technique was also applied in 10 healthy control subjects and compared with reference venous oxygenation values. In 2 early postmortem subjects, R2* mapping and quantitative susceptibility mapping measurements within intracranial veins had a significant and strong correlation ( R 2 = 0.805, P = .004 and R 2 = 0.836, P = .02). Higher R2* and susceptibility values were consistently demonstrated within gravitationally dependent venous segments during the early postmortem period. Hematocrit ranged from 0.102 to 0.580 in postmortem subjects, with R2* and susceptibility as large as 291 seconds -1 and 1.75 ppm, respectively. Measurements of R2* and quantitative susceptibility mapping within large intracranial draining veins have a high correlation in early postmortem subjects. This study supports the use of quantitative susceptibility mapping for evaluation of in vivo venous oxygenation and postmortem hematocrit concentrations. © 2018 by American Journal of Neuroradiology.
Hill, E.F.
1989-01-01
Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.
Mizutani, Tatsushi; Yoshimoto, Takashi; Ishii, Akira
2018-05-21
We examined postmortem β-hydroxybutyrate (BHB) levels in the body fluids obtained from 253 forensic autopsy cases whose causes of death were determined. Postmortem changes of BHB levels according to postmortem intervals (PMI) in various body fluids (plasma, urine, vitreous humor, and pericardial fluids) were investigated to determine appropriate alternative specimens as plasma samples. Our study has indicated the following points: 1) the BHB levels in plasma specimens from three sampling sites showed no significant differences, 2) postmortem changes of BHB levels in plasma and pericardial fluids could be negligible within 96 h PMI, while urine and vitreous humor BHB levels showed postmortem changes, and 3) pericardial fluid would thus be most suitable as an alternative to plasma in postmortem BHB level. We have also proposed that BHB levels could be applicable for the diagnosis of metabolic disorders in forensic autopsy. Copyright © 2018 Elsevier B.V. All rights reserved.
Post-mortem clinical pharmacology
Ferner, R E
2008-01-01
Clinical pharmacology assumes that deductions can be made about the concentrations of drugs from a knowledge of the pharmacokinetic parameters in an individual; and that the effects are related to the measured concentration. Post-mortem changes render the assumptions of clinical pharmacology largely invalid, and make the interpretation of concentrations measured in post-mortem samples difficult or impossible. Qualitative tests can show the presence of substances that were not present in life, and can fail to detect substances that led to death. Quantitative analysis is subject to error in itself, and because post-mortem concentrations vary in largely unpredictable ways with the site and time of sampling, as a result of the phenomenon of post-mortem redistribution. Consequently, compilations of ‘lethal concentrations’ are misleading. There is a lack of adequate studies of the true relationship between fatal events and the concentrations that can be measured subsequently, but without such studies, clinical pharmacologists and others should be wary of interpreting post-mortem measurements. PMID:18637886
[The Prevalence and Risk Factors of Dementia in Centenarians].
Arai, Yasumichi
2017-07-01
Centenarians are less susceptible to the diseases, functional losses and dependencies related to old age than the general public, and are therefore regarded as model cases of successful aging. For this reason, an important focus of the study of centenarians is their relative resilience to age-related cognitive decline or dementia. In the Tokyo Centenarian Study, we found approximately 60% of centenarians to have dementia; however, supercentenarians (those people living at least 110 years) maintained normal cognitive function at 100 years of age. Our preliminary data also demonstrated extremely low frequencies of the apolipoprotein E4 allele in supercentenarians. Moreover, postmortem brain samples from supercentenarians demonstrated relatively mild age-related neuropathological findings. Therefore, a more extensive investigation of supercentenarian populations might provide insight into successful brain aging.
Viana, Joana; Hannon, Eilis; Dempster, Emma; Pidsley, Ruth; Macdonald, Ruby; Knox, Olivia; Spiers, Helen; Troakes, Claire; Al-Saraj, Safa; Turecki, Gustavo; Schalkwyk, Leonard C; Mill, Jonathan
2017-01-01
Genetic association studies provide evidence for a substantial polygenic component to schizophrenia, although the neurobiological mechanisms underlying the disorder remain largely undefined. Building on recent studies supporting a role for developmentally regulated epigenetic variation in the molecular aetiology of schizophrenia, this study aimed to identify epigenetic variation associated with both a diagnosis of schizophrenia and elevated polygenic risk burden for the disease across multiple brain regions. Genome-wide DNA methylation was quantified in 262 post-mortem brain samples, representing tissue from four brain regions (prefrontal cortex, striatum, hippocampus and cerebellum) from 41 schizophrenia patients and 47 controls. We identified multiple disease-associated and polygenic risk score-associated differentially methylated positions and regions, which are not enriched in genomic regions identified in genetic studies of schizophrenia and do not reflect direct genetic effects on DNA methylation. Our study represents the first analysis of epigenetic variation associated with schizophrenia across multiple brain regions and highlights the utility of polygenic risk scores for identifying molecular pathways associated with aetiological variation in complex disease. © The Author 2016. Published by Oxford University Press.
Nicholl, R M; Balasubramaniam, V P; Urquhart, D S; Sellathurai, N; Rutherford, M A
2007-05-01
Following the death of a neonate it is essential that parents are given full and accurate information about the probable cause of death. Perinatal autopsy often adds new information or may even change the presumed diagnosis [Cartlidge PH, Dawson AT, Stewart JH, Vujanic GM. Value and quality of perinatal and infant postmortem examinations: cohort analysis of 400 consecutive deaths. Br Med J 1995;310(6973):155-8; Khong TY. Falling neonatal autopsy rates. Br Med J 2002;324(7340):749-50] informing decisions regarding the management of any future pregnancy. Autopsy can be considered the "gold standard" for the identification of antecedent events leading to a neonatal death. However, recent events in the UK have added to an already declining rate in neonatal autopsies [Brodlie M, Laing IA. Ten years of neonatal autopsies in tertiary referral centre: retrospective study. Br Med J 2002;324(7340):761-3]. To try and redress this balance the Chief Medical Officer has recommended that research should be commissioned into the use of non-invasive imaging to provide a similar standard of information [The Chief Medical Officer. The removal, retention and use of human organs and tissues from post mortem examination. London, England: The Stationary Office, Department of Health; 2001]. Previous publications on postmortem MRI have focused largely on investigation of the foetus and of still birth [Griffiths PD, Variend D, Evans M, Jones A, Wilkinson ID, Paley MNJ, et al. Postmortem MR imaging of the fetal and stillborn central nervous system. Am J Neuroradiol 2003;24(1):22-7; Whitby EH, Paley MN, Cohen M, GriffithsPD. Postmortem MR imaging of the fetus: an adjunct or a replacement for conventional autopsy? Semin Fetal Neonatal Med 2005;10(5):475-83]. We report our experience on the use of postmortem brain MRI combined with selective tissue biopsy, in six neonatal deaths in the setting of a large district general hospital.
Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.
2016-01-01
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777
Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J
2016-10-01
The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.
Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.
Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard; Chakrabarti, Lisa
2016-07-01
Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (p<0.05). We quantified ratios of human mitochondrial haemoglobin in 30 Parkinson's and matched control human post-mortem brains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filloux, F.; Wagster, M.V.; Folstein, S.
1990-11-01
Intrastriatal injection of excitatory amino acids, particularly quinolinic acid, has been proposed as an animal model of Huntington's disease. Such neurotoxic lesions of caudate-putamen result in marked dopamine type-1 (D1) receptor losses in the injected nuclei as well as in the ipsilateral substantia nigra pars reticulata. Postmortem human substantia nigra from Huntington's disease brains and from control brains were examined using in vitro autoradiography. A marked reduction in ({sup 3}H)SCH 23390 binding (labeling D1 receptors) in the substantia nigra of postmortem brains of Huntington's patients was identified, thus paralleling the alterations seen in the animal models. A positive, statistically significantmore » correlation was also encountered between D1 receptor binding (labeled by ({sup 3}H)SCH 23390) and ({sup 3}H)forskolin binding (which identifies adenylate cyclase, a second messenger system linked to D1 receptor activation). The results suggest that in the human--as in lower vertebrates--D1 receptors are located on striatonigral terminals and that D1 receptor loss tends to be paralleled by a reduction in adenylate cyclase. Radioactive agents selective for the D1 receptor may prove useful in future studies of Huntington's disease using positron emission tomography scanning.« less
Canine adenovirus type 1 in a fennec fox (Vulpes zerda).
Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku
2014-12-01
A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing.
Implementation and clinical characteristics of a posttraumatic stress disorder brain collection.
Mighdoll, Michelle I; Deep-Soboslay, Amy; Bharadwaj, Rahul A; Cotoia, John A; Benedek, David M; Hyde, Thomas M; Kleinman, Joel E
2018-01-01
A postmortem human brain collection to study posttraumatic stress disorder (PTSD) is critical for uncovering the molecular mechanisms that contribute to this psychiatric disorder. We describe here the PTSD brain collection at the Lieber Institute for Brain Development in Baltimore, Maryland, consisting of postmortem brain donations acquired between 2012 and 2017. Thus far, 87 brains from individuals meeting DSM-5 criteria for PTSD were collected after consent was obtained from legal next-of-kin, and subsequently clinically characterized for molecular studies. PTSD brain donors had high rates of comorbid diagnoses, including depression (62.1%), substance abuse (74.7%), drug-related death (69.0%), and suicide completion (17.2%). PTSD cases were subdivided into two categories: combat-related PTSD (n = 24) and noncombat/domestic PTSD (n = 63). The major differences between the combat-related and domestic PTSD cohorts were sex, drug-related death, and the prevalence of bipolar disorder (BPD) comorbidity. The combat-related group was entirely male, with only one BPD subject (4.2%), and had significantly fewer drug-related deaths (45.8%) in contrast to the domestic group (31.8% male, 36.5% bipolar, and 77.8% drug-related deaths). Medical examiners' offices, particularly in areas with higher military populations, are an excellent source for PTSD brain donations of both combat-related and domestic PTSD. © 2017 Wiley Periodicals, Inc.
Yağmur, Gülhan; Albayrak, Nurhan; Daş, Taner; Yıldırım, Muzaffer; Ozgün, Ayşe; Büyük, Yalçın
2014-10-01
Tuberculosis (TB) is one of those infections with high morbidity and mortality in all around the world. Hundreds of people died from this disease without diagnosed or due to resistant strains in Turkey. Therefore, it is important to identify postmortem cases who have died from tuberculosis. Molecular methods have been widely used as well as conventional methods in the diagnosis of tuberculosis. The aim of this study was to compare the two different real-time polymerase chain reaction (Rt-PCR) system in the postmortem diagnosis of Mycobacterium tuberculosis infections in paraffin-embedded tissues. A total of 40 paraffin-embedded tissue samples [lung (n= 35), brain (n= 2), heart (n= 2), lymph node (n= 1)] in which histopathologic findings consistent with TB (necrotizing granulomatous inflammation, gelatinous caseous pneumonia, necrotic fibrous nodul) obtained from 37 autopsy cases (31 male, 6 female; age range: 25-85 yrs) were included in the study. Paraffin-embedded tissues were deparafinized with xylene and ethyl alcohol and then DNA isolation was done with QIAsymphony DSP Virus/Pathogen Midi kit in the QIAsymphony device. DNA amplification process was performed by Rt-PCR using the kit Artus® M. tuberculosis RG-PCR in the Rotor-Gene® Q device (Qiagen, Germany). Likewise, after deparafinization process, samples placed in the cartridge and isolation and Rt-PCR was performed by Xpert® MTB/RIF (Cepheid, USA) system, simultaneosly. Seventeen and 20 out of the 40 paraffin-embedded tissues yielded positive results with Qiagen and Xpert system, respectively. M.tuberculosis DNA was found positive in 13 (32.5%) and negative in 16 (40%) of the samples by both of the systems, exhibiting 72.5% (29/40) of concordance. On the other hand, seven (17.5%) samples that were positive with Xpert system yielded negative result with the Qiagen, while four (10%) samples that were positive with Qiagen yielded negative result with the Xpert system. Of the 20 positive cases detected with Xpert MTB/RIF system, 15 were found rifampicin-susceptible, and three were rifampicin-resistant. In two samples in which M. tuberculosis DNA was low positive, rifampicin resistance could not be detected. The identification of M.tuberculosis infections in postmortem cases will contribute epidemiological data in Turkey. In these cases, effective sampling and diagnosing of M.tuberculosis infections by acid-fast stain and culture methods are crucial. However, in cases without microbiological sampling the detection of M.tuberculosis DNA in paraffin-embedded tissues with PCR, although there are differences between PCR systems has diagnostic value. In conclusion, our data indicated that Xpert MTB/RIF system is more favourable to detect M.tuberculosis DNA in paraffin-embedded tissues, with the advantages of determination of rifampicin resistance, and detection of more positive results within a shorter time.
Wippel, Carolin; Maurer, Jana; Förtsch, Christina; Hupp, Sabrina; Bohl, Alexandra; Ma, Jiangtao; Mitchell, Timothy J.; Bunkowski, Stephanie; Brück, Wolfgang; Nau, Roland; Iliev, Asparouh I.
2013-01-01
Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. PMID:23785278
Mitter, Christian; Jakab, András; Brugger, Peter C.; Ricken, Gerda; Gruber, Gerlinde M.; Bettelheim, Dieter; Scharrer, Anke; Langs, Georg; Hainfellner, Johannes A.; Prayer, Daniela; Kasprian, Gregor
2015-01-01
Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic characterization of axon guidance disorders at prenatal stages of human brain development. PMID:26732460
Stability of 26 Sedative Hypnotics in Six Toxicological Matrices at Different Storage Conditions.
Mata, Dani C
2016-10-01
Forensic laboratories are challenged with backlogs that produce turnaround times that vary from days to months. Therefore, drug stability is important for interpretation in both antemortem (blood and urine) and postmortem (blood, brain, liver, stomach contents) cases. In this study, 23 benzodiazepines (2-hydroxyethylflurazepam, 7-aminoclonazepam, 7-aminoflunitrazepam, α-hydroxyalprazolam, α-hydroxytriazolam, alprazolam, bromazepam, chlordiazepoxide, clonazepam, demoxepam, desalkylflurazepam, diazepam, estazolam, flunitrazepam, flurazepam, lorazepam, midazolam, nitrazepam, nordiazepam, oxazepam, phenazepam, temazepam and triazolam) and three sedative hypnotics (zaleplon, zopiclone and zolpidem) were spiked into the six matrices at two different concentrations for each drug. The samples were stored in either a refrigerator (4°C) or freezer (-20°C) and analyzed in triplicate at various time intervals over an 8-month period using an SWGTOX validated method. The concentrations decreased over time regardless of the initial spiked concentration, and the storage conditions had little effect on the decrease of most drugs. Conversion from drug to metabolite was difficult to determine since all 26 drugs were present in each sample. Zopiclone and phenazepam were the least stable drugs; zopiclone was the only drug that completely disappeared in any matrix (both antemortem and postmortem blood). Urine was the most stable matrix with only phenazepam, 7-aminoclonazepam, 7-aminoflunitrazepam, 2-hydroxyethylflurazepam, and zopiclone decreasing >20% over the 8 months in either storage condition. Postmortem blood, the least stable matrix, had only two drugs, zolpidem and bromazepam, decreasing <20% in the 8-month time period. Further experiments on stability of these drugs should be undertaken to remove the freeze-thaw cycle effect and more thoroughly examining drug-metabolite conversion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
McAloose, Denise; Rago, M Virginia; Di Martino, Matías; Chirife, Andrea; Olson, Sarah H; Beltramino, Lucas; Pozzi, Luciana M; Musmeci, Luciana; La Sala, Luciano; Mohamed, Nadia; Sala, Juan Emilio; Bandieri, Lucas; Andrejuk, Julian; Tomaszewicz, Ania; Seimon, Tracie; Sironi, Mariano; Samartino, Luis E; Rowntree, Victoria; Uhart, Marcela M
2016-04-12
Between 2003 and 2012, 605 southern right whales (SRW; Eubalaena australis) were found dead along the shores of Península Valdés (PV), Argentina. These deaths included alarmingly high annual losses between 2007 and 2012, a peak number of deaths (116) in 2012, and a significant number of deaths across years in calves-of-the-year (544 of 605 [89.9%]; average = 60.4 yr(-1)). Post-mortem examination and pathogen testing were performed on 212 whales; 208 (98.1%) were calves-of-the-year and 48.0% of these were newborns or neonates. A known or probable cause of death was established in only a small number (6.6%) of cases. These included ship strike in a juvenile and blunt trauma or lacerations (n = 5), pneumonia (n = 4), myocarditis (n = 2), meningitis (n = 1), or myocarditis and meningitis (n = 1) in calves. Ante-mortem gull parasitism was the most common gross finding. It was associated with systemic disease in a single 1-2 mo old calf. Immunohistochemical labeling for canine distemper virus, Toxoplasma gondii and Brucella spp., and PCR for cetacean morbillivirus (CeMV), influenza A, and apicomplexan protozoa were negative on formalin-fixed, paraffin-embedded lung and brain samples from a subset of whales; PCR for Brucella spp. was positive in a newborn/neonate with pneumonia. Skin samples from whales with gull parasitism were PCR negative for CeMV, poxvirus, and papillomavirus. This is the first long-term study to investigate and summarize notable post-mortem findings in the PV SRW population. Consistent, significant findings within or between years to explain the majority of deaths and those in high-mortality years remain to be identified.
Balandiz, Hüseyin; Pehlivan, Sultan; Çiçek, Ali Fuat; Tuğcu, Harun
2015-12-01
Hanging is the most common suicide method in the world, and the discrimination of antemortem-postmortem hanging must be done at autopsy. The aim of this experimental study was to examine the immunohistochemical expression of IL-1β antibody at the hanging mark skin samples of rats to discriminate antemortem and postmortem hangings. A total of 20 Wistar albino rats were used for this study. The groups were as follows: A-1, antemortem control group; A-2, antemortem second-hour hanging mark skin samples; A-3, antemortem 24th-hour hanging mark skin samples; A-4, antemortem 72nd-hour hanging mark skin samples; B-1, postmortem control group; and B-2, postmortem second-hour hanging mark skin samples. Interleukin-1β immunostaining was performed to all tissue samples. For epidermal cells, group A-1 samples did not show IL-1β immunostaining, group A-2 samples were severely immunostained, and groups A-3 and A-4 samples' staining were slightly decreased. There was no IL-1β antibody staining in groups B-1 and B-2 samples. For adnexal cells, groups A-1 and B-1 samples did not show IL-1β immunostaining, staining of group A-2 samples was mild to severe, and groups A-3 and A-4 samples' staining were slightly decreased. Half of the group B-2 samples did not show IL-1β immunostaining. For subepidermal cells, most of the samples of groups A-1 and B-1 showed slight immunostaining, groups A-2 and B-2 samples' staining were mild to severe, and there were slight immunostaining in groups A-3 and A-4 samples. The majority of vascular structure cells did not show IL-1β immunostaining. Interleukin-1β immunostaining of epidermal cells can discriminate antemortem-postmortem hangings, but vascular structure cells and subepidermal cells cannot discriminate vital hangings.
Do glutathione levels decline in aging human brain?
Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J
2016-04-01
For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Hopkins, William D.; Pilger, John F.; Storz, Rachel; Ambrose, Alex; Hof, Patrick R.; Sherwood, Chet C.
2012-01-01
The corpus callosum (CC) is the major white matter tract that connects the two cerebral hemispheres. Some have theorized that individual differences in behavioral and brain asymmetries are linked to variation in the density of axon fibers that traverse different sections of the CC. In this study, we examined whether variation in axon fiber density in the CC was associated with variation in asymmetries in the planum temporale (PT) in a sample of 20 post-mortem chimpanzee brains. We further tested for sex differences in small and large CC fiber proportions and density in the chimpanzees. We found that the distribution of small and large fibers within the CC of chimpanzees follows a similar pattern to those reported in humans. We also found that chimpanzees with larger asymmetries in the PT had fewer large fibers in the posterior portion of the CC, particularly among females. As has been reported in human brains, the findings reported here indicate that individual differences in brain asymmetries are associated with variation in interhemispheric connectivity as manifest in axon fiber density and size. PMID:22766214
Lum, Jeremy S; Millard, Samuel J; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A
2018-03-01
The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N -methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.
Lum, Jeremy S; Millard, Samuel J; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A
2017-10-06
The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N -methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.
Malki, K; Pain, O; Tosto, M G; Du Rietz, E; Carboni, L; Schalkwyk, L C
2015-01-01
Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case–control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat–human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis. PMID:25734512
Genetic neuropathology of obsessive psychiatric syndromes
Jaffe, A E; Deep-Soboslay, A; Tao, R; Hauptman, D T; Kaye, W H; Arango, V; Weinberger, D R; Hyde, T M; Kleinman, J E
2014-01-01
Anorexia nervosa (AN), bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. In addition, few, if any, studies have interrogated postmortem brain tissue for evidence of expression quantitative trait loci (eQTLs) associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single-nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a nonpsychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, for example, ED (N=15) and OCD/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and nonpsychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared with controls and OCD cases compared with controls, respectively (false discovery rate (FDR) <5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain data sets. PMID:25180571
Genetic neuropathology of obsessive psychiatric syndromes.
Jaffe, A E; Deep-Soboslay, A; Tao, R; Hauptman, D T; Kaye, W H; Arango, V; Weinberger, D R; Hyde, T M; Kleinman, J E
2014-09-02
Anorexia nervosa (AN), bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. In addition, few, if any, studies have interrogated postmortem brain tissue for evidence of expression quantitative trait loci (eQTLs) associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single-nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a nonpsychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, for example, ED (N=15) and OCD/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and nonpsychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared with controls and OCD cases compared with controls, respectively (false discovery rate (FDR) <5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain data sets.
Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R.; Rose, Gregory M.; Cai, Huaibin; Struble, Robert G.; Cai, Yan; Yan, Xiao-Xin
2013-01-01
Deposition of β-amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer’s disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although less is clear about the change of the enzyme’s activity in AD brain. Cerebrospinal fluid (CSF) Aβ peptides are considered to derive from brain parenchyma, thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored a possibility of Aβ production and secretion by the choroid plexus (CP). Specific binding density of [3H]-L-685,458, a radiolabeled high affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with comparable ages and postmortem delays. The CP in postmortem samples exhibited exceptionally high [3H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins but released Aβ40 and Aβ42 into the medium. These results suggest that γ-secretase activity appears not altered in the cerebrum in AD related to aged control, nor correlated with regional amyloid plaque pathology. The choroid plexus appears to represent a novel non-neuronal source in the brain that may contribute Aβ into cerebrospinal fluid, probably at reduced levels in AD. PMID:23432732
Alho, A T D L; Hamani, C; Alho, E J L; da Silva, R E; Santos, G A B; Neves, R C; Carreira, L L; Araújo, C M M; Magalhães, G; Coelho, D B; Alegro, M C; Martin, M G M; Grinberg, L T; Pasqualucci, C A; Heinsen, H; Fonoff, E T; Amaro, E
2017-08-01
The pedunculopontine nucleus (PPN) has been proposed as target for deep brain stimulation (DBS) in patients with postural instability and gait disorders due to its involvement in muscle tonus adjustments and control of locomotion. However, it is a deep-seated brainstem nucleus without clear imaging or electrophysiological markers. Some studies suggested that diffusion tensor imaging (DTI) may help guiding electrode placement in the PPN by showing the surrounding fiber bundles, but none have provided a direct histological correlation. We investigated DTI fractional anisotropy (FA) maps from in vivo and in situ post-mortem magnetic resonance images (MRI) compared to histological evaluations for improving PPN targeting in humans. A post-mortem brain was scanned in a clinical 3T MR system in situ. Thereafter, the brain was processed with a special method ideally suited for cytoarchitectonic analyses. Also, nine volunteers had in vivo brain scanning using the same MRI protocol. Images from volunteers were compared to those obtained in the post-mortem study. FA values of the volunteers were obtained from PPN, inferior colliculus, cerebellar crossing fibers and medial lemniscus using histological data and atlas information. FA values in the PPN were significantly lower than in the surrounding white matter region and higher than in areas with predominantly gray matter. In Nissl-stained histologic sections, the PPN extended for more than 10 mm in the rostro-caudal axis being closely attached to the lateral parabrachial nucleus. Our DTI analyses and the spatial correlation with histological findings proposed a location for PPN that matched the position assigned to this nucleus in the literature. Coregistration of neuroimaging and cytoarchitectonic features can add value to help establishing functional architectonics of the PPN and facilitate neurosurgical targeting of this extended nucleus.
An assessment of advance relatives approach for brain death organ donation.
Michaut, Carine; Baumann, Antoine; Gregoire, Hélène; Laviale, Corinne; Audibert, Gérard; Ducrocq, Xavier
2017-01-01
Advance announcement of forthcoming brain death has developed to enable intensivists and organ procurement organisation coordinators to more appropriately, and separately from each other, explain to relatives brain death and the subsequent post-mortem organ donation opportunity. Research aim: The aim was to assess how potentially involved healthcare professionals perceived ethical issues surrounding the strategy of advance approach. A multi-centre opinion survey using an anonymous self-administered questionnaire was conducted in the six-member hospitals of the publicly funded East of France regional organ and tissue procurement network called 'Prélor'. The study population comprised 460 physicians and nurses in the Neurosurgical, Surgical and Medical Intensive Care Units, the Stroke Units and the Emergency Departments. Ethical considerations: The project was approved by the board of the Lorraine University Diploma in Medical Ethics and the Prélor Network administrators. A slight majority of 53.5% of respondents had previously participated in an advance relatives approach: 83% of the physicians and 42% of the nurses. A majority of healthcare professionals (68%) think that the main justification for advance relatives approach is the comprehensive care of the dying patient and the research of his or her most likely opinion (74%). The misunderstanding of the related issues by relatives is an obstacle for 47% of healthcare professionals and 51% think that the answer given by the relatives regarding the most likely opinion of the person regarding post-mortem organ donation really corresponds to the person opinion in only 50% of the cases or less. Time given by advance approach should be employed to help and enable relatives to authentically bear the values and interests of the potential donor in the post-mortem organ donation discussion. Nurses' attendance of advance relatives approach seems necessary to enable them to optimally support the families facing death and post-mortem organ donation issues.
Dwivedi, Yogesh; Rao, Jagadeesh Sridhara; Rizavi, Hooriyah S; Kotowski, Jacek; Conley, Robert R; Roberts, Rosalinda C; Tamminga, Carol A; Pandey, Ghanshyam N
2003-03-01
Cyclic adenosine monophosphate response element binding protein (CREB) is a transcription factor that, on phosphorylation by protein kinases, is activated, and in response, regulates the transcription of many neuronally expressed genes. In view of the recent observations that catalytic properties and/or expression of many kinases that mediate their physiological responses through the activation of CREB are altered in the postmortem brain of subjects who commit suicide (hereafter referred to as suicide subjects), we examined the status of CREB in suicidal behavior. These studies were performed in Brodmann area (BA) 9 and hippocampus obtained from 26 suicide subjects and 20 nonpsychiatric healthy control subjects. Messenger RNA levels of CREB and neuron-specific enolase were determined in total RNA by means of quantitative reverse transcriptase-polymerase chain reaction. Protein levels and the functional characteristics of CREB were determined in nuclear fractions by means of Western blot and cyclic adenosine monophosphate response element (CRE)-DNA binding activity, respectively. In the same nuclear fraction, we determined the catalytic activity of cyclic adenosine monophosphate-stimulated protein kinase A by means of enzymatic assay. We observed a significant reduction in messenger RNA and protein levels of CREB, CRE-DNA binding activity, and basal and cyclic adenosine monophosphate-stimulated protein kinase A activity in BA 9 and hippocampus of suicide subjects, without any change in messenger RNA levels of neuron-specific enolase in BA 9. Except for protein kinase A activity, changes in CREB expression and CRE-DNA binding activity were present in all suicide subjects, irrespective of diagnosis. These changes were unrelated to postmortem intervals, age, sex, or antidepressant treatment. Given the significance of CREB in mediating various physiological functions through gene transcription, our results of decreased expression and functional characteristics of CREB in postmortem brain of suicide subjects suggest that CREB may play an important role in suicidal behavior.
Neuronal nuclei isolation from human postmortem brain tissue.
Matevossian, Anouch; Akbarian, Schahram
2008-10-01
Neurons in the human brain become postmitotic largely during prenatal development, and thus maintain their nuclei throughout the full lifespan. However, little is known about changes in neuronal chromatin and nuclear organization during the course of development and aging, or in chronic neuropsychiatric disease. However, to date most chromatin and DNA based assays (other than FISH) lack single cell resolution. To this end, the considerable cellular heterogeneity of brain tissue poses a significant limitation, because typically various subpopulations of neurons are intermingled with different types of glia and other non-neuronal cells. One possible solution would be to grow cell-type specific cultures, but most CNS cells, including neurons, are ex vivo sustainable, at best, for only a few weeks and thus would provide an incomplete model for epigenetic mechanisms potentially operating across the full lifespan. Here, we provide a protocol to extract and purify nuclei from frozen (never fixed) human postmortem brain. The method involves extraction of nuclei in hypotonic lysis buffer, followed by ultracentrifugation and immunotagging with anti-NeuN antibody. Labeled neuronal nuclei are then collected separately using fluorescence-activated sorting. This method should be applicable to any brain region in a wide range of species and suitable for chromatin immunoprecipitation studies with site- and modification-specific anti-histone antibodies, and for DNA methylation and other assays.
Whitney, Elizabeth R; Kemper, Thomas L; Rosene, Douglas L; Bauman, Margaret L; Blatt, Gene J
2008-02-15
In a study of human Purkinje cell (PC) number, a striking mismatch between the number of PCs observed with the Nissl stain and the number of PCs immunopositive for calbindin-D28k (CB) was identified in 2 of the 10 brains examined. In the remaining eight brains this mismatch was not observed. Further, in these eight brains, analysis of CB immunostained sections counterstained with the Nissl stain revealed that more than 99% Nissl stained PCs were also immunopositive for CB. In contrast, in the two discordant brains, only 10-20% of CB immunopositive PCs were also identified with the Nissl stain. Although this finding was unexpected, a historical survey of the literature revealed that Spielmeyer [Spielmeyer W. Histopathologie des nervensystems. Julius Springer: Berlin; 1922. p. 56-79] described human cases with PCs that lacked the expected Nissl staining intensity, an important historical finding and critical issue when studying postmortem human brains. The reason for this failure in Nissl staining is not entirely clear, but it may result from premortem circumstances since it is not accounted for by postmortem delay or processing variables. Regardless of the exact cause, these observations suggest that Nissl staining may not be a reliable marker for PCs and that CB is an excellent alternative marker.
Shakleya, Diaa M.
2011-01-01
A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5–5,000 pg/mg for cocaine and benzoylecgonine (BE), 25–5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50–5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250–5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were ≥92%, intra- and inter-day and total assay imprecision were ≤14% RSD and extraction efficiencies were ≥67.2% with ≤83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain. PMID:19229524
Psychiatric Brain Banking: Three Perspectives on Current Trends and Future Directions
Deep-Soboslay, Amy; Benes, Francine M.; Haroutunian, Vahram; Ellis, Justin K.; Kleinman, Joel E.; Hyde, Thomas M.
2011-01-01
Introduction The study of postmortem human brain tissue is central to the advancement of the neurobiological studies of psychiatric illness, particularly for the study of brain-specific isoforms and molecules. Methods The state-of-the-art methods and recommendations for maintaining a successful brain bank for psychiatric disorders are discussed, using the convergence of viewpoints from three brain collections, the National Institute of Mental Health Brain Collection (NIMH), the Harvard Brain Tissue Resource Center (HBTRC), and the Mt. Sinai School of Medicine Brain Bank (MSSM-BB), with diverse research interests and divergent approaches to tissue acquisition. Results While the NIMH obtains donations from medical examiners for its collection, and places particular emphasis on clinical diagnosis, toxicology, and building lifespan control cohorts, the HBTRC is uniquely designed as a repository whose sole purpose is to collect large-volume, high quality brain tissue from community-based donors based on relationships across an expansive nationwide network, and places emphasis on the accessibility of its bank in disseminating tissue and related data to research groups worldwide. The MSSM-BB collection has shown that, with dedication, prospective recruitment is a successful approach to tissue donation, and places particular emphasis on rigorous clinical diagnosis through antemortem contact with donors. The MSSM-BB places great importance on stereological tissue sampling methods for neuroanatomical studies, and frozen tissue sampling approaches that enable multiple assessments (RNA, DNA, protein, enzyme activity, binding, etc.) of the same tissue block. Promising scientific approaches for elucidating the molecular and cellular pathways in brain that may contribute to schizophrenia and/or bipolar disorder, such as cell culture techniques and microarray-based gene expression and genotyping studies are briefly discussed. Conclusions Despite unique perspectives from three established brain collections, there is a consensus that (1) diverse strategies for tissue acquisition, (2) rigor in tissue and diagnostic characterization, (3) the importance of sample accessibility, and (4) continual application of innovative scientific approaches to the study of brain tissue are all integral to the success and future of psychiatric brain banking. The future of neuropsychiatric research depends upon in the availability of high quality brain specimens from large numbers of subjects, including non-psychiatric controls. PMID:20673875
Postmortem bone marrow analysis in forensic science: study of 73 cases and review of the literature.
Tattoli, Lucia; Tsokos, Michael; Sautter, Julia; Anagnostopoulos, Joannis; Maselli, Eloisa; Ingravallo, Giuseppe; Delia, Mario; Solarino, Biagio
2014-01-01
In forensic sciences, bone marrow (BM) is an alternative matrix in postmortem toxicology because of its good resistance to autolysis and contaminations. Nevertheless, few studies have been focused on postmortem BM morphological changes after pathological stimuli. We examined 73 BM samples from forensic autopsies; causes of death were both natural and traumatic. BM samples were collected from the sternum by needle aspiration and biopsy; in selected cases, immunohistochemistry was performed. Few autolytic changes were found; BM cellularity decreased with increasing age and postmortem interval. Notable cell changes were detected in 45 cases (61.64%): neoplastic (n=4), and non-neoplastic BM findings (n=41), including multiorgan failure/sepsis (n=26), myelodisplastic-like conditions (n=11), and anaphylactic reactions (n=4). The results showed that BM cellularity supported circumstantial and autopsy findings, suggesting that BM samples could be a useful tool in forensic science applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Marui, Tomoyasu; Torii, Youta; Iritani, Shuji; Sekiguchi, Hirotaka; Habuchi, Chikako; Fujishiro, Hiroshige; Oshima, Kenichi; Niizato, Kazuhiro; Hayashida, Shotaro; Masaki, Katsuhisa; Kira, Junichi; Ozaki, Norio
2018-03-22
Recent studies based on the neuroimaging analysis, genomic analysis and transcriptome analysis of the postmortem brain suggest that the pathogenesis of schizophrenia is related to myelin-oligodendrocyte abnormalities. However, no serious neuropathological investigation of this protein in the schizophrenic brain has yet been performed. In this study, to confirm the change in neuropathological findings due to the pathogenesis of this disease, we observed the expression of myelin-oligodendrocyte directly in the brain tissue of schizophrenia patients. Myelin oligodendrocyte glycoprotein (MOG) was evaluated in the cortex of the superior temporal gyrus (STG) and the hippocampus in 10 schizophrenic and nine age- and sex-matched normal control postmortem brains. The expression of MOG was significantly lower in the middle layer of the neocortex of the STG and stratum lucidum of CA3 in the hippocampus in the long-term schizophrenic brains (patients with ≥30 years of illness duration) than in the age-matched controls. Furthermore, the thickness of MOG-positive fibre-like structures was significantly lower in both regions of the long-term schizophrenic brains than in the age-matched controls. These findings suggest that a long duration of illness has a marked effect on the expression of MOG in these regions, and that myelin-oligodendrocyte abnormalities in these regions may be related to the progressive pathophysiology of schizophrenia.
Rubio-Araiz, Ana; Porcu, Francesca; Pérez-Hernández, Mercedes; García-Gutiérrez, Mª Salud; Aracil-Fernández, María Auxiliadora; Gutierrez-López, María Dolores; Guerri, Consuelo; Manzanares, Jorge; O'Shea, Esther; Colado, María Isabel
2017-07-01
Inflammatory cytokines and reactive oxygen species are reported to be involved in blood-brain barrier (BBB) disruption. Because there is evidence that ethanol (EtOH) induces release of free radicals, cytokines and inflammatory mediators we examined BBB integrity and matrix metalloproteinase (MMP) activity in postmortem human alcoholic brain and investigated the role of TLR4 signaling in BBB permeability in TLR4-knockout mice under a binge-like EtOH drinking protocol. Immunohistochemical studies showed reduced immunoreactivity of the basal lamina protein, collagen-IV and of the tight junction protein, claudin-5 in dorsolateral prefrontal cortex of alcoholics. There was also increased MMP-9 activity and expression of phosphorylated ERK1/2 and p-38. Greater number of CD45+ IR cells were observed associated with an enhanced neuroinflammatory response reflected by increased GFAP and Iba-1 immunostaining. To further explore effects of high EtOH consumption on BBB integrity we studied TLR4-knockout mice exposed to the drinking in the dark paradigm. Repetitive EtOH exposure in wild-type mice decreased hippocampal expression of laminin and collagen-IV and increased IgG immunoreactivity, indicating IgG extravasation. Western blot analysis also revealed increased MyD88 and p-ERK1/2 levels. None of these changes was observed in TLR4-knockout mice. Collectively, these findings indicate that chronic EtOH increases degradation of tight junctions and extracellular matrix in postmortem human brain and induces a neuroinflammatory response associated with activation of ERK1/2 and p-38 and greater MMP-9 activity. The EtOH-induced effects on BBB impairment are not evident in the hippocampus of TLR4-knockout mice, suggesting the involvement of TLR4 signaling in the underlying mechanism leading to BBB disruption in mice. © 2016 Society for the Study of Addiction.
Soper, Mark C; Marcovina, Santica M; Hoover, Caroline K; Calhoun, Peter M; McCoy, Kristen E; Stoeger, Christopher G; Schmidt, Gregory A; Arafah, Baha M; Price, Marianne O; Szczotka-Flynn, Loretta B; Lass, Jonathan H
2017-08-01
To examine the stability of postmortem glycated hemoglobin (HbA1c) measurement and its relationship to premortem glycemia. Postmortem blood samples were obtained from 32 donors (8 known diabetic) and shipped on ice to a central laboratory to examine the stability of HbA1c measurements during the first 9 postmortem days. Thirty-nine other suspected diabetic donors underwent comparison of premortem and postmortem HbA1c measurements. Postmortem HbA1c measurements remained stable after 9 postmortem days (all measurements within ±0.2% from baseline with a mean difference of 0.02% ± 0.10%). Of the premortem measurements obtained within 90 days before death, 79% were within ±1.0% of the postmortem measurements compared with 40% for measurements more than 90 days apart. Three of the postmortem HbA1c measurements exceeded 6.5% (considered a threshold for diabetes diagnosis), although the medical histories did not indicate any previous diabetes diagnosis. Postmortem HbA1c testing is feasible with current eye bank procedures and is reflective of glycemic control of donors during 90 days before death. HbA1c testing could potentially be a useful adjunct to review of the medical history and records for donor assessment for endothelial keratoplasty suitability and long-term graft success.
Malki, Karim; Tosto, Maria Grazia; Jumabhoy, Irfan; Lourdusamy, Anbarasu; Sluyter, Frans; Craig, Ian; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C
2013-12-01
This study aims to identify novel genes associated with major depressive disorder and pharmacological treatment response using animal and human mRNA studies. Weighted gene coexpression network analysis was used to uncover genes associated with stress factors in mice and to inform mRNA probe set selection in a post-mortem study of depression. A total of 171 genes were found to be differentially regulated in response to both early and late stress protocols in a mouse study. Ten human genes, orthologous to mouse genes differentially expressed by stress, were also found to be dysregulated in depressed cases in a human post-mortem brain study from the Stanley Foundation Brain Collection. Several novel genes associated with depression were uncovered, including NOVA1 and USP9X. Moreover, we found further evidence in support of hippocampal neurogenesis and peripheral inflammation in major depressive disorder.
2011-10-01
to oxidative stress and abnormal brain energy metabolism in autism . Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. The...heterogeneous disorder, belonging to a group of neurodevelopmental disorders, known as the autism spec- trum disorders (ASDs) that include Asperger...Postmortem assessments of the brains of individuals with autism have unveiled early neurodevelop - mental alterations, including reduced programed cell
Radu, Diana; Tomkinson, Birgitta; Zachrisson, Olof; Weber, Günther; de Belleroche, Jacqueline; Hirsch, Steven; Lindefors, Nils
2006-08-09
Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.
Alshareef, Ahmed; Giudice, J Sebastian; Forman, Jason; Salzar, Robert S; Panzer, Matthew B
2018-03-01
Traumatic brain injuries (TBI) are one of the least understood injuries to the body. Finite element (FE) models of the brain have been crucial for understanding concussion and for developing injury mitigation systems; however, the experimental brain deformation data currently used to validate these models are limited. The objective of this study was to develop a methodology for the investigation of in situ three-dimensional brain deformation during pure rotational loading of the head, using sonomicrometry. Sonomicrometry uses ultrasonic pulses to measure the dynamic distances between piezoelectric crystals implanted in any sound-transmitting media. A human cadaveric head-neck specimen was acquired 14 h postmortem and was instrumented with an array of 32 small sonomicrometry crystals embedded in the head: 24 crystals were implanted in the brain, and 8 were fixed to the inner skull. A dynamic rotation was then applied to the head using a closed-loop controlled test device. Four pulses with different severity levels were applied around three orthogonal anatomical axes of rotation. A repeated test of the highest severity rotation was conducted in each axis to assess repeatability. All tests were completed within 56 h postmortem. Overall, the combined experimental and sonomicrometry methods were demonstrated to reliably and repeatedly capture three-dimensional dynamic deformation of an intact human brain. These methods provide a framework for using sonomicrometry to acquire multidimensional experimental data required for FE model development and validation, and will lend insight into the deformations sustained by the brain during impact.
Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas
2016-06-01
Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p < 0.05), without correlation with time from injury until surgery. The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, Frederick A.; Gilbert, Tonya M.; Feng, Ningping
Postmortem brain studies support dysregulated expression of the histone deacetylase enzymes, HDAC1 and HDAC2, as a central feature in diseases including schizophrenia, bipolar disorder, and depression.
Schroeder, Frederick A.; Gilbert, Tonya M.; Feng, Ningping; ...
2016-11-28
Postmortem brain studies support dysregulated expression of the histone deacetylase enzymes, HDAC1 and HDAC2, as a central feature in diseases including schizophrenia, bipolar disorder, and depression.
A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue.
van den Oord, Edwin J C G; Clark, Shaunna L; Xie, Lin Ying; Shabalin, Andrey A; Dozmorov, Mikhail G; Kumar, Gaurav; Vladimirov, Vladimir I; Magnusson, Patrik K E; Aberg, Karolina A
2016-07-01
Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Brisch, Ralf; Bernstein, Hans-Gert; Dobrowolny, Henrik; Krzyżanowska, Marta; Jankowski, Zbigniew; Bogerts, Bernhard; Gos, Tomasz
2016-05-01
The human diagonal band of Broca is connected to other parts of the limbic system, such as the hippocampus, that are involved in the pathology of schizophrenia. This study aimed to characterize the volume and anterior-to-posterior distance of the human diagonal band of Broca (vertical limb) from post-mortem brains obtained from three groups: healthy control subjects (N = 17), patients with schizophrenia (N = 26), and patients with affective disorders (N = 12). There were no significant differences in the volume or anterior-to-posterior distance in the patients with schizophrenia or affective disorders compared with the healthy control subjects. To date, this is the first post-mortem investigation measuring the volume and the anterior-to-posterior distance of the diagonal band of Broca (vertical limb) in patients with schizophrenia or affective disorders compared with healthy control subjects. © 2015 Wiley Periodicals, Inc.
GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies
de Jonge, Jeroen C.; Vinkers, Christiaan H.; Hulshoff Pol, Hilleke E.; Marsman, Anouk
2017-01-01
Schizophrenia is a psychiatric disorder characterized by hallucinations, delusions, disorganized thinking, and impairments in cognitive functioning. Evidence from postmortem studies suggests that alterations in cortical γ-aminobutyric acid (GABAergic) neurons contribute to the clinical features of schizophrenia. In vivo measurement of brain GABA levels using magnetic resonance spectroscopy (MRS) offers the possibility to provide more insight into the relationship between problems in GABAergic neurotransmission and clinical symptoms of schizophrenia patients. This study reviews and links alterations in the GABA system in postmortem studies, animal models, and human studies in schizophrenia. Converging evidence implicates alterations in both presynaptic and postsynaptic components of GABAergic neurotransmission in schizophrenia, and GABA may thus play an important role in the pathophysiology of schizophrenia. MRS studies can provide direct insight into the GABAergic mechanisms underlying the development of schizophrenia as well as changes during its course. PMID:28848455
Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.
2015-01-01
Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757
Lopes, Kryslaine O; Sparks, D Larry; Streit, Wolfgang J
2008-08-01
Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study, we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease (AD) human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration, particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects (age range 34-97 years) examined, microglial cells immunoreactive for ferritin were found to constitute a subpopulation of the larger microglial pool labeled with an antibody for HLA-DR antigens. The majority of these ferritin-positive microglia exhibited aberrant morphological (dystrophic) changes in the aged and particularly in the AD brain. No spatial correlation was found between ferritin-positive dystrophic microglia and senile plaques in AD tissues. Analysis of a secondary set of human postmortem brain tissues with a wide range of postmortem intervals (PMI, average 10.94 +/- 5.69 h) showed that the occurrence of microglial dystrophy was independent of PMI and consequently not a product of tissue autolysis. Collectively, these results suggest that microglial involvement in iron storage and metabolism contributes to their degeneration, possibly through increased exposure of the cells to oxidative stress. We conclude that ferritin immunohistochemistry may be a useful method for detecting degenerating microglia in the human brain. (c) 2008 Wiley-Liss, Inc.
[Post-mortem microbiology analysis].
Fernández-Rodríguez, Amparo; Alberola, Juan; Cohen, Marta Cecilia
2013-12-01
Post-mortem microbiology is useful in both clinical and forensic autopsies, and allows a suspected infection to be confirmed. Indeed, it is routinely applied to donor studies in the clinical setting, as well as in sudden and unexpected death in the forensic field. Implementation of specific sampling techniques in autopsy can minimize the possibility of contamination, making interpretation of the results easier. Specific interpretation criteria for post-mortem cultures, the use of molecular diagnosis, and its fusion with molecular biology and histopathology have led to post-mortem microbiology playing a major role in autopsy. Multidisciplinary work involving microbiologists, pathologists, and forensic physicians will help to improve the achievements of post-mortem microbiology, prevent infectious diseases, and contribute to a healthier population. Crown Copyright © 2012. Published by Elsevier Espana. All rights reserved.
Gu, Jiamin; Anumala, Upendra Rao; Heyny-von Haußen, Roland; Hölzer, Jana; Goetschy-Meyer, Valérie; Mall, Gerhard; Hilger, Ingrid; Czech, Christian; Schmidt, Boris
2013-06-01
Shedding light on grey matter: Fluorescent trimethine cyanines were evaluated as imaging probes for neurofibrillary tangles in post-mortem brain sections of Alzheimer's disease patients. These probes bind to neurofibrillary tangles with high contrast and selectivity over amyloid β plaques. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease.
Ponnusamy, Ravikumar; McNerney, M Windy; Moghadam, Shahrzad; Salehi, Ahmad
2017-11-08
Building upon the knowledge that a number of important brain circuits undergo significant degeneration in Alzheimer's disease, numerous recent studies suggest that the norepinephrine-ergic system in the brainstem undergoes significant alterations early in the course of both Alzheimer's disease and Down syndrome. Massive projections from locus coeruleus neurons to almost the entire brain, extensive innervation of brain capillaries, and widespread distribution of noradrenergic receptors enable the norepinephrine-ergic system to play a crucial role in neural processes, including cognitive function. These anatomical and functional characteristics support the role of the norepinephrine-ergic system as an important target for developing new therapies for cognitive dysfunction. Careful neuropathological examinations using postmortem samples from individuals with Alzheimer's disease have implicated the role of the norepinephrine-ergic system in the etiopathogenesis of Alzheimer's disease. Furthermore, numerous studies have supported the existence of a strong interaction between norepinephrine-ergic and neuroimmune systems. We explore the interaction between the two systems that could play a role in the disease-modifying effects of norepinephrine in Alzheimer's disease and Down syndrome. Copyright © 2017. Published by Elsevier B.V.
Regional distribution of neuropeptide Y mRNA in postmortem human brain.
Brené, S; Lindefors, N; Kopp, J; Sedvall, G; Persson, H
1989-12-01
The distribution of messenger RNA encoding neuropeptide Y (NPY) was studied in 11 different postmortem human brain regions using in situ hybridization histochemistry, and RNA blot analysis. In situ hybridization data revealed that the highest numerical density of labeled cells corresponded to neurons in accumbens area, caudate nucleus, putamen, and substantia innominata. Significantly fewer NPY mRNA-containing neurons were found in frontal and parietal cortex, amygdaloid body and dentate gyrus. No NPY mRNA-containing cells were found in substantia nigra. NPY mRNA-positive neurons from all regions studied showed relatively similar labeling, as revealed by computerized image analysis. Blot analysis showed an approximately 0.8 kb NPY mRNA in all brain regions studied, except in substantia nigra and cerebellum. Densitometric scanning of the autoradiograms revealed levels of NPY mRNA in the following order: putamen greater than caudate nucleus greater than frontal cortex (Brodmann areas 4 and 6) greater than temporal cortex (Brodmann area 38) greater than parietal cortex (Brodmann areas 5 and 7) greater than frontal cortex (Brodmann area 11). Hence, although NPY mRNA is widely distributed in neurons of the human brain large regional variation exists, with the highest expression in accumbens area and parts of the basal ganglia.
Wang, Jay Ching Chieh; Wang, Aikun; Gao, Jiangyuan; Cao, Sijia; Samad, Idris; Zhang, Dean; Ritland, Carol; Cui, Jing Z.
2012-01-01
Background Recent genomic technologies have propelled our understanding of the mechanisms underlying complex eye diseases such as age-related macular degeneration (AMD). Genotyping postmortem eye tissues for known single nucleotide polymorphisms (SNPs) associated with AMD may prove valuable, especially when combined with information obtained through other methods such as immunohistochemistry, western blot, enzyme-linked immunosorbent assay (ELISA), and proteomics. Initially intending to genotype postmortem eye tissues for AMD-related SNPs, our group became interested in isolating and comparing the quality of DNA from the iris and retina of postmortem donor eyes. Since there is no previously published protocol in the literature on this topic, we present a protocol suitable for isolating high-quality DNA from postmortem eye tissues for genomic studies. Methods DNA from 33 retinal samples and 35 iris samples was extracted using the phenol-chloroform-isoamyl method from postmortem donor eye tissues. The quantity of DNA was measured with a spectrophotometer while the quality was checked using gel electrophoresis. The DNA samples were then amplified with PCR for the complement factor H (CFH) gene. The purified amplified products were then genotyped for the SNPs in the CFH gene. Results Regarding concentration, the retina yielded 936 ng/μl of DNA, while the iris yielded 78 ng/μl of DNA. Retinal DNA was also purer than iris DNA (260/280=1.78 vs. 1.46, respectively), and produced superior PCR results. Retinal tissue yielded significantly more DNA than the iris tissue per mg of sample (21.7 ng/μl/mg vs. 7.42 ng/μl/mg). Retinal DNA can be readily amplified with PCR, while iris DNA can also be amplified by adding bovine serum albumin. Overall, retinal tissues yielded DNA of superior quality, quantity, and suitability for genotyping and genomic studies. Conclusions The protocol presented here provides a clear and reliable method for isolating total DNA from postmortem eye tissues. Retinal tissue provides DNA of excellent quantity and quality for genotyping and downstream genomic studies. However, DNA isolated from iris tissues, and treated with bovine serum albumin, may also be a valuable source of DNA for genotyping and genomic studies. PMID:23288996
α-Synuclein Sequesters Dnmt1 from the Nucleus
Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer
2011-01-01
DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB. PMID:21296890
Dinse, J; Härtwich, N; Waehnert, M D; Tardif, C L; Schäfer, A; Geyer, S; Preim, B; Turner, R; Bazin, P-L
2015-07-01
This work presents a novel approach for modelling laminar myelin patterns in the human cortex in brain MR images on the basis of known cytoarchitecture. For the first time, it is possible to estimate intracortical contrast visible in quantitative ultra-high resolution MR images in specific primary and secondary cytoarchitectonic areas. The presented technique reveals different area-specific signatures which may help to study the spatial distribution of cortical T1 values and the distribution of cortical myelin in general. It may lead to a new discussion on the concordance of cyto- and myeloarchitectonic boundaries, given the absence of such concordance atlases. The modelled myelin patterns are quantitatively compared with data from human ultra-high resolution in-vivo 7T brain MR images (9 subjects). In the validation, the results are compared to one post-mortem brain sample and its ex-vivo MRI and histological data. Details of the analysis pipeline are provided. In the context of the increasing interest in advanced methods in brain segmentation and cortical architectural studies, the presented model helps to bridge the gap between the microanatomy revealed by classical histology and the macroanatomy visible in MRI. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
[Biodistribution and Postmortem Redistribution of Emamectin Benzoate in Intoxicated Mice].
Tang, Wei-wei; Lin, Yu-cai; Lu, Yan-xu
2016-02-01
To investigate the lethal blood level, the target organs and tissues, the toxicant storage depots and the postmortem redistribution in mice died of emamectin benzoate poisoning. The mice model of emamectin benzoate poisoning was established via intragastric injection. The main poisoning symptoms and the clinical death times of mice were observed and recorded dynamically in the acute poisoning group as well as the sub-acute poisoning death group. The pathological and histomorphological changes of organs and tissues were observed after poisoning death. The biodistribution and postmortem redistribution of emamectin benzoate in the organs and tissues of mice were assayed by the enzyme-linked immunosorbent assay (ELISA) at 0h, 24h, 48h and 72h after death. The lethal blood concentrations and the concentrations of emamectin benzoate were detected by high performance liquid chromatography (HPLC) at different time points after death. The symptoms of nervous and respiratory system were observed within 15-30 min after intragastric injection. The average time of death was (45.8 ± 7.9) min in the acute poisoning group and (8.0 ± 1.4) d in the sub-acute poisoning group, respectively. The range of acute lethal blood level was 447.164 0-524.463 5 mg/L. The pathological changes of the organs and tissues were observed via light microscope and immunofluorescence microscope. The changes of emamectin benzoate content in the blood, heart, liver, spleen, lung, kidney and brain of poisoning mice showed regularity within 72 h after death (P < 0.05). The target organs of emamectin benzoate poisoning include heart, liver, kidney, lung, brain and contact position (stomach). The toxicant storage depots are kidney and liver. There is emamectin benzoate postmortem redistribution in mice.
Hermann, Derik; Hirth, Natalie; Reimold, Matthias; Batra, Anil; Smolka, Michael N; Hoffmann, Sabine; Kiefer, Falk; Noori, Hamid R; Sommer, Wolfgang H; Reischl, Gerald; la Fougère, Christian; Mann, Karl; Spanagel, Rainer; Hansson, Anita C
2017-01-01
Blockade of the μ-opioid receptor (MOR) by naltrexone reduces relapse risk in a subpopulation of alcohol-dependent patients. Previous positron-emission-tomography (PET) studies using the MOR ligand [11C]carfentanil have found increased MOR availability in abstinent alcoholics, which may reflect either increased MOR expression or lower endogenous ligand concentration. To differentiate between both effects, we investigated two cohorts of alcoholic subjects using either post-mortem or clinical PET analysis. Post-mortem brain tissue of alcohol-dependent subjects and controls (N=43/group) was quantitatively analyzed for MOR ([3H]DAMGO)-binding sites and OPRM1 mRNA in striatal regions. [11C]carfentanil PET was performed in detoxified, medication free alcohol-dependent patients (N=38), followed by a randomized controlled study of naltrexone versus placebo and follow-up for 1 year (clinical trial number: NCT00317031). Because the functional OPRM1 variant rs1799971:A>G affects the ligand binding, allele carrier status was considered in the analyses. MOR-binding sites were reduced by 23–51% in post-mortem striatal tissue of alcoholics. In the PET study, a significant interaction of OPRM1 genotype, binding potential (BPND) for [11C]carfentanil in the ventral striatum, and relapse risk was found. Particularly in G-allele carriers, lower striatal BPND was associated with a higher relapse risk. Interestingly, this effect was more pronounced in the naltrexone treatment group. Reduced MOR is interpreted as a neuroadaptation to an alcohol-induced release of endogenous ligands in patients with severe alcoholism. Low MOR availability may explain the ineffectiveness of naltrexone treatment in this subpopulation. Finally, low MOR-binding sites are proposed as a molecular marker for a negative disease course. PMID:27510425
CYP2C19 variant mitigates Alzheimer disease pathophysiology in vivo and postmortem.
Benedet, Andréa L; Yu, Lei; Labbe, Aurélie; Mathotaarachchi, Sulantha; Pascoal, Tharick A; Shin, Monica; Kang, Min-Su; Gauthier, Serge; Rouleau, Guy A; Poirier, Judes; Bennett, David A; Rosa-Neto, Pedro
2018-02-01
To verify whether CYP polymorphisms are associated with amyloid-β (Aβ) pathology across the spectrum of clinical Alzheimer disease using in vivo and postmortem data from 2 independent cohorts. A candidate-gene approach tested the association between 5 genes (28 single nucleotide polymorphisms) and Aβ load measured in vivo by the global [ 18 F]florbetapir PET standardized uptake value ratio (SUVR) in 338 Alzheimer's Disease Neuroimaging Initiative participants. Significant results were then tested using plasma Aβ and CSF Aβ and Aβ/phosphorylated tau (Aβ/p-tau) ratio in the same cohort. The significant association was also generalized to postmortem Aβ load measurement in the Rush Religious Orders Study/Memory and Aging Project cohorts. In addition, global cognition was used as a phenotype in the analysis in both cohorts. Analysis of Aβ PET identified a variant in the CYP2C19 gene (rs4388808; p = 0.0006), in which carriers of the minor allele (MA) had a lower global SUVR. A voxel-wise analysis revealed that the variant is associated with a lower Aβ load in the frontal, inferior temporal, and posterior cingulate cortices. MA carriers also had higher CSF Aβ ( p = 0.003) and Aβ/p-tau ratio ( p = 0.02) but had no association with Aβ plasma levels. In postmortem brains, MA carriers had a lower Aβ load ( p = 0.03). Global cognition was higher in MA carriers, which was found to be mediated by Aβ. Together, these findings point to an association between CYP2C19 polymorphism and Aβ pathology, suggesting a protective effect of the MA of rs4388808. Despite the several possibilities in which CYP2C19 affects brain Aβ, the biological mechanism by which this genetic variation may act as a protective factor merits further investigation.
Cheshire, Emma C; Malcomson, Roger D G; Joseph, Shiju; Biggs, Mike J B; Adlam, David; Rutty, Guy N
2015-09-01
In cases of suspected abusive head trauma, a thorough and systematic study of the cranium and its contents is essential, preferably using the best available methods for observing the brain and its coverings. Building upon recent developments in skull bone removal techniques in infant autopsies, we have assessed the use of two optical clearing agents (OCAs), glycerol and mannitol, on pediatric dura mater in an attempt to increase the transparency of this tissue and thereby enhance the post-mortem assessment of infant head injuries, particularly subdural hematomas. Extracorporeal testing revealed glycerol to be the more effective OCA. Therefore, in situ investigations were commenced using glycerol during 33 pediatric post-mortem examinations. An increase in the transparency of the dura was observed in 32 of the 33 cases, within 1 min of application of the OCA. In a 2 year old with cerebral palsy, only partial optical clearance of the dura was seen, most likely due to a significantly atrophic brain, prominent gelatinous leptomeninges, and abnormally thickened dura. This technique allowed for detection of minimal amounts of subdural bleeding over the convexities, before dissection of the dura, avoiding post-mortem blood spillage from artifactually disrupted bridging veins. Optical clearing of the dura aided in the evaluation of patterns of subdural hemorrhage in three cases of non-accidental head injury, three cases of peri-natal head injury and one case of overlaying, apparently resulting in minor crush injury to the head. We have demonstrated that glycerol is an effective and easy-to-use OCA to effect the readily reversible optical clearing of human infant calvarial dura at autopsy.
Chun, Hao-Jung; Poklis, Justin L.; Poklis, Alphonse; Wolf, Carl E.
2016-01-01
Ethanol is the most widely used and abused drug. While blood is the preferred specimen for analysis, tissue specimens such as brain serve as alternative specimens for alcohol analysis in post-mortem cases where blood is unavailable or contaminated. A method was developed using headspace gas chromatography with flame ionization detection (HS-GC-FID) for the detection and quantification of ethanol, acetone, isopropanol, methanol and n-propanol in brain tissue specimens. Unfixed volatile-free brain tissue specimens were obtained from the Department of Pathology at Virginia Commonwealth University. Calibrators and controls were prepared from 4-fold diluted homogenates of these brain tissue specimens, and were analyzed using t-butanol as the internal standard. The chromatographic separation was performed with a Restek BAC2 column. A linear calibration was generated for all analytes (mean r2 > 0.9992) with the limits of detection and quantification of 100–110 mg/kg. Matrix effect from the brain tissue was determined by comparing the slopes of matrix prepared calibration curves with those of aqueous calibration curves; no significant differences were observed for ethanol, acetone, isopropanol, methanol and n-propanol. The bias and the CVs for all volatile controls were ≤10%. The method was also evaluated for carryover, selectivity, interferences, bench-top stability and freeze-thaw stability. The HS-GC-FID method was determined to be reliable and robust for the analysis of ethanol, acetone, isopropanol, methanol and n-propanol concentrations in brain tissue, effectively expanding the specimen options for post-mortem alcohol analysis. PMID:27488829
Greiner, P A; Snowdon, D A; Greiner, L H
1999-07-01
Self-rated function is a new global measure. Previous findings suggest that self-rated function predicts future functional decline and is strongly associated with all-cause mortality. We hypothesized that the strength of the relationship of self-rated function to all-cause mortality was in part due to functional decline, such as would occur with brain infarcts. Self-ratings of function and health (on a 5-point scale, ranging from excellent to poor) were assessed annually on 630 participants in the Nun Study. Mortality surveillance extended from October 31, 1991 to March 1, 1998, and, among those who died, neuropathological examination determined postmortem evidence of brain infarcts. Cox regression modeling with self-rated function and health as time-dependent covariates and stratification by assessment period were used in these analyses. Self-rated function and health ratings of good, fair, and poor were significantly associated with doubling of the risk of mortality, compared with ratings of very good and excellent. Self-rated function ratings of fair or poor were associated with a threefold increase in the risk of mortality with brain infarcts, but self-rated function and health ratings of fair and poor were comparable in their association with all-cause mortality and mortality without brain infarcts. Self-rated function was significantly associated with mortality with brain infarcts, suggesting that brain infarcts may be experienced as functional loss but not recognized or labeled as disease. Our results suggest that self-rated function and health should be explored simultaneously in future research.
Dyslexia: Neuroanatomical/Neurolinguistic Perspectives.
ERIC Educational Resources Information Center
Hynd, George W.; Hynd, Cynthia R.
1984-01-01
Reviews attempts to adequately define dyslexia with a focus on recent efforts at developing a nosology of dyslexia and discusses the neurological basis of reading and severe reading failure with an emphasis on validating evidence provided through brain-mapping procedures and postmortem studies. (HOD)
Zhuang, H; Savage, E M
2012-05-01
The effects of postdeboning aging and frozen storage on water-holding capacity (WHC) of chicken breast pectoralis major muscle were investigated. Broiler breast muscle was removed from carcasses either early postmortem (2 h) or later postmortem (24 h). Treatments included: no postdeboning aging; 1-d postdeboning aging at 2°C, 7-d postdeboning aging (2-h deboned meat only), and 6-d storage at -20°C plus 1-d thawing at 2°C (freezing and thawing treatment, 2-h deboned meat only). The WHC was determined by cooking loss, drip loss, a filter paper press method (results were presented as expressible fluid), and a salt-induced swelling and centrifugation method (results were presented as percentage of salt-induced water gain). There were no differences for WHC estimated by cooking loss and expressible fluid between the treatments. Only the freezing and thawing treatment resulted in a significant increase in drip loss. The average percentage of salt-induced water gains by the 24-h deboned samples, postdeboning aged 2 h samples, and frozen 2 h sample, which did not differ from each other, were significantly higher than that by the 2-h deboned sample. These results indicate that regardless of method (carcass aging vs. postdeboning aging) and time (aging for 1 d vs. for 7 d), postmortem aging more than 1 d does not affect WHC of the early deboned samples measured by dripping, cooking, and pressing. However, postmortem carcass aging, postdeboning aging, and freezing and thawing storage can significantly enhance the ability of chicken breast meat to hold added salt water or WHC measured by the salt-induced swelling and centrifuge method.
Rutty, G N; Smith, P; Visser, T; Barber, J; Amorosa, J; Morgan, B
2013-02-10
It is recognised in autopsy practice that investigations such as toxicology can be affected by post-mortem change. Post-mortem computed tomography angiography (PMCT-A) involves the injection of contrast agents. This could cause dilution of a biological fluid sample or cause the circulation of blood after death by mechanical pumping, and thus has the potential to affect laboratory investigations. We undertook a small sample study to consider whether targeted PMCT-A had any significant effect on subsequent samples taken for biochemical, toxicological or immunological investigations. Although the results of our study do illustrate differences between the pre and post PMCT-A results, these differences are considered not to be of diagnostic significance and not due to the direct effect of targeted PMCT-A. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Sequencing CYP2D6 for the detection of poor-metabolizers in post-mortem blood samples with tramadol.
Fonseca, Suzana; Amorim, António; Costa, Heloísa Afonso; Franco, João; Porto, Maria João; Santos, Jorge Costa; Dias, Mário
2016-08-01
Tramadol concentrations and analgesic effect are dependent on the CYP2D6 enzymatic activity. It is well known that some genetic polymorphisms are responsible for the variability in the expression of this enzyme and in the individual drug response. The detection of allelic variants described as non-functional can be useful to explain some circumstances of death in the study of post-mortem cases with tramadol. A Sanger sequencing methodology was developed for the detection of genetic variants that cause absent or reduced CYP2D6 activity, such as *3, *4, *6, *8, *10 and *12 alleles. This methodology, as well as the GC/MS method for the detection and quantification of tramadol and its main metabolites in blood samples was fully validated in accordance with international guidelines. Both methodologies were successfully applied to 100 post-mortem blood samples and the relation between toxicological and genetic results evaluated. Tramadol metabolism, expressed as its metabolites concentration ratio (N-desmethyltramadol/O-desmethyltramadol), has been shown to be correlated with the poor-metabolizer phenotype based on genetic characterization. It was also demonstrated the importance of enzyme inhibitors identification in toxicological analysis. According to our knowledge, this is the first study where a CYP2D6 sequencing methodology is validated and applied to post-mortem samples, in Portugal. The developed methodology allows the data collection of post-mortem cases, which is of primordial importance to enhance the application of these genetic tools to forensic toxicology and pathology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
De Reuck, Jacques; Auger, Florent; Durieux, Nicolas; Deramecourt, Vincent; Maurage, Claude-Alain; Cordonnier, Charlotte; Pasquier, Florence; Leys, Didier; Bordet, Regis
2017-01-01
Introduction: Mixed dementia (MixD) refers to a combination of definite Alzheimer's disease (AD) and vascular encephalopathy. The existence of a "pure" type of vascular dementia (VaD) is controversial. There is a need to find magnetic resonance imaging (MRI) characteristics allowing the distinction between VaD and MixD. The present post-mortem 7.0-tesla MRI compares the frequency or severity and the topography of the small cerebrovascular lesions in brains of patients with VaD and with MixD. Material and methods: Based on neuropathological criteria, 14 brains were classified as VaD, 24 as MixD and 11 as controls. Three coronal sections of a cerebral hemisphere and a horizontal section of a cerebellar hemisphere underwent T2 and T2* 7.0-tesla MRI examination. The mean values and topographic distribution of white matter changes (WMCs), lacunar infarcts (LIs), cortical microbleeds (CoMBs) and cortical microinfarcts (CoMIs) were determined and compared between the different groups. Results: Compared to the controls, both VaD and MixD brains had significantly more severe WMCs and increased numbers of CoMBs and CoMIs. Lacunar infarcts predominated only in the VaD cases. On mutual comparison of VaD and MixD brains, CoMBs and CoMIs predominated in the frontal lobe and the cerebellum of VaD, while were mainly present in the occipital lobe of MixD. White matter changes predominated in the temporal lobe of MixD cases. Lacunar infarcts were significantly increased in the corona radiata and putamen of VaD patients. Conclusions: The present post-mortem MRI study shows clear differences in the distribution and the types of cerebrovascular lesions on high-field MRI, confirming that VaD and MixD are different diseases. .
Native Mutant Huntingtin in Human Brain
Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian
2012-01-01
Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012
Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis
CANTRES-ROSARIO, Yisel M.; HERNANDEZ, Natalia; NEGRON, Karla; PEREZ-LASPIUR, Juliana; LESZYK, John; SHAFFER, Scott A.; MELENDEZ, Loyda M.
2015-01-01
Objective HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. Design We identified macrophage secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. Methods Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days post-infection. The cathepsin B interactome was quantified by label-free tandem mass spectrometry and compared to uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of post-mortem brain tissue samples from healthy, HIV-infected, and Alzheimer’s disease patients was performed to observe the ex vivo expression of the proteins identified. Results Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid p component (SAPC) -cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9) -cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not protective. SAPC was over-expressed in post-mortem brain tissue from HIV-positive neurocognitive impaired patients compared to HIV positive with normal cognition and healthy controls, while MMP-9 expression was similar in all tissues. Conclusions Inhibiting SAPC-cathepsin B interaction protects against HIV–induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders. PMID:26208400
Differences in Relative Levels of 88 microRNAs in Various Regions of the Normal Adult Human Brain.
Filatova, Elena V; Alieva, Anelya; Shadrina, Maria I; Slominsky, Petr A
2017-08-16
Since the discovery of microRNAs (miRNAs) in the 1990s, our knowledge about their biology has grown considerably. The increasing number of studies addressing the role of miRNAs in development and in various diseases emphasizes the need for a comprehensive catalogue of accurate sequence, expression and conservation information regarding the large number of miRNAs proposed recently in all organs and tissues. The objective of this study was to provide data on the levels of miRNA expression in 15 tissues of the normal human brain. We conducted an analysis of the relative levels of 88 of the most abundantly expressed and best characterized miRNA derived postmortem from well-characterized samples of various regions of the brains from five normal individuals. The cluster analysis revealed some differences in the relative levels of these miRNAs among the brain regions studied. Such diversity can be explained by different functioning of these brain regions. We hope that the data from the current study are a resource that will be useful to our colleagues in this exciting field, as more hypotheses will be generated and tested with regard to small noncoding RNA in the human brain in healthy and disease states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Imaging axonal transport in the rat visual pathway.
Abbott, Carla J; Choe, Tiffany E; Lusardi, Theresa A; Burgoyne, Claude F; Wang, Lin; Fortune, Brad
2013-02-01
A technique was developed for assaying axonal transport in retinal ganglion cells using 2 µl injections of 1% cholera toxin b-subunit conjugated to AlexaFluor488 (CTB). In vivo retinal and post-mortem brain imaging by confocal scanning laser ophthalmoscopy and post-mortem microscopy were performed. The transport of CTB was sensitive to colchicine, which disrupts axonal microtubules. The bulk rates of transport were determined to be approximately 80-90 mm/day (anterograde) and 160 mm/day (retrograde). Results demonstrate that axonal transport of CTB can be monitored in vivo in the rodent anterior visual pathway, is dependent on intact microtubules, and occurs by active transport mechanisms.
Sudden infant death syndrome caused by poliomyelitis.
Dunne, J W; Harper, C G; Hilton, J M
1984-07-01
Most seemingly well infants who die suddenly and unexpectedly have no adequate cause of death found on thorough postmortem examination. Respiratory and enteric viruses are often present, especially in the upper respiratory tract, but the infective process seems, of itself, insufficient to cause death. In the remainder of the cases, a variety of lesions will be discovered, including viral myocarditis, bronchiolitis, and sepsis. We report a case of sudden and unexpected death in a 5-week-old male infant due to acute anterior poliomyelitis. This case illustrates the importance of a thorough postmortem examination, including histologic studies of the brain stem and spinal cord in cases of sudden infant death syndrome.
Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo
2015-06-30
Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Riddle, Dawn M.; Zhang, Bin
2017-01-01
Parkinson's disease (PD) patients progressively accumulate intracytoplasmic inclusions formed by misfolded α-synuclein known as Lewy bodies (LBs). LBs also contain other proteins that may or may not be relevant in the disease process. To identify proteins involved early in LB formation, we performed proteomic analysis of insoluble proteins in a primary neuron culture model of α-synuclein pathology. We identified proteins previously found in authentic LBs in PD as well as several novel proteins, including the microtubule affinity-regulating kinase 1 (MARK1), one of the most enriched proteins in this model of LB formation. Activated MARK proteins (MARKs) accumulated in LB-like inclusions in this cell-based model as well as in a mouse model of LB disease and in LBs of postmortem synucleinopathy brains. Inhibition of MARKs dramatically exacerbated α-synuclein pathology. These findings implicate MARKs early in synucleinopathy pathogenesis and as potential therapeutic drug targets. SIGNIFICANCE STATEMENT Neurodegenerative diseases are diagnosed definitively only in postmortem brains by the presence of key misfolded and aggregated disease proteins, but cellular processes leading to accumulation of these proteins have not been well elucidated. Parkinson's disease (PD) patients accumulate misfolded α-synuclein in LBs, the diagnostic signatures of PD. Here, unbiased mass spectrometry was used to identify the microtubule affinity-regulating kinase family (MARKs) as activated and insoluble in a neuronal culture PD model. Aberrant activation of MARKs was also found in a PD mouse model and in postmortem PD brains. Further, inhibition of MARKs led to increased pathological α-synuclein burden. We conclude that MARKs play a role in PD pathogenesis. PMID:28522732
Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis
Chana, Gursharan; Bousman, Chad A.; Money, Tammie T.; Gibbons, Andrew; Gillett, Piers; Dean, Brian; Everall, Ian P.
2013-01-01
Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations. PMID:23805071
Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán
2011-10-15
Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society
Keleshian, Vasken L.; Modi, Hiren R.; Rapoport, Stanley I.; Rao, Jagadeesh S.
2013-01-01
Aging is a risk factor for Alzheimer’s disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, since DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro- and anti-apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle-aged (41 ± 1 (SEM) years) and ten aged subjects (70 ± 3 years). The aged compared with middle-aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti-apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of BDNF, CREB, and synaptophysin and hypomethylation of BAX. These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated. PMID:23336521
Salzar, Robert S; Treichler, Derrick; Wardlaw, Andrew; Weiss, Greg; Goeller, Jacques
2017-04-15
The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.
Castro, André L; Dias, Mário; Reis, Flávio; Teixeira, Helena M
2014-10-01
Gamma-Hydroxybutyric Acid (GHB) is an endogenous compound with a story of clinical use, since the 1960's. However, due to its secondary effects, it has become a controlled substance, entering the illicit market for recreational and "dance club scene" use, muscle enhancement purposes and drug-facilitated sexual assaults. Its endogenous context can bring some difficulties when interpreting, in a forensic context, the analytical values achieved in biological samples. This manuscript reviewed several crucial aspects related to GHB forensic toxicology evaluation, such as its post-mortem behaviour in biological samples; endogenous production values, whether in in vivo and in post-mortem samples; sampling and storage conditions (including stability tests); and cut-off reference values evaluation for different biological samples, such as whole blood, plasma, serum, urine, saliva, bile, vitreous humour and hair. This revision highlights the need of specific sampling care, storage conditions, and cut-off reference values interpretation in different biological samples, essential for proper practical application in forensic toxicology. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G.
2009-01-01
New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders. PMID:19333451
ERIC Educational Resources Information Center
Rifai, A. Hind; And Others
1992-01-01
Describes age-related changes in central nervous system pertinent to biology of suicide. Reviews postmortem biological studies of brains of suicides and suicide attempters. As suicide attempts in elderly are characterized by violence, discusses biological studies of impulsive violence. Describes data on effect of degenerative diseases on serotonin…
Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons
Krishnaswami, Suguna Rani; Grindberg, Rashel V; Novotny, Mark; Venepally, Pratap; Lacar, Benjamin; Bhutani, Kunal; Linker, Sara B; Pham, Son; Erwin, Jennifer A; Miller, Jeremy A; Hodge, Rebecca; McCarthy, James K; Kelder, Martin; McCorrison, Jamison; Aevermann, Brian D; Fuertes, Francisco Diez; Scheuermann, Richard H; Lee, Jun; Lein, Ed S; Schork, Nicholas; McConnell, Michael J; Gage, Fred H; Lasken, Roger S
2016-01-01
A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at −80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing. PMID:26890679
NASA Astrophysics Data System (ADS)
Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2013-09-01
The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.
Bolster, F; Ali, Z; Daly, B
2017-12-01
To document the detection of underlying low-attenuation spinal cord or brain stem injuries in the presence of the "pseudo-CT myelogram sign" (PCMS) on post-mortem computed tomography (PMCT). The PCMS was identified on PMCT in 20 decedents (11 male, nine female; age 3-83 years, mean age 35.3 years) following fatal blunt trauma at a single forensic centre. Osseous and ligamentous craniocervical region injuries and brain stem or spinal cord trauma detectable on PMCT were recorded. PMCT findings were compared to conventional autopsy in all cases. PMCT-detected transection of the brain stem or high cervical cord in nine of 10 cases compared to autopsy (90% sensitivity). PMCT was 92.86% sensitive in detection of atlanto-occipital joint injuries (n=14), and 100% sensitive for atlanto-axial joint (n=8) injuries. PMCT detected more cervical spine and skull base fractures (n=22, and n=10, respectively) compared to autopsy (n=13, and n=5, respectively). The PCMS is a novel description of a diagnostic finding, which if present in fatal craniocervical region trauma, is very sensitive for underlying spinal cord and brain stem injuries not ordinarily visible on PMCT. Its presence may also predict major osseous and/or ligamentous injuries in this region when anatomical displacement is not evident on PMCT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
17O Relaxation Times in the Rat Brain at 16.4T
Wiesner, Hannes M.; Balla, Dávid Z.; Shajan, G.; Scheffler, Klaus; Uğurbil, Kâmil; Chen, Wei; Uludağ, Kâmil; Pohmann, Rolf
2015-01-01
Purpose Measurement of the cerebral metabolic rate of oxygen (CMRO2) via direct imaging of the 17O signal can be a valuable tool in neuroscientific research. However, knowledge of the longitudinal and transverse relaxation times of different brain tissue types is required, which is difficult to obtain because of the low sensitivity of natural abundance H217O measurements. Methods Using the improved sensitivity at a field strength of 16.4 T, relaxation time measurements in the rat brain were performed in vivo and postmortem with relatively high spatial resolutions, using a chemical shift imaging sequence. Results In vivo relaxation times of rat brain were found to be T1 = 6.84 ± 0.67 ms and T2* = 1.77 ± 0.04 ms. Postmortem H217O relaxometry at enriched concentrations after inhalation of 17O2 showed similar T2* values for gray (1.87 ± 0.04 ms) and white matter, significantly longer than muscle (1.27 ± 0.05 ms) and shorter than CSF (2.30 ± 0.16 ms). Conclusion Relaxation times of brain H217O were measured for the first time in vivo in different types of tissues with high spatial resolution. Since the relaxation times of H217O are expected to be independent of field strength, our results should help in optimizing the acquisition parameters for experiments also at other MRI field strengths. PMID:26098931
COB231 targets amyloid plaques in post-mortem human brain tissue and in an Alzheimer mouse model.
Garin, Dominique; Virgone-Carlotta, Angélique; Gözel, Bülent; Oukhatar, Fatima; Perret, Pascale; Marti-Battle, Danièle; Touret, Monique; Millet, Philippe; Dubois-Dauphin, Michel; Meyronet, David; Streichenberger, Nathalie; Laferla, Frank M; Demeunynck, Martine; Chierici, Sabine; Sallanon Moulin, Marcelle; Ghezzi, Catherine
2015-03-01
Previous works have shown the interest of naturally fluorescent proflavine derivatives to label Abeta deposits in vitro. This study aimed to further characterize the properties of the proflavine 3-acetylamino-6-[3-(propargylamino)propanoyl]aminoacridine (COB231) derivative as a probe. This compound was therefore evaluated on human post-mortem and mice brain slices and in vivo in 18-month-old triple transgenic mice APPswe, PS1M146V and tauP301L (3xTgAD) mice presenting the main characteristics of Alzheimer's disease (AD). COB231 labelled amyloid plaques on brain slices of AD patients, and 3xTgAD mice at 10 and 0.1 μM respectively. However, no labelling of the neurofibrillary tangle-rich areas was observed either at high concentration or in the brain of fronto-temporal dementia patients. The specificity of this mapping was attested in mice using Thioflavin S and IMPY as positive controls of amyloid deposits. After intravenous injection of COB231 in old 3xTgAD mice, fluorescent amyloid plaques were detected in the cortex and hippocampus, demonstrating COB231 blood–brain barrier permeability. We also controlled the cellular localization of COB231 on primary neuronal cultures and showed that COB231 accumulates into the cytoplasm and not into the nucleus. Finally, using a viability assay, we only detected a slight cytotoxic effect of COB231 (< 10%) for the highest concentration (100 μM).
Neuropathology of SUDEP: Role of inflammation, blood-brain barrier impairment, and hypoxia.
Michalak, Zuzanna; Obari, Dima; Ellis, Matthew; Thom, Maria; Sisodiya, Sanjay M
2017-02-07
To seek a neuropathologic signature of sudden unexpected death in epilepsy (SUDEP) in a postmortem cohort by use of immunohistochemistry for specific markers of inflammation, gliosis, acute neuronal injury due to hypoxia, and blood-brain barrier (BBB) disruption, enabling the generation of hypotheses about potential mechanisms of death in SUDEP. Using immunohistochemistry, we investigated the expression of 6 markers (CD163, human leukocyte antigen-antigen D related, glial fibrillary acid protein, hypoxia-inducible factor-1α [HIF-1α], immunoglobulin G, and albumin) in the hippocampus, amygdala, and medulla in 58 postmortem cases: 28 SUDEP (definite and probable), 12 epilepsy controls, and 18 nonepileptic sudden death controls. A semiquantitative measure of immunoreactivity was scored for all markers used, and quantitative image analysis was carried out for selected markers. Immunoreactivity was observed for all markers used within all studied brain regions and groups. Immunoreactivity for inflammatory reaction, BBB leakage, and HIF-1α in SUDEP cases was not different from that seen in control groups. This study represents a starting point to explore by immunohistochemistry the mechanisms underlying SUDEP in human brain tissue. Our approach highlights the potential and importance of considering immunohistochemical analysis to help identify biomarkers of SUDEP. Our results suggest that with the markers used, there is no clear immunohistochemical signature of SUDEP in human brain. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Shirota, Go; Gonoi, Wataru; Ishida, Masanori; Okuma, Hidemi; Shintani, Yukako; Abe, Hiroyuki; Takazawa, Yutaka; Ikemura, Masako; Fukayama, Masashi; Ohtomo, Kuni
2015-01-01
The purpose of this study was to evaluate the brain by postmortem computed tomography (PMCT) versus antemortem computed tomography (AMCT) using brains from the same patients. We studied 36 nontraumatic subjects who underwent AMCT, PMCT, and pathological autopsy in our hospital between April 2009 and December 2013. PMCT was performed within 20 h after death, followed by pathological autopsy including the brain. Autopsy confirmed the absence of intracranial disorders that might be related to the cause of death or might affect measurements in our study. Width of the third ventricle, width of the central sulcus, and attenuation in gray matter (GM) and white matter (WM) from the same area of the basal ganglia, centrum semiovale, and high convexity were statistically compared between AMCT and PMCT. Both the width of the third ventricle and the central sulcus were significantly shorter in PMCT than in AMCT (P < 0.0001). GM attenuation increased after death at the level of the centrum semiovale and high convexity, but the differences were not statistically significant considering the differences in attenuation among the different computed tomography scanners. WM attenuation significantly increased after death at all levels (P<0.0001). The differences were larger than the differences in scanners. GM/WM ratio of attenuation was significantly lower by PMCT than by AMCT at all levels (P<0.0001). PMCT showed an increase in WM attenuation, loss of GM-WM differentiation, and brain swelling, evidenced by a decrease in the size of ventricles and sulci.
Lieberman, Richard; Kranzler, Henry R; Joshi, Pujan; Shin, Dong-Guk; Covault, Jonathan
2015-09-01
Genetic variation in a region of chromosome 4p12 that includes the GABAA subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1) in 36 human neural cell lines differentiated from iPSCs using quantitative polymerase chain reaction and next-generation RNA sequencing. mRNA expression in adult human brain was examined using the BrainCloud and BRAINEAC data sets. We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other 3 chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the 4 chromosome 4p12 GABAA genes identified 2 distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in postmortem adult cortex in either the BrainCloud or BRAINEAC data sets. AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in postmortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development. Copyright © 2015 by the Research Society on Alcoholism.
Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims.
Dwivedi, Yogesh; Mondal, Amal C; Rizavi, Hooriyah S; Faludi, Gabor; Palkovits, Miklos; Sarosi, Andrea; Conley, Robert R; Pandey, Ghanshyam N
2006-06-01
Depression is a major public health problem. Despite many years of research, the molecular mechanisms associated with depression remain unclear. Rap-1, activated in response to many extracellular stimuli, is one of the major substrates of protein kinase A, which participates in myriad physiologic functions in the brain, including cell survival and synaptic plasticity. Rap-1 is also activated directly by cyclic adenosine monophosphate through Epac, and thus participates in mediating physiologic functions independent of protein kinase A. To examine whether the pathogenesis of depression is associated with altered activation and expression of Rap-1, as well as expression of Epac, in depressed suicide victims. Postmortem study. Tissues were obtained from the Lenhossek Human Brain Program, Semmelweis University, Budapest, Hungary, and the Brain Collection Program of the Maryland Psychiatric Research Center, Baltimore. Postmortem brains of 28 depressed suicide victims and 28 nonpsychiatric control subjects. Examination of brain tissues. Rap-1 activation as well as messenger RNA and protein levels of Rap-1 and Epac in prefrontal cortex, hippocampus, and cerebellum. Rap-1 activation was significantly reduced (P<.001) in prefrontal cortex and hippocampus in the suicide group. This was associated with significant reductions in Rap-1 messenger RNA and protein levels (P<.001). In contrast, protein level of only Epac-2 (P<.001) but not Epac-1 (P = .89) was significantly increased in prefrontal cortex and hippocampus of these subjects. These changes were present whether the 2 cohorts were analyzed together or separately. None of the measures showed any significant change in cerebellum in the suicide group. Given the importance of Rap-1 in neuroprotection and synaptic plasticity, our findings of differential regulation of Rap-1 and Epac between brain regions suggest the relevance of these molecules in the pathophysiology of depression.
Differential transcriptome expression in human nucleus accumbens as a function of loneliness
Canli, Turhan; Wen, Ruofeng; Wang, Xuefeng; Mikhailik, Anatoly; Yu, Lei; Fleischman, Debra; Wilson, Robert S.; Bennett, David A.
2017-01-01
Loneliness is associated with impaired mental and physical health. Studies of lonely individuals reported differential expression of inflammatory genes in peripheral leukocytes and diminished activation in brain reward regions such as nucleus accumbens, but could not address gene expression in the human brain. Here, we examined genome-wide RNA expression in postmortem nucleus accumbens from donors (N = 26) with known loneliness measures. Loneliness was associated with 1 710 differentially expressed transcripts from 1 599 genes (DEGs; FDR p < 0.05, fold-change ≥ |2|, controlling for confounds) previously associated with behavioral processes, neurological disease, psychological disorders, cancer, organismal injury, and skeletal and muscular disorders, as well as networks of upstream RNA regulators. Furthermore, a number of DEGs were associated with Alzheimer’s disease genes (which was correlated with loneliness in this sample, although gene expression analyses controlled for AD diagnosis). These results identify novel targets for future mechanistic studies of gene networks in nucleus accumbens and gene regulatory mechanisms across a variety of diseases exacerbated by loneliness. PMID:27801889
Measurement of substance P metabolites in rat CNS.
Sakurada, T; Le Grevés, P; Stewart, J; Terenius, L
1985-03-01
A procedure based on ion-exchange chromatography for chemical separation and radioimmunoassays for quantitation of substance P (SP), the SP(1-7), and C-terminal fragments, respectively, has been developed. The procedure allows the determination of these fragments in the presence of large (i.e., 50- to 100-fold) excess of parent compound. The chemical identity of isolated SP and fragments was studied with preparative electrophoresis on dilute agarose gel and with HPLC. The activity identified as SP(1-7) comigrated with the authentic standard whereas practically all activity isolated as C-terminal fragments comigrated with SP(5-11). The levels of C-terminal fragments in rat brain areas rich in SP and in spinal cord were 1-2% of those of parent compound. The levels of SP(1-7) were always higher, in the spinal cord markedly higher (three to five times). Postmortem storage of samples from brain and spinal cord indicated that SP(1-7) levels fell more rapidly than those of SP or C-terminal fragments.
Cerebral cortex astroglia and the brain of a genius: A propos of A. Einstein's
Colombo, Jorge A.; Reisin, Hernán D.; Miguel-Hidalgo, José J.; Rajkowska, Grazyna
2010-01-01
The glial fibrillary acidic protein immunoreactive astroglial layout of the cerebral cortex from Albert Einstein and other four age-matched human cases lacking any known neurological disease was analyzed using quantification of geometrical features mathematically defined. Several parameters (parallelism, relative depth, tortuosity) describing the primate-specific interlaminar glial processes did not show individually distinctive characteristics in any of the samples analyzed. However, A. Einstein's astrocytic processes showed larger sizes and higher numbers of interlaminar terminal masses, reaching sizes of 15 μm in diameter. These bulbous endings are of unknown significance and they have been described occurring in Alzheimer's disease. These observations are placed in the context of the general discussion regarding the proposal – by other authors – that structural, postmortem characteristics of the aged brain of Albert Einstein may serve as markers of his cognitive performance, a proposal to which the authors of this paper do not subscribe, and argue against. PMID:16675021
Ciarlo, Eleonora; Massone, Sara; Penna, Ilaria; Nizzari, Mario; Gigoni, Arianna; Dieci, Giorgio; Russo, Claudio; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2013-03-01
Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.
Pan, Min-Liang; Mukherjee, Meenakshi T; Patel, Himika H; Patel, Bhavin; Constantinescu, Cristian C; Mirbolooki, M Reza; Liang, Christopher; Mukherjee, Jogeshwar
2016-04-01
Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques in the brain. The aim of this study was to evaluate the effectiveness of a novel radiotracer, 4-[(11) C]methylamino-4'-N,N-dimethylaminoazobenzene ([(11)C]TAZA), for binding to Aβ plaques in postmortem human brain (AD and normal control (NC)). Radiosyntheses of [(11)C]TAZA, related [(11)C]Dalene ((11)C-methylamino-4'-dimethylaminostyrylbenzene), and reference [(11)C]PIB were carried out using [(11)C]methyltriflate prepared from [(11) C]CO(2) and purified using HPLC. In vitro binding affinities were carried out in human AD brain homogenate with Aβ plaques labeled with [(3) H]PIB. In vitro autoradiography studies with the three radiotracers were performed on hippocampus of AD and NC brains. PET/CT studies were carried out in normal rats to study brain and whole body distribution. The three radiotracers were produced in high radiochemical yields (>40%) and had specific activities >37 GBq/μmol. TAZA had an affinity, K(i) = 0.84 nM and was five times more potent than PIB. [(11)C]TAZA bound specifically to Aβ plaques present in AD brains with gray matter to white matter ratios >20. [(11)C]TAZA was displaced by PIB (>90%), suggesting similar binding site for [(11)C]TAZA and [(11)C]PIB. [(11)C]TAZA exhibited slow kinetics of uptake in the rat brain and whole body images showed uptake in interscapular brown adipose tissue (IBAT). Binding in brain and IBAT were affected by preinjection of atomoxetine, a norepinephrine transporter blocker. [(11)C]TAZA exhibited high binding to Aβ plaques in human AD hippocampus. Rat brain kinetics was slow and peripheral binding to IBAT needs to be further evaluated. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Baumann, Bernhard; Woehrer, Adelheid; Ricken, Gerda; Augustin, Marco; Mitter, Christian; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.
2017-03-01
One major hallmark of Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (Aβ). In AD, degeneration of neurons is preceded by the formation of Aβ plaques, which show different morphological forms. Most of them are birefringent owing to the parallel arrangement of amyloid fibrils. Here, we present polarization sensitive optical coherence microscopy (PS-OCM) for imaging mature neuritic Aβ plaques based on their birefringent properties. Formalin-fixed, post-mortem brain samples of advanced stage AD patients were investigated. In several cortical brain regions, neuritic Aβ plaques were successfully visualized in tomographic and three-dimensional (3D) images. Cortical grey matter appeared polarization preserving, whereas neuritic plaques caused increased phase retardation. Consistent with the results from PS-OCM imaging, the 3D structure of senile Aβ plaques was computationally modelled for different illumination settings and plaque sizes. Furthermore, the birefringent properties of cortical and meningeal vessel walls in CAA were investigated in selected samples. Significantly increased birefringence was found in smaller vessels. Overall, these results provide evidence that PS-OCM is able to assess amyloidosis based on intrinsic birefringent properties.
Neuropsychiatric symptoms in Alzheimer's disease and vascular dementia.
Echávarri, Carmen; Burgmans, Saartje; Uylings, Harry; Cuesta, Manuel J; Peralta, Victor; Kamphorst, Wouter; Rozemuller, Annemieke J M; Verhey, Frans R J
2013-01-01
Neuropsychiatric symptoms (NPSs) have a large impact on the quality of life of patients with dementia. A few studies have compared neuropsychiatric disturbances between dementia subtypes, but the results were conflicting. In the present study, we investigated whether the prevalence of NPSs differs between Alzheimer's disease (AD) and vascular dementia (VaD). The merit of our study is that we used clinical as well as histopathological information to differentiate between dementia subtypes. This retrospective descriptive study comprised 80 brains obtained from donors to the Netherlands Brain Bank between 1984 and 2010. These donors were diagnosed postmortem with AD (n = 40) or VaD (n = 40). We assessed the presence of NPSs by reviewing the information found in the patients' medical files. The most prevalent symptom in the sample as a whole was agitation (45 cases, 57.0%), followed by depression (33, 41.2%) and anxiety (28, 35.4%). Our study tried to contribute to the discussion by including, for the first time in the literature, a sample of AD and VaD patients with neuropathologically confirmed diagnoses. Since no significant differences were found between AD and VaD patients, we suggest that the prevalence of NPSs cannot be predicted from the diagnosis of AD or VaD.
Post-mortem cytogenomic investigations in patients with congenital malformations.
Dias, Alexandre Torchio; Zanardo, Évelin Aline; Dutra, Roberta Lelis; Piazzon, Flavia Balbo; Novo-Filho, Gil Monteiro; Montenegro, Marilia Moreira; Nascimento, Amom Mendes; Rocha, Mariana; Madia, Fabricia Andreia Rosa; Costa, Thais Virgínia Moura Machado; Milani, Cintia; Schultz, Regina; Gonçalves, Fernanda Toledo; Fridman, Cintia; Yamamoto, Guilherme Lopes; Bertola, Débora Romeo; Kim, Chong Ae; Kulikowski, Leslie Domenici
2016-08-01
Congenital anomalies are the second highest cause of infant deaths, and, in most cases, diagnosis is a challenge. In this study, we characterize patterns of DNA copy number aberrations in different samples of post-mortem tissues from patients with congenital malformations. Twenty-eight patients undergoing autopsy were cytogenomically evaluated using several methods, specifically, Multiplex Ligation-dependent Probe Amplification (MLPA), microsatellite marker analysis with a MiniFiler kit, FISH, a cytogenomic array technique and bidirectional Sanger sequencing, which were performed on samples of different tissues (brain, heart, liver, skin and diaphragm) preserved in RNAlater, in formaldehyde or by paraffin-embedding. The results identified 13 patients with pathogenic copy number variations (CNVs). Of these, eight presented aneuploidies involving chromosomes 13, 18, 21, X and Y (two presented inter- and intra-tissue mosaicism). In addition, other abnormalities were found, including duplication of the TYMS gene (18p11.32); deletion of the CHL1 gene (3p26.3); deletion of the HIC1 gene (17p13.3); and deletion of the TOM1L2 gene (17p11.2). One patient had a pathogenic missense mutation of g.8535C>G (c.746C>G) in exon 7 of the FGFR3 gene consistent with Thanatophoric Dysplasia type I. Cytogenomic techniques were reliable for the analysis of autopsy material and allowed the identification of inter- and intra-tissue mosaicism and a better understanding of the pathogenesis of congenital malformations. Copyright © 2016 Elsevier Inc. All rights reserved.
Takeda, Shuko; Commins, Caitlin; DeVos, Sarah L.; Nobuhara, Chloe K.; Wegmann, Susanne; Roe, Allyson D.; Costantino, Isabel; Fan, Zhanyun; Nicholls, Samantha B.; Sherman, Alexis E.; Trisini Lipsanopoulos, Ana T.; Scherzer, Clemens R.; Carlson, George A.; Pitstick, Rose; Peskind, Elaine R.; Raskind, Murray A.; Li, Ge; Montine, Thomas J.; Frosch, Matthew P.; Hyman, Bradley T.
2016-01-01
Objective Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or in fact a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in postmortem AD brain and can be taken up by neurons and seed aggregates. Methods We have examined seeding and uptake properties of brain extracellular tau from various sources including: interstitial fluid (ISF) and CSF from an AD transgenic mouse model, and postmortem ventricular and antemortem lumbar CSF from AD patients. Results We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients and its levels were significantly elevated compared with control subjects. HMW tau derived from CSF of AD patients was seed-competent in vitro. Interpretation These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species giving new insights into the role of CSF tau and biomarker development for AD. PMID:27351289
Computed tomographic findings and treatment of a bull with pituitary gland abscess.
Braun, Ueli; Malbon, Alexandra; Kochan, Manon; Riond, Barbara; Janett, Fredi; Iten, Cornelia; Dennler, Matthias
2017-01-13
In cattle, the prognosis of brain abscess is unfavourable and treatment is therefore not recommended. To the knowledge of the authors, there has been no report of successful treatment of a brain abscess in cattle.This report describes the clinical, computed tomographic and postmortem findings in a Holstein-Friesian bull with a hypophyseal abscess. The main clinical findings were generalised ataxia, ptyalism, prolapse of the tongue, dropped jaw, dysphagia, head tilt and unilateral ptosis. Cerebrospinal fluid evaluation revealed 2437 leukocytes/µl and severe pleocytosis. CT examination of the head showed a cavitary lesion consistent with an abscess in the hypophysis. Treatment consisted of gentamicin and flunixin meglumine for 3 days and amoxicillin for 40 days. The neurological signs resolved within 8 days of the start of treatment. The bull was slaughtered 11 months later because of infertility, and a postmortem examination was carried out. Histologically, a mild chronic non suppurative meningoencephalitis restricted to the ventral diencephalon was diagnosed. In addition, there was mild to moderate multifocal chronic lymphoplasmacytic hypophysitis with mild multifocal fibrosis. This case report stresses the significance of CT in confirming the clinical and laboratory diagnosis of central nervous system disorders in cattle and for localising brain lesions. Treatment of the brain abscess resulted, with respect to the central nervous disorder, in a successful outcome and was encouraging considering that most cases have an unfavourable prognosis.
Smid, Lojze M; Kepe, Vladimir; Vinters, Harry V; Bresjanac, Mara; Toyokuni, Tatsushi; Satyamurthy, Nagichettiar; Wong, Koon-Pong; Huang, Sung-Cheng; Silverman, Daniel H S; Miller, Karen; Small, Gary W; Barrio, Jorge R
2013-01-01
This work is aimed at correlating pre-mortem [18F]FDDNP positron emission tomography (PET) scan results in a patient with dementia with Lewy bodies (DLB), with cortical neuropathology distribution determined postmortem in three physical dimensions in whole brain coronal sections. Analysis of total amyloid-β (Aβ) distribution in frontal cortex and posterior cingulate gyrus confirmed its statistically significant correlation with cortical [18F]FDDNP PET binding values (distribution volume ratios, DVR) (p < 0.001, R = 0.97, R2 = 0.94). Neurofibrillary tangle (NFT) distribution correlated significantly with cortical [18F]FDDNP PET DVR in the temporal lobe (p < 0.001, R = 0.87, R2 = 0.76). Linear combination of Aβ and NFT densities was highly predictive of [18F]FDDNP PET DVR through all analyzed regions of interest (p < 0.0001, R = 0.92, R2 = 0.85), and both densities contributed significantly to the model. Lewy bodies were present at a much lower level than either Aβ or NFTs and did not significantly contribute to the in vivo signal. [18F]FDG PET scan results in this patient were consistent with the distinctive DLB pattern of hypometabolism. This work offers a mapping brain model applicable to all imaging probes for verification of imaging results with Aβ and/or tau neuropathology brain distribution using immunohistochemistry, fluorescence microscopy, and autoradiography.
Chromium in Postmortem Material.
Dudek-Adamska, Danuta; Lech, Teresa; Konopka, Tomasz; Kościelniak, Paweł
2018-04-17
Recently, considerable attention has been paid to the negative effects caused by the presence and constant increase in concentration of heavy metals in the environment, as well as to the determination of their content in human biological samples. In this paper, the concentration of chromium in samples of blood and internal organs collected at autopsy from 21 female and 39 male non-occupationally exposed subjects is presented. Elemental analysis was carried out by an electrothermal atomic absorption spectrometer after microwave-assisted acid digestion. Reference ranges of chromium in the blood, brain, stomach, liver, kidneys, lungs, and heart (wet weight) in the population of Southern Poland were found to be 0.11-16.4 ng/mL, 4.7-136 ng/g, 6.1-76.4 ng/g, 11-506 ng/g, 2.9-298 ng/g, 13-798 ng/g, and 3.6-320 ng/g, respectively.
Poklis, Justin L.; Devers, Kelly G.; Arbefeville, Elise F.; Pearson, Julia M.; Houston, Eric; Poklis, Alphonse
2014-01-01
We present a traumatic fatality of a 19-year-old man who had ingested blotter paper containing 25INBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine]. Postmortem specimens were analyzed by high performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS). Toxicology findings for fluids based upon blood or urine calibrators were as follows: peripheral blood, 405 pg/mL; heart blood, 410 pg/mL; urine, 2.86 ng/mL; and vitreous humor, 99 pg/mL. While findings based upon the method of standard additions were: gastric contents, 7.1 μg total; bile, 10.9 ng/g; brain, 2.54 ng/g and liver, 7.2 ng/g. To our knowledge the presented case is the first postmortem case of 25I-NBOMe intoxication documented by toxicological analysis of tissues and body fluids. PMID:24215811
Lee, Kyung Hwa; Seo, Sang Won; Lim, Tae Sung; Kim, Eun Joo; Kim, Byeong Chae; Kim, Yeshin; Lee, Ho Won; Jeon, Jae Pil; Shim, Sung Mi; Na, Duk L; Huh, Gi Yeong; Lee, Min Cheol; Suh, Yeon Lim
2017-09-01
To obtain an in-depth understanding of brain diseases, including neurodegenerative diseases, psychiatric illnesses, and neoplasms, scientific approach and verification using postmortem human brain tissue with or without disease are essential. Compared to other countries that have run brain banks for decades, South Korea has limited experience with brain banking; nationwide brain banks started only recently. The goal of this study is to provide provisional guidelines for brain autopsy for hospitals and institutes that have not accumulated sufficient expertise. We hope that these provisional guidelines will serve as a useful reference for pathologists and clinicians who are involved and interested in the brain bank system. Also, we anticipate updating the provisional guidelines in the future based on collected data and further experience with the practice of brain autopsy in South Korea. © Copyright: Yonsei University College of Medicine 2017.
Monkey vocal tracts are speech-ready.
Fitch, W Tecumseh; de Boer, Bart; Mathur, Neil; Ghazanfar, Asif A
2016-12-01
For four decades, the inability of nonhuman primates to produce human speech sounds has been claimed to stem from limitations in their vocal tract anatomy, a conclusion based on plaster casts made from the vocal tract of a monkey cadaver. We used x-ray videos to quantify vocal tract dynamics in living macaques during vocalization, facial displays, and feeding. We demonstrate that the macaque vocal tract could easily produce an adequate range of speech sounds to support spoken language, showing that previous techniques based on postmortem samples drastically underestimated primate vocal capabilities. Our findings imply that the evolution of human speech capabilities required neural changes rather than modifications of vocal anatomy. Macaques have a speech-ready vocal tract but lack a speech-ready brain to control it.
Biswas, A K; Tandon, S; Beura, C K
2016-06-01
The aim of this study was to develop a simple, specific and rapid analytical method for accurate identification of calpain and calpastatin from chicken blood and muscle samples. The method is based on liquid-liquid extraction technique followed by casein Zymography detection. The target compounds were extracted from blood and meat samples by tris buffer, and purified and separated on anion exchange chromatography. It has been observed that buffer (pH 6.7) containing 50 mM tris-base appears to be excellent extractant as activity of analytes was maximum for all samples. The concentrations of μ-, m-calpain and calpastatin detected in the extracts of blood, breast and thigh samples were 0.28-0.55, 1.91-2.05 and 1.38-1.52 Unit/g, respectively. For robustness, the analytical method was applied to determine the activity of calpains (μ and m) in eighty postmortem muscle samples. It has been observed that μ-calpain activity in breast and thigh muscles declined very rapidly at 48 h and 24 h, respectively while activity of m-calpain remained stable. Shear force values were also declined with the increase of post-mortem aging showing the presence of ample tenderness of breast and thigh muscles. Finally, it is concluded that the method standardized for the detection of calpain and calpastatin has the potential to be applied to identify post-mortem aging of chicken meat samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hasirci, A. Sait; Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; O'Buckley, Todd K.; Morrow, A. Leslie
2016-01-01
Background The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) enhances GABAergic activity and produces subjective effects similar to ethanol. The effect of chronic alcohol exposure on 3α,5α-THP concentrations has been studied in mouse, rat, and monkey limbic brain areas. Chronic ethanol exposure produced divergent brain region and cell specific changes in 3α,5α-THP concentrations in animal studies. However, 3α,5α-THP levels in similar human brain regions have never been examined in individuals diagnosed with alcohol use disorder (AUD). Therefore, we used immunohistochemistry to examine 3α,5α-THP levels in the ventral tegmental area (VTA), substantia nigra pars medialis (SNM), and amygdala of human postmortem brains of patients diagnosed with AUD compared to social drinkers. The effects of sex and liver disease on 3α,5α-THP concentrations were examined in the aforementioned brain regions. Methods Human postmortem brains of AUD patients and age-matched controls were obtained from the New South Wales Brain Tissue Resource Center. Immunohistochemistry was performed using anti-3α,5α-THP antibody on formalin fixed and paraffin embedded brain sections to detect cellular 3α,5α-THP levels. Immunoreactivity was analyzed by pixel density/mm2 for the comparison between AUD patients and controls. Results 3α,5α-THP immunoreactivity was increased by 23.2±9% in the VTA of AUD patients compared to age matched controls (p= 0.014). Moreover, a 29.6±10% increase in 3α,5α-THP immunoreactivity was observed in the SNM of male AUD patients compared to male controls (p<0.01), but not in female subjects. 3α,5α-THP immunoreactivity in the VTA and SNM regions did not differ between non-cirrhotic and cirrhotic AUD patients. A sex difference in 3α,5α-THP immunoreactivity (female 51±18% greater than male) was observed among control subjects in the SNM, but no other brain region. 3α,5α-THP immunoreactivity in the basolateral and lateral amygdala were negatively correlated with the length of the tissue fixation time as well as the age of the subjects, precluding assessment of the effect of AUD. Conclusions Cellular 3α,5α-THP levels in VTA are increased in human AUD patients, an effect that is likely independent of sex and liver disease. The differences between animal models and human studies should be factored into the interpretation of the physiological significance of elevated 3α,5α-THP levels in humans. PMID:28068457
Elevated Brain Harmane (1-methyl-9H-pyrido[3,4-b]indole) in Essential Tremor Cases vs. Controls
Louis, Elan D.; Factor-Litvak, Pam; Liu, Xinhua; Vonsattel, Jean-Paul G.; Galecki, Monika; Jiang, Wendy; Zheng, Wei
2013-01-01
Background Harmane (1-methyl-9H-pyrido[3,4-β]indole), a potent neurotoxin that has tremor-producing properties in animal models, is present in many foods; Although we have demonstrated a difference in tissue harmane concentrations in ET cases vs. controls, all work to date has involved blood samples. Objectives We quantified harmane concentrations in human cerebellum, a brain region of particular pathogenic interest in essential tremor (ET), comparing ET to control brains. Methods Cerebellar cortex was snap frozen and stored at -80ºC in aliquots for biochemical analyses. Harmane concentration was assessed using high performance liquid chromatography. Results Geometric mean brain harmane concentrations (adjusted for postmortem interval [PMI] and freezer time) were higher in ET cases than controls: 1.0824 (95% confidence interval = 0.9405 – 1.2457) vs. 0.8037 (0.6967 – 0.9272), p = 0.004. Geometric mean of brain harmane concentrations (adjusting for PMI and freezer time) was highest in ET cases who reported other relatives with tremor (1.2005 [0.8712 – 1.6541]), intermediate in ET cases without family history (1.0312 ([0.8879 – 1.1976]), and both were significantly higher than controls (p= 0.02). Conclusions This study provides additional evidence of a possible etiological importance of this toxin in some cases of the human disease ET. PMID:23911942
Elevated brain harmane (1-methyl-9H-pyrido[3,4-b]indole) in essential tremor cases vs. controls.
Louis, Elan D; Factor-Litvak, Pam; Liu, Xinhua; Vonsattel, Jean-Paul G; Galecki, Monika; Jiang, Wendy; Zheng, Wei
2013-09-01
Harmane (1-methyl-9H-pyrido[3,4-β]indole), a potent neurotoxin that has tremor-producing properties in animal models, is present in many foods; although we have demonstrated a difference in tissue harmane concentrations in ET cases vs. controls, all work to date has involved blood samples. We quantified harmane concentrations in human cerebellum, a brain region of particular pathogenic interest in essential tremor (ET), comparing ET to control brains. Cerebellar cortex was snap frozen and stored at -80°C in aliquots for biochemical analyses. Harmane concentration was assessed using high performance liquid chromatography. Geometric mean brain harmane concentrations (adjusted for postmortem interval [PMI] and freezer time) were higher in ET cases than controls: 1.0824 (95% confidence interval=0.9405-1.2457) vs. 0.8037 (0.6967-0.9272), p=0.004. Geometric mean of brain harmane concentrations (adjusting for PMI and freezer time) was highest in ET cases who reported other relatives with tremor (1.2005 [0.8712-1.6541]), intermediate in ET cases without family history (1.0312 ([0.8879-1.1976]), and both were significantly higher than controls (p=0.02). This study provides additional evidence of a possible etiological importance of this toxin in some cases of the human disease ET. Copyright © 2013 Elsevier Inc. All rights reserved.
Matsumoto, Junya; Nakanishi, Hiroki; Kunii, Yasuto; Sugiura, Yuki; Yuki, Dai; Wada, Akira; Hino, Mizuki; Niwa, Shin-Ichi; Kondo, Takeshi; Waki, Michihiko; Hayasaka, Takahiro; Masaki, Noritaka; Akatsu, Hiroyasu; Hashizume, Yoshio; Yamamoto, Sakon; Sato, Shinji; Sasaki, Takehiko; Setou, Mitsutoshi; Yabe, Hirooki
2017-01-01
The etiology of schizophrenia includes phospholipid abnormalities. Phospholipids are bioactive substances essential for brain function. To analyze differences in the quantity and types of phospholipids present in the brain tissue of patients with schizophrenia, we performed a global analysis of phospholipids in multiple brain samples using liquid chromatography electrospray ionization mass/mass spectrometry (LC-ESI/MS/MS) and imaging mass spectrometry (IMS). We found significantly decreased 16:0/20:4-phosphatidylinositol (PI) levels in the prefrontal cortex (PFC) in the brains from patients with schizophrenia in the LC-ESI/MS/MS, and that the 16:0/20:4-PI in grey matter was most prominently diminished according to the IMS experiments. Previous reports investigating PI pathology of schizophrenia did not identify differences in the sn-1 and sn-2 fatty acyl chains. This study is the first to clear the fatty acid composition of PI in brains from patients with schizophrenia. Alteration in the characteristic fatty acid composition of PI may also affect neuronal function, and could play a role in the etiology of schizophrenia. Although further studies are necessary to understand the role of reduced 16:0/20:4-PI levels within the prefrontal cortex in the etiology of schizophrenia, our results provide insight into the development of a novel therapy for the clinical treatment of schizophrenia. PMID:28332626
González-Herrera, Lucas; Valenzuela, Aurora; Ramos, Valentín; Blázquez, Antonia; Villanueva, Enrique
2016-06-01
The main objective of this study was to test, for the first time, a highly sensitive cardiac troponin T (cTnThs) assay in postmortem serum and pericardial fluid and to evaluate cardiac troponin T (cTnT) levels and their stability after death at different postmortem intervals, in an attempt to determine the viability of the cTnThs assay in the postmortem diagnosis of the cause of death. cTnT levels were determined in serum and pericardial fluid samples taken from 58 cadavers at known postmortem intervals, whose causes of death were categorized into the following groups: (1) sudden cardiac deaths, (2) multiple trauma, (3) mechanical asphyxia, and (4) other natural deaths. cTnT was determined by inmunoassay, using the Troponin T highly sensitive STAT assay (Roche(®)). Average cTnT levels measured by a highly sensitive assay in postmortem serum were markedly higher than clinical serum levels. Moreover, similar results, higher cTnT levels in postmortem pericardial fluid, were obtained when compared to levels found in pericardial fluid taken from two living patients during coronary artery bypass surgery. cTnT levels in both postmortem fluids remained stable for up to 34 h after death. No differences in cTnT levels in either postmortem fluid by sex and age were detected. Levels of cTnT found in pericardial fluid in the other natural deaths group were significantly lower than the cTnT levels found in that postmortem fluid from any of the other causes of death groups. It is therefore reasonable to conclude that determination of cTnT by a highly sensitive assay in pericardial fluid can provide forensic pathologists with a complementary test to the diagnosis of cause of death.
DOT National Transportation Integrated Search
2000-05-01
During the investigation of aviation accidents, postmortem samples from victims are submitted to the FAAs : Civil Aeromedical Institute for drug analysis. Because new drugs are continually being released to the market, it : is our laboratorys r...
Muroya, Susumu; Oe, Mika; Nakajima, Ikuyo; Ojima, Koichi; Chikuni, Koichi
2014-12-01
To determine key compounds and metabolic pathways associated with meat quality, we profiled metabolites in postmortem porcine longissimus lumborum (LL) and vastus intermedius (VI) muscles with different aging times by global metabolomics using capillary electrophoresis-time of flight mass spectrometry. Loading analyses of the principal component analysis showed that hydrophilic amino acids and β-alanine-related compounds contributed to the muscle type positively and negatively, respectively, whereas glycolytic and ATP degradation products contributed to aging time. At 168h postmortem, LL samples were characterized by abundance of combinations of amino acids, dipeptides, and glycolytic products, whereas the VI samples were characterized by abundance of both sulfur-containing compounds and amino acids. The AMP and inosine contents in the VI were approx. 10 times higher than those in the LL at 4h postmortem, suggesting different rates of inosine 5'-monophosphate (IMP) accumulation by adenylate kinase 7 and 5'-nucleotidase, and subsequent different production levels of IMP and hypoxanthine between these two porcine muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Turfus, Sophie C; Vo, Tu; Niehaus, Nadia; Gerostamoulos, Dimitri; Beyer, Jochen
2013-06-01
A commercial enzyme immunoassay for the qualitative and semi-quantitative measurement of ethyl glucuronide (EtG) in urine was evaluated. Post-mortem (n=800), and clinical urine (n=200) samples were assayed using a Hitachi 902 analyzer. The determined concentrations were compared with those obtained using a previously published liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of EtG and ethyl sulfate. Using a cut-off of 0.5 µg/ml and LC-MS/MS limit of reporting of 0.1 µg/ml, there was a sensitivity of 60.8% and a specificity of 100% for clinical samples. For post-mortem samples, sensitivity and specificity were 82.4% and 97.1%, respectively. When reducing the cut-off to 0.1 µg/ml, the sensitivity and specificity were 83.3% and 100% for clinical samples whereas for post-mortem samples the sensitivity and specificity were 90.3 % and 88.3 %, respectively. The best trade-offs between sensitivity and specificity for LC-MS/MS limits of reporting of 0.5 and 0.1 µg/ml were achieved when using immunoassay cut-offs of 0.3 and 0.092 µg/ml, respectively. There was good correlation between quantitative results obtained by both methods but analysis of samples by LC-MS/MS gave higher concentrations than by enzyme immunoassay (EIA), with a statistically significant proportional bias (P<0.0001, Deming regression) for both sample types. The immunoassay is reliable for the qualitative and semi-quantitative presumptive detection of ethyl glucuronide in urine. Copyright © 2012 John Wiley & Sons, Ltd.
Scott, Ian Stuart; MacDonald, Alastair Wray
2013-01-01
Following recent changes in Coroner's Rules, there has been a desire to examine brains at the time of autopsy, rather than after a prolonged period of immersion fixation. Examination of the fresh brain at postmortem can yield unsatisfactory results where detailed histological examination is required. We aim to provide a compromise, where detailed examination of the brain is possible, without the requirement for prolonged fixation, interference with funeral arrangements and delay in the Coronial process. A retrospective audit of over 200 neuropathology cases requested by HM Coroner for the East Riding of Yorkshire between 2007 and 2010 was performed. The cases consisted of full neuropathology autopsies (n=212) and brains referred by general pathology colleagues (n=26). Of the 238 brains examined, approximately half (n=109) of the brains were sectioned fresh in the mortuary. The remaining brains (n=129) were immersion fixed overnight in 20% formalin prior to cutting and sampling for histology (n=127). The median time for reporting was 31 days (range 1-167; n=101) for brains requiring histology. This equates to a median turnaround time of 1 month for a neuropathological autopsy requiring detailed histology. In all cases, the report was prepared and available to HM Coroner in advance of the Inquest. This method provides reliable histological diagnoses in neuropathological autopsies and does not interfere with funeral arrangements for bereaved families following deaths falling under Coronial jurisdiction. In all cases, the body could be released to relatives, at Coroner's discretion, within two working days of the autopsy.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Li, Bing; Wang, Qi; Li, Chengzhi; Zhang, Yinming; Lin, Hancheng; Wang, Zhenyuan
2017-02-01
Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48 h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ± 1.92 h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.
Fatal intoxication with synthetic cannabinoid MDMB-CHMICA.
Adamowicz, Piotr
2016-04-01
MDMB-CHMICA is a synthetic cannabinoid that appeared on the European drug market in September 2014. This substance was found in Poland in the herbal mixture "Mocarz" ("Strongman"), which caused a large outbreak of intoxications at the beginning of July 2015. This paper describes the circumstances of death and toxicological findings in a fatal intoxication with MDMB-CHMICA (in combination with alcohol). Loss of consciousness and asystole occurred a few minutes after smoking the 'legal high'. The man died after 4 days of hospitalisation. The cause of death accepted by the medical examiner was multiple organ failure. MDMB-CHMICA was detected and quantified in blood (ante- and postmortem) and internal organs tissues. The samples were analysed using liquid chromatography with mass spectrometry (LC-MS/MS). The concentration of MDMB-CHMICA in antemortem blood was 5.6 ng/mL. Although the death occurred after 4 days from administration a relatively high concentration (2.6 ng/g) was estimated in the brain. Traces of this compound were also found in other postmortem materials (blood, stomach, liver, bile, and kidney). The presented case shows the health risks associated with MDMB-CHMICA use. The administration of this substance can lead to the number of organ failures, cardiac arrest and consequently death. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bacterial meningoencephalomyelitis in dogs: a retrospective study of 23 cases (1990-1999).
Radaelli, Simona T; Platt, Simon R
2002-01-01
The clinical records of 23 dogs (1990-1999) with histopathologically confirmed bacterial meningoencephalomyelitis were evaluated retrospectively. No breed, age, sex, or weight predisposition was found. All the dogs presented with clinical signs of a brain lesion, whereas 5 of 23 had neck pain. Pyrexia was detected in 11 of 23 dogs on admission. CBCs revealed neutrophilic leucocytosis in 7 of 21 dogs and thrombocytopenia in 3 of 21 dogs. The serum chemistry profiles were abnormal in 15 of 21 dogs. The results of cerebrospinal fluid (CSF) analysis were abnormal in 13 of 14 dogs and aerobic CSF culture was positive for bacteria in 1of 8 samples. At postmortem examination, the lesions were localized to the central nervous system. Escherichia coli, Streptococcus, and Klebsiella spp were the most frequently isolated bacteria from cultures collected at postmortem examination. Twelve papers reporting 51 total clinical cases of canine bacterial meningoencephalomyelitis were reviewed. The clinical signs and results of the CBC, serum chemistry, blood culture, and CSF analysis were collated and compared with those of this study. The results of the CSF analysis in this study were similar to those in the literature. CSF cultures documented in the literature were positive for Staphylococcus, Pasteurella. Actinomyces, Nocardia spp, and various anaerobic species including Peptostreptococcus, Eubacterium, and Bacteroides spp.
2011-01-21
the substance accumulates in the SN of aging primates [4, 21]. Neuromelanin is specific to catecholaminergic neurons of higher mammals, and SN...Zambenedetti P , Arslan P , Galzigna L: Increased dopamine peroxidation in postmortem Parkinsonian brain. Biochim Biophys Acta 2002, 1573:63-67. 6. Arthur JR...Havlik RJ, Wergowske G, et al: Prevalence of dementia in older Japanese-American men in Hawaii: The Honolulu-Asia Aging Study. Jama 1996, 276:955
Dead in the water--are we killing the hospital autopsy with poor consent practices?
Henry, Jaimie; Nicholas, Nick
2012-07-01
It is now a recognized fact that the practice of conducting a consent (or hospital) post-mortem examination is in decline. There have been many reasons put forth to explain this demise, but the quality of the consenting process is frequently cited as having a high impact. This article focuses on consent practices for post-mortem examinations in England and Wales, and considers if our consent techniques are adversely affecting post-mortem examination uptake. We examine the regulatory compliance of trusts with their statutory obligations by analyzing the Human Tissue Authority's compliance and inspection reports. We further analyze 21 publicly available NHS Trust policies on post-mortem examination consent procedures, and consider whether these are fit for the purpose of meeting the dual needs of clinicians and the bereaved. Despite more Human Tissue Authority inspections, there is a disproportionate rise in enforcement actions, with up to 48% of sampled Trusts exhibiting shortcomings in their legal duties. Additionally, only 52.4% of sampled trusts follow the Human Tissue Authority best-practice model, with 23.8% having no documented procedures. Despite the well founded evidence base for best-practice models, consent practices for post-mortem examinations remains poor and is likely to have a gross adverse effect on the rate of post-mortem examinations. We recommend that NHS Trusts rigorously review their protocols and introduce a team-approach between clinicians and trained bereavement staff in core-consent teams, as the Human Tissue Authority suggests, whilst at the same time placing a strong emphasis on education for junior and senior colleagues alike.
Fields, Jerel; Dumaop, Wilmar; Rockenstein, Edward; Mante, Michael; Spencer, Brian; Grant, Igor; Ellis, Ron; Letendre, Scott; Patrick, Christina; Adame, Anthony; Masliah, Eliezer
2013-02-01
Aged (>50 years old) human immunodeficiency virus (HIV) patients are the fastest-growing segment of the HIV-infected population in the USA and despite antiretroviral therapy, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group. Autophagy is an intracellular clearance pathway for aggregated proteins and aged organelles; dysregulation of autophagy is implicated in the pathogenesis of Parkinson's disease, Alzheimer's disease, and HAND. Here, we hypothesized that dysregulated autophagy may contribute to aging-related neuropathology in HIV-infected individuals. To explore this possibility, we surveyed autophagy marker levels in postmortem brain samples from a cohort of well-characterized <50 years old (young) and >50 years old (aged) HIV+ and HIV encephalitis (HIVE) patients. Detailed clinical and neuropathological data showed the young and aged HIVE patients had higher viral load, increased neuroinflammation and elevated neurodegeneration; however, aged HIVE postmortem brain tissues showed the most severe neurodegenerative pathology. Interestingly, young HIVE patients displayed an increase in beclin-1, cathepsin-D and light chain (LC)3, but these autophagy markers were reduced in aged HIVE cases compared to age-matched HIV+ donors. Similar alterations in autophagy markers were observed in aged gp120 transgenic (tg) mice; beclin-1 and LC3 were decreased in aged gp120 tg mice while mTor levels were increased. Lentivirus-mediated beclin-1 gene transfer, that is known to activate autophagy pathways, increased beclin-1, LC3, and microtubule-associated protein 2 expression while reducing glial fibrillary acidic protein and Iba1 expression in aged gp120 tg mice. These data indicate differential alterations in the autophagy pathway in young versus aged HIVE patients and that autophagy reactivation may ameliorate the neurodegenerative phenotype in these patients.
Nuzzo, Tommaso; Sacchi, Silvia; Errico, Francesco; Keller, Simona; Palumbo, Orazio; Florio, Ermanno; Punzo, Daniela; Napolitano, Francesco; Copetti, Massimiliano; Carella, Massimo; Chiariotti, Lorenzo; Bertolino, Alessandro; Pollegioni, Loredano; Usiello, Alessandro
2017-01-01
It is long acknowledged that the N -methyl d-aspartate receptor co-agonist, d-serine, plays a crucial role in several N -methyl d-aspartate receptor-mediated physiological and pathological processes, including schizophrenia. Besides d-serine, another free d-amino acid, d-aspartate, is involved in the activation of N -methyl d-aspartate receptors acting as an agonist of this receptor subclass, and is abundantly detected in the developing human brain. Based on the hypothesis of N -methyl d-aspartate receptor hypofunction in the pathophysiology of schizophrenia and considering the ability of d-aspartate and d-serine to stimulate N -methyl d-aspartate receptor-dependent transmission, in the present work we assessed the concentration of these two d-amino acids in the post-mortem dorsolateral prefrontal cortex and hippocampus of patients with schizophrenia and healthy subjects. Moreover, in this cohort of post-mortem brain samples we investigated the spatiotemporal variations of d-aspartate and d-serine. Consistent with previous work, we found that d-aspartate content was selectively decreased by around 30% in the dorsolateral prefrontal cortex, but not in the hippocampus, of schizophrenia-affected patients, compared to healthy subjects. Interestingly, such selective reduction was associated to greater (around 25%) cortical activity of the enzyme responsible for d-aspartate catabolism, d-aspartate oxidase. Conversely, no significant changes were found in the methylation state and transcription of DDO gene in patients with schizophrenia, compared to control individuals, as well as in the expression levels of serine racemase, the major enzyme responsible for d-serine biosynthesis, which also catalyzes aspartate racemization. These results reveal the potential involvement of altered d-aspartate metabolism in the dorsolateral prefrontal cortex as a factor contributing to dysfunctional N -methyl d-aspartate receptor-mediated transmission in schizophrenia.
Liu, Fei; Xue, Zhi-Qin; Deng, Si-Hao; Kun, Xiong; Luo, Xue-Gang; Patrylo, Peter R; Rose, Gregory M; Cai, Huaibin; Struble, Robert G; Cai, Yan; Yan, Xiao-Xin
2013-05-01
Deposition of β -amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aβ peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored the possibility of Aβ production and secretion by the choroid plexus (CP). The specific binding density of [(3) H]-L-685,458, a radiolabeled high-affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post-mortem delays. The CP in post-mortem samples exhibited exceptionally high [(3) H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aβ40 and Aβ42 into the medium. Overall, our results suggest that γ-secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non-neuronal contributor to CSF Aβ, probably at reduced levels in AD. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains
Brinkmeyer-Langford, Candice L.; Guan, Jinting; Ji, Guoli; Cai, James J.
2016-01-01
Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases. PMID:27536236
Maiti, Panchanan; Hall, Tia C; Paladugu, Leela; Kolli, Nivya; Learman, Cameron; Rossignol, Julien; Dunbar, Gary L
2016-11-01
Deposition of amyloid beta protein (Aβ) is a key component in the pathogenesis of Alzheimer's disease (AD). As an anti-amyloid natural polyphenol, curcumin (Cur) has been used as a therapy for AD. Its fluorescent activity, preferential binding to Aβ, as well as structural similarities with other traditional amyloid-binding dyes, make it a promising candidate for labeling and imaging of Aβ plaques in vivo. The present study was designed to test whether dietary Cur and nanocurcumin (NC) provide more sensitivity for labeling and imaging of Aβ plaques in brain tissues from the 5×-familial AD (5×FAD) mice than the classical Aβ-binding dyes, such as Congo red and Thioflavin-S. These comparisons were made in postmortem brain tissues from the 5×FAD mice. We observed that Cur and NC labeled Aβ plaques to the same degree as Aβ-specific antibody and to a greater extent than those of the classical amyloid-binding dyes. Cur and NC also labeled Aβ plaques in 5×FAD brain tissues when injected intraperitoneally. Nanomolar concentrations of Cur or NC are sufficient for labeling and imaging of Aβ plaques in 5×FAD brain tissue. Cur and NC also labeled different types of Aβ plaques, including core, neuritic, diffuse, and burned-out, to a greater degree than other amyloid-binding dyes. Therefore, Cur and or NC can be used as an alternative to Aβ-specific antibody for labeling and imaging of Aβ plaques ex vivo and in vivo. It can provide an easy and inexpensive means of detecting Aβ-plaque load in postmortem brain tissue of animal models of AD after anti-amyloid therapy.
Guidoux, Celine; Hauw, Jean-Jacques; Klein, Isabelle F; Labreuche, Julien; Berr, Claudine; Duyckaerts, Charles; Amarenco, Pierre
2018-01-01
Risk factors for intracerebral hemorrhage (ICH) include hypertension and cerebral amyloid angiopathy (CAA). The objective of this study was to determine the autopsy prevalence of CAA and the potential overlap with other risk factors among patients who died from ICH and also the correlation of CAA with cerebral microbleeds. We analyzed 81 consecutive autopsy brains from patients with ICH. Staining for CAA detection was performed. We used an age- and sex-matched control group of routine brain autopsies of nonneurological patients to determine the frequencies of CAA and hypertension. Postmortem 3D T2-weighted gradient-echo magnetic resonance imaging (MRI) with a 1.5-T magnet was performed in 11 brains with ICH (5 with CAA and 6 without) and histological correlation was performed when microbleeds were detected. Hypertension and CAA were found in 69.1 and 24.7% of cases respectively. Among patients with CAA, 65.0% also had hypertension. The prevalence of CAA was similar among non-hypertensive cases and controls (33.3 and 23.1%; p = 0.54), whereas a significant difference was found between hypertensive cases vs. controls (28.9% vs. 0; p = 0.01). MRI documented 48 microbleeds and all 5 brains with CAA had ≥1 microbleed, compared to 3/6 brains without CAA. Among 48 microbleeds on MRI, 45 corresponded histologically to microbleeds surrounding microvessels (23 <200 µm in diameter, 19 between 200 µm and 2 mm, 3 were hemosiderin granules). Both hypertension and CAA frequently coexist in patients with ICH. MRI-detected microbleeds, proven by histological analysis, were twice as common in patients with CAA as in those with hypertensive ICH. © 2018 S. Karger AG, Basel.
Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen
2018-05-03
Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.
Busquets, Núria; Abad, F Xavier; Alba, Anna; Dolz, Roser; Allepuz, Alberto; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia
2010-09-01
Selection of an ideal sample is a vital element in early detection of influenza infection. Rapid identification of infectious individuals or animals is crucial not only for avian influenza virus (AIV) surveillance programmes, but also for treatment and containment strategies. This study used a combination of quantitative real-time RT-PCR with an internal positive control and a cell-titration system to examine the presence of virus in different samples during active experimental AIV infection and its persistence in the infected carcasses. Oropharyngeal/cloacal swabs as well as feather pulp and blood samples were collected from 15-day-old chicks infected with H7N1 highly pathogenic AIV (HPAIV) and the kinetics of virus shedding during active infection were evaluated. Additionally, several samples (muscle, skin, brain, feather pulp and oropharyngeal and cloacal swabs) were examined to assess the persistence of virus in the HPAIV-infected carcasses. Based on the results, feather pulp was found to be the best sample to detect and isolate HPAIV from infected chicks from 24 h after inoculation onwards. Kinetic studies on the persistence of virus in infected carcasses revealed that tissues such as muscle could potentially transmit infectious virus for 3 days post-mortem (p.m.), whilst other tissues such as skin, feather pulp and brain retained their infectivity for as long as 5-6 days p.m. at environmental temperature (22-23 degrees C). These results strongly favour feather as a useful sample for HPAIV diagnosis in infected chickens as well as in carcasses.
Azmitia, Efrain C; Singh, Jorawer S; Whitaker-Azmitia, Patricia M
2011-06-01
Imaging studies of serotonin transporter binding or tryptophan retention in autistic patients suggest that the brain serotonin system is decreased. However, treatment with drugs which increase serotonin (5-HT) levels, specific serotonin reuptake inhibitors (SSRIs), commonly produce a worsening of the symptoms. In this study we examined 5-HT axons that were immunoreactive to a serotonin transporter (5-HTT) antibody in a number of postmortem brains from autistic patients and controls with no known diagnosis who ranged in age from 2 to 29 years. Fine, highly branched, and thick straight fibers were found in forebrain pathways (e.g. medial forebrain bundle, stria terminalis and ansa lenticularis). Many immunoreactive varicose fine fibers were seen in target areas (e.g. globus pallidus, amygdala and temporal cortex). Morphometric analysis of the stained axons at all ages studied indicated that the number of serotonin axons was increased in both pathways and terminal regions in cortex from autism donors. Our findings provide morphological evidence to warrant caution when using serotonin enhancing drugs (e.g. SSRIs and receptor agonist) to treat autistic children. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2011 Elsevier Ltd. All rights reserved.
Transplacental toxoplasmosis in a wild southern sea otter (Enhydra lutris nereis).
Miller, Melissa; Conrad, Patricia; James, E R; Packham, Andrea; Toy-Choutka, Sharon; Murray, Michael J; Jessup, David; Grigg, Michael
2008-05-06
In September 2004, a neonatal sea otter pup was found alive on the beach in northern Monterey Bay, CA. Efforts to locate the mother were unsuccessful. Due to a poor prognosis for successful rehabilitation, the pup was euthanized. Postmortem examination revealed emaciation, systemic lymphadenopathy and a malformation of the left cerebral temporal lobe. On histopathology, free tachyzoites and tissue cysts compatible with Toxoplasma gondii were observed in the brain, heart, thymus, liver, lymph nodes and peri-umbilical adipose. The presence of T. gondii within host tissues was associated with lymphoplasmacytic inflammation and tissue necrosis. Immunofluorescent antibody tests using postmortem serum were positive for anti-T. gondii IgM and IgG (at 1:320 and 1:1280 serum dilution, respectively), but were negative for IgG directed against Sarcocystis neurona and Neospora caninum (<1:40 each). Brain immunohistochemistry revealed positive staining for tachyzoites and tissue cysts using antiserum raised to T. gondii, but not S. neurona or N. caninum. T. gondii parasite DNA was obtained from extracts of brain and muscle by PCR amplification using the diagnostic B1 locus. Restriction enzyme digestion followed by gel electrophoresis and DNA sequencing confirmed the presence of Type X T. gondii, the strain identified in the majority of southern sea otter infections.
De Reuck, Jacques; Cordonnier, Charlotte; Deramecourt, Vincent; Auger, Florent; Durieux, Nicolas; Leys, Didier; Pasquier, Florence; Maurage, Claude-Alain; Bordet, Regis
2016-10-15
The Boston criteria for cerebral amyloid angiopathy (CAA) need validation by neuropathological examination in patients with lobar cerebral haematomas (LCHs). In "vivo" 1.5-tesla magnetic resonance imaging (MRI) is unreliable to detect the age-related signal changes in LCHs. This post-mortem study investigates the validity of the Boston criteria in brains with LCHs and the signal changes during their time course with 7.0-tesla MRI. Seventeen CAA brains including 26 LCHs were compared to 13 non-CAA brains with 14 LCHs. The evolution of the signal changes with time was examined in 25 LCHs with T2 and T2* 7.0-tesla MRI. In the CAA group LCHs were predominantly located in the parieto-occipital lobes. Also white matter changes were more severe with more cortical microinfarcts and cortical microbleeds. On MRI there was a progressive shift of the intensity of the hyposignal from the haematoma core in the acute stage to the boundaries later on. During the residual stage the hyposignal mildly decreased in the boundaries with an increase of the superficial siderosis and haematoma core collapse. Our post-mortem study of LCHs confirms the validity of the Boston criteria for CAA. Also 7.0-tesla MRI allows staging the age of the LCHs. Copyright © 2016 Elsevier B.V. All rights reserved.
Dystrophic Serotonin Axons in Postmortem Brains from Young Autism Patients
Azmitia, Efrain C.; Singh, Jorawer S.; Hou, Xiao P.; Wiegel, Jerzy
2014-01-01
Autism causes neuropathological changes in varied anatomical loci. A coherent neural mechanism to explain the spectrum of autistic symptomatology has not been proposed because most anatomical researchers focus on point-to-point functional neural systems (e.g. auditory, social networks) rather than considering global chemical neural systems. Serotonergic neurons have a global innervation pattern. Their cell bodies are found in the midbrain but they project their axons throughout the neural axis beginning in the fetal brain. This global system is implicated in autism by animal models and by biochemical, imaging, pharmacological, and genetics studies. However, no anatomical studies of the 5-HT innervation of autistic donors have been reported. Our review presents immunocytochemical evidence of an increase in 5-HT axons in post-mortem brain tissue from autism donors aged 2.8 to 29 years relative to controls. This increase is observed in the principle ascending fiber bundles of the medial and lateral forebrain bundles, and in the innervation density of the amygdala and the piriform, superior temporal, and parahippocampal cortices. In autistic donors eight years of age and up, several types of dystrophic 5-HT axons were seen in the termination fields. One class of these dystrophic axons, the thick heavily stained axons, was not seen in the brains of patients with neurodegenerative diseases. These findings provide morphological evidence for the involvement of serotonin neurons in the early etiology of autism, and suggest a diet therapy may be effective to blunt serotonin’s trophic actions during early brain development in children. PMID:21901837
Dystrophic serotonin axons in postmortem brains from young autism patients.
Azmitia, Efrain C; Singh, Jorawer S; Hou, Xiao P; Wegiel, Jerzy
2011-10-01
Autism causes neuropathological changes in varied anatomical loci. A coherent neural mechanism to explain the spectrum of autistic symptomatology has not been proposed because most anatomical researchers focus on point-to-point functional neural systems (e.g., auditory and social networks) rather than considering global chemical neural systems. Serotonergic neurons have a global innervation pattern. Disorders Research Program, AS073234, Program Project (JW). Their cell bodies are found in the midbrain but they project their axons throughout the neural axis beginning in the fetal brain. This global system is implicated in autism by animal models and by biochemical, imaging, pharmacological, and genetics studies. However, no anatomical studies of the 5-HT innervation of autistic donors have been reported. Our review presents immunocytochemical evidence of an increase in 5-HT axons in postmortem brain tissue from autism donors aged 2.8-29 years relative to controls. This increase is observed in the principle ascending fiber bundles of the medial and lateral forebrain bundles, and in the innervation density of the amygdala and the piriform, superior temporal, and parahippocampal cortices. In autistic donors 8 years of age and up, several types of dystrophic 5-HT axons were seen in the termination fields. One class of these dystrophic axons, the thick heavily stained axons, was not seen in the brains of patients with neurodegenerative diseases. These findings provide morphological evidence for the involvement of serotonin neurons in the early etiology of autism, and suggest new therapies may be effective to blunt serotonin's trophic actions during early brain development in children. Copyright © 2011 Wiley-Liss, Inc.
Komorowski, A.; James, G. M.; Philippe, C.; Gryglewski, G.; Bauer, A.; Hienert, M.; Spies, M.; Kautzky, A.; Vanicek, T.; Hahn, A.; Traub-Weidinger, T.; Winkler, D.; Wadsak, W.; Mitterhauser, M.; Hacker, M.; Kasper, S.; Lanzenberger, R.
2017-01-01
Abstract Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = −0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins. PMID:27909009
CYP2C19 variant mitigates Alzheimer disease pathophysiology in vivo and postmortem
Benedet, Andréa L.; Yu, Lei; Labbe, Aurélie; Mathotaarachchi, Sulantha; Pascoal, Tharick A.; Shin, Monica; Kang, Min-Su; Gauthier, Serge; Rouleau, Guy A.; Poirier, Judes; Bennett, David A.
2018-01-01
Objective To verify whether CYP polymorphisms are associated with amyloid-β (Aβ) pathology across the spectrum of clinical Alzheimer disease using in vivo and postmortem data from 2 independent cohorts. Methods A candidate-gene approach tested the association between 5 genes (28 single nucleotide polymorphisms) and Aβ load measured in vivo by the global [18F]florbetapir PET standardized uptake value ratio (SUVR) in 338 Alzheimer's Disease Neuroimaging Initiative participants. Significant results were then tested using plasma Aβ and CSF Aβ and Aβ/phosphorylated tau (Aβ/p-tau) ratio in the same cohort. The significant association was also generalized to postmortem Aβ load measurement in the Rush Religious Orders Study/Memory and Aging Project cohorts. In addition, global cognition was used as a phenotype in the analysis in both cohorts. Results Analysis of Aβ PET identified a variant in the CYP2C19 gene (rs4388808; p = 0.0006), in which carriers of the minor allele (MA) had a lower global SUVR. A voxel-wise analysis revealed that the variant is associated with a lower Aβ load in the frontal, inferior temporal, and posterior cingulate cortices. MA carriers also had higher CSF Aβ (p = 0.003) and Aβ/p-tau ratio (p = 0.02) but had no association with Aβ plasma levels. In postmortem brains, MA carriers had a lower Aβ load (p = 0.03). Global cognition was higher in MA carriers, which was found to be mediated by Aβ. Conclusions Together, these findings point to an association between CYP2C19 polymorphism and Aβ pathology, suggesting a protective effect of the MA of rs4388808. Despite the several possibilities in which CYP2C19 affects brain Aβ, the biological mechanism by which this genetic variation may act as a protective factor merits further investigation. PMID:29473050
Hahor, Waraporn; Thongprajukaew, Karun; Yoonram, Krueawan; Rodjaroen, Somrak
2016-11-01
Postmortem changes have been previously studied in some terrestrial animal models, but no prior information is available on aquatic species. Gastrointestinal functionality was investigated in terms of indices, protein concentration, digestive enzyme activity, and scavenging activity, in an aquatic animal model, Nile tilapia, to assess the postmortem changes. Dead fish were floated indoors, and samples were collected within 48 h after death. Stomasomatic index decreased with postmortem time and correlated positively with protein, pepsin-specific activity, and stomach scavenging activity. Also intestosomatic index decreased significantly and correlated positively with protein, specific activity of trypsin, chymotrypsin, amylase, lipase, and intestinal scavenging activity. In their postmortem changes, the digestive enzymes exhibited earlier lipid degradation than carbohydrate or protein. The intestine changed more rapidly than the stomach. The findings suggest that the postmortem changes of gastrointestinal functionality can serve as primary data for the estimation of time of death of an aquatic animal. © 2016 American Academy of Forensic Sciences.
Two fatal intoxication cases with imidacloprid: LC/MS analysis.
Proença, Paula; Teixeira, Helena; Castanheira, Fernando; Pinheiro, João; Monsanto, Paula V; Marques, Estela P; Vieira, Duarte Nuno
2005-10-04
Imidacloprid [1-(6-chloro-3pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] is a new and potent nitromethylene insecticide with high insecticidal activity at very low application rates. It is the first highly effective insecticide that, like nicotine, acts on the nervous system, causing blockage of postsynaptic nicotinergic acetylcholine receptors. Two fatal cases with this insecticide in two male individuals, of 33 and 66 years old, are presented. An LC/MS with electrospray method for measuring imidacloprid and its metabolites in post-mortem samples is described. In the chromatographic separation, a reverse-phase column XTerra MS C18 (2.1mm i.d.x 150 mm, 5 microm) was used and the mobile phase composed with acetonitrile and 0.1% formic acid (15:85), at a 0.25 mL/min flow rate. Samples were prepared with a liquid-liquid extraction procedure with dichloromethane. Calibration curves for imidacloprid in blood and urine samples were linear from 0.2 to 15 microg/mL. The mean recovery was 86% with a coefficient of variation of +/-5.9%. The detection limit was 0.002 microg/mL. Quantitative results were obtained for all post-mortem matrices available of the two fatal cases: blood, urine, stomach contents, lung, liver and kidney. The imidacloprid blood concentrations found in two-cases were 12.5 and 2.05 microg/mL. The authors validated a method to detect and quantify imidacloprid in post-mortem samples, and to our knowledge for the first time a post-mortem tissue distribution was performed on various samples for this insecticide.
2001-07-01
A1c ( HbA1c ) at selected time intervals during the 52-day period. Postmortem blood specimens from 34 aviation accident pilot fatalities were also...analyzed. Some of these pilots had a known history of diabetes. Results. HbA1c values in blood from volunteers did not significantly change for up to 52...days. The HbA1c concentration in postmortem blood samples from pilots ranged from 3.9-10.5%. Only one pilot with a HbA1c over 6.0% did not have a
DOT National Transportation Integrated Search
2000-05-01
During the investigation of aviation accidents, postmortem samples from victims are submitted to the FAAs Civil Aeromedical Institute for drug analysis. Because new drugs are continually being released to the market, it is our laboratorys respo...
Factors impacting the success of post-mortem sperm rescue in the rhinoceros.
Roth, T L; Stoops, M A; Robeck, T R; O'Brien, J K
2016-04-01
The goal of this study was to identify factors that influenced the ability to successfully rescue sperm post-mortem from rhinoceroses maintained in North American zoos. Factors considered included procedural technicalities, individual rhinoceros characteristics and timing. Gross testicular pathology was noted in 17.4% of males (4/23) but did not impact sperm recovery except in one case of azoospermia (4.3%). Of the males in which sperm recovery was attempted (n=21), 62% yielded quality samples considered adequate for cryopreservation (≥ 30% motility with ≥ 2.0 forward progressive status). A high percentage of males (70.6%; 12/17) from which reproductive tissue was removed an d cooled ≤ 4 h after death yielded quality sperm samples, whereas only 25% (1/4) of males from which tissue was removed>4h after death yielded quality samples. Quality samples were recovered 1-51 h post-mortem from rhinoceroses 8 to 36 years old. Neither type of illness (prolonged or acute), or method of death (euthanasia or natural) affected the ability to harvest quality samples (P > 0.05). The Indian rhinoceros yielded significantly more sperm on average (40 × 10(9)) than the African black rhinoceros (3.6 × 10(9); P < 0.01) and the African white rhinoceros (3.2 × 10(9); P < 0.05). Across all species and samples assessed (n = 11), mean post-thaw sperm motility (41%), was only 15% less than pre-freeze motility (56%) and only decreased to 22% during the 6h post-thaw assessment period. Rhinoceros sperm rescue post-mortem is relatively successful across a wide range of variables, especially when tissues are removed and cooled promptly after death, and should be considered standard practice among zoos. Copyright © 2016 Elsevier B.V. All rights reserved.
Walter, Uwe; Skowrońska, Marta; Litwin, Tomasz; Szpak, Grażyna Maria; Jabłonka-Salach, Katarzyna; Skoloudík, David; Bulska, Ewa; Członkowska, Anna
2014-10-01
In patients with Wilson's disease (WD) transcranial brain sonography typically reveals areas of increased echogenicity (hyperechogenicity) of the lenticular nucleus (LN). Correlation with T2-hypointensity on magnetic resonance images suggested that LN hyperechogenicity in WD is caused by trace metal accumulation. Accumulation of both, copper and iron, in the brain of WD patients has been reported. The present study was designed to elucidate whether LN hyperechogenicity in WD reflects accumulation of copper or iron. Post-mortem brains of 15 WD patients and one non-WD subject were studied with ultrasonography in an investigator-blinded fashion. LN hyperechogenicity was measured planimetrically by manual tracing as well as using digitized image analysis. The putaminal copper content was determined in samples of 11 WD brains and the non-WD brains using inductively coupled plasma mass spectrometry, and iron content was assessed using flame atomic absorption spectroscopy. LN was normal on ultrasonography only in the non-WD brain, but abnormal (hyperechogenic) in all WD brains. Digitized image analysis measures of LN hyperechogenicity and, by trend, manual measures correlated with putaminal copper content (Pearson test; digitized: r = 0.77, p = 0.04; manual: r = 0.57, p = 0.051) but not with iron content (each, p > 0.18). LN hyperechogenicity measures were unrelated to age at death of patients, age at onset of WD, WD duration, age of brain specimen, serum copper or serum ceruloplasmin (each, p > 0.1). We conclude that LN hyperechogenicity in WD reflects copper, but not iron accumulation. Further studies are warranted to elucidate the use of transcranial brain sonography for monitoring therapeutic effects of chelating agents in WD patients.
Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra
2017-07-13
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
Dickinson, Dwight; Straub, Richard E; Trampush, Joey W; Gao, Yuan; Feng, Ningping; Xie, Bin; Shin, Joo Heon; Lim, Hun Ki; Ursini, Gianluca; Bigos, Kristin L; Kolachana, Bhaskar; Hashimoto, Ryota; Takeda, Masatoshi; Baum, Graham L; Rujescu, Dan; Callicott, Joseph H; Hyde, Thomas M; Berman, Karen F; Kleinman, Joel E; Weinberger, Daniel R
2014-06-01
One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide significant (P = 1.75 × 10(-9)). Siblings showed a genotype association with g parallel to the schizophrenia group and the same interaction pattern. Parallel, but weaker, associations with cognition were found in independent schizophrenia samples. Imaging analyses showed a similar pattern of genotype associations by group and genotype-by-group interaction. Sequencing of RNA in brain revealed reduced expression in 2 of 3 SCN2A alternative transcripts in the patient group, with genotype-by-group interaction, that again paralleled the cognition effects. The findings implicate SCN2A and sodium channel biology in cognitive impairment in schizophrenia cases and unaffected relatives and may facilitate development of cognition-enhancing treatments.
The Brain Connection: The Corpus Callosum is Larger in Left-Handers.
ERIC Educational Resources Information Center
Witelson, Sandra F.
1985-01-01
Discusses the neurobiological basis for functional specialization of the cerebral hemispheres, indicating that the size of the corpus callosum is correlated with the neurophysiological measure of hand preference. In postmortem examinations of 42 subjects there were no sex differences, but mixed-handers had significantly larger total areas of the…
Neocortical Maturation during Adolescence: Change in Neuronal Soma Dimension
ERIC Educational Resources Information Center
Rabinowicz, Theodore; Petetot, Jean MacDonald-Comber; Khoury, Jane C.; de Courten-Myers, Gabrielle M.
2009-01-01
During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F,…
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Sports-related brain injuries: connecting pathology to diagnosis.
Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald
2016-04-01
Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.
T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice
Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas
2014-01-01
T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379
Nagasawa, Sayaka; Yajima, Daisuke; Torimitsu, Suguru; Chiba, Fumiko; Iwase, Hirotaro
2015-12-01
In this case study, we measured the concentration of memantine in the heart blood, peripheral blood, urine, liver, thigh muscle, and subcutaneous fat of a 64-year-old woman who was prescribed memantine for early-onset Alzheimer's disease. She died in hospital after an altercation with her husband. Cause of death was clearly not drug intoxication or overdose, so we investigated the postmortem redistribution (PMR) of memantine in the various tissues and blood ratios of the postmortem samples. Memantine concentrations detected were 1.31 μg/mL in the peripheral blood, 3.95 μg/mL in central blood, 2.09 μg/mL in the urine, 25.54 μg/g in the liver, 1.16 μg/g in the thigh muscle and 2.13 μg/g in the subcutaneous fat. In all samples, the concentrations were higher than the accepted therapeutic range (which is approximately 0.09-0.15 μg/mL). The central blood to peripheral blood (C/P) memantine ratio was 3.01 while the liver to peripheral blood (L/P) ratio was 19.5. It is documented that a C/P ratio exceeding 2 and L/P ratio exceeding 20 highlight a propensity for significant PMR. Although this is a single case study, our data suggest that memantine exhibits PMR. Additionally, a lowered pH was found in peripheral blood (pH 6.2) and central blood (pH 6.1). This postmortem reduction in blood pH may also promote the PMR of memantine. Because there is very little available postmortem toxicological data on memantine, our case study will serve as a foundation to assist in future forensic investigations. Copyright © 2015. Published by Elsevier Ireland Ltd.
2014-01-01
Background After the largest outbreaks of Q fever ever recorded in history occurred in the Netherlands, concern arose that Coxiella may be transmitted via donated tissues of latent or chronically infected donors. The Dutch Health Council recently advised to screen tissue donors, donating high risk tissues, for Coxiella infection. Methods After validation of an enzyme immunoassay (EIA) test for IgG antibodies against phase 2 of C. burnetii for use on post-mortem samples, serum samples of 1033 consecutive Dutch post-mortem tissue donors were tested for IgG antibodies against phase 2 of C. burnetii. Confirmation of reactive results was done by immunofluorescence assay (IFA). All available tissues (corneas, heart valves, skin and bone marrow) from donors with IgG reactivity were tested for presence of Coxiella DNA by PCR. Risk factors for IgG reactivity were investigated. Results After validation of the tests for use on post-mortem samples, 50/1033 donors (4.8%) screened positive for phase 2 anti-Coxiella IgG by EIA, and 31 were confirmed by IFA (3.0%). One donor showed a serological profile compatible with chronic infection. All tested tissues (25 corneas, 6 heart valves, 4 skin and 3 bone marrow) from donors with IgG reactivity tested negative for the presence of Coxiella DNA. Except for living in a postal code area with a high number of Q fever notifications, no risk factors for IgG reactivity were found. Conclusions The strong correlation between notifications and seroprevalence confirms that the used assays are sufficiently specific for use on post-mortem samples, although one has to be aware of differences between batches. Thus, this study provides a validated method for screening tissue donors for infection with Coxiella burnetii that can be used in future outbreaks. PMID:24393298
Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.
2014-01-01
Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue depots and skeletal muscles. Perilipin gene and protein were almost exclusively expressed by adipose tissue. PMID:24956155
Matzopoulos, Richard; Prinsloo, Megan; Pillay-van Wyk, Victoria; Gwebushe, Nomonde; Mathews, Shanaaz; Martin, Lorna J; Laubscher, Ria; Abrahams, Naeemah; Msemburi, William; Lombard, Carl; Bradshaw, Debbie
2015-05-01
To investigate injury-related mortality in South Africa using a nationally representative sample and compare the results with previous estimates. We conducted a retrospective descriptive study of medico-legal postmortem investigation data from mortuaries using a multistage random sample, stratified by urban and non-urban areas and mortuary size. We calculated age-specific and age-standardized mortality rates for external causes of death. Postmortem reports revealed 52,493 injury-related deaths in 2009 (95% confidence interval, CI: 46,930-58,057). Almost half (25,499) were intentionally inflicted. Age-standardized mortality rates per 100,000 population were as follows: all injuries: 109.0 (95% CI: 97.1-121.0); homicide 38.4 (95% CI: 33.8-43.0; suicide 13.4 (95% CI: 11.6-15.2) and road-traffic injury 36.1 (95% CI: 30.9-41.3). Using postmortem reports, we found more than three times as many deaths from homicide and road-traffic injury than had been recorded by vital registration for this period. The homicide rate was similar to the estimate for South Africa from a global analysis, but road-traffic and suicide rates were almost fourfold higher. This is the first nationally representative sample of injury-related mortality in South Africa. It provides more accurate estimates and cause-specific profiles that are not available from other sources.
Development of a PCR Assay for the Detection of Spironucleus muris
Jackson, Glenn A; Livingston, Robert S; Riley, Lela K; Livingston, Beth A; Franklin, Craig L
2013-01-01
Spironucleus muris is a protozoan that can colonize the intestinal tract of many rodent species. Although its effects on animal health and research are debated, S. muris is often included on exclusion lists for rodent facilities. Common diagnostic tests for S. muris are insensitive and typically are performed at postmortem examination. We sought to develop a PCR-based diagnostic test with sufficient sensitivity and specificity for use on fecal samples from live rodents. We designed and optimized a PCR assay that targeted the 16S-like rRNA gene of S. muris. The assay was highly specific, given that samples from mice contaminated with S. muris were PCR positive, whereas samples from mice contaminated with other protozoa were negative. The assay also was highly sensitive, detecting as few as 5 template copies per microliter diluent. All mice positive for S. muris on postmortem exams also were positive by fecal PCR. Moreover, S. muris was detected by PCR in mice negative by postmortem examination but from colonies known to be contaminated as well as in rats and hamsters. To assess protozoal loads in mice of differing ages, the PCR assay was adapted to a quantitative format. Fecal loads of S. muris were highest in 4-wk-old mice and declined with age. The PCR assay developed promises to be a highly specific antemortem diagnostic assay with higher sensitivity than that of existing postmortem tests. PMID:23562099
Bell, Courtnee R; Wilkinson, Jeremy E; Robertson, Boakai K; Javan, Gulnaz T
2018-05-10
Recent studies have revealed distinct thanatomicrobiome (microbiome of death) signatures in human body sites after death. Thanatomicrobiome studies suggest that microbial succession after death may have the potential to reveal important postmortem biomarkers for the identification of time of death. We surveyed the postmortem microbiomes of cardiac tissues from ten corpses with varying times of death (6-58 h) using amplicon-based sequencing of the 16S rRNA gene' V1-2 and V4 hypervariable regions. The results demonstrated that amplicons had statistically significant (p <0.05) sex-dependent changes. Clostridium sp., Pseudomonas sp., Pantoea sp., and Streptococcus sp. had the highest enrichment for both V1-2 and V4 regions. Interestingly, the results also show that V4 amplicons had higher abundance of Clostridium sp. and Pseudomonas sp. in female hearts compared to males. Additionally, Streptococcus sp. was solely found in male heart samples. The distinction between sexes was further supported by Principle Coordinate Analysis, which revealed microbes in female hearts formed a distinctive cluster separate from male cadavers for both hypervariable regions. This study provides data that demonstrates that two hypervariable regions show discriminatory power for sex differences in postmortem heart samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne
2012-11-01
The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis, and, together, suggest a common BDNF-/GABA-related pathology in major depression with sex- and brain region-specific features.
Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L
2017-03-01
Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated with axonal disruption, where lower FA was associated with greater axonal disruption in white matter directly adjacent to hyperphosphorylated tau positive sulci. In summary, our findings indicate that axonal disruption and tau pathology are closely associated, and high spatial resolution ex vivo diffusion MRI has the potential to detect microstructural alterations observed in CTE tissue. Future studies will be required to determine whether this approach can be applied to living people.
Poklis, Justin L; Devers, Kelly G; Arbefeville, Elise F; Pearson, Julia M; Houston, Eric; Poklis, Alphonse
2014-01-01
We present a traumatic fatality of a 19-year-old man who had ingested blotter paper containing 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine]. Postmortem specimens were analyzed by high performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS). Toxicology findings for fluids based upon blood or urine calibrators were as follows: peripheral blood, 405 pg/mL; heart blood, 410 pg/mL; urine, 2.86 ng/mL; and vitreous humor, 99 pg/mL. While findings based upon the method of standard additions were: gastric contents, 7.1 μg total; bile, 10.9 ng/g; brain, 2.54 ng/g and liver, 7.2 ng/g. To our knowledge the presented case is the first postmortem case of 25I-NBOMe intoxication documented by toxicological analysis of tissues and body fluids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Pitel, Anne-Lise; Aupée, Anne-Marie; Chételat, Gaël; Mézenge, Florence; Beaunieux, Hélène; de la Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Desgranges, Béatrice
2009-01-01
Background Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS). Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. Methodology/Principal Findings Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. Conclusions/Significance These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker. PMID:19936229
Hamazaki, Kei; Hamazaki, Tomohito; Inadera, Hidekuni
2013-11-30
Previous studies of postmortem orbitofrontal cortex have shown abnormalities in levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), in individuals with schizophrenia, bipolar disorder, and major depressive disorder (MDD). We have previously measured PUFA levels in the postmortem hippocampus from patients with schizophrenia or bipolar disorder and control subjects; however, we found no significant differences between the groups except for small changes in n-6 PUFAs. Furthermore, our study of the postmortem amygdala showed no significant differences in major PUFAs in individuals with schizophrenia, bipolar disorder, or MDD in comparison with controls. In the present study, we investigated whether there were any changes in PUFAs in the entorhinal cortexes of patients with schizophrenia (n=15), bipolar disorder (n=15), or MDD (n=15) compared with unaffected controls (n=15) matched for characteristics including age and sex. In contrast to previous studies of the orbitofrontal cortex and hippocampus, we found no significant differences in major PUFAs. However, we found a 34.3% decrease in docosapentaenoic acid (DPA) (22:5n-3) in patients with MDD and an 8.7% decrease in docosatetraenoic acid (22:4n-6) in those with schizophrenia, compared with controls. Changes in PUFAs in patients with these psychiatric disorders may be specific to certain brain regions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe.
He, Sizhi; Wang, Qingsong; He, Jintang; Pu, Hai; Yang, Wei; Ji, Jianguo
2006-09-01
The proteomic study on human temporal lobe can help us to understand the physiological function of CNS in normal as well as in pathological state. Proteomic tools are potent for the assessment of protein stability post mortem. In this pilot study, the human temporal lobe biopsy specimen with chronic pharmacoresistant temporal lobe epilepsy (TLE) and autopsy specimen in control were separated by 2-DE. Using MALDI-TOF-MS and MS/MS, 375 protein spots were identified which were the products of 267 genes. Six down-regulated and 23 up-regulated protein spots in the autopsy specimen were ascertained after the gel image analysis with the ImageMaster software. A number of proteins that include neurotransmitter metabolic and glycolytic enzymes, cytoprotective proteins and cytoskeleton were found decreased while the precursor of apolipoprotein A-I increased in the TLE brain. We tried several methods to prepare the protein samples and found that DNase and RNase treatment, ultracentrifugation and Amersham clean-up kit purification can improve gel separation quality. This work optimized the sample preparation method and constructed a primary protein database of human temporal lobe and found some proteins with remarkable level change probably involved in the post-mortem process and chronic pharmacoresistant TLE pathogenesis.
Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S
2014-07-01
Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
Xie, Yijing; Martini, Nadja; Hassler, Christina; Kirch, Robert D.; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.
2014-01-01
In neural prosthetics and stereotactic neurosurgery, intracortical electrodes are often utilized for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. Unfortunately, neuroinflammation impairs the neuron-electrode-interface by developing a compact glial encapsulation around the implants in long term. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities can not provide information in deep brain regions. Optical coherence tomography (OCT) is a well established imaging modality for in vivo studies, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. A fiber based spectral domain OCT was shown to be capable of minimally invasive brain imaging. In the present study, we propose to use a fiber based spectral domain OCT to monitor the progression of the tissue's immune response through scar encapsulation progress in a rat animal model. A fine fiber catheter was implanted in rat brain together with a flexible polyimide microelectrode in sight both of which acts as a foreign body and induces the brain tissue immune reaction. OCT signals were collected from animals up to 12 weeks after implantation and thus gliotic scarring in vivo monitored for that time. Preliminary data showed a significant enhancement of the OCT backscattering signal during the first 3 weeks after implantation, and increased attenuation factor of the sampled tissue due to the glial scar formation. PMID:25191264
Chemical imaging analysis of the brain with X-ray methods
NASA Astrophysics Data System (ADS)
Collingwood, Joanna F.; Adams, Freddy
2017-04-01
Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.
Chang, H; Hoshina, N; Zhang, C; Ma, Y; Cao, H; Wang, Y; Wu, D-D; Bergen, S E; Landén, M; Hultman, C M; Preisig, M; Kutalik, Z; Castelao, E; Grigoroiu-Serbanescu, M; Forstner, A J; Strohmaier, J; Hecker, J; Schulze, T G; Müller-Myhsok, B; Reif, A; Mitchell, P B; Martin, N G; Schofield, P R; Cichon, S; Nöthen, M M; Walter, H; Erk, S; Heinz, A; Amin, N; van Duijn, C M; Meyer-Lindenberg, A; Tost, H; Xiao, X; Yamamoto, T; Rietschel, M; Li, M
2018-02-01
Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.
Shively, Sharon B; Edgerton, Sarah L; Iacono, Diego; Purohit, Dushyant P; Qu, Bao-Xi; Haroutunian, Vahram; Davis, Kenneth L; Diaz-Arrastia, Ramon; Perl, Daniel P
2017-03-01
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild impact traumatic brain injury from contact sports. Recently, a consensus panel defined the pathognomonic lesion for CTE as accumulations of abnormally hyperphosphorylated tau (p-tau) in neurons (neurofibrillary tangles), astrocytes and cell processes distributed around small blood vessels at sulcal depths in irregular patterns within the cortex. The pathophysiological mechanism for this lesion is unknown. Moreover, a subset of CTE cases harbors cortical β-amyloid plaques. In this study, we analyzed postmortem brain tissues from five institutionalized patients with schizophrenia and history of surgical leucotomy with subsequent survival of at least another 40 years. Because leucotomy involves severing axons bilaterally in prefrontal cortex, this surgical procedure represents a human model of single traumatic brain injury with severe axonal damage and no external impact. We examined cortical tissues at the leucotomy site and at both prefrontal cortex rostral and frontal cortex caudal to the leucotomy site. For comparison, we analyzed brain tissues at equivalent neuroanatomical sites from non-leucotomized patients with schizophrenia, matched in age and gender. All five leucotomy cases revealed severe white matter damage with dense astrogliosis at the axotomy site and also neurofibrillary tangles and p-tau immunoreactive neurites in the overlying gray matter. Four cases displayed p-tau immunoreactivity in neurons, astrocytes and cell processes encompassing blood vessels at cortical sulcal depths in irregular patterns, similar to CTE. The three cases with apolipoprotein E ε4 haplotype showed scattered β-amyloid plaques in the overlying gray matter, but not the two cases with apolipoprotein E ε3/3 genotype. Brain tissue samples from prefrontal cortex rostral and frontal cortex caudal to the leucotomy site, and all cortical samples from the non-leucotomized patients, showed minimal p-tau and β-amyloid pathology. These findings suggest that chronic axonal damage contributes to the unique pathology of CTE over time.
Old Maids: Aging and Its Impact on Microglia Function
Koellhoffer, Edward C.; McCullough, Louise D.; Ritzel, Rodney M.
2017-01-01
Microglia are highly active and vigilant housekeepers of the central nervous system that function to promote neuronal growth and activity. With advanced age, however, dysregulated inflammatory signaling and defects in phagocytosis impede their ability to perform the most essential of homeostatic functions, including immune surveillance and debris clearance. Microglial activation is one of the hallmarks of the aging brain and coincides with age-related neurodegeneration and cognitive decline. Age-associated microglial dysfunction leads to cellular senescence and can profoundly alter the response to sterile injuries and immune diseases, often resulting in maladaptive responses, chronic inflammation, and worsened outcomes after injury. Our knowledge of microglia aging and the factors that regulate age-related microglial dysfunction remain limited, as the majority of pre-clinical studies are performed in young animals, and human brain samples are difficult to obtain quickly post-mortem or in large numbers. This review outlines the impact of normal aging on microglial function, highlights the potential mechanisms underlying age-related changes in microglia, and discusses how aging can shape the recovery process following injury. PMID:28379162
The Eye As a Biomarker for Alzheimer's Disease
Lim, Jeremiah K. H.; Li, Qiao-Xin; He, Zheng; Vingrys, Algis J.; Wong, Vickie H. Y.; Currier, Nicolas; Mullen, Jamie; Bui, Bang V.; Nguyen, Christine T. O.
2016-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in dementia and eventual death. It is the leading cause of dementia and the number of cases are projected to rise in the next few decades. Pathological hallmarks of AD include the presence of hyperphosphorylated tau and amyloid protein deposition. Currently, these pathological biomarkers are detected either through cerebrospinal fluid analysis, brain imaging or post-mortem. Though effective, these methods are not widely available due to issues such as the difficulty in acquiring samples, lack of infrastructure or high cost. Given that the eye possesses clear optics and shares many neural and vascular similarities to the brain, it offers a direct window to cerebral pathology. These unique characteristics lend itself to being a relatively inexpensive biomarker for AD which carries the potential for wide implementation. The development of ocular biomarkers can have far implications in the discovery of treatments which can improve the quality of lives of patients. In this review, we consider the current evidence for ocular biomarkers in AD and explore potential future avenues of research in this area. PMID:27909396
Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method
Segerström, Lova; Gustavsson, Jenny
2016-01-01
Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg6 (LARG), and Met-enkephalin-Arg6-Phe7 (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid peptide analysis. The result is improved diagnostic and research value of the samples with great benefits for basic research and clinical work. PMID:27007059
Autism Post-Mortem Neuroinformatic Resource: The Autism Tissue Program (ATP) Informatics Portal
ERIC Educational Resources Information Center
Brimacombe, Michael B.; Pickett, Richard; Pickett, Jane
2007-01-01
The Autism Tissue Program (ATP) was established to oversee and manage brain donations related to neurological research in autism. The ATP Informatics Portal (www.atpportal.org) is an integrated data access system based on Oracle technology, developed to provide access for researchers to information on this rare tissue resource. It also permits…
Swift, B
1998-11-30
Estimating the post-mortem interval in skeletal remains is a notoriously difficult task; forensic pathologists often rely heavily upon experience in recognising morphological appearances. Previous techniques have involved measuring physical or chemical changes within the hydroxyapatite matrix, radiocarbon dating and 90Sr dating, though no individual test has been advocated. Within this paper it is proposed that measuring the equilibrium between two naturally occurring radio-isotopes, 210Po and 210Pb, and comparison with post-mortem examination samples would produce a new method of dating human skeletal remains. Possible limitations exist, notably the effect of diagenesis, time limitations and relative cost, though this technique could provide a relatively accurate means of determining the post-mortem interval. It is therefore proposed that a large study be undertaken to provide a calibration scale against which bones uncovered can be dated.
The detection of African horse sickness virus antigens and antibodies in young Equidae.
Hamblin, C.; Anderson, E. C.; Mellor, P. S.; Graham, S. D.; Mertens, P. P.; Burroughs, J. N.
1992-01-01
Four ponies were each inoculated with a different serotype of African horse sickness virus (AHSV) which had been passaged through cell culture in order to achieve attenuation. Three of the ponies died suddenly after showing mild clinical signs, the fourth pony remained clinically normal and was killed at day 38. Infectious AHSV was isolated from blood samples collected at intervals from all four ponies. Positive antigen ELISA reactions were only observed with blood samples from two of the ponies on the two days preceding death. Specific AHSV antibodies were detected by ELISA in serum samples from the other two ponies although one eventually died. African horse sickness viral antigens were detected by ELISA in post-mortem tissue samples collected from all four ponies. No infectious virus could be detected in tissue samples taken post-mortem from the pony which survived African horse sickness (AHS) infection. In the event of a suspected outbreak of AHS it is recommended that sera and heparinized blood should be tested for specific antibodies and AHSV antigen respectively. When available, post-mortem tissues, including spleen, heart, lung and liver, should also be tested for AHSV antigen. Although the ELISA used for the detection of AHSV antigen is highly sensitive and specific, negative ELISA results should be confirmed by virus isolation attempts. PMID:1547837
Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.
2013-01-01
Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789
Secondary intracranial neoplasia in the dog: 177 cases (1986-2003).
Snyder, J M; Lipitz, L; Skorupski, K A; Shofer, F S; Van Winkle, T J
2008-01-01
This study investigates the frequency, location, and clinical findings associated with 177 secondary brain tumors in dogs. Secondary intracranial neoplasia is more common than primary intracranial neoplasia in dogs during the time period studied, and hemangiosarcoma (HSA) is the most common secondary intracranial tumor. One hundred and seventy-seven client-owned dogs presented to the Matthew J. Ryan Veterinary Hospital between 1986 and 2003. Medical records were searched for a diagnosis of intracranial neoplasia in dogs who underwent complete postmortem examination. Of these dogs, those with a diagnosis of primary intracranial neoplasia were excluded. Of the 177 secondary brain tumors, 51 (29%) were HSAs, 44 (25%) were pituitary tumors, 21 (12%) were lymphosarcomas, and 21 (12%) were metastatic carcinomas. The average age at diagnosis was 9.6 +/- 3.0 years. Most tumors were located in the cerebrum, and a mentation change was the most common presenting clinical sign. On postmortem examination, the same tumor that was in the brain was also present in the lung in 84 cases (47%), in the kidney in 62 cases (35%), and in the heart in 55 cases (31%). Secondary intracranial neoplasia in dogs was more common than primary intracranial neoplasia during the time period studied. Many of these dogs had related disease in other body systems that was apparent on diagnostic tests such as thoracic radiography.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
2012-03-01
The present experiment was conducted to provide a validation of a previously developed model for online classification of US Select carcasses for LM tenderness based on visible and near-infrared (VISNIR) spectroscopy and to determine if the accuracy of VISNIR-based tenderness classification could be enhanced by making measurements after postmortem aging. Spectroscopy was conducted online, during carcass grading, at a large-scale commercial fed beef-processing facility, and the strip loin was obtained from the left side of US Select carcasses (n = 467). Slice shear force (SSF) was measured on fresh steaks at 2 and 14 d postmortem. Online VISNIR tenderness classes differed in mean SSF values at both 2 d (29.4 vs. 33.6 kg) and 14 d (18.0 vs. 21.2 kg) postmortem (P < 10(-7)). Online VISNIR tenderness classes differed in both the percentage of carcasses with LM SSF values greater than 40 kg at 2 d postmortem (5.1 vs. 21.0%; P < 10(-6)) and the percentage of carcasses with LM SSF values greater than 25 kg at 14 d postmortem (6.8 vs. 23.2%; P < 10(-5)). Whereas 15.0% of the carcasses sampled for this experiment had LM SSF values greater than 25 kg at 14 d postmortem, only 6.8% of the carcasses classified as tender by VISNIR had LM SSF values greater than 25 kg. All the carcasses sampled that had LM SSF values greater than 35 kg at 14 d postmortem were accurately classified as tough by VISNIR. Before measurement of SSF on d 14, VISNIR spectroscopy was conducted on the SSF steak. Tenderness classes based on d 14 VISNIR spectra differed both in mean SSF value at 14 d postmortem (17.7 vs. 21.6 kg; P < 10(-11)) and the percentage of carcasses with LM SSF values greater than 25 kg at 14 d postmortem (7.3 vs. 22.7%; P < 10(-5)). These data support our previous work showing that VISNIR spectroscopy can be used to classify US Select carcasses noninvasively for LM tenderness, and the results establish that this technology could also be applied to aged US Select strip loins. This technology would allow packing companies and other segments of the beef marketing chain to identify US Select carcasses or strip loins that excel in LM tenderness for use in branded beef programs.
Disconnection of the Ascending Arousal System in Traumatic Coma
Edlow, Brian L.; Haynes, Robin L.; Takahashi, Emi; Klein, Joshua P.; Cummings, Peter; Benner, Thomas; Greer, David M.; Greenberg, Steven M.; Wu, Ona; Kinney, Hannah C.; Folkerth, Rebecca D.
2013-01-01
Traumatic coma is associated with disruption of axonal pathways throughout the brain but the specific pathways involved in humans are incompletely understood. In this study, we used high angular resolution diffusion imaging (HARDI) to map the connectivity of axonal pathways that mediate the 2 critical components of consciousness – arousal and awareness – in the postmortem brain of a 62-year-old woman with acute traumatic coma and in 2 control brains. HARDI tractography guided tissue sampling in the neuropathological analysis. HARDI tractography demonstrated complete disruption of white matter pathways connecting brainstem arousal nuclei to the basal forebrain and thalamic intralaminar and reticular nuclei. In contrast, hemispheric arousal pathways connecting the thalamus and basal forebrain to the cerebral cortex were only partially disrupted, as were the cortical “awareness pathways.” Neuropathologic examination, which utilized β-amyloid precursor protein and fractin immunomarkers, revealed axonal injury in the white matter of the brainstem and cerebral hemispheres that corresponded to sites of HARDI tract disruption. Axonal injury was also present within the grey matter of the hypothalamus, thalamus, basal forebrain, and cerebral cortex. We propose that traumatic coma may be a subcortical disconnection syndrome related to the disconnection of specific brainstem arousal nuclei from the thalamus and basal forebrain. PMID:23656993
Sams, A R; Dzuik, C S
1999-10-01
This study was conducted to evaluate the combined rigor-accelerating effects of postmortem electrical stimulation (ES) and argon-induced anoxia (Ar) of broiler chickens. One hundred broilers were processed in the following treatments: untreated controls, ES, Ar, or Ar with ES (Ar + ES). Breast fillets were harvested at 1 h postmortem for all treatments or at 1 and 6 h postmortem for the control carcasses. Fillets were sampled for pH and ratio of inosine to adenosine (R-value) and were then individually quick frozen (IQF) or aged on ice (AOI) until 24 h postmortem. Color was measured in the AOI fillets at 24 h postmortem. All fillets were then cooked and evaluated for Allo-Kramer shear value. The Ar treatment accelerated the normal pH decline, whereas the ES and AR + ES treatments yielded even lower pH values at 1 h postmortem. The Ar + ES treatment had a greater R-value than the ES treatment, which was greater than either the Ar or 1-h controls, which, in turn, were not different from each other. The ES treatment had the lowest L* value, and ES, Ar, and Ar + ES produced significantly higher a* values than the 1-h controls. For the IQF fillets, the ES and Ar + ES treatments were not different in shear value but were lower than Ar, which was lower than the 1-h controls. The same was true for the AOI fillets except that the ES and the Ar treatments were not different. These results indicated that although ES and Ar had rigor-accelerating and tenderizing effects, ES seemed to be more effective than Ar; there was little enhancement when Ar was added to the ES treatment and fillets were deboned at 1 h postmortem.
Chapenko, Svetlana; Roga, Silvija; Skuja, Sandra; Rasa, Santa; Cistjakovs, Maksims; Svirskis, Simons; Zaserska, Zane; Groma, Valerija; Murovska, Modra
2016-08-01
In this autopsy-based study, human herpesvirus-6 (HHV-6) and -7 (HHV-7) genomic sequence frequency, HHV-6 variants, HHV-6 load and the expression of HHV-6 antigens in brain samples from the individuals, with and without unspecified encephalopathy (controls), using nested and real-time polymerase chain reactions, restriction endonuclease, and immunohistochemical analysis were examined. GraphPad Prism 6.0 Mann-Whitney nonparametric and chi-square test and Fisher's exact test were used for statistical analysis. The encephalopathy diagnoses were shown by magnetic resonance imaging made during their lifetime and macro- and microscopically studied autopsy tissue materials. Widespread HHV-6 and/or HHV-7 positivity was detected in the brain tissue of various individuals with encephalopathy, as well as in controls (51/57, 89.4 % and 35/51, 68.6 %, respectively; p = 0.009). Significantly higher detection frequency of single HHV-6 and concurrent HHV-6 + HHV-7 DNA was found in pia mater meninges, frontal lobe, temporal lobe, and olfactory tract DNAs in individuals with encephalopathy compared to the control group. HHV-6 load and higher frequency of the viral load >10 copies/10(6) cells significantly differed in samples from individuals with and without encephalopathy. The expression of HHV-6 antigens was revealed in different neural cell types with strong predominance in the encephalopathy group. In all HHV-6-positive autopsy samples of individuals with and without encephalopathy, HHV-6B was revealed. Significantly higher detection frequency of beta-herpesvirus DNA, more often detected HHV-6 load >10 copies/10(6) cells, as well as the expression of HHV-6 antigens in different brain tissue samples from individuals with encephalopathy in comparison with control group indicate on potential involvement of these viruses in encephalopathy development.
Fatemi, S. Hossein; Folsom, Timothy D.
2016-01-01
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in Fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. PMID:25432637
Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.
Dong, Hui; Hwang, Seong-Min; Wendland, Michael; You, Lixing; Clarke, John; Inglis, Ben
2017-12-01
To investigate tissue-specific differences, a quantitative comparison was made between relaxation dispersion in postmortem pig brain measured at ultralow fields (ULF) and spin locking at 7 tesla (T). The goal was to determine whether ULF-MRI has potential advantages for in vivo human brain imaging. Separate specimens of gray matter and white matter were investigated using an ULF-MRI system with superconducting quantum interference device (SQUID) signal detection to measure T1ULF at fields from 58.7 to 235.0 μT and using a commercial MRI scanner to measure T1ρ7T at spin-locking fields from 5.0 to 235.0 μT. At matched field strengths, T1ρ7T is 50 to 100% longer than T1ULF. Furthermore, dispersion in T1ULF is close to linear between 58.7 and 235 µT, whereas dispersion in T1ρ7T is highly nonlinear over the same range. A subtle elbow in the T1ULF dispersion at approximately 140 µT is tentatively attributed to the local dipolar field of macromolecules. It is suggested that different relaxation mechanisms dominate each method and that ULF-MRI has a fundamentally different sensitivity to the macromolecular structure of neural tissue. Ultralow-field MRI may offer distinct, quantitative advantages for human brain imaging, while simultaneously avoiding the severe heating limitation imposed on high-field spin locking. Magn Reson Med 78:2342-2351, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Prinsloo, Megan; Pillay-van Wyk, Victoria; Gwebushe, Nomonde; Mathews, Shanaaz; Martin, Lorna J; Laubscher, Ria; Abrahams, Naeemah; Msemburi, William; Lombard, Carl; Bradshaw, Debbie
2015-01-01
Abstract Objective To investigate injury-related mortality in South Africa using a nationally representative sample and compare the results with previous estimates. Methods We conducted a retrospective descriptive study of medico-legal postmortem investigation data from mortuaries using a multistage random sample, stratified by urban and non-urban areas and mortuary size. We calculated age-specific and age-standardized mortality rates for external causes of death. Findings Postmortem reports revealed 52 493 injury-related deaths in 2009 (95% confidence interval, CI: 46 930–58 057). Almost half (25 499) were intentionally inflicted. Age-standardized mortality rates per 100 000 population were as follows: all injuries: 109.0 (95% CI: 97.1–121.0); homicide 38.4 (95% CI: 33.8–43.0; suicide 13.4 (95% CI: 11.6–15.2) and road-traffic injury 36.1 (95% CI: 30.9–41.3). Using postmortem reports, we found more than three times as many deaths from homicide and road-traffic injury than had been recorded by vital registration for this period. The homicide rate was similar to the estimate for South Africa from a global analysis, but road-traffic and suicide rates were almost fourfold higher. Conclusion This is the first nationally representative sample of injury-related mortality in South Africa. It provides more accurate estimates and cause-specific profiles that are not available from other sources. PMID:26229201
Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric
2012-01-01
Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638
Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric
2012-01-01
Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.
Yoshizawa, Hidenori; Motooka, Daisuke; Matsumoto, Yuki; Katada, Ryuichi; Nakamura, Shota; Morii, Eiichi; Iida, Tetsuya; Matsumoto, Hiroshi
2018-05-01
Post-mortem detection of pathogenetic microorganisms in severe infectious death is significantly important for diagnosing the cause of death as well as for public health. However, it is difficult to recognize whether a microorganism detected from post-mortem materials is truly pathogenic or not. We report a case of severe soft tissue infection due to Streptococcus oralis subsp. tigurinus (S. tigurinus), a recently reported species, in which whole-genome analysis was performed to clarify its pathogenicity. A 46-year-old woman had died with symptoms of a severe infectious disease. A post-mortem examination was performed by a medical examiner. The external findings suggested a soft tissue infection; subsequently, pathological specimens sampled by necropsy revealed findings compatible with necrotizing fasciitis. In the post-mortem bacterial test, S. tigurinus was detected from the localized autopsy sample. Whole-genome sequencing was performed to analyze its pathogenicity and detected a strain of S. tigurinus with genetic determinants that were specific and unique to its highly virulent strains as a result of gene annotation. Utilizing various technologies, such as whole-genome sequencing, may be a powerful tool for diagnosing the cause of infectious death accurately and safely. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Postmortem in vitro ethanol production-It could be more common than we think!
Quintas, Maria José; Costa, Pedro; Melo, Paula; Castro, André; Franco, João Miguel; Teixeira, Helena M
2017-05-01
The blood alcohol concentration (BAC) is the most frequent determination in a Forensic Toxicology Laboratory. Despite its apparent simplicity, the results interpretation can be complex and always have relevant social and legal implications, particularly in postmortem analysis. In the present report we describe the case of a 55-year-old male with an apparent natural death by myocardial infarction, whose initial BAC was 0.18g/L but, in repeated determinations prompted by discrepancies observed in the first two, it rapidly increased to 0.85g/L three days later, leading to the suspicion of in vitro ethanol production. A microbiological examination of the sample revealed the presence of the bacteria Escherichia coli and Enterococcus faecalis, and yeast Candida parapsilosis, known for their involvement in ethanol production. Although this is a case report and it is not meant to be generalizable, we discuss an existing large body of scientific literature showing the difficulties, limitations and some relevant medico-legal questions regarding BAC determinations in postmortem samples and their interpretation, particularly in the context of plausible in vitro ethanol production. The key conclusion is that evaluating a postmortem BAC is a complex and multifactorial process that always deserves a thorough analysis and a careful interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
Shively, Sharon Baughman; Horkayne-Szakaly, Iren; Jones, Robert V; Kelly, James P; Armstrong, Regina C; Perl, Daniel P
2016-08-01
No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. Defense Health Program of the United States Department of Defense. Copyright © 2016 Elsevier Ltd. All rights reserved.
Poynton, Clare; Jenkinson, Mark; Adalsteinsson, Elfar; Sullivan, Edith V.; Pfefferbaum, Adolf; Wells, William
2015-01-01
There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or ‘QSIP’. The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase (FDRI), and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in-vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. PMID:25248179
Lin, Kun-Ju; Hsu, Wen-Chuin; Hsiao, Ing-Tsung; Wey, Shiaw-Pyng; Jin, Lee-Way; Skovronsky, Daniel; Wai, Yau-Yau; Chang, Hsiu-Ping; Lo, Chuan-Wei; Yao, Cheng Hsiang; Yen, Tzu-Chen; Kung, Mei-Ping
2010-05-01
The compound (E)-4-(2-(6-(2-(2-(2-(18)F-fluoroethoxy)ethoxy)ethoxy) pyridin-3-yl)vinyl)-N-methylbenzenamine ([(18)F]AV-45) is a novel radiopharmaceutical capable of selectively binding to beta-amyloid (A beta) plaques. This pilot study reports the safety, biodistribution, and radiation dosimetry of [(18)F]AV-45 in human subjects. In vitro autoradiography and fluorescent staining of postmortem brain tissue from patients with Alzheimer's disease (AD) and cognitively healthy subjects were performed to assess the specificity of the tracer. Biodistribution was assessed in three healthy elderly subjects (mean age: 60.0+/-5.2 years) who underwent 3-h whole-body positron emission tomography (PET)/computed tomographic (CT) scans after a bolus injection of 381.9+/-13.9 MBq of [(18)F]AV-45. Another six subjects (three AD patients and three healthy controls, mean age: 67.7+/-13.6 years) underwent brain PET studies. Source organs were delineated on PET/CT. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. In vitro autoradiography revealed exquisitely high specific binding of [(18)F]AV-45 to postmortem AD brain sections, but not to the control sections. There were no serious adverse events throughout the study period. The peak uptake of the tracer in the brain was 5.12+/-0.41% of the injected dose. The highest absorbed organ dose was to the gallbladder wall (184.7+/-78.6 microGy/MBq, 4.8 h voiding interval). The effective dose equivalent and effective dose values for [(18)F]AV-45 were 33.8+/-3.4 microSv/MBq and 19.3+/-1.3 microSv/MBq, respectively. [(18)F]AV-45 binds specifically to A beta in vitro, and is a safe PET tracer for studying A beta distribution in human brain. The dosimetry is suitable for clinical and research application. (c) 2010 Elsevier Inc. All rights reserved.
Grabež, V; Kathri, M; Phung, V; Moe, K M; Slinde, E; Skaugen, M; Saarem, K; Egelandsdal, B
2015-04-01
Oxygen consumption rate (OCR) of muscle fibers from bovine semimembranosus muscle of 41 animals was investigated 3 to 4 h and 3 wk postmortem. Significant relations (P < 0.05) were found between OCR measurements and Warner-Bratzler shear force measurement. Muscles with high mitochondrial OCR after 3 to 4 h and low nonmitochondrial oxygen consumption gave more tender meat. Tender (22.92 ± 2.2 N/cm2) and tough (72.98 ± 7.2 N/cm2) meat samples (4 samples each), separated based on their OCR measurements, were selected for proteomic studies using mitochondria isolated approximately 2.5 h postmortem. Twenty-six differently expressed proteins (P < 0.05) were identified in tender meat and 19 in tough meat. In tender meat, the more prevalent antioxidant and chaperon enzymes may reduce reactive oxygen species and prolong oxygen removal by the electron transport system (ETS). Glycolytic, Krebs cycle, and ETS enzymes were also more abundant in tender meat
Reese, Edmund A.; Cheon, Yewon; Ramadan, Epolia; Kim, Hyung-Wook; Chang, Lisa; Rao, Jagadeesh S.; Rapoport, Stanley I.; Taha, Ameer Y.
2012-01-01
In rats, FDA-approved mood stabilizers used for treating bipolar disorder (BD) selectively downregulate brain markers of the arachidonic acid (AA) cascade, which are upregulated in postmortem BD brain. Phase III clinical trials show that gabapentin (GBP) is ineffective in treating BD. We hypothesized that GBP would not alter the rat brain AA cascade. Chronic GBP (10 mg/kg body weight, injected i.p. for 30 days) compared to saline vehicle did not significantly alter brain expression or activity of AA-selective cytosolic phospholipase A2 (cPLA2) IVA or secretory (s) PLA2 IIA, activity of cyclooxygenase-2, or prostaglandin or thromboxane concentrations. Plasma AA concentration was unaffected. These results, taken with evidence of an upregulated AA cascade in the BD brain and that approved mood stabilizers downregulate rat brain AA cascade, support the hypothesis that effective anti-BD drugs act by targeting the AA cascade, and suggest that the rat model might be used for drug screening PMID:22841517
Bawazeer, Sami; Muhsen Ali, Ali; Alhawiti, Aliyah; Khalaf, Abedawn; Gibson, Colin; Tusiimire, Jonans; Watson, David G
2017-05-01
Separation of sugar isomers extracted from biological samples is challenging because of their natural occurrence as alpha and beta anomers and, in the case of hexoses, in their pyranose and furanose forms. A reductive amination method was developed for the tagging of sugars with the aim of it becoming part of a metabolomics work flow. The best separation of the common hexoses (glucose, fructose, mannose and galactose) was achieved when 2 H 5 -aniline was used as the tagging reagent in combination with separation on a ZICHILIC column. The method was used to tag a range of sugars including pentoses and uronic acids. The method was simple to perform and was able to improve both the separation of sugars and their response to electrospray ionisation. The method was applied to the profiling of sugars in urine where a number of hexose and pentose isomers could be observed. It was also applied to the quantification of sugars in post-mortem brain samples from three control samples and three samples from individuals who had suffered from bipolar disorder. Copyright © 2017 Elsevier B.V. All rights reserved.
In vivo studies of brain development by magnetic resonance techniques.
Inder, T E; Huppi, P S
2000-01-01
Understanding of the morphological development of the human brain has largely come from neuropathological studies obtained postmortem. Magnetic resonance (MR) techniques have recently allowed the provision of detailed structural, metabolic, and functional information in vivo on the human brain. These techniques have been utilized in studies from premature infants to adults and have provided invaluable data on the sequence of normal human brain development. This article will focus on MR techniques including conventional structural MR imaging techniques, quantitative morphometric MR techniques, diffusion weighted MR techniques, and MR spectroscopy. In order to understand the potential applications and limitations of MR techniques, relevant physical and biological principles for each of the MR techniques are first reviewed. This is followed by a review of the understanding of the sequence of normal brain development utilizing these techniques. MRDD Research Reviews 6:59-67, 2000. Copyright 2000 Wiley-Liss, Inc.
Postmortem succession of gut microbial communities in deceased human subjects
Hauther, Kathleen A.
2017-01-01
The human microbiome has demonstrated an importance for the health and functioning in living individuals. However, the fate of the microbiome after death is less understood. In addition to a better understanding of microbe-mediated decomposition processes, postmortem succession of human-associated microbial communities has been suggested as a possible forensic tool for estimating time since death, or postmortem interval (PMI). The objective of our study was to document postmortem changes in human gut bacterial communities. Gut microflora were repeatedly sampled from the caeca of cadavers as they decayed under natural environmental conditions. 16S rRNA gene amplicon sequencing revealed that over time, bacterial richness significantly increased (rs = 0.449) while diversity decreased (rs = − 0.701). The composition of gut bacterial communities changed in a similar manner over time towards a common decay community. OTUs belonging to Bacteroidales (Bacteroides, Parabacteroides) significantly declined while Clostridiales (Clostridium, Anaerosphaera) and the fly-associated Gammaproteobacteria Ignatzschineria and Wohlfahrtiimonas increased. Our examination of human caeca microflora in decomposing cadavers adds to the growing literature on postmortem microbial communities, which will ultimately contribute to a better understanding of decomposition processes. PMID:28626612
Lin, Hancheng; Luo, Yiwen; Wang, Lei; Deng, Kaifei; Sun, Qiran; Fang, Ruoxi; Wei, Xin; Zha, Shuai; Wang, Zhenyuan; Huang, Ping
2018-03-01
Anaphylaxis is a rapid allergic reaction that may cause sudden death. Currently, postmortem diagnosis of anaphylactic shock is sometimes difficult and often achieved through exclusion. The aim of our study was to investigate whether Fourier transform infrared (FTIR) microspectroscopy combined with pattern recognition methods would be complementary to traditional methods and provide a more accurate postmortem diagnosis of fatal anaphylactic shock. First, the results of spectral peak area analysis showed that the pulmonary edema fluid of the fatal anaphylactic shock group was richer in protein components than the control group, which included mechanical asphyxia, brain injury, and acute cardiac death. Subsequently, principle component analysis (PCA) was performed and showed that the anaphylactic shock group contained more turn and α-helix protein structures as well as less tyrosine-rich proteins than the control group. Ultimately, a partial least-square discriminant analysis (PLS-DA) model combined with a variables selection method called the genetic algorithm (GA) was built and demonstrated good separation between these two groups. This pilot study demonstrates that FTIR microspectroscopy has the potential to be an effective aid for postmortem diagnosis of fatal anaphylactic shock.
Benedictus, A; Hogeveen, H; Berends, B R
2009-06-01
Since 1996, bovine spongiform encephalopathy (BSE) in cattle has been linked to a new variant of Creutzfeldt-Jakob disease (vCJD), a fatal brain disease in man. This paper assessed the cost-effectiveness of BSE control strategies instituted by the European Commission. In a Monte Carlo simulation model, a non-intervention baseline scenario was compared to three intervention strategies: removal of specified risk materials from slaughter animals, post-mortem testing for BSE and the culling of feed and age cohorts of BSE cases. The food risk in the baseline scenario ranged from 16.98 lost life years in 2002 to 2.69 lost life years in 2005. Removing specified risk materials removal practices, post-mortem testing and post-mortem testing plus cohort culling reduced this risk with 93%, 82.7% and 83.1%. The estimated cost-effectiveness of all BSE measures in The Netherlands ranged from 4.3 million euros per life year saved in 2002 to 17.7 million euros in 2005. It was discussed that the cost-effectiveness of BSE control strategies will further deviate from regular health economics thresholds as BSE prevalence and incidence declines.
Shoff, Elisa N; Zaney, M Elizabeth; Kahl, Joseph H; Hime, George W; Boland, Diane M
2017-07-01
Since 2013, the Miami-Dade County Medical Examiner Department has experienced an increase in the number of opioid-related deaths. The majority of cases coincided with the introduction of fentanyl into the local heroin supply. From 2014 to 2015, Miami-Dade County experienced a near 600% increase in fentanyl-related deaths, followed by an additional 200% increase in 2016. In 2015, two novel fentanyl analogs were identified in medical examiner cases: beta-hydroxythiofentanyl and acetyl fentanyl. In 2016, four additional fentanyl analogs emerged: para-fluoroisobutyryl fentanyl, butyryl fentanyl, furanyl fentanyl and carfentanil, as well as the synthetic opioid U-47700. In order to address this epidemic, a method was developed and validated to identify 44 opioid-related and analgesic compounds in postmortem samples using ultra high performance liquid chromatography ion trap mass spectrometry with MSn capabilities. The limit of detection for all compounds ranged from 0.1 to 5 ng/mL, with a majority having MS3 spectral fragmentation. Blood, urine, liver or brain specimens from ~500 postmortem cases were submitted for analysis based on case history and/or initial screening results. Of those cases, 375 were positive for illicit fentanyl and/or one or more fentanyl analogs. Due to the potency of these compounds, they were almost always included in the cause of death. Worth emphasizing and extremely alarming is the detection of carfentanil in 134 cases, 104 of which were initially missed by gas chromatography mass spectrometry. By incorporating this sensitive, highly specific, and evolving screening procedure into the workflow, the toxicology laboratory continues to effectively assist the medical examiners in determining the cause and manner of death of decedents in Miami-Dade County. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami
2018-05-01
Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.
McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J
2017-11-01
Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate <45 mL/min/1.73 m 2 ) and hepatobiliary dysfunction at MR examination. Gadolinium deposition in the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial abnormalities that might affect the permeability of the blood-brain barrier. These findings challenge current understanding of the biodistribution of these contrast agents and their safety. © RSNA, 2017.
Silveira, Júlia Angélica Gonçalves da; Rabelo, Elida Mara Leite; Lima, Paula Cristina Senra; Chaves, Bárbara Neves; Ribeiro, Múcio Flávio Barbosa
2014-01-01
Tick-borne infections can result in serious health problems for wild ruminants, and some of these infectious agents can be considered zoonosis. The aim of the present study was the post-mortem detection of hemoparasites in free-living Mazama gouazoubira from Minas Gerais state, Brazil. The deer samples consisted of free-living M. gouazoubira (n = 9) individuals that died after capture. Necropsy examinations of the carcasses were performed to search for macroscopic alterations. Organ samples were collected for subsequent imprint slides, and nested PCR assays were performed to detect hemoparasite species. Imprint slide assays from four deer showed erythrocytes infected with Piroplasmida small trophozoites, and A. marginale corpuscles were observed in erythrocytes from two animals. A. marginale and trophozoite co-infections occurred in two deer. A nested PCR analysis of the organs showed that six of the nine samples were positive for Theileria sp., five were positive for A. phagocytophilum and three were positive for A. marginale, with co-infection occurring in four deer. The results of the present study demonstrate that post-mortem diagnostics using imprint slides and molecular assays are an effective method for detecting hemoparasites in organs.
Predicting aged pork quality using a portable Raman device.
Santos, C C; Zhao, J; Dong, X; Lonergan, S M; Huff-Lonergan, E; Outhouse, A; Carlson, K B; Prusa, K J; Fedler, C A; Yu, C; Shackelford, S D; King, D A; Wheeler, T L
2018-05-29
The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R 2 = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as "poor" vs. "good". The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neuropathology of White Matter Lesions, Blood-Brain Barrier Dysfunction, and Dementia.
Hainsworth, Atticus H; Minett, Thais; Andoh, Joycelyn; Forster, Gillian; Bhide, Ishaan; Barrick, Thomas R; Elderfield, Kay; Jeevahan, Jamuna; Markus, Hugh S; Bridges, Leslie R
2017-10-01
We tested whether blood-brain barrier dysfunction in subcortical white matter is associated with white matter abnormalities or risk of clinical dementia in older people (n=126; mean age 86.4, SD: 7.7 years) in the MRC CFAS (Medical Research Council Cognitive Function and Ageing Study). Using digital pathology, we quantified blood-brain barrier dysfunction (defined by immunohistochemical labeling for the plasma marker fibrinogen). This was assessed within subcortical white matter tissue samples harvested from postmortem T 2 magnetic resonance imaging (MRI)-detected white matter hyperintensities, from normal-appearing white matter (distant from coexistent MRI-defined hyperintensities), and from equivalent areas in MRI normal brains. Histopathologic lesions were defined using a marker for phagocytic microglia (CD68, clone PGM1). Extent of fibrinogen labeling was not significantly associated with white matter abnormalities defined either by MRI (odds ratio, 0.90; 95% confidence interval, 0.79-1.03; P =0.130) or by histopathology (odds ratio, 0.93; 95% confidence interval, 0.77-1.12; P =0.452). Among participants with normal MRI (no detectable white matter hyperintensities), increased fibrinogen was significantly related to decreased risk of clinical dementia (odds ratio, 0.74; 95% confidence interval, 0.58-0.94; P =0.013). Among participants with histological lesions, increased fibrinogen was related to increased risk of dementia (odds ratio, 2.26; 95% confidence interval, 1.25-4.08; P =0.007). Our data suggest that some degree of blood-brain barrier dysfunction is common in older people and that this may be related to clinical dementia risk, additional to standard MRI biomarkers. © 2017 American Heart Association, Inc.
Flanagan, Robert J
2012-01-01
Analytical toxicology is a complex discipline. Simply detecting a poison in a biological sample does not necessarily mean that the individual from whom the sample was obtained had been poisoned. An analysis can prove exposure and perhaps give an indication of the magnitude of exposure, but the results have to be placed in proper context. Even if sampling was ante-mortem an analysis does not necessarily prove the effects that the drug or poison had on the victim immediately before or at the time of sampling. Tolerance is one big issue, the mechanism of exposure (how the drug got into the body) is another, and of course with post-mortem work there are always additional considerations such as site of sample collection and the possibility of post-mortem change in analyte concentration. There are also questions of quality and reliability, and whether a particular analysis and the interpretation placed upon the result are appropriate in a particular case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallant,M.; Rak, M.; Szeghalmi, A.
The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine depositsmore » were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.« less
Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.
Pahor, Kevin; Olson, Greg; Forbes, Shari L
2013-09-01
The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.
Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach.
Bereczki, Erika; Branca, Rui M; Francis, Paul T; Pereira, Joana B; Baek, Jean-Ha; Hortobágyi, Tibor; Winblad, Bengt; Ballard, Clive; Lehtiö, Janne; Aarsland, Dag
2018-02-01
See Attems and Jellinger (doi:10.1093/brain/awx360) for a scientific commentary on this article.Cognitive changes occurring throughout the pathogenesis of neurodegenerative diseases are directly linked to synaptic loss. We used in-depth proteomics to compare 32 post-mortem human brains in the prefrontal cortex of prospectively followed patients with Alzheimer's disease, Parkinson's disease with dementia, dementia with Lewy bodies and older adults without dementia. In total, we identified 10 325 proteins, 851 of which were synaptic proteins. Levels of 25 synaptic proteins were significantly altered in the various dementia groups. Significant loss of SNAP47, GAP43, SYBU (syntabulin), LRFN2, SV2C, SYT2 (synaptotagmin 2), GRIA3 and GRIA4 were further validated on a larger cohort comprised of 92 brain samples using ELISA or western blot. Cognitive impairment before death and rate of cognitive decline significantly correlated with loss of SNAP47, SYBU, LRFN2, SV2C and GRIA3 proteins. Besides differentiating Parkinson's disease dementia, dementia with Lewy bodies, and Alzheimer's disease from controls with high sensitivity and specificity, synaptic proteins also reliably discriminated Parkinson's disease dementia from Alzheimer's disease patients. Our results suggest that these particular synaptic proteins have an important predictive and discriminative molecular fingerprint in neurodegenerative diseases and could be a potential target for early disease intervention. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
O'Shea, Daniel J; Trautmann, Eric; Chandrasekaran, Chandramouli; Stavisky, Sergey; Kao, Jonathan C; Sahani, Maneesh; Ryu, Stephen; Deisseroth, Karl; Shenoy, Krishna V
2017-01-01
A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bröjer, Caroline; Agren, Erik O; Uhlhorn, Henrik; Bernodt, Karin; Jansson, Désirée S; Gavier-Widén, Dolores
2012-03-01
During the outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Sweden in 2006, disease and mortality were observed in a number of wild bird species. Encephalitis was one of the most consistent and severe findings in birds submitted for postmortem examination. However, the distribution and severity of the inflammation varied among individuals. This study characterized the encephalitis and the phenotype of the cellular infiltrate in brains of 40 birds of various species naturally infected with HPAI H5N1. Brain sections stained with hematoxylin and eosin and immunostained for influenza A viral antigen were evaluated in parallel to brain sections immunostained with antibodies against T lymphocytes (CD3+), B lymphocytes (CD79a+), macrophages (Lectin RCA-1+), and astrocytes expressing glial fibrillary acidic protein. The virus showed marked neurotropism, and the neuropathology included multifocal to diffuse areas of gliosis and inflammation in the gray matter, neuronal degeneration, neuronophagia, vacuolation of the neuropil, focal necrosis, perivascular cuffing, and meningitis. Broad ranges in severity, neuroanatomical distribution, and type of cellular infiltrate were observed among the different bird species. Since neurotropism is a key feature of HPAI H5N1 infection in birds and other species and because the clinical presentation can vary, the characterization of the inflammation in the brain is important in understanding the pathogenesis of the disease and also has important diagnostic implications for sample selection.
Schedin-Weiss, Sophia; Inoue, Mitsuhiro; Hromadkova, Lenka; Teranishi, Yasuhiro; Yamamoto, Natsuko Goto; Wiehager, Birgitta; Bogdanovic, Nenad; Winblad, Bengt; Sandebring-Matton, Anna; Frykman, Susanne; Tjernberg, Lars O
2017-08-01
Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ-secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis. Immunohistochemistry revealed MAO-B staining in neurons in the frontal cortex, hippocampus CA1 and entorhinal cortex in postmortem human brain. Interestingly, the neuronal staining intensity was higher in AD brain than in control brain in these regions. Mass spectrometric data from affinity purified γ-secretase suggested that MAO-B is a γ-secretase-associated protein, which was confirmed by immunoprecipitation and PLA, and a neuronal location of the interaction was shown. Strikingly, intraneuronal Aβ42 levels correlated with MAO-B levels, and siRNA silencing of MAO-B resulted in significantly reduced levels of intraneuronal Aβ42. Furthermore, overexpression of MAO-B enhanced Aβ production. This study shows that MAO-B levels are increased not only in astrocytes but also in pyramidal neurons in AD brain. The study also suggests that MAO-B regulates Aβ production in neurons via γ-secretase and thereby provides a key to understanding the relationship between MAO-B and AD pathogenesis. Potentially, the γ-secretase/MAO-B association may be a target for reducing Aβ levels using protein-protein interaction breakers.
NASA Astrophysics Data System (ADS)
Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen
2015-10-01
Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.
Matosin, Natalie; Fernandez-Enright, Francesca; Lum, Jeremy S; Andrews, Jessica L; Engel, Martin; Huang, Xu-Feng; Newell, Kelly A
2015-08-01
Metabotropic glutamate receptor 5 (mGluR5) is involved in hippocampal-dependent learning and memory, which are processes disrupted in schizophrenia. Recent evidence from human genetic and animal studies suggests that the regulation of mGluR5, including its interaction with trafficking molecules, may be altered in the disorder. However there have been no investigations of hippocampal mGluR5 or mGluR5 trafficking molecules in the postmortem schizophrenia brain to confirm this. In the present study, we investigated whether protein expression of mGluR5, as well as Norbin and Tamalin (modulators of mGluR5 signalling and trafficking), might be altered in the schizophrenia brain, using postmortem samples from the hippocampal CA1 region of schizophrenia subjects and matched controls (n=20/group). Protein levels of mGluR5 (total: 42%, p<0.001; monomer: 25%, p=0.011; dimer: 52%, p<0.001) and mGluR5 trafficking molecules (Norbin: 47%, p<0.001; Tamalin: 34%, p=0.009) were significantly higher in schizophrenia subjects compared to controls. To determine any influence of antipsychotic drug treatment, all proteins were also correlated with lifetime chlorpromazine equivalents in patients, and separately measured in the hippocampus of rats exposed to haloperidol or olanzapine treatment. mGluR5 was negatively correlated with lifetime antipsychotic drug exposure in schizophrenia patients, suggesting antipsychotic drugs could reduce mGluR5 protein in schizophrenia subjects. In contrast, mGluR5 and mGluR5 trafficking molecules were not altered in the hippocampus of antipsychotic drug treated rats. This investigation provides strong support for the hypothesis that mGluR5 is involved in the pathology of schizophrenia, and that alterations to mGluR5 trafficking might contribute to the hippocampal-dependent cognitive dysfunctions associated with this disorder. Copyright © 2015 Elsevier B.V. All rights reserved.
Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism.
Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Vasu, Mahesh M; Yamada, Kazuo; Ueki, Takatoshi; Iwayama, Yoshimi; Toyota, Tomoko; Tsuchiya, Kenji J; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio
2014-09-01
In a genome-wide association study of autism, zinc finger protein 804A (ZNF804A) single nucleotide polymorphisms (SNPs) were found to be nominally associated in verbally deficient individuals with autism. Zinc finger protein 804A copy number variations (CNVs) have also been observed in individuals with autism. In addition, ZNF804A is known to be involved in theory of mind (ToM) tasks, and ToM deficits are deemed responsible for the communication and social challenges faced by individuals with autism. We hypothesized that ZNF804A could be a risk gene for autism. We examined the genetic association and CNVs of ZNF804A in 841 families in which 1 or more members had autism. We compared the expression of ZNF804A in the postmortem brains of individuals with autism (n = 8) and controls (n = 13). We also assessed in vitro the effect of ZNF804A silencing on the expression of several genes known to be involved in verbal efficiency and social cognition. We found that rs7603001 was nominally associated with autism (p = 0.018). The association was stronger (p = 0.008) in the families of individuals with autism who were verbally deficient (n = 761 families). We observed ZNF804A CNVs in 7 verbally deficient boys with autism. In ZNF804A knockdown cells, the expression of synaptosomal-associated protein, 25kDa (SNAP25) was reduced compared with controls (p = 0.009). The expression of ZNF804A (p = 0.009) and SNAP25 (p = 0.009) were reduced in the anterior cingulate gyrus (ACG) of individuals with autism. There was a strong positive correlation between the expression of ZNF804A and SNAP25 in the ACG (p < 0.001). Study limitations include our small sample size of postmortem brains. Our results suggest that ZNF804A could be a potential candidate gene mediating the intermediate phenotypes associated with verbal traits in individuals with autism.
Xiao, Yongli; Sheng, Zong-Mei; Taubenberger, Jeffery K.
2015-01-01
The vast majority of surgical biopsy and post-mortem tissue samples are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. As an example, the viral RNA genome of the 1918 pandemic influenza A virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Using the protocols described here, the full genome of the 1918 virus at high coverage was determined in one high-throughput sequencing run of a cDNA library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments. This basic methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of infectious diseases. PMID:26344216
Palzer, A; Austin-Busse, R-L; Ladinig, A; Balka, G; Zoels, S; Ritzmann, M
2015-01-01
In the present study various tissues of pigs were investigated for the presence of histopathologic lesions after an experimental infection with Haemophilus (H.) parasuis serovar 5. Conventional pigs (n = 36) were divided into a control group B (n = 9) and a challenge group A (n = 27), which was infected intratracheally. Pigs that did not die prior to study termination were euthanized on day 14 post inoculation. Postmortem samples of the lung, heart, liver, kidney, spleen, left tarsal joint capsule and brain were collected. All but one pig with detectable histopathologic lesions (n = 11) showed typical macroscopic changes. Histopathologic examination of all tissue samples identified pyelitis (n = 10), synovitis (n = 7) and meningitis (n = 7) and all those animals were euthanized prior to study termination. No histopathologic lesions were found in pigs of the control group. The correlations between pyelitis and meningitis, pyelitis and synovitis and synovitis and meningitis were significant (p < 0.001). No significant correlation could be observed between the histopathologic and the clinical examination of the joints. The investigation of samples from the joints by PCR was not significantly correlated with the observed synovitis. The clinical observation of neurologic signs was significantly correlated with meningitis (p = 0.03). A significant correlation (p < 0.001) could be detected between meningitis and the detection of H. parasuis by PCR in brain samples. H. parasuis constantly causes clinical signs and pathologic lesions as soon as it infects the brain while it can infect the joints without causing histopathologic lesions. Pigs with histopathologic lesions do not always show typical clinical signs. Only few studies described the finding of kidney lesions in pigs with Glässer's disease and this is the first study to describe a pyelitis in pigs experimentally infected with H. parasuis. The observed pyelitis mainly occurred in acute cases.
Van Dam, Debby; Vermeiren, Yannick; Aerts, Tony; De Deyn, Peter Paul
2014-08-01
A fast and simple RP-HPLC method with electrochemical detection (ECD) and ion pair chromatography was developed, optimized and validated in order to simultaneously determine eight different biogenic amines and metabolites in post-mortem human brain tissue in a single-run analytical approach. The compounds of interest are the indolamine serotonin (5-hydroxytryptamine, 5-HT), the catecholamines dopamine (DA) and (nor)epinephrine ((N)E), as well as their respective metabolites, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), 5-hydroxy-3-indoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG). A two-level fractional factorial experimental design was applied to study the effect of five experimental factors (i.e. the ion-pair counter concentration, the level of organic modifier, the pH of the mobile phase, the temperature of the column, and the voltage setting of the detector) on the chromatographic behaviour. The cross effect between the five quantitative factors and the capacity and separation factors of the analytes were then analysed using a Standard Least Squares model. The optimized method was fully validated according to the requirements of SFSTP (Société Française des Sciences et Techniques Pharmaceutiques). Our human brain tissue sample preparation procedure is straightforward and relatively short, which allows samples to be loaded onto the HPLC system within approximately 4h. Additionally, a high sample throughput was achieved after optimization due to a total runtime of maximally 40min per sample. The conditions and settings of the HPLC system were found to be accurate with high intra and inter-assay repeatability, recovery and accuracy rates. The robust analytical method results in very low detection limits and good separation for all of the eight biogenic amines and metabolites in this complex mixture of biological analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers
Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet
2016-01-01
Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347
Anatomic Connections of the Subgenual Cingulate Region.
Vergani, Francesco; Martino, Juan; Morris, Christopher; Attems, Johannes; Ashkan, Keyoumars; DellʼAcqua, Flavio
2016-09-01
The subgenual cingulate gyrus (SCG) has been proposed as a target for deep brain stimulation (DBS) in neuropsychiatric disorders, mainly major depression. Despite promising clinical results, the mechanism of action of DBS in this region is poorly understood. Knowledge of the connections of the SCG can elucidate the network involved by DBS in this area and can help refine the targeting for DBS electrode placement. To investigate the anatomic connections of the SCG region. An anatomic study of the connections of the SCG was performed on postmortem specimens and in vivo with MR diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. Specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. Whole brain tractography was performed using spherical deconvolution tractography. Four main connections were found: (1) fibers of the cingulum, originating at the level of the SCG and terminating at the medial aspect of the temporal lobe (parahippocampal gyrus); (2) fibers running toward the base of the frontal lobe, connecting the SCG with frontopolar areas; (3) fibers running more laterally, converging onto the ventral striatum (nucleus accumbens); (4) fibers of the uncinate fasciculus, connecting the orbitofrontal with the anterior temporal region. The SCG shows a wide range of white matter connections with limbic, prefrontal, and mesiotemporal areas. These findings can help to explain the role of the SCG in DBS for psychiatric disorders. DBS, deep brain stimulationSCG, subgenual cingulate gyrus.
Lax, Nichola Z; Alston, Charlotte L; Schon, Katherine; Park, Soo-Mi; Krishnakumar, Deepa; He, Langping; Falkous, Gavin; Ogilvy-Stuart, Amanda; Lees, Christoph; King, Rosalind H; Hargreaves, Iain P; Brown, Garry K; McFarland, Robert; Dean, Andrew F; Taylor, Robert W
2015-07-01
Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6-8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues.
Lax, Nichola Z.; Alston, Charlotte L.; Schon, Katherine; Park, Soo-Mi; Krishnakumar, Deepa; He, Langping; Falkous, Gavin; Ogilvy-Stuart, Amanda; Lees, Christoph; King, Rosalind H.; Hargreaves, Iain P.; Brown, Garry K.; McFarland, Robert; Dean, Andrew F.; Taylor, Robert W.
2015-01-01
Abstract Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6–8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues. PMID:26083569
Müller, T; Loosse, C; Schrötter, A; Schnabel, A; Helling, S; Egensperger, R; Marcus, K
2011-08-01
AICD is the intracellular subdomain of the amyloid precursor protein thought to play a pivotal role as a potential transcription factor that might be of relevance for the pathophysiology of Alzheimer's disease. For its signal transduction potential AICD requires interacting proteins like FE65 and TIP60. However, many other proteins were described being able to bind to AICD. Here, we studied mRNA levels of AICD interacting proteins and found one of them (DAB1) strongly up-regulated in human post-mortem frontal cortex brain samples of AD patients. Subsequent cell culture experiments revealed that elevated DAB1 level results in the deregulation of the cellular proteome. We found the proliferation associated protein 2G4 as well as the guanine monophosphate synthetase (GMPS) significantly up-regulated in DAB1 over-expressing cells. Both proteins can be involved in cellular transcription processes supporting the hypothesis that DAB1 acts via modification of the AICD-dependent transcriptionally active complex. Of note, expression of the three components of the putative transcription complex (AICD, FE65, and TIP60 (AFT)) also revealed deregulation of the GMPS protein in an opposite fashion. Our results point to a putative relevance of AICD-dependent mechanisms in AD, caused by protein abundance changes of AICD interacting proteins, as shown for DAB1 in this work.
Robinson, Shenandoah; Mikolaenko, Irina; Thompson, Ian; Cohen, Mark L.; Goyal, Monisha
2011-01-01
Epilepsy associated with preterm birth is often refractory to anticonvulsants. Children who are born preterm are also prone to cognitive delay and behavioral problems. Brains from these children often show diffuse abnormalities in cerebral circuitry that is likely caused by disrupted development during critical stages of cortical formation. To test the hypothesis that prenatal injury impairs the developmental switch of γ-amino butyric acid (GABA)ergic synapses from excitatory to inhibitory, thereby disrupting cortical circuit formation and predisposing to epilepsy, we used immunohistochemistry to compare the expression of cation-chloride transporters that developmentally regulate postsynaptic GABAergic discharges in postmortem cerebral samples from infants born preterm with known white matter injury (n = 11) with that of controls with minimal white matter gliosis (n = 7). Controls showed the expected developmental expression of cation-chloride transporters NKCC1 and KCC2 and of calretinin, a marker of a GABAergic neuronal subpopulation. Samples from infants with white matter damage showed a significant loss of expression of both NKCC1 and KCC2 in subplate and white matter. By contrast, there were no significant differences in total cell number or glutamate transporter VGLUT1 expression. Together, these novel findings suggest a molecular mechanism involved in the disruption of a critical stage of cerebral circuit development after brain injury from preterm birth that may predispose to epilepsy. PMID:20467335
Smiley, John F.; Rosoklija, Gorazd; Mancevski, Branislav; Pergolizzi, Denise; Figarsky, Khadija; Bleiwas, Cynthia; Duma, Aleksej; Mann, J. John; Javitt, Daniel C.; Dwork, Andrew J.
2010-01-01
Postmortem and in vivo studies of schizophrenia frequently reveal reduced cortical volume, but the underlying cellular abnormalities are incompletely defined. One influential hypothesis, especially investigated in Brodmann’s area 9 of prefrontal cortex, is that the number of neurons is normal, and the volume change is caused by reduction of the surrounding neuropil. However, studies have differed on whether the cortex has the increased neuron density that is predicted by this hypothesis. In a recent study of bilateral planum temporale (PT), we reported smaller volume and width of the outer cortex (layers I-III), especially in the left hemisphere, among subjects with schizophrenia. In the present study, we measured neuron density and size in the same PT samples, and also in prefrontal area 9 of the same brains. In the PT, separate stereological measurements were made in layers II, IIIc, and VI, whereas area 9 was sampled in layer IIIb-c. In both cortical regions, there was no significant effect of schizophrenia on neuronal density or size. There was, nevertheless, a trend-level right>left hemispheric asymmetry of neuron density in the PT, which may partially explain the previously reported left>right asymmetry of cortical width. In schizophrenia, our findings suggest that closer packing of neurons may not always explain reduced cortical volume, and subtly decreased neuron number may be a contributing factor. PMID:21377842
Bartley, P M; Wright, S E; Maley, S W; Buxton, D; Nath, M; Innes, E A
2009-07-01
Balb/c mice were inoculated intraperitoneally (i.p.) with either 5 x 10(6) live virulent (group 1) or 5 x 10(6) live attenuated (group 2) tachyzoites, or Vero cells (group 3). Animals were killed at 0, 14, 28 and 42 days post-inoculation (p.i.), with the remaining mice receiving a lethal challenge on day 48 p.i. Serum, spleen and brain samples were collected post-mortem to examine humoral and cell-mediated immune responses as well as pathological lesions and to quantify parasite loads. On day 14 p.i. group 2 (attenuated) demonstrated statistically significant (P < 0.001) lower levels of mean morbidity and weight loss, while also showing significantly (P = 0.01) higher levels of splenocyte proliferation and IFN-gamma production (P = 0.003), compared to group 1 (virulent). Histology of brain samples showed milder lesions and a lower incidence of positive immunohistochemistry, demonstrating tachyzoites and tissue cysts, and statistically significant (P = 0.03) lower mean burdens of parasite DNA in group 2 (attenuated) compared to group 1 (virulent). All mice in group 2 were protected following challenge on day 48 p.i. whereas naïve control mice succumbed to the challenge. No mice from group 1 (virulent) survived beyond day 24 p.i. so they were not included in the challenge.
Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy
2007-03-30
chlorpromazine and haloperidol revolutionized the treatment of mental illness the sedating and neuroleptic side effects produced by "typical...demonstrated in rodents chronically treated with haloperidol and clozapine. We also demonstrate significantly higher levels of lactate in the postmortem...lactate levels in the cerebellum of patients with schizophrenia (n = 35) and control subjects (n = 42) and in rats chronically treated with haloperidol
The Distribution of Fluoxetine and Norfluoxetine in Postmortem Fluids and Tissues
2007-06-01
of fluoxetine and nor- fluoxetine in dogs following oral administration of fluoxetine hydrochloride ( Prozac ). J Forensic Sci, 42(5):812-6, 1997. 6...flight crews are submitted to the Federal Aviation Administration’s Civil Aerospace Medical Institute for toxicological analysis. Fluoxetine ( Prozac ...heart muscle, and brain. Specimens were extracted using solid-phase extraction and analyzed by GC/MS. Deuterated fluoxetine and norfluoxetine were
Vascular depression consensus report - a critical update.
Aizenstein, Howard J; Baskys, Andrius; Boldrini, Maura; Butters, Meryl A; Diniz, Breno S; Jaiswal, Manoj Kumar; Jellinger, Kurt A; Kruglov, Lev S; Meshandin, Ivan A; Mijajlovic, Milija D; Niklewski, Guenter; Pospos, Sarah; Raju, Keerthy; Richter, Kneginja; Steffens, David C; Taylor, Warren D; Tene, Oren
2016-11-03
Vascular depression is regarded as a subtype of late-life depression characterized by a distinct clinical presentation and an association with cerebrovascular damage. Although the term is commonly used in research settings, widely accepted diagnostic criteria are lacking and vascular depression is absent from formal psychiatric manuals such as the Diagnostic and Statistical Manual of Mental Disorders, 5 th edition - a fact that limits its use in clinical settings. Magnetic resonance imaging (MRI) techniques, showing a variety of cerebrovascular lesions, including extensive white matter hyperintensities, subcortical microvascular lesions, lacunes, and microinfarcts, in patients with late life depression, led to the introduction of the term "MRI-defined vascular depression". This diagnosis, based on clinical and MRI findings, suggests that vascular lesions lead to depression by disruption of frontal-subcortical-limbic networks involved in mood regulation. However, despite multiple MRI approaches to shed light on the spatiotemporal structural changes associated with late life depression, the causal relationship between brain changes, related lesions, and late life depression remains controversial. While postmortem studies of elderly persons who died from suicide revealed lacunes, small vessel, and Alzheimer-related pathologies, recent autopsy data challenged the role of these lesions in the pathogenesis of vascular depression. Current data propose that the vascular depression connotation should be reserved for depressed older patients with vascular pathology and evident cerebral involvement. Based on current knowledge, the correlations between intra vitam neuroimaging findings and their postmortem validity as well as the role of peripheral markers of vascular disease in late life depression are discussed. The multifold pathogenesis of vascular depression as a possible subtype of late life depression needs further elucidation. There is a need for correlative clinical, intra vitam structural and functional MRI as well as postmortem MRI and neuropathological studies in order to confirm the relationship between clinical symptomatology and changes in specific brain regions related to depression. To elucidate the causal relationship between regional vascular brain changes and vascular depression, animal models could be helpful. Current treatment options include a combination of vasoactive drugs and antidepressants, but the outcomes are still unsatisfying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnharski, I; Carranza, C; Quails, N
Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less
Burman, P; Mattsson, A F; Johannsson, G; Höybye, C; Holmer, H; Dahlqvist, P; Berinder, K; Engström, B E; Ekman, B; Erfurth, E M; Svensson, J; Wahlberg, J; Karlsson, F A
2013-04-01
Patients with hypopituitarism have an increased standardized mortality rate. The basis for this has not been fully clarified. To investigate in detail the cause of death in a large cohort of patients with hypopituitarism subjected to long-term follow-up. All-cause and cause-specific mortality in 1286 Swedish patients with hypopituitarism prospectively monitored in KIMS (Pfizer International Metabolic Database) 1995-2009 were compared to general population data in the Swedish National Cause of Death Registry. In addition, events reported in KIMS, medical records, and postmortem reports were reviewed. Standardized mortality ratios (SMR) were calculated, with stratification for gender, attained age, and calendar year during follow-up. An excess mortality was found, 120 deaths vs 84.3 expected, SMR 1.42 (95% confidence interval: 1.18-1.70). Infections, brain cancer, and sudden death were associated with significantly increased SMRs (6.32, 9.40, and 4.10, respectively). Fifteen patients, all ACTH-deficient, died from infections. Eight of these patients were considered to be in a state of adrenal crisis in connection with death (medical reports and post-mortem examinations). Another 8 patients died from de novo malignant brain tumors, 6 of which had had a benign pituitary lesion at baseline. Six of these 8 subjects had received prior radiation therapy. Two important causes of excess mortality were identified: first, adrenal crisis in response to acute stress and intercurrent illness; second, increased risk of a late appearance of de novo malignant brain tumors in patients who previously received radiotherapy. Both of these causes may be in part preventable by changes in the management of pituitary disease.
Fatemi, S Hossein; Folsom, Timothy D
2015-09-01
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Villaverde-Morcillo, S; Esteso, M C; Castaño, C; Santiago-Moreno, J
2016-02-01
Many post-mortem sperm collection techniques have been described for mammalian species, but their use in birds is scarce. This paper compares the efficacy of two post-mortem sperm retrieval techniques - the flushing and float-out methods - in the collection of rooster sperm, in conjunction with the use of two extenders, i.e., L&R-84 medium and Lake 7.1 medium. To determine whether the protective effects of these extenders against refrigeration are different for post-mortem and ejaculated sperm, pooled ejaculated samples (procured via the massage technique) were also diluted in the above extenders. Post-mortem and ejaculated sperm variables were assessed immediately at room temperature (0 h), and after refrigeration at 5°C for 24 and 48 h. The flushing method retrieved more sperm than the float-out method (596.5 ± 75.4 million sperm vs 341.0 ± 87.6 million sperm; p < 0.05); indeed, the number retrieved by the former method was similar to that obtained by massage-induced ejaculation (630.3 ± 78.2 million sperm). For sperm collected by all methods, the L&R-84 medium provided an advantage in terms of sperm motility variables at 0 h. In the refrigerated sperm samples, however, the Lake 7.1 medium was associated with higher percentages of viable sperm, and had a greater protective effect (p < 0.05) with respect to most motility variables. In conclusion, the flushing method is recommended for collecting sperm from dead birds. If this sperm needs to be refrigerated at 5°C until analysis, Lake 7.1 medium is recommended as an extender. © 2015 Blackwell Verlag GmbH.
Effect of postmortem sampling technique on the clinical significance of autopsy blood cultures.
Hove, M; Pencil, S D
1998-02-01
Our objective was to investigate the value of postmortem autopsy blood cultures performed with an iodine-subclavian technique relative to the classical method of atrial heat searing and antemortem blood cultures. The study consisted of a prospective autopsy series with each case serving as its own control relative to subsequent testing, and a retrospective survey of patients coming to autopsy who had both autopsy blood cultures and premortem blood cultures. A busy academic autopsy service (600 cases per year) at University of Texas Medical Branch Hospitals, Galveston, Texas, served as the setting for this work. The incidence of non-clinically relevant (false-positive) culture results were compared using different methods for collecting blood samples in a prospective series of 38 adult autopsy specimens. One hundred eleven adult autopsy specimens in which both postmortem and antemortem blood cultures were obtained were studied retrospectively. For both studies, positive culture results were scored as either clinically relevant or false positives based on analysis of the autopsy findings and the clinical summary. The rate of false-positive culture results obtained by an iodine-subclavian technique from blood drawn soon after death were statistically significantly lower (13%) than using the classical method of obtaining blood through the atrium after heat searing at the time of the autopsy (34%) in the same set of autopsy subjects. When autopsy results were compared with subjects' antemortem blood culture results, there was no significant difference in the rate of non-clinically relevant culture results in a paired retrospective series of antemortem blood cultures and postmortem blood cultures using the iodine-subclavian postmortem method (11.7% v 13.5%). The results indicate that autopsy blood cultures obtained using the iodine-subclavian technique have reliability equivalent to that of antemortem blood cultures.
Point-of-care hemoglobin testing for postmortem diagnosis of anemia.
Na, Joo-Young; Park, Ji Hye; Choi, Byung Ha; Kim, Hyung-Seok; Park, Jong-Tae
2018-03-01
An autopsy involves examination of a body using invasive methods such as dissection, and includes various tests using samples procured during dissection. During medicolegal autopsies, the blood carboxyhemoglobin concentration is commonly measured using the AVOXimeter® 4000 as a point-of-care test. When evaluating the body following hypovolemic shock, characteristics such as reduced livor mortis or an anemic appearance of the viscera can be identified, but these observations arequite subjective. Thus, a more objective test is required for the postmortem diagnosis of anemia. In the present study, the AVOXimeter® 4000 was used to investigate the utility of point-of-care hemoglobin testing. Hemoglobin tests were performed in 93 autopsy cases. The AVOXimeter® 4000 and the BC-2800 Auto Hematology Analyzer were used to test identical samples in 29 of these cases. The results of hemoglobin tests performed with these two devices were statistically similar (r = 0.969). The results of hemoglobin tests using postmortem blood were compared with antemortem test results from medical records from 31 cases, and these results were similar. In 13 of 17 cases of death from internal hemorrhage, hemoglobin levels were lower in the cardiac blood than in blood from the affected body cavity, likely due to compensatory changes induced by antemortem hemorrhage. It is concluded that blood hemoglobin testing may be useful as a point-of-care test for diagnosing postmortem anemia.
Effectiveness of a nonpenetrating captive bolt for euthanasia of piglets less than 3 d of age.
Casey-Trott, T M; Millman, S T; Turner, P V; Nykamp, S G; Widowski, T M
2013-11-01
The objective of this study was to determine the effectiveness of a nonpenetrating captive bolt (NPCB), the Zephyr-Euthanasia (Zephyr-E), for euthanasia of neonatal piglets<72 h of age using signs of insensibility and death, as well as postmortem assessment of traumatic brain injury (TBI). The Zephyr-E was used by 10 stock people to euthanize 100 low viability neonatal piglets from 3 commercial farrowing units and 1 research farm. Brainstem reflexes, convulsions, and heartbeat were used to assess insensibility, time of brain death, and cardiac arrest after Zephyr-E application. Hemorrhage severity and skull fracture displacement (FD) were quantified from computed tomography scans (n=10), macroscopic scoring was used to assess brain hemorrhage and skull fracture (SK) severity (n=100), and microscopic scoring was used to assess subdural (SDH) and parenchymal (PH) hemorrhage within specific brain regions that are responsible for consciousness and vital function (n=10). All 100 piglets were rendered immediately insensible without return to sensibility. On average, clonic convulsions (CC) ceased in 101 s (±7.4 SE), brain death was achieved in 229 s (±9.18 SE), and cardiac arrest occurred in 420 s (±13.57 SE). Time of cardiac arrest differed significantly among stock people when either body weight (BW: P=0.0053) or body mass index (BMI: P=0.0059) was used as a covariate. The BMI was inversely related to the duration of CC (P=0.0227). Moderate to severe hemorrhage severity was reported in 9 of 10 piglets. There was no relationship between FD and BW (P=0.8408) or BMI (P=0.6439). Macroscopic analyses indicated moderate to severe hemorrhage and SK in all piglets. No differences were found among brain sections for SDH (P=0.2302); PH was greater in the cerebral cortex than in the midbrain and brainstem (P=0.0328). The Zephyr-E NPCB reliably caused immediate, sustained insensibility followed by death in neonatal piglets. Postmortem assessment confirmed that application of the Zephyr-E caused widespread, irreversible brain damage.
Neuron number and size in prefrontal cortex of children with autism.
Courchesne, Eric; Mouton, Peter R; Calhoun, Michael E; Semendeferi, Katerina; Ahrens-Barbeau, Clelia; Hallet, Melodie J; Barnes, Cynthia Carter; Pierce, Karen
2011-11-09
Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.
Malki, Karim; Keers, Robert; Tosto, Maria Grazia; Lourdusamy, Anbarasu; Carboni, Lucia; Domenici, Enrico; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C
2014-05-07
Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of 'reactive' depression caused by early stressors differs considerably from that of 'reactive' depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD.
Rutty, Guy N; Barber, Jade; Amoroso, Jasmin; Morgan, Bruno; Graham, Eleanor A M
2013-12-01
Post-mortem computed tomography angiography (PMCTA) involves the injection of contrast agents. This could have both a dilution effect on biological fluid samples and could affect subsequent post-contrast analytical laboratory processes. We undertook a small sample study of 10 targeted and 10 whole body PMCTA cases to consider whether or not these two methods of PMCTA could affect post-PMCTA cadaver blood based DNA identification. We used standard methodology to examine DNA from blood samples obtained before and after the PMCTA procedure. We illustrate that neither of these PMCTA methods had an effect on the alleles called following short tandem repeat based DNA profiling, and therefore the ability to undertake post-PMCTA blood based DNA identification.
Genetic control of postnatal human brain growth
van Dyck, Laura I.; Morrow, Eric M.
2017-01-01
Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583
Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry
NASA Astrophysics Data System (ADS)
Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.
2011-02-01
Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.
Nodding syndrome since 2012: recent progress, challenges and recommendations for future research.
Colebunders, R; Post, R; O'Neill, S; Haesaert, G; Opar, B; Lakwo, T; Laudisoit, A; Hendy, A
2015-02-01
We aim to review the current epidemiology of nodding syndrome (NS) and discuss relevant gaps in research. NS and convulsive epilepsy of unknown aetiology are clustered within the same villages and families in onchocerciasis-endemic areas. They are therefore potentially different clinical expressions of the same disease. It has been difficult to perform full autopsies on NS patients who die in remote villages. Adequate fixation of tissue immediately after death is critical for the examination of brain tissue. Therefore, post-mortem transsphenoidal brain biopsies, performed immediately after death by trained nurses, will provide the best option for obtaining tissue for analysis. We suspect that certain blackflies in onchocerciasis-endemic areas may transmit a novel pathogen that could cause NS and epilepsy. This is supported by a recent drop in the number of new NS cases coinciding with vector control activities aimed at reducing blackfly populations in northern Uganda. We propose that metagenomic studies of human samples, blackflies and microfilariae are conducted to screen for pathogens, and that a clinical trial is planned to evaluate the impact of larviciding against NS and epilepsy epidemics. © 2014 John Wiley & Sons Ltd.
Andresen, H; Aydin, B E; Mueller, A; Iwersen-Bergmann, S
2011-09-01
Abuse of gamma-hydroxybutyric acid (GHB) has been known since the early 1990's, but is not as widespread as the consumption of other illegal drugs. However, the number of severe intoxications with fatal outcomes is comparatively high; not the least of which is brought about by the consumption of the currently legal precursor substances gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD). In regards to previous assumptions, addiction to GHB or its analogues can occur with severe symptoms of withdrawal. Moreover, GHB can be used for drug-facilitated sexual assaults. Its pharmacological effects are generated mainly by interaction with both GABA(B) and GHB receptors, as well as its influence on other transmitter systems in the human brain. Numerous analytical methods for determining GHB using chromatographic techniques were published in recent years, and an enzymatic screening method was established. However, the short window of GHB detection in blood or urine due to its rapid metabolism is a challenge. Furthermore, despite several studies addressing this problem, evaluation of analytical results can be difficult: GHB is a metabolite of GABA (gamma-aminobutyric acid); a differentiation between endogenous and exogenous concentrations has to be made. Apart from this, in samples with a longer storage interval and especially in postmortem specimens, higher levels can be measured due to GHB generation during this postmortem interval or storage time. Copyright © 2011 John Wiley & Sons, Ltd.
Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.
García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C
2016-05-01
The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir
2016-01-01
Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. Copyright © 2015 Elsevier B.V. All rights reserved.
Sáez, María I; Martínez, Tomás F; Cárdenas, Salvador; Suárez, María D
2015-09-01
The influence of two preservation strategies (vacuum package and modified atmosphere package) on the post-mortem changes of textural parameters, pH, water holding capacity, sarcoplasmic and myofibrillar proteins, and collagen content of meagre (Argyrosomus regius) fillets was studied. Fillets were stored in a cold room in aerobic (control, C), vacuum (V) and modified atmosphere (MA) package. Samples were withdrawn at six sampling points throughout 15-day storage, and post-mortem changes were assessed. The textural parameters were significantly enhanced in V and MA compared to C. Both V and MA treatments reduced the intensity of a group of myofibrillar protein fractions (140-195 kDa) and increased insoluble collagen compared to C. Consequently, the post-mortem flesh softening in C was attributed to increased proteolysis in both intracellular and extracellular structural proteins. The preservation of the textural and biochemical characteristics of meagre fillets subjected to V and MA treatments makes these two treatments highly recommendable for the commercialization of meagre fillets. © The Author(s) 2014.
Mycobacterium marinum infection in a blue-fronted Amazon parrot (Amazona aestiva).
Hannon, David E; Bemis, David A; Garner, Michael M
2012-12-01
A blue-fronted Amazon parrot (Amazona aestiva) was presented with a granuloma involving the proximal rhinotheca and extending into the rostral sinuses. Mycobacterium marinum was diagnosed based on results of biopsy and culture. Treatment was initiated with clarithromycin, rifampin, and ethambutol, but the bird died 4 months after the onset of antimicrobial therapy. Additional granulomas were found in the left lung and liver on postmortem examination. Mycobacterial isolation on postmortem samples was unsuccessful. This is the first report of Mycobacterium marinum in a bird.
Purification and characterization of tripeptidylpeptidase-II from post-mortem human brain.
Wilson, C; Gibson, A M; McDermott, J R
1993-07-01
A soluble tripeptidylaminopeptidase has been isolated from human post-mortem cerebral cortex by anion exchange, hydrophobic interaction and size-exclusion chromatography. From gel filtration studies the active enzyme can exist in both high molecular weight (M(r) > 10(6) and smaller forms. The enzyme hydrolyses Ala-Ala-Phe-7-amido-4-methylcoumarin with a pH optimum of around 7.5 and Km of 148 microM. It did not hydrolyse N-succinyl-Ala-Ala-Phe-7-amido-4-methylcoumarin, aminoacyl- or dipeptidyl-7-amido-methylcoumarins and was not inhibited by bestatin. The enzyme was inhibited by phenylmethylsulphonyl-fluoride, 3,4-dichloroisocoumarin, N-hydroxymercuriphenyl-sulphonic acid and N-ethylmaleimide showing that its activity is serine and cysteine dependent. The purified enzyme released tripeptides from several naturally occurring neuropeptides with quite broad specificity. Cholecystokinin octapeptide, angiotensin III and neurokinin A were the most rapidly hydrolysed. Peptides with Pro residues around the point of cleavage were not hydrolysed.
16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer’s Post-Mortem Brain
Emery, David C.; Shoemark, Deborah K.; Batstone, Tom E.; Waterfall, Christy M.; Coghill, Jane A.; Cerajewska, Tanya L.; Davies, Maria; West, Nicola X.; Allen, Shelley J.
2017-01-01
The neurological deterioration associated with Alzheimer’s disease (AD), involving accumulation of amyloid-beta peptides and neurofibrillary tangles, is associated with evident neuroinflammation. This is now seen to be a significant contributor to pathology. Recently the tenet of the privileged status of the brain, regarding microbial compromise, has been questioned, particularly in terms of neurodegenerative diseases. It is now being considered that microbiological incursion into the central nervous system could be either an initiator or significant contributor to these. This is a novel study using 16S ribosomal gene-specific Next generation sequencing (NGS) of extracted brain tissue. A comparison was made of the bacterial species content of both frozen and formaldehyde fixed sections of a small cohort of Alzheimer-affected cases with those of cognitively unimpaired (normal). Our findings suggest an increase in bacterial populations in Alzheimer brain tissue compared with normal. PMID:28676754
Comparison of methods to detect Pasteurella multocida in carrier waterfowl
Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.; Johnson, W.P.
2003-01-01
We conducted laboratory challenge trials using mallard ducks (Anas platyrhynchos) to compare methods for detecting carriers of Pasteurella multocida, the bacterium that causes avian cholera, in wild birds. Birds that survived the initial infection were euthanized at 2-4 wk intervals up to 14 wk post challenge. Isolates of P. multocida were obtained at necropsy from 23% of the birds that survived initial infection. We found that swab samples (oral, cloacal, nasal, eye, and leg joint) were most effective for detecting carrier birds up to 14 wk post infection. No detectable differences in isolation were observed for samples stored in either 10% dimethysulfoxide or brain heart infusion broth. The frequency of detecting carriers in our challenge trials appeared to be related to mortality rates observed during the trial, but was not related to a number of other factors including time after challenge, time delays in collecting tissues postmortem, and route of infection. In our trials, there was little association between antibody levels and carrier status. We concluded that swabs samples collected from recently dead birds, stored in liquid nitrogen, and processed using selective broth provide a feasible field method for detecting P. multocida carriers in wild waterfowl.
Mendez, Ivar; Sanchez-Pernaute, Rosario; Cooper, Oliver; Viñuela, Angel; Ferrari, Daniela; Björklund, Lars; Dagher, Alain; Isacson, Ole
2008-01-01
We report the first post-mortem analysis of two patients with Parkinson’s disease who received fetal midbrain transplants as a cell suspension in the striatum, and in one case also in the substantia nigra. These patients had a favourable clinical evolution and positive 18F-fluorodopa PET scans and did not develop motor complications. The surviving transplanted dopamine neurons were positively identified with phenotypic markers of normal control human substantia nigra (n = 3), such as tyrosine hydroxylase, G-protein-coupled inward rectifying current potassium channel type 2 (Girk2) and calbindin. The grafts restored the cell type that provides specific dopaminergic innervation to the most affected striatal regions in the parkinsonian brain. Such transplants were able to densely reinnervate the host putamen with new dopamine fibres. The patients received only 6 months of standard immune suppression, yet by post-mortem analysis 3–4 years after surgery the transplants appeared only mildly immunogenic to the host brain, by analysis of microglial CD45 and CD68 markers. This study demonstrates that, using these methods, dopamine neuronal replacement cell therapy can be beneficial for patients with advanced disease, and that changing technical approaches could have a favourable impact on efficacy and adverse events following neural transplantation. PMID:15872020
Pathology of deaths associated with "ecstasy" and "eve" misuse.
Milroy, C M; Clark, J C; Forrest, A R
1996-02-01
To study the postmortem pathology associated with ring substituted amphetamine (amphetamine derivatives) misuse. The postmortem findings in deaths associated with the ring substituted amphetamines 3,4-methylenedioxymethyl-amphetamine (MDMA, ecstasy) and 3,4-methylenedioxyethylamphetamine (MDEA, eve) were studied in seven young white men aged between 20 and 25 years. Striking changes were identified in the liver, which varied from foci of individual cell necrosis to centrilobular necrosis. In one case there was massive hepatic necrosis. Changes consistent with catecholamine induced myocardial damage were seen in five cases. In the brain perivascular haemorrhagic and hypoxic changes were identified in four cases. Overall, the changes in four cases were the same as those reported in heart stroke, although only two cases had a documented history of hyperthermia. Of these four cases, all had changes in their liver, three had changes in their brains, and three in their heart. Of the other three cases, one man died of fulminant liver failure, one of water intoxication and one probably from a cardiac arrhythmia associated with myocardial fibrosis. These data suggest that there is more than one mechanism of damage in ring substituted amphetamine misuse, injury being caused by hyperthermia in some cases, but with ring substituted amphetamines also possibly having a toxic effect on the liver and other organs in the absence of hyperthermia.
ELEVATED GAMMA-AMINOBUTYRIC ACID LEVELS IN CHRONIC SCHIZOPHRENIA
Öngür, Dost; Prescot, Andrew P.; McCarthy, Julie; Cohen, Bruce M.; Renshaw, Perry F.
2010-01-01
Background Despite widely-replicated abnormalities of gamma-aminobutyric acid (GABA) neurons in schizophrenia postmortem, few studies have measured tissue GABA levels in vivo. We used proton magnetic resonance spectroscopy to measure tissue GABA levels in participants with schizophrenia and healthy controls in the anterior cingulate cortex (ACC) and parieto-occipital cortex (POC). Methods 21 schizophrenia participants effectively treated on a stable medication regimen (mean age 39.0, 14 male) and 19 healthy controls (mean age 36.3, 12 male) underwent a proton magnetic resonance spectroscopy scan using GABA-selective editing at 4 Tesla after providing informed consent. Data were collected from two 16.7cc voxels and analyzed using LCModel. Results We found elevations in GABA/Cr in the schizophrenia group compared with controls (F(1,65)=4.149, p=0.046) in both brain areas (15.5% elevation in ACC, 11.9% in POC). We also found a positive correlation between GABA/Cr and Glu/Cr which was not accounted for by %GM or brain region. Conclusions We found elevated GABA/Cr in participants with chronically treated schizophrenia. Postmortem studies report evidence for dysfunctional GABAergic neurotransmission in schizophrenia. Elevated GABA levels, whether primary to illness or compensatory to another process, may be associated with dysfunctional GABAergic neurotransmission in chronic schizophrenia. PMID:20598290
Han, Pengcheng; Caselli, Richard J; Baxter, Leslie; Serrano, Geidy; Yin, Junxiang; Beach, Thomas G; Reiman, Eric M; Shi, Jiong
2015-03-01
There is a deficit of pituitary adenylate cyclase-activating polypeptide (PACAP) in patients with neuropathologically confirmed Alzheimer dementia. However, whether this deficit is associated with the earlier stages of Alzheimer disease (AD) is unknown. This study was conducted to clarify the association between PACAP biomarkers and preclinical, mild cognitive impairment (MCI), and dementia stages of AD in postmortem brain tissue. To examine PACAP and PACAP receptor levels in postmortem brain tissues and cerebrospinal fluid from cognitively and neuropathologically normal control individuals, patients with MCI due to AD (MCI-AD), and individuals with AD; analyze the relationship between PACAP, cognitive, and pathologic features; and propose a model to assess these relationships. We measured PACAP and its receptor (PAC1) levels using enzyme-linked immunoassay. A total of 35 cases were included. All the brain tissue and cerebrospinal fluid samples were selected from Banner Sun Health Research Institute Brain and Body Donation Program. All cognitive test results were in record with the Arizona Alzheimer's Consortium. A comparison of PACAP and PAC1 levels among the healthy controls, MCI-AD, and AD dementia groups, as well as a systematic correlation analysis between PACAP level, cognitive performance, and pathologic severity. The PACAP levels in cerebrospinal fluid, the superior frontal gyrus, and the middle temporal gyrus were inversely related to dementia severity. The PACAP levels in cerebrospinal fluid correlated with the Mattis Dementia Rating Scale score (Pearson r = 0.50; P = .03) and inversely correlated with total amyloid plaques (Pearson r = -0.48; P < .01) and tangles (Pearson r = -0.55; P = .01) in the brain. The PACAP in the superior frontal gyrus and middle temporal gyrus correlated with the Stroop Color-Word Interference Test (Pearson r = 0.58; P < .01) and the Auditory Verbal Learning Test-Total Learning (Pearson r = 0.33; P = .02), respectively. The PACAP in the primary visual cortex did not correlate with the Judgment of Line orientation test (P = .14). Furthermore, the PAC1 level in the superior frontal gyrus showed an upregulation in MCI-AD but not in AD. The pharmacodynamic model of the PACAP-PAC1 interaction best predicted cognitive function in the superior frontal gyrus, but it was less predictive in the middle temporal gyrus and failed to be predictive in the primary visual cortex. Deficits in PACAP are associated with clinical severity in the MCI and dementia stages of AD. Additional studies are needed to clarify the role of PACAP deficits in the predisposition to, pathogenesis of, and treatment of AD.
Balan, Shabeesh; Iwayama, Yoshimi; Maekawa, Motoko; Toyota, Tomoko; Ohnishi, Tetsuo; Toyoshima, Manabu; Shimamoto, Chie; Esaki, Kayoko; Yamada, Kazuo; Iwata, Yasuhide; Suzuki, Katsuaki; Ide, Masayuki; Ota, Motonori; Fukuchi, Satoshi; Tsujii, Masatsugu; Mori, Norio; Shinkai, Yoichi; Yoshikawa, Takeo
2014-01-01
Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants in these genes that regulate H3K9 methylation may be associated with ASD. Since G9a-GLP-Wiz forms a heteromeric methyltransferase complex, all the protein-coding regions and exon/intron boundaries of EHMT1, EHMT2 and WIZ were sequenced in Japanese ASD subjects. The detected variants were prioritized based on novelty and functionality. The expression levels of these genes were tested in blood cells and postmortem brain samples from ASD and control subjects. Expression of EHMT1 and EHMT2 isoforms were determined by digital PCR. We identified six nonsynonymous variants: three in EHMT1, two in EHMT2 and one in WIZ. Two variants, the EHMT1 ankyrin repeat domain (Lys968Arg) and EHMT2 SET domain (Thr961Ile) variants were present exclusively in cases, but showed no statistically significant association with ASD. The EHMT2 transcript expression was significantly elevated in the peripheral blood cells of ASD when compared with control samples; but not for EHMT1 and WIZ. Gene expression levels of EHMT1, EHMT2 and WIZ in Brodmann area (BA) 9, BA21, BA40 and the dorsal raphe nucleus (DoRN) regions from postmortem brain samples showed no significant changes between ASD and control subjects. Nor did expression levels of EHMT1 and EHMT2 isoforms in the prefrontal cortex differ significantly between ASD and control groups. We identified two novel rare missense variants in the EHMT1 and EHMT2 genes of ASD patients. We surmise that these variants alone may not be sufficient to exert a significant effect on ASD pathogenesis. The elevated expression of EHMT2 in the peripheral blood cells may support the notion of a restrictive chromatin state in ASD, similar to schizophrenia.
Autopsy diagnosis of fat embolism syndrome.
Miller, Peter; Prahlow, Joseph A
2011-09-01
The fat embolism syndrome (FES) is considered a clinical diagnosis. It typically occurs within several days following major traumatic injury, usually involving fractures of the pelvis and/or lower extremities. Fat embolism syndrome is characterized by the onset of respiratory, neurological, cutaneous, and hematologic manifestations and is thought to be related to intravascular embolization of fat, presumably arising from within the fractured bone marrow space. In its most severe form, FES can be lethal. The presence of fat emboli within the microvasculature of the lungs, brain, and sometimes other organs verifies the clinical impression of FES. Despite its relatively well-known clinical characterization, debate exists within the clinical literature regarding the most appropriate diagnostic criteria for FES. Given this fact, along with the fact that FES is a clinical diagnosis, it is not surprising that forensic pathologists may be somewhat reluctant to make a postmortem diagnosis of FES, especially in cases where insufficient clinical information is available. A case of fatal FES is presented in which rapid clinical deterioration occurred, followed by death, such that a clinical diagnosis of FES was never rendered. We propose that, given the correct circumstances, clinical scenario, and autopsy findings, it is appropriate and acceptable to make a postmortem diagnosis of FES. A multitiered approach to the postmortem diagnosis of FES is presented.
Pirskanen-Matell, R; Grützmeier, S; Nennesmo, I; Sandström, E; Ehrnst, A
2009-01-01
The diagnosis of cytomegalovirus encephalitis (CMV-E) in AIDS patients is challenging as other illnesses may obscure the symptoms. Here, we characterize the clinical symptoms of CMV-E and link them to post-mortem findings. Patients and methods In 254 homosexual men with AIDS, followed from HIV diagnosis to death before the antiretroviral combination therapy era, CMV-E was suspected in 93 cases. All were CMV-positive in blood. Neurological examination, including cognitive testing was performed in 34 of them within 6 months before death. CMV-E was diagnosed by CMV-PCR in cerebrospinal fluid (n = 24) or by post-mortem (n = 24). The majority complained of forgetfulness (91%), balance difficulties (85%) and impotence (85%). Impaired short-term memory was present in 29 patients. It was extreme in 17, justifying the diagnosis of Korsakoff's syndrome. This was often associated with infectious CMV in blood (P = 0.01). Brainstem symptoms were found in 19 patients. Post-mortem examination often revealed ventriculoencephalitis. CMV was found primarily around the ventricles and in other structures, described in Korsakoff's syndrome. The location of CMV in the brain corresponded well to the clinical findings, demonstrating the close relationship between the neurological symptoms and the neuroanatomical lesions.
Moskała, Artur; Woźniak, Krzysztof; Kluza, Piotr; Romaszko, Karol; Lopatin, Oleksij
2016-01-01
Since traffic accidents are an important problem in forensic medicine, there is a constant search for new solutions to help with an investigation process in such cases. In recent years there was a rapid development of post-mortem imaging techniques, especially post-mortem computed tomography (PMCT). In our work we concentrated on a potential advantage of PMCT in cases of motorcycle accident fatalities. The results of forensic autopsy were compared with combined results of the autopsy and PMCT to check in which areas use of these two techniques gives statistically important increase in number of findings. The hypothesis was confirmed in case of pneumothorax and fractures of skull, spine, clavicle, scapula, lower leg bones. As for majority of other bone fractures locations and brain injures there were single cases with pathologies visible only in PMCT, but too few to reach expected level of p-value. In case of injuries of solid organs and soft tissues statistical analysis did not confirmed any advantage of unenhanced PMCT use. On the whole it has been shown that PMCT used as an adjunct to forensic autopsy can cause an increase in information about vitally important regions in case of motorcycle accident fatalities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Interpretation of postmortem forensic toxicology results for injury prevention research.
Drummer, Olaf H; Kennedy, Briohny; Bugeja, Lyndal; Ibrahim, Joseph Elias; Ozanne-Smith, Joan
2013-08-01
Forensic toxicological data provides valuable insight into the potential contribution of alcohol and drugs to external-cause deaths. There is a paucity of material that guides injury researchers on the principles that need to be considered when examining the presence and contribution of alcohol and drugs to these deaths. This paper aims to describe and discuss strengths and limitations of postmortem forensic toxicology sample selection, variations in analytical capabilities and data interpretation for injury prevention research. Issues to be considered by injury researchers include: the circumstances surrounding death (including the medical and drug use history of the deceased person); time and relevant historical factors; postmortem changes (including redistribution and instability); laboratory practices; specimens used; drug concentration; and attribution of contribution to death. This paper describes the range of considerations for testing and interpreting postmortem forensic toxicology, particularly when determining impairment or toxicity as possible causal factors in injury deaths. By describing these considerations, this paper has application to decisions about study design and case inclusion in injury prevention research, and to the interpretation of research findings.
Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.
2015-01-01
Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard extraction methods, without the need for specialised equipment or large-volume demineralisation steps. PMID:25992635
The Netherlands Brain Bank for Psychiatry.
Rademaker, Marleen C; de Lange, Geertje M; Palmen, Saskia J M C
2018-01-01
The Netherlands Brain Bank (NBB) performs rapid autopsies of donors who gave written informed consent during life for the use of their brain tissue and medical files for research. The NBB initiated the Netherlands Brain Bank for Psychiatry (NBB-Psy), a prospective donor program for psychiatric diseases. NBB-Psy wants to expand the tissue collections in order to provide a strong incentive to increase research in psychiatry. The ultimate goal of NBB-Psy is to reduce the burden of psychiatric disorders for patients, their families, and for society as a whole. NBB-Psy consists of an antemortem and postmortem donor program. This chapter focuses on the design of NBB-Psy and the antemortem donor program, where patients and relatives are actively informed on the possibility to become a brain donor. Since the initiation of NBB-Psy, the number of registered donors with a psychiatric diagnosis has increased from 149 in 2010 to 1018 in May 2016. Copyright © 2018 Elsevier B.V. All rights reserved.
Cerebrospinal Fluid proNGF: A Putative Biomarker for Early Alzheimer’s Disease
Counts, Scott E.; He, Bin; Prout, John G.; Michalski, Bernadeta; Farotti, Lucia; Fahnestock, Margaret; Mufson, Elliott J.
2018-01-01
The discovery of biomarkers for the onset of Alzheimer’s disease (AD) is essential for disease modification strategies. To date, AD biomarker studies have focused on brain imaging and cerebrospinal fluid (CSF) changes in amyloid-β (Aβ) peptide and tau proteins. While reliable to an extent, this panel could be improved by the inclusion of novel biomarkers that optimize sensitivity and specificity. In this study, we determined whether CSF levels of the nerve growth factor (NGF) precursor protein, proNGF, increased during the progression of AD, mirroring its up regulation in postmortem brain samples of people who died with a clinical diagnosis of mild cognitive impairment (MCI) or AD. Immunoblot analysis was performed on ventricular CSF harvested from participants in the Rush Religious Orders Study with an antemortem clinical diagnosis of no cognitive impairment (NCI), amnestic MCI (aMCI, a putative prodromal AD stage), or mild/moderate AD. ProNGF levels were increased 55% in aMCI and 70% in AD compared to NCI. Increasing CSF proNGF levels correlated with impairment on cognitive test scores. In a complementary study, we found that proNGF was significantly increased by 30% in lumbar CSF samples derived from patients with a clinical dementia rating (CDR) of 0.5 or 1 compared to those with a CDR = 0. Notably, proNGF/Aβ1-42 levels were 50% higher in CDR 0.5 and CDR 1 compared to CDR 0 controls. By contrast, ELISA measurements of CSF brain-derived neurotrophic factor (BDNF) did not distinguish aMCI from NCI. Taken together, these results suggest that proNGF protein levels may augment the diagnostic accuracy of currently used CSF biomarker panels. PMID:26825093
Zhao, Dejian; Lin, Mingyan; Pedrosa, Erika; Lachman, Herbert M; Zheng, Deyou
2017-11-10
Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders. However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide levels. In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner. Examining single nucleotide variants with a predicted functional disruption, we found that the "damaged" alleles were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes. Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic expression and correlated expression across neuronal cells from different individual brains were implicated in the regulation of synaptic function. Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of brain cell functions.
Hieda, Yoko; Tsujino, Yoshio; Xue, Yuying; Takayama, Koji; Fujihara, Junko; Kimura, Kojiro; Dekio, Satoshi
2004-02-01
To evaluate the usefulness of skin analysis for the forensic examination of cases involving postmortem dermal exposure to kerosene and/or fire, an experimental study using rats was performed. Rats received dermal exposure to kerosene before or after death, and the effect of fire was determined by burning an area of exposed skin after death. Kerosene concentrations in skin and blood were determined by gas chromatography-mass spectrometry and microscopic observation was performed for skin samples. No differences were observed in skin kerosene levels between antemortem and postmortem exposure. Kerosene concentrations in mildly burned skin where the stratum corneum (SC) was retained were approximately 84% compared to those in non-burned exposed skin, whereas concentrations in severely burned skin where the SC was almost completely burned off were 28% of non-burned skin. Even in non-exposed control skin 14% of the original kerosene concentrations could be detected, which was considered to be caused by contamination during the experimental protocol combined with kerosene's property of a high affinity for the SC. These results suggest that (1) skin analysis is useful in estimating the type of petroleum product involved in crimes or accidents even for postmortem exposure, (2) whether the SC is retained or not primarily determined the kerosene levels in burned skin, and (3) attention must be paid to evaluate the results obtained from skin samples in the light of the circumstances surrounding the case.
Fibroblast growth factor 9 is a novel modulator of negative affect
Aurbach, Elyse L.; Inui, Edny Gula; Turner, Cortney A.; Hagenauer, Megan H.; Prater, Katherine E.; Li, Jun Z.; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E.; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda
2015-01-01
Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9’s function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders. PMID:26351673
Banas, B; Bleyer, B; Eckert, M; Gruber, H; Pfirstinger, J; Schaller, O; Dietl, B
2013-04-01
As a result of the actual amendment of the German transplantation law, every citizen will be regularly asked by health insurance companies about his attitude towards post-mortem organ donation--without the obligation to decide. The aim is to increase the willingness of donations as well as the availability of organs. Therefore, we investigated the level of information of students at the University of Regensburg and their agreement to organ transplantation regarding an informed consent. Using an interdisciplinary developed questionnaire (Medicine, Theology, Educational Science) the level of information concerning process and possibilities of organ donation, the possession of an organ donor card, as well as the active or passive consent to donate organs was investigated. Out of 1225 respondents 31.5% had an organ donor card, 49.1% wanted to donate organs, 32.1% were unsure. 98% generally favoured organ donation. However, serious information deficits about brain death were identified: 37.4% did not know that brain death is a prerequisite for a post-mortem organ donation, 18% thought brain death is reversible, 52.7% were not aware of the necessity of intensive medical care. Furthermore, providing information about other potential donor organs including lungs, pancreas, small intestine, and tissue is required. Health insurance companies and responsible authorities need to close the identified gaps in knowledge in order to achieve "informed" consent with organ donation, which might increase the availability and number of donor organs. © Georg Thieme Verlag KG Stuttgart · New York.
Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S
2012-02-01
HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.
Schwartz, David A
2017-01-01
-Pathology studies have been important in concluding that Zika virus infection occurring in pregnant women can result in vertical transmission of the agent from mother to fetus. Fetal and infant autopsies have provided crucial direct evidence that Zika virus can infect an unborn child, resulting in microcephaly, other malformations, and, in some cases, death. -To better understand the etiologic role and mechanism(s) of Zika virus in causing birth defects such as microcephaly, this communication analyzes the spectrum of clinical and autopsy studies reported from fetuses and infants who developed intrauterine Zika virus infection, and compares these findings with experimental data related to Zika virus infection. -Retrospective analysis of reported clinical, autopsy, pathology, and related postmortem studies from 9 fetuses and infants with intrauterine Zika virus infection and microcephaly. -All fetuses and infants examined demonstrated an overlapping spectrum of gross and microscopic neuropathologic abnormalities. Direct cytopathic effects of infection by the Zika virus were confined to the brain; in cases where other organs were evaluated, no direct viral effects were identified. -There is concordance of the spectrum of brain damage, reinforcing previous data indicating that the Zika virus has a strong predilection for cells of the fetal central nervous system following vertical transmission. The occurrence of additional congenital abnormalities suggests that intrauterine brain damage from Zika virus interferes with normal fetal development, resulting in fetal akinesia. Experimental in vitro and in vivo studies of Zika virus infection corroborate the human autopsy findings of neural specificity.
Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Aleksandrova, Irina; Nesterova, Inna
2008-09-26
Alterations in electroencephalogram (EEG) asymmetry and deficits in interhemispheric integration of information have been shown in patients with Alzheimer's disease (AD). However, no direct evidence of an association between EEG asymmetry, morphological markers in the brain, and cognition was found either in AD patients or in AD models. In this study we used rats with bilateral olfactory bulbectomy (OBX) as one of the AD models and measured their learning/memory abilities, brain beta-amyloid levels and EEG spectra in symmetrical frontal and occipital cortices. One year after OBX or sham-surgery, the rats were tested with the Morris water paradigm and assigned to three groups: sham-operated rats, SO, and OBX rats with virtually normal, OBX(+), or abnormal, OBX(-), learning (memory) abilities. In OBX vs. SO, the theta EEG activity was enhanced to a higher extent in the right frontal cortex and in the left occipital cortex. This produced significant interhemispheric differences in the frontal cortex of the OBX(-) rats and in the occipital cortex of both OBX groups. The beta1 EEG asymmetry in SO was attenuated in OBX(+) and completely eliminated in OBX(-). OBX produced highly significant beta2 EEG decline in the right frontal cortex, with OBX(-)>OBX(+) rank order of strength. The beta-amyloid level, examined by post-mortem immunological DOT-analysis in the cortex-hippocampus samples, was about six-fold higher in OBX(-) than in SO, but significantly less (enhanced by 82% vs. SO) in OBX(+) than in OBX(-). The involvement of the brain mediatory systems in the observed EEG asymmetry differences is discussed.
Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.
Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B
2015-09-01
White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.
Latent NOTCH3 epitopes unmasked in CADASIL and regulated by protein redox state.
Zhang, Xiaojie; Lee, Soo Jung; Young, Kelly Z; Josephson, David A; Geschwind, Michael D; Wang, Michael M
2014-10-02
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy CADASIL is caused by more than a hundred NOTCH3 mutations. Virtually all encoded mutant proteins contain an odd number of cysteines. As such, structural changes in NOTCH3 may be the primary molecular abnormality in CADASIL. Thus, we sought evidence for structurally altered NOTCH3 protein in CADASIL tissue. Four antibodies were raised in rabbits against two non-overlapping N-terminal NOTCH3 sequences. These reagents were used in immunohistochemical experiments to detect epitopes in post-mortem CADASIL brains (n=8), control brains, and cells overexpressing NOTCH3. To determine the biochemical nature of NOTCH3 epitopes, we used these antibodies to probe pure NOTCH3-Fc fusion proteins treated with acid, urea, guanidinium, ionic detergents, acrylamide, and thiol- and phosphorus-based reductants. All antibodies avidly stained arteries in 8 of 8 CADASIL brain samples. The most prominent staining was in degenerating media of leptomeningeal arteries and sclerotic penetrating vessels. Normal appearing vessels from control brains were not reactive. Antibodies did not react with cultured cells overexpressing NOTCH3 or with purified NOTCH3-Fc protein. Furthermore, treatment of pure protein with acid, chaotropic denaturants, alkylators, and detergents failed to unmask N-terminal NOTCH3 epitopes. Antibodies, however, recognized novel N-terminal epitopes in purified NOTCH3-Fc protein treated with three different reductants (DTT, beta-mercaptoethanol, and TCEP). We conclude that CADASIL arteries feature latent N-terminal NOTCH3 epitopes, suggesting the first evidence in vivo of NOTCH3 structural alterations. Published by Elsevier B.V.
First Report on the Efficiency of Oral Vaccination of Foxes against Rabies in Serbia.
Lupulovic, D; Maksimovic Zoric, J; Vaskovic, N; Bugarski, D; Plavsic, B; Ivanovic, N; Petrovic, T; Pusic, I; Marcic, D; Grgic, Z; Lazic, S
2015-12-01
Rabies is one of the oldest known zoonotic diseases that has significant impact on public health, but still remains neglected in Serbia. Rabies virus can infect humans and other mammals and causes inflammation of the brain associated with encephalomyelitis and neurological symptoms. In 2010, Veterinary Directorate (national Competent Authority for animal health in Serbia) has started multi-annual project of oral rabies vaccination of foxes and other wild carnivores (e.g. jackals), as support of long-term programme of eradication of rabies in Serbia, co-funded by EU (financed by Instrument for Pre-Accession Assistance). Monitoring of the effectiveness of oral vaccination campaigns has been carried out in continuation from 2011 and was based on: (i) post-mortem laboratory examination of brain tissue of target animals (foxes, jackals and other carnivores) by fluorescent antibody test (FAT), (ii) detection of antibodies against rabies virus in serum samples by ELISA and (iii) detection of tetracycline biomarker in the mandibles for the evaluation of vaccine bait uptake. From September 2011 to May 2014, the total number of 4943 brain tissue samples, 4241 sera and 4971 mandibles were analysed. Confirmed rabies-positive brains decreased from 10 in 2011/2012 to 6 in 2012/2013 and eventually to 1 positive case in 2013/2014. The seroconversion rate increased from 10.48% (133/1269) in 2011/2012 to 20.11% (362/1800) in 2012/2013 and 42.23% (495/1172) in 2013/2014. Along with the seroconversion, the number of detected tetracycline-positive mandibles demonstrated an increasing tendency in the same period, being 49.67% (682/1373) in 2011/2012, 62.60% (1294/2067) in 2012/2013 and 90.33% (1383/1531) in the monitoring programme carried out in 2013/2014. Presented results confirmed that ORV of foxes and other wildlife in Serbia against rabies was successful and characterized by steady increase of vaccine baits uptake and immunization of animals. © 2015 Blackwell Verlag GmbH.
Gonoi, Wataru; Okuma, Hidemi; Shirota, Go; Shintani, Yukako; Abe, Hiroyuki; Takazawa, Yutaka; Fukayama, Masashi; Ohtomo, Kuni
2015-01-01
Computed tomography (CT) is widely used in postmortem investigations as an adjunct to the traditional autopsy in forensic medicine. To date, several studies have described postmortem CT findings as being caused by normal postmortem changes. However, on interpretation, postmortem CT findings that are seemingly due to normal postmortem changes initially, may not have been mere postmortem artifacts. In this pictorial essay, we describe the common postmortem CT findings in cases of atraumatic in-hospital death and describe the diagnostic pitfalls of normal postmortem changes that can mimic real pathologic lesions. PMID:26175579
Effectiveness of a nonpenetrating captive bolt for euthanasia of 3 kg to 9 kg pigs.
Casey-Trott, T M; Millman, S T; Turner, P V; Nykamp, S G; Lawlis, P C; Widowski, T M
2014-11-01
The objective of this study was to determine the effectiveness of a nonpenetrating captive bolt, Zephyr-E, for euthanasia of suckling and weaned pigs from 3 to 9 kg (5-49 d of age) using signs of insensibility and death as well as postmortem assessment of traumatic brain injury (TBI). The Zephyr-E was used by 15 stock people to euthanize 150 compromised pigs from 4 farrowing and nursery units from commercial farms and 2 research stations. Brainstem reflexes, convulsions, and heartbeat were used to assess insensibility, time of brain death, and cardiac arrest following Zephyr-E application. Skull fracture displacement (FD) was quantified from computed tomography (CT) scans (n = 24), macroscopic scoring was used to assess brain hemorrhage and skull fracture severity (n = 150), and microscopic scoring was used to assess subdural hemorrhage (SDH) and parenchymal hemorrhage within specific brain regions that are responsible for consciousness and vital function (n = 32). The Zephyr-E caused immediate, sustained insensibility until death in 98.6% of pigs. On average, clonic convulsions (CC) ceased in 82.2 s (± 3.4 SE), brain death was achieved in 144.9 s (± 5.4 SE), and cardiac arrest occurred in 226.5 s (± 8.7 SE). Time of brain death and cardiac arrest differed significantly among stock people (P = 0.0225 and P = 0.0369). Age was positively related to the duration of CC (P = 0.0092), time of brain death (P = 0.0025), and cardiac arrest (P = 0.0068) with shorter durations seen in younger pigs. Average FD was 8.3 mm (± 1.0 SE). Macroscopic scores were significantly different among weight classes for subcutaneous (P = 0.0402) and subdural-ventral (P = 0.0037) hemorrhage with the lowest severity hemorrhage found in the 9-kg weight category. Microscopic scores differed among brain sections (P = 0.0070) for SDH with lower scores found in the brainstem compared to the cerebral cortex and midbrain. Parenchymal hemorrhage differed among brain sections (P = 0.0052) and weight categories (P = 0.0128) with the lowest scores in the midbrain and brainstem and the 7- and 9-kg weight categories. The Zephyr-E was highly effective for the euthanasia of pigs up to 9 kg (49 d) based on immediate insensibility sustained until death. Postmortem results confirmed that severe skull fracture and widespread brain hemorrhage were caused by the Zephyr-E nonpenetrating captive bolt.
Characterisation of the metabolome of ocular tissues and post-mortem changes in the rat retina.
Tan, Shi Z; Mullard, Graham; Hollywood, Katherine A; Dunn, Warwick B; Bishop, Paul N
2016-08-01
Time-dependent post-mortem biochemical changes have been demonstrated in donor cornea and vitreous, but there have been no published studies to date that objectively measure post-mortem changes in the retinal metabolome over time. The aim of the study was firstly, to investigate post-mortem, time-dependent changes in the rat retinal metabolome and secondly, to compare the metabolite composition of healthy rat ocular tissues. To study post-mortem changes in the rat retinal metabolome, globes were enucleated and stored at 4 °C and sampled at 0, 2, 4, 8, 24 and 48 h post-mortem. To study the metabolite composition of rat ocular tissues, eyes were dissected immediately after culling to isolate the cornea, lens, vitreous and retina, prior to storing at -80 °C. Tissue extracts were subjected to Gas Chromatograph Mass Spectrometry (GC-MS) and Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS). Generally, the metabolic composition of the retina was stable for 8 h post-mortem when eyes were stored at 4 °C, but showed increasing changes thereafter. However, some more rapid changes were observed such as increases in TCA cycle metabolites after 2 h post-mortem, whereas some metabolites such as fatty acids only showed decreases in concentration from 24 h. A total of 42 metabolites were identified across the ocular tissues by GC-MS (MSI level 1) and 2782 metabolites were annotated by UHPLC-MS (MSI level 2) according to MSI reporting standards. Many of the metabolites detected were common to all of the tissues but some metabolites showed partitioning between different ocular structures with 655, 297, 93 and 13 metabolites being uniquely detected in the retina, lens, cornea and vitreous respectively. Only a small percentage (1.6%) of metabolites found in the vitreous were only detected in the retina and not other tissues. In conclusion, mass spectrometry-based techniques have been used for the first time to compare the metabolic composition of different ocular tissues. The metabolite composition of the retina stored at 4 °C post-mortem is mostly stable for at least 8 h. Copyright © 2016 Elsevier Ltd. All rights reserved.
Freytag, Saskia; Burgess, Rosemary; Oliver, Karen L; Bahlo, Melanie
2017-06-08
The pathogenesis of neurological and mental health disorders often involves multiple genes, complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics make identification of disease genes for such disorders challenging, as conventional prioritisation tools are not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-application-brain-coX-that offers gene prioritisation with accompanying visualisations based on seven gene expression datasets in the post-mortem human brain, the largest such resource ever assembled. We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity of approximately 75%. We also compared brain-coX's performance to that of its main competitors, Endeavour and ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene collection we show that brain-coX's prioritisations are most similar to SFARI's own curated gene classifications. brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/ .
Heymsfield, Steven B; Chirachariyavej, Thamrong; Rhyu, Im Joo; Roongpisuthipong, Chulaporn; Heo, Moonseong; Pietrobelli, Angelo
2009-01-01
Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age < or =45 yr (n = 299) and with brain magnetic resonance imaging (MRI) studies in Korean men (n = 30) age > or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirements.
Farouk, M M; Price, J F
1994-01-01
Twenty-four lamb carcasses were assigned to three treatment groups: (1) control (Ctr), (2) infused with 10% (vol/wt) of a tenderizing blend (NCa), and (3) NCa plus 0·015 m CaCl(2) (WCa). Results indicated that the infused carcass solution was retained in the following order: shoulder > lion > leg. Infusion had no effect (P > 0·05) on drip and cooking losses in refrigerated samples. Samples frozen and then thawed from infused carcasses had greater thaw drip (P < 0·05) and cooking losses (P < 0·01) than control samples. The amounts of drip and cooking losses were in the order: WCa > NCa > Ctr. Frozen storage preserved the red color but lowered the lightness and yellowness of ovine muscles; the opposite effect was observed following refrigerated storage. Infused samples were lighter and yellower than control in both fresh and frozen samples (P < 0·01). WCa had less red color (P < 0·01) than NCa and Ctr at all times and storage conditions. Infusion lowered (P < 0·05) the temperature of carcasses over the first 3 h postmortem (pm) compared with Ctr. The rate of glycolysis was higher in infraspinatus (IS) than in longissimus thoracis et lumborum muscle (LTL or longissimus). In both IS and LTL, glycolysis was completed within the first 6 h postmortem in NCa, whereas in Ctr and WCa, it took 12-24 h for glycolysis to be completed. The rate of glycolysis was in the order: NCa > WCa > Ctr. Copyright © 1994. Published by Elsevier Ltd.
Andrews, Jessica L; Goodfellow, Frederic J; Matosin, Natalie; Snelling, Mollie K; Newell, Kelly A; Huang, Xu-Feng; Fernandez-Enright, Francesca
2017-07-01
Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ballistic delivery of dyes for structural and functional studies of the nervous system
Gan, Wen-Biao; Grutzendler, Jaime; Wong, Rachel O.; Lichtman, Jeff W.
2010-01-01
This chapter describes a detail protocol for rapid labeling of cells in a variety of preparations by means of particle-mediated ballistic (gene gun) delivery of fluorescent dyes. This method has been used for rapid labeling of cells with either lipid or water-soluble dyes in a variety of preparations. In particular, carbocyanine lipophilic dyes such as DiI have been used to obtain Golgi-like labeling of neurons and glia in fixed and live cell cultures, brain slices, as well as fixed post-mortem human brain. Water-soluble calcium indicators such as calcium green-1 dextran have been used to image calcium dynamics in living brain slices and retinal explants. This ballistic labeling technique is thus useful for studying the structure and function of neurons and glia in both living and fixed specimens. PMID:20147144
Bornstein, Eran; Goncalves Rodríguez, José Luis; Álvarez Pavón, Erika Carolina; Quiroga, Héctor; Or, Drorit; Divon, Michael Y
2013-10-01
We report 2 cases in which first-trimester measurements of the intracranial translucency and the brain stem-to-occipital bone diameter were markedly enlarged. This finding was thought to represent an abnormal fourth ventricle-cisterna magna complex. Subsequently, the diagnoses of a Dandy-Walker malformation with partial vermian agenesis in 1 case and inferior vermian hypoplasia in the other were established and confirmed by either postmortem autopsy or postnatal magnetic resonance imaging. These cases suggest that evaluation of the fourth ventricle-cisterna magna complex, by measuring the intracranial translucency or brain stem-to-occipital bone diameter may identify some cases with structural malformations of the cerebellum as early as the first trimester.
Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review.
Bévalot, Fabien; Cartiser, Nathalie; Bottinelli, Charline; Fanton, Laurent; Guitton, Jérôme
2016-01-01
Vitreous humor (VH) is a gelatinous substance contained in the posterior chamber of the eye, playing a mechanical role in the eyeball. It has been the subject of numerous studies in various forensic applications, primarily for the assessment of postmortem interval and for postmortem chemical analysis. Since most of the xenobiotics present in the bloodstream are detected in VH after crossing the selective blood-retinal barrier, VH is an alternative matrix useful for forensic toxicology. VH analysis offers particular advantages over other biological matrices: it is less prone to postmortem redistribution, is easy to collect, has relatively few interfering compounds for the analytical process, and shows sample stability over time after death. The present study is an overview of VH physiology, drug transport and elimination. Collection, storage, analytical techniques and interpretation of results from qualitative and quantitative points of view are dealt with. The distribution of xenobiotics in VH samples is thus discussed and illustrated by a table reporting the concentrations of 106 drugs from more than 300 case reports. For this purpose, a survey was conducted of publications found in the MEDLINE database from 1969 through April 30, 2015.
Li, Minshu; Li, Zhiguo; Yao, Yang; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei
2017-01-17
Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15 tg ) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8 + T and natural killer (NK) cells was augmented in these GFAP-IL-15 tg mice after brain ischemia. Of note, depletion of CD8 + T or NK cells attenuated ischemic brain injury in GFAP-IL-15 tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8 + T and NK cells in GFAP-IL-15 tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8 + T and NK cell-mediated immunity.
Viability and infectivity of Ichthyophonus sp. in post-mortem Pacific herring, Clupea pallasii
Kocan, Richard M.; Hart, Lucas M.; Lewandowski, Naomi; Hershberger, Paul
2014-01-01
Ichthyophonus-infected Pacific herring, Clupea pallasii, were allowed to decompose in ambient seawater then serially sampled for 29 days to evaluate parasite viability and infectivity for Pacific staghorn sculpin, Leptocottus armatus. Ichthyophonus sp. was viable in decomposing herring tissues for at least 29 days post-mortem and could be transmitted via ingestion to sculpin for up to 5 days. The parasite underwent morphologic changes during the first 48 hr following death of the host that were similar to those previously reported, but as host tissue decomposition progressed, several previously un-described forms of the parasite were observed. The significance of long-term survival and continued morphologic transformation in the post-mortem host is unknown, but it could represent a saprozoic phase of the parasite life cycle that has survival value for Ichthyophonus sp.
Flint, Mark; Patterson-Kane, Janet C.; Limpus, C.J.; Work, Thierry M.; Blair, David; Mills, Paul C.
2009-01-01
Over the past few decades, there have been increasing numbers of reports of diseases in marine turtles. Furthermore, in recent years, there have been documented instances of apparently new diseases emerging in these species of which the etiology and/or pathogenesis remain unknown. These instances i) raise concern for the survival of marine turtles, and ii) question the health and stability of the benthic marine environments in which turtles live. Knowledge of common disease processes and pathologic changes in lesions, along with a standardized approach to postmortem and sample collection are required to document and understand the host-agent-environment interactions in marine turtle health. This review combines, for the first time, a standardized approach to the postmortem of marine turtles for veterinary clinicians, with a concurrent descriptive review of the gross and microscopic pathologic changes in lesions commonly seen.
Sanchis-Gimeno, Juan A; Blanco-Perez, Esther; Aparicio, Luis; Martinez-Soriano, Francisco; Martinez-Sanjuan, Vicente
2014-09-01
We found one atlas from a sample of 148 skeletons (0.67%) that presented different anatomical variations which made it difficult to determine whether the vertebra had an atlas fracture, an unusual Type B posterior atlas arch defect, or a combination of both. We carried out a stereomicroscopy, radiographic, and computerized tomography scan study that revealed that the dry atlas we found presented a very uncommon congenital Type B posterior atlas arch defect, simulating a fracture. In short, the present paper has revealed that differentiating Type B posterior atlas arch defects from fractures in post-mortem dry vertebrae is more difficult than expected. Thus we believe that it can be easier than expected to mistake Type B posterior arch defects for fractures and vice versa in postmortem studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
α2-Adrenoceptor Functionality in Postmortem Frontal Cortex of Depressed Suicide Victims
Valdizán, Elsa M.; Díez-Alarcia, Rebeca; González-Maeso, Javier; Pilar-Cuéllar, Fuencisla; García-Sevilla, Jesús A.; Meana, J. Javier; Pazos, Angel
2013-01-01
Background Alterations in brain density and signaling associated with monoamine receptors are believed to play a role in depressive disorders. This study evaluates the functional status of α2A-adrenoceptors in postmortem frontal cortex of depressed subjects. Methods G-protein activation and inhibition of adenylyl cyclase (AC) activity induced by the α2-adrenoceptor agonist UK14304 were measured in triplicate in samples from 15 suicide victims with an antemortem diagnosis of major depression and 15 matched control subjects. Results Basal [35S] guanosine γ thio-phosphate (GTPγS) binding and cyclic adenosine monophosphate accumulation did not differ between groups. In depressed victims, an increase in [35S] GTPγS binding potency (EC50 = .58 μmol/L vs. EC50 = 3.31 μmol/L; p < .01; depressed vs. control) and a significant reduction in the maximal inhibition of AC activity (Imax = 27 ± 4% vs. Imax = 47 ± 5%; p < .01) were observed after incubation with the α2-adrenoceptor agonist UK14304. No differences were found between antidepressant-free and antidepressant-treated subjects. A significant relationship between EC50 values for [35S] GTPγS and Imax values for AC assay was found (n = 30; r = −.43; p < .05). Conclusions The dual regulation of α2A-adrenoceptor signaling pathways raises the possibility that factors affecting the G-protein cycle and/or selective access of Gαi/o–protein to AC might be relevant to receptor abnormalities in depression, providing further support for the involvement of α2A-adrenoceptors in the pathogenesis of depression. PMID:20864091
Blasi, Giuseppe; De Virgilio, Caterina; Papazacharias, Apostolos; Taurisano, Paolo; Gelao, Barbara; Fazio, Leonardo; Ursini, Gianluca; Sinibaldi, Lorenzo; Andriola, Ileana; Masellis, Rita; Romano, Raffaella; Rampino, Antonio; Di Giorgio, Annabella; Lo Bianco, Luciana; Caforio, Grazia; Piva, Francesco; Popolizio, Teresa; Bellantuono, Cesario; Todarello, Orlando; Kleinman, Joel E; Gadaleta, Gemma; Weinberger, Daniel R; Bertolino, Alessandro
2013-09-01
Serotonin (5-hydroxytryptamine) receptor 2a (5-HT2AR) signaling is important for modulation of corticostriatal pathways and prefrontal activity during cognition. Furthermore, newer antipsychotic drugs target 5-HT2AR. A single-nucleotide polymorphism in the 5-HT2AR gene (HTR2A rs6314, C>T; OMIM 182135) has been weakly associated with differential 5-HT2AR signaling and with physiologic as well as behavioral effects. To use a hierarchical approach to determine the functional effects of this single-nucleotide polymorphism on 5-HT2AR messenger RNA and protein expression, on prefrontal phenotypes linked with genetic risk for schizophrenia, and on treatment with olanzapine. In silico predictions, in vitro, and case-control investigations. Academic and clinical facilities. The postmortem study included 112 brains from healthy individuals; the in vivo investigation included a total sample of 371 healthy individuals and patients with schizophrenia. EXPOSURES Patients received olanzapine monotherapy for 8 weeks. In silico predictions, messenger RNA, and protein expression in postmortem human prefrontal cortex and HeLa cells, functional magnetic resonance imaging prefrontal activity and behavior during working memory and attention in healthy individuals, and response to an 8-week trial of olanzapine treatment in patients with schizophrenia. Bioinformatic analysis predicted that rs6314 alters patterns of splicing, with possible effects on HTR2A expression. Moreover, the T allele was associated with reduced prefrontal messenger RNA expression in postmortem prefrontal cortex, with reduced protein expression in vitro, inefficient prefrontal blood oxygen level-dependent functional magnetic resonance imaging response during working memory and attentional control processing, and impaired working memory and attention behavior, as well as with attenuated improvement in negative symptoms after olanzapine treatment. Our results suggest that HTR2A rs6314 affects 5-HT2AR expression and functionally contributes to genetic modulation of known endophenotypes of schizophrenia-like higher-level cognitive behaviors and related prefrontal activity, as well as response to treatment with olanzapine.
Cerebrospinal fluid PCR analysis and biochemistry in bodies with severe decomposition.
Palmiere, Cristian; Vanhaebost, Jessica; Ventura, Francesco; Bonsignore, Alessandro; Bonetti, Luca Reggiani
2015-02-01
The aim of this study was to assess whether Neisseria meningitidis, Listeria monocytogenes, Streptococcus pneumoniae and Haemophilus influenzae can be identified using the polymerase chain reaction technique in the cerebrospinal fluid of severely decomposed bodies with known, noninfectious causes of death or whether postmortem changes can lead to false positive results and thus erroneous diagnostic information. Biochemical investigations, postmortem bacteriology and real-time polymerase chain reaction analysis in cerebrospinal fluid were performed in a series of medico-legal autopsies that included noninfectious causes of death with decomposition, bacterial meningitis without decomposition, bacterial meningitis with decomposition, low respiratory tract infections with decomposition and abdominal infections with decomposition. In noninfectious causes of death with decomposition, postmortem investigations failed to reveal results consistent with generalized inflammation or bacterial infections at the time of death. Real-time polymerase chain reaction analysis in cerebrospinal fluid did not identify the studied bacteria in any of these cases. The results of this study highlight the usefulness of molecular approaches in bacteriology as well as the use of alternative biological samples in postmortem biochemistry in order to obtain suitable information even in corpses with severe decompositional changes. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Rusjan, Pablo M; Wilson, Alan A; Miler, Laura; Fan, Ian; Mizrahi, Romina; Houle, Sylvain; Vasdev, Neil; Meyer, Jeffrey H
2014-05-01
This article describes the kinetic modeling of [(11)C]SL25.1188 ([(S)-5-methoxymethyl-3-[6-(4,4,4-trifluorobutoxy)-benzo[d]isoxazol-3-yl]-oxazolidin-2-[(11)C]one]) binding to monoamine oxidase B (MAO-B) in the human brain using high-resolution positron emission tomography (PET). Seven healthy subjects underwent two separate 90- minute PET scans after an intravenous injection of [(11)C]SL25.1188. Complementary arterial blood sampling was acquired. Radioactivity was quickly eliminated from plasma with 80% of parent compound remaining at 90 minutes. Metabolites were more polar than the parent compound. Time-activity curves showed high brain uptake, early peak and washout rate consistent with known regional MAO-B concentration. A two-tissue compartment model (2-TCM) provided better fits to the data than a 1-TCM. Measurement of total distribution volume (VT) showed very good identifiability (based on coefficient of variation (COV)) for all regions of interest (ROIs) (COV(VT)<8%), low between-subject variability (∼20%), and quick temporal convergence (within 5% of final value at 45 minutes). Logan graphical method produces very good estimation of VT. Regional VT highly correlated with previous postmortem report of MAO-B level (r(2)= ≥ 0.9). Specific binding would account from 70% to 90% of VT. Hence, VT measurement of [(11)C]SL25.1(1)88 PET is an excellent estimation of MAO-B concentration.
Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta
2016-02-01
Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Postmortem brain abnormalities of the glutamate neurotransmitter system in autism.
Purcell, A E; Jeon, O H; Zimmerman, A W; Blue, M E; Pevsner, J
2001-11-13
Studies examining the brains of individuals with autism have identified anatomic and pathologic changes in regions such as the cerebellum and hippocampus. Little, if anything, is known, however, about the molecules that are involved in the pathogenesis of this disorder. To identify genes with abnormal expression levels in the cerebella of subjects with autism. Brain samples from a total of 10 individuals with autism and 23 matched controls were collected, mainly from the cerebellum. Two cDNA microarray technologies were used to identify genes that were significantly up- or downregulated in autism. The abnormal mRNA or protein levels of several genes identified by microarray analysis were investigated using PCR with reverse transcription and Western blotting. alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)- and NMDA-type glutamate receptor densities were examined with receptor autoradiography in the cerebellum, caudate-putamen, and prefrontal cortex. The mRNA levels of several genes were significantly increased in autism, including excitatory amino acid transporter 1 and glutamate receptor AMPA 1, two members of the glutamate system. Abnormalities in the protein or mRNA levels of several additional molecules in the glutamate system were identified on further analysis, including glutamate receptor binding proteins. AMPA-type glutamate receptor density was decreased in the cerebellum of individuals with autism (p < 0.05). Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.
Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain
Al-Mashhadi, Sufana; Simpson, Julie E.; Heath, Paul R.; Dickman, Mark; Forster, Gillian; Matthews, Fiona E.; Brayne, Carol; Ince, Paul G.; Wharton, Stephen B.
2016-01-01
White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2′-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. PMID:25311358
Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease.
D'Souza, Gary X; Waldvogel, Henry J
2016-12-15
In this review, we outline the role of the cholinergic system in Huntington's disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington's disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington's disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.
The Accuracy of Estimated Total Test Statistics. Final Report.
ERIC Educational Resources Information Center
Kleinke, David J.
In a post-mortem study of item sampling, 1,050 examinees were divided into ten groups 50 times. Each time, their papers were scored on four different sets of item samples from a 150-item test of academic aptitude. These samples were selected using (a) unstratified random sampling and stratification on (b) content, (c) difficulty, and (d) both.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Kayoko; Ikeya, Kiyoko; Kondo, Eri
Mosaicism is a mixed state, with two cell populations of different genetic origins caused by a cell mutation occurring after fertilization. In the present case, DNA analysis of lymphocytes led to a DMD diagnosis before death. Postmortem immunocytochemical and DNA analysis showed somatic mosaicism. At age 18 years, blood lymphocyte DNA analysis showed a DMD gene deletion, upstream from exon 7 to the 5{prime} end containing both muscle and brain promoters. As the patient`s mother and elder sister had no deletions, he was considered to have a new mutation. Immunocytochemical studies of postmortem tissues showed that dystrophin was absent frommore » the tongue, deltoid, intercostal, psoas and rectus femoris muscles, but there was a mix of dystrophin-positive and negative fibers in the rectus abdominis, cardiac, temporalis and sternocleidomastoid muscles. All diaphragm cells were dystrophin positive. Polymerase chain reaction (PCR) amplification from all tissues except the temporalis and sternocleidomastoid muscles, diaphragm and kidney, in which no deletion was found, showed the deletion from at least exon 6 to the 5{prime} end containing both muscle and brain promoters. In this case, a genomic deletion of the DMD gene contributed to the formation of tissues derived from both ectoderm and endoderm, and cells of mesodermal origin showed genotypic and phenotypic heterogeneity. Our results indicate a mutation of the present case may have occurred just before the period of germ layer formation. 34 refs., 7 figs.« less
Counseling Athletes on the Risk of Chronic Traumatic Encephalopathy
Concannon, Leah G.; Kaufman, Marla S.; Herring, Stanley A.
2014-01-01
Context: Chronic traumatic encephalopathy (CTE) is a rare progressive neurologic disorder that can manifest as a combination of cognitive, mood and behavioral, and neurologic symptoms. Despite clinically apparent symptoms, there is no imaging or other diagnostic test that can confirm diagnosis in living subjects. Diagnosis can only be confirmed postmortem by specific histopathologic features within the brain tissue identified on autopsy. CTE represents a unique tauopathy that is distinct from other neurodegenerative diseases. Evidence Acquisition: PubMed was searched from 1990 to 2013 for sport concussion and chronic traumatic encephalopathy. Articles were also identified from bibliographies of recent reviews and consensus statements. Study Design: Clinical review. Level of Evidence: Level 5. Results: Although CTE is postulated to occur as a result of repetitive mild traumatic brain injury, the specific etiology and risk factors have not yet been elucidated, and postmortem diagnosis makes causality difficult to determine. Conclusion: When counseling athletes and families about the potential association of recurrent concussions and the development of CTE, discussion of proper management of concussion is cornerstone. Unfortunately, to date, there is no equipment that can prevent concussions; however, rule changes and legislation may decrease the risk. It is imperative that return to play is medically supervised by a provider trained in the management of concussion and begins only once symptoms have resolved. In addition, athletes with permanent symptoms should be retired from contact sport. PMID:25177414
Elevated gamma-aminobutyric acid levels in chronic schizophrenia.
Ongür, Dost; Prescot, Andrew P; McCarthy, Julie; Cohen, Bruce M; Renshaw, Perry F
2010-10-01
Despite widely replicated abnormalities of gamma-aminobutyric acid (GABA) neurons in schizophrenia postmortem, few studies have measured tissue GABA levels in vivo. We used proton magnetic resonance spectroscopy to measure tissue GABA levels in participants with schizophrenia and healthy control subjects in the anterior cingulate cortex and parieto-occipital cortex. Twenty-one schizophrenia participants effectively treated on a stable medication regimen (mean age 39.0, 14 male) and 19 healthy control subjects (mean age 36.3, 12 male) underwent a proton magnetic resonance spectroscopy scan using GABA-selective editing at 4 Tesla after providing informed consent. Data were collected from two 16.7-mL voxels and analyzed using LCModel. We found elevations in GABA/creatine in the schizophrenia group compared with control subjects [F(1,65) = 4.149, p = .046] in both brain areas (15.5% elevation in anterior cingulate cortex, 11.9% in parieto-occipital cortex). We also found a positive correlation between GABA/creatine and glutamate/creatine, which was not accounted for by % GM or brain region. We found elevated GABA/creatinine in participants with chronically treated schizophrenia. Postmortem studies report evidence for dysfunctional GABAergic neurotransmission in schizophrenia. Elevated GABA levels, whether primary to illness or compensatory to another process, may be associated with dysfunctional GABAergic neurotransmission in chronic schizophrenia. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Pathology of deaths associated with "ecstasy" and "eve" misuse.
Milroy, C M; Clark, J C; Forrest, A R
1996-01-01
AIMS: To study the postmortem pathology associated with ring substituted amphetamine (amphetamine derivatives) misuse. METHODS: The postmortem findings in deaths associated with the ring substituted amphetamines 3,4-methylenedioxymethyl-amphetamine (MDMA, ecstasy) and 3,4-methylenedioxyethylamphetamine (MDEA, eve) were studied in seven young white men aged between 20 and 25 years. RESULTS: Striking changes were identified in the liver, which varied from foci of individual cell necrosis to centrilobular necrosis. In one case there was massive hepatic necrosis. Changes consistent with catecholamine induced myocardial damage were seen in five cases. In the brain perivascular haemorrhagic and hypoxic changes were identified in four cases. Overall, the changes in four cases were the same as those reported in heart stroke, although only two cases had a documented history of hyperthermia. Of these four cases, all had changes in their liver, three had changes in their brains, and three in their heart. Of the other three cases, one man died of fulminant liver failure, one of water intoxication and one probably from a cardiac arrhythmia associated with myocardial fibrosis. CONCLUSIONS: These data suggest that there is more than one mechanism of damage in ring substituted amphetamine misuse, injury being caused by hyperthermia in some cases, but with ring substituted amphetamines also possibly having a toxic effect on the liver and other organs in the absence of hyperthermia. Images PMID:8655682
Gyration of the feline brain: localization, terminology and variability.
Pakozdy, A; Angerer, C; Klang, A; König, E H; Probst, A
2015-12-01
The terminology of feline brain gyration is not consistent and individual variability has not been systematically examined. The aim of the study was to identify the gyri and sulci of cat brains and describe them using the current terminology. The brains of 15 cats including 10 European shorthairs, 2 Siamese, 2 Maine coons and one Norvegian forest cat without clinical evidence of brain disease were examined post-mortem and photographed for documentation. For description, the terms of the most recent Nomina Anatomica Veterinaria (NAV, 2012) were used, and comparisons with previous anatomical texts were also performed. In addition to the lack of comparative morphology in the NAV, veterinary and human nomenclature are used interchangeably and inconsistently in the literature. This presents a challenge for neurologists and anatomists in localizing gyri and sulci. A comparative analysis of brain gyration showed only minor individual variability among the cats. High-quality labelled figures are provided to facilitate the identification of cat brain gyration. Our work consolidates the current and more consistent gyration terminology for reporting the localization of a cortical lesion based on magnetic resonance imaging or histopathology. This will facilitate not only morphological but also functional research using accurate anatomical reporting. © 2014 Blackwell Verlag GmbH.
Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.
Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon
2017-06-01
A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evidence for a membrane defect in Alzheimer disease brain
NASA Technical Reports Server (NTRS)
Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H.; Wurtman, R. J.
1992-01-01
To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.
A Review of the Status of Brain Structure Research in Transsexualism.
Guillamon, Antonio; Junque, Carme; Gómez-Gil, Esther
2016-10-01
The present review focuses on the brain structure of male-to-female (MtF) and female-to-male (FtM) homosexual transsexuals before and after cross-sex hormone treatment as shown by in vivo neuroimaging techniques. Cortical thickness and diffusion tensor imaging studies suggest that the brain of MtFs presents complex mixtures of masculine, feminine, and demasculinized regions, while FtMs show feminine, masculine, and defeminized regions. Consequently, the specific brain phenotypes proposed for MtFs and FtMs differ from those of both heterosexual males and females. These phenotypes have theoretical implications for brain intersexuality, asymmetry, and body perception in transsexuals as well as for Blanchard's hypothesis on sexual orientation in homosexual MtFs. Falling within the aegis of the neurohormonal theory of sex differences, we hypothesize that cortical differences between homosexual MtFs and FtMs and male and female controls are due to differently timed cortical thinning in different regions for each group. Cross-sex hormone studies have reported marked effects of the treatment on MtF and FtM brains. Their results are used to discuss the early postmortem histological studies of the MtF brain.
Shabaiek, Amany; Ismael, Nour El-Hoda; Elsheikh, Samar; Amin, Hebat Allah
2016-03-15
Many immunohistochemical markers have been used in the postmortem detection of early myocardial infarction. In the present study we examined the role of Heart-type fatty acid binding protein (H-FABP), in the detection of early myocardial infarction. We obtained samples from 40 human autopsy hearts with/without histopathological signs of ischemia. All cases of definite and probable myocardial infarction showed a well-defined area of H-FABP depletion. All of the control cases showed strong H-FABP expression, except two markedly autolysed myocardial samples that showed affected antigenicity. Thus, we suggest H-FABP as being one of the valuable tools facing the problem of postmortem detection of early myocardial infarction/ischemia, but not in autolysis.
A case of acute subdural hematoma due to ruptured aneurysm detected by postmortem angiography.
Inokuchi, Go; Makino, Yohsuke; Yajima, Daisuke; Motomura, Ayumi; Chiba, Fumiko; Torimitsu, Suguru; Hoshioka, Yumi; Iwase, Hirotaro
2016-03-01
Acute subdural hematoma (ASDH) is mostly caused by head trauma, but intrinsic causes also exist such as aneurysm rupture. We describe here a case involving a man in his 70s who was found lying on the bedroom floor by his family. CT performed at the hospital showed ASDH and a forensic autopsy was requested. Postmortem cerebral angiography showed dilatation of the bifurcation of the middle cerebral artery, which coincided with the dilated part of the Sylvian fissure. Extravasation of contrast medium into the subdural hematoma from this site was suggestive of a ruptured aneurysm. Autopsy revealed a fleshy hematoma (total weight 110 g) in the right subdural space and findings of brain herniation. As indicated on angiography, a ruptured saccular aneurysm was confirmed at the bifurcation of the middle cerebral artery. Obvious injuries to the head or face could not be detected on either external or internal examination, and intrinsic ASDH due to a ruptured middle cerebral artery aneurysm was determined as the cause of death. One of the key points of forensic diagnosis is the strict differentiation between intrinsic and extrinsic onset for conditions leading to death. Although most subdural hematomas (SDH) are caused by extrinsic factors, forensic pathologists should consider the possibility of intrinsic SDH. In addition, postmortem angiography can be useful for identifying vascular lesions in such cases.
Kemp, Philip M; Cardona, Patrick S; Chaturvedi, Arvind K; Soper, John W
2015-07-01
Little is known of the postmortem distribution of ∆(9)-tetrahydrocannabinol (THC) and its major metabolite, 11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THCCOOH). Data from 55 pilots involved in fatal aviation accidents are presented in this study. Gas chromatography/mass spectrometry analysis obtained mean THC concentrations in blood from multiple sites, liver, lung, and kidney of 15.6 ng/mL, 92.4 ng/g, 766.0 ng/g, 44.1 ng/g and mean THCCOOH concentrations of 35.9 ng/mL, 322.4 ng/g, 42.6 ng/g, 138.5 ng/g, respectively. Heart THC concentrations (two cases) were 184.4 and 759.3 ng/g, and corresponding THCCOOH measured 11.0 and 95.9 ng/g, respectively. Muscle concentrations for THC (two cases) were 16.6 and 2.5 ng/g; corresponding THCCOOH, "confirmed positive" and 1.4 ng/g. The only brain tested in this study showed no THC detected and 2.9 ng/g THCCOOH, low concentrations that correlated with low values in other specimens from this case. This research emphasizes the need for postmortem cannabinoid testing and demonstrates the usefulness of a number of tissues, most notably lung, for these analyses. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
2014-01-01
Background Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either ‘reactive’ or ‘endogenous’ subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of ‘reactive’ or ‘endogenous’ subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of ‘reactive’ and ‘endogenous’ depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. Methods Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic ‘stress’ protocols (maternal separation and Unpredictable Chronic Mild Stress) to model ‘reactive’ depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of ‘endogenous’ depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. Results In the mouse ‘reactive’ model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the ‘endogenous’ rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. Conclusions Our results suggest that ‘endogenous’ and ‘reactive’ subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of ‘reactive’ depression caused by early stressors differs considerably from that of ‘reactive’ depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD. PMID:24886127
Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections
Smith, Alex J.; Verkman, Alan S.
2015-01-01
The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4−/− astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. PMID:26682810
Selection of Reference Gene Expression in a Schizophrenia Brain Cohort
Weickert, Cynthia Shannon; Sheedy, Donna; Rothmond, Debora A.; Dedova, Irina; Fung, Samantha; Garrick, Therese; Wong, Jenny; Harding, Antony J.; Sivagnanansundaram, Sinthuja; Hunt, Clare; Duncan, Carlotta; Sundqvist, Nina; Tsai, Shan-Yuan; Anand, Jasna; Draganic, Daren; Harper, Clive
2010-01-01
Objective To conduct postmortem human brain research into the neuropathological basis of schizophrenia, it is critical to establish cohorts that are well-characterised and well-matched. Our objective was to determine if specimen characteristics, including: diagnosis, age, postmortem interval (PMI), brain acidity (pH), and/or the agonal state of the subject at death related to RNA quality, and to determine the most appropriate reference gene mRNAs. Methods We selected a matched cohort of 74 cases (37 schizophrenia / schizoaffective disorder cases and 37 controls cases). Middle frontal gyrus tissue was pulverised, tissue pH was measured, RNA isolated for cDNA from each case, and RNA integrity number (RIN) measurements were assessed. Using RT-PCR, we measured nine housekeeper genes and calculated a geomean in each diagnostic group. Results We found that the RINs were very good (mean 7.3) and all nine housekeeper control genes were significantly correlated with RIN. Seven of nine housekeeper genes were also correlated with pH, and two clinical variables, agonal state and duration of illness did have an effect on some control mRNAs. No major impact of PMI or freezer time on housekeeper mRNAs was detected. Our results show that people with schizophrenia had significantly less PPIA, and SDHA and tended to have less GUSB and B2M mRNA suggesting that these control genes may not be good candidates for normalisation. Conclusions In our cohort, less than 10% variability in RIN values was detected and the diagnostic groups were well matched overall. Our cohort was adequately powered (0.80–0.90) to detect mRNA differences (25%) due to disease. Our study suggests that multiple factors should be considered in mRNA expression studies of human brain tissues. When schizophrenia cases are adequately matched to control cases subtle differences in gene expression can be reliably detected. PMID:20073568
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Yang, Yanling; Li, Yuxin
2015-02-06
Development of high resolution liquid chromatography (LC) is essential for improving the sensitivity and throughput of mass spectrometry (MS)-based proteomics. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse phase column (100 μm x 150 cm) coupled with Q Exactive MS. The column was capable of achieving a peak capacity of approximately 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading level was about 6 micrograms of peptides, although the column allowed loading as many as 20 micrograms. Gas phasemore » fractionation of peptide ions further increased the number of peptide identification by ~10%. Moreover, the combination of basic pH LC pre-fractionation with the long gradient LC-MS/MS platform enabled the identification of 96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem brain sample of Alzheimer’s disease. As deep RNA sequencing of the same specimen suggested that ~16,000 genes were expressed, current analysis covered more than 60% of the expressed proteome. Further improvement strategies of the LC/LC-MS/MS platform were also discussed.« less
Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage.
McAllister, James P; Guerra, Maria Montserrat; Ruiz, Leandro Castaneyra; Jimenez, Antonio J; Dominguez-Pinos, Dolores; Sival, Deborah; den Dunnen, Wilfred; Morales, Diego M; Schmidt, Robert E; Rodriguez, Esteban M; Limbrick, David D
2017-05-01
To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls without hemorrhages or ventriculomegaly. Birth and expiration estimated gestational ages were 23.0-39.1 and 23.7-44.1 weeks, respectively; survival ranges were 0-42 days (median, 2.0 days). Routine histology and immunohistochemistry for neural stem cells (NSCs), neural progenitors (NPs), multiciliated ependymal cells (ECs), astrocytes (AS), and cell adhesion molecules were performed. Controls exhibited monociliated NSCs and multiciliated ECs lining the ventricles, abundant NPs in the SVZ, and medial vs. lateral wall differences with a complex mosaic organization in the latter. In IVH cases, normal VZ/SVZ areas were mixed with foci of NSC and EC loss, eruption of cells into the ventricle, cytoplasmic transposition of N-cadherin, subependymal rosettes, and periventricular heterotopia. Mature AS populated areas believed to be sites of VZ disruption. The cytopathology and extension of the VZ disruption correlated with developmental age but not with brain hemorrhage grade or location. These results corroborate similar findings in congenital hydrocephalus in animals and humans and indicate that VZ disruption occurs consistently in premature neonates with IVH. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Nunomura, Akihiko; Tamaoki, Toshio; Motohashi, Nobutaka; Nakamura, Masao; McKeel, Daniel W.; Tabaton, Massimo; Lee, Hyoung-gon; Smith, Mark A.; Perry, George; Zhu, Xiongwei
2012-01-01
Although neuronal RNA oxidation is a prominent and established feature in age-associated neurodegenerative disorders such as Alzheimer disease (AD), oxidative damage to neuronal RNA in aging and in the transitional stages from normal elderly to the onset of AD has not been fully examined. In this study, we used an in situ approach to identify an oxidized RNA nucleoside 8-hydroxyguanosine (8OHG) in the cerebral cortex of 65 individuals without dementia ranging in age from 0.3 to 86 years. We also examined brain samples from 20 elderly who were evaluated for their premortem clinical dementia rating score and postmortem brain pathological diagnoses to investigate preclinical AD and mild cognitive impairment. Relative density measurements of 8OHG-immunoreactivity revealed a statistically significant increase in neuronal RNA oxidation during aging in the hippocampus and the temporal neocortex. In subjects with mild cognitive impairment but not preclinical AD, neurons of the temporal cortex showed a higher burden of oxidized RNA compared to age-matched controls. These results indicate that although neuronal RNA oxidation fundamentally occurs as an age-associated phenomenon, more prominent RNA damage than in normal aging correlates with the onset of cognitive impairment in the prodromal stage of AD. PMID:22318126
Derivation of Functional Human Astrocytes from Cerebral Organoids
Dezonne, Rômulo Sperduto; Sartore, Rafaela Costa; Nascimento, Juliana Minardi; Saia-Cereda, Verônica M.; Romão, Luciana Ferreira; Alves-Leon, Soniza Vieira; de Souza, Jorge Marcondes; Martins-de-Souza, Daniel; Rehen, Stevens Kastrup; Gomes, Flávia Carvalho Alcantara
2017-01-01
Astrocytes play a critical role in the development and homeostasis of the central nervous system (CNS). Astrocyte dysfunction results in several neurological and degenerative diseases. However, a major challenge to our understanding of astrocyte physiology and pathology is the restriction of studies to animal models, human post-mortem brain tissues, or samples obtained from invasive surgical procedures. Here, we report a protocol to generate human functional astrocytes from cerebral organoids derived from human pluripotent stem cells. The cellular isolation of cerebral organoids yielded cells that were morphologically and functionally like astrocytes. Immunolabelling and proteomic assays revealed that human organoid-derived astrocytes express the main astrocytic molecular markers, including glutamate transporters, specific enzymes and cytoskeletal proteins. We found that organoid-derived astrocytes strongly supported neuronal survival and neurite outgrowth and responded to ATP through transient calcium wave elevations, which are hallmarks of astrocyte physiology. Additionally, these astrocytes presented similar functional pathways to those isolated from adult human cortex by surgical procedures. This is the first study to provide proteomic and functional analyses of astrocytes isolated from human cerebral organoids. The isolation of these astrocytes holds great potential for the investigation of developmental and evolutionary features of the human brain and provides a useful approach to drug screening and neurodegenerative disease modelling. PMID:28345587
Diagnostic performance characteristics of a rapid field test for anthrax in cattle.
Muller, Janine; Gwozdz, Jacek; Hodgeman, Rachel; Ainsworth, Catherine; Kluver, Patrick; Czarnecki, Jill; Warner, Simone; Fegan, Mark
2015-07-01
Although diagnosis of anthrax can be made in the field with a peripheral blood smear, and in the laboratory with bacterial culture or molecular based tests, these tests require either considerable experience or specialised equipment. Here we report on the evaluation of the diagnostic sensitivity and specificity of a simple and rapid in-field diagnostic test for anthrax, the anthrax immunochromatographic test (AICT). The AICT detects the protective antigen (PA) component of the anthrax toxin present within the blood of an animal that has died from anthrax. The test provides a result in 15min and offers the advantage of avoiding the necessity for on-site necropsy and subsequent occupational risks and environmental contamination. The specificity of the test was determined by testing samples taken from 622 animals, not infected with Bacillus anthracis. Diagnostic sensitivity was estimated on samples taken from 58 animals, naturally infected with B. anthracis collected over a 10-year period. All samples used to estimate the diagnostic sensitivity and specificity of the AICT were also tested using the gold standard of bacterial culture. The diagnostic specificity of the test was estimated to be 100% (99.4-100%; 95% CI) and the diagnostic sensitivity was estimated to be 93.1% (83.3-98.1%; 95% CI) (Clopper-Pearson method). Four samples produced false negative AICT results. These were among 9 samples, all of which tested positive for B. anthracis by culture, where there was a time delay between collection and testing of >48h and/or the samples were collected from animals that were >48h post-mortem. A statistically significant difference (P<0.001; Fishers exact test) was found between the ability of the AICT to detect PA in samples from culture positive animals <48h post-mortem, 49 of 49, Se=100% (92.8-100%; 95% CI) compared with samples tested >48h post-mortem 5 of 9 Se=56% (21-86.3%; 95% CI) (Clopper-Pearson method). Based upon these results a post hoc cut-off for use of the AICT of 48h post-mortem was applied, Se=100% (92.8-100%; 95% CI) and Sp=100% (99.4-100%; 95% CI). The high diagnostic sensitivity and specificity and the simplicity of the AICT enables it to be used for active surveillance in areas with a history of anthrax, or used as a preliminary tool in investigating sudden, unexplained death in cattle. Copyright © 2015 Elsevier B.V. All rights reserved.
McKee, S R; Sams, A R
1998-01-01
Development of rigor mortis at elevated post-mortem temperatures may contribute to turkey meat characteristics that are similar to those found in pale, soft, exudative pork. To evaluate this effect, 36 Nicholas tom turkeys were processed at 19 wk of age and placed in water at 40, 20, and 0 C immediately after evisceration. Pectoralis muscle samples were taken at 15 min, 30 min, 1 h, 2 h, and 4 h post-mortem and analyzed for R-value (an indirect measure of adenosine triphosphate), glycogen, pH, color, and sarcomere length. At 4 h, the remaining intact Pectoralis muscle was harvested, and aged on ice 23 h, and analyzed for drip loss, cook loss, shear values, and sarcomere length. By 15 min post-mortem, the 40 C treatment had higher R-values, which persisted through 4 h. By 1 h, the 40 C treatment pH and glycogen levels were lower than the 0 C treatment; however, they did not differ from those of the 20 C treatment. Increased L* values indicated that color became more pale by 2 h post-mortem in the 40 C treatment when compared to the 20 and 0 C treatments. Drip loss, cook loss, and shear value were increased whereas sarcomere lengths were decreased as a result of the 40 C treatment. These findings suggested that elevated post-mortem temperatures during processing resulted in acceleration of rigor mortis and biochemical changes in the muscle that produced pale, exudative meat characteristics in turkey.
Hagiwara, Akifumi; Warntjes, Marcel; Hori, Masaaki; Andica, Christina; Nakazawa, Misaki; Kumamaru, Kanako Kunishima; Abe, Osamu; Aoki, Shigeki
2017-01-01
Abstract Conventional magnetic resonance images are usually evaluated using the image signal contrast between tissues and not based on their absolute signal intensities. Quantification of tissue parameters, such as relaxation rates and proton density, would provide an absolute scale; however, these methods have mainly been performed in a research setting. The development of rapid quantification, with scan times in the order of 6 minutes for full head coverage, has provided the prerequisites for clinical use. The aim of this review article was to introduce a specific quantification method and synthesis of contrast-weighted images based on the acquired absolute values, and to present automatic segmentation of brain tissues and measurement of myelin based on the quantitative values, along with application of these techniques to various brain diseases. The entire technique is referred to as “SyMRI” in this review. SyMRI has shown promising results in previous studies when used for multiple sclerosis, brain metastases, Sturge-Weber syndrome, idiopathic normal pressure hydrocephalus, meningitis, and postmortem imaging. PMID:28257339
Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J
2014-01-01
Chronic alcohol consumption results in structural changes to the brain. In alcoholics without coexisting thiamine deficiency or liver disease this is largely restricted to a loss of white-matter volume. When it occurs, neuronal loss is limited in anatomic distribution and only detected with quantitative techniques. This relative paucity of neurodegeneration is reflected in studies of gene and protein expression in postmortem brain where findings are subtle and discordant between studies. In alcoholics with coexisting pathologies, neuronal loss is more marked and affects a wider range of anatomic regions, especially subcortical nuclei. Although this more widespread damage may reflect a more severe drinking history, there is evidence linking thiamine deficiency and the consequences of liver disease to the pathogenesis of alcohol-related brain damage. Furthermore, a range of other factors, such as cigarette smoking and mood disorders, that are common in alcoholics, have the potential to influence studies of brain pathology and should be considered in further studies of the neuropathology of alcoholism. © 2014 Elsevier B.V. All rights reserved.
2014-01-01
Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested. PMID:24834316
Mechanical disruption of the blood-brain barrier following experimental concussion.
Johnson, Victoria E; Weber, Maura T; Xiao, Rui; Cullen, D Kacy; Meaney, David F; Stewart, William; Smith, Douglas H
2018-05-01
Although concussion is now recognized as a major health issue, its non-lethal nature has limited characterization of the underlying pathophysiology. In particular, potential neuropathological changes have typically been inferred from non-invasive techniques or post-mortem examinations of severe traumatic brain injury (TBI). Here, we used a swine model of head rotational acceleration based on human concussion to examine blood-brain barrier (BBB) integrity after injury in association with diffuse axonal injury and glial responses. We then determined the potential clinical relevance of the swine concussion findings through comparisons with pathological changes in human severe TBI, where post-mortem examinations are possible. At 6-72 h post-injury in swine, we observed multifocal disruption of the BBB, demonstrated by extravasation of serum proteins, fibrinogen and immunoglobulin-G, in the absence of hemorrhage or other focal pathology. BBB disruption was observed in a stereotyped distribution consistent with biomechanical insult. Specifically, extravasated serum proteins were frequently observed at interfaces between regions of tissue with differing material properties, including the gray-white boundary, periventricular and subpial regions. In addition, there was substantial overlap of BBB disruption with regions of axonal pathology in the white matter. Acute perivascular cellular uptake of blood-borne proteins was observed to be prominent in astrocytes (GFAP-positive) and neurons (MAP-2-positive), but not microglia (IBA1-positive). Parallel examination of human severe TBI revealed similar patterns of serum extravasation and glial uptake of serum proteins, but to a much greater extent than in the swine model, attributed to the higher injury severity. These data suggest that BBB disruption represents a new and important pathological feature of concussion.
Handley, Renee R; Reid, Suzanne J; Brauning, Rudiger; Maclean, Paul; Mears, Emily R; Fourie, Imche; Patassini, Stefano; Cooper, Garth J S; Rudiger, Skye R; McLaughlan, Clive J; Verma, Paul J; Gusella, James F; MacDonald, Marcy E; Waldvogel, Henry J; Bawden, C Simon; Faull, Richard L M; Snell, Russell G
2017-12-26
The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the Huntingtin ( HTT ) gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old OVT73 -line sheep expressing a human CAG-expansion HTT cDNA transgene. Our HD OVT73 sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter SLC14A1 in the OVT73 striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the OVT73 striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.
Gourmaud, Sarah; Paquet, Claire; Dumurgier, Julien; Pace, Clarisse; Bouras, Constantin; Gray, Françoise; Laplanche, Jean-Louis; Meurs, Eliane F.; Mouton-Liger, François; Hugon, Jacques
2015-01-01
Background Alzheimer disease is characterized by cognitive decline, senile plaques of β-amyloid (Aβ) peptides, neurofibrillary tangles composed of hyperphosphorylated τ proteins and neuronal loss. Aβ and τ are useful markers in the cerebrospinal fluid (CSF). C-Jun N-terminal kinases (JNKs) are serine-threonine protein kinases activated by phosphorylation and involved in neuronal death. Methods In this study, Western blots, enzyme-linked immunosorbent assay and histological approaches were used to assess the concentrations of Aβ, τ and JNK isoforms in postmortem brain tissue samples (10 Alzheimer disease and 10 control) and in CSF samples from 30 living patients with Alzheimer disease and 27 controls with neurologic disease excluding Alzheimer disease. Patients with Alzheimer disease were followed for 1–3 years and assessed using Mini–Mental State Examination scores. Results The biochemical and morphological results showed a significant increase of JNK3 and phosphorylated JNK levels in patients with Alzheimer disease, and JNK3 levels correlated with Aβ42 levels. Confocal microscopy revealed that JNK3 was associated with Aβ in senile plaques. The JNK3 levels in the CSF were significantly elevated in patients with Alzheimer disease and correlated statistically with the rate of cognitive decline in a mixed linear model. Limitations The study involved different samples grouped into 3 small cohorts. Evaluation of JNK3 in CSF was possible only with immunoblot analysis. Conclusion We found that JNK3 levels are increased in brain tissue and CSF from patients with Alzheimer disease. The finding that increased JNK3 levels in CSF could reflect the rate of cognitive decline is new and merits further investigation. PMID:25455349
Uhlig, C E; Promesberger, J; Hirschfeld, G; Koch, R; Reinhard, T; Seitz, B
2012-12-01
Analysis of willingness for postmortem cornea donation by professionals in ophthalmology and their motives in favor of or against donation. 3887 members of the German Ophthalmological Society received an anonymous questionnaire concerning sociodemographic background, physical health, experiences with organ explantation and their former engagement and motives concerning organ and cornea donation. 722 of the questionnaires were partially and 533 completely answered with an average willingness for cornea donation of 79.4%. Significant parameters for cornea donation were gender, former experience with organ explantation, ophthalmological health and fear of false diagnosis of brain death, worse medical treatment or organ commercialization. Of the participants 53.9% suggested the internet as a favorite source of information in this matter. The factors which had a significant impact on cornea donation in this survey seem to be mainly a result of insufficient information. Detailed information regarding this topic should preferentially be presented on internet pages of professional societies and could probably increase donation approval of DOG members.
Kernbach, G; Püschel, K; Brinkmann, B
1986-01-01
This study was performed to examine the relationship between postmortem biochemical values and cause of death. The follow samples were taken from 399 corpses: cerebrospinal fluid (CSF; n = 376, suboccipital), blood (n = 158, femoral vein), and urine (n = 101, at autopsy). (See Table 1 for causes of death) All samples were stored at -80 degrees C. A further 100 samples of blood were later taken and stored at +4 degrees C before testing. Biochemical determinations made were: glucose in CSF, blood, and urine (hexokinase method); lactate (LDH/GPT) and free acetone (HS-gas chromatography) in CSF; hemoglobin A1 in blood (microcolumn technique). In 34 cases fatal diabetic coma was considered verified by morphological and chemical findings. One hundred cases of sudden cardiac death were chosen as the main control group. In 32 of the 34 cases defined above, the value of the formula of Traub (glucose + lactate in CSF) exceeded 415 mg/dl. It is not influenced significantly by hyperglycemia or hyperlactatemia due to factors other than diabetes (i.e., carbon monoxide, asphyxia). After death the value rose till the 30th hpm, then remained stable for at least 1 week. Fatal coma was defined as the ketoacidotic form if free acetone in CSF ranged above 21 mg/l. In these cases, CSF glucose and free acetone correlated positively. Hemoglobin A1 remained stable after death. Its amount was independent from postmortem blood glucose, postmortem interval and total hemoglobin. Furthermore, the manner of storage (-80 degrees or +4 degrees C) had no significant influence on its values. In 29 of 34 cases of fatal coma, Hb A1 exceeded 12.1%. Analysis of urine glucose showed elevated levels (over 500 mg/dl) in diabetic comas. On conclusion, fatal diabetic coma seems indicated as the cause of death if measured values of postmortem biochemistry exceed the following limits: CSF-Traub 415 mg/dl, free acetone (CSF) 21 mg/l; Hb A1 12.1%; urine glucose 500 mg/dl. Most important are the Traub formula and hemoglobin A1. Usually, in fatal coma both values are elevated. If both of them are normal, diabetic coma can nearly be excluded. Combined evaluation of all values is absolutely necessary. Morphology must also always be taken into account. Consequently, a diagnosis of fatal coma can be obtained by a process of elimination.
Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism
Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Vasu, Mahesh M.; Yamada, Kazuo; Ueki, Takatoshi; Iwayama, Yoshimi; Toyota, Tomoko; Tsuchiya, Kenji J.; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio
2014-01-01
Background In a genome-wide association study of autism, zinc finger protein 804A (ZNF804A) single nucleotide polymorphisms (SNPs) were found to be nominally associated in verbally deficient individuals with autism. Zinc finger protein 804A copy number variations (CNVs) have also been observed in individuals with autism. In addition, ZNF804A is known to be involved in theory of mind (ToM) tasks, and ToM deficits are deemed responsible for the communication and social challenges faced by individuals with autism. We hypothesized that ZNF804A could be a risk gene for autism. Methods We examined the genetic association and CNVs of ZNF804A in 841 families in which 1 or more members had autism. We compared the expression of ZNF804A in the postmortem brains of individuals with autism (n = 8) and controls (n = 13). We also assessed in vitro the effect of ZNF804A silencing on the expression of several genes known to be involved in verbal efficiency and social cognition. Results We found that rs7603001 was nominally associated with autism (p = 0.018). The association was stronger (p = 0.008) in the families of individuals with autism who were verbally deficient (n = 761 families). We observed ZNF804A CNVs in 7 verbally deficient boys with autism. In ZNF804A knockdown cells, the expression of synaptosomal-associated protein, 25kDa (SNAP25) was reduced compared with controls (p = 0.009). The expression of ZNF804A (p = 0.009) and SNAP25 (p = 0.009) were reduced in the anterior cingulate gyrus (ACG) of individuals with autism. There was a strong positive correlation between the expression of ZNF804A and SNAP25 in the ACG (p < 0.001). Limitations Study limitations include our small sample size of postmortem brains. Conclusion Our results suggest that ZNF804A could be a potential candidate gene mediating the intermediate phenotypes associated with verbal traits in individuals with autism. PMID:24866414
Ellis, Ashley D; McGwin, Gerald; Davis, Gregory G; Dye, Daniel W
2016-09-01
Heroin has a half-life of 2-6 min and is metabolized too quickly to be detected in autopsy samples. The presence of 6-acetylmophine (6-AM) in urine, blood, or other samples is convincing evidence of heroin use by a decedent, but 6-AM itself has a half-life of 6-25 min before it is hydrolyzed to morphine, so 6-AM may not be present in sufficient concentration to detect in postmortem samples. Codeine is often present in heroin preparations as an impurity and is not a metabolite of heroin. Studies report that a ratio of morphine to codeine greater than one indicates heroin use. We hypothesize that the ratio of morphine to codeine in our decedents abusing drugs intravenously will be no different in individuals with 6-AM present than in individuals where no 6-AM is detected, and we report our study of this hypothesis. All accidental deaths investigated by the Jefferson County Coroner/Medical Examiner Office from 2010 to 2013 with morphine detected in blood samples collected at autopsy were reviewed. Five deaths where trauma caused or contributed to death were excluded from the review. The presence or absence of 6-AM and the concentrations of morphine and codeine were recorded for each case. The ratio of morphine to codeine was calculated for all decedents. Any individual in whom no morphine or codeine was detected in a postmortem sample was excluded from further study. Absence or presence of drug paraphernalia or evidence of intravascular (IV) drug use was documented in each case to identify IV drug users. The proportion of the IV drug users with and without 6-AM present in a postmortem sample was compared to the M/C ratio for the individuals. Of the 230 deaths included in the analysis, 103 IV drug users with quantifiable morphine and codeine in a postmortem sample were identified allowing for calculation of an M/C ratio. In these IV drug users, the M/C ratio was greater than 1 in 98 % of decedents. When controlling for the absence or presence of 6-AM there was no statistically significant difference in the proportion of IV drug users when compared to non IV drug users with an M/C ratio of greater than 1 (p = 1.000). The M/C ratio in IV drug users, if greater than 1, is seen in deaths due to heroin toxicity where 6-AM is detected in a postmortem sample. This study provides evidence that a M/C ratio greater than one in an IV drug user is evidence of a death due to heroin toxicity even if 6-AM is not detected in the blood. Using the M/C ratio, in addition to scene and autopsy findings, provides sufficient evidence to show heroin is the source of the morphine and codeine. Listing heroin as a cause or contributing factor in deaths with evidence of IV drug abuse and where the M/C ratio exceeds 1 will improve identification of heroin fatalities, which will allow better allocation of resources for public health initiatives.
[Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].
Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun
2015-08-01
To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (P<0.05). Of the 20 tissue samples from human corps found in water, 15 were found positive for algae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.
Kinze, S; Schöneberg, T; Meyer, R; Martin, H; Kaufmann, R
1996-10-11
In this paper, cholecystokinin (CCK) B-type binding sites were characterized with receptor binding studies in different human brain regions (various parts of cerebral cortex, basal ganglia, hippocampus, thalamus, cerebellar cortex) collected from 22 human postmortem brains. With the exception of the thalamus, where no specific CCK binding sites were found, a pharmacological characterization demonstrated a single class of high affinity CCK sites in all brain areas investigated. Receptor densities ranged from 0.5 fmol/mg protein (hippocampus) to 8.4 fmol/mg protein (nucleus caudatus). These CCK binding sites displayed a typical CCKA binding profile as shown in competition studies by using different CCK-related compounds and non peptide CCK antagonists discriminating between CCKA and CCKB sites. The rank order of agonist or antagonist potency in inhibiting specific sulphated [propionyl-3H]cholecystokinin octapeptide binding was similar and highly correlated for the brain regions investigated as demonstrated by a computer-assisted analysis. Therefore it is concluded that CCKB binding sites in human cerebral cortex, basal ganglia, cerebellar cortex share identical ligand binding characteristics.
Value of brain scanning in the management of strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunes, J.L.; Schlesinger, E.B.; Michelsen, W.J.
1975-01-01
The usefulness of brain scanning in the diagnosis and management of strokes was evaluated in 313 serial cases. Of 38 patients with transient ischemic attacks (TIAs), only one had a positive test. The optimal time for scanning completed strokes was between seven and 14 days after onset. The pattern of uptake was characteristic of a vascular lesion in 76.8 percent. When uptake was indistinguishable from tumor, follow-up scans were useful. Patients with negative scans in the second week have a significantly better prognosis than the ones with a positive study. Cerebral angiography and brain scan correlated well in 56 patientsmore » who had both tests performed. The postmortem findings in 12 cases again emphasize the importance of the correct timing of the study, and the fact that a brain scan does not usually demonstrate lesions smaller than 2 cm in diameter. It is concluded that the brain scan represents a useful tool in the diagnosis of strokes and helps in predicting the degree of recovery following a vascular insult.« less
Johnson, Hunter R.; Trinidad, Donovan D.; Guzman, Stephania; Khan, Zenab; Parziale, James V.; DeBruyn, Jennifer M.
2016-01-01
Research on the human microbiome, the microbiota that live in, on, and around the human person, has revolutionized our understanding of the complex interactions between microbial life and human health and disease. The microbiome may also provide a valuable tool in forensic death investigations by helping to reveal the postmortem interval (PMI) of a decedent that is discovered after an unknown amount of time since death. Current methods of estimating PMI for cadavers discovered in uncontrolled, unstudied environments have substantial limitations, some of which may be overcome through the use of microbial indicators. In this project, we sampled the microbiomes of decomposing human cadavers, focusing on the skin microbiota found in the nasal and ear canals. We then developed several models of statistical regression to establish an algorithm for predicting the PMI of microbial samples. We found that the complete data set, rather than a curated list of indicator species, was preferred for training the regressor. We further found that genus and family, rather than species, are the most informative taxonomic levels. Finally, we developed a k-nearest- neighbor regressor, tuned with the entire data set from all nasal and ear samples, that predicts the PMI of unknown samples with an average error of ±55 accumulated degree days (ADD). This study outlines a machine learning approach for the use of necrobiome data in the prediction of the PMI and thereby provides a successful proof-of- concept that skin microbiota is a promising tool in forensic death investigations. PMID:28005908
Matarneh, Sulaiman K; Yen, Con-Ning; Elgin, Jennifer M; Beline, Mariane; da Luz E Silva, Saulo; Wicks, Jordan C; England, Eric M; Dalloul, Rami A; Persia, Michael E; Omara, Islam I; Shi, Hao; Gerrard, David E
2018-05-01
During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate pH of broiler P. major muscle, while low PFK activity and mitochondria content limit the flux through glycolysis.
Takeda, Shuko; Wegmann, Susanne; Cho, Hansang; DeVos, Sarah L.; Commins, Caitlin; Roe, Allyson D.; Nicholls, Samantha B.; Carlson, George A.; Pitstick, Rose; Nobuhara, Chloe K.; Costantino, Isabel; Frosch, Matthew P.; Müller, Daniel J.; Irimia, Daniel; Hyman, Bradley T.
2015-01-01
Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. PMID:26458742
Introduction to the special section: Myelin and oligodendrocyte abnormalities in schizophrenia.
Haroutunian, Vahram; Davis, Kenneth L
2007-08-01
A central tenet of modern views of the neurobiology of schizophrenia is that the symptoms of schizophrenia arise from a failure of adequate communication between different brain regions and disruption of the circuitry that underlies behaviour and perception. Historically this disconnectivity syndrome has been approached from a neurotransmitter-based perspective. However, efficient communication between brain circuits is also contingent on saltatory signal propagation and salubrious myelination of axons. The papers in this Special Section examine the neuroanatomical and molecular biological evidence for abnormal myelination and oligodendroglial function in schizophrenia through studies of post-mortem brain tissue and animal model systems. The picture that emerges from the studies described suggests that although schizophrenia is not characterized by gross abnormalities of white matter such as those evident in multiple sclerosis, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths.
Neuropathologic findings in an aged albino gorilla.
Márquez, M; Serafin, A; Fernández-Bellon, H; Serrat, S; Ferrer-Admetlla, A; Bertranpetit, J; Ferrer, I; Pumarola, M
2008-07-01
Pallido-nigral spheroids associated with iron deposition have been observed in some aged clinically normal nonhuman primates. In humans, similar findings are observed in neurodegeneration with brain iron accumulation diseases, which, in some cases, show associated mutations in pantothenate kinase 2 gene (PANK2). Here we present an aged gorilla, 40 years old, suffering during the last 2 years of life from progressive tetraparesis, nystagmus, and dyskinesia of the arms, hands, and neck, with accompanying abnormal behavior. The postmortem neuropathologic examination revealed, in addition to aging-associated changes in the brain, numerous corpora amylacea in some brain areas, especially the substantia nigra, and large numbers of axonal spheroids associated with iron accumulation in the internal globus pallidus. Sequencing of the gorilla PANK2 gene failed to detect any mutation. The clinical, neuropathologic, and genetic findings in this gorilla point to an age-related pallido-nigral degeneration that presented PKAN-like neurologic deficits.
Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.
2013-01-01
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307
Memory complaints are related to Alzheimer disease pathology in older persons.
Barnes, L L; Schneider, J A; Boyle, P A; Bienias, J L; Bennett, D A
2006-11-14
To study the relationship between Alzheimer disease (AD) pathology and memory complaints proximate to death. A group of 90 older persons underwent detailed clinical evaluations and brain autopsy at death. The evaluations included administration of questions on subjective memory complaints and clinical classification of dementia and AD. On postmortem examination, neuritic plaques, diffuse plaques, and neurofibrillary tangles in tissue samples from five cortical regions were counted, and a summary measure of overall AD pathology was derived. In addition, amyloid load and tau tangles were quantified in eight regions. In multiple linear regression models adjusted for age, sex, and education, memory complaints were associated with AD pathology, including both amyloid and tau tangles. Subsequent analyses demonstrated that the relationship between memory complaints and AD pathology was present in those with and without dementia, and could not be explained by the potentially confounding effects of depressive symptoms or coexisting common chronic health problems. Memory complaints in older persons may indicate self awareness of a degenerative process.
Hou, Xu; Fiesel, Fabienne C; Truban, Dominika; Castanedes Casey, Monica; Lin, Wen-Lang; Soto, Alexandra I; Tacik, Pawel; Rousseau, Linda G; Diehl, Nancy N; Heckman, Michael G; Lorenzo-Betancor, Oswaldo; Ferrer, Isidre; Arbelo, José M; Steele, John C; Farrer, Matthew J; Cornejo-Olivas, Mario; Torres, Luis; Mata, Ignacio F; Graff-Radford, Neill R; Wszolek, Zbigniew K; Ross, Owen A; Murray, Melissa E; Dickson, Dennis W; Springer, Wolfdieter
2018-06-27
Although exact causes of Parkinson disease (PD) remain enigmatic, mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuron susceptibility in both familial and sporadic PD. Two genes associated with recessive, early-onset PD encode the ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase PRKN/PARK2/Parkin, which together orchestrate a protective mitochondrial quality control (mitoQC) pathway. Upon stress, both enzymes cooperatively identify and decorate damaged mitochondria with phosphorylated poly-Ub (p-S65-Ub) chains. This specific label is subsequently recognized by autophagy receptors that further facilitate mitochondrial degradation in lysosomes (mitophagy). Here, we analyzed human post-mortem brain specimens and identified distinct pools of p-S65-Ub-positive structures that partially colocalized with markers of mitochondria, autophagy, lysosomes and/or granulovacuolar degeneration bodies. We further quantified levels and distribution of the 'mitophagy tag' in 2 large cohorts of brain samples from normal aging and Lewy body disease (LBD) cases using unbiased digital pathology. Somatic p-S65-Ub structures independently increased with age and disease in distinct brain regions and enhanced levels in LBD brain were age- and Braak tangle stage-dependent. Additionally, we observed significant correlations of p-S65-Ub with LBs and neurofibrillary tangle levels in disease. The degree of co-existing p-S65-Ub signals and pathological PD hallmarks increased in the pre-mature stage, but decreased in the late stage of LB or tangle aggregation. Altogether, our study provides further evidence for a potential pathogenic overlap among different forms of PD and suggests that p-S65-Ub can serve as a biomarker for mitochondrial damage in aging and disease.
The serotonin system in autism spectrum disorder: from biomarker to animal models
Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy
2015-01-01
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932
Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel
2018-02-01
Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Suicide and the Polyamine System
Gross, Jeffrey A.; Turecki, Gustavo
2017-01-01
Suicide is a significant worldwide public health problem. Understanding the neurobiology is important as it can help us to better elucidate underlying etiological factors and provide opportunities for intervention. In recent years, many lines of research have suggested that the polyamine system may be dysregulated in suicidal behaviors. Initial research in animals provided evidence of a dysfunctional polyamine stress response system, while later work using post-mortem human brain tissue has suggested that molecular mechanisms may be at play in the suicide brain. In this review, we will describe the research that suggests the presence of alterations in the polyamine system in mental disorders and behavioral phenotypes, with particular attention to work on suicide. In addition, we will also describe potential avenues for future work. PMID:24040803
Brain lesions in septic shock: a magnetic resonance imaging study.
Sharshar, Tarek; Carlier, Robert; Bernard, Francis; Guidoux, Céline; Brouland, Jean-Philippe; Nardi, Olivier; de la Grandmaison, Geoffroy Lorin; Aboab, Jérôme; Gray, Françoise; Menon, David; Annane, Djillali
2007-05-01
Understanding of sepsis-induced brain dysfunction remains poor, and relies mainly on data from animals or post-mortem studies in patients. The current study provided findings from magnetic resonance imaging of the brain in septic shock. Nine patients with septic shock and brain dysfunction [7 women, median age 63 years (interquartile range 61-79 years), SAPS II: 48 (44-56), SOFA: 8 (6-10)] underwent brain magnetic resonance imaging including gradient echo T1-weighted, fluid-attenuated inversion recovery (FLAIR), T2-weighted and diffusion isotropic images, and mapping of apparent diffusion coefficient. Brain imaging was normal in two patients, showed multiple ischaemic strokes in two patients, and in the remaining patients showed white matter lesions at the level of the centrum semiovale, predominating around Virchow-Robin spaces, ranging from small multiple areas to diffuse lesions, and characterised by hyperintensity on FLAIR images. The main lesions were also characterised by reduced signal on diffusion isotropic images and increased apparent diffusion coefficient. The lesions of the white matter worsened with increasing duration of shock and were correlated with Glasgow Outcome Score. This preliminary study showed that sepsis-induced brain lesions can be documented by magnetic resonance imaging. These lesions predominated in the white matter, suggesting increased blood-brain barrier permeability, and were associated with poor outcome.
Rabies in an Arctic fox on the Svalbard archipelago, Norway, January 2011.
Orpetveit, I; Ytrehus, B; Vikoren, T; Handeland, K; Mjos, A; Nissen, S; Blystad, H; Lund, A
2011-02-17
We report a case of rabies in an Arctic fox. In January 2011 a fox attacked dogs belonging to a meteorological station in the Svalbard archipelago, Norway. Rabies virus was detected in the fox's brain post-mortem. The dogs had been vaccinated against rabies and their antibody levels were protective. Post-exposure prophylaxis was administered to staff at the station. Rabies vaccination is recommended for inhabitants and visitors to the Arctic who may be in contact with wild animals.
2014-02-01
16. Abstract Zolpidem is a nonbenzodiazepine sedative hypnotic drug used for the short-term treatment of insomnia. Its use is common and wide-spread...Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 15 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized iii...INTRODUCTION Zolpidem is a nonbenzodiazepine sedative hypnotic drug used to treat insomnia by slowing the activity in the brain. It is prescribed as a short
Heterogeneous histopathology of cortical microbleeds in cerebral amyloid angiopathy.
van Veluw, Susanne J; Biessels, Geert Jan; Klijn, Catharina J M; Rozemuller, Annemieke J M
2016-03-01
To investigate the histopathologic substrate of microbleeds detected on 7T postmortem MRI in autopsy cases with severe cerebral amyloid angiopathy (CAA) and Alzheimer pathology. Five decedents (mean age at death 79.6 ± 5.7 years) with documented severe CAA and Alzheimer pathology on standard neuropathologic examination were selected from a local database. Formalin-fixed coronal brain slices were scanned at 7T MRI, including high-resolution T2- and T2*-weighted sequences. Representative microbleeds from each case were sampled for histopathologic analysis, including the presence of blood, blood breakdown products, and markers of ischemic tissue injury. On MRI, we identified >300 cortical and 4 subcortical microbleeds. Two out of 15 sampled cortical microbleeds corresponded histologically to erythrocytes (suggestive of recent hemorrhages), 4 to vasculopathies (fibrinoid necrosis in 3 and a cavernoma) without substantial parenchymal tissue injury, and 9 to accumulations of iron-positive siderophages without erythrocytes (suggestive of old hemorrhages) combined with mild to moderate degrees of chronic ischemic tissue injury. This study provides evidence for heterogeneous pathologic substrates and possibly different pathophysiologic mechanisms underlying MRI-observed cortical microbleeds in the context of advanced CAA and Alzheimer disease. © 2016 American Academy of Neurology.
Potes, Y; Oliván, M; Rubio-González, A; de Luxán-Delgado, B; Díaz, F; Sierra, V; Arroyo, L; Peña, R; Bassols, A; González, J; Carreras, R; Velarde, A; Muñoz-Torres, M; Coto-Montes, A
2017-11-01
Slaughter is a crucial step in the meat production chain that could induce psychological stress on each animal, resulting in a physiological response that can differ among individuals. The aim of this study was to investigate the relationship between an animal's emotional state, the subsequent psychological stress at slaughter and the cellular damage as an effect. In all, 36 entire male pigs were reared at an experimental farm and a cognitive bias test was used to classify them into positive bias (PB) or negative bias (NB) groups depending on their decision-making capabilities. Half of the animals, slaughtered in the same batch, were used for a complete study of biomarkers of stress, including brain neurotransmitters and some muscle biomarkers of oxidative stress. After slaughter, specific brain areas were excised and the levels of catecholamines (noradrenaline (NA) and dopamine (DA)) and indoleamines (5-hydroxyindoleacetic acid and serotonin (5HT)) were analyzed. In addition, muscle proteasome activity (20S), antioxidant defence (total antioxidant activity (TAA)), oxidative damage (lipid peroxidation (LPO)) and autophagy biomarkers (Beclin-1, microtubule-associated protein I light chain 3 (LC3-I) and LC3-II) were monitored during early postmortem maturation (0 to 24 h). Compared with PB animals, NB pigs were more susceptible to stress, showing higher 5HT levels (P<0.01) in the hippocampus and lower DA (P<0.001) in the pre-frontal cortex. Furthermore, NB pigs had more intense proteolytic processes and triggered primary muscle cell survival mechanisms immediately after slaughter (0 h postmortem), thus showing higher TAA (P<0.001) and earlier proteasome activity (P<0.001) and autophagy (Beclin-1, P<0.05; LC3-II/LC3-I, P<0.001) than PB pigs, in order to counteract the induced increase in oxidative stress, that was significantly higher in the muscle of NB pigs at 0 h postmortem (LPO, P<0.001). Our study is the first to demonstrate that pig's cognitive bias influences the animal's susceptibility to stress and has important effects on the postmortem muscle metabolism, particularly on the cell antioxidant defences and the autophagy onset. These results expand the current knowledge regarding biomarkers of animal welfare and highlight the potential use of biomarkers of the proteasome, the autophagy (Beclin-1, LC3-II/LC3-I ratio) and the muscle antioxidant defence (TAA, LPO) for detection of peri-slaughter stress.
Association Between Early-Onset Parkinson Disease and 22q11.2 Deletion Syndrome
Butcher, Nancy J.; Kiehl, Tim-Rasmus; Hazrati, Lili-Naz; Chow, Eva W. C.; Rogaeva, Ekaterina; Lang, Anthony E.; Bassett, Anne S.
2015-01-01
IMPORTANCE Clinical case reports of parkinsonism co-occurring with hemizygous 22q11.2 deletions and the associated multisystem syndrome, 22q11.2 deletion syndrome (22q11.2DS), suggest that 22q11.2 deletions may lead to increased risk of early-onset Parkinson disease (PD). The frequency of PD and its neuropathological presentation remain unknown in this common genetic condition. OBJECTIVE To evaluate a possible association between 22q11.2 deletions and PD. DESIGN, SETTING, AND PARTICIPANTS An observational study of the occurrence of PD in the world’s largest cohort of well-characterized adults with a molecularly confirmed diagnosis of 22q11.2DS (n = 159 [6 with postmortem tissue]; age range, 18.1–68.6 years) was conducted in Toronto, Ontario, Canada. Rare postmortem brain tissue from individuals with 22q11.2DS and a clinical history of PD was investigated for neurodegenerative changes and compared with that from individuals with no history of a movement disorder. MAIN OUTCOMES AND MEASURES A clinical diagnosis of PD made by a neurologist and neuropathological features of PD. RESULTS Adults with 22q11.2DS had a significantly elevated occurrence of PD compared with standard population estimates (standardized morbidity ratio = 69.7; 95% CI, 19.0–178.5). All cases showed early onset and typical PD symptom pattern, treatment response, and course. All were negative for family history of PD and known pathogenic PD-related mutations. The common use of antipsychotics in patients with 22q11.2DS to manage associated psychiatric symptoms delayed diagnosis of PD by up to 10 years. Postmortem brain tissue revealed classic loss of midbrain dopaminergic neurons in all 3 postmortem 22q11.2DS-PD cases. Typical α-synuclein–positive Lewy bodies were present in the expected distribution in 2 cases but absent in another. CONCLUSIONS AND RELEVANCE These findings suggest that 22q11.2 deletions represent a novel genetic risk factor for early-onset PD with variable neuropathological presentation reminiscent of LRRK2-associated PD neuropathology. Individuals with early-onset PD and classic features of 22q11.2DS should be considered for genetic testing, and those with a known 22q11.2 deletion should be monitored for the development of parkinsonian symptoms. Molecular studies of the implicated genes, including DGCR8, may help shed light on the underlying pathophysiology of PD in 22q11.2DS and idiopathic PD. PMID:24018986
Alcohol’s Effects on the Brain: Neuroimaging Results in Humans and Animal Models
Zahr, Natalie M.; Pfefferbaum, Adolf
2017-01-01
Brain imaging technology has allowed researchers to conduct rigorous studies of the dynamic course of alcoholism through periods of drinking, sobriety, and relapse and to gain insights into the effects of chronic alcoholism on the human brain. Magnetic resonance imaging (MRI) studies have distinguished alcohol-related brain effects that are permanent from those that are reversible with abstinence. In support of postmortem neuropathological studies showing degeneration of white matter, MRI studies have shown a specific vulnerability of white matter to chronic alcohol exposure. Such studies have demonstrated white-matter volume deficits as well as damage to selective gray-matter structures. Diffusion tensor imaging (DTI), by permitting microstructural characterization of white matter, has extended MRI findings in alcoholics. MR spectroscopy (MRS) allows quantification of several metabolites that shed light on brain biochemical alterations caused by alcoholism. This article focuses on MRI, DTI, and MRS findings in neurological disorders that commonly co-occur with alcoholism, including Wernicke’s encephalopathy, Korsakoff’s syndrome, and hepatic encephalopathy. Also reviewed are neuroimaging findings in animal models of alcoholism and related neurological disorders. This report also suggests that the dynamic course of alcoholism presents a unique opportunity to examine brain structural and functional repair and recovery. PMID:28988573
Cummings, Damian M; Benway, Tiffanie A; Ho, Hinze; Tedoldi, Angelo; Fernandes Freitas, Monica M; Shahab, Lion; Murray, Christina E; Richard-Loendt, Angela; Brandner, Sebastian; Lashley, Tammaryn; Salih, Dervis A; Edwards, Frances A
2017-06-01
Neuronal pentraxin 1 (NPTX1) has been implicated in Alzheimer's disease, being present in and around dystrophic neurons in plaques, affecting glutamatergic transmission postsynaptically and mediating effects of amyloidβ. Here, we confirm the presence of NPTX1 around plaques in postmortem Alzheimer's disease brain and report that acutely applied human NPTX1 increases paired-pulse ratio at mouse CA3-CA1 hippocampal synapses, indicating a decrease in glutamate release. In contrast, chronic exposure to NPTX1, NPTX2, or NPTX receptor decreases paired-pulse ratio, mimicking some of the earliest changes in mice expressing familial Alzheimer's disease genes. The peripheral pentraxin, serum amyloid P component (SAP), causes similar synaptic effects to NPTX1. The presence of SAP on amyloid plaques in Alzheimer's disease confirms that it can enter the brain. We show that SAP and neuronal pentraxins can interact and that SAP can enter the brain if the blood-brain barrier is compromised, suggesting that peripheral pentraxins could affect central synaptic transmission via this interaction, especially in the event of blood-brain barrier breakdown. © The Author 2017. Published by Oxford University Press.
A Review of Neuroimaging Findings in Repetitive Brain Trauma
Koerte, Inga K.; Lin, Alexander P.; Willems, Anna; Muehlmann, Marc; Hufschmidt, Jakob; Coleman, Michael J.; Green, Isobel; Liao, Huijun; Tate, David F.; Wilde, Elisabeth A.; Pasternak, Ofer; Bouix, Sylvain; Rathi, Yogesh; Bigler, Erin D.; Stern, Robert A.; Shenton, Martha E.
2017-01-01
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease confirmed at post-mortem. Those at highest risk are professional athletes who participate in contact sports and military personnel who are exposed to repetitive blast events. All neuropathologically-confirmed CTE cases, to date, have had a history of repetitive head impacts. This suggests that repetitive head impacts may be necessary for the initiation of the pathogenetic cascade that, in some cases, leads to CTE. Importantly, while all CTE appears to result from repetitive brain trauma, not all repetitive brain trauma results in CTE. Magnetic resonance imaging has great potential for understanding better the underlying mechanisms of repetitive brain trauma. In this review we provide an overview of advanced imaging techniques currently used to investigate brain anomalies. We also provide an overview of neuroimaging findings in those exposed to repetitive head impacts in the acute/subacute and chronic phase of injury and in more neurodegenerative phases of injury, as well as in military personnel exposed to repetitive head impacts. Finally, we discuss future directions for research that will likely lead to a better understanding of the underlying mechanisms separating those who recover from repetitive brain trauma versus those who go on to develop CTE. PMID:25904047
A toxicology-based review of fentanyl-related deaths in New Mexico (1986-2007).
Krinsky, Clarissa S; Lathrop, Sarah L; Crossey, Michael; Baker, Ginger; Zumwalt, Ross
2011-12-01
Since its approval in the United States, fentanyl has become increasingly popular for the medical management of pain and as a substance of abuse. Fentanyl is unique among the opioids in its widespread use with a transdermal delivery system, which contributes to its unique pharmacokinetics and abuse potential. We examined the demographics of deaths with fentanyl identified on toxicologic analysis and reviewed specific challenges in the laboratory detection of postmortem fentanyl levels. The New Mexico Office of the Medical Investigator database was searched for all cases from January 1986 through December 2007 with fentanyl reported as present or quantified. Those deaths with a cause of death identified as drug overdose were then analyzed separately. From 1986 to 2007, 154 cases were identified with fentanyl present in postmortem samples, with 96 of the cases identified as fentanyl-related drug overdoses. The number of fentanyl-related deaths has increased over the past 20 years, corresponding to both statewide increases in the medical use of fentanyl and the abuse of prescription opioids. The demographics of these fentanyl-related overdoses showed that subjects were more likely to be female, white non-Hispanic, and older than those in previously described overdose deaths. Several cases were identified with central and peripheral blood samples and antemortem and postmortem samples available for fentanyl quantification. Given the uncharacteristic demographics of fentanyl-related deaths and the complexity of the laboratory analysis of fentanyl, forensic scientists must use caution in both the detection and interpretation of fentanyl concentrations.
Logotheti, Marianthi; Papadodima, Olga; Venizelos, Nikolaos; Chatziioannou, Aristotelis; Kolisis, Fragiskos
2013-01-01
Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%–5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets. PMID:23554570
NASA Astrophysics Data System (ADS)
Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie
2016-03-01
Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.
Culturable microbiota of ranched southern bluefin tuna (Thunnus maccoyii Castelnau).
Valdenegro-Vega, V; Naeem, S; Carson, J; Bowman, J P; Tejedor del Real, J L; Nowak, B
2013-10-01
The Australian tuna industry is based on the ranching of wild southern bluefin tuna (SBT, Thunnus maccoyii). Within this industry, only opportunistic pathogens have been reported infecting external wounds of fish. This study aimed to identify different culturable bacteria present in three cohorts of SBT and to determine normal bacteria and potential pathogens in isolates from harvest fish and moribund/dead fish. Post-mortem changes in the microbiota were also studied. Moribund/dead showed a greater proportion of members from the family Vibrionaceae than harvested fish; the latter presented mainly non-Vibrio species. In harvested fish spleens, Vibrio splendidus I complex was the most commonly identified group among Vibrio isolates, while most groups from the family Vibrionaceae were isolated from gills. For moribund/dead, Vibrio chagasii and Photobacterium damselae subsp. damselae were common in gill, spleen and kidney samples. Non-Vibrio isolates from gills were characterized using 16S rRNA sequencing as Flavobacteriaceae and classes Gammaproteobacteria and Alphaproteobacteria, mainly from the genera Winogradskyella and Tenacibaculum. Post-mortem changes showed dynamic shifts in bacterial dominance in gills, with Vibrionaceae and non-Vibrio spp. found in similar proportions initially and types related to Pseudoalteromonas ruthenica prevailing after 27 h. Spleen samples showed little bacterial growth until 5 h post-mortem, while various Vibrio-associated species were isolated 27 h post-mortem. Bacterial isolates found include a range of potentially pathogenic bacteria that should be monitored though most of them have yet to be associated with disease in tuna. This study forms a foundation for future research into the bacterial population dynamics under different culture conditions of SBT. An understanding of the bacterial compositions in SBT is necessary to evaluate the effects of some bacterial species on their health. © 2013 The Society for Applied Microbiology.
Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C
2015-03-01
Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pathogenic lysosomal depletion in Parkinson's disease.
Dehay, Benjamin; Bové, Jordi; Rodríguez-Muela, Natalia; Perier, Celine; Recasens, Ariadna; Boya, Patricia; Vila, Miquel
2010-09-15
Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.
Volatile substance abuse--post-mortem diagnosis.
Wille, Sarah M R; Lambert, Willy E E
2004-06-10
A substantial number of children and adolescents world-wide abuse volatile substances with the intention to experience an euphoric state of consciousness. Although the ratio of deaths to nonfatal inhalation escapades is low, it is an important and preventable cause of death in young people. In the analytical investigation of volatile substances proper sample collection, storage and handling are important in view of the volatile nature of the compounds. Volatile organic compounds in post-mortem matrices such as blood, urine and tissues are generally determined by gas chromatography after extracting the compounds with methods such as static and dynamic headspace or even with pulse-heating and solvent extraction. In post-mortem cases, metabolites in urine seem less relevant, however, trichloroethanol and trichloroacetic acid were determined in several cases. When interpreting qualitative and quantitative results, researchers should be aware of false conclusions. The main reason why scepticism is necessary is the occurrence of losses of analytes during sampling, sample handling and storage, which results in false quantitation.
Deaths Associated With Brotizolam Poisoning From a Single Drug Overdose: Four Reported Cases.
Sakai, Kentaro; Saito, Kazuyuki; Takada, Aya; Hikiji, Wakako; Kikuchi, Yosuke; Fukunaga, Tatsushige
2018-03-01
Brotizolam is a short-acting hypnotic in the benzodiazepine family, and fatal poisonings by an overdose of brotizolam are rare. This report describes 4 cases of deaths associated with brotizolam poisoning from a single drug overdose. The ages ranged from 51 to 90 years, and the postmortem interval between death and tissue sampling was 1.5 to 2.5 days. These deaths were classified as 1 homicide and 3 suicides. The concentration of the brotizolam ranged from 0.05 to 0.21 mg/L in the blood samples. Ethanol, which could cause mild alcohol intoxication, was detected in the blood samples from 2 cases. Postmortem examinations did not find any significant pathologic conditions, except for a case of death by drowning in a bathtub due to brotizolam poisoning. These 4 cases suggest that a brotizolam overdose should not be underestimated in terms of its fatal effects, particularly when situations involve alcohol intoxication, injury subsequent to the poisoning, or underlying medical conditions including aging.
Accuracy and usefulness of the AVOXimeter 4000 as routine analysis of carboxyhemoglobin.
Fujihara, Junko; Kinoshita, Hiroshi; Tanaka, Naoko; Yasuda, Toshihiro; Takeshita, Haruo
2013-07-01
The measurement of blood carboxyhemoglobin (CO-Hb) is important to determine the cause of death. The AVOXimeter 4000 (AVOX), a portable CO-oximeter, has the advantages of a low purchase price and operating cost, ease of operation, and rapid results. Little information is available on the usefulness of AVOX in the forensic sample, and the previous study investigated only six samples. Therefore, in this study, we confirmed the usefulness of the AVOX through a comparison of its results with data previously obtained using the double wavelength spectrophotometric method in autopsies. Regression analysis was performed between CO-Hb levels measured by the AVOX and those measured by the conventional double wavelength spectrophotometric method in postmortem blood samples: a significant correlation was observed. This study suggests the usefulness of the AVOX to analyze postmortem blood, and the AVOX is suitable for routine forensic analysis and can be applied at the crime scene. © 2013 American Academy of Forensic Sciences.
Fan, Kang; Nagle, William A
2002-01-01
Background The heterogeneity of conditions underlying respiratory distress, whether classified clinically as acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS), has hampered efforts to identify and more successfully treat these patients. Examination of postmortem lungs among cases clinically diagnosed as ARDS identified a cohort that showed a consistent morphology at the light and electron microscope levels, and featured pathognomonic structures which we termed elastin-staining laminar structures (ELS). Methods Postmortem tissues were stained using the Verhoeff-Van Gieson procedure for elastic fibers, and with Congo red for examination under a polarizing microscope. Similar samples were examined by transmission EM. Results The pathognomonic ELS presented as ordered molecular aggregates when stained using the Verhoeff-van Gieson technique for elastic fibers. In several postmortem lungs, the ELS also displayed apple-green birefringence after staining with Congo red, suggesting the presence of amyloid. Remarkably, most of the postmortem lungs with ELS exhibited no significant acute inflammatory cellular response such as neutrophilic reaction, and little evidence of widespread edema except for focal intra-alveolar hemorrhage. Conclusions Postmortem lungs that exhibit the ELS constitute a morphologically-identifiable subgroup of ARDS cases. The ordered nature of the ELS, as indicated by both elastin and amyloid stains, together with little morphological evidence of inflammation or edema, suggests that this cohort of ARDS may represent another form of conformational disease. If this hypothesis is confirmed, it will require a new approach in the diagnosis and treatment of patients who exhibit this form of acute lung injury. PMID:12377106
USDA-ARS?s Scientific Manuscript database
Near infrared (NIR) spectroscopy has been used to predict texture quality of broiler breast fillets. Sampling is an important issue in NIR measurements to obtain accurate results. There are no research papers about sampling of chicken breast fillet for NIR measurement. The objective of this study wa...
O'Quinn, T G; Woerner, D R; Engle, T E; Chapman, P L; Legako, J F; Brooks, J C; Belk, K E; Tatum, J D
2016-02-01
Sensory analysis of ground LL samples representing 12 beef product categories was conducted in 3 different regions of the U.S. to identify flavor preferences of beef consumers. Treatments characterized production-related flavor differences associated with USDA grade, cattle type, finishing diet, growth enhancement, and postmortem aging method. Consumers (N=307) rated cooked samples for 12 flavors and overall flavor desirability. Samples were analyzed to determine fatty acid content. Volatile compounds produced by cooking were extracted and quantified. Overall, consumers preferred beef that rated high for beefy/brothy, buttery/beef fat, and sweet flavors and disliked beef with fishy, livery, gamey, and sour flavors. Flavor attributes of samples higher in intramuscular fat with greater amounts of monounsaturated fatty acids and lesser proportions of saturated, odd-chain, omega-3, and trans fatty acids were preferred by consumers. Of the volatiles identified, diacetyl and acetoin were most closely correlated with desirable ratings for overall flavor and dimethyl sulfide was associated with an undesirable sour flavor. Copyright © 2015 Elsevier Ltd. All rights reserved.
State-of-the-art of bone marrow analysis in forensic toxicology: a review.
Cartiser, Nathalie; Bévalot, Fabien; Fanton, Laurent; Gaillard, Yvan; Guitton, Jérôme
2011-03-01
Although blood is the reference medium in the field of forensic toxicology, alternative matrices are required in case of limited, unavailable or unusable blood samples. The present review investigated the suitability of bone marrow (BM) as an alternative matrix to characterize xenobiotic consumption and its influence on the occurrence of death. Basic data on BM physiology are reported in order to highlight the specificities of this matrix and their analytical and toxicokinetic consequences. A review of case reports, animal and human studies involving BM sample analysis focuses on the various parameters of interpretation of toxicological results: analytic limits, sampling location, pharmacokinetics, blood/BM concentration correlation, stability and postmortem redistribution. Tables summarizing the analytical conditions and quantification of 45 compounds from BM samples provide a useful tool for toxicologists. A specific section devoted to ethanol shows that, despite successful quantification, interpretation is highly dependent on postmortem interval. In conclusion, BM is an interesting alternative matrix, and further experimental data and validated assays are required to confirm its great potential relevance in forensic toxicology.
Buhr, R J; Cason, J A; Rowland, G N
1997-11-01
Stunning and slaughter trials were conducted to evaluate the influence of stunning method (electrical 50 V alternating current, CO2 gas: 0 to 40% for 90 s or 40 to 60% for 30 s) on feather retention force (FRF) in commercial broilers. Feathers from the pectoral, sternal, and femoral feather tracts were sampled with a force gauge before stunning (ante-mortem) and contralaterally either after stunning (peri-mortem from 0.5 to 4 min) or after stunning and bleeding (post-mortem from 2 to 6 min). Prior to stunning, ante-mortem FRF values varied among assigned stunning methods only for the pectoral (7%) feather tract. After stunning, peri-mortem FRF values were higher only for the sternal tract (11% for 40 to 60% CO2 for 30 s); whereas after stunning and bleeding, post-mortem FRF values were lower than ante- or peri-mortem only for the sternal tract (10% lower for 40 to 60% CO2 for 30 s). Peri- and post-mortem FRF values did not differ among stunning methods for the pectoral and femoral feather tracts. Small changes in FRF values occurred from ante-mortem to peri-mortem (-1 to +12%), and from ante-mortem to post-mortem (-2 to +8%) across stunning methods. A significant increase was determined for only the pectoral tract (7%) from ante- to peri-mortem across stunning methods. Electrically stunned broilers that were not bled gained weight in excess of the 36 feathers removed (0.16%), apparently due to body surface water pickup during the brine-stunning process, whereas CO2-stunned broilers lost weight due to excretion of cloacal contents (-0.31 to -0.98%). The change in body weight among stunning methods was significant (P < 0.0233). Peri- and post-mortem FRF, in addition to bleed-out body weight loss, were not substantially influenced by electrical or CO2 stunning methods, and, therefore, carcass defeathering efficiency may not differ after scalding.
Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study
Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku
2014-01-01
Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620
Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.
Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio
2013-05-01
Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
Postmortem CT Angiography Compared with Autopsy: A Forensic Multicenter Study.
Grabherr, Silke; Heinemann, Axel; Vogel, Hermann; Rutty, Guy; Morgan, Bruno; Woźniak, Krzysztof; Dedouit, Fabrice; Fischer, Florian; Lochner, Stefanie; Wittig, Holger; Guglielmi, Giuseppe; Eplinius, Franziska; Michaud, Katarzyna; Palmiere, Cristian; Chevallier, Christine; Mangin, Patrice; Grimm, Jochen M
2018-05-01
Purpose To determine if postmortem computed tomography (CT) and postmortem CT angiography help to detect more lesions than autopsy in postmortem examinations, to evaluate the strengths and weaknesses of each method, and to define their indications. Materials and Methods Postmortem CT angiography was performed on 500 human corpses and followed by conventional autopsy. Nine centers were involved. All CT images were read by an experienced team including one forensic pathologist and one radiologist, blinded to the autopsy results. All findings were recorded for each method and categorized by anatomic structure (bone, organ parenchyma, soft tissue, and vascular) and relative importance in the forensic case (essential, useful, and unimportant). Results Among 18 654 findings, autopsies helped to identify 61.3% (11 433 of 18 654), postmortem CT helped to identify 76.0% (14 179 of 18 654), and postmortem CT angiography helped to identify 89.9% (16 780 of 18 654; P < .001). Postmortem CT angiography was superior to autopsy, especially at helping to identify essential skeletal lesions (96.1% [625 of 650] vs 65.4% [425 of 650], respectively; P < .001) and vascular lesions (93.5% [938 of 1003] vs 65.3% [655 of 1003], respectively; P < .001). Among the forensically essential findings, 23.4% (1029 of 4393) were not detected at autopsy, while only 9.7% (428 of 4393) were missed at postmortem CT angiography (P < .001). The best results were obtained when postmortem CT angiography was combined with autopsy. Conclusion Postmortem CT and postmortem CT angiography and autopsy each detect important lesions not detected by the other method. More lesions were identified by combining postmortem CT angiography and autopsy, which may increase the quality of postmortem diagnosis. Online supplemental material is available for this article.
Vanhaebost, Jessica; Ducrot, Kewin; de Froidmont, Sébastien; Scarpelli, Maria Pia; Egger, Coraline; Baumann, Pia; Schmit, Gregory; Grabherr, Silke; Palmiere, Cristian
2017-02-01
The aim of this study was to assess whether the identification of pathological myocardial enhancement at multiphase postmortem computed tomography angiography was correlated with increased levels of troponin T and I in postmortem serum from femoral blood as well as morphological findings of myocardial ischemia. We further aimed to investigate whether autopsy cases characterized by increased troponin T and I concentrations as well as morphological findings of myocardial ischemia were also characterized by pathological myocardial enhancement at multiphase postmortem computed tomography angiography. Two different approaches were used. In one, 40 forensic autopsy cases that had pathological enhancement of the myocardium (mean Hounsfield units ≥95) observed at postmortem angiography were retrospectively selected. In the second approach, 40 forensic autopsy cases that had a cause of death attributed to acute myocardial ischemia were retrospectively selected. The preliminary results seem to indicate that the identification of a pathological enhancement of the myocardium at postmortem angiography is associated with the presence of increased levels of cardiac troponins in postmortem serum and morphological findings of ischemia. Analogously, a pathological enhancement of the myocardium at postmortem angiography can be retrospectively found in the great majority of autopsy cases characterized by increased cardiac troponin levels in postmortem serum and morphological findings of myocardial ischemia. Multiphase postmortem computed tomography angiography is a useful tool in the postmortem setting for investigating ischemically damaged myocardium.
Prevalence and Identity of Taenia multiceps cysts "Coenurus cerebralis" in Sheep in Egypt.
Amer, Said; ElKhatam, Ahmed; Fukuda, Yasuhiro; Bakr, Lamia I; Zidan, Shereif; Elsify, Ahmed; Mohamed, Mostafa A; Tada, Chika; Nakai, Yutaka
2017-12-01
Coenurosis is a parasitic disease caused by the larval stage (Coenurus cerebralis) of the canids cestode Taenia multiceps. C. cerebralis particularly infects sheep and goats, and pose a public health concerns. The present study aimed to determine the occurrence and molecular identity of C. cerebralis infecting sheep in Egypt. Infection rate was determined by postmortem inspection of heads of the cases that showed neurological manifestations. Species identification and genetic diversity were analyzed based on PCR-sequence analysis of nuclear ITS1 and mitochondrial cytochrome oxidase (COI) and nicotinamide adenine dinucleotide dehydrogenase (ND1) gene markers. Out of 3668 animals distributed in 50 herds at localities of Ashmoun and El Sadat cities, El Menoufia Province, Egypt, 420 (11.45%) sheep showed neurological disorders. Postmortem examination of these animals after slaughter at local abattoirs indicated to occurrence of C. cerebralis cysts in the brain of 111 out of 420 (26.4%), with overall infection rate 3.03% of the involved sheep population. Molecular analysis of representative samples of coenuri at ITS1 gene marker showed extensive intra- and inter-sequence diversity due to deletions/insertions in the microsatellite regions. On contrast to the nuclear gene marker, considerably low genetic diversity was seen in the analyzed mitochondrial gene markers. Phylogenetic analysis based on COI and ND1 gene sequences indicated that the generated sequences in the present study and the reference sequences in the database clustered in 4 haplogroups, with more or less similar topologies. Clustering pattern of the phylogenetic tree showed no effect for the geographic location or the host species. Copyright © 2017 Elsevier B.V. All rights reserved.
Curtin, Eleanor; Langlois, Neil E I
2007-10-01
This study aimed to establish whether post-mortem injury patterns can assist in distinguishing drivers from front seat passengers among victims of motor vehicle collisions without regard to collision type, vehicle type or if safety equipment had been used. Injuries sustained by 206 drivers and 91 front seat passengers were catalogued from post-mortem reports. Injuries were coded for the body region, depth and location of the injury. Statistical analysis was used to detect injuries capable of discriminating between driver and passenger. Drivers were more likely to sustain the following injuries: brain injury; fractures to the right femur, right posterior ribs, base of skull, right humerus and right shoulder; and superficial wounds at the right lateral and posterior thigh, right face, right and left anterior knee, right anterior shoulder, lateral right arm and forearm and left anterior thigh. Front passengers were more vulnerable to splenic injury; fractures to the left posterior and anterior ribs, left shoulder and left femur; and superficial wounds at the left anterior shoulder region and left lateral neck. Linear discriminant analysis generated a model for predicting seating position based on the presence of injury to certain regions of the body; the overall predictive accuracy of the model was 69.3%. It was found that driver and front passenger fatalities receive different injury patterns from motor vehicle collisions, regardless of collision type. A larger study is required to improve the predictive accuracy of this model and to ascertain its value to forensic medicine.
Essentials of forensic post-mortem MR imaging in adults.
Ruder, T D; Thali, M J; Hatch, G M
2014-04-01
Post-mortem MR (PMMR) imaging is a powerful diagnostic tool with a wide scope in forensic radiology. In the past 20 years, PMMR has been used as both an adjunct and an alternative to autopsy. The role of PMMR in forensic death investigations largely depends on the rules and habits of local jurisdictions, availability of experts, financial resources, and individual case circumstances. PMMR images are affected by post-mortem changes, including position-dependent sedimentation, variable body temperature and decomposition. Investigators must be familiar with the appearance of normal findings on PMMR to distinguish them from disease or injury. Coronal whole-body images provide a comprehensive overview. Notably, short tau inversion-recovery (STIR) images enable investigators to screen for pathological fluid accumulation, to which we refer as "forensic sentinel sign". If scan time is short, subsequent PMMR imaging may be focussed on regions with a positive forensic sentinel sign. PMMR offers excellent anatomical detail and is especially useful to visualize pathologies of the brain, heart, subcutaneous fat tissue and abdominal organs. PMMR may also be used to document skeletal injury. Cardiovascular imaging is a core area of PMMR imaging and growing evidence indicates that PMMR is able to detect ischaemic injury at an earlier stage than traditional autopsy and routine histology. The aim of this review is to present an overview of normal findings on forensic PMMR, provide general advice on the application of PMMR and summarise the current literature on PMMR imaging of the head and neck, cardiovascular system, abdomen and musculoskeletal system.
Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A
2017-10-11
The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.
Fearing, Michael A; Bigler, Erin D; Norton, Maria; Tschanz, Jo Ann; Hulette, Christine; Leslie, Carol; Welsh-Bohmer, Kathleen
2007-07-01
Atrophy of specific, regional, and generalized brain structures occurs as a result of the Alzheimer's disease (AD) process. Comparing AD patients with histopathological confirmation of the disease at autopsy to those without autopsy but who were clinically diagnosed using the same antemortem criteria will provide further evidence of the utility and accuracy of neuropsychological assessments at the time of diagnosis, as well as the efficacy of quantitative magnetic resonance imaging (qMRI) in demonstrating gross neuropathological changes associated with the disease. The Cache County Study of Aging provides a unique opportunity to determine how closely AD subjects with only the clinical diagnosis match similarly diagnosed AD subjects but with postmortem confirmation of the disease. qMRI volumes of various brain structures, as well as neuropsychological outcome measures from an expanded battery, were obtained in 31 autopsy-confirmed AD subjects and 45 clinically diagnosed AD subjects. Of the various qMRI variables examined, only total temporal lobe volume was different, where those with postmortem confirmation had reduced volume. No significant differences between the two groups were found with any of the neuropsychological outcome measures. These findings confirm the similarity in neuroimaging and neuropsychological assessment findings between those with just the clinical diagnosis of AD and those with an autopsy-confirmed diagnosis in the moderate-to-severe stage of the disease at the time of diagnosis.
Peer, Cody J; Shakleya, Diaa M; Younis, Islam R; Kraner, James C; Callery, Patrick S
2007-10-01
A rapid mass spectrometric method was developed for the identification of fentanyl and its major hepatic metabolite norfentanyl in postmortem urine of six drug-overdose victims involving fentanyl use. To reduce matrix effects or ion suppression, sample preparation consisted of centrifugation and solid-phase extraction. Deuterium-labeled internal standards ((2)H(5)-fentanyl and (2)H(5)-norfentanyl) were used to compensate for instrument variation in signal, analyte recovery during sample preparation, and ion suppression. Structural information for fentanyl and norfentanyl were collected using mass spectrometry (MS) with electrospray ionization (ESI) operated in the positive ion mode. Fentanyl (m/z 337) was found in each of the six overdose cases by the appearance of the MS-MS daughter ion on both an ion trap and a triple-quadrupole MS resulting from the fragmentation pathway of fentanyl (m/z 337 --> 188). Norfentanyl was detected in all six cases by the appearance of the MH(+) ion, m/z 233, with a single-quadrupole MS and confirmed in an ion trap MS. Ion suppression, as determined by the comparison of ion intensities from spiked samples in water with postmortem urine from the cases, ranged from 18% to 98% in three ESI sources. The use of stable isotope-labeled internal standards obviates sample preparation because ratios of analyte/internal standard remain constant in the presence of extensive matrix effects. This MS method provided sufficient sensitivity and selectivity for the rapid identification of fentanyl and norfentanyl in urine at levels >/= 10 ng/mL without prior analyte resolution by chromatography and with a total analysis time of less than 1 h.
Sonnemans, L J P; Vester, M E M; Kolsteren, E E M; Erwich, J J H M; Nikkels, P G J; Kint, P A M; van Rijn, R R; Klein, W M
2018-06-01
Clinical post-mortem radiology is a relatively new field of expertise and not common practice in most hospitals yet. With the declining numbers of autopsies and increasing demand for quality control of clinical care, post-mortem radiology can offer a solution, or at least be complementary. A working group consisting of radiologists, pathologists and other clinical medical specialists reviewed and evaluated the literature on the diagnostic value of post-mortem conventional radiography (CR), ultrasonography, computed tomography (PMCT), magnetic resonance imaging (PMMRI), and minimally invasive autopsy (MIA). Evidence tables were built and subsequently a Dutch national evidence-based guideline for post-mortem radiology was developed. We present this evaluation of the radiological modalities in a clinical post-mortem setting, including MIA, as well as the recently published Dutch guidelines for post-mortem radiology in foetuses, neonates, and children. In general, for post-mortem radiology modalities, PMMRI is the modality of choice in foetuses, neonates, and infants, whereas PMCT is advised in older children. There is a limited role for post-mortem CR and ultrasonography. In most cases, conventional autopsy will remain the diagnostic method of choice. Based on a literature review and clinical expertise, an evidence-based guideline was developed for post-mortem radiology of foetal, neonatal, and paediatric patients. What is Known: • Post-mortem investigations serve as a quality check for the provided health care and are important for reliable epidemiological registration. • Post-mortem radiology, sometimes combined with minimally invasive techniques, is considered as an adjunct or alternative to autopsy. What is New: • We present the Dutch guidelines for post-mortem radiology in foetuses, neonates and children. • Autopsy remains the reference standard, however minimal invasive autopsy with a skeletal survey, post-mortem computed tomography, or post-mortem magnetic resonance imaging can be complementary thereof.
Ruzicka, W Brad; Subburaju, Sivan; Benes, Francine M
2015-06-01
Dysfunction related to γ-aminobutyric acid (GABA)-ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8 patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. Methylation levels at 1308 GAD1 regulatory network-associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus.
Ruzicka, W. Brad; Subburaju, Sivan; Benes, Francine M.
2017-01-01
IMPORTANCE Dysfunction related to γ-aminobutyric acid (GABA)–ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. OBJECTIVE To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. DESIGN, SETTING, AND PARTICIPANTS This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont,Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. MAIN OUTCOMES AND MEASURES Methylation levels at 1308 GAD1 regulatory network–associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. RESULTS A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. CONCLUSIONS AND RELEVANCE This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus. PMID:25738424