Science.gov

Sample records for postnatal plp promoter

  1. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    SciTech Connect

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  2. Postnatal Leptin Promotes Organ Maturation and Development in IUGR Piglets

    PubMed Central

    Attig, Linda; Brisard, Daphné; Larcher, Thibaut; Mickiewicz, Michal; Guilloteau, Paul; Boukthir, Samir; Niamba, Claude-Narcisse; Gertler, Arieh; Djiane, Jean; Monniaux, Danielle; Abdennebi-Najar, Latifa

    2013-01-01

    Babies with intra-uterine growth restriction (IUGR) are at increased risk for experiencing negative neonatal outcomes due to their general developmental delay. The present study aimed to investigate the effects of a short postnatal leptin supply on the growth, structure, and functionality of several organs at weaning. IUGR piglets were injected from day 0 to day 5 with either 0.5 mg/kg/d leptin (IUGRLep) or saline (IUGRSal) and euthanized at day 21. Their organs were collected, weighed, and sampled for histological, biochemical, and immunohistochemical analyses. Leptin induced an increase in body weight and the relative weights of the liver, spleen, pancreas, kidneys, and small intestine without any changes in triglycerides, glucose and cholesterol levels. Notable structural and functional changes occurred in the ovaries, pancreas, and secondary lymphoid organs. The ovaries of IUGRLep piglets contained less oogonia but more oocytes enclosed in primordial and growing follicles than the ovaries of IUGRSal piglets, and FOXO3A staining grade was higher in the germ cells of IUGRLep piglets. Within the exocrine parenchyma of the pancreas, IUGRLep piglets presented a high rate of apoptotic cells associated with a higher trypsin activity. In the spleen and the Peyer’s patches, B lymphocyte follicles were much larger in IUGRLep piglets than in IUGRSal piglets. Moreover, IUGRLep piglets showed numerous CD79+cells in well-differentiated follicle structures, suggesting a more mature immune system. This study highlights a new role for leptin in general developmental processes and may provide new insight into IUGR pathology. PMID:23741353

  3. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.

    PubMed

    Kostallari, Enis; Baba-Amer, Yasmine; Alonso-Martin, Sonia; Ngoh, Pamela; Relaix, Frederic; Lafuste, Peggy; Gherardi, Romain K

    2015-04-01

    The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes in growing mice led both to myofiber hypotrophy and to impaired establishment of stem cells quiescence. Similar effects were observed following conditional in vivo deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells.

  4. Complete deletion of the proteolipid protein gene (PLP) in a family with X-linked Pelizaeus-Merzbacher disease.

    PubMed Central

    Raskind, W H; Williams, C A; Hudson, L D; Bird, T D

    1991-01-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked neurologic disorder characterized by dysmyelination in the central nervous system. Proteolipid protein (PLP), a major structural protein of myelin, is coded on the X chromosome. It has been postulated that a defect in the PLP gene is responsible for PMD. Different single-nucleotide substitutions have been found in conserved regions of the PLP gene of four unrelated PMD patients. Novel Southern blot patterns suggested a complex rearrangement in a fifth family. Linkage to PLP has been shown in others. We evaluated the PLP locus in a four-generation family with two living males affected with X-linked PMD. Analysis of DNA from the affected males revealed complete absence of a band, with PLP probes encompassing the promoter region, the entire coding region, and the 3' untranslated region and spanning at least 29 kb of genomic DNA. DNA from unaffected relatives gave the expected band pattern. Two obligate and one probable carrier women were hemizygous for the PLP locus by dosage analysis. Although it is unlikely, the previously described point mutations in PLP could represent polymorphisms. The finding of complete deletion of the PLP gene in our family is a stronger argument that mutations in PLP are responsible for X-linked PMD. Images Figure 3 PMID:1720927

  5. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation

    PubMed Central

    Stark, Danny A.; Coffey, Nathan J.; Pancoast, Hannah R.; Arnold, Laura L.; Walker, J. Peyton D.; Vallée, Joanne; Robitaille, Richard; Garcia, Michael L.

    2015-01-01

    Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type–specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life. PMID:26644518

  6. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  7. Targeted Deletion of the Antisilencer/Enhancer (ASE) Element from Intron 1 of the Myelin Proteolipid Protein Gene (Plp1) in Mouse Reveals that the Element Is Dispensable for Plp1 Expression in Brain during Development and Remyelination

    PubMed Central

    Pereira, Glauber B.; Meng, Fanxue; Kockara, Neriman T.; Yang, Baoli; Wight, Patricia A.

    2012-01-01

    Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. While removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is nonfunctional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene. PMID:23157328

  8. TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation

    PubMed Central

    Alpern, Daniil; Langer, Diana; Ballester, Benoit; Le Gras, Stephanie; Romier, Christophe; Mengus, Gabrielle; Davidson, Irwin

    2014-01-01

    The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4–TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A–TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation. DOI: http://dx.doi.org/10.7554/eLife.03613.001 PMID:25209997

  9. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    PubMed Central

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L; Bertini, Enrico; Sperle, Karen; Tarnopolsky, Mark; Tonduti, Davide; Valente, Enza Maria; Travaglini, Lorena; Sistermans, Erik A; Bernard, Geneviève; Catsman-Berrevoets, Coriene E; van Karnebeek, Clara D M; Østergaard, John R; Friederich, Richard L; Fawzi Elsaid, Mahmoud; Schieving, Jolanda H; Tarailo-Graovac, Maja; Orcesi, Simona; Steenweg, Marjan E; van Berkel, Carola G M; Waisfisz, Quinten; Abbink, Truus E M; van der Knaap, Marjo S; Hobson, Grace M; Wolf, Nicole I

    2015-01-01

    Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing. PMID:26125040

  10. Policy for Promotion of Women's Mental Health: Insight from Analysis of Policy on Postnatal Depression in Mexico.

    PubMed

    Place, Jean Marie S; Billings, Deborah L; Frongillo, Edward A; Blake, Christine E; Mann, Joshua R; deCastro, Filipa

    2016-03-01

    This article critically examines federal, state and facility-level policies, as well as clinical practice guidelines regarding postnatal depression in Mexico. Thirteen documents including national health plans, national action plans, federal and state laws and regulations, clinical practice guidelines, and public-sector healthcare facility policies were collected and evaluated according to whether they included a statement of intent and/or actions related to the care of women at risk for or experiencing postnatal depression. While postnatal depression is included in several policies in Mexico, it is not addressed in ways that guide actions to manage postnatal depression. Specific direction on postnatal depression in policies would bridge a gap in maternal mental healthcare given that medication, treatment, and timing of interventions is unique in the postpartum context.

  11. Schwann Cell Expression of PLP1 but Not DM20 Is Necessary to Prevent Neuropathy

    PubMed Central

    Shy, Michael E.; Hobson, Grace; Jain, Manisha; Boespflug-Tanguy, Odile; Garbern, James; Sperle, Karen; Li, Wen; Gow, Alex; Rodriguez, Diana; Bertini, Enrico; Mancias, Pedro; Krajewski, Karen; Lewis, Richard; Kamholz, John

    2016-01-01

    Proteolipid protein (PLP1) and its alternatively spliced isoform, DM20, are the major myelin proteins in the CNS, but are also expressed in the PNS. The proteins have an identical sequence except for 35 amino acids in PLP1 (the PLP1-specific domain) not present in DM20. Mutations of PLP1/DM20 cause Pelizaeus-Merzbacher Disease (PMD), a leukodystrophy, and in some instances, a peripheral neuropathy. To identify which mutations cause neuropathy, we have evaluated a cohort of patients with PMD and PLP1 mutations for the presence of neuropathy. As shown previously, all patients with PLP1 null mutations had peripheral neuropathy. We also identified 4 new PLP1 point mutations that cause both PMD and peripheral neuropathy, three of which truncate PLP1 expression within the PLP1-specific domain, but do not alter DM20. The fourth, a splicing mutation, alters both PLP1 and DM20, and is probably a null mutation. Six PLP1 point mutations predicted to produce proteins with an intact PLP1-specific domain do not cause peripheral neuropathy. Sixty-one individuals with PLP1 duplications also had normal peripheral nerve function. These data demonstrate that expression of PLP1 but not DMSO is necessary to prevent neuropathy, and suggest that the 35 amino acid PLP1-specific domain plays an important role in normal peripheral nerve function. PMID:12601703

  12. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum

    PubMed Central

    2013-01-01

    Background Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis. Results The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine, phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5–9 and at temperatures of 30-64°C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However, V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared to

  13. Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs.

    PubMed

    Palliser, H K; Kelleher, M A; Tolcos, M; Walker, D W; Hirst, J J

    2015-08-01

    Allopregnanolone protects the fetal brain and promotes normal development including myelination. Preterm birth results in the early separation of the infant from the placenta and consequently a decline in blood and brain allopregnanolone concentrations. Progesterone therapy may increase allopregnanolone and lead to improved oligodendrocyte maturation. The objectives of this study were to examine the efficacy of progesterone replacement in augmenting allopregnanolone concentrations during the postnatal period and to assess the effect on cerebellar myelination - a region with significant postnatal development. Preterm guinea pig neonates delivered at 62 days of gestation by caesarean section received daily s.c. injections of vehicle (2-Hydroxypropyl-β-cyclodextrin) or progesterone (16 mg/kg) for 8 days until term-equivalent age (TEA). Term delivered controls (PND1) received vehicle. Neonatal condition/wellbeing was scored, and salivary progesterone was sampled over the postnatal period. Brain and plasma allopregnanolone concentrations were measured by radioimmunoassay; cortisol and progesterone concentrations were determined by enzyme immunoassay; and myelin basic protein (MBP), proteolipid protein (PLP), oligodendroctye transcription factor 2 (OLIG2) and platelet-derived growth factor receptor-α (PDGFRα) were quantified by immunohistochemistry and western blot. Brain allopregnanolone concentrations were increased in progesterone-treated neonates. Plasma progesterone and cortisol concentrations were elevated in progesterone-treated male neonates. Progesterone treatment decreased MBP and PLP in lobule X of the cerebellum and total cerebellar OLIG2 and PDGFRα in males but not females at TEA compared with term animals. We conclude that progesterone treatment increases brain allopregnanolone concentrations, but also increases cortisol levels in males, which may disrupt developmental processes. Consideration should be given to the use of non-metabolizable neurosteroid

  14. Curcumin therapy in a Plp1 transgenic mouse model of Pelizaeus-Merzbacher disease

    PubMed Central

    Epplen, Dirk B; Prukop, Thomas; Nientiedt, Tobias; Albrecht, Philipp; Arlt, Friederike A; Stassart, Ruth M; Kassmann, Celia M; Methner, Axel; Nave, Klaus-Armin; Werner, Hauke B; Sereda, Michael W

    2015-01-01

    Objective Pelizaeus–Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. Methods By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms. The diet of Plp1 transgenic mice was supplemented with curcumin for 10 consecutive weeks followed by phenotypical, histological and immunohistochemical analyses of the central nervous system. Plp1 transgenic and wild-type mice fed with normal chow served as controls. Results Curcumin improved the motor phenotype performance of Plp1 transgenic mice by 50% toward wild-type level and preserved myelinated axons by 35% when compared to Plp1 transgenic controls. Furthermore, curcumin reduced astrocytosis, microgliosis and lymphocyte infiltration in Plp1 transgenic mice. Curcumin diet did not affect the pathologically increased Plp1 mRNA abundance. However, high glutathione levels indicating an oxidative misbalance in the white matter of Plp1 transgenic mice were restored by curcumin treatment. Interpretation Curcumin may potentially serve as an antioxidant therapy of PMD caused by PLP1 gene duplication. PMID:26339673

  15. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation.

    PubMed

    Chen, Yue; Zheng, Zhiqiang; Zhu, Xi; Shi, Yujie; Tian, Dandan; Zhao, Fengjuan; Liu, Ni; Hüppi, Petra S; Troy, Frederic A; Wang, Bing

    2015-08-01

    Lactoferrin (Lf) is a sialic acid (Sia)-rich, iron-binding milk glycoprotein that has multifunctional health benefits. Its potential role in neurodevelopment and cognition remains unknown. To test the hypothesis that Lf may function to improve neurodevelopment and cognition, the diet of postnatal piglets was supplemented with Lf from days 3 to 38. Expression levels of selected genes and their cognate protein profiles were quantitatively determined. The importance of our new findings is that Lf (1) upregulated several canonical signaling pathways associated with neurodevelopment and cognition; (2) influenced ~10 genes involved in the brain-derived neurotrophin factor (BDNF) signaling pathway in the hippocampus and upregulated the expression of polysialic acid, a marker of neuroplasticity, cell migration and differentiation of progenitor cells, and the growth and targeting of axons; (3) upregulated transcriptional and translational levels of BDNF and increased phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, a downstream target of the BDNF signaling pathway, and a protein of crucial importance in neurodevelopment and cognition; and (4) enhanced the cognitive function and learning of piglets when tested in an eight-arm radial maze. The finding that Lf can improve neural development and cognition in postnatal piglets has not been previously described.

  16. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation.

    PubMed

    Chen, Yue; Zheng, Zhiqiang; Zhu, Xi; Shi, Yujie; Tian, Dandan; Zhao, Fengjuan; Liu, Ni; Hüppi, Petra S; Troy, Frederic A; Wang, Bing

    2015-08-01

    Lactoferrin (Lf) is a sialic acid (Sia)-rich, iron-binding milk glycoprotein that has multifunctional health benefits. Its potential role in neurodevelopment and cognition remains unknown. To test the hypothesis that Lf may function to improve neurodevelopment and cognition, the diet of postnatal piglets was supplemented with Lf from days 3 to 38. Expression levels of selected genes and their cognate protein profiles were quantitatively determined. The importance of our new findings is that Lf (1) upregulated several canonical signaling pathways associated with neurodevelopment and cognition; (2) influenced ~10 genes involved in the brain-derived neurotrophin factor (BDNF) signaling pathway in the hippocampus and upregulated the expression of polysialic acid, a marker of neuroplasticity, cell migration and differentiation of progenitor cells, and the growth and targeting of axons; (3) upregulated transcriptional and translational levels of BDNF and increased phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, a downstream target of the BDNF signaling pathway, and a protein of crucial importance in neurodevelopment and cognition; and (4) enhanced the cognitive function and learning of piglets when tested in an eight-arm radial maze. The finding that Lf can improve neural development and cognition in postnatal piglets has not been previously described. PMID:25146846

  17. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function

    PubMed Central

    Lerit, Dorothy A.; Jordan, Holly A.; Poulton, John S.; Fagerstrom, Carey J.; Galletta, Brian J.; Peifer, Mark

    2015-01-01

    Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. PMID:26150390

  18. 13 CFR 120.453 - Responsibilities of PLP Lenders for servicing and liquidating 7(a) loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Responsibilities of PLP Lenders for servicing and liquidating 7(a) loans. 120.453 Section 120.453 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Lenders Preferred Lenders Program (plp) § 120.453...

  19. A novel mutation in PLP1 causes severe hereditary spastic paraplegia type 2.

    PubMed

    Noetzli, Leila; Sanz, Pablo G; Brodsky, Gary L; Hinckley, Jesse D; Giugni, Juan C; Giannaula, Rolando J; Gonzalez-Alegre, Pedro; Di Paola, Jorge

    2014-01-01

    Hereditary spastic paraplegia (HSP) type 2 is a proteolipid protein (PLP1)-related genetic disorder that is characterized by dysmyelination of the central nervous system resulting primarily in limb spasticity, cognitive impairment, nystagmus, and spastic urinary bladder of varying severity. Previously reported PLP1 mutations include duplications, point mutations, or whole gene deletions with a continuum of phenotypes ranging from severe Pelizaeus-Merzbacher disease (PMD) to uncomplicated HSP type 2. In this manuscript we report a novel PLP1 missense mutation (c.88G>C) in a family from Argentina. This mutation is in a highly conserved transmembrane domain of PLP1 and the mutant protein was found to be retained in the endoplasmic reticulum when expressed in vitro. Due to the variable expressivity that characterizes these disorders our report contributes to the knowledge of genotype-phenotype correlations of PLP1-related disorders. PMID:24103481

  20. The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix.

    PubMed

    Ozgen, Hande; Schrimpf, Waldemar; Hendrix, Jelle; de Jonge, Jenny C; Lamb, Don C; Hoekstra, Dick; Kahya, Nicoletta; Baron, Wia

    2014-01-01

    In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC), and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP's diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies.

  1. Further genotype-phenotype correlation emerging from two families with PLP1 exon 4 skipping.

    PubMed

    Biancheri, Roberta; Grossi, Serena; Regis, Stefano; Rossi, Andrea; Corsolini, Fabio; Rossi, Daniela Paola; Cavalli, Pietro; Severino, Mariasavina; Filocamo, Mirella

    2014-03-01

    Proteolipid protein 1 (PLP1) gene-related disorders due to mutations in the PLP1 include a wide spectrum of X-linked disorders ranging from severe connatal Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families. The affected males showed severe mental retardation, spastic tetraparesis, inability of walking and pes cavus at onset in early infancy. Brain magnetic resonance imaging (MRI) showed hypomyelination and brain atrophy. Nystagmus was never observed. The affected females showed adult-onset progressive spastic paraparesis leading to wheel-chair dependency and subtle white matter changes on brain MRI. Molecular studies in the two families identified two different intronic mutations, the novel c.622+2T>C and the known c.622+1G>A, leading to the skipping of PLP1-exon 4. The clinical presentation of the affected males did not consistently fit in any of the PLP1-related disorder subtypes (i.e., connatal or classic PMD, SPG2 and 'PLP1 null syndrome'), and in addition, the carrier females were symptomatic despite the severe clinical picture of their respective probands. This study provides new insight into the genotype-phenotype correlations of patients with PLP1 splice-site mutations. PMID:23711321

  2. Loss of MiR-664 Expression Enhances Cutaneous Malignant Melanoma Proliferation by Upregulating PLP2

    PubMed Central

    Ding, Zhenhua; Jian, Sun; Peng, Xuebiao; Liu, Yimin; Wang, Jianyu; Zheng, Li; Ou, Chengshan; Wang, Yinghui; Zeng, Weixia; Zhou, Meijuan

    2015-01-01

    Abstract Proteolipid protein 2 (PLP2) has been shown to be upregulated in several cancers, including breast cancer, hepatocellular carcinoma, osteosarcoma, and melanoma. PLP2 specifically binds to phosphatidylinositol 3 kinase to activate the protein kinase B pathway to enhance cell proliferation, adhesion, and invasion in melanoma cells. Therefore, we speculated that PLP2 exhibits oncogenic potential. However, the regulatory mechanisms of PLP2 in cancer cells remain unclear. Herein, we found that microRNA (miR)-664 expression was significantly downregulated in cutaneous malignant melanoma (CMM) cells and tissues compared with normal human melanocytes and benign melanocytic naevi. MiR-664 expression level was significantly correlated with patient survival. Ectopic expression of miR-664 reduced CMM cell proliferation and anchorage-independent growth, whereas the inhibition of miR-664 induced these effects. Furthermore, inhibition of miR-664 in CMM cells resulted in modulation of their entry into the G1/S transitional phase, which was caused by downregulation of the cyclin-dependent kinase inhibitor P21 and upregulation of the cell-cycle regulator cyclin D1. Moreover, we demonstrated that miR-664 downregulated PLP2 expression by directly targeting the PLP2 untranslated region. Taken together, our results suggest that miR-664 may play an important role in suppressing proliferation of CMM cells and present a novel mechanism of miR-mediated direct suppression of PLP2 expression in cancer cells. PMID:26287415

  3. Involvement of Peripheral Nerves in the Transgenic PLP-α-Syn Model of Multiple System Atrophy: Extending the Phenotype

    PubMed Central

    Kuzdas-Wood, Daniela; Irschick, Regina; Theurl, Markus; Malsch, Philipp; Mair, Norbert; Mantinger, Christine; Wanschitz, Julia; Klimaschewski, Lars; Poewe, Werner; Stefanova, Nadia; Wenning, Gregor K.

    2015-01-01

    Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model. Results To this end, heat/cold as well as mechanical sensitivity tests were performed. Furthermore, in vivo and ex vivo nerve conduction and the G-ratios of the sciatic nerve were analyzed, and thermosensitive ion channel mRNA expression in dorsal root ganglia (DRG) was assessed. The presence of human α-syn in Schwann cells was associated with subtle behavioral impairments. The G-ratio of the sciatic nerve, the conduction velocity of myelinated and unmyelinated primary afferents and the expression of thermosensitive ion channels in the sensory neurons, however, were similar to wildtype mice. Conclusion Our results suggest that the PNS appears to be affected by Schwann cell α-syn deposits in the PLP-α-syn MSA mouse model. However, there was no consistent evidence for functional PNS perturbations resulting from such α-syn aggregates suggesting a more central cause of the observed behavioral abnormalities. Nonetheless, our results do not exclude a causal role of α-syn in the pathogenesis of MSA associated peripheral neuropathy. PMID:26496712

  4. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases.

    PubMed

    Running, Mark P; Lavy, Meirav; Sternberg, Hasana; Galichet, Arnaud; Gruissem, Wilhelm; Hake, Sarah; Ori, Naomi; Yalovsky, Shaul

    2004-05-18

    Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.

  5. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases

    PubMed Central

    Running, Mark P.; Lavy, Meirav; Sternberg, Hasana; Galichet, Arnaud; Gruissem, Wilhelm; Hake, Sarah; Ori, Naomi; Yalovsky, Shaul

    2004-01-01

    Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the α-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the β-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes. PMID:15128936

  6. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR.

    PubMed Central

    Inoue, K.; Osaka, H.; Sugiyama, N.; Kawanishi, C.; Onishi, H.; Nezu, A.; Kimura, K.; Yamada, Y.; Kosaka, K.

    1996-01-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10%-25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be a important genetic abnormality in PMD and affect myelin formation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8659540

  7. Phantom Limb Sensation (PLS) and Phantom Limb Pain (PLP) among Young Landmine Amputees

    PubMed Central

    POOR ZAMANY NEJATKERMANY, Mahtab; MODIRIAN, Ehsan; SOROUSH, Mohammadreza; MASOUMI, Mehdi; HOSSEINI, Maryam

    2016-01-01

    Objective To determine the frequency of phantom limb sensation (PLS) and phantom limb pain (PLP) in children and young adults suffering landmine-related amputation. Materials & Methods All youths with amputation due to landmine explosions participated in this study. The proportions of patients with phantom limb sensation/pain, intensity and frequency of pain were reported. Chi square test was used to examine the relationship between variables. Comparison of PLP and PLS between upper and lower amputation was done by unpaired t-test. Results There were 38 male and 3 female with the mean age of 15.8±2.4yr. The mean interval between injury and follow-up was 90.7±39.6 months. Twelve (44.4%) upper limb amputees and 11 (26.8%) lower limb amputees had PLS. Nine (33.3%) upper limb amputees and 7 (17.1%) lower limb amputees experienced PLP. Of 27 upper limb amputees, 6 (14.6%) and among 15 lower limb amputees, 6 (14.6%) had both PLS and PLP. One case suffered amputation of upper and lower limbs and was experiencing PLS and PLP in both parts. PLS had a significant difference between the upper and lower amputated groups. Significant relationship was observed between age of casualty and duration of injury with PLP. Conclusion Phantom limb sensation and pain in young survivors of landmine explosions appear to be common, even years after amputation. PMID:27375755

  8. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    SciTech Connect

    Inoue, K.; Sugiyama, N.; Kawanishi, C.

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.

  9. Comparative wavelet, PLP, and LPC speech recognition techniques on the Hindi speech digits database

    NASA Astrophysics Data System (ADS)

    Mishra, A. N.; Shrotriya, M. C.; Sharan, S. N.

    2010-02-01

    In view of the growing use of automatic speech recognition in the modern society, we study various alternative representations of the speech signal that have the potential to contribute to the improvement of the recognition performance. In this paper wavelet based features using different wavelets are used for Hindi digits recognition. The recognition performance of these features has been compared with Linear Prediction Coefficients (LPC) and Perceptual Linear Prediction (PLP) features. All features have been tested using Hidden Markov Model (HMM) based classifier for speaker independent Hindi digits recognition. The recognition performance of PLP features is11.3% better than LPC features. The recognition performance with db10 features has shown a further improvement of 12.55% over PLP features. The recognition performance with db10 is best among all wavelet based features.

  10. Postnatal overfeeding promotes early onset and exaggeration of high-fat diet-induced nonalcoholic fatty liver disease through disordered hepatic lipid metabolism in rats.

    PubMed

    Ji, Chenlin; Dai, Yanyan; Jiang, Weiwei; Liu, Juan; Hou, Miao; Wang, Junle; Burén, Jonas; Li, Xiaonan

    2014-11-01

    Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis.

  11. Sulf1 and Sulf2 Differentially Modulate Heparan Sulfate Proteoglycan Sulfation during Postnatal Cerebellum Development: Evidence for Neuroprotective and Neurite Outgrowth Promoting Functions

    PubMed Central

    Kalus, Ina; Rohn, Susanne; Puvirajesinghe, Tania M.; Guimond, Scott E.; Eyckerman-Kölln, Pieter J.; ten Dam, Gerdy; van Kuppevelt, Toin H.; Turnbull, Jeremy E.; Dierks, Thomas

    2015-01-01

    Introduction Sulf1 and Sulf2 are cell surface sulfatases, which remove specific 6-O-sulfate groups from heparan sulfate (HS) proteoglycans, resulting in modulation of various HS-dependent signaling pathways. Both Sulf1 and Sulf2 knockout mice show impairments in brain development and neurite outgrowth deficits in neurons. Methodology and Main Findings To analyze the molecular mechanisms behind these impairments we focused on the postnatal cerebellum, whose development is mainly characterized by proliferation, migration, and neurite outgrowth processes of precursor neurons. Primary cerebellar granule cells isolated from Sulf1 or Sulf2 deficient newborns are characterized by a reduction in neurite length and cell survival. Furthermore, Sulf1 deficiency leads to a reduced migration capacity. The observed impairments in cell survival and neurite outgrowth could be correlated to Sulf-specific interference with signaling pathways, as shown for FGF2, GDNF and NGF. In contrast, signaling of Shh, which determines the laminar organization of the cerebellar cortex, was not influenced in either Sulf1 or Sulf2 knockouts. Biochemical analysis of cerebellar HS demonstrated, for the first time in vivo, Sulf-specific changes of 6-O-, 2-O- and N-sulfation in the knockouts. Changes of a particular HS epitope were found on the surface of Sulf2-deficient cerebellar neurons. This epitope showed a restricted localization to the inner half of the external granular layer of the postnatal cerebellum, where precursor cells undergo final maturation to form synaptic contacts. Conclusion Sulfs introduce dynamic changes in HS proteoglycan sulfation patterns of the postnatal cerebellum, thereby orchestrating fundamental mechanisms underlying brain development. PMID:26448642

  12. Bax deficiency promotes an up-regulation of Bim(EL) and Bak during striatal and cortical postnatal development, and after excitotoxic injury.

    PubMed

    Gavaldà, N; Pérez-Navarro, E; García-Martínez, J M; Marco, S; Benito, A; Alberch, J

    2008-04-01

    In this study we analyzed whether other members of the Bcl-2 family are regulated in the absence of Bax during the postnatal development of the striatum and cortex and after striatal excitotoxic lesion. Compared with wild-type animals, Bax knockout mice showed region- and time-dependent increases in pro-apoptotic proteins Bak and Bim(EL). Excitotoxicity induced in the adult striatum increased Bim(EL) in both genotypes whereas Bak and Bcl-x(L) were only increased in Bax knockout mice. However, translocation of Bim(EL) protein to the mitochondrial fraction, cytochrome c release and caspase-3 activation were only observed in wild-type striata. Furthermore, analysis of Bim null mutant mice showed that this protein is not essential to excitotoxicity-induced striatal cell death. In conclusion, our results show that in Bax deficient mice Bim(EL) and Bak are specifically regulated during postnatal development, suggesting that these proteins may participate in the compensatory mechanisms triggered in the absence of Bax. In contrast, Bax is required to induce apoptosis after excitotoxicity in the adult striatum.

  13. Functional architecture of two exclusively late stage pollen-specific promoters in rice (Oryza sativa L.).

    PubMed

    Yan, Shuo; Wang, Zhongni; Liu, Yuan; Li, Wei; Wu, Feng; Lin, Xuelei; Meng, Zheng

    2015-07-01

    Late stage pollen-specific promoters are important tools in crop molecular breeding. Several such promoters, and their functional motifs, have been well characterized in dicotyledonous plants such as tomato and tobacco. However, knowledge about the functional architecture of such promoters is limited in the monocotyledonous plant rice. Here, pollen-late-stage-promoter 1 (PLP1) and pollen-late-stage-promoter 2 (PLP2) were characterized using a stable transformation system in rice. Histochemical staining showed that the two promoters exclusively drive GUS expression in late-stage pollen grains in rice. 5' deletion analysis revealed that four regions, including the -1159 to -720 and the -352 to -156 regions of PLP1 and the -740 to -557 and the -557 to -339 regions of PLP2, are important in maintaining the activity and specificity of these promoters. Motif mutation analysis indicated that 'AGAAA' and 'CAAT' motifs in the -740 to -557 region of PLP2 act as enhancers in the promoter. Gain of function experiments indicated that the novel TA-rich motif 'TACATAA' and 'TATTCAT' in the core region of the PLP1 and PLP2 promoters is necessary, but not sufficient, for pollen-specific expression in rice. Our results provide evidence that the enhancer motif 'AGAAA' is conserved in the pollen-specific promoters of both monocots and eudicots, but that some functional architecture characteristics are different.

  14. Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712.

    PubMed

    Wegmann, Udo; Overweg, Karin; Jeanson, Sophie; Gasson, Mike; Shearman, Claire

    2012-12-01

    The widely used plasmid-free Lactococcus lactis strain MG1363 was derived from the industrial dairy starter strain NCDO712. This strain carries a 55.39 kb plasmid encoding genes for lactose catabolism and a serine proteinase involved in casein degradation. We report the DNA sequencing and annotation of pLP712, which revealed additional metabolic genes, including peptidase F, d-lactate dehydrogenase and α-keto acid dehydrogenase (E3 complex). Comparison of pLP712 with other large lactococcal lactose and/or proteinase plasmids from L. lactis subsp. cremoris SK11 (pSK11L, pSK11P) and the plant strain L. lactis NCDO1867 (pGdh442) revealed their close relationship. The plasmid appears to have evolved through a series of genetic events as a composite of pGdh442, pSK11L and pSK11P. We describe in detail a scenario by which the metabolic genes relevant to the growth of its host in a milk environment have been unified on one replicon, reflecting the evolution of L. lactis as it changed its biological niche from plants to dairy environments. The extensive structural instability of pLP712 allows easy isolation of derivative plasmids lacking genes for casein degradation and/or lactose catabolism. Plasmid pLP712 is transferable by transduction and conjugation, and both of these processes result in significant molecular rearrangements. We report the detailed molecular analysis of insertion sequence element-mediated genetic rearrangements within pLP712 and several different mechanisms, including homologous recombination and adjacent deletion. Analysis of the integration of the lactose operon into the chromosome highlights the fluidity of the MG1363 integration hotspot and the potential for frequent movement of genes between plasmids and chromosomes in Lactococcus. PMID:23023974

  15. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate. PMID:25568319

  16. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM

    PubMed Central

    Richens, Jennifer H.; Barros, Teresa P.; Lucas, Eliana P.; Peel, Nina; Pinto, David Miguel Susano; Wainman, Alan; Raff, Jordan W.

    2015-01-01

    ABSTRACT Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM. PMID:26157019

  17. Practical postnatal care.

    PubMed

    Smibert, J

    1989-05-01

    This second paper by the author presents an experienced obstetrician's viewpoint of a very practical and perhaps provocative approach to postnatal care, especially considering the rights and emotional factors of the new parents.

  18. Postnatal maternal separation enhances tonic GABA current of cortical layer 5 pyramidal neurons in juvenile rats and promotes genesis of GABAergic neurons in neocortical molecular layer and subventricular zone in adult rats.

    PubMed

    Feng, Mei; Sheng, Guoxia; Li, Zhongxia; Wang, Jiangping; Ren, Keming; Jin, Xiaoming; Jiang, Kewen

    2014-03-01

    Postnatal maternal separation (PMS) has been shown to be associated with an increased vulnerability to psychiatric illnesses in adulthood. However, the underlying neurological mechanisms are not well understood. Here we evaluated its effects on neurogenesis and tonic GABA currents of cortical layer 5 (L5) pyramidal neurons. PMS not only increased cell proliferation in the subventricular zone, cortical layer 1 and hippocampal dentate gyrus in the adult brain, but also promoted the newly generated cells to differentiate into GABAergic neurons, and PMS adult brain maintained higher ratios of GABAergic neurons in the survival of newly generated cells within 5 days immediately post PMS. Additionally, PMS increased the tonic currents at P7-10 and P30-35 in cortical L5 pyramidal cells. Our results suggest that the newly generated GABAergic neurons and the low GABA concentration-activated tonic currents may be involved in the development of psychiatric disorders after PMS.

  19. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder.

    PubMed Central

    Hudson, L D; Puckett, C; Berndt, J; Chan, J; Gencic, S

    1989-01-01

    Myelin is a highly specialized membrane unique to the nervous system that ensheaths axons to permit the rapid saltatory conduction of impulses. The elaboration of a compact myelin sheath is disrupted in a diverse spectrum of human disorders, many of which are of unknown etiology. The X chromosome-linked human disorder Pelizaeus-Merzbacher disease is a clinically and pathologically heterogeneous group of disorders that demonstrate a striking failure of oligodendrocyte differentiation. This disease appears pathologically and genetically to be similar to the disorder seen in the dysmyelinating mouse mutant jimpy, which has a point mutation in the gene encoding an abundant myelin protein, proteolipid protein (PLP). We report that the molecular defect in one Pelizaeus-Merzbacher family is likewise a point mutation in the PLP gene. A single T----C transition results in the substitution of a charged amino acid residue, arginine, for tryptophan in one of the four extremely hydrophobic domains of the PLP protein. The identification of a mutation in this Pelizaeus-Merzbacher family should facilitate the molecular classification and diagnosis of these X chromosome-linked human dysmyelinating disorders. Images PMID:2479017

  20. PLP and PMP radicals: a new paradigm in coenzyme B6 chemistry.

    PubMed

    Agnihotri, G; Liu, H W

    2001-08-01

    Enzymes frequently rely on a broad repertoire of cofactors to perform chemically challenging transformations. The B6 coenzymes, composed of pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP), are used by many transaminases, racemases, decarboxylases, and enzymes catalyzing alpha,beta and beta,gamma-eliminations. Despite the variety of reactions catalyzed by B6-dependent enzymes, the mechanism of almost all such enzymes is based on their ability to stabilize high-energy anionic intermediates in their reaction pathways by the pyridinium moiety of PLP/PMP. However, there are two notable exceptions to this model, which are discussed in this article. The first enzyme, lysine 2,3-aminomutase, is a PLP-dependent enzyme that catalyzes the interconversion of L-lysine to L-beta-lysine using a one-electron-based mechanism utilizing a [4Fe-4S] cluster and S-adenosylmethionine. The second enzyme, CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase, is a PMP-dependent enzyme involved in the formation of 3,6-dideoxysugars in bacteria. This enzyme also contains an iron-sulfur cluster and uses a one-electron based mechanism to catalyze removal of a C-3 hydroxy group from a 4-hexulose. In both cases, the participation of free radicals in the reaction pathway has been established, placing these two B6-dependent enzymes in an exclusive class by themselves.

  1. Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient.

    PubMed

    Ortiz-Catalan, Max; Sander, Nichlas; Kristoffersen, Morten B; Håkansson, Bo; Brånemark, Rickard

    2014-01-01

    A variety of treatments have been historically used to alleviate phantom limb pain (PLP) with varying efficacy. Recently, virtual reality (VR) has been employed as a more sophisticated mirror therapy. Despite the advantages of VR over a conventional mirror, this approach has retained the use of the contralateral limb and is therefore restricted to unilateral amputees. Moreover, this strategy disregards the actual effort made by the patient to produce phantom motions. In this work, we investigate a treatment in which the virtual limb responds directly to myoelectric activity at the stump, while the illusion of a restored limb is enhanced through augmented reality (AR). Further, phantom motions are facilitated and encouraged through gaming. The proposed set of technologies was administered to a chronic PLP patient who has shown resistance to a variety of treatments (including mirror therapy) for 48 years. Individual and simultaneous phantom movements were predicted using myoelectric pattern recognition and were then used as input for VR and AR environments, as well as for a racing game. The sustained level of pain reported by the patient was gradually reduced to complete pain-free periods. The phantom posture initially reported as a strongly closed fist was gradually relaxed, interestingly resembling the neutral posture displayed by the virtual limb. The patient acquired the ability to freely move his phantom limb, and a telescopic effect was observed where the position of the phantom hand was restored to the anatomically correct distance. More importantly, the effect of the interventions was positively and noticeably perceived by the patient and his relatives. Despite the limitation of a single case study, the successful results of the proposed system in a patient for whom other medical and non-medical treatments have been ineffective justifies and motivates further investigation in a wider study.

  2. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture.

  3. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. PMID:25147160

  4. Structural Insights into the Mechanism of the PLP Synthase Holoenzyme from Thermotoga maritima†,‡

    PubMed Central

    Zein, Fairuz; Zhang, Yan; Kang, You-Na; Burns, Kristin; Begley, Tadhg P.; Ealick, Steven E.

    2008-01-01

    Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino-sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate and ammonia and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 Å resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared to the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1–18), which includes helix α0, the β2-α2 loop(46–56), which includes new helix α2a, and the C-terminus (270–280) of YaaD, are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and 82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the β-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180° with respect to each other. PMID:17144654

  5. Genetic and Immunologic Analyses of PlpE, a Lipoprotein Important in Complement-Mediated Killing of Pasteurella haemolytica Serotype 1

    PubMed Central

    Pandher, Karamjeet; Confer, Anthony W.; Murphy, George L.

    1998-01-01

    Pasteurella haemolytica serotype 1 is the bacterium most commonly associated with bovine shipping fever. The presence of antibodies against P. haemolytica outer membrane proteins (OMPs) correlates statistically with resistance to experimental P. haemolytica challenge in cattle. Until now, specific P. haemolytica OMPs which elicit antibodies that function in host defense mechanisms have not been identified. In this study, we have cloned and sequenced the gene encoding one such protein, PlpE. Analysis of the deduced amino acid sequence revealed that PlpE is a lipoprotein and that it is similar to an Actinobacillus pleuropneumoniae lipoprotein, OmlA. Affinity-purified, anti-PlpE antibodies recognize a protein in all serotypes of P. haemolytica except serotype 11. We found that intact P. haemolytica and recombinant E. coli expressing PlpE are capable of absorbing anti-PlpE antibodies from bovine immune serum, indicating that PlpE is surface exposed in P. haemolytica and assumes a similar surface-exposed conformation in E. coli. In complement-mediated killing assays, we observed a significant reduction in killing of P. haemolytica when bovine immune serum that was depleted of anti-PlpE antibodies was used as the source of antibody. Our data suggest that PlpE is surface exposed and immunogenic in cattle and that antibodies against PlpE contribute to host defense against P. haemolytica. PMID:9826333

  6. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system.

    PubMed

    Salacha, Richard; Kovacić, Filip; Brochier-Armanet, Céline; Wilhelm, Susanne; Tommassen, Jan; Filloux, Alain; Voulhoux, Romé; Bleves, Sophie

    2010-06-01

    We discovered a novel secreted protein by Pseudomonas aeruginosa, PlpD, as a member of the bacterial lipolytic enzyme family of patatin-like proteins (PLPs). PlpD is synthesized as a single molecule consisting of a secreted domain fused to a transporter domain. The N-terminus of PlpD includes a classical signal peptide followed by the four PLP conserved blocks that account for its lipase activity. The C-terminus consists of a POTRA (polypeptide transport-associated) motif preceding a putative 16-stranded beta-barrel similar to those of TpsB transporters of Type Vb secretion system. We showed that the C-terminus remains inserted into the outer membrane while the patatin moiety is secreted. The association between a TpsB component and a passenger protein is a unique hybrid organization that we propose to classify as Type Vd. More than 200 PlpD orthologues exist among pathogenic and environmental bacteria, which suggests that bacteria secrete numerous PLPs using this newly defined mechanism.

  7. Complex Genomic Rearrangements at the PLP1 Locus Include Triplication and Quadruplication

    PubMed Central

    Beck, Christine R.; Carvalho, Claudia M. B.; Banser, Linda; Gambin, Tomasz; Stubbolo, Danielle; Yuan, Bo; Sperle, Karen; McCahan, Suzanne M.; Henneke, Marco; Seeman, Pavel; Hobson, Grace M.; Lupski, James R.

    2015-01-01

    Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication—inverted triplication—duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals—16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology—or homeology—driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model. PMID:25749076

  8. Structure-Based Mechanism for Early PLP-Mediated Steps of Rabbit Cytosolic Serine Hydroxymethyltransferase Reaction

    PubMed Central

    Di Salvo, Martino L.; Scarsdale, J. Neel; Kazanina, Galina; Contestabile, Roberto; Schirch, Verne; Wright, H. Tonie

    2013-01-01

    Serine hydroxymethyltransferase catalyzes the reversible interconversion of L-serine and glycine with transfer of one-carbon groups to and from tetrahydrofolate. Active site residue Thr254 is known to be involved in the transaldimination reaction, a crucial step in the catalytic mechanism of all pyridoxal 5′-phosphate- (PLP-) dependent enzymes, which determines binding of substrates and release of products. In order to better understand the role of Thr254, we have expressed, characterized, and determined the crystal structures of rabbit cytosolic serine hydroxymethyltransferase T254A and T254C mutant forms, in the absence and presence of substrates. These mutants accumulate a kinetically stable gem-diamine intermediate, and their crystal structures show differences in the active site with respect to wild type. The kinetic and crystallographic data acquired with mutant enzymes permit us to infer that conversion of gem-diamine to external aldimine is significantly slowed because intermediates are trapped into an anomalous position by a misorientation of the PLP ring, and a new energy barrier hampers the transaldimination reaction. This barrier likely arises from the loss of the stabilizing hydrogen bond between the hydroxymethyl group of Thr254 and the ε-amino group of active site Lys257, which stabilizes the external aldimine intermediate in wild type SHMTs. PMID:23956983

  9. A subfamily of PLP-dependent enzymes specialized in handling terminal amines.

    PubMed

    Schiroli, Davide; Peracchi, Alessio

    2015-09-01

    The present review focuses on a subfamily of pyridoxal phosphate (PLP)-dependent enzymes, belonging to the broader fold-type I structural group and whose archetypes can be considered ornithine δ-transaminase and γ-aminobutyrate transaminase. These proteins were originally christened "subgroup-II aminotransferases" (AT-II) but are very often referred to as "class-III aminotransferases". As names suggest, the subgroup includes mainly transaminases, with just a few interesting exceptions. However, at variance with most other PLP-dependent enzymes, catalysts in this subfamily seem specialized at utilizing substrates whose amino function is not adjacent to a carboxylate group. AT-II enzymes are widespread in biology and play mostly catabolic roles. Furthermore, today several transaminases in this group are being used as bioorganic tools for the asymmetric synthesis of chiral amines. We present an overview of the biochemical and structural features of these enzymes, illustrating how they are distinctive and how they compare with those of the other fold-type I enzymes. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. PMID:25770684

  10. LKTA and PlpE small fragments fusion protein protect against Mannheimia haemolytica challenge.

    PubMed

    Guzmán-Brambila, Carolina; Quintero-Fabián, Saray; González-Castillo, Celia; de Obeso-Fernández del Valle, Álvaro; Flores-Samaniego, Beatriz; de la Mora, Germán; Rojas-Mayorquín, Argelia E; Ortuño-Sahagún, Daniel

    2012-12-01

    Bovine respiratory disease (BRD) complex is a major cause of economic losses for the cattle backgrounding and feedlot industries. Mannheimia haemolytica is considered the most important pathogen associated with this disease. Vaccines against M. haemolytica have been prepared and used for many decades, but traditional bacterins have failed to demonstrate effective protection and their use has often exacerbated disease in vaccinated animals. Thus, the BRD complex continues to exert a strong adverse effect on the health and wellbeing of stocker and feeder cattle. Therefore, generation of recombinant proteins has been helpful in formulating enhanced vaccines against M. haemolytica, which could confer better protection against BRD. In the present study, we formulated a vaccine preparation enriched with recombinant small fragments of leukotoxin A (LKTA) and outer-membrane lipoprotein (PlpE) proteins, and demonstrated its ability to generate high antibody titers in rabbits and sheep, which protected against M. haemolytica bacterial challenge in mice. PMID:22840333

  11. Plasma Pyridoxal 5'-phosphate (PLP) in the United States population: the National Health and Nutrition Examination Survey, 2003-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No large-scale, population-based study has considered the descriptive epidemiology of vitamin B6 status using the biological marker, plasma pyridoxal 5’ - phosphate (PLP). Consequently, how vitamin B6 status varies with basic demographic and lifestyle factors is unclear. We sought to examine the epi...

  12. Mechanism of Substrate Recognition And PLP-Induced Conformational Changes in II-Diaminopimelate Aminotransferase From Arabidopsis Thaliana

    SciTech Connect

    Watanabe, N.; Clay, M.D.; Belkum, M.J.van; Cherney, M.M.; Vederas, J.C.; James, M.N.G.

    2009-05-26

    LL-Diaminopimelate aminotransferase (LL-DAP-AT), a pyridoxal phosphate (PLP)-dependent enzyme in the lysine biosynthetic pathways of plants and Chlamydia, is a potential target for the development of herbicides or antibiotics. This homodimeric enzyme converts L-tetrahydrodipicolinic acid (THDP) directly to LL-DAP using L-glutamate as the source of the amino group. Earlier, we described the 3D structures of native and malate-bound LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT). Seven additional crystal structures of AtDAP-AT and its variants are reported here as part of an investigation into the mechanism of substrate recognition and catalysis. Two structures are of AtDAP-AT with reduced external aldimine analogues: N-(5'-phosphopyridoxyl)-L-glutamate (PLP-Glu) and N-(5'-phosphopyridoxyl)- LL-Diaminopimelate (PLP-DAP) bound in the active site. Surprisingly, they reveal that both L-glutamate and LL-DAP are recognized in a very similar fashion by the same sets of amino acid residues; both molecules adopt twisted V-shaped conformations. With both substrates, the {alpha}-carboxylates are bound in a salt bridge with Arg404, whereas the distal carboxylates are recognized via hydrogen bonds to the well-conserved side chains of Tyr37, Tyr125 and Lys129. The distal C{sup {var_epsilon}} amino group of LL-DAP is specifically recognized by several non-covalent interactions with residues from the other subunit (Asn309*, Tyr94*, Gly95*, and Glu97* (Amino acid designators followed by an asterisk (*) indicate that the residues originate in the other subunit of the dimer)) and by three bound water molecules. Two catalytically inactive variants of AtDAP-AT were created via site-directed mutagenesis of the active site lysine (K270N and K270Q). The structures of these variants permitted the observation of the unreduced external aldimines of PLP with L-glutamate and with LL-DAP in the active site, and revealed differences in the torsion angle about the PLP-substrate bond. Lastly, an apo

  13. Perinatal methylmercury exposure perturbs the expression of Plp1 and Cnp splice variants in cerebellum of rat pups.

    PubMed

    Padhi, Bhaja K; Rosales, Marianela; Pelletier, Guillaume

    2015-05-01

    Early life exposure to environmental chemicals can interfere with myelin formation in the developing brain, leading to neurological disorders. The Proteolipid Protein 1 (Plp1), Myelin Basic Protein (Mbp) and 2',3'-Cyclic Nucleotide 3'Phosphodiesterase (Cnp) genes expressed in oligodendrocytes and involved in myelination processes can be useful biomarkers of potential developmental neurotoxicity. In an earlier study, we concluded that the reduction in the expression levels of Mbp splice variants in juvenile rat cerebellum following perinatal methylmercury (MeHg) exposure were compatible with an overall reduction of mature oligodendrocytes population. This observation prompted us to analyze the expression of Plp1 and Cnp in developing rat cerebellum to further confirm and investigate the toxic effects of MeHg on vulnerable oligodendrocytes. Splice variants of Plp1 in human and of Cnp in mouse are curated in NCBI RefSeq database, but not for rat. Lack of annotation of splice variants can pose significant challenge for the reliable quantification of gene expression levels in toxicological studies. Therefore, we applied a "comparative sequence analysis" approach, relying on annotated splice variants in human/mouse and on evolutionary conservation of intron-exon structures, to identify additional splice variants of Plp1 and Cnp in rat. Then, we confirmed their identity by nucleotide sequencing and characterized their temporal expression patterns during brain development by RT-PCR. The measurement of total transcripts and individual splice variants of Plp1 and Cnp in the cerebellum of MeHg-exposed rat pups revealed a relatively similar level of reduction in their expression levels. This study further confirms that perinatal exposure to MeHg can impact oligodendrocytes in pups. Based on these observations, we conclude that monitoring the expression of these oligodendrocyte-enriched genes can be useful to identify toxic chemicals affecting myelination.

  14. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20

    SciTech Connect

    Garwood, M.M.; Gilbert, W.R.; Agrawal, H.C.

    1983-05-01

    The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of (/sup 3/H)palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.

  15. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism

    PubMed Central

    Bourquin, Florence; Capitani, Guido; Grütter, Markus Gerhard

    2011-01-01

    Sphingolipids are membrane constituents as well as signaling molecules involved in many essential cellular processes. Serine palmitoyltransferase (SPT) and sphingosine-1-phosphate lyase (SPL), both PLP (pyridoxal 5′-phosphate)-dependent enzymes, function as entry and exit gates of the sphingolipid metabolism. SPT catalyzes the condensation of serine and a fatty acid into 3-keto-dihydrosphingosine, whereas SPL degrades sphingosine-1-phosphate (S1P) into phosphoethanolamine and a long-chain aldehyde. The recently solved X-ray structures of prokaryotic homologs of SPT and SPL combined with functional studies provide insight into the structure–function relationship of the two enzymes. Despite carrying out different reactions, the two enzymes reveal striking similarities in the overall fold, topology, and residues crucial for activity. Unlike their eukaryotic counterparts, bacterial SPT and SPL lack a transmembrane helix, making them targets of choice for biochemical characterization because the use of detergents can be avoided. Both human enzymes are linked to severe diseases or disorders and might therefore serve as targets for the development of therapeutics aiming at the modulation of their activity. This review gives an overview of the sphingolipid metabolism and of the available biochemical studies of prokaryotic SPT and SPL, and discusses the major similarities and differences to the corresponding eukaryotic enzymes. PMID:21710479

  16. Linkage of a new mutation in the proteolipid protein (PLP) gene to Pelizaeus-Merzbacher disease (PMD) in a large Finnish kindred.

    PubMed Central

    Pratt, V M; Kiefer, J R; Lähdetie, J; Schleutker, J; Hodes, M E; Dlouhy, S R

    1993-01-01

    The purpose of this study was to confirm linkage of the proteolipid protein gene (PLP) and Pelizaeus-Merzbacher disease (PMD). A T-->A transversion in nucleotide pair 35 of exon 4 of PLP was found in a large Finnish kindred with PMD. This mutation results in the substitution Val165-->Glu165. We used a combination of single-strand conformational polymorphism and PCR primer extension to determine the presence or absence of the point mutation in family members. A lod score of 2.6 (theta = 0) was found for linkage of the gene and the disease. We examined 101 unrelated X chromosomes and found none with the transversion. This is the second report of linkage of PMD to a missense mutation in PLP. These findings support the hypothesis that PMD in this family is a result of the missense mutation present in exon 4 of PLP. Images Figure 2 Figure 3 Figure 4 PMID:7684886

  17. Structure of the PLP-Form of the Human Kynurenine Aminotransferase II in a Novel Spacegroup at 1.83 Å Resolution.

    PubMed

    Nematollahi, Alireza; Sun, Guanchen; Harrop, Stephen J; Hanrahan, Jane R; Church, W Bret

    2016-03-25

    Kynurenine aminotransferase II (KAT-II) is a 47 kDa pyridoxal phosphate (PLP)-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN) and 3-hydroxykynurenine (3-HK) in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA), which is implicated in several neurological diseases such as schizophrenia. In order to fully describe the role of KAT-II in the pathobiology of schizophrenia and other brain disorders, the crystal structure of full-length PLP-form hKAT-II was determined at 1.83 Å resolution, the highest available. The electron density of the active site reveals an aldimine linkage between PLP and Lys263, as well as the active site residues, which characterize the fold-type I PLP-dependent enzymes.

  18. Structure of the PLP-Form of the Human Kynurenine Aminotransferase II in a Novel Spacegroup at 1.83 Å Resolution

    PubMed Central

    Nematollahi, Alireza; Sun, Guanchen; Harrop, Stephen J.; Hanrahan, Jane R.; Church, W. Bret

    2016-01-01

    Kynurenine aminotransferase II (KAT-II) is a 47 kDa pyridoxal phosphate (PLP)-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN) and 3-hydroxykynurenine (3-HK) in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA), which is implicated in several neurological diseases such as schizophrenia. In order to fully describe the role of KAT-II in the pathobiology of schizophrenia and other brain disorders, the crystal structure of full-length PLP-form hKAT-II was determined at 1.83 Å resolution, the highest available. The electron density of the active site reveals an aldimine linkage between PLP and Lys263, as well as the active site residues, which characterize the fold-type I PLP-dependent enzymes. PMID:27023527

  19. RidA Proteins Prevent Metabolic Damage Inflicted by PLP-Dependent Dehydratases in All Domains of Life

    PubMed Central

    Lambrecht, Jennifer A.; Schmitz, George E.; Downs, Diana M.

    2013-01-01

    ABSTRACT Pyridoxal 5′-phosphate (PLP) is a coenzyme synthesized by all forms of life. Relevant to the work reported here is the mechanism of the PLP-dependent threonine/serine dehydratases, which generate reactive enamine/imine intermediates that are converted to keto acids by members of the RidA family of enzymes. The RidA protein of Salmonella enterica serovar Typhimurium LT2 is the founding member of this broadly conserved family of proteins (formerly known as YjgF/YER057c/UK114). RidA proteins were recently shown to be enamine deaminases. Here we demonstrate the damaging potential of enamines in the absence of RidA proteins. Notably, S. enterica strains lacking RidA have decreased activity of the PLP-dependent transaminase B enzyme IlvE, an enzyme involved in branched-chain amino acid biosynthesis. We reconstituted the threonine/serine dehydratase (IlvA)-dependent inhibition of IlvE in vitro, show that the in vitro system reflects the mechanism of RidA function in vivo, and show that IlvE inhibition is prevented by RidA proteins from all domains of life. We conclude that 2-aminoacrylate (2AA) inhibition represents a new type of metabolic damage, and this finding provides an important physiological context for the role of the ubiquitous RidA family of enamine deaminases in preventing damage by 2AA. PMID:23386433

  20. Reconstitution of the pyridoxal 5'-phosphate (PLP) dependent enzyme serine palmitoyltransferase (SPT) with pyridoxal reveals a crucial role for the phosphate during catalysis.

    PubMed

    Beattie, Ashley E; Clarke, David J; Wadsworth, John M; Lowther, Jonathan; Sin, Ho-Lam; Campopiano, Dominic J

    2013-08-14

    The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) is required for de novo sphingolipid biosynthesis. A previous study revealed a novel and unexpected interaction between the hydroxyl group of the l-serine substrate and the 5'-phosphate group of PLP. By using pyridoxal (PL), the dephosphorylated analogue of vitamin B6, we show here that this interaction is important for substrate specificity and optimal catalytic efficiency.

  1. Haploid Genetic Screens Identify an Essential Role for PLP2 in the Downregulation of Novel Plasma Membrane Targets by Viral E3 Ubiquitin Ligases

    PubMed Central

    Timms, Richard T.; Duncan, Lidia M.; Tchasovnikarova, Iva A.; Antrobus, Robin; Smith, Duncan L.; Dougan, Gordon; Weekes, Michael P.; Lehner, Paul J.

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system. PMID:24278019

  2. Early influences of nutrition on postnatal growth.

    PubMed

    Koletzko, Berthold; Beyer, Jeanette; Brands, Brigitte; Demmelmair, Hans; Grote, Veit; Haile, Gudrun; Gruszfeld, Dariusz; Rzehak, Peter; Socha, Piotr; Weber, Martina

    2013-01-01

    Health and nutrition modulate postnatal growth. The availability of amino acids and energy, and insulin and insulin-like growth factor-I (IGF-I) regulates early growth through the mTOR pathway. Amino acids and glucose also stimulate the secretion of IGF-I and insulin. Postnatal growth induces lasting, programming effects on later body size and adiposity in animals and in human observational studies. Rapid weight gain in infancy and the first 2 years was shown to predict increased obesity risk in childhood and adulthood. Breastfeeding leads to lesser high weight gain in infancy and reduces obesity risk in later life by about 20%, presumably partly due to the lower protein supply with human milk than conventional infant formula. In a large randomized clinical trial, we tested the hypothesis that reduced infant formula protein contents lower insulin-releasing amino acid concentrations and thereby decrease circulating insulin and IGF-I levels, resulting in lesser early weight gain and reduced later obesity risk (the 'Early Protein Hypothesis'). The results demonstrate that lowered protein in infant formula induces similar - but not equal - metabolic and endocrine responses and normalizes weight and BMI relative to breastfed controls at the age of 2 years. The results available should lead to enhanced efforts to actively promote, protect and support breastfeeding. For infants that are not breastfed or not fully breastfed, the use of infant formulas with lower protein contents but high protein quality appears preferable. Cows' milk as a drink provides high protein intake and should be avoided in infancy.

  3. Early influences of nutrition on postnatal growth.

    PubMed

    Koletzko, Berthold; Beyer, Jeanette; Brands, Brigitte; Demmelmair, Hans; Grote, Veit; Haile, Gudrun; Gruszfeld, Dariusz; Rzehak, Peter; Socha, Piotr; Weber, Martina

    2013-01-01

    Health and nutrition modulate postnatal growth. The availability of amino acids and energy, and insulin and insulin-like growth factor-I (IGF-I) regulates early growth through the mTOR pathway. Amino acids and glucose also stimulate the secretion of IGF-I and insulin. Postnatal growth induces lasting, programming effects on later body size and adiposity in animals and in human observational studies. Rapid weight gain in infancy and the first 2 years was shown to predict increased obesity risk in childhood and adulthood. Breastfeeding leads to lesser high weight gain in infancy and reduces obesity risk in later life by about 20%, presumably partly due to the lower protein supply with human milk than conventional infant formula. In a large randomized clinical trial, we tested the hypothesis that reduced infant formula protein contents lower insulin-releasing amino acid concentrations and thereby decrease circulating insulin and IGF-I levels, resulting in lesser early weight gain and reduced later obesity risk (the 'Early Protein Hypothesis'). The results demonstrate that lowered protein in infant formula induces similar - but not equal - metabolic and endocrine responses and normalizes weight and BMI relative to breastfed controls at the age of 2 years. The results available should lead to enhanced efforts to actively promote, protect and support breastfeeding. For infants that are not breastfed or not fully breastfed, the use of infant formulas with lower protein contents but high protein quality appears preferable. Cows' milk as a drink provides high protein intake and should be avoided in infancy. PMID:23502135

  4. Midwives benefit from good postnatal care, too.

    PubMed

    Cameron, Helen

    2014-01-01

    Appropriate, timely and responsive postnatal care can help women and families negotiate the major life transition that childbirth brings. However, women's experiences of postnatal care are often negative and our increasingly biomedical approach to birth means that greater emphasis is placed on antenatal and intrapartum care at the expense of postnatal care. Good postnatal care is essential not only for women, but for midwives too, and our failure to acknowledge the significance of birth, and our contribution to that event can diminish us as people and midwives.

  5. Allosteric communication between the pyridoxal 5'-phosphate (PLP) and heme sites in the H2S generator human cystathionine β-synthase.

    PubMed

    Yadav, Pramod Kumar; Xie, Peter; Banerjee, Ruma

    2012-11-01

    Human cystathionine β-synthase (CBS) is a unique pyridoxal 5'-phosphate (PLP)-dependent enzyme that has a regulatory heme cofactor. Previous studies have demonstrated the importance of Arg-266, a residue at the heme pocket end of α-helix 8, for communication between the heme and PLP sites. In this study, we have examined the role of the conserved Thr-257 and Thr-260 residues, located at the other end of α-helix 8 on the heme electronic environment and on activity. The mutations at the two positions destabilize PLP binding, leading to lower PLP content and ~2- to ~500-fold lower activity compared with the wild-type enzyme. Activity is unresponsive to PLP supplementation, consistent with the pyridoxine-nonresponsive phenotype of the T257M mutation in a homocystinuric patient. The H(2)S-producing activities, also impacted by the mutations, show a different pattern of inhibition compared with the canonical transsulfuration reaction. Interestingly, the mutants exhibit contrasting sensitivities to the allosteric effector, S-adenosylmethionine (AdoMet); whereas T257M and T257I are inhibited, the other mutants are hyperactivated by AdoMet. All mutants showed an increased propensity of the ferrous heme to form an inactive species with a 424 nm Soret peak and exhibited significantly reduced enzyme activity in the ferrous and ferrous-CO states. Our results provide the first evidence for bidirectional transmission of information between the cofactor binding sites, suggest the additional involvement of this region in allosteric communication with the regulatory AdoMet-binding domain, and reveal the potential for independent modulation of the canonical transsulfuration versus H(2)S-generating reactions catalyzed by CBS.

  6. Postnatal Exposure History and Airways

    PubMed Central

    Murphy, Shannon R.; Schelegle, Edward S.; Edwards, Patricia C.; Miller, Lisa A.; Hyde, Dallas M.

    2012-01-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O3) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O3 exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurokinin-1 receptor (NK-1R). Infant rhesus monkeys received episodic exposure to O3 biweekly with or without house dust mite antigen (HDMA) from 6 to 12 months of age. Age-matched monkeys were exposed to filtered air (FA). Microdissected airway explants from midlevel airways (intrapulmonary generations 5–8) for four to six animals in each of four groups (FA, O3, HDMA, and HDMA+O3) were tested for NK-1R gene responses to acute oxidant stress using exposure to hydrogen peroxide (1.2 mM), a lipid ozonide (10 μM), or sham treatment for 4 hours in vitro. Airway responses were measured using real-time quantitative RT-PCR of NK-1R and IL-8 gene expression. Basal NK-1R gene expression levels were not different between the exposure groups. Treatment with ozonide or hydrogen peroxide did not change NK-1R gene expression in animals exposed to FA, HDMA, or HDMA+O3. However, treatment in vitro with lipid ozonide significantly increased NK-1R gene expression in explants from O3–exposed animals. We conclude that a history of prior O3 exposure resets the steady state of the airways to increase the NK-1R response to subsequent acute oxidant stresses. PMID:22962062

  7. The Impact of Safer Breastfeeding Practices on Postnatal HIV-1 Transmission in Zimbabwe

    PubMed Central

    Piwoz, Ellen G.; Humphrey, Jean H.; Tavengwa, Naume V.; Iliff, Peter J.; Marinda, Edmore T.; Zunguza, Clare D.; Nathoo, Kusum J.; Mutasa, Kuda; Moulton, Lawrence H.; Ward, Brian J.

    2007-01-01

    Objectives. We assessed the association between exposure to an educational intervention that emphasized safer breastfeeding practices and postnatal HIV transmission among 437 HIV-positive mothers in Zimbabwe, 365 of whom did not know their infection status. Methods. Mothers were tested for HIV and were encouraged—but not required—to learn their HIV status. Intervention exposure was assessed by a questionnaire, Turnbull methods were used to estimate postnatal HIV transmission, and multivariate Cox proportional hazard models were constructed to assess the association between intervention exposure and postnatal HIV transmission. Results. Cumulative postnatal HIV transmission was 8.2%; each additional intervention contact was associated with a 38% reduction in postnatal HIV transmission. HIV-positive mothers who were exposed to both print and video materials were 79% less likely to infect their infants compared with mothers who had no exposure. These findings were similar for mothers who did not know their HIV status. Conclusions. The promotion of exclusive breastfeeding has the potential to reduce postnatal HIV transmission among women who do not know their HIV status, and child survival and HIV prevention programs should support this practice. PMID:17538064

  8. Revealing tact within postnatal care.

    PubMed

    Smythe, Elizabeth; Payne, Deborah; Wilson, Sally; Paddy, Ann; Heard, Kate

    2014-02-01

    In this article, we explore the nature of good postnatal care through a hermeneutic unpacking of the notion of tact, drawing on the philosophical writings of Heidegger, Gadamer, and van Manen. The tactful encounters considered were from a hermeneutic research study within a small, rural birthing center in New Zealand. Insights drawn from the analysis were as follows: the openness of listening, watching and being attuned that builds a positive mode of engagement, recognizing that the distance the woman needs from her nurse/midwife is a call of tact, that tact is underpinned by a spirit of care, within tact there are moods and tact might require firmness, and that all of these factors come together to build trust. We conclude that the attunement of tact requires that the staff member has time to spend with a woman, enough energy to engage, and a spirit of care. Women know that tactful practice builds their confidence and affects their mothering experience. Tact cannot be assumed; it needs to be nurtured and sheltered.

  9. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    PubMed

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.

  10. 4'-CyanoPLP presents better prospect for the experimental detection of elusive cyclic intermediate radical in the reaction of lysine 5,6-aminomutase.

    PubMed

    Maity, Amarendra Nath; Ke, Shyue-Chu

    2015-02-01

    The results of our calculations suggest that the reaction of 4'-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical (I), which is proposed to be a key intermediate in the reaction of pyridoxal-5'-phosphate dependent radical aminomutases. We have calculated the corresponding hyperfine coupling constants (HFCCs) for (14)N and (13)C of cyano group using several basis sets to help the characterization of 4'-cyanoI.

  11. The Crystal Structure of D-Threonine Aldolase from Alcaligenes xylosoxidans Provides Insight into a Metal Ion Assisted PLP-Dependent Mechanism

    PubMed Central

    Uhl, Michael K.; Oberdorfer, Gustav; Steinkellner, Georg; Riegler-Berket, Lina; Mink, Daniel; van Assema, Friso; Schürmann, Martin; Gruber, Karl

    2015-01-01

    Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor. PMID:25884707

  12. Utilization of postnatal care among Nepalese women.

    PubMed

    Neupane, Subas; Doku, David

    2013-12-01

    This study investigated risk factors associated with the type of birth attendants and timing of postnatal care among a nationally representative sample of Nepalese women. The 2006 Nepalese Demographic and Health Survey on women age 15-49 years old who had delivered within 3 years prior to the survey (N = 4,136) was used. Multivariate logistic regression was employed to study the association between socio-demographic variables and type of birth attendants and timing of postnatal care. Only 23 % deliveries were assisted by skilled attendants. A majority of Nepalese women did not have postnatal check-ups. Education (OR = 1.46, 95 % CI = 1.11-1.92), wealth (OR = 2.57, 95 % CI = 1.59-4.15) and sufficiency of advice during pregnancy (OR = 3.09, 95 % CI = 2.16-4.41), were all independently associated with having postnatal check-ups. Similarly, maternal age, education, parity, wealth, sufficiency of advice and place of delivery were associated with having delivery assisted by a skilled attendant. The utilization of postnatal services is still very low in Nepal. Public health interventions are needed to increase the utilization of postnatal care as well as delivery assisted by skilled attendants. Such interventions should target poor women, the less educated and those in rural areas in Nepal.

  13. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to te...

  14. Postnatal epigenetic modification of glucocorticoid receptor gene in preterm infants: a prospective cohort study

    PubMed Central

    Kantake, Masato; Yoshitake, Hiroshi; Ishikawa, Hitoshi; Araki, Yoshihiko; Shimizu, Toshiaki

    2014-01-01

    Objective To examine the environmental effects on cytosine methylation of preterm infant's DNA, because early life experiences are considered to influence the physiological and mental health of an individual through epigenetic modification of DNA. Design A prospective cohort study, comparison of epigenetic differences in the glucocorticoid receptor (GR) gene between healthy term and preterm infants. Setting Neonatal Intensive Care Unit in a Japanese University Hospital. Participants A cohort of 40 (20 term and 20 preterm) infants was recruited on the day of birth, and peripheral blood was obtained from each infant at birth and on postnatal day 4. Main outcome measures The methylation rates in the 1-F promoter region of the GR gene using the Mquant method. Results The methylation rate increased significantly between postnatal days 0 and 4 in preterm infants but remained stable in term infants. Thus, the methylation rate was significantly higher in preterm than in term infants at postnatal day 4. Several perinatal parameters were significantly correlated with this change in the methylation rate. Logistic regression analysis revealed that methylation rates at postnatal day 4 predicted the occurrence of later complications that required glucocorticoid administration during the neonatal period. No gene polymorphism was detected within the GR promoter region analysed. Conclusions Although further large-scale studies are needed to detect the environmental factors that explain the difference in epigenetic modification among infants after birth, our data show that the postnatal environment influences epigenetic programming of GR expression through methylation of the GR gene promoter in premature infants, which may result in relative glucocorticoid insufficiency during the postnatal period. PMID:25023132

  15. Congenital lung lesions: Postnatal management and outcome.

    PubMed

    Parikh, Dakshesh H; Rasiah, Shree Vishna

    2015-08-01

    Antenatal diagnosis of lung lesion has become more accurate resulting in dilemma and controversies of its antenatal and postnatal management. Majority of antenatally diagnosed congenital lung lesions are asymptomatic in the neonatal age group. Large lung lesions cause respiratory compromise and inevitably require urgent investigations and surgery. The congenital lung lesion presenting with hydrops requires careful postnatal management of lung hypoplasia and persistent pulmonary hypertension. Preoperative stabilization with gentle ventilation with permissive hypercapnia and delayed surgery similar to congenital diaphragmatic hernia management has been shown to result in good outcome. The diagnostic investigations and surgical management of the asymptomatic lung lesions remain controversial. Postnatal management and outcome of congenital cystic lung lesions are discussed. PMID:26051048

  16. Postnatal care from an international perspective.

    PubMed

    Steinhauer, Suyai

    2016-01-01

    The postnatal period, defined as beginning with birth and ending after six weeks, is a time of major adaptation at all levels physically, emotionally, socially and psychologically. In the United Kingdom (UK), we put a lot of emphasis on birth preparation and how to look after yourself optimally before the birth, but once the new baby has arrived there is little support or emphasis on self-care. The focus after childbirth is primarily on the baby, with not much thought given to the mother, who is usually discharged from midwifery care on day 10, and whose partner is often back at work after a week or two. In other cultures there is much more emphasis on caring for new mothers, and this article will explore some of the different attitudes and approaches to postnatal care around the world, exploring the postnatal period from an international perspective.

  17. Postnatal care from an international perspective.

    PubMed

    Steinhauer, Suyai

    2016-01-01

    The postnatal period, defined as beginning with birth and ending after six weeks, is a time of major adaptation at all levels physically, emotionally, socially and psychologically. In the United Kingdom (UK), we put a lot of emphasis on birth preparation and how to look after yourself optimally before the birth, but once the new baby has arrived there is little support or emphasis on self-care. The focus after childbirth is primarily on the baby, with not much thought given to the mother, who is usually discharged from midwifery care on day 10, and whose partner is often back at work after a week or two. In other cultures there is much more emphasis on caring for new mothers, and this article will explore some of the different attitudes and approaches to postnatal care around the world, exploring the postnatal period from an international perspective. PMID:27652442

  18. Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal

    PubMed Central

    Badawi, Ahmed H; Kiptoo, Paul; Siahaan, Teruna J

    2015-01-01

    Most of the current therapies used in the treatment of multiple sclerosis (MS) are either ineffective or have adverse side effects. As such, there is a need to develop better therapies that specifically target myelin-specific aberrant immune cells involved in CNS inflammation without compromising the general immune system. In the present study, we developed a new bifunctional peptide inhibitor (BPI) that is effective and specific. Our BPI (PLP-B7AP) is composed of an antigenic peptide from myelin proteolipid protein (PLP139–151) and a B7 antisense peptide (B7AP) derived from CD28 receptor. The main hypothesis is that PLP-B7AP simultaneously targets MHC-II and B7-costimulatory molecules on the surface of antigen presenting cells (APC) and possibly alters the differentiation of naïve T cells from inflammatory to regulatory phenotypes. Results showed that PLP-B7AP was very effective in suppressing experimental autoimmune encephalomyelitis (EAE) compared to various controls in a mouse model. PLP-B7AP was effective when administered both before and after disease induction. Secreted cytokines from splenocytes isolated during periods of high disease severity and remission indicated that PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and inhibited the production of pro-inflammatory cytokines. Further, analysis of cortical brain tissue sections showed that PLP-B7AP treated mice had significantly lower demyelination compared to the control group. All these taken together indicate that the T cell receptor (TCR) and the CD28 receptor can be targeted simultaneously to improve efficacy and specificity of potential MS therapeutics. PMID:26140285

  19. Nociceptin and meiosis during spermatogenesis in postnatal testes.

    PubMed

    Eto, Ko

    2015-01-01

    Phosphorylated Rec8, a key component of cohesin, mediates the association and disassociation, "dynamics," of chromosomes occurring in synaptonemal complex formation, crossover recombination, and sister chromatid cohesion during meiosis in germ cells. Yet, the extrinsic factors triggering meiotic chromosome dynamics remained unclear. In postnatal testes, follicle-stimulating hormone (FSH) acts directly on somatic Sertoli cells to activate gene expression via an intracellular signaling pathway composed of cAMP, cAMP-dependent protein kinase (PKA), and cAMP-response element-binding protein (CREB), and promotes germ cell development and spermatogenesis indirectly. Yet, the paracrine factors mediating the FSH effects to germ cells remained elusive. We have shown that nociceptin, known as a neuropeptide, is upregulated by FSH signaling through cAMP/PKA/CREB pathway in Sertoli cells of postnatal murine testes. Chromatin immunoprecipitation from Sertoli cells demonstrated that CREB phosphorylated at Ser133 associates with prepronociceptin gene encoding nociceptin. Analyses with Sertoli cells and testes revealed that both prepronociceptin mRNA and the nociceptin peptide are induced after FSH signaling is activated. In addition, the nociceptin peptide is induced in testes after 9 days post partum following FSH surge. Thus, our findings may identify nociceptin as a novel paracrine mediator of the FSH effects in the regulation of spermatogenesis; however, very little has known about the functional role of nociceptin in spermatogenesis. We have shown that nociceptin induces Rec8 phosphorylation, triggering chromosome dynamics, during meiosis in spermatocytes of postnatal murine testes. The nociceptin receptor Oprl-1 is exclusively expressed in the plasma membrane of testicular germ cells, mostly spermatocytes. Treatment of testes with nociceptin resulted in a rapid phosphorylation of Rec8. Injection of nociceptin into mice stimulated Rec8 phosphorylation and meiotic chromosome

  20. Crystal structures of the PLP- and PMP-bound forms of BtrR, a dual functional aminotransferase involved in butirosin biosynthesis.

    PubMed

    Popovic, Bojana; Tang, Xiao; Chirgadze, Dimitri Y; Huang, Fanglu; Blundell, Tom L; Spencer, Jonathan B

    2006-10-01

    The aminotransferase (BtrR), which is involved in the biosynthesis of butirosin, a 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic produced by Bacillus circulans, catalyses the pyridoxal phosphate (PLP)-dependent transamination reaction both of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and of amino-dideoxy-scyllo-inosose to 2-DOS. The high-resolution crystal structures of the PLP- and PMP-bound forms of BtrR aminotransferase from B. circulans were solved at resolutions of 2.1 A and 1.7 A with R(factor)/R(free) values of 17.4/20.6 and 19.9/21.9, respectively. BtrR has a fold characteristic of the aspartate aminotransferase family, and sequence and structure analysis categorises it as a member of SMAT (secondary metabolite aminotransferases) subfamily. It exists as a homodimer with two active sites per dimer. The active site of the BtrR protomer is located in a cleft between an alpha helical N-terminus, a central alphabetaalpha sandwich domain and an alphabeta C-terminal domain. The structures of the PLP- and PMP-bound enzymes are very similar; however BtrR-PMP lacks the covalent bond to Lys192. Furthermore, the two forms differ in the side-chain conformations of Trp92, Asp163, and Tyr342 that are likely to be important in substrate selectivity and substrate binding. This is the first three-dimensional structure of an enzyme from the butirosin biosynthesis gene cluster.

  1. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats.

    PubMed

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14-21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  2. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    PubMed Central

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  3. Involvement of {gamma}-secretase in postnatal angiogenesis

    SciTech Connect

    Hayashi, Hiroki; Nakagami, Hironori Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.

  4. Involvement of gamma-secretase in postnatal angiogenesis.

    PubMed

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC. PMID:17888873

  5. Coadaptation of prenatal and postnatal maternal effects.

    PubMed

    Lock, Judith E; Smiseth, Per T; Moore, Patricia J; Moore, Allen J

    2007-11-01

    In a wide variety of species, a female's age of first reproduction influences offspring size and survival, suggesting that there exists an optimal timing of reproduction. Mothers in many species also influence offspring size and survival after birth through variation in parental care. We experimentally separated these effects in the burying beetle Nicrophorus vespilloides to test for coadaptation between prenatal and postnatal maternal effects associated with age at first reproduction. Females that reproduced early produced offspring with lower birth weight. The amount of parental care depended on the age of first reproduction of the caretaker, as did the extent of offspring begging. As predicted for a coadaptation of maternal effects, prenatal and postnatal effects were opposite for different-aged mothers, and larval weight gain and survival was greatest when the age of the caretaker and birth mother matched. Thus, prenatal effects intrinsically associated with age of first reproduction can be ameliorated by innate plasticity in postnatal care. A coadaptation of prenatal and postnatal maternal effects may evolve to allow variable timing of the first reproductive attempt. Such a coadaptation might be particularly valuable when females are constrained from reproducing at an optimal age, as, for example, in species that breed on scarce and unpredictable resources.

  6. Postnatal Testosterone Concentrations and Male Social Development

    PubMed Central

    Alexander, Gerianne M.

    2014-01-01

    Converging evidence from over 40 years of behavioral research indicates that higher testicular androgens in prenatal life and at puberty contribute to the masculinization of human behavior. However, the behavioral significance of the transient activation of the hypothalamic–pituitary–gonadal (HPG) axis in early postnatal life remains largely unknown. Although early research on non-human primates indicated that suppression of the postnatal surge in testicular androgens had no measurable effects on the later expression of the male behavioral phenotype, recent research from our laboratory suggests that postnatal testosterone concentrations influence male infant preferences for larger social groups and temperament characteristics associated with the later development of aggression. In later assessment of gender-linked behavior in the second year of life, concentrations of testosterone at 3–4 months of age were unrelated to toy choices and activity levels during toy play. However, higher concentrations of testosterone predicted less vocalization in toddlers and higher parental ratings on an established screening measure for autism spectrum disorder. These findings suggest a role of the transient activation of the HPG axis in the development of typical and atypical male social relations and suggest that it may be useful in future research on the exaggerated rise in testosterone secretion in preterm infants or exposure to hormone disruptors in early postnatal life to include assessment of gender-relevant behavioral outcomes, including childhood disorders with sex-biased prevalence rates. PMID:24600437

  7. Post-natal imprinting: evidence from marsupials

    PubMed Central

    Stringer, J M; Pask, A J; Shaw, G; Renfree, M B

    2014-01-01

    Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally. PMID:24595366

  8. Postnatal testosterone concentrations and male social development.

    PubMed

    Alexander, Gerianne M

    2014-01-01

    Converging evidence from over 40 years of behavioral research indicates that higher testicular androgens in prenatal life and at puberty contribute to the masculinization of human behavior. However, the behavioral significance of the transient activation of the hypothalamic-pituitary-gonadal (HPG) axis in early postnatal life remains largely unknown. Although early research on non-human primates indicated that suppression of the postnatal surge in testicular androgens had no measurable effects on the later expression of the male behavioral phenotype, recent research from our laboratory suggests that postnatal testosterone concentrations influence male infant preferences for larger social groups and temperament characteristics associated with the later development of aggression. In later assessment of gender-linked behavior in the second year of life, concentrations of testosterone at 3-4 months of age were unrelated to toy choices and activity levels during toy play. However, higher concentrations of testosterone predicted less vocalization in toddlers and higher parental ratings on an established screening measure for autism spectrum disorder. These findings suggest a role of the transient activation of the HPG axis in the development of typical and atypical male social relations and suggest that it may be useful in future research on the exaggerated rise in testosterone secretion in preterm infants or exposure to hormone disruptors in early postnatal life to include assessment of gender-relevant behavioral outcomes, including childhood disorders with sex-biased prevalence rates.

  9. Radiology of postnatal skeletal development. Pt. 7

    SciTech Connect

    Ogden, J.A.; Phillips, S.B.

    1983-02-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence.

  10. A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle

    PubMed Central

    Berghella, Libera; De Angelis, Luciana; De Buysscher, Tristan; Mortazavi, Ali; Biressi, Stefano; Forcales, Sonia V.; Sirabella, Dario; Cossu, Giulio; Wold, Barbara J.

    2008-01-01

    Myogenin is the dominant transcriptional regulator of embryonic and fetal muscle differentiation and during maturation is profoundly down-regulated. We show that a highly conserved 17-bp DNA cis-acting sequence element located upstream of the myogenin promoter (myogHCE) is essential for postnatal repression of myogenin in transgenic animals. We present multiple lines of evidence supporting the idea that repression is mediated by the Y-box protein MSY-3. Electroporation in vivo shows that myogHCE and MSY-3 are required for postnatal repression. We further show that, in the C2C12 cell culture system, ectopic MSY-3 can repress differentiation, while reduced MSY-3 promotes premature differentiation. MSY-3 binds myogHCE simultaneously with the homeodomain protein Pbx in postnatal innervated muscle. We therefore propose a model in which the myogHCE motif operates as a switch by specifying opposing functions; one that was shown previously is regulated by MyoD and Pbx and it specifies a chromatin opening, gene-activating function at the time myoblasts begin to differentiate; the other includes MYS-3 and Pbx, and it specifies a repression function that operates during and after postnatal muscle maturation in vivo and in myoblasts before they begin to differentiate. PMID:18676817

  11. Effect of addition of esters of fatty acids on the microstructure and properties of sintered Nd-Fe-B magnets produced by PLP

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Gaviko, V. S.; Shchegoleva, N. N.; Golovnia, O. A.; Gorbunova, T. I.; Hadjipanayis, G. C.

    2015-07-01

    High filling density of powders for production of sintered Nd-Fe-B magnets by the pressless process (PLP) impedes magnetic alignment. The latter can be enhanced by reduction of friction forces between powder particles. Thus, increase in the remanence and maximum energy product of the magnets by lubrication of powder particles is studied. Esters of fatty acids have been added in toluene or acetone in the course of grinding of Nd-Fe-B alloy in a vibratory mill. Coated by a thin layer of a lubricant powders have been aligned in pulsed magnetic field. It is shown that the remanence of sintered magnets has been increased by 5-7%. Lubricant concentration should not exceed critical values, which for the lubricants used varied between 2.0 wt% (ethyl butyrate) and 0.3 wt% (ethyl laurate). Otherwise, the complicated removal of lubricant residue leads to reaction of the latter with Nd-rich grain-boundary phase in the course of sintering and results in a sharp decrease in magnetic hysteresis properties. Addition of lubricating additives allows one to produce PLP-magnets with density exceeding 7.5 g/cm3, Br≥14 kG, Hc≥9 kOe and (BH)max≥45 MG Oe.

  12. Postnatal Treatment in Antenatally Diagnosed Meconium Peritonitis.

    PubMed

    Ionescu, S; Andrei, B; Oancea, M; Licsandru, E; Ivanov, M; Marcu, V; Popa-Stanila, R; Mocanu, M

    2015-01-01

    Meconium peritonitis is a rare prenatal disease with an increased rate of morbidity and mortality in the neonatal period. Distinctive features revealed by prenatal and postnatal ultrasoundmay be present: abdominal calcifications, ascites, polyhydramnios, meconium pseudocyst, echogenic mass and dilated bowel or intestinal obstruction. Establishing clear postnatal treatment and prognosis is difficult because of the heterogeneity of the results obtained by ultrasound. The aim of the study is to determine how prenatal diagnosis of meconium peritonitis is associated with perinatal management and further evolution. Clinical results are different depending on the presence of antenatal diagnosis of meconium peritonitis and its form, which can be mild or severe. Surgical treatment and management of meconium peritonitis depend on the clinical presentation of the newborn. Meconium peritonitis diagnosed prenatally differs from that of the newborn, not only concerning the mortality rates but also through reduced morbidity and overall better prognosis.

  13. Metabolic programming in the immediate postnatal life.

    PubMed

    Patel, Mulchand S; Srinivasan, Malathi

    2011-01-01

    The metabolic programming effects of nutritional modifications in the immediate postnatal life are increasingly recognized to independently contribute to the development of metabolic syndrome in later life. Adjustment of litter size in rodents has been used to induce either under- or overnourishment in the immediate postnatal life of the offspring. While undernourishment led to growth retardation in the offspring, overnourishment produced increased body weight gains, hyperinsulinemia and hyperleptinemia. Overnourishment during the suckling period induced several adaptations in the energy circuitry in the hypothalamus of the offspring predisposing them for the onset of obesity later in life. Another approach for a nutritional modification in the immediate postnatal period is the artificial rearing of newborn rat pups on a high-carbohydrate (HC) milk formula without changes in the total calorie availability. Hyperinsulinemia, immediately evident in the HC pups, persisted in the post-weaning period even after withdrawal of the HC milk. Significant alterations in pancreatic islets supported chronic hyperinsulinemia in the HC rats. Alterations in the gene expression of hypothalamic neuropeptides predisposing to hyperphagia were evident during the period of the HC dietary modification. The persistence of these hypothalamic adaptations supported the obese phenotype in adult HC rats. A transgenerational effect gave rise to the development of chronic hyperinsulinemia and adult-onset obesity in the offspring of the HC female rats. Other studies have shown that lactation by a diabetic, obese or malnourished mother resulted in predisposition for the onset of metabolic disorders in the offspring. These observations from animal studies on the metabolic programming effects due to altered nutritional experiences in the immediate postnatal life strongly suggest that altered feeding practices for infants (formula feeding and early introduction of infant foods) could contribute to

  14. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  15. Genetic disorders associated with postnatal microcephaly.

    PubMed

    Seltzer, Laurie E; Paciorkowski, Alex R

    2014-06-01

    Several genetic disorders are characterized by normal head size at birth, followed by deceleration in head growth resulting in postnatal microcephaly. Among these are classic disorders such as Angelman syndrome and MECP2-related disorder (formerly Rett syndrome), as well as more recently described clinical entities associated with mutations in CASK, CDKL5, CREBBP, and EP300 (Rubinstein-Taybi syndrome), FOXG1, SLC9A6 (Christianson syndrome), and TCF4 (Pitt-Hopkins syndrome). These disorders can be identified clinically by phenotyping across multiple neurodevelopmental and neurobehavioral realms, and enough data are available to recognize these postnatal microcephaly disorders as separate diagnostic entities in their own right. A second diagnostic grouping, comprised of Warburg MICRO syndrome, Cockayne syndrome, and Cerebral-oculo-facial skeletal syndrome, share similar features of somatic growth failure, ophthalmologic, and dysmorphologic features. Many postnatal microcephaly syndromes are caused by mutations in genes important in the regulation of gene expression in the developing forebrain and hindbrain, although important synaptic structural genes also play a role. This is an emerging group of disorders with a fascinating combination of brain malformations, specific epilepsies, movement disorders, and other complex neurobehavioral abnormalities. PMID:24839169

  16. Prenatal immunotoxicant exposure and postnatal autoimmune disease.

    PubMed Central

    Holladay, S D

    1999-01-01

    Reports in humans and rodents indicate that immune development may be altered following perinatal exposure to immunotoxic compounds, including chemotherapeutics, corticosteroids, polycyclic hydrocarbons, and polyhalogenated hydrocarbons. Effects from such exposure may be more dramatic or persistent than following exposure during adult life. For example, prenatal exposure to the insecticide chlordane or to the polycyclic aromatic hydrocarbon benzo[(italic)a(/italic)]pyrene produces what appears to be lifelong immunosuppression in mice. Whether prenatal immunotoxicant exposure may predispose the organism to postnatal autoimmune disease remains largely unknown. In this regard, the therapeutic immunosuppressant cyclosporin A (CsA) crosses the placenta poorly. However, lethally irradiated rodents exposed to CsA postsyngeneic bone marrow transplant (i.e., during re-establishment of the immune system) develop T-cell-mediated autoimmune disease, suggesting this drug may produce a fundamental disruption in development of self-tolerance by T cells. The environmental contaminant 2,3,7, 8-tetrachlorodibenzo-(italic)p(/italic)-dioxin (TCDD) crosses the placenta and produces fetal thymic effects (italic)in vivo(/italic) similar to effects of CsA in fetal thymic organ culture, including inhibited thymocyte maturation and reduced expression of thymic major histocompatability complex class II molecules. These observations led to the suggestion that gestational exposure to TCDD may interfere with normal development of self-tolerance. Possibly supporting this hypothesis, when mice predisposed to development of autoimmune disease were treated with TCDD during gestation, postnatal autoimmunity was exacerbated. Similar results have been reported for mice exposed to diethylstilbestrol during development. These reports suggest that prenatal exposure to certain immunotoxicants may play a role in postnatal expression of autoimmunity. PMID:10502532

  17. Postnatal Evaluation and Outcome of Prenatal Hydronephrosis

    PubMed Central

    Sadeghi-Bojd, Simin; Kajbafzadeh, Abdol-Mohammad; Ansari-Moghadam, Alireza; Rashidi, Somaye

    2016-01-01

    Background: Prenatal hydronephrosis (PNH) is dilation in urinary collecting system and is the most frequent neonatal urinary tract abnormality with an incidence of 1% to 5% of all pregnancies. PNH is defined as anteroposterior diameter (APD) of renal pelvis ≥ 4 mm at gestational age (GA) of < 33 weeks and APD ≥ 7 mm at GA of ≥ 33 weeks to 2 months after birth. All patients need to be evaluated after birth by postnatal renal ultrasonography (US). In the vast majority of cases, watchful waiting is the only thing to do; others need medical or surgical therapy. Objectives: There is a direct relationship between APD of renal pelvis and outcome of PNH. Therefore we were to find the best cutoff point APD of renal pelvis which leads to surgical outcome. Patients and Methods: In this retrospective cohort study we followed 200 patients 1 to 60 days old with diagnosis of PNH based on before or after birth ultrasonography; as a prenatal or postnatal detected, respectively. These patients were referred to the nephrology clinic in Zahedan Iran during 2011 to 2013. The first step of investigation was a postnatal renal US, by the same expert radiologist and classifying the patients into 3 groups; normal, mild/moderate and severe. The second step was to perform voiding cystourethrogram (VCUG) for mild/moderate to severe cases at 4 - 6 weeks of life. Tc-diethylene triamine-pentaacetic acid (DTPA) was the last step and for those with normal VCUG who did not show improvement in follow-up examination, US to evaluate obstruction and renal function. Finally all patients with mild/moderate to severe PNH received conservative therapy and surgery was preserved only for progressive cases, obstruction or renal function ≤35%. All patients’ data and radiologic information was recorded in separate data forms, and then analyzed by SPSS (version 22). Results: 200 screened PNH patients with male to female ratio 3.5:1 underwent first postnatal control US, of whom 65% had normal, 18% mild

  18. Innovation:CBT-based support groups for postnatal depression.

    PubMed

    Alexander, Pat

    Postnatal depression can have serious implications for mother/child bonding and damage relationships between parents. Approaches to treat it need to overcome barriers that have led to high attrition in some group or clinic-based postnatal depression treatment studies. This retrospective evaluation explored the benefits of offering postnatally depressed mothers group support based on cognitive behavioural therapy. It helped to improve women's self-esteem and self-worth and to make them feel safe and supported.

  19. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature.

    PubMed

    Sabine, Amélie; Bovay, Esther; Demir, Cansaran Saygili; Kimura, Wataru; Jaquet, Muriel; Agalarov, Yan; Zangger, Nadine; Scallan, Joshua P; Graber, Werner; Gulpinar, Elgin; Kwak, Brenda R; Mäkinen, Taija; Martinez-Corral, Inés; Ortega, Sagrario; Delorenzi, Mauro; Kiefer, Friedemann; Davis, Michael J; Djonov, Valentin; Miura, Naoyuki; Petrova, Tatiana V

    2015-10-01

    Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.

  20. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature

    PubMed Central

    Sabine, Amélie; Bovay, Esther; Demir, Cansaran Saygili; Kimura, Wataru; Jaquet, Muriel; Agalarov, Yan; Zangger, Nadine; Scallan, Joshua P.; Graber, Werner; Gulpinar, Elgin; Kwak, Brenda R.; Mäkinen, Taija; Martinez-Corral, Inés; Ortega, Sagrario; Delorenzi, Mauro; Kiefer, Friedemann; Davis, Michael J.; Djonov, Valentin; Miura, Naoyuki; Petrova, Tatiana V.

    2015-01-01

    Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease. PMID:26389677

  1. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  2. Fetal and postnatal ovine mesenteric vascular reactivity

    PubMed Central

    Nair, Jayasree; Gugino, Sylvia F.; Nielsen, Lori C.; Caty, Michael G.; Lakshminrusimha, Satyan

    2016-01-01

    BACKGROUND Intestinal circulation and mesenteric arterial (MA) reactivity may play a role in preparing the fetus for enteral nutrition. We hypothesized that MA vasoreactivity changes with gestation and vasodilator pathways predominate in the postnatal period. METHODS Small distal MA rings (0.5-mm diameter) were isolated from fetal (116-d, 128-d, 134-d, and 141-d gestation, term ~ 147 d) and postnatal lambs. Vasoreactivity was evaluated using vasoconstrictors (norepinephrine (NE) after pretreatment with propranolol and endothelin-1(ET-1)) and vasodilators (NO donors A23187 and s-nitrosopenicillamine (SNAP)). Protein and mRNA assays for receptors and enzymes (endothelin receptor A, alpha-adrenergic receptor 1A (ADRA1A), endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), and phosphodiesterase5 (PDE5)) were performed in mesenteric arteries. RESULTS MA constriction to NE and ET-1 peaked at 134 d. Relaxation to A23187 and SNAP was maximal after birth. Basal eNOS activity was low at 134 d. ADRA1A mRNA and protein increasedsignificantlyat134danddecreasedpostnatally.sGC and PDE5 protein increased from 134 to 141 d. CONCLUSION Mesenteric vasoconstriction predominates in late-preterm gestation (134 d; the postconceptional age with the highest incidence of necrotizing enterocolitis (NEC)) followed by a conversion to vasodilatory influences near the time of full-term birth. Perturbations in this ontogenic mechanism, including preterm birth, may be a risk factor for NEC. PMID:26672733

  3. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    PubMed Central

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  4. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    PubMed

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-09-28

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma.

  5. Individual and Area Level Factors Associated with Prenatal, Delivery, and Postnatal Care in Pakistan.

    PubMed

    Budhwani, Henna; Hearld, Kristine Ria; Harbison, Hanne

    2015-10-01

    This research examines individual and area level factors associated with maternal health care utilization in Pakistan. The 2012-2013 Pakistan Demographic and Health Surveys data was used to model five outcomes: prenatal care within the first trimester, four plus prenatal visits, birth attendance by a skilled attendant, birth in a medical facility, and receipt of postnatal care. Less than half of births were to mothers receiving prenatal care in the first trimester, and approximately 57 % had trained personnel at delivery. Over half were born to mothers who received postnatal care. Evidence was found to support the positive effect of individual level variables, education and wealth, on the utilization of maternal health care across all five measures. Although, this study did not find unilateral differences between women residing in rural and urban settings, rural women were found to have lower odds of utilizing prenatal services as compared to mothers in urban environments. Additionally, women who cited distance as a barrier, had lower odds of receiving postnatal health care, but still engaged in prenatal services and often had a skilled attendant present at delivery. The odds of utilizing prenatal care increased when women resided in an area where prenatal utilization was high, and this variability was found across measures across provinces. The results found in this paper highlight the uneven progress made around improving prenatal, delivery, and postnatal care in Pakistan; disparities persist which may be attributed to factors both at the individual and community level, but may be addressed through a consorted effort to change national policy around women's health which should include the promotion of evidence based interventions such as incentivizing health care workers, promoting girls' education, and improving transportation options for pregnant women and recent mothers with the intent of ultimately lowering the Maternal Mortality Rate as recommended in the U

  6. [Effect of ladasten on antenatal and postnatal development].

    PubMed

    Bugaeva, L I; Denisova, T D; Spasov, A A

    2012-01-01

    Positive effects of ladasten on both antenatal and postnatal development have been established in experiments on pregnant female rats. Under the action of this drug, the number of resorption events decreases and process of antenatal development of fetuses is activated. In the postnatal period, increased weight gain and accelerated physical development has been observed in the progeny of rats treated with ladasten. PMID:22702107

  7. Postnatal Depression. A Review. EUR/HFA Target 8.

    ERIC Educational Resources Information Center

    World Health Organization, Copenhagen (Denmark). Regional Office for Europe.

    This document contains three reports on postnatal depression. The first, "The Maternity Blues," by Flemming Warborg Larsen, presents a literature review on the topic. It concludes that most women look back at the "blues" as an episode that was brief, unpleasant, and difficult to explain. The second report, "Postnatal Depressions," by Lene Lier,…

  8. Reduced response of splenocytes after mitogen-stimulation in the prion protein (PrP) gene-deficient mouse: PrPLP/Doppel production and cerebral degeneration

    SciTech Connect

    Kim, Chi-Kyeong; Hirose, Yuko; Sakudo, Akikazu; Takeyama, Natsumi; Kang, Chung-Boo; Taniuchi, Yojiro; Matsumoto, Yoshitsugu; Itohara, Shigeyoshi; Sakaguchi, Suehiro; Onodera, Takashi . E-mail: aonoder@mail.ecc.u-tokyo.ac.jp

    2007-06-29

    Splenocytes of wild-type (Prnp {sup +/+}) and prion protein gene-deficient (Prnp {sup -/-}) mice were treated with various activation stimuli such as T cell mitogen concanavalin A (ConA), phorbol 12-myristate 13-acetate (PMA) + ionomycin (Io), or B cell mitogen lipopolysaccharide (LPS). Cellular prion protein (PrP{sup C}) expression was enhanced following ConA stimulation, but not PMA + Io or LPS in Prnp {sup +/+} splenocytes. Rikn Prnp {sup -/-} splenocytes elicited lower cell proliferations than Prnp {sup +/+} or Zrch I Prnp {sup -/-} splenocytes after LPS stimulation and showed sporadic nerve cells in the cerebral cortex and deeper structure. Around the degenerated nerve cells, mild vacuolation in the neuropil was observed. This neural alteration correlated well to the suppressed response of B cells in the spleen. The finding that discrete lesions within the central nervous systems induced marked modulation of immune function probably indicates the existence of a delicately balanced neural-endocrine network by PrP{sup C} and PrPLP/Doppel.

  9. Spatial and Age-Dependent Hair Cell Generation in the Postnatal Mammalian Utricle.

    PubMed

    Gao, Zhen; Kelly, Michael C; Yu, Dehong; Wu, Hao; Lin, Xi; Chi, Fang-lu; Chen, Ping

    2016-04-01

    Loss of vestibular hair cells is a common cause of balance disorders. Current treatment options for bilateral vestibular dysfunction are limited. During development, atonal homolog 1 (Atoh1) is sufficient and necessary for the formation of hair cells and provides a promising gene target to induce hair cell generation in the mammals. In this study, we used a transgenic mouse line to test the age and cell type specificity of hair cell induction in the postnatal utricle in mice. We found that forced Atoh1 expression in vivo can induce hair cell formation in the utricle from postnatal days 1 to 21, while the efficacy of hair cell induction is progressively reduced as the animals become older. In the utricle, the induction of hair cells occurs both within the sensory region and in cells in the transitional epithelium next to the sensory region. Within the sensory epithelium, the central region, known as the striola, is most subjective to the induction of hair cell formation. Furthermore, forced Atoh1 expression can promote proliferation in an age-dependent manner that mirrors the progressively reduced efficacy of hair cell induction in the postnatal utricle. These results suggest that targeting both cell proliferation and Atoh1 in the utricle striolar region may be explored to induce hair cell regeneration in mammals. The study also demonstrates the usefulness of the animal model that provides an in vivo Atoh1 induction model for vestibular regeneration studies.

  10. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications.

    PubMed

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michele; Alfano, Christian

    2016-01-27

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.

  11. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications

    PubMed Central

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michèle; Alfano, Christian

    2016-01-01

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. DOI: http://dx.doi.org/10.7554/eLife.09531.001 PMID:26814051

  12. A review of longitudinal studies on antenatal and postnatal depression.

    PubMed

    Underwood, Lisa; Waldie, Karen; D'Souza, Stephanie; Peterson, Elizabeth R; Morton, Susan

    2016-10-01

    Antenatal depression is a known risk factor for postnatal depression; both are common disorders associated with negative impacts on child development. Few studies have followed up women from pregnancy and through the postnatal period to explore how rates of depression change. This review evaluates recent evidence on depression during pregnancy and after childbirth. A search of Embase, PsychINFO, MEDLINE and Cochrane Reviews was carried out to identify longitudinal studies on antenatal and postnatal depression. Studies that measured depression during pregnancy and up to 1 year after childbirth were evaluated against a set of criteria (e.g. less than 50 % attrition). Of the initial 523 studies identified, 16 studies met the final inclusion criteria with a total of 35,419 women. The average rate of antenatal depression across these studies was 17 and 13 % postnatal depression. The longitudinal nature of the studies revealed that on average 39 % of those who experienced antenatal depression went on to have postnatal depression. Similarly, on average, 47 % of those with postnatal depression had also experienced antenatal depression. On average, almost 7 % of women reported significant depressive symptoms in pregnancy that persisted after childbirth. The review provided evidence that rates of depression tend to be higher during pregnancy than in the first year following childbirth. Furthermore, the longitudinal data show that there is much movement between the groups categorised as depressed or not depressed. There is evidence that postnatal depression is often a continuation of existing antenatal depression.

  13. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects.

    PubMed

    Sharma, Deepak; Shastri, Sweta; Sharma, Pradeep

    2016-01-01

    Intrauterine growth restriction (IUGR), a condition that occurs due to various reasons, is an important cause of fetal and neonatal morbidity and mortality. It has been defined as a rate of fetal growth that is less than normal in light of the growth potential of that specific infant. Usually, IUGR and small for gestational age (SGA) are used interchangeably in literature, even though there exist minute differences between them. SGA has been defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age. These infants have many acute neonatal problems that include perinatal asphyxia, hypothermia, hypoglycemia, and polycythemia. The likely long-term complications that are prone to develop when IUGR infants grow up includes growth retardation, major and subtle neurodevelopmental handicaps, and developmental origin of health and disease. In this review, we have covered various antenatal and postnatal aspects of IUGR. PMID:27441006

  14. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects

    PubMed Central

    Sharma, Deepak; Shastri, Sweta; Sharma, Pradeep

    2016-01-01

    Intrauterine growth restriction (IUGR), a condition that occurs due to various reasons, is an important cause of fetal and neonatal morbidity and mortality. It has been defined as a rate of fetal growth that is less than normal in light of the growth potential of that specific infant. Usually, IUGR and small for gestational age (SGA) are used interchangeably in literature, even though there exist minute differences between them. SGA has been defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age. These infants have many acute neonatal problems that include perinatal asphyxia, hypothermia, hypoglycemia, and polycythemia. The likely long-term complications that are prone to develop when IUGR infants grow up includes growth retardation, major and subtle neurodevelopmental handicaps, and developmental origin of health and disease. In this review, we have covered various antenatal and postnatal aspects of IUGR. PMID:27441006

  15. Risk factors for antenatal depression, postnatal depression and parenting stress

    PubMed Central

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-01-01

    Background Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Methods Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program [1]. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26–32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10–12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Results Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors

  16. Postnatal testosterone levels and temperament in early infancy.

    PubMed

    Alexander, Gerianne M; Saenz, Janet

    2011-12-01

    Recent research showing associations between behavior and postnatal testosterone levels in male infants has suggested that the transient activation of the hypothalamic-pituitary-gonadal axis in early infancy may influence the expression of gender phenotypes in later development (i.e., the postnatal hormone hypothesis). As a further test of the relationship between postnatal hormones and behavior in infancy, we measured digit ratios and salivary testosterone in 76 male and female infants (3-4 months of age) and parents completed the Infant Behavior Questionnaire-Revised, a well-established measure of temperament in the first year of life. Consistent with our earlier findings, there were no significant sex differences in salivary testosterone levels and testosterone levels were unrelated to measures of behavior in female infants. However, in male infants, higher androgen levels predicted greater Negative Affectivity. Further examination of the four scales contributing to the measure of Negative Affectivity showed testosterone levels were a significant predictor of scores on the Distress to Limitations scale, but not of scores on Fear, Sadness, or Reactivity scales. This sex-specific association between salivary testosterone and behavior in infants is consistent with animal research showing higher prenatal androgens associated with typical male development lower the threshold of sensitivity to endogenous testosterone in postnatal life. In sum, these data provide additional support for the postnatal hormone hypothesis and suggest postnatal testosterone levels may influence the development of emotional regulation in male infants.

  17. Postnatal care: a cross-cultural and historical perspective.

    PubMed

    Eberhard-Gran, Malin; Garthus-Niegel, Susan; Garthus-Niegel, Kristian; Eskild, Anne

    2010-12-01

    Childbirth and the immediate postpartum period represent a major transition in a woman's life. This period is considered a vulnerable time for the mother and child in most societies, and rituals for this transition are common. In this study, we present some examples of postpartum customs in a cross-cultural and historical perspective. Also, we present the current knowledge on the possible impact of postnatal care on mental health. Systematic literature searches were performed in Medline, PsycINFO, and the Science Citation Index Expanded (ISI) for the time period 1966 through May 2010. Reference lists in books on pregnancy and childbirth from the University Library in Oslo were used to obtain additional information. We found that the postnatal period seems to be universally defined as 40 days. Most cultures have special postnatal customs, including special diet, isolation, rest, and assistance for the mother. The uniformity of customs across different cultures is striking. However, many postnatal customs that were common before 1950 are no longer existent. The focus on rest and assistance for the mother after delivery has gradually decreased. Studies of associations of postnatal care and mental health in the mother are limited and show inconsistent results. More knowledge is needed on postnatal care and mental health.

  18. Current Topics in Postnatal Behavioral Testing.

    PubMed

    Henck, Judith W; Elayan, Ikram; Vorhees, Charles; Fisher, J Edward; Morford, LaRonda L

    2016-09-01

    The study of developmental neurotoxicity (DNT) continues to be an important component of safety evaluation of candidate therapeutic agents and of industrial and environmental chemicals. Developmental neurotoxicity is considered to be an adverse change in the central and/or peripheral nervous system during development of an organism and has been primarily evaluated by studying functional outcomes, such as changes in behavior, neuropathology, neurochemistry, and/or neurophysiology. Neurobehavioral evaluations are a component of a wide range of toxicology studies in laboratory animal models, whereas neurochemistry and neurophysiology are less commonly employed. Although the primary focus of this article is on neurobehavioral evaluation in pre- and postnatal development and juvenile toxicology studies used in pharmaceutical development, concepts may also apply to adult nonclinical safety studies and Environmental Protection Agency/chemical assessments. This article summarizes the proceedings of a symposium held during the 2015 American College of Toxicology annual meeting and includes a discussion of the current status of DNT testing as well as potential issues and recommendations. Topics include the regulatory context for DNT testing; study design and interpretation; behavioral test selection, including a comparison of core learning and memory systems; age of testing; repeated testing of the same animals; use of alternative animal models; impact of findings; and extrapolation of animal results to humans. Integration of the regulatory experience and scientific concepts presented during this symposium, as well as from subsequent discussion and input, provides a synopsis of the current state of DNT testing in safety assessment, as well as a potential roadmap for future advancement.

  19. Postnatal ontogenesis of molecular clock in mouse striatum.

    PubMed

    Cai, Yanning; Liu, Shu; Li, Ning; Xu, Shengli; Zhang, Yanli; Chan, Piu

    2009-04-01

    Striatum is an important brain area whose function is related to motor, emotion and motivation. Interestingly, biological and physiological circadian rhythms have been found in the striatum extensively, suggesting molecular clock machinery works efficiently therein. However, the striatal expression profiles of clock genes have not been characterized systematically. In addition, little is known about when the expression rhythms start during postnatal ontogenesis. In the present study, 24 h mRNA oscillations of 6 principle clock genes (Bmal1, Clock, Npas2, Cry1, Per1 and Rev-erb alpha) were examined in mouse striatum, at early postnatal stage (postnatal day 3), pre-weaning stage (postnatal day 14) and in adult (postnatal day 60). At P3, no daily oscillation was found for all clock genes. At P14, a significant time effect was identified only for Rev-erb alpha and Npas2. At P60, the daily oscillations of these clock genes were at least borderline significant, with peak time at Circadian time (CT) 01 for Bmal1, Clock, Npas2 and Cry1; at CT 13 for Per1; and at CT 07 for Rev-erb alpha. In addition, the overall mean mRNA levels of these clock genes also underwent a dynamic change postnatally. For Bmal1, Clock, Npas2, Per1 and Rev-erb alpha, the expression level increased throughout the postnatal ontogenesis from P3, P14 to P60. For Cry1, however, the abundance at P3 and P60 were similar while that at P14 was much lower. In conclusion, the striatal molecular clock machinery, although works efficiently in adult, develops gradually after birth in mice.

  20. Irx3 is required for postnatal maturation of the mouse ventricular conduction system

    PubMed Central

    Kim, Kyoung-Han; Rosen, Anna; Hussein, Samer M. I.; Puviindran, Vijitha; Korogyi, Adam S.; Chiarello, Carmelina; Nagy, Andras; Hui, Chi-chung; Backx, Peter H.

    2016-01-01

    The ventricular conduction system (VCS) orchestrates the harmonious contraction in every heartbeat. Defects in the VCS are often associated with life-threatening arrhythmias and also promote adverse remodeling in heart disease. We have previously established that the Irx3 homeobox gene regulates rapid electrical propagation in the VCS by modulating the transcription of gap junction proteins Cx40 and Cx43. However, it is unknown whether other factors contribute to the conduction defects observed in Irx3 knockout (Irx3−/−) mice. In this study, we show that during the early postnatal period, Irx3−/− mice develop morphological defects in the VCS which are temporally dissociated from changes in gap junction expression. These morphological defects were accompanied with progressive changes in the cardiac electrocardiogram including right bundle branch block. Hypoplastic VCS was not associated with increased apoptosis of VCS cardiomyocytes but with a lack of recruitment and maturation of ventricular cardiomyocytes into the VCS. Computational analysis followed by functional verification revealed that Irx3 promotes VCS-enriched transcripts targeted by Nkx2.5 and/or Tbx5. Altogether, these results indicate that, in addition to ensuring the appropriate expression of gap junctional channels in the VCS, Irx3 is necessary for the postnatal maturation of the VCS, possibly via its interactions with Tbx5 and Nkx2.5. PMID:26786475

  1. Post-natal depression: the relevance of sociological approaches.

    PubMed

    Thurtle, V

    1995-09-01

    Post-natal depression is much discussed yet definitions and approaches are not homogenous, neither in terms of the cause of post-partum mental ill health, its treatment or how further research in the area should proceed. This paper seeks to examine post-natal 'upsets' and to consider the different explanations that have been and could be made of post-partum mental ill health. The paper reviews the dominant biomedical and psychological approaches, evaluating their ability to explain post-natal mental illness. The writer believes biological and psychological approaches are in the ascendance but seeks to demonstrate that they do not present a full picture. Sociological approaches drawing upon stress, labelling and feminist models are examined, exploring new ways of looking at post-natal illness. The paper concludes that biological and psychological approaches do not provide complete explanations and a multidisciplinary approach is needed. Most significantly the woman's own perception of post-natal ill health is largely absent from the literature. The need for an approach using ethnographic methods is highlighted. PMID:7499607

  2. A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: a randomised, double-blind, placebo-controlled proof-of-concept clinical trial

    PubMed Central

    Pantzaris, Marios C; Loukaides, George N; Ntzani, Evangelia E; Patrikios, Ioannis S

    2013-01-01

    Objective To assess whether three novel interventions, formulated based on a systems medicine therapeutic concept, reduced disease activity in patients with relapsing–remitting multiple sclerosis (MS) who were either treated or not with disease-modifying treatment. Design A 30-month randomised, double-blind, placebo-controlled, parallel design, phase II proof-of-concept clinical study. Settings Cyprus Institute of Neurology and Genetics. Participants 80 participants were randomised into four groups of 20 each. A total of 41 (51%) patients completed the 30-month trial. The eligibility criteria were an age of 18–65; a diagnosis of relapsing–remitting MS according to the McDonald criteria; a score of 0.0–5.5 on the Expanded Disability Status Scale (EDSS); MRI showing lesions consistent with MS; at least one documented clinical relapse and either receiving or not a disease-modifying treatment within the 24-month period before enrolment in the study. Patients were excluded because of a recent (<30 days) relapse, prior immunosuppressant or monoclonal antibody therapy, pregnancy or nursing, other severe disease compromising organ function, progressive MS, history of recent drug or alcohol abuse, use of any additional food supplements, vitamins or any form of polyunsaturated fatty acids, and a history of severe allergic or anaphylactic reactions or known specific nutritional hypersensitivity. Interventions The first intervention (A) was composed of Ω-3 and Ω-6 polyunsaturated fatty acids at 1:1 wt/wt. Specifically, the Ω-3 fatty acids were docosahexaenoic acid and eicosapentaenoic acid at 3:1 wt/wt, and the Ω-6 fatty acids were linoleic acid and γ-linolenic acid at 2:1 wt/wt. This intervention also included minor quantities of other specific polyunsaturated, monounsaturated and saturated fatty acids as well as vitamin A and vitamin E (α-tocopherol). The second intervention (B, PLP10) was a combination of A and γ-tocopherol. The third intervention (C) was

  3. Prenatal stimulation and postnatal testosterone affects infanticide in female rats.

    PubMed

    Miley, W M; Blustein, J; Kennedy, K

    1982-04-01

    Prenatal handling, prenatal stress, and early postnatal exogeneous testosterone were examined in female rats for their effects on rat pup-killing and pup retrieval. During each of the last 5 days of pregnancy. Long-Evans rats received either 3 minutes of handling, 45 minutes of restraint and intense illumination or remained untouched. Half of the offspring of each group received testosterone from Day 1 after birth to Day 30. In adulthood, animals that received handling prenatally and testosterone postnatally killed pups more rapidly than any other group and a larger proportion did so than in the control groups. Animals not manipulated at any time retrieved pups more rapidly and a larger proportion did so than the combined other groups. The study suggests that prenatal handling interacts with testosterone presented immediately postnatally to increase infanticide in female rats. A variety of perinatal manipulations seem to suppress pup retrieval. PMID:7200619

  4. A woman-led approach to improving postnatal care.

    PubMed

    Fryer-Croxall, Claire; Bailey, Elizabeth

    2014-01-01

    As a large NHS teaching trust we see 6,000 women a year who birth with us. Newly appointed as a modern matron, I noted that poor experience on our postnatal ward has always been a key issue in the complaints we receive and from the feedback that our women give to us. The ImPosE (improving postnatal experience) project was launched in December 2013. This brought together members of the multidisciplinary team who were committed to developing our postnatal ward and improving it for our women and their families. We used a quality management approach, putting 'customer' experience at the core, and implemented a varied package of changes as directed by feedback from service users. PMID:25109071

  5. A woman-led approach to improving postnatal care.

    PubMed

    Fryer-Croxall, Claire; Bailey, Elizabeth

    2014-01-01

    As a large NHS teaching trust we see 6,000 women a year who birth with us. Newly appointed as a modern matron, I noted that poor experience on our postnatal ward has always been a key issue in the complaints we receive and from the feedback that our women give to us. The ImPosE (improving postnatal experience) project was launched in December 2013. This brought together members of the multidisciplinary team who were committed to developing our postnatal ward and improving it for our women and their families. We used a quality management approach, putting 'customer' experience at the core, and implemented a varied package of changes as directed by feedback from service users.

  6. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    PubMed

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  7. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus

    PubMed Central

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-01-01

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. PMID:25553616

  8. Congenital salivary gland anlage tumor - in utero and postnatal imaging.

    PubMed

    Radhakrishnan, Rupa; Calvo-Garcia, Maria A; Lim, Foong-Yen; Elluru, Ravindhra G; Koch, Bernadette L

    2015-03-01

    We present a case of an infant with congenital salivary gland anlage tumor, with fetal and postnatal imaging. To the best of our knowledge, this is the first case describing the in utero imaging findings of salivary gland anlage tumor. A fetal MRI was performed secondary to the clinical finding of polyhydramnios, which identified a nasopharyngeal mass. Because findings were concerning for airway obstruction, the fetus was delivered by ex utero intrapartum treatment (EXIT) to airway procedure. A postnatal CT confirmed the findings of the fetal MRI. The lesion was resected when the baby was 4 days old and recovery was uneventful.

  9. Relevé postnatal Rourke 2014

    PubMed Central

    Riverin, Bruno; Li, Patricia; Rourke, Leslie; Leduc, Denis; Rourke, James

    2015-01-01

    Résumé Objectif Mettre à jour la version de 2011 du Relevé postnatal Rourke (RPR) à la suite d’une révision des meilleures données probantes récentes sur le suivi de la santé des nourrissons et des enfants de la naissance jusqu’à l’âge de 5 ans. Qualité des données La qualité des données a été cotée en fonction de l’ancien système de classification du Groupe d’étude canadien sur les soins de santé préventifs (jusqu’à 2006) et l’approche de détermination, d’élaboration et d’évaluation des recommandations (GRADE). Message principal De nouveaux faits scientifiques ont été pris en compte dans les recommandations du RPR 2014 en ce qui a trait au suivi de la croissance, à la nutrition, à l’éducation et aux conseils, au développement, à l’examen physique et à l’immunisation. La croissance est surveillée à l’aide des courbes de l’Organisation mondiale de la Santé qui ont été révisées en 2014. On devrait introduire les aliments solides en fonction de l’état de préparation du nourrisson et ces produits devraient contenir du fer. Il n’est actuellement plus recommandé de retarder l’introduction des allergènes alimentaires courants pour prévenir les allergies. Il faut promouvoir l’utilisation d’une tasse sans couvercle au lieu d’une tasse à bec dès l’âge de 12 mois. La section sur l’éducation et les conseils porte sur les blessures causées par du mobilier instable, ainsi que l’utilisation d’un siège d’auto orienté vers l’arrière jusqu’à 2 ans. Elle comporte aussi de l’information sur les saines habitudes de sommeil, la prévention de la maltraitance des enfants, la vie saine et active et la sédentarité de la famille, de même que l’hygiène buccale. On a aussi ajouté à cette section une nouvelle catégorie consacrée à la santé environnementale pour tenir compte des effets des dangers environnementaux sur la santé des enfants. Le RPR a recours à une

  10. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus.

    PubMed

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T; Corrales, C Eduardo; Most, Sam P; Chai, Renjie; Jan, Taha A; van Amerongen, Renée; Cheng, Alan G; Heller, Stefan

    2013-08-27

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling.

  11. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus

    PubMed Central

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T.; Corrales, C. Eduardo; Most, Sam P.; Chai, Renjie; Jan, Taha A.; van Amerongen, Renée; Cheng, Alan G.; Heller, Stefan

    2013-01-01

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling. PMID:23940359

  12. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages.

    PubMed

    Gibbings, Sophie L; Goyal, Rajni; Desch, A Nicole; Leach, Sonia M; Prabagar, Miglena; Atif, Shaikh M; Bratton, Donna L; Janssen, William; Jakubzick, Claudia V

    2015-09-10

    Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell. PMID:26232173

  13. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages

    PubMed Central

    Gibbings, Sophie L.; Goyal, Rajni; Desch, A. Nicole; Leach, Sonia M.; Prabagar, Miglena; Atif, Shaikh M.; Bratton, Donna L.; Janssen, William

    2015-01-01

    Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell. PMID:26232173

  14. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages.

    PubMed

    Gibbings, Sophie L; Goyal, Rajni; Desch, A Nicole; Leach, Sonia M; Prabagar, Miglena; Atif, Shaikh M; Bratton, Donna L; Janssen, William; Jakubzick, Claudia V

    2015-09-10

    Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell.

  15. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress.

    PubMed

    Bohacek, J; Farinelli, M; Mirante, O; Steiner, G; Gapp, K; Coiret, G; Ebeling, M; Durán-Pacheco, G; Iniguez, A L; Manuella, F; Moreau, J-L; Mansuy, I M

    2015-05-01

    Traumatic stress in early-life increases the risk for cognitive and neuropsychiatric disorders later in life. Such early stress can also impact the progeny even if not directly exposed, likely through epigenetic mechanisms. Here, we report in mice that the offspring of males subjected to postnatal traumatic stress have decreased gene expression in molecular pathways necessary for neuronal signaling, and altered synaptic plasticity when adult. Long-term potentiation is abolished and long-term depression is enhanced in the hippocampus, and these defects are associated with impaired long-term memory in both the exposed fathers and their offspring. The brain-specific gamma isoform of protein kinase C (Prkcc) is one of the affected signaling components in the hippocampus. Its expression is reduced in the offspring, and DNA methylation at its promoter is altered both in the hippocampus of the offspring and the sperm of fathers. These results suggest that postnatal traumatic stress in males can affect brain plasticity and cognitive functions in the adult progeny, possibly through epigenetic alterations in the male germline.

  16. Postnatal accumulation of intermediate filaments in the cat and human primary visual cortex.

    PubMed

    Song, Seoho; Mitchell, Donald E; Crowder, Nathan A; Duffy, Kevin R

    2015-10-01

    A principal characteristic of the mammalian visual system is its high capacity for plasticity in early postnatal development during a time commonly referred to as the critical period. The progressive diminution of plasticity with age is linked to the emergence of a collection of molecules called molecular brakes that reduce plasticity and stabilize neural circuits modified by earlier visual experiences. Manipulation of braking molecules either pharmacologically or though experiential alteration enhances plasticity and promotes recovery from visual impairment. The stability of neural circuitry is increased by intermediate filamentous proteins of the cytoskeleton such as neurofilaments and α-internexin. We examined levels of these intermediate filaments within cat and human primary visual cortex (V1) across development to determine whether they accumulate following a time course consistent with a molecular brake. In both species, levels of intermediate filaments increased considerably throughout early postnatal life beginning shortly after the peak of the critical period, with the highest levels measured in adults. Neurofilament phosphorylation was also observed to increase throughout development, raising the possibility that posttranslational modification by phosphorylation reduces plasticity due to increased protein stability. Finally, an approach to scale developmental time points between species is presented that compares the developmental profiles of intermediate filaments between cats and humans. Although causality between intermediate filaments and plasticity was not directly tested in this study, their accumulation relative to the critical period indicates that they may contribute to the decline in plasticity with age, and may also constrain the success of treatments for visual disorders applied in adulthood.

  17. Implications of Post-Natal Cortical Development for Creativity Research.

    ERIC Educational Resources Information Center

    Gordon, Marjory; Dacey, John

    Man's long period of cerebral growth has important implications for education. The brain goes through major developmental changes after birth, and researchers have suggested that this growth process presents an opportunity for fostering the plasticity of genetically determined connections. Animal studies show that postnatal growth of the brain is…

  18. Postnatal histomorphogenesis of the mandible in the house mouse

    PubMed Central

    Martinez-Maza, Cayetana; Montes, Laëtitia; Lamrous, Hayat; Ventura, Jacint; Cubo, Jorge

    2012-01-01

    The mandible of the house mouse, Mus musculus, is a model structure for the study of the development and evolution of complex morphological systems. This research describes the histomorphogenesis of the house mouse mandible and analyses its biological significance from the first to the eighth postnatal weeks. Histological data allowed us to test a hypothesis concerning modularity in this structure. We measured the bone growth rates by fluorescent labelling and identified the bone tissue types through microscopic analysis of histological cross-sections of the mandible during its postnatal development. The results provide evidence for a modular structure of the mouse mandible, as the alveolar region and the ascending ramus show histological differences throughout ontogeny. The alveolar region increases in length during the first two postnatal weeks by bone growth in the posterior region, while horizontally positioned incisors preclude bone growth in the anterior region. In the fourth postnatal week, growth dynamics shows a critical change. The alveolar region drifts laterally and the ramus becomes more vertical due to the medial growth direction of the coronoid region and the lateral growth of the ventral region of the ramus. Diet changes after weaning are probably involved in these morphological changes. In this way, the development of the masticatory muscles that insert on the ascending ramus may be particularly related to this shape modeling of the house mouse mandible. PMID:22372819

  19. Overexpression of Dlx2 leads to postnatal condyle degradation

    PubMed Central

    Dai, Jiewen; Si, Jiawen; Zhu, Xiaofang; Zhang, Lei; Wu, Dandan; Lu, Jingting; Ouyang, Ningjuan; Wang, Xudong; Shen, Guofang

    2016-01-01

    Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies. PMID:27315306

  20. Time for Me: the arts as therapy in postnatal depression.

    PubMed

    Perry, Catherine; Thurston, Miranda; Osborn, Thelma

    2008-02-01

    Time for Me describes a creative arts group for mothers with children under two years of age, who were experiencing mild to moderate postnatal depression or anxiety. This paper reports on findings from a small-scale qualitative study designed to explore and evaluate the extent to which the brief intervention of eight weekly sessions of creative arts was able to support these women. Traditionally, severe postnatal depression has been treated with medication or cognitive behavioural therapy and in mild to moderate postnatal depression non-directive counselling ('the listening visit'), extra social and emotional support and group psychological therapies have been used. More recently, the use of complementary therapies in the treatment of depression has been explored and it has been reported that the arts can have positive effects on patients with mental health problems; for example, by helping their relationships, providing new ways of expression and by bringing about behavioural changes. There is, however, limited research relating specifically to postnatal depression and complementary therapies. The study found that the Time for Me programme created a relaxed, safe space which was experienced as supportive by women who participated in the sessions. Work in various areas of mental health care suggests that creative arts can be used to complement conventional therapy and that complementary therapies may a valuable adjunct to conventional interventions for women with postnatal depression and anxiety. It would, however, be naïve to imagine that a brief intervention such as Time for Me could be a solution for women with more severe depression but it does offer an area worth exploring in more detail.

  1. Postnatal Depression and Infant Health Practices among High-Risk Women

    ERIC Educational Resources Information Center

    Zajicek-Farber, Michaela L.

    2009-01-01

    Women's postnatal depressive symptoms have been associated with many adverse outcomes for children. The current study examined the frequency association with relative risk between postnatal depressive symptoms and mothers' use of preventative infant health practices. The study used the Edinburgh Postnatal Depression Scale (EPDS) and Parental…

  2. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    SciTech Connect

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  3. Postnatal growth of tracheobronchial airways of Sprague–Dawley rats

    PubMed Central

    Lee, DongYoub; Srirama, Praveen K; Wallis, Christopher; Wexler, Anthony S

    2011-01-01

    Rats are widely used for the studies of pulmonary toxicology in both juveniles and adults. To facilitate such studies, investigators have developed models of lung architecture based on manual or computerized airway measurements. However, postnatal growth of conducting airways of rat lungs has never been reported. In this paper, we present conducting airway architecture statistics for male Sprague–Dawley rat lungs at ages 15, 28, 40, and 81 days by analyzing CT images from airway silicon casts. Detailed branching characteristics and intersubject variance are presented. This study shows that (i) airway growth in diameter and length is not linear with age, (ii) growth of airway length is faster than that of diameter during the 15–81-day postnatal period, and (iii) asymmetry in airway diameter (ratio of major to minor daughter diameter) increases with age. PMID:21534951

  4. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  5. Delayed postnatal neurogenesis in the cerebral cortex of lizards.

    PubMed

    Lopez-Garcia, C; Molowny, A; Garcia-Verdugo, J M; Ferrer, I

    1988-10-01

    Labelled cells were consistently observed in the medial cortex of the lizard brain after i.p. injections of tritiated thymidine (5 microCi/g b. wt.), 1, 7, 18 or 28 days of survival and posterior autoradiographic evaluation. In 3 groups of specimens (postnatal, young and adult) of the species Podarcis hispanica, after one day of survival, labelled cells were located in the ependymal cell layer underlying the medial cortex. After intermediate survival times (7, 18 days), labelled cells were found in 3 zones: the ependymal layer, the inner plexiform layer and the granular layer. After one month of survival, most labelled cells were observed in the granular layer. In the granular layer, these cells were distributed at random. These results show that postnatal neurogenesis in the medial cortex of the lizard occurs following a spatio-temporal pattern reminiscent of that found in the fascia dentata of the mammalian hippocampus.

  6. The maternal microbiota drives early postnatal innate immune development.

    PubMed

    Gomez de Agüero, Mercedes; Ganal-Vonarburg, Stephanie C; Fuhrer, Tobias; Rupp, Sandra; Uchimura, Yasuhiro; Li, Hai; Steinert, Anna; Heikenwalder, Mathias; Hapfelmeier, Siegfried; Sauer, Uwe; McCoy, Kathy D; Macpherson, Andrew J

    2016-03-18

    Postnatal colonization of the body with microbes is assumed to be the main stimulus to postnatal immune development. By transiently colonizing pregnant female mice, we show that the maternal microbiota shapes the immune system of the offspring. Gestational colonization increases intestinal group 3 innate lymphoid cells and F4/80(+)CD11c(+) mononuclear cells in the pups. Maternal colonization reprograms intestinal transcriptional profiles of the offspring, including increased expression of genes encoding epithelial antibacterial peptides and metabolism of microbial molecules. Some of these effects are dependent on maternal antibodies that potentially retain microbial molecules and transmit them to the offspring during pregnancy and in milk. Pups born to mothers transiently colonized in pregnancy are better able to avoid inflammatory responses to microbial molecules and penetration of intestinal microbes. PMID:26989247

  7. Early postnatal stress and neural circuit underlying emotional regulation.

    PubMed

    Matsumoto, Machiko; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-01-01

    Several lines of evidence have shown that traumatic events during the early postnatal period precipitate long-lasting alterations in the functional properties underlying emotional expression that are attributable to the pathophysiology of stress-related disorders. In this chapter, we summarize our recent work elucidating whether early postnatal stress alters the neural circuits underlying emotional regulation. Rats exposed to footshock stress (FS) during the second (2W) or the third (3W) postnatal week were subjected to unconditioned and conditioned stresses at the postadolescent period (10-12 weeks). No differences in locomotor activity or hippocampal synaptic changes were observed between the FS-groups and non-FS controls during exposure to open field stress. Fear-related freezing behavior during exposure to contextual fear conditioning (CFC) was markedly attenuated in the 2W-FS group, presumably due to disturbance of the retention for fear memory, an effect that was attributable to synaptic changes in the hippocampal CA1 field. The 3W-FS group exhibited attenuation of the decreases in freezing behavior induced by CFC extinction trials. The deficits in extinction was abolished by repeated treatment with the partial N-methyl-d-aspartate receptor agonist d-cycloserine, suggesting that aversive stress exposure during the third postnatal week impaired extinction of context-dependent fear memory. Taken together, the altered behavior observed in adulthood is likely the result of neurodevelopmental perturbations elicited by early life stress. Thus, a "critical period" exists for neural circuits involved in emotional expression that may contribute to lifelong susceptibility to stress.

  8. Prenatal and Postnatal Maternal Stress and Wheeze in Urban Children

    PubMed Central

    Mathilda Chiu, Yueh-Hsiu; Coull, Brent A.; Cohen, Sheldon; Wooley, Alana

    2012-01-01

    Rationale: Critical periods for programming early wheeze risk may include pregnancy and infancy. Effects of timing remain poorly understood. Objectives: Associations among prenatal and postnatal maternal stress and children’s wheeze were prospectively examined in 653 families. Effect modification by maternal sensitization was also examined. Methods: Stress was indexed by a maternal negative life events (NLEs) score (range, 0–9) ascertained during pregnancy and between 1 and 2 years postpartum. Mothers reported child wheeze every 3 months up to age 2 years. Relationships of prenatal and postnatal maternal NLEs with repeated wheeze (≥2 episodes) were examined using logistic regression adjusting for covariates. Penalized splines were implemented to explore possible nonlinear associations. We also examined the interaction between prenatal stress and maternal sensitization indexed by allergen-specific IgE from maternal prenatal serum. Measurements and Main Results: Adjusted models considering prenatal or postnatal NLEs alone both showed an exposure-response relationship between higher stress and child wheeze. When considering prenatal and postnatal stress concurrently, only children of mothers with high stress in both periods were significantly more likely to wheeze (adjusted odds ratio, 3.04; 95% confidence interval, 1.67–5.53) than children of mothers reporting low stress in both periods. Associations between high prenatal stress and wheeze were significant in children born to nonsensitized mothers (any IgE <0.35 kU/L) but not in the sensitized group (P for interaction = 0.03). Conclusions: Although children have heightened sensitivity to maternal stress in utero and in early childhood, those with higher stress in both periods were particularly at risk for wheeze. The prenatal maternal immune milieu modified effects. PMID:22582161

  9. Neurotoxicity from prenatal and postnatal exposure to methylmercury

    PubMed Central

    Grandjean, Philippe; Weihe, Pal; Debes, Frodi; Choi, Anna L.; Budtz-Jørgensen, Esben

    2014-01-01

    The extent to which postnatal methylmercury exposure contributes to neurobehavioral delays is uncertain. Confounding may occur because the child's dietary exposure likely correlates with the mother's. This conundrum was examined in the Faroese birth cohort 1 born in 1986–1987. Exposure parameters included mercury concentrations in maternal hair at parturition, cord blood, and child blood and hair at the age-7 clinical examination (N = 923). In regression analyses, the child's current blood-mercury at age 7 (N = 694) showed only weak associations with the neuropsychological test variables, but visuospatial memory revealed a significant negative association. Mutual adjustment caused decreases of the apparent effect of the prenatal exposure. However, such adjustment may lead to underestimations due to the presence of correlated, error-prone exposure variables. In structural equation models, all methylmercury exposure parameters were instead entered into a latent exposure variable that reflected the total methylmercury load. This latent exposure showed significant associations with neurodevelopmental deficits, with prenatal exposure providing the main information. However, postnatal methylmercury exposure appeared to contribute to neurotoxic effects, in particular in regard to visuospatial processing and memory. Thus, addition in the regression analysis of exposure information obtained at a different point in time was not informative and should be avoided. Further studies with better information on exposure profiles are needed to characterize the effects of postnatal methylmercury exposure. PMID:24681285

  10. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  11. Postnatal TLR2 activation impairs learning and memory in adulthood

    PubMed Central

    Madar, Ravit; Rotter, Aviva; Ben-Asher, Hiba Waldman; Mughal, Mohamed R.; Arumugam, Thiruma V.; Wood, WH; Becker, KG; Mattson, Mark P.; Okun, Eitan

    2015-01-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  12. Postnatal growth and age estimation in Scotophilus kuhlii.

    PubMed

    Chen, Shiang-Fan; Huang, Shang-Shang; Lu, Dau-Jye; Shen, Tsung-Jen

    2016-01-01

    Adequate postnatal growth is important for young bats to develop skilled sensory and locomotor abilities, which are highly associated with their survival once independent. This study investigated the postnatal growth and development of Scotophilus kuhlii in captivity. An empirical growth curve was established, and the postnatal growth rate was quantified to derive an age-predictive equation. By further controlling the fostering conditions of twins, the differences in the development patterns between pups that received maternal care or were hand-reared were analyzed to determine whether the latter developed in the same manner as their maternally reared counterparts. Our results indicate that both forearm length and body mass increased rapidly and linearly during the first 4 weeks, after which the growth rate gradually decreased to reach a stable level. The first flight occurred at an average age of 39 days with a mean forearm length and body mass of 92.07% and 70.52% of maternal size, respectively. The developmental pattern of hand-reared pups, although similar to that of their maternally reared twin siblings, displayed a slightly faster growth rate in the 4th and 5th weeks. The heavier body mass of hand-reared pups during the pre-fledging period may cause higher wing loading, potentially influencing the flight performance and survival of the bats once independent. PMID:26600428

  13. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth.

  14. Programming of Mice Circadian Photic Responses by Postnatal Light Environment

    PubMed Central

    Brooks, Elisabeth; Patel, Dhruval; Canal, Maria Mercè

    2014-01-01

    Early life programming has important consequences for future health and wellbeing. A key new aspect is the impact of perinatal light on the circadian system. Postnatal light environment will program circadian behavior, together with cell morphology and clock gene function within the suprachiasmatic nucleus (SCN) of the hypothalamus, the principal circadian clock in mammals. Nevertheless, it is still not clear whether the observed changes reflect a processing of an altered photic input from the retina, rather than an imprinting of the intrinsic molecular clock mechanisms. Here, we addressed the issue by systematically probing the mouse circadian system at various levels. Firstly, we used electroretinography, pupillometry and histology protocols to show that gross retinal function and morphology in the adult are largely independent of postnatal light experiences that modulate circadian photosensitivity. Secondly, we used circadian activity protocols to show that only the animal's behavioral responses to chronic light exposure, but not to constant darkness or the acute responses to a light stimulus depend on postnatal light experience. Thirdly, we used real-time PER2::LUC rhythm recording to show long-term changes in clock gene expression in the SCN, but also heart, lung and spleen. The data showed that perinatal light mainly targets the long-term adaptive responses of the circadian clock to environmental light, rather than the retina or intrinsic clock mechanisms. Finally, we found long-term effects on circadian peripheral clocks, suggesting far-reaching consequences for the animal's overall physiology. PMID:24842115

  15. Postnatal Development of the Mouse Enteric Nervous System.

    PubMed

    Foong, Jaime Pei Pei

    2016-01-01

    Owing to over three decades of research, we now have a good understanding of the genetic and molecular control of enteric nervous system (ENS) development during embryonic and prenatal stages. On the other hand, it has only just become clear that a substantial process of ENS maturation occurs after birth (Hao et al. 2013a). During postnatal stages, in addition to genetic influences, ENS development is also potentially affected by the external environment. Thus it is possible that manipulating certain environmental factors could help prevent or reduce motility disorders. However the genetic and environmental factors that regulate postnatal ENS development remain unknown. Researchers have used a variety of animal models that are easy to manipulate genetically or experimentally, and have short gestational periods, to understand the development of the ENS. Notably, due to the availability of mouse models for several human enteric neuropathies, many studies have used the mature and developing murine ENS as a model. Here, I will discuss recent advances in knowledge about postnatal development of the murine ENS, and highlight future directions for this emerging research field. PMID:27379641

  16. Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1

    PubMed Central

    Pollara, Justin; McGuire, Erin; Fouda, Genevieve G.; Rountree, Wes; Eudailey, Josh; Overman, R. Glenn; Seaton, Kelly E.; Deal, Aaron; Edwards, R. Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie A. E.; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N.; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C.; Jamieson, Denise J.; van der Horst, Charles; Kourtis, Athena P.; Tomaras, Georgia D.; Ferrari, Guido

    2015-01-01

    responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation. PMID:26202232

  17. The Pyridoxal 5′-Phosphate (PLP)-Dependent Enzyme Serine Palmitoyltransferase (SPT): Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations

    PubMed Central

    Beattie, Ashley E.; Gupta, Sita D.; Frankova, Lenka; Harmon, Jeffrey M.; Dunn, Teresa M.; Campopiano, Dominic J.

    2013-01-01

    The pyridoxal 5′-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form. PMID:24175284

  18. The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT): effects of the small subunits and insights from bacterial mimics of human hLCB2a HSAN1 mutations.

    PubMed

    Beattie, Ashley E; Gupta, Sita D; Frankova, Lenka; Kazlauskaite, Agne; Harmon, Jeffrey M; Dunn, Teresa M; Campopiano, Dominic J

    2013-01-01

    The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form. PMID:24175284

  19. The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT): effects of the small subunits and insights from bacterial mimics of human hLCB2a HSAN1 mutations.

    PubMed

    Beattie, Ashley E; Gupta, Sita D; Frankova, Lenka; Kazlauskaite, Agne; Harmon, Jeffrey M; Dunn, Teresa M; Campopiano, Dominic J

    2013-01-01

    The pyridoxal 5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b), and mutations in both hLCB1 (e.g., C133W and C133Y) and hLCB2a (e.g., V359M, G382V, and I504F) have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1), an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT) provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F), and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.

  20. Role of thyroid hormone in postnatal circulatory and metabolic adjustments.

    PubMed Central

    Breall, J A; Rudolph, A M; Heymann, M A

    1984-01-01

    To assess the role of the early postnatal surge in plasma thyroid hormone concentrations on cardiovascular and metabolic adaptations, we measured cardiac output, total oxygen consumption, and plasma triiodothyronine (T3) concentrations in three groups of lambs in the first 6 h after delivery. 15 fetal lambs were prepared at gestational ages of 128-129 d by placing catheters in the brachiocephalic artery, descending aorta, distal inferior vena cava, left atrium, and pulmonary artery so that measurements could be made soon after delivery. They were divided into three groups: Group I comprised five control animals; Group II consisted of five fetuses in which thyroidectomy was performed at surgery at 129 d gestation; and Group III consisted of five animals in which thyroidectomy was performed at term gestation during delivery by caesarian section, prior to severing the umbilical cord. The lambs in Group I exhibited a rapid postnatal rise in T3 concentrations, similar to that described previously, reaching a peak value of about 5 ng/ml. Although the postnatal surge in T3 concentration was arrested in Group II and III animals, Group II had no detectable plasma T3, while the Group III animals had T3 concentrations of about 0.8 ng/ml, which were within the range previously reported for term lamb fetuses. The lambs in group II showed 40-50% lower left ventricular outputs (190 vs. 297 ml/kg per min), systemic blood flows (155 vs. 286 ml/kg per min), and oxygen consumptions (9.8 vs. 20.2 ml/kg per min) as compared with Group I animals over the entire 6-h period. The lambs in Group II also had significantly lower heart rates (131 vs. 192 beats/min) and mean systemic arterial pressures (56 vs. 72 torr). However, there were no significant differences for any of these measurements between the Group III and Group I lambs. The reduction in cardiac output in the Group II animals were reflected in a significantly lower blood flow to the peripheral circulation, but there were no

  1. Effect of fetal undernutrition and postnatal overfeeding on rat adipose tissue and organ growth at early stages of postnatal development.

    PubMed

    Munoz-Valverde, D; Rodríguez-Rodríguez, P; Gutierrez-Arzapalo, P Y; López de Pablo, A L; Carmen González, M; López-Giménez, R; Somoza, B; Arribas, S M

    2015-01-01

    Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sex-dependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming.

  2. The effects of pre- and post-natal nicotine exposure and genetic background on the striatum and behavioral phenotypes in the mouse.

    PubMed

    Balsevich, Georgia; Poon, Anna; Goldowitz, Dan; Wilking, Jennifer A

    2014-06-01

    Maternal tobacco use increases the risk of complications in pregnancy and also the risk of adverse fetal outcomes. Studies have established nicotine as the principal component of tobacco smoke that leads to the majority of negative reproductive outcomes associated with maternal tobacco use. It appears the neuroteratogenicity of nicotine is mediated by complex gene-environment interactions. Genetic background contributes to individual differences in nicotine-related phenotypes. The aim of the current study was to investigate the interaction between pre- and post-natal nicotine exposure and genetic background on the histology of the striatum and behavioral measures using DBA/2J (D2) and C57BL/6J (B6) inbred mice. Alterations in neuronal cell populations, striatal brain volume, and behavior - open field (OF) activity, novel object recognition (NOR), elevated plus maze (EPM), and passive avoidance (PA) - were evaluated on post-natal day (PN) 24 and PN75. Histological data showed that pre- and post-natal nicotine exposure resulted in decreased striatal volume among preadolescent B6 and reduced neuronal number within the striatum of preadolescent B6 mice. Behavioral data showed that pre- and post-natal nicotine exposure promoted hyperactivity in D2 female mice and disrupted NOR and PA memory. Specifically, NOR deficits were significant amongst adult male mice whereas PA deficits were seen across genetic background and sex. These data suggest that nicotine treatment, genetic background, developmental stage, and sex effect striatal morphology can lead to neurobehavioral alterations.

  3. More Active Mums in Stirling (MAMMiS): a physical activity intervention for postnatal women. Study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Many postnatal women are insufficiently physically active in the year after childbirth and could benefit from interventions to increase activity levels. However, there is limited information about the efficacy, feasibility and acceptability of motivational and behavioral interventions promoting postnatal physical activity in the UK. Methods The MAMMiS study is a randomized, controlled trial, conducted within a large National Health Service (NHS) region in Scotland. Up to 76 postnatal women will be recruited to test the impact of two physical activity consultations and a 10-week group pram-walking program on physical activity behavior change. The intervention uses evidence-based motivational and behavioral techniques and will be systematically evaluated using objective measures (accelerometers) at three months, with a maintenance measure taken at a six-month follow-up. Secondary health and well-being measures and psychological mediators of physical activity change are included. Discussion The (MAMMiS study will provide a test of a theoretical and evidence-based physical activity behavior change intervention for postnatal women and provide information to inform future intervention development and testing within this population. Trial registration Current Controlled Trials ISRCTN79011784 PMID:22818406

  4. Postnatal Isoflurane Exposure Induces Cognitive Impairment and Abnormal Histone Acetylation of Glutamatergic Systems in the Hippocampus of Adolescent Rats.

    PubMed

    Liang, Bing; Fang, Jie

    2016-09-01

    Isoflurane can elicit cognitive impairment. However, the pathogenesis in the brain remains inconclusive. The present study investigated the mechanism of glutamate neurotoxicity in adolescent male rats that underwent postnatal isoflurane exposure and the role of sodium butyrate (NaB) in cognitive impairment induced by isoflurane exposure. Seven-day-old rats were exposed to 1.7 % isoflurane for 35 min every day for four consecutive days, and then glutamate neurotoxicity was examined in the hippocampus. Morris water maze analysis showed cognitive impairments in isoflurane-exposed rats. High-performance liquid chromatography found higher hippocampal glutamate concentrations following in vitro and in vivo isoflurane exposure. The percentage of early apoptotic hippocampal neurons was markedly increased after isoflurane exposure. Decreased acetylation and increased HDAC2 activity were observed in the hippocampus of isoflurane-exposed rats and hippocampal neurons. Furthermore, postnatal isoflurane exposure decreased histone acetylation of hippocampal neurons in the promoter regions of GLT-1 and mGLuR1/5, but not mGLuR2/3. Treatment with NaB not only restored the histone acetylation of the GLT-1 and mGLuR1/5 promoter regions and glutamate excitatory neurotoxicity in hippocampal neurons, but also improved cognitive impairment in vivo. Moreover, NaB may be a potential therapeutic drug for cognitive impairment caused by isoflurane exposure. These results suggest that postnatal isoflurane exposure contributes to cognitive impairment via decreasing histone acetylation of glutamatergic systems in the hippocampus of adolescent rats. PMID:27307148

  5. Adverse metabolic phenotype in low-birth-weight lambs and its modification by postnatal nutrition.

    PubMed

    Wallace, Jacqueline M; Milne, John S; Adam, Clare L; Aitken, Raymond P

    2012-02-01

    Both high and low maternal dietary intakes adversely affect fetal nutrient supply in adolescent sheep pregnancies. Aims were: (a) to assess the impact of prenatal nutrition on pregnancy outcome, offspring growth and offspring glucose metabolism and (b) to determine whether the offspring metabolic phenotype could then be altered by modifying postnatal nutrition. Dams carrying a single fetus were offered either an optimal control (C) intake to maintain adiposity throughout pregnancy, undernourished to maintain weight at conception but deplete maternal reserves (UN), or overnourished to promote rapid maternal growth and adiposity (ON). Placental weight and gestation length were reduced in ON dams and lamb birth weights were C>UN>ON (P < 0·001). All offspring were fed ad libitum from weaning to 6 months of age. ON offspring exhibited rapid catch-up growth and had increased fasting glucose and relative glucose intolerance compared with C offspring (P < 0·05). Irrespective of prenatal diet and sex, birth weight correlated negatively with these indices of glucose metabolism. From 7 to 12 months offspring either had continued ad libitum diet (ADLIB; to induce an obesogenic state) or a decreased ration appropriate for normal growth (NORM). At 12 months, the negative relationship between birth weight and indices of glucose metabolism persisted in ADLIB females (for example, fasting glucose, r - 0·632; P < 0·03) but was absent in NORM females and in both male groups. Therefore, low-birth-weight offspring from differentially achieved prenatal malnutrition exhibit an early adverse metabolic phenotype, and this can apparently be ameliorated by postnatal nutrition in females but not in males.

  6. Differential neuronal plasticity in mouse hippocampus associated with various periods of enriched environment during postnatal development.

    PubMed

    Hosseiny, Salma; Pietri, Mariel; Petit-Paitel, Agnès; Zarif, Hadi; Heurteaux, Catherine; Chabry, Joëlle; Guyon, Alice

    2015-11-01

    Enriched environment (EE) is characterized by improved conditions for enhanced exploration, cognitive activity, social interaction and physical exercise. It has been shown that EE positively regulates the remodeling of neural circuits, memory consolidation, long-term changes in synaptic strength and neurogenesis. However, the fine mechanisms by which environment shapes the brain at different postnatal developmental stages and the duration required to induce such changes are still a matter of debate. In EE, large groups of mice were housed in bigger cages and were given toys, nesting materials and other equipment that promote physical activity to provide a stimulating environment. Weaned mice were housed in EE for 4, 6 or 8 weeks and compared with matched control mice that were raised in a standard environment. To investigate the differential effects of EE on immature and mature brains, we also housed young adult mice (8 weeks old) for 4 weeks in EE. We studied the influence of onset and duration of EE housing on the structure and function of hippocampal neurons. We found that: (1) EE enhances neurogenesis in juvenile, but not young adult mice; (2) EE increases the number of synaptic contacts at every stage; (3) long-term potentiation (LTP) and spontaneous and miniature activity at the glutamatergic synapses are affected differently by EE depending on its onset and duration. Our study provides an integrative view of the role of EE during postnatal development in various mechanisms of plasticity in the hippocampus including neurogenesis, synaptic morphology and electrophysiological parameters of synaptic connectivity. This work provides an explanation for discrepancies found in the literature about the effects of EE on LTP and emphasizes the importance of environment on hippocampal plasticity.

  7. Postnatal accumulation of intermediate filaments in the cat and human primary visual cortex.

    PubMed

    Song, Seoho; Mitchell, Donald E; Crowder, Nathan A; Duffy, Kevin R

    2015-10-01

    A principal characteristic of the mammalian visual system is its high capacity for plasticity in early postnatal development during a time commonly referred to as the critical period. The progressive diminution of plasticity with age is linked to the emergence of a collection of molecules called molecular brakes that reduce plasticity and stabilize neural circuits modified by earlier visual experiences. Manipulation of braking molecules either pharmacologically or though experiential alteration enhances plasticity and promotes recovery from visual impairment. The stability of neural circuitry is increased by intermediate filamentous proteins of the cytoskeleton such as neurofilaments and α-internexin. We examined levels of these intermediate filaments within cat and human primary visual cortex (V1) across development to determine whether they accumulate following a time course consistent with a molecular brake. In both species, levels of intermediate filaments increased considerably throughout early postnatal life beginning shortly after the peak of the critical period, with the highest levels measured in adults. Neurofilament phosphorylation was also observed to increase throughout development, raising the possibility that posttranslational modification by phosphorylation reduces plasticity due to increased protein stability. Finally, an approach to scale developmental time points between species is presented that compares the developmental profiles of intermediate filaments between cats and humans. Although causality between intermediate filaments and plasticity was not directly tested in this study, their accumulation relative to the critical period indicates that they may contribute to the decline in plasticity with age, and may also constrain the success of treatments for visual disorders applied in adulthood. PMID:25823892

  8. Essential childbirth and postnatal interventions for improved maternal and neonatal health.

    PubMed

    Salam, Rehana A; Mansoor, Tarab; Mallick, Dania; Lassi, Zohra S; Das, Jai K; Bhutta, Zulfiqar A

    2014-01-01

    Childbirth and the postnatal period, spanning from right after birth to the following several weeks, presents a time in which the number of deaths reported still remain alarmingly high. Worldwide, about 800 women die from pregnancy- or childbirth-related complications daily while almost 75% of neonatal deaths occur within the first seven days of delivery and a vast majority of these occur in the first 24 hours. Unfortunately, this alarming trend of mortality persists, as 287,000 women lost their lives to pregnancy and childbirth related causes in 2010. Almost all of these deaths were preventable and occurred in low-resource settings, pointing towards dearth of adequate facilities in these parts of the world. The main objective of this paper is to review the evidence based childbirth and post natal interventions which have a beneficial impact on maternal and newborn outcomes. It is a compilation of existing, new and updated interventions designed to help physicians and policy makers and enable them to reduce the burden of maternal and neonatal morbidities and mortalities. Interventions during the post natal period that were found to be associated with a decrease in maternal and neonatal morbidity and mortality included: advice and support of family planning, support and promotion of early initiation and continued breastfeeding; thermal care or kangaroo mother care for preterm and/or low birth weight babies; hygienic care of umbilical cord and skin following delivery, training health personnel in basic neonatal resuscitation; and postnatal visits. Adequate delivery of these interventions is likely to bring an unprecedented decrease in the number of deaths reported during childbirth. PMID:25177795

  9. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult

    PubMed Central

    2012-01-01

    Background Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. Results We show that overexpression of the Alzheimer’s-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Conclusions Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer’s disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the

  10. Muscle endothelial-dependent microvascular dysfunction in adulthood due to early postnatal overnutrition.

    PubMed

    Leite, Richard Diego; Kraemer-Aguiar, Luiz Guilherme; Boa, Beatriz Costa da Silva; Cyrino, Fatima Z G A; Nivoit, Pierre; Bouskela, Eliete

    2012-07-01

    The aims of our study were to investigate effects of postnatal overnutrition, obtained by restricting the number of pups per litter, on microcirculatory reactivity, fat depots, its total percentage and lipid profile. Microvascular reactivity was evaluated in the cremaster muscle of 24 hamsters divided into four groups, with 6 animals in each one: normal (NL) and restricted (RL) litter groups, both at 6th and 21st weeks of age. The NL group had 8-9 pups and the RL 3 pups per litter and to avoid the litter effect, only one animal was used per litter. The results have shown that the RL group had higher velocity of weight, body mass and fat gain compared to the NL one at weeks 6 and 21. Significant differences were also observed on urogenital fat depot, total cholesterol and low density lipoprotein between groups. At the lowest concentration of Ach, the RL group showed smaller arteriolar dilatation at the 21st than at the 6th week [5(3-13) vs 19(8-40)%, p<0.01] while the NL one did not show any difference within the group. The highest concentration of Ach at the 21th week pointed to endothelial-dependent microvascular dysfunction in RL compared to NL [3(8-26) vs. 13(8-26)%, p<0.05]. Endothelial-independent microvascular reactivity was similar between groups. Our data suggest that postnatal overnutrition is associated to muscle endothelial-dependent microvascular dysfunction, greater body mass and total percentage of fat and impaired the lipid profile. In conclusion, the imprinting promoted by this experimental model of obesity was able to influence microvascular reactivity later in life.

  11. Differential neuronal plasticity in mouse hippocampus associated with various periods of enriched environment during postnatal development.

    PubMed

    Hosseiny, Salma; Pietri, Mariel; Petit-Paitel, Agnès; Zarif, Hadi; Heurteaux, Catherine; Chabry, Joëlle; Guyon, Alice

    2015-11-01

    Enriched environment (EE) is characterized by improved conditions for enhanced exploration, cognitive activity, social interaction and physical exercise. It has been shown that EE positively regulates the remodeling of neural circuits, memory consolidation, long-term changes in synaptic strength and neurogenesis. However, the fine mechanisms by which environment shapes the brain at different postnatal developmental stages and the duration required to induce such changes are still a matter of debate. In EE, large groups of mice were housed in bigger cages and were given toys, nesting materials and other equipment that promote physical activity to provide a stimulating environment. Weaned mice were housed in EE for 4, 6 or 8 weeks and compared with matched control mice that were raised in a standard environment. To investigate the differential effects of EE on immature and mature brains, we also housed young adult mice (8 weeks old) for 4 weeks in EE. We studied the influence of onset and duration of EE housing on the structure and function of hippocampal neurons. We found that: (1) EE enhances neurogenesis in juvenile, but not young adult mice; (2) EE increases the number of synaptic contacts at every stage; (3) long-term potentiation (LTP) and spontaneous and miniature activity at the glutamatergic synapses are affected differently by EE depending on its onset and duration. Our study provides an integrative view of the role of EE during postnatal development in various mechanisms of plasticity in the hippocampus including neurogenesis, synaptic morphology and electrophysiological parameters of synaptic connectivity. This work provides an explanation for discrepancies found in the literature about the effects of EE on LTP and emphasizes the importance of environment on hippocampal plasticity. PMID:25096287

  12. Essential childbirth and postnatal interventions for improved maternal and neonatal health

    PubMed Central

    2014-01-01

    Childbirth and the postnatal period, spanning from right after birth to the following several weeks, presents a time in which the number of deaths reported still remain alarmingly high. Worldwide, about 800 women die from pregnancy- or childbirth-related complications daily while almost 75% of neonatal deaths occur within the first seven days of delivery and a vast majority of these occur in the first 24 hours. Unfortunately, this alarming trend of mortality persists, as287,000 women lost their lives to pregnancy and childbirth related causes in 2010. Almost all of these deaths were preventable and occurred in low-resource settings, pointing towards dearth of adequate facilities in these parts of the world. The main objective of this paper is to review the evidence based childbirth and post natal interventions which have a beneficial impact on maternal and newborn outcomes. It is a compilation of existing, new and updated interventions designed to help physicians and policy makers and enable them to reduce the burden of maternal and neonatal morbidities and mortalities. Interventions during the post natal period that were found to be associated with a decrease in maternal and neonatal morbidity and mortality included: advice and support of family planning, support and promotion of early initiation and continued breastfeeding; thermal care or kangaroo mother care for preterm and/or low birth weight babies; hygienic care of umbilical cord and skin following delivery, training health personnel in basic neonatal resuscitation; and postnatal visits. Adequate delivery of these interventions is likely to bring an unprecedented decrease in the number of deaths reported during childbirth. PMID:25177795

  13. Coaching to promote professional development in nursing practice.

    PubMed

    Narayanasamy, Aru; Penney, Vivian

    This article presents coaching, which facilitates the highest form of learning, as a potential strategy for promoting professional development in nursing. In doing so, it sets out what coaching is and highlights its benefits in terms of team building, adaptation to changes, career planning and professional development. Having established the rudiments of coaching and identifying its qualities, the article then sets out strategies of coaching using three models: the 3-D Technique Model, The Practice Spiral Model and The Grow Model. Three case histories are presented to explain how these models could be used to implement coaching and personal learning plans (PLP). Directions are provided where training for coaching is available. It is concluded that coaching can be a powerful tool in enhancing nurses' and other health professionals' ability to contribute to the success of healthcare organisations.

  14. Assessment of women's perspectives and experiences of childbirth and postnatal care using Q-methodology.

    PubMed

    Shabila, N P; Ahmed, H M; Yasin, M Y

    2015-10-02

    To complement standard measures of maternity care outcomes, an assessment of women's satisfaction with care is needed. The aim of this study was to elicit the perspectives and experiences of Iraqi women about childbirth and postnatal care services. The study participants were a sample of 37 women of different educational and socioeconomic status who had given birth during the previous 6 months. Q-methodology was used for data collection and analysis. Three distinct viewpoints and experiences of childbirth and postnatal care services were identified: a general perception of poor childbirth and postnatal care with lack of appropriate interpersonal care and support; a high satisfaction and positive experience with childbirth and postnatal care services among the confident and well-supported women; and poor satisfaction with the childbirth and postnatal care services in terms of meeting traditional cultural practices. Needs assessment around providers' skills and attitudes and the wider sociocultural environment of childbirth and postnatal care is necessary in Iraq.

  15. Bacillus subtilis GabR, a protein with DNA-binding and aminotransferase domains, is a PLP-dependent transcriptional regulator.

    PubMed

    Belitsky, Boris R

    2004-07-16

    Bacillus subtilis GabR is a member of a poorly characterized but widespread family of chimeric bacterial proteins that have apparent DNA binding and aminotransferase domains. GabR positively regulates expression of the gabTD operon responsible for utilization of gamma-aminobutyric acid (GABA) and represses the divergently transcribed gabR gene. Purified GabR bound specifically to the DNA region overlapping the -35 region of the gabT promoter and the -10 and +1 regions of the gabR promoter. Two 6 bp direct repeats located at the ends of this region appeared to be essential for GabR binding. In transcription reactions in vitro, GabR alone repressed expression from the gabR promoter but activated expression from the gabT promoter only in the presence of GABA and pyridoxal 5'-phosphate, an essential cofactor of aminotransferases. A similar requirement for pyridoxal 5'-phosphate and GABA for GabR-mediated transcription activation was shown in vivo. In vitro this requirement could be partially satisfied with pyridoxamine 5'-phosphate and succinic semialdehyde, the products of a GABA-dependent aminotransferase half-reaction. We hypothesize that the GabR-catalyzed aminotransferase-like reaction between GABA and pyridoxal 5'-phosphate is essential for GabR action as a transcriptional activator.

  16. Body composition in human infants at birth and postnatally.

    PubMed

    Koo, W W; Walters, J C; Hockman, E M

    2000-09-01

    The predictive values of anthropometric measurements, race, gender, gestational and postnatal ages, and season at birth and at study for the total body dual energy X-ray absorptiometry (DXA)-derived lean mass (LM), fat mass (FM) and fat mass as a percentage of body weight (%FM) were determined in 214 singleton appropriate birth weight for gestational age infants [101 Caucasian (60 boys, 41 girls) and 113 African American (55 boys, 58 girls)]. Gestational ages were 27-42 wk and the infants were studied between birth and 391 d, weighing between 851 and 13446 g. In addition, predictive value of body weight, LM and FM for DXA bone measurements was also determined. Scan acquisition used Hologic QDR 1000/W densitometer and infant platform and scans without significant movement artifacts were analyzed using software 5.64p. Body weight, length, gender and postnatal age were significant predictors of LM (adjusted R:(2) >0. 94) and FM (adjusted R:(2) >0.85). Physiologic variables had little predictive value for %FM except in the newborns (adjusted R:(2) 0. 69). Body weight was the dominant predictor of LM and FM, although length had similar predictive value for LM with increasing postnatal age. Female infants had less LM and more FM throughout infancy (P: < 0.01). LM or FM offered no advantage over body weight in the prediction of bone mass measurements. DXA is a useful means with which to determine body composition, and our data are important in the design and assessment of nutritional intervention studies.

  17. Postnatal depression among Sudanese women: prevalence and validation of the Edinburgh Postnatal Depression Scale at 3 months postpartum

    PubMed Central

    Khalifa, Dina Sami; Glavin, Kari; Bjertness, Espen; Lien, Lars

    2015-01-01

    Purpose Postnatal depression (PND) rates in low-resource countries have reached levels between 4.9% and 59%. Maternal mental health has not been researched in Sudan, and there are no existing statistics on prevalence or significant risk factors for PND. Consequently, no screening test has been validated to screen for PND at the primary health care level. This study investigates the 3 months prevalence of PND and validates the Edinburgh Postnatal Depression Scale (EPDS) against the Mini-International Neuropsychiatric Interview (MINI). Methodology Pregnant Sudanese women in the second and third trimesters were recruited to the study during routine antenatal care visits in two major maternity hospitals in Khartoum state. They were screened for PND at 3 months postpartum using the EPDS. Test positive women were matched with test negative women according to nearest date of birth. A clinical psychologist verified their depression status using the MINI. Results The follow-up rate was 79%. At a cutoff point of ≥12, the 3 months prevalence of PND was 9.2%. The sensitivity and specificity of the EPDS were 89% and 82%, respectively. The EPDS and MINI showed a strong positive relationship (odds ratio =36). The positive predictive value and negative predictive value, using this study’s prevalence, were 33% and 98.7%, respectively. The receiver operator characteristic analysis showed an area under the curve of 0.89. The cut-off point ≥12 was the most acceptable point as it had the lowest number needed to diagnose (1.4) and a false-positive rate of 18%. Conclusion The EPDS is a valid tool for screening for PND on a Sudanese population. It was accepted, easily administered, and understood by postnatal women. Health care personnel, especially village midwives, should be trained on screening and referral of depressed women for clinical evaluation and management. Due to limited resources available in Sudan, shorter screening tests need to be validated in the future. PMID

  18. ELAVL1 regulates alternative splicing of eIF4E transporter to promote postnatal angiogenesis

    PubMed Central

    Chang, Sung-Hee; Elemento, Olivier; Zhang, Jiasheng; Zhuang, Zhen W.; Simons, Michael; Hla, Timothy

    2014-01-01

    Posttranscriptional RNA regulation is important in determining the plasticity of cellular phenotypes. However, mechanisms of how RNA binding proteins (RBPs) influence cellular behavior are poorly understood. We show here that the RBP embryonic lethal abnormal vision like 1 (ELAVL1, also know as HuR) regulates the alternative splicing of eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1), which encodes an eukaryotic translation initiation factor 4E transporter (4E-T) protein and suppresses the expression of capped mRNAs. In the absence of ELAVL1, skipping of exon 11 of Eif4enif1 forms the stable, short isoform, 4E-Ts. This alternative splicing event results in the formation of RNA processing bodies (PBs), enhanced turnover of angiogenic mRNAs, and suppressed sprouting behavior of vascular endothelial cells. Further, endothelial-specific Elavl1 knockout mice exhibited reduced revascularization after hind limb ischemia and tumor angiogenesis in oncogene-induced mammary cancer, resulting in attenuated blood flow and tumor growth, respectively. ELAVL1-regulated alternative splicing of Eif4enif1 leading to enhanced formation of PB and mRNA turnover constitutes a novel posttranscriptional mechanism critical for pathological angiogenesis. PMID:25422430

  19. Postnatal reproductive autonomy: promoting relational autonomy and self-trust in new parents.

    PubMed

    Goering, Sara

    2009-01-01

    New parents suddenly come face to face with myriad issues that demand careful attention but appear in a context unlikely to provide opportunities for extended or clear-headed critical reflection, whether at home with a new baby or in the neonatal intensive care unit. As such, their capacity for autonomy may be compromised. Attending to new parental autonomy as an extension of reproductive autonomy, and as a complicated phenomenon in its own right rather than simply as a matter to be balanced against other autonomy rights, can help us to see how new parents might be aided in their quest for competency and good decision making. In this paper I show how a relational view of autonomy--attentive to the coercive effects of oppressive social norms and to the importance of developing autonomy competency, especially as related to self-trust--can improve our understanding of the situation of new parents and signal ways to cultivate and to better respect their autonomy. PMID:19076938

  20. The amyloid precursor protein and postnatal neurogenesis/neuroregeneration

    SciTech Connect

    Chen Yanan; Tang, Bor Luen . E-mail: bchtbl@nus.edu.sg

    2006-03-03

    The amyloid precursor protein (APP) is the source of amyloid-beta (A{beta}) peptide, produced via its sequential cleavage {beta}- and {gamma}-secretases. Various biophysical forms of A{beta} (and the mutations of APP which results in their elevated levels) have been implicated in the etiology and early onset of Alzheimer's disease. APP's evolutionary conservation and the existence of APP-like isoforms (APLP1 and APLP2) which lack the A{beta} sequence, however, suggest that these might have important physiological functions that are unrelated to A{beta} production. Soluble N-terminal fragments of APP have been known to be neuroprotective, and the interaction of its cytoplasmic C-terminus with a myriad of proteins associates it with diverse processes such as axonal transport and transcriptional regulation. The notion for an essential postnatal function of APP has been demonstrated genetically, as mice deficient in both APP and APLP2 or all three APP isoforms exhibit early postnatal lethality and neuroanatomical abnormalities. Recent findings have also brought to light two possible functions of the APP family in Brain-regulation of neural progenitor cell proliferation and axonal outgrowth after injury. Interestingly, these two apparently related neurogenic/neuroregenerative functions of APP involve two separate domains of the molecule.

  1. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome.

    PubMed

    Bakken, Trygve E; Miller, Jeremy A; Luo, Rui; Bernard, Amy; Bennett, Jeffrey L; Lee, Chang-Kyu; Bertagnolli, Darren; Parikshak, Neelroop N; Smith, Kimberly A; Sunkin, Susan M; Amaral, David G; Geschwind, Daniel H; Lein, Ed S

    2015-08-01

    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD.

  2. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Luo, Rui; Bernard, Amy; Bennett, Jeffrey L.; Lee, Chang-Kyu; Bertagnolli, Darren; Parikshak, Neelroop N.; Smith, Kimberly A.; Sunkin, Susan M.; Amaral, David G.; Geschwind, Daniel H.; Lein, Ed S.

    2015-01-01

    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD. PMID:25954031

  3. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  4. Effects of Postnatal Estrogen Manipulations on Juvenile Alloparental Behavior

    PubMed Central

    Perry, Adam N.; Carter, C. Sue; Cushing, Bruce S.

    2015-01-01

    Sex- and species-specific patterns of estrogen receptor (ER)-α expression are established early in development, which may contribute to sexual differentiation of behavior and determine male social organization. The current study investigated the effects of ERα and ERβ activation during the second postnatal week on subsequent alloparental behavior and ERα expression in juvenile prairie voles. Male and female pups were treated daily with 17β-estradiol (E2, ERα/ERβ agonist), PPT (selective ERα agonist), DPN (selective ERβ agonist), or the oil vehicle on postnatal days (PD) 8-14. Alloparental behavior and ERα expression were examined at PD21. PPT treatment inhibited prosocial motivation in males and increased pup-directed aggression in both sexes. E2 and DPN had no apparent effect on behavior in either sex. PPT-treated males had increased ERα expression in the medial preoptic area (MPN), medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpr). DPN treatment also increased ERα expression in males, but only in the BSTpr. Female ERα expression was unaffected by treatment. These results support the hypothesis that ERα activation in early life is associated with less prosocial patterns of central ERα expression and alloparental behavior in males. The lack of an effect of E2 on behavior suggests that ERβ may antagonize the effects of ERα on alloparental behavior. The results in DPN-treated males suggest that ERα in the MEApd, and not the BSTpr, may be a primary determinant of alloparental behavior in males. PMID:26222494

  5. A postnatal switch in GABAergic control of spinal cutaneous reflexes

    PubMed Central

    Hathway, Gareth; Harrop, Emily; Baccei, Mark; Walker, Suellen; Moss, Andrew; Fitzgerald, Maria

    2007-01-01

    GABAergic signalling exerts powerful inhibitory control over spinal tactile and nociceptive processing but during development GABA can be depolarizing and the functional consequences of this upon neonatal pain processing is unknown. Here we show a postnatal switch in tonic GABAA receptor (GABAAR) modulation of cutaneous tactile and nociceptive reflexes from excitation to inhibition, but only in the intact spinal cord. Neonatal and 21-day old (P21) rats were intrathecally treated with one of the GABAAR antagonists bicuculline and gabazine with both compounds dose-dependently decreasing hindpaw mechanical and thermal withdrawal thresholds in P21 rats but increasing them in P3 neonates. Intrathecal gabazine also produced an increase in the cutaneous evoked EMG response of the biceps femoris in P21 rates while lowering the response in neonates. Injections of 3H-gabazine in the L4-L5 region at P3 confirmed that gabazine binding was restricted to the lumbar spinal cord. Spinalisation of P3 neonates at the upper thoracic level prior to drug application reversed the behavioural and EMG responses to GABA antagonists so that they resembled those of P21 rats. The effects of spinalisation were consistent with gabazine facilitation of ventral root potentials observed in isolated neonatal spinal cord. These data show a marked postnatal developmental switch in GABAergic control of neonatal nociception that is mediated by supraspinal structures and illustrate the importance of studying developmental circuits in the intact nervous system. PMID:16420421

  6. Prenatal and postnatal cocaine exposure predict teen cocaine use.

    PubMed

    Delaney-Black, Virginia; Chiodo, Lisa M; Hannigan, John H; Greenwald, Mark K; Janisse, James; Patterson, Grace; Huestis, Marilyn A; Partridge, Robert T; Ager, Joel; Sokol, Robert J

    2011-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n=316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use.

  7. Postnatal outcomes of prenatally diagnosed 45,X/46,XX.

    PubMed

    Tokita, Mari J; Sybert, Virginia P

    2016-05-01

    High quality information is critical for informed decision-making in pregnancy following a prenatal diagnosis of sex chromosome aneuploidy. The goal of this study was to define the spectrum of outcomes in patients with prenatally diagnosed 45,X/46,XX mosaic Turner syndrome in order to provide a better basis for genetic counseling at the time of intrauterine diagnosis. Phenotype data for twenty-five patients with prenatally diagnosed 45,X/46,XX mosaicism were collected by retrospective chart review and, when possible, semi-structured telephone interview. Existing data from a cohort of 58 patients with postnatally diagnosed 45,X/46,XX mosaicism were used for comparison. Relative to those diagnosed postnatally, prenatal patients were more likely to have normal growth and normal secondary sexual development, less likely to manifest distinctive Turner syndrome features such as nuchal webbing and edema, and had significantly fewer renal defects. These differences underscore the need for a nuanced approach to prenatal counseling in cases of 45,X/46,XX mosaicism.

  8. Early postnatal docosahexaenoic acid levels and improved preterm brain development

    PubMed Central

    Tam, Emily W.Y.; Chau, Vann; Barkovich, A. James; Ferriero, Donna M.; Miller, Steven P.; Rogers, Elizabeth E.; Grunau, Ruth E.; Synnes, Anne R.; Xu, Duan; Foong, Justin; Brant, Rollin; Innis, Sheila M.

    2015-01-01

    Background Preterm birth has a dramatic impact on polyunsaturated fatty acid exposures for the developing brain. This study examined the association between postnatal fatty acid levels and measures of brain injury and development, as well as outcomes. Methods A cohort of 60 preterm newborns (24–32 weeks GA) was assessed using early and near-term MRI studies. Red blood cell fatty acid composition was analyzed coordinated with each scan. Outcome at a mean of 33 months corrected age was assessed using the Bayley Scales of Infant Development, 3rd edition. Results Adjusting for confounders, a 1% increase in postnatal docosahexaenoic acid (DHA) levels at early MRI was associated with 4.3-fold decreased odds of intraventricular hemorrhage, but was not associated with white matter injury or cerebellar haemorrhage. Higher DHA and lower linoleic acid (LA) levels at early MRI were associated with lower diffusivity in white matter tracts, and corresponding improved developmental scores in follow-up. Conclusion Higher DHA and lower LA levels in the first few weeks of life are associated with decreased IVH, improved microstructural brain development, and improved outcomes in preterm born children. Early, and possibly antenatal, intervention in high-risk pregnancies needs to be studied for potential benefits in preterm developmental outcomes. PMID:26761122

  9. Spaceflight affects postnatal development of the aortic wall in rats.

    PubMed

    Katsuda, Shin-ichiro; Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; O-ishi, Hirotaka; Katahira, Kiyoaki; Nagayama, Tadanori; Miyamoto, Yukako; Hasegawa, Masamitsu; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  10. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    PubMed Central

    Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  11. Air pollutant effects on fetal and early postnatal development.

    PubMed

    Wang, Lei; Pinkerton, Kent E

    2007-09-01

    Numerical research on the health effects of air pollution has been published in the last decade. Epidemiological studies have shown that children's exposure to air pollutants during fetal development and early postnatal life is associated with many types of health problems including abnormal development (low birth weight [LBW], very low birth weight [VLBW], preterm birth [PTB], intrauterine growth restriction [IUGR], congenital defects, and intrauterine and infant mortality), decreased lung growth, increased rates of respiratory tract infections, childhood asthma, behavioral problems, and neurocognitive decrements. This review focuses on the health effects of major outdoor air pollutants including particulates, carbon monoxide (CO), sulfur and nitrogen oxides (SO(2), NOx), ozone, and one common indoor air pollutant, environmental tobacco smoke (ETS). Animal data is presented that demonstrate perinatal windows of susceptibility to sidestream smoke, a surrogate for ETS, resulting in altered airway sensitivity and cell type frequency. A study of neonatal monkeys exposed to sidestream smoke during the perinatal period and/or early postnatal period that resulted in an altered balance of Th1-/Th2-cytokine secretion, skewing the immune response toward the allergy-associated Th2 cytokine phenotype, is also discussed. PMID:17963272

  12. Effects of postnatal estrogen manipulations on juvenile alloparental behavior.

    PubMed

    Perry, Adam N; Sue Carter, C; Cushing, Bruce S

    2015-09-01

    Sex- and species-specific patterns of estrogen receptor (ER)-α expression are established early in development, which may contribute to sexual differentiation of behavior and determine male social organization. The current study investigated the effects of ERα and ERβ activation during the second postnatal week on subsequent alloparental behavior and ERα expression in juvenile prairie voles. Male and female pups were treated daily with 17β-estradiol (E2, ERα/ERβ agonist), PPT (selective ERα agonist), DPN (selective ERβ agonist), or the oil vehicle on postnatal days (PD) 8-14. Alloparental behavior and ERα expression were examined at PD21. PPT treatment inhibited prosocial motivation in males and increased pup-directed aggression in both sexes. E2 and DPN had no apparent effect on behavior in either sex. PPT-treated males had increased ERα expression in the medial preoptic area (MPN), medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpr). DPN treatment also increased ERα expression in males, but only in the BSTpr. Female ERα expression was unaffected by treatment. These results support the hypothesis that ERα activation in early life is associated with less prosocial patterns of central ERα expression and alloparental behavior in males. The lack of an effect of E2 on behavior suggests that ERβ may antagonize the effects of ERα on alloparental behavior. The results in DPN-treated males suggest that ERα in the MEApd, and not the BSTpr, may be a primary determinant of alloparental behavior in males. PMID:26222494

  13. The septal organ of the rat during postnatal development.

    PubMed

    Weiler, Elke; Farbman, Albert I

    2003-09-01

    The septal organ of Masera (SO) is a small, isolated patch of olfactory epithelium, located in the ventral part of the nasal septum. We investigated in this systematic study the postnatal development of the SO in histological sections of rats at various ages from the day of birth (P1) to P666. The SO-area increases to a maximum at P66-P105, just as the animals reach sexual maturity, and decreases thereafter, significantly however only in males, indicating a limited neurogenetic capacity for regeneration. In contrast, the main olfactory epithelium area continues to expand beyond P300. The modified respiratory epithelium ('zwischen epithelium') separating the SO and the main olfactory epithelium contains a few olfactory neurons up to age P66. Its length increases postnatally so that the SO becomes more ventral to the OE. Although the position of the SO relative to other anatomical landmarks changes with development it is consistently located just posterior to the opening of the nasopalatine duct (NPAL). Thus, a possible function of the SO is in sensing chemicals in fluids entering the mouth by licking and then delivered to the nasal cavity via the NPAL; therefore the SO may be involved in social/sexual behavior as is the vomeronasal organ (VNO). We suggest that the SO is a separate accessory olfactory organ with properties somewhat different from both OE and VNO and may exist only in species where the NPAL does not open into the VNO. PMID:14578120

  14. Prenatal and postnatal cocaine exposure predict teen cocaine use

    PubMed Central

    Delaney-Black, Virginia; Chiodo, Lisa M.; Hannigan, John H.; Greenwald, Mark K.; Janisse, James; Patterson, Grace; Huestis, Marilyn A.; Partridge, Robert T.; Ager, Joel; Sokol, Robert J.

    2015-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n = 316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. PMID:20609384

  15. Alteration of Scn3a expression is mediated via CpG methylation and MBD2 in mouse hippocampus during postnatal development and seizure condition.

    PubMed

    Li, Hai-Jun; Wan, Rui-Ping; Tang, Ling-Jia; Liu, Shu-Jing; Zhao, Qi-Hua; Gao, Mei-Mei; Yi, Yong-Hong; Liao, Wei-Ping; Sun, Xiao-Fang; Long, Yue-Sheng

    2015-01-01

    Increased expression of sodium channel SCN3A, an embryonic-expressed gene, has been identified in epileptic tissues, which is believed to contribute to the development of epilepsy. However, the regulatory mechanism of SCN3A expression under epileptic condition is still unknown. Here we showed a high level of Scn3a mRNA expression in mouse embryonic hippocampus with gradually decreasing to a low level during the postnatal development and a methylation of a specific CpG site (-39C) in the Scn3a promoter was increased in hippocampus during postnatal development, corresponding to the downregulation of Scn3a expression. Furthermore, in vitro methylation and -39C>T mutation of the Scn3a promoter decreased the reporter gene expression, suggesting an important role of the -39C site in regulating gene expression. We then demonstrated that the sequence containing -39C was a MBD2-binding motif and the CpG methylation of the promoter region increased the capability of MBD2's binding to the motif. Knockdown of MBD2 in mouse N1E-115 cells led to the -39C methylation and the downregulation of Scn3a transcription by decreasing the Scn3a promoter activity. In the hippocampus of seizure mice, the expressions of Scn3a and Mbd2 were upregulated after 10-day KA treatment. At the same time point, the -39C site was demethylated and the capability of MBD2's binding to the Scn3a promoter motif was decreased. Taken together, these findings suggest that CpG methylation and MBD2 are involved in altering Scn3a expression during postnatal development and seizure condition.

  16. Determinants of postnatal service utilisation among mothers in rural settings of Malawi.

    PubMed

    Phiri, Precious William C; Rattanapan, Cheerawit; Mongkolchati, Aroonsri

    2015-09-01

    The aim of this study was to determine significant predictors for the utilisation of postnatal service among mothers. A total of 295 postnatal mothers were enrolled in a cross-sectional study design undertaken in six health facilities of Lilongwe District using two-stage cluster sampling with a response rate of 100%. The data were collected by interview from December 2012 to January 2013 using a structured questionnaire. The result showed that over half of the mothers (56.6%) utilised postnatal service within 6 weeks after delivery. A stepwise multiple logistic regression was used to determine significant determinants of utilisation of postnatal service among mothers. After adjusting for confounding factors, utilisation of an alternative local source of care in home after delivery [adjusted odds ratio (aOR): 7.77, 95% CI: 4.14-14.58], women's perception on performance of health workforce during delivery and postnatal service (aOR: 6.56, 95% CI: 3.09-13.94), health education before hospital discharge of postnatal mothers (aOR: 4.08, 95% CI: 2.11-7.92), place of delivery (aOR: 4.32, 95% CI: 1.32-14.12), family income (aOR: 1.89, 95% CI: 1.03-3.46) and the occurrence of no complications during delivery (aOR: 1.90, 95% CI: 1.03-3.50) were significantly associated with the utilisation of postnatal service. Hence, this study suggests that improved health workforce performance coupled with effective health education may increase the utilisation of postnatal service. Furthermore, the utilisation of postnatal service may also be increased through reducing home deliveries, delivery complications and the use of alternative local care at home after delivery. Integration of postnatal service in outreach clinics might also assist through reducing the cost of accessing postnatal service among mothers.

  17. Protective effects of resveratrol on the inhibition of hippocampal neurogenesis induced by ethanol during early postnatal life.

    PubMed

    Xu, Le; Yang, Yang; Gao, Lixiong; Zhao, Jinghui; Cai, Yulong; Huang, Jing; Jing, Sheng; Bao, Xiaohang; Wang, Ying; Gao, Junwei; Xu, Haiwei; Fan, Xiaotang

    2015-07-01

    Ethanol (EtOH) exposure during early postnatal life triggers obvious neurotoxic effects on the developing hippocampus and results in long-term effects on hippocampal neurogenesis. Resveratrol (RSV) has been demonstrated to exert potential neuroprotective effects by promoting hippocampal neurogenesis. However, the effects of RSV on the EtOH-mediated impairment of hippocampal neurogenesis remain undetermined. Thus, mice were pretreated with RSV and were later exposed to EtOH to evaluate its protective effects on EtOH-mediated toxicity during hippocampal development. The results indicated that a brief exposure of EtOH on postnatal day 7 resulted in a significant impairment in hippocampal neurogenesis and a depletion of hippocampal neural precursor cells (NPCs). This effect was attenuated by pretreatment with RSV. Furthermore, EtOH exposure resulted in a reduction in spine density on the granular neurons of the dentate gyrus (DG), and the spines exhibited a less mature morphological phenotype characterized by a higher proportion of stubby spines and a lower proportion of mushroom spines. However, RSV treatment effectively reversed these responses. We further confirmed that RSV treatment reversed the EtOH-induced down-regulation of hippocampal pERK and Hes1 protein levels, which may be related to the proliferation and maintenance of NPCs. Furthermore, EtOH exposure in the C17.2 NPCs also diminished cell proliferation and activated apoptosis, which could be reversed by pretreatment of RSV. Overall, our results suggest that RSV pretreatment protects against EtOH-induced defects in neurogenesis in postnatal mice and may thus play a critical role in preventing EtOH-mediated toxicity in the developing hippocampus.

  18. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation

    PubMed Central

    Mould, Arne W.; Morgan, Marc A. J.; Nelson, Andrew C.; Bikoff, Elizabeth K.; Robertson, Elizabeth J.

    2015-01-01

    The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine. PMID:26158850

  19. Zonation of glucokinase in rat liver changes during postnatal development.

    PubMed

    Kirchner, G; Harbers, M; Bünsch, A; Seitz, H J; Höppner, W

    1993-08-01

    In the liver many metabolic pathways are preferentially localized in different zones of the acinus. It is assumed that this zonation allows an efficient adaptation to different states of nutrition, because alternative pathways can be regulated independently. It is reported that the rate limiting enzyme for the glycolytic pathway, glucokinase (EC 2.7.1.2), is predominantly located in the pericentral zone. The gene expression of glucokinase is induced to a maximum level after a carbohydrate-rich diet. In starved or diabetic rats glucokinase gene expression is barely detectable. In postnatal development glucokinase is induced to significant levels only from day 14 onwards. The distribution of the glucokinase protein in the rat liver lobule in the first 4 weeks of postnatal life was investigated by immunohistochemistry and compared to the distribution observed in adult rats. In adult rats considerably high levels of glucokinase are measureable as shown by immunoblotting utilizing a monospecific antibody and a photometric assay of glucokinase enzyme activity, respectively. Immunohistochemically the hepatic glucokinase protein is detected in the perivenous area. During postnatal development, the quantities of hepatic glucokinase protein and glucokinase enzyme activity start to increase significantly from day 15 onwards. Subsequently, glucokinase levels rise further until day 29. In contrast to the results obtained by immunoblotting, glucokinase is already detectable in some liver cells in sections from 6-day-old rats by immunohistochemistry. The liver lobule structure at this age is not completely developed, therefore it is not possible to definitely assign these cells to periportal or pericentral areas. At day 10 post partum the number of glucokinase expressing cells, which appear to be localized preferentially in the periportal zone, increases. In agreement with the immunoblotting, an immense increase in glucokinase activity was observed at day 14. The periportal

  20. The effects of prenatal and postnatal (via nursing) exposure to alcohol in rats

    SciTech Connect

    Nekvasil, N.; Baggio, C. )

    1992-02-26

    Pregnant and post-partum rats were given daily doses of 20% alcohol during days 13-21 gestation and postnatal days 3-12, respectively. Following exposure, all rat pups, were tested for balance, blood pressure, right and left cerebral hemisphere weights, and cerebellar weight. Results were grouped according to exposure and gender. The postnatal group was the only one to demonstrate difficulties with balance. The mean arterial pressure in males exposed postnatally was significantly lower than the control and prenatal males. Females exposed postnatally had a significantly higher blood pressure than control females. Within the postnatal group, males had a significantly lower blood pressure than the females. Prenatal and control females differed significantly for left cerebral hemisphere (LCH) weight with the prenatal weighing less. Male pups exposed prenatally had significantly heavier LCH than the postnatal and control males. For both males and females, postnatal LCH weights did not differ from those of the control pups. Within the prenatal group, the LCH weight in females was significantly lower than in males. Mean cerebellar weights were significantly lower in postnatal animals compared to control animals. A major finding of this study is that the effect of alcohol exposure on rat pups depends on gender and developmental age.

  1. Maternal Postnatal Depression and the Development of Depression in Offspring up to 16 Years of Age

    ERIC Educational Resources Information Center

    Murray, Lynne; Arteche, Adriane; Fearon, Pasco; Halligan, Sarah; Goodyer, Ian; Cooper, Peter

    2011-01-01

    Objective: The aim of this study was to determine the developmental risk pathway to depression by 16 years in offspring of postnatally depressed mothers. Method: This was a prospective longitudinal study of offspring of postnatally depressed and nondepressed mothers; child and family assessments were made from infancy to 16 years. A total of 702…

  2. Cultural variations in interpretation of postnatal illness: Jinn possession amongst Muslim communities.

    PubMed

    Hanely, Jane; Brown, Amy

    2014-04-01

    Maternal experience of emotional and physical disturbance during the postnatal period is a worldwide occurrence but may be interpreted differently according to cultural background. Little is known about different expressions and treatment of cultural phenomena during the postnatal period such as the affliction of Jinn possession in Arabic cultures. Jinn are considered to be evil spirits, which cause emotional and physical distress at times of vulnerability such as the postnatal period. The aim of this paper was to explore maternal experience of Jinn possession and draw parallels with Western interpretations of postnatal illness. Ten women in an Arabian Gulf state who had recently given birth and identified themselves as having Jinn possession were interviewed as to their experiences of Jinn possession. Mothers described the Jinn as evil spirits who cause symptoms such as sadness, anxiety and physical malaise during the postnatal period. Numerous risk factors for possession emerged such as lack of familial support, poverty and a traumatic birth. Clear parallels emerged between Western concepts of postnatal illness and Jinn possession. Mothers in Muslim cultures may experience Jinn possession during the postnatal period, which reflects similar symptoms and aetiology to Western concepts of postnatal illness. With increasing multiculturalism in the UK, understanding the origins and perception of Jinn possession is important for health professionals working in Muslim communities here.

  3. Depression in Men in the Postnatal Period and Later Child Psychology: A Population Cohort Study

    ERIC Educational Resources Information Center

    Ramchandani, Paul G.; Stein, Alan; O'Connor, Thomas G.; Heron, Jon; Murray, Lynne; Evans, Jonathan

    2008-01-01

    The factors responsible for depression in men following childbirth and the association between their depression in the postnatal period and later psychiatric disorders in their children are assessed. Findings show that depression in fathers in their postnatal period is associated with later psychiatric disorders in their children, independent of…

  4. Cultural variations in interpretation of postnatal illness: Jinn possession amongst Muslim communities.

    PubMed

    Hanely, Jane; Brown, Amy

    2014-04-01

    Maternal experience of emotional and physical disturbance during the postnatal period is a worldwide occurrence but may be interpreted differently according to cultural background. Little is known about different expressions and treatment of cultural phenomena during the postnatal period such as the affliction of Jinn possession in Arabic cultures. Jinn are considered to be evil spirits, which cause emotional and physical distress at times of vulnerability such as the postnatal period. The aim of this paper was to explore maternal experience of Jinn possession and draw parallels with Western interpretations of postnatal illness. Ten women in an Arabian Gulf state who had recently given birth and identified themselves as having Jinn possession were interviewed as to their experiences of Jinn possession. Mothers described the Jinn as evil spirits who cause symptoms such as sadness, anxiety and physical malaise during the postnatal period. Numerous risk factors for possession emerged such as lack of familial support, poverty and a traumatic birth. Clear parallels emerged between Western concepts of postnatal illness and Jinn possession. Mothers in Muslim cultures may experience Jinn possession during the postnatal period, which reflects similar symptoms and aetiology to Western concepts of postnatal illness. With increasing multiculturalism in the UK, understanding the origins and perception of Jinn possession is important for health professionals working in Muslim communities here. PMID:23955293

  5. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1...

  6. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies.

  7. Postnatal depression among Bahraini women: prevalence of symptoms and psychosocial risk factors.

    PubMed

    Al Dallal, F H; Grant, I N

    2012-05-01

    The prevalence of postnatal depression in Bahrain is unknown and screening for known risk factors does not take place. This study estimated the prevalence of postnatal depressive symptoms and the associated risk factors among a random sample of Bahraini women attending primary health care centres with their babies for the 8-week child check-up. The Arabic version of the Edinburgh Postnatal Depression Scale (EPDS) was used with a cut-off score of > or = 12 for depression. The prevalence of postnatal depressive symptoms among 237 mothers was 37.1%. No significant relationships were identified between depression symptoms and any of demographic variables or pregnancy/birth characteristics studied. However, several psychosocial risk factors were significantly associated with postnatal depression and, after multiple regression analysis, a history of depressive symptoms and perceived lack of support from the husband remained significant factors. Further studies that include diagnostic assessments are needed to confirm these findings.

  8. The Oxygen Rich Postnatal Environment Induces Cardiomyocyte Cell Cycle Arrest Through DNA Damage Response

    PubMed Central

    Puente, Bao N.; Kimura, Wataru; Muralidhar, Shalini A.; Moon, Jesung; Amatruda, James F.; Phelps, Kate L.; Grinsfelder, David; Rothermel, Beverly A.; Chen, Rui; Garcia, Joseph A.; Santos, Celio X.; Thet, SuWannee; Mori, Eiichiro; Kinter, Michael T.; Rindler, Paul M.; Zacchigna, Serena; Mukherjee, Shibani; Chen, David J.; Mahmoud, Ahmed I.; Giacca, Mauro; Rabinovitch, Peter S.; Aroumougame, Asaithamby; Shah, Ajay M.; Szweda, Luke I.; Sadek, Hesham A.

    2014-01-01

    Summary The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary post-natal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen rich postnatal environment is the upstream signal that results in cell cycle arrest of cardiomyocytes. Here we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, while hyperoxemia and ROS generators shorten it. These findings uncover a previously unrecognized protective mechanism that mediates cardiomyocyte cell cycle arrest in exchange for utilization of oxygen dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be important component of cardiomyocyte proliferation-based therapeutic approaches. PMID:24766806

  9. Postnatal exposure to predator odor (TMT) enhances spatial learning in mice adulthood.

    PubMed

    Hacquemand, R; Jacquot, L; Brand, G

    2012-04-01

    Adult behavioral and physiological responses are partly dependent on neonatal experiences. In several animal species, enriched/aprovished environments and stressful/appeasing events are crucial in the setting of adaptative behaviors. However, little is known about the effects of postnatal exposure to predator odor (as unconditioned fear-related stimulus) on spatial learning at adulthood. Thus, the aim of the present study was to investigate the effects of a postnatal exposure to 2,4,5-trimethylthiazoline (TMT, as a predator odor) on radial arm maze (RAM), Tolman maze (TM) and Morris water maze (MWM) in mice at adulthood. The results showed that a TMT group constituted by mice exposed postnatally during 3 weeks to TMT presented significantly better spatial learning achievements in adulthood compared to a water group, postnatally exposed to water only, as well as compared to a butanol group (butanol used as an odor without ecological significance) exposed postnatally to butanol during 3 weeks. PMID:22245526

  10. Malformations of Cortical Development: From Postnatal to Fetal Imaging.

    PubMed

    Lerman-Sagie, Tally; Leibovitz, Zvi

    2016-09-01

    Abnormal fetal corticogenesis results in malformations of cortical development (MCD). Abnormal cell proliferation leads to microcephaly or megalencephaly, incomplete neuronal migration results in heterotopia and lissencephaly, neuronal overmigration manifests as cobblestone malformations, and anomalous postmigrational cortical organization is responsible for polymicrogyria and focal cortical dysplasias. MCD comprises various congenital brain disorders, caused by different genetic, infectious, or vascular etiologies and is associated with significant neurological morbidity. Although MCD are rarely diagnosed prenatally, both dedicated multiplanar neurosonography and magnetic resonance imaging enable good demonstration of fetal cortical development. The imaging signs of fetal MCD are: delayed or absent cerebral sulcation; premature abnormal sulci; thin and irregular hemispheric parenchyma; wide abnormal overdeveloped gyri; wide opening of isolated sulci; nodular bulging into the lateral ventricles; cortical clefts; intraparenchymal echogenic nodules; and cortical thickening. The postnatal and prenatal imaging features of four main malformations of cortical development-lissencephaly, cobblestone malformations, periventricular nodular heterotopia, and polymicrogyria-are described. PMID:27670206

  11. Haematopoiesis in snakes (Ophidia) in early postnatal development.

    PubMed

    Dabrowski, Z; Sano Martins, I S; Tabarowski, Z; Witkowska-Pelc, E; Spadacci Morena, D D; Spodaryk, K; Podkowa, D

    2007-05-01

    The occurrence of haematopoiesis has been studied in various parts of the spine and in the ribs in four species of snakes (Boa constrictor L., Elaphe guttata L., Lamprophis fulaginosus Boie., Bothrops jararaca Wied.) from hatching until 150 days of postnatal development. Marrow spaces are formed by chondrolysis with various time frames depending on the studied species. Marrow cells egress to the general circulation in two ways: via migration through the endothelial cells lining the venous sinuses or by the rupture of protrusions. Erythroblasts are present in the lumen of marrow sinuses suggesting their final maturation there. Various relationships of the spleen to the pancreas have been found. No myelopoietic foci occur in the spleen, liver or kidney of any of the studied species. However, erythropoiesis (sparse islets) has been observed in Bothrops jararaca spleen.

  12. Prenatal and postnatal steroid therapy and child neurodevelopment.

    PubMed

    Friedman, Smadar; Shinwell, Eric S

    2004-09-01

    In recent years, scientific evidence has accumulated on the potential neuro-toxic effects of perinatal steroid therapy on the incompletely developed brain; therefore, much effort has been directed toward finding the optimal regimen that may reduce lung disease without incurring significant brain injury in fetuses and preterm infants. Current recommendations of the NIH endorse a single course of prenatal steroids in cases of imminent preterm delivery. Postnatal steroid therapy should be limited, according to the American Association of Pediatrics Guide-lines, to selected clinical cases after the first week of life. These cautions aim to decrease possible harmful effects that could affect short- and long-term neuro-developmental outcome in this high-risk population.

  13. The effect of prenatal and postnatal care on childhood obesity.

    PubMed

    Seipel, Michael M O; Shafer, Kevin

    2013-07-01

    Childhood obesity continues to be a major public health problem in the United States. If this problem is unresolved, some children will be at risk for disorders such as type 2 diabetes, high blood pressure, and cancer and will become a high economic and social burden for society. Using the National Longitudinal Survey of Youth, Child and Young Adult sample (N = 6,643), this study examined the relationship between the effect of pre- and postnatal characteristics and obesity. The findings of this study show that the probability of childhood obesity can be lessened if pregnant women do not smoke and do not gain significant pregnancy-related weight. Moreover, breast feeding and health insurance were also found to be correlated to avoiding childhood obesity.

  14. Lin41/Trim71 is essential for mouse development and specifically expressed in postnatal ependymal cells of the brain

    PubMed Central

    Cuevas, Elisa; Rybak-Wolf, Agnieszka; Rohde, Anna M.; Nguyen, Duong T. T.; Wulczyn, F. Gregory

    2015-01-01

    Lin41/Trim71 is a heterochronic gene encoding a member of the Trim-NHL protein family, and is the original, genetically defined target of the microRNA let-7 in C. elegans. Both the LIN41 protein and multiple regulatory microRNA binding sites in the 3′ UTR of the mRNA are highly conserved from nematodes to humans. Functional studies have described essential roles for mouse LIN41 in embryonic stem cells, cellular reprogramming and the timing of embryonic neurogenesis. We have used a new gene trap mouse line deficient in Lin41 to characterize Lin41 expression during embryonic development and in the postnatal central nervous system (CNS). In the embryo, Lin41 is required for embryonic viability and neural tube closure. Nevertheless, neurosphere assays suggest that Lin41 is not required for adult neurogenesis. Instead, we show that Lin41 promoter activity and protein expression in the postnatal CNS is restricted to ependymal cells lining the walls of the four ventricles. We use ependymal cell culture to confirm reestablishment of Lin41 expression during differentiation of ependymal progenitors to post-mitotic cells possessing motile cilia. Our results reveal that terminally differentiated ependymal cells express Lin41, a gene to date associated with self-renewing stem cells. PMID:25883935

  15. Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome

    PubMed Central

    Gan, Jingyi; Sonntag, Hans-Joachim; Tang, Mei kuen; Cai, Dongqing; Lee, Kenneth Ka Ho

    2015-01-01

    In mammals, cardiomyocytes rapidly proliferate in the fetus and continue to do so for a few more days after birth. These cardiomyocytes then enter into growth arrest but the detailed molecular mechanisms involved have not been fully elucidated. We have addressed this issue by comparing the transcriptomes of 2-day-old (containing dividing cardiomyocytes) with 13-day-old (containing growth arrested cardiomyocytes) postnatal mouse hearts. We performed comparative microarray analysis on the heart tissues and then conducted Functional annotation, Gene ontology, KEGG pathway and Gene Set enrichment analyses on the differentially expressed genes. The bioinformatics analysis revealed that gene ontology categories associated with the “cell cycle”, “DNA replication”, “chromosome segregation” and “microtubule cytoskeleton” were down-regulated. Inversely, “immune response”, “extracellular matrix”, “cell differentiation” and “cell membrane” were up-regulated. Ingenuity Pathways Analysis (IPA) has revealed that GATA4, MYH7 and IGF1R were the key drivers of the gene interaction networks. In addition, Regulator Effects network analysis suggested that TASP1, TOB1, C1orf61, AIF1, ROCK1, TFF2 and miR503-5p may be acting on the cardiomyocytes in 13-day-old mouse hearts to inhibit cardiomyocyte proliferation and G1/S phase transition. RT-qPCR was used to validate genes which were differentially expressed and genes that play a prominent role in the pathways and interaction networks that we identified. In sum, our integrative analysis has provided more insights into the transcriptional regulation of cardiomyocyte exit from the cell cycle during postnatal heart development. The results also pinpoint potential regulators that could be used to induce growth arrested cardiomyocytes to proliferate in the infarcted heart. PMID:26200114

  16. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation.

    PubMed

    Howard, Beatrice A; Lu, Pengfei

    2014-01-01

    The stroma, which is composed of supporting cells and connective tissue, comprises a large component of the local microenvironment of many epithelial cell types, and influences several fundamental aspects of cell behaviour through both tissue interactions and niche regulation. The significance of the stroma in development and disease has been increasingly recognised. Whereas normal stroma is essential for various developmental processes during vertebrate organogenesis, it can be deregulated and become abnormal, which in turn can initiate or promote a disease process, including cancer. The mouse mammary gland has emerged in recent years as an excellent model system for understanding stromal function in both developmental and cancer biology. Here, we take a systematic approach and focus on the dynamic interactions that the stroma engages with the epithelium during mammary specification, cell differentiation, and branching morphogenesis of both the embryonic and postnatal development of the mammary gland. Similar stromal-epithelial interactions underlie the aetiology of breast cancer, making targeting the cancer stroma an increasingly important and promising therapeutic strategy to pursue for breast cancer treatment.

  17. Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights.

    PubMed

    Kaffman, Arie; Meaney, Michael J

    2007-01-01

    Parental care plays an important role in the emotional and cognitive development of the offspring. Children who have been exposed to abuse or neglect are more likely to develop numerous psychopathologies, while good parent-infant bonding is associated with improved resiliency to stress. Similar observations have also been reported in non-human primates and rodents, suggesting that at least some neurodevelopmental aspects of parent-offspring interactions are conserved among mammals and could therefore be studied in animals. We present data to suggest that frequency of licking and grooming provided by the dam during a critical period in development plays an important role in modifying neurodevelopment. These findings are examined in the broader context in which exposure to other sensory modalities such as vision or hearing during a specific period in development shapes brain development with functional consequences that persist into adulthood. We also discuss recent rodent work showing that increased frequency of licking and grooming provided by the dam during the first week of life is associated with changes in DNA methylation of promoter elements that control expression of these genes and behavior. The stability of DNA methylation in postmitotic cells provides a possible molecular scaffold by which changes in gene expression and behavioral traits induced by postnatal maternal care are maintained throughout life. Finally, the relevance of findings reported in rodents to those noted in non-human primates and humans are assessed and the research and clinical implications of these observations for future work are explored. PMID:17355397

  18. Postnatal Development of Subcallosal Zone Following Suppression of Programmed Cell Death in Bax-deficient Mice.

    PubMed

    Kim, Woon Ryoung; Sun, Woong

    2013-09-01

    Neural stem cells are found in adult mammalian brain regions including the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ). In addition to these two regions, other neurogenic regions are often reported in many species. Recently, the subcallosal zone (SCZ) has been identified as a novel neurogenic region where new neuroblasts are spontaneously generated and then, by Bax-dependent apoptosis, eliminated. However, the development of SCZ in the postnatal brain is not yet fully explored. The present study investigated the precise location and amount of neuroblasts in the developing brain. To estimate the importance of programmed cell death (PCD) for SCZ histogenesis, SCZ development in the Bax-knockout (KO) mouse was examined. Interestingly, an accumulation of extra neurons with synaptic fibers in the SCZ of Bax-KO mice was observed. Indeed, Bax-KO mice exhibited enhanced startle response to loud acoustic stimuli and reduced anxiety level. Considering the prevention of PCD in the SCZ leads to sensory-motor gating dysfunction in the Bax-KO mice, active elimination of SCZ neuroblasts may promote optimal brain function.

  19. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development.

  20. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development. PMID:25597916

  1. Enriched environment has limited capacity for the correction of hippocampal memory-dependent schizoid behaviors in rats with early postnatal NMDAR dysfunction.

    PubMed

    Melik, Enver; Babar, Emine; Kocahan, Sayad; Guven, Mustafa; Akillioglu, Kubra

    2014-04-01

    Pre- and early postnatal stress can cause dysfunction of the N-methyl-d-aspartate receptor (NMDAR) and thereby promote the development of hippocampus memory-dependent schizoid abnormalities of navigation in space, time, and knowledge. An enriched environment improves mental abilities in humans and animals. Whether an enriched environment can prevent the development of schizoid symptoms induced by neonatal NMDAR dysfunction was the central question of our paper. The experimental animals were Wistar rats. Early postnatal NMDAR dysfunction was created by systemic treatment of rat pups with the NMDAR antagonist MK-801 at PD10-20 days. During the development period (PD21-90 days), the rats were reared in cognitively and physically enriched cages. Adult age rats were tested on navigation based on pattern separation and episodic memory in the open field and on auto-hetero-associations based on episodic and semantic memory in a step-through passive avoidance task. The results showed that postnatal NMDAR antagonism caused abnormal behaviors in both tests. An enriched environment prevented deficits in the development of navigation in space based on pattern separation and hetero-associations based on semantic memory. However, an enriched environment was unable to rescue navigation in space and auto-associations based on episodic memory. These data may contribute to the understanding that an enriched environment has a limited capacity for therapeutic interventions in protecting the development of schizoid syndromes in children and adolescents. PMID:24184288

  2. Enriched environment has limited capacity for the correction of hippocampal memory-dependent schizoid behaviors in rats with early postnatal NMDAR dysfunction.

    PubMed

    Melik, Enver; Babar, Emine; Kocahan, Sayad; Guven, Mustafa; Akillioglu, Kubra

    2014-04-01

    Pre- and early postnatal stress can cause dysfunction of the N-methyl-d-aspartate receptor (NMDAR) and thereby promote the development of hippocampus memory-dependent schizoid abnormalities of navigation in space, time, and knowledge. An enriched environment improves mental abilities in humans and animals. Whether an enriched environment can prevent the development of schizoid symptoms induced by neonatal NMDAR dysfunction was the central question of our paper. The experimental animals were Wistar rats. Early postnatal NMDAR dysfunction was created by systemic treatment of rat pups with the NMDAR antagonist MK-801 at PD10-20 days. During the development period (PD21-90 days), the rats were reared in cognitively and physically enriched cages. Adult age rats were tested on navigation based on pattern separation and episodic memory in the open field and on auto-hetero-associations based on episodic and semantic memory in a step-through passive avoidance task. The results showed that postnatal NMDAR antagonism caused abnormal behaviors in both tests. An enriched environment prevented deficits in the development of navigation in space based on pattern separation and hetero-associations based on semantic memory. However, an enriched environment was unable to rescue navigation in space and auto-associations based on episodic memory. These data may contribute to the understanding that an enriched environment has a limited capacity for therapeutic interventions in protecting the development of schizoid syndromes in children and adolescents.

  3. Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity.

    PubMed

    Garg, Meena; Thamotharan, Manikkavasagar; Dai, Yun; Thamotharan, Shanthie; Shin, Bo-Chul; Stout, David; Devaskar, Sherin U

    2012-06-01

    Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype. PMID:22461568

  4. Bigger mothers are better mothers: disentangling size-related prenatal and postnatal maternal effects.

    PubMed

    Steiger, Sandra

    2013-09-01

    Despite a vast literature on the factors controlling adult size, few studies have investigated how maternal size affects offspring size independent of direct genetic effects, thereby separating prenatal from postnatal influences. I used a novel experimental design that combined a cross-fostering approach with phenotypic manipulation of maternal body size that allowed me to disentangle prenatal and postnatal maternal effects. Using the burying beetle Nicrophorus vespilloides as model organism, I found that a mother's body size affected egg size as well as the quality of postnatal maternal care, with larger mothers producing larger eggs and raising larger offspring than smaller females. However, with respect to the relative importance of prenatal and postnatal maternal effects on offspring growth, only the postnatal effects were important in determining offspring body size. Thus, prenatal effects can be offset by the quality of postnatal maternal care. This finding has implications for the coevolution of prenatal and postnatal maternal effects as they arise as a consequence of maternal body size. In general, my study provides evidence that there can be transgenerational phenotypic plasticity, with maternal size determining offspring size leading to a resemblance between mothers and their offspring above and beyond any direct genetic effects.

  5. Identification of proliferative progenitors associated with prominent postnatal growth of the pons

    PubMed Central

    Lindquist, Robert A.; Guinto, Cristina D.; Rodas-Rodriguez, Jose L.; Fuentealba, Luis C.; Tate, Matthew C.; Rowitch, David H.; Alvarez-Buylla, Arturo

    2016-01-01

    The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. PMID:27188978

  6. Socio-environmental factors and postnatal depressive symptomatology: a longitudinal study.

    PubMed

    Séguin, L; Potvin, L; St-Denis, M; Loiselle, J

    1999-01-01

    This study analyses the relationships between stressful life conditions and postnatal depressive symptomatology in a group of women of low socioeconomic status (SES) and a group of women of high SES from the third to the ninth week postpartum. Nulliparous pregnant women were recruited from the prenatal care clinics of four hospitals. Multiple linear regression analyses demonstrated that after accounting for SES group membership and depressive symptomatology during pregnancy, early postnatal chronic stressors (frequent conflictual episodes with network members, maternal health problems) and social support were linked to later postnatal depressive symptomatology.

  7. Pre- and post-natal growth in two sisters with 3-M syndrome.

    PubMed

    Lugli, Licia; Bertucci, Emma; Mazza, Vincenzo; Elmakky, Amira; Ferrari, Fabrizio; Neuhaus, Christine; Percesepe, Antonio

    2016-04-01

    3-M syndrome (OMIM #273750) is a rare autosomal recessive growth disorder characterized by severe pre- and post-natal growth restriction, associated with minor skeletal abnormalities and dysmorphisms. Although the 3-M syndrome is well known as a primordial dwarfism, descriptions of the prenatal growth are missing. We report a family with variable phenotypic features of 3-M syndrome and we describe the prenatal and postnatal growth pattern of two affected sisters with a novel homozygous CUL7 mutation (c.3173-1G>C), showing a pre- and post-natal growth deficiency and a normal cranial circumference. PMID:26850509

  8. Between stigma and mother-blame: blind mothers' experiences in USA hospital postnatal care.

    PubMed

    Frederick, Angela

    2015-11-01

    This study examines instances of discrimination that blind mothers in the USA have experienced at the hands of doctors, nurses and social workers during hospital postnatal care. The author identifies postnatal care as the time when blind mothers are likely to face the most stigmatising interactions with medical staff, as it is when scepticism about their competence as mothers is at its height. The author argues these interactions must be understood within their institutional context in which ideologies of risk and mother-blame are embedded in hospital postnatal practices.

  9. Postnatal changes in sialylation of glycoproteins in rat liver.

    PubMed Central

    Oda-Tamai, S; Kato, S; Akamatsu, N

    1991-01-01

    Glycoproteins containing N-linked oligosaccharides were prepared from plasma and liver microsomes of rats aged 0-5 weeks, and galactose and sialic acid content were determined. The sialic acid/galactose ratios in plasma membrane N-glycans remained at about 1 throughout the postnatal period, suggesting that most of the galactose residues are sialylated. In the same way, it was suggested that most of the galactose residues of microsomal N-glycans were sialylated at 0, 4 and 5 weeks of age, but that the degree of sialylation was lower at the other ages, with a minimum at 2 weeks. When the activities of sialyltransferase and galactosyltransferase in liver Golgi membranes were determined, age-dependent changes were found, not only in the specific activities of the enzymes, but also in the Golgi membrane content per g of liver. The activity of galactosyltransferase per g of liver increased immediately after birth, whereas that of sialyltransferase remained at a low level for 2 weeks and then increased to a constant level at 4 weeks. It is probable that this delayed increase in the activity of sialyltransferase results in the decreased sialylation of microsomal N-glycans at 1, 2 and 3 weeks. Sialyltransferase was solubilized from the liver microsomes of rats aged 2, 3 and 4 weeks and characterized. Phosphocellulose column chromatography separated the activity into two subfractions, designated transferase I and transferase II in the order of elution. The increase in total sialyltransferase activity during this period was caused mainly by an increase in transferase I. Rechromatography of each transferase from 3-week-old rats after neuraminidase treatment showed that transferase I but not transferase II contained sialic acid residue(s) and that desialylated transferase I was eluted in a similar way as transferase II. Although the apparent Km value for CMP-N-acetylneuraminic acid and the heat stability of transferase I were different from those of transferase II, the

  10. Cobalt-Induced Ototoxicity in Rat Postnatal Cochlear Organotypic Cultures.

    PubMed

    Li, Peng; Ding, Dalian; Salvi, Richard; Roth, Jerome A

    2015-10-01

    Cobalt (Co) is a required divalent metal used in the production of metal alloys, batteries, and pigments and is a component of vitamin B12. Excessive uptake of Co is neurotoxic causing temporary or permanent hearing loss; however, its ototoxic effects on the sensory hair cells, neurons, and support cells in the cochlea are poorly understood. Accordingly, we treated postnatal day 3 rat cochlear organotypic cultures with various doses and durations of CoCl2 and quantified the damage to the hair cells, peripheral auditory nerve fibers, and spiral ganglion neurons (SGN). Five-day treatment with 250 μM CoCl2 caused extensive damage to hair cells and neurons which increased with dose and treatment duration. CoCl2 caused greater damage to outer hair cells than inner hair cells; damage was greatest in the base of the cochlea and decreased towards the base. CoCl2 increased expression of superoxide radical in hair cells and SGNs and SGN loss was characterized by nuclear condensation and fragmentation, morphological features of apoptosis. CoCl2 treatment increased the expression of caspase-3 indicative of caspase-mediated programmed cell death. These results identify hair cells and spiral ganglion neurons as the main targets of Co ototoxicity in vitro and implicate the superoxide radical as a trigger of caspase-mediated ototoxicity.

  11. A critical postnatal period of heightened vulnerability to lipopolysaccharide.

    PubMed

    Rourke, Kyle S; Mayer, Catherine A; MacFarlane, Peter M

    2016-10-01

    Evidence of respiratory abnormalities and vulnerability to infection during a critical period of development have been implicated in Sudden Infant Death Syndrome (SIDS). Here we investigated whether the acute hypoxic ventilatory response (HVR) exhibits a heightened vulnerability to the endotoxin lipopolysaccharide (LPS) during a critical period of development. The acute HVR was measured 2h after an i.p. injection of saline or LPS (0.1mg/kg) at various postnatal (P) ages (P5, P10, or P20days). LPS attenuated the early (1-2min) and late (4-6min) phase of the acute HVR in P10 but not P5 or P20 rats. The P10 age group exhibited the largest increase in brainstem TNFα and iNOS mRNA expression following LPS. LPS also caused a higher mortality rate in P10 rats (48%) compared to P5 (12%) and P20 (0%) age groups. After stratifying LPS treated P10 rats into survivors vs non-survivors, only the latter exhibited an attenuated HVR (specifically the early phase). Thus, the heightened vulnerability to endotoxin exposure during this critical period of development is characterized by a depression of the ventilatory response to acute hypoxia in association with an increased incidence of mortality. These data share similarities with some of the circumstances surrounding a SIDS scenario, including evidence of infection, increased brainstem cytokine expression, a disturbance in respiratory control, and a peak incidence of mortality during a critical period of development.

  12. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  13. Postnatal development of adrenergic responsiveness in the rabbit heart.

    PubMed

    Feng, Z P; Dryden, W F; Gordon, T

    1989-08-01

    It is uncertain how changes in the beta-adrenoceptor population influence the contractility of developing heart. To resolve this we have examined postnatal developmental changes in the adrenergic responsiveness of the rabbit heart. The inotropic effect of isoproterenol on isolated left ventricular papillary muscles from rabbits aged 3, 21, and 90 days was compared with the relative number of beta-adrenoceptors at each age measured using [3H]dihydroalprenolol ([3H]DHA) as the specific ligand. The maximum tension developed in response to isoproterenol increases from 37 +/- 7 to 175 +/- 33% above control twitch tension between 3 and 21 days of age; this is followed by a decrease to 68 +/- 12% in the young adult. During this period of development, there is a decline in EC50 towards increased sensitivity. These differences are partially accounted for by an increase in the numbers of specific [3H]DHA binding sites from 17.3 +/- 2.3 to 56.6 +/- 9.9 fmol/mg wet tissue weight from 3 to 21 days, and a subsequent decrease to 32 +/- 4.5 fmol/mg tissue in the young adult. The proportionally larger increase in contractility compared with the number of beta-adrenoceptor binding sites during the first 3 weeks of life is discussed in terms of the developmental changes in the efficacy of coupling between receptor occupancy and contraction.

  14. Postnatal development of northern fulmar chicks, Fulmarus glacialis.

    PubMed

    Phillips, R A; Hamer, K C

    2000-01-01

    The slow growth and large fat stores characteristic of many pelagic seabird chicks were generally assumed to reflect infrequent and unpredictable food provisioning by parents. Much less attention has been focused on the importance of intrinsic physiological processes in shaping patterns of development. In this study, we examined postnatal growth and changes in water content of different organs in fulmar chicks, Fulmarus glacialis, from Fair Isle, United Kingdom. After correcting for body size, mass growth rate was as high as in inshore-feeding species, which did not support the notion of an external constraint on growth imposed by the unpredictability of pelagic prey. Pectoral muscles and plumage grew more rapidly than other tissues. Pectorals also had a high water index, probably indicating slower maturation compared with leg muscles, which need to generate heat earlier on to free adults from brooding requirements. Lean dry mass of liver, kidney, and gut decreased markedly toward fledging, presumably because of high energetic costs of maintaining large metabolic machinery in older chicks and analogous to the situation in adult waders before migration. These results suggest that the general pattern of development of fulmars may be linked to changes in resource allocation as chicks grow and possibly a compromise at the tissue level between cell division and the attainment of mature function. PMID:11073795

  15. Postnatal Foot Length to Determine Gestational Age: A Pilot Study.

    PubMed

    Wyk, Lizelle Van; Smith, Johan

    2016-04-01

    Gestational age is a critical factor in the management, decision-making, prognostication and follow-up of newborn infants. It is also essential for research and epidemiology. In the absence of an early assessment of fetal gestation by abdominal ultrasound, many neonatal units in developing countries determine gestational age by neonatal scores and last menstrual period-both of which are highly inaccurate. The aim of this pilot study was to determine whether postnatal foot length measurement could accurately determine gestational age in a specified South African hospitalized neonatal population. Foot length was measured with a plastic Verniere's caliper. Foot length was shown to correlate well with gestational age (r = 0.919,p < 0.001). Intra-observer and inter-observer variability of foot length measurements was low. Foot length can therefore be used with high accuracy to determine the gestational age in a population where there is poor access to or utilization of antenatal sonar. PMID:26758249

  16. Postnatal Weight Gain in Preterm Infants with Severe Bronchopulmonary Dysplasia

    PubMed Central

    Natarajan, Girija; Johnson, Yvette R.; Brozanski, Beverly; Farrow, Kathryn N.; Zaniletti, Isabella; Padula, Michael A.; Asselin, Jeanette M.; Durand, David J.; Short, Billie L.; Pallotto, Eugenia K.; Dykes, Francine D.; Reber, Kristina M.; Evans, Jacquelyn R.; Murthy, Karna

    2015-01-01

    Objectives To characterize postnatal growth failure (PGF), defined as weight < 10th percentile for postmenstrual age (PMA) in preterm (≤27 weeks’ gestation) infants with severe bronchopulmonary dysplasia (sBPD) at specified time points during hospitalization, and to compare these in subgroups of infants who died/underwent tracheostomy and others. Study Design Retrospective review of data from the multicenter Children’s Hospital Neonatal Database (CHND). Results Our cohort (n = 375) had a mean ± standard deviation gestation of 25 ± 1.2 weeks and birth weight of 744 ± 196 g. At birth, 20% of infants were small for gestational age (SGA); age at referral to the CHND neonatal intensive care unit (NICU) was 46 ± 50 days. PGF rates at admission and at 36, 40, 44, and 48 weeks’ PMA were 33, 53, 67, 66, and 79% of infants, respectively. Tube feedings were administered to > 70% and parenteral nutrition to a third of infants between 36 and 44 weeks’ PMA. At discharge, 34% of infants required tube feedings and 50% had PGF. A significantly greater (38 versus 17%) proportion of infants who died/underwent tracheostomy (n = 69) were SGA, compared with those who did not (n = 306; p < 0.01). Conclusions Infants with sBPD commonly had progressive PGF during their NICU hospitalization. Fetal growth restriction may be a marker of adverse outcomes in this population. PMID:23690052

  17. Progressive postnatal pansynostosis: an insidious and pernicious form of craniosynostosis.

    PubMed

    Wood, Benjamin C; Oh, Albert K; Keating, Robert F; Boyajian, Michael J; Myseros, John S; Magge, Suresh N; Rogers, Gary F

    2015-09-01

    OBJECT Progressive postnatal pansynostosis (PPP) is a rare form of craniosynostosis that is characterized by a normal head shape, insidious decrease in percentile head circumference, and high rates of elevated intracranial pressure (ICP). This investigation describes the clinical, radiographic, and genetic features of this entity. METHODS The authors' craniofacial database for the period 1997-2013 was retrospectively culled to identify patients who had a normal or near-normal head shape and CT-confirmed multiple-suture synostosis. Patients with kleeblatt-schädel or previous craniofacial surgery were excluded. All demographic information was collected and analyzed. RESULTS Seventeen patients fit the inclusion criteria. Nine patients had a syndromic diagnosis: Crouzon syndrome (n = 4), Pfeiffer syndrome (n = 2), Saethre-Chotzen syndrome (n = 1), Apert syndrome (n = 1), and achondroplasia (n = 1). With the exception of 3 patients with mild turricephaly, all patients had a relatively normal head shape. Patients were diagnosed at an average age of 62.9 months. Nearly all patients had some combination of clinical, radiographic, or ophthalmological evidence of increased ICP. CONCLUSIONS PPP is insidious; diagnosis is typically delayed because the clinical signs are subtle and appear gradually. All normocephalic infants or children with a known or suspected craniosynostotic disorder should be carefully monitored; any decrease in percentile head circumference or signs/symptoms of increased ICP should prompt CT evaluation. PMID:26046691

  18. Autonomy, privacy and informed consent 2: postnatal perspective.

    PubMed

    Scott, P A; Taylor, A; Välimäki, M; Leino-Kilpi, H; Dassen, T; Gasull, M; Lemonidou, C; Arndt, M

    The nursing and healthcare ethics literature over the past 10 years has focused on issues of patient autonomy and patient rights. Despite the growing volume of literature exploring such topics, there is little empirical work investigating what is actually happening in clinical nursing or midwifery practice in relation to patient autonomy, privacy or informed consent, from the perspective of either patients or staff. This four-part series reports the results of a Scottish study that formed part of a multisite comparative research project funded by the European Commission, investigating issues of patient autonomy, privacy and informed consent. This article, the second of four, explores the issues of autonomy, privacy and informed consent in maternity care. The research questions asked were: (1) What is the perception of mothers' autonomy, privacy and informed consent in Scottish NHS hospitals, from the point of view of both mothers and midwives? (2) Are there differences in the perceptions of mothers and midwives on these issues? Data were collected by a self-completion questionnaire for mothers (n = 243) and staff (n = 170) on postnatal units in both district general and university teaching hospital. Results indicated that there are differences between the perceptions of mothers and midwives in relation to mothers' autonomy, privacy and informed consent. Most differences were found in the information-giving and decision-making elements of autonomy.

  19. Postnatal Foot Length to Determine Gestational Age: A Pilot Study.

    PubMed

    Wyk, Lizelle Van; Smith, Johan

    2016-04-01

    Gestational age is a critical factor in the management, decision-making, prognostication and follow-up of newborn infants. It is also essential for research and epidemiology. In the absence of an early assessment of fetal gestation by abdominal ultrasound, many neonatal units in developing countries determine gestational age by neonatal scores and last menstrual period-both of which are highly inaccurate. The aim of this pilot study was to determine whether postnatal foot length measurement could accurately determine gestational age in a specified South African hospitalized neonatal population. Foot length was measured with a plastic Verniere's caliper. Foot length was shown to correlate well with gestational age (r = 0.919,p < 0.001). Intra-observer and inter-observer variability of foot length measurements was low. Foot length can therefore be used with high accuracy to determine the gestational age in a population where there is poor access to or utilization of antenatal sonar.

  20. Explaining postnatal growth plasticity in a generalist brood parasite

    NASA Astrophysics Data System (ADS)

    Remeš, Vladimír

    2010-03-01

    Selection of a particular host has clear consequences for the performance of avian brood parasites. Experimental studies showed that growth rate and fledging mass of brood parasites varied between host species independently of the original host species. Finding correlates of this phenotypic plasticity in growth is important for assessing adaptiveness and potential fitness consequences of host choice. Here, I analyzed the effects of several host characteristics on growth rate and fledging mass of the young of brown-headed cowbird ( Molothrus ater), a generalist, non-evicting brood parasite. Cowbird chicks grew better in fast-developing host species and reached higher fledging mass in large hosts with fast postnatal development. A potential proximate mechanism linking fast growth and high fledging mass of cowbird with fast host development is superior food supply in fast-developing foster species. So far, we know very little about the consequences of the great plasticity in cowbird growth for later performance of the adult parasite. Thus, cowbird species could become interesting model systems for investigating the role of plasticity and optimization in the evolution of growth rate in birds.

  1. Rett syndrome: disruption of epigenetic control of postnatal neurological functions.

    PubMed

    Pohodich, Amy E; Zoghbi, Huda Y

    2015-10-15

    Loss-of-function mutations in the X-linked gene Methyl-CpG-binding protein 2 (MECP2) cause a devastating pediatric neurological disorder called Rett syndrome. In males, these mutations typically result in severe neonatal encephalopathy and early lethality. On the other hand, owing to expression of the normal allele in ∼50% of cells, females do not suffer encephalopathy but instead develop Rett syndrome. Typically females with Rett syndrome exhibit a delayed onset of neurologic dysfunction that manifests around the child's first birthday and progresses over the next few years. Features of this disorder include loss of acquired language and motor skills, intellectual impairment and hand stereotypies. The developmental regression observed in patients with Rett syndrome arises from altered neuronal function and is not the result of neurodegeneration. Maintenance of an appropriate level of MeCP2 appears integral to the function of healthy neurons as patients with increased levels of MeCP2, owing to duplication of the Xq28 region encompassing the MECP2 locus, also present with intellectual disability and progressive neurologic symptoms. Despite major efforts over the past two decades to elucidate the molecular functions of MeCP2, the mechanisms underlying the delayed appearance of symptoms remain unclear. In this review, we will highlight recent findings that have expanded our knowledge of MeCP2's functions, and we will discuss how epigenetic regulation, chromatin organization and circuit dynamics may contribute to the postnatal onset of Rett syndrome.

  2. Prenatal imprinting of postnatal specific appetites and feeding behavior.

    PubMed

    Nicolaïdis, Stylianos

    2008-10-01

    Epigenetic influences on the fetus's genotype have been shown to occur during intrauterine life. Experimentally imposed extracellular dehydration in pregnant rats (a model for human hyponatremia caused by gravidic vomiting) brings about a dramatic enhancement of salt appetite not only in the dam, but also in offspring when they reach adulthood. This phenomenon has been verified in human newborn infants and adults whose mothers experienced nausea and/or vomiting during pregnancy. Alcohol consumption during pregnancy enhances its palatability for the offspring. Ingestion of olfactory test substances like anise or carrot by the mother during pregnancy gives rise to a preference for the same testants in the offspring. Under- or overnutrition in the pregnant mother appears to play a role in reprogramming the postnatal regulation of both feeding and fat reserves in offspring. Both maternal under- and overnutrition during pregnancy predispose the offspring to later development of obesity and type 2 diabetes mellitus. A careful examination of the systems concerned with the regulation of food intake, and the neurosubstances involved in such regulation, reveals some of the mechanisms by which maternal nutritional status can affect the offspring and their food-related behaviors.

  3. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy

    PubMed Central

    Long, Chengzu; Amoasii, Leonela; Mireault, Alex A.; McAnally, John R.; Li, Hui; Sanchez-Ortiz, Efrain; Bhattacharyya, Samadrita; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus–9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth. PMID:26721683

  4. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth. PMID:20118923

  5. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these process...

  6. Interpretation of infant facial expression in the context of maternal postnatal depression.

    PubMed

    Stein, Alan; Arteche, Adriane; Lehtonen, Annukka; Craske, Michelle; Harvey, Allison; Counsell, Nicholas; Murray, Lynne

    2010-06-01

    Postnatal maternal depression is associated with difficulties in maternal responsiveness. As most signals arising from the infant come from facial expressions one possible explanation for these difficulties is that mothers with postnatal depression are differentially affected by particular infant facial expressions. Thus, this study investigates the effects of postnatal depression on mothers' perceptions of infant facial expressions. Participants (15 controls, 15 depressed and 15 anxious mothers) were asked to rate a number of infant facial expressions, ranging from very positive to very negative. Each face was shown twice, for a short and for a longer period of time in random order. Results revealed that mothers used more extreme ratings when shown the infant faces (i.e. more negative or more positive) for a longer period of time. Mothers suffering from postnatal depression were more likely to rate negative infant faces shown for a longer period more negatively than controls. The differences were specific to depression rather than an effect of general postnatal psychopathology-as no differences were observed between anxious mothers and controls. There were no other significant differences in maternal ratings of infant faces showed for short periods or for positive or neutral valence faces of either length. The findings that mothers with postnatal depression rate negative infant faces more negatively indicate that appraisal bias might underlie some of the difficulties that these mothers have in responding to their own infants signals. PMID:20381873

  7. Cellular Distribution of NDRG1 Protein in the Rat Kidney and Brain During Normal Postnatal Development

    PubMed Central

    Wakisaka, Yoshinobu; Furuta, Akiko; Masuda, Katsuaki; Morikawa, Wataru; Kuwano, Michihiko; Iwaki, Toru

    2003-01-01

    N-myc downregulated gene 1 (NDRG1) is a 43-kD protein whose mRNA is induced by DNA damage, hypoxia, or prolonged elevation of intracellular calcium. Although NDRG1 is also upregulated during cell differentiation, there are few studies on NDRG1 expression during postnatal development. Here we investigated the expression and cellular distribution of NDRG1 protein in rat kidney and brain during postnatal development. Immunohistochemical analysis revealed that the cellular localization of NDRG1 protein in the kidney changed from the proximal convoluted tubules to the collecting ducts between postnatal days 10 and 20. In the brain, a change in cellular expression was also found from the hippocampal pyramidal neurons to the astrocytes in the gray matter during the same postnatal period. These alterations in the cellular distribution of NDRG1 were associated with shifts in the molecular assembly on Western blots. Under non-reduced conditions, the main NDRG1 band was found only around 215 kD in both kidney and brain during the early postnatal stage. After postnatal day 10, the immunoreactive bands shifted to 43 kD in the kidney and 129 kD in the brain. These changes in the cellular distribution and state of assembly may correlate with the functional maturation of both organs. PMID:14566023

  8. Postnatal neurogenesis in the cow pineal gland: an immunohistochemical study.

    PubMed

    Gómez Esteban, M B; Muñoz Mosqueira, M I; Arroyo, A A; Muñoz Barragán, L

    2013-03-01

    In the pineal gland of cows and rats structures designated rosettes have been described both during embryonic development and in adult animals. In order to investigate the possible nature of the cells comprising such structures, in the present work we studied the pineal glands from 10 cows of one- or four-years-old using conventional immunocytochemical and confocal microscopy techniques. As markers of glial cells, we used anti-vimentin (Vim) and glial fibrillary acidic protein (GFAP) and anti-S-100 sera, and the pinealocytes were labelled with β-III tubulin. As a marker of stem cells, we used an antinestin serum, while an anti-PCNA serum was employed to label proliferating cells. To explore the neuronal nature of some cells of the rosettes, we used an anti-SRIF serum. The rosettes were seen to be present throughout the glandular parenchyma and displayed a central cavity surrounded by cells, most of which expressed all or just some of the above glial labels and nestin, although there were also some rosettes with cells that expressed β-III tubulin and other cells that expressed SRIF. Likewise, in the cells of the rosettes the cell nucleus showed strong expression of PCNA. Confocal microscopy revealed that the walls of the rosettes contained cells that coexpressed Vim/S-100, Vim/GFAP and Vim/nestin. The number of rosettes was significantly greater in the animals of one year of age with respect to the four-year-old cows. The present findings allow us to suggest that rosettes are evolving structures and that most of the cells present in their walls should be considered stem cells, and hence responsible for the postnatal neurogenesis occurring in the pineal gland of cows.

  9. Impact of Early Postnatal Androgen Exposure on Voice Development

    PubMed Central

    Grisa, Leila; Leonel, Maria L.; Gonçalves, Maria I. R.; Pletsch, Francisco; Sade, Elis R.; Custódio, Gislaine; Zagonel, Ivete P. S.; Longui, Carlos A.; Figueiredo, Bonald C.

    2012-01-01

    Background The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood. Methods The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels. Results Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz. Conclusions Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors. PMID:23284635

  10. Postnatal development of bile secretory physiology in the dog

    SciTech Connect

    Tavoloni, N.; Jones, M.J.; Berk, P.D.

    1985-04-01

    To determine whether bile formation in the dog is an immature process at birth, several determinants of bile secretion were studied in anesthetized, bile duct-cannulated puppies of 0-42 days of age and adult dogs. Basal canalicular bile flow rate, estimated by /sup 14/C-erythritol biliary clearance, averaged 0.182 microliter/min/g liver in 0-3 day-old puppies and increased to 0.324 and 0.461 microliter/min/g in puppies 7-21 and 28-42 days of age, respectively. Calculated ductular bile water reabsorption (/sup 14/C-erythritol biliary clearance-bile flow) was virtually absent in 0-3 day-old puppies, and averaged 0.017 and 0.092 microliter/min/g in puppies of 7-21 and 28-42 days of age, respectively. In adult dogs, ductular bile water reabsorption was 0.132 microliter/min/g. These functional deficiencies of the newborn dog were associated with an increased biliary permeability to /sup 3/H-inulin which could not be accounted for solely by an increased solute diffusion due to the lower rate of canalicular bile flow. Administration of taurocholate up to 2000 nmol/min/kg produced in all animals a similar increase in canalicular bile flow and bile acid excretion, and was not associated with changes in ductular bile water reabsorption rate. These findings are interpreted to indicate that, in the dog, bile secretory function is immature at birth and develops during postnatal life.

  11. Eating behavior, prenatal and postnatal growth in Angelman syndrome.

    PubMed

    Mertz, Line G B; Christensen, Rikke; Vogel, Ida; Hertz, Jens M; Østergaard, John R

    2014-11-01

    The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (pUPD) or a verified UBE3A mutation were present in five and four cases, respectively. Eating behavior was assessed by a questionnaire. Anthropometric measures were obtained from medical records and compared to Danish reference data. Children with pUPD had significantly larger birth weight and birth length than children carrying a deletion or a UBE3A mutation. We found no difference in birth weight or length in children with Class I or Class II deletions. When maternal birth weight and/or birth weight of siblings were taken into consideration, children with Class I deletion had a lower weight at birth than expected, and the weight continued to be reduced during the investigated initial five years of life. In contrast, children with pUPD showed hyperphagic behavior and their weight increased significantly after the age of two years. Accordingly, their body mass index was significantly increased as compared to children with a deletion. At birth, one child showed microcephaly. At five years of age, microcephaly was observed in half of the deletion cases, but in none of the cases with a UBE3A mutation or pUPD. The apparently normal cranial growth in the UBE3A and pUPD patients should however be regarded as the result of a generally increased growth. Eating behavior, pre- and postnatal growth in children with Angelman syndrome depends on genotype. PMID:25064682

  12. Postnatal arsenic exposure and attention impairment in school children.

    PubMed

    Rodríguez-Barranco, Miguel; Gil, Fernando; Hernández, Antonio F; Alguacil, Juan; Lorca, Andres; Mendoza, Ramón; Gómez, Inmaculada; Molina-Villalba, Isabel; González-Alzaga, Beatriz; Aguilar-Garduño, Clemente; Rohlman, Diane S; Lacasaña, Marina

    2016-01-01

    additional evidence that postnatal arsenic exposure impairs neurological function in children.

  13. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro

    PubMed Central

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T.; Hsu, Jasper; Riggs, Arthur D.; Tirrell, David A.

    2015-01-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133high fraction and among 230 micro-manipulated single CD133high cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro. PMID:25941840

  14. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T; Hsu, Jasper; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2015-09-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro.

  15. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat.

    PubMed

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  16. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  17. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  18. Oxidative stress in ventral prostate, ovary, and breast by 2,4-dichlorophenoxyacetic acid in pre- and postnatal exposed rats.

    PubMed

    Pochettino, Aristides A; Bongiovanni, Bettina; Duffard, Ricardo O; Evangelista de Duffard, Ana María

    2013-01-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used in agriculture and forestry since the 1940s. 2,4-D has been shown to produce a wide range of adverse effects-from embryotoxicity and teratogenicity to neurotoxicity-on animal and human health. The purpose of this study was to determine the possible effects of pre- and postnatal exposure to 2,4-D on oxidative stress in ventral prostate, ovary and breast. Pregnant rats were daily exposed to oral doses of 70 mg/kg/day of 2,4-D from 16 days of gestation up to 23 days after delivery. Then, the pups were sacrificed by decapitation at postnatal day (PND) 45, 60, or 90. Antioxidant enzyme activities and some parameters of the oxidative stress were assessed in ventral prostate, breast, and ovary. Results show that 2,4-D produced three different effects. First, it increased the concentration of some radical oxygen species and the rates of lipid peroxidation and protein oxidation in ventral prostate, thereby causing oxidative stress at all ages studied. Although an increase in the activity of some antioxidant enzymes was detected, this seemed to have been not enough to counteract the oxidative stress. Second, 2,4-D promoted the oxidative stress in the breasts, mainly during puberty and adulthood, probably because the developing gland is more sensitive to xenobiotics than the adult organ. Third, 2,4-D altered the activity of some antioxidant enzymes and increased lipid peroxide concentration in the ovary. This effect could reflect the variety of ovarian cell types and their different responses to endocrine changes during development.

  19. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan; Cooney, Craig A; Gilbert, Kathleen M; James, S Jill

    2012-12-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity.

  20. Analysis of gene-environment interactions in postnatal development of the mammalian intestine.

    PubMed

    Rakoff-Nahoum, Seth; Kong, Yong; Kleinstein, Steven H; Subramanian, Sathish; Ahern, Philip P; Gordon, Jeffrey I; Medzhitov, Ruslan

    2015-02-17

    Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development.

  1. Analysis of gene–environment interactions in postnatal development of the mammalian intestine

    PubMed Central

    Rakoff-Nahoum, Seth; Kong, Yong; Kleinstein, Steven H.; Subramanian, Sathish; Ahern, Philip P.; Gordon, Jeffrey I.; Medzhitov, Ruslan

    2015-01-01

    Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development. PMID:25691701

  2. Should We Promote Catch-Up Growth or Growth Acceleration in Low-Birthweight Infants?

    PubMed

    Singhal, Atul

    2015-01-01

    The idea that catch-up growth or growth acceleration has adverse effects on long-term health has generated much debate. This pattern of growth is most commonly seen after birth in infants of low birthweight; a global problem affecting over 20 million newborns a year. Faster postnatal growth may have short-term benefits but increases the long-term risk of aging, obesity and metabolic disease. Consequently, the optimal pattern of postnatal growth is unclear and is likely to differ in different populations. In infants born prematurely, faster postnatal growth improves long-term cognitive function but is associated with later risk factors for cardiovascular disease. So, on balance, the current policy is to promote faster growth by increasing nutrient intake (e.g. using higher-nutrient preterm formulas). Whether the same policy should apply to larger preterm infants is not known. Similarly, in infants from impoverished environments, the short-term benefits of faster postnatal growth may outweigh long-term disadvantages. However, whether similar considerations apply to infants from countries in transition is uncertain. For term infants from developed countries, promoting catch-up growth by nutritional supplementation has few advantages for short- or long-term health. Overall therefore, a 'one size fits all' solution for the optimal pattern of postnatal growth is unlikely. PMID:26111563

  3. Should We Promote Catch-Up Growth or Growth Acceleration in Low-Birthweight Infants?

    PubMed

    Singhal, Atul

    2015-01-01

    The idea that catch-up growth or growth acceleration has adverse effects on long-term health has generated much debate. This pattern of growth is most commonly seen after birth in infants of low birthweight; a global problem affecting over 20 million newborns a year. Faster postnatal growth may have short-term benefits but increases the long-term risk of aging, obesity and metabolic disease. Consequently, the optimal pattern of postnatal growth is unclear and is likely to differ in different populations. In infants born prematurely, faster postnatal growth improves long-term cognitive function but is associated with later risk factors for cardiovascular disease. So, on balance, the current policy is to promote faster growth by increasing nutrient intake (e.g. using higher-nutrient preterm formulas). Whether the same policy should apply to larger preterm infants is not known. Similarly, in infants from impoverished environments, the short-term benefits of faster postnatal growth may outweigh long-term disadvantages. However, whether similar considerations apply to infants from countries in transition is uncertain. For term infants from developed countries, promoting catch-up growth by nutritional supplementation has few advantages for short- or long-term health. Overall therefore, a 'one size fits all' solution for the optimal pattern of postnatal growth is unlikely.

  4. Cell migration in the normal and pathological postnatal mammalian brain

    PubMed Central

    Canoll, Peter; Goldman, James E.

    2009-01-01

    In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG) are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, protein involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration towards altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via

  5. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy

    PubMed Central

    Shinwell, E; Karplus, M; Reich, D; Weintraub, Z; Blazer, S; Bader, D; Yurman, S; Dolfin, T; Kogan, A; Dollberg, S; Arbel, E; Goldberg, M; Gur, I; Naor, N; Sirota, L; Mogilner, S; Zaritsky, A; Barak, M; Gottfried, E

    2000-01-01

    OBJECTIVE—To study the long term neurodevelopmental outcome of children who participated in a randomised, double blind, placebo controlled study of early postnatal dexamethasone treatment for prevention of chronic lung disease.
METHODS—The original study compared a three day course of dexamethasone (n = 132) with a saline placebo (n = 116) administered from before 12 hours of age in preterm infants, who were ventilated for respiratory distress syndrome and had received surfactant treatment. Dexamethasone treatment was associated with an increased incidence of hypertension, hyperglycaemia, and gastrointestinal haemorrhage and no reduction in either the incidence or severity of chronic lung disease or mortality. A total of 195 infants survived to discharge and five died later. Follow up data were obtained on 159 of 190 survivors at a mean (SD) age of 53 (18) months.
RESULTS—No differences were found between the groups in terms of perinatal or neonatal course, antenatal steroid administration, severity of initial disease, or major neonatal morbidity. Dexamethasone treated children had a significantly higher incidence of cerebral palsy than those receiving placebo (39/80 (49%) v 12/79 (15%) respectively; odds ratio (OR) 4.62, 95% confidence interval (95% CI) 2.38 to 8.98). The most common form of cerebral palsy was spastic diplegia (incidence 22/80 (28%) v 5/79 (6%) in dexamethasone and placebo treated infants respectively; OR 4.45, 95% CI 1.95to 10.15). Developmental delay was significantly more common in the dexamethasone treated group (44/80 (55%)) than in the placebo treated group (23/79 (29%); OR 2.87, 95% CI 1.53 to 5.38). Dexamethasone treated infants had more periventricular leucomalacia and less intraventricular haemorrhage in the neonatal period than those in the placebo group, although these differences were not statistically significant. Eleven children with cerebral palsy had normal ultrasound scans in the neonatal period; all 11 had received

  6. Postnatal development of the motor representation in primary motor cortex.

    PubMed

    Chakrabarty, S; Martin, J H

    2000-11-01

    The purpose of this study was to examine when the muscles and joints of the forelimb become represented in primary motor cortex (M1) during postnatal life and how local representation patterns change. We examined these questions in cats that were anesthetized (45-90 days, n = 14; adults, n = 3) and awake (n = 4; 52-86 days). We used intracortical microstimulation (45 ms duration train, 330 Hz, 0.2-ms balanced biphasic pulses, with a leading cathodic pulse; up to 100 microA). In young animals (less than day 70), we also used stimulus trains and pulses that could produce greater temporal summation (up to 200-ms train duration, down to 143-Hz stimulus frequency, up to 0.8-ms pulse width). Anesthetized animals were areflexic, and muscle tone was similar to that of the awake cats (i.e., relaxed, not weight or load bearing, with minimal resistance to passive stretch). We monitored the kinematic effects of microstimulation and changes in electromyographic (EMG) activity in forelimb muscles. There was an age-dependent reduction in the number of sites where microstimulation did not produce a motor effect (i.e., ineffective sites), from 95% in animals younger than 60 days to 33% between 81 and 90 days. In adults, 24% of sites were ineffective. Median current thresholds for evoking movements dropped from 79 microA in animals younger than day 60 to 38 and 28 microA in day 81-90 animals and adults, respectively. There was a proximal-to-distal development of the somatotopic organization of the motor map. Stimulation at the majority of sites in animals younger than day 71 produced shoulder and elbow movement. Wrist sites were first present by day 71, and digit sites by day 81. Sites at which multiple responses were evoked, between 1.0 and 1.5 times threshold, were present after day 71, and increased with age. A higher percentage of distal joints were co-represented with other joints, rather than being represented alone. We found that effective sites initially were scattered and

  7. Does it really matter where women live? A multilevel analysis of the determinants of postnatal care in Nigeria.

    PubMed

    Ononokpono, Dorothy N; Odimegwu, Clifford O; Imasiku, Eunice N S; Adedini, Sunday A

    2014-05-01

    Although postnatal care is one of the major interventions recommended for the reduction of maternal and newborn deaths worldwide, almost two-third (56 %) of women in Nigeria do not receive postnatal care. Attempts to explain this situation have focused on individual and household level factors, but the role of community characteristics has received less attention.This study examines community factors associated with the receipt of postnatal care in Nigeria and the moderating effects of community factors on the association between individual factors and postnatal care. Data was drawn from the 2008 Nigeria Demographic and Health Survey, and a sample of 17,846 women aged 15-49 years was selected. We employed a multilevel logistic regression analysis to identify community factors associated with postnatal care. Our findings showed that significant variations in receiving postnatal care exist across communities. Specifically, Nigerian women's likelihood of receiving postnatal care is a function of where they reside. Living in communities with a high proportion of educated women (OR = 2.04; 95 % CI = 1.32-3.16; p < 0.001) and a high proportion of those who have had a health facility delivery (OR = 17.86; 95 % CI = 8.34-38.24; p < 0.001) was significantly associated with an increased likelihood of receiving postnatal care. Community women's education moderated the association between ethnic origin and postnatal care. Community variance in postnatal care was significant (τ = 10.352, p = 0.001). Community interventions aimed at improving postnatal care should take into account the community context in which women live. To close the gap in community variations in postnatal care, secondary and higher education for women, and health facility delivery should be increased in disadvantaged communities.

  8. Postnatal development of the myenteric glial network and its modulation by butyrate.

    PubMed

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  9. Relation of nitrite to structural and mechanical adaptation of arteries during postnatal development.

    PubMed

    Huang, Yi; Guo, Xiaomei; Kassab, Ghassan S

    2008-12-01

    Mammalian arteries undergo rapid remodeling during postnatal growth and development. The high wall shear stress at birth is an important mediator of postnatal endothelial nitric oxide (NO) and consequently of growth and remodeling. The objective of this study was to quantify the NO production in relation to geometric and mechanical remodeling of aorta and pulmonary artery during postnatal development. Fifty-one C57BL/6 mice aged from 1 to 33 days were divided into 8 age groups for measurements of nitrite (NO(x)). Systematic measurements of NO(x) in each rings were made in the main pulmonary artery and primary branch as well as along the length of aorta using the combination of a diazo coupling method and high-performance liquid chromatography. The NO(x) data on the aorta were correlated with data on the geometry (diameter, wall thickness) and mechanical properties (stress, strain, elastic modulus) in the same strain of mice under the same conditions. Our findings show postnatal age and vessel size affects the NO production; i.e., the NO(x) decreased with age and diameter. Furthermore, there is a significant positive correlation between strain and NO(x) but negative correlation between both wall thickness and elastic modulus and NO(x) levels. These findings suggest an important interplay between NO(x) and geometric and mechanical remodeling during postnatal growth and development. PMID:18807188

  10. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood.

  11. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood. PMID:26493607

  12. Morphological observations on the metanephros in the postnatal opossum, Didelphis virginiana.

    PubMed

    Krause, W J; Cutts, J H; Leeson, C R

    1979-10-01

    The metanephros of the newborn opossum is very immature, consisting only of collecting tubules and a few immature nephrons. Development during the postnatal period can be divided into two distinct phases. The initial phase occurs during the first 60 days of postnatal life and is concerned with nephronogenesis and the differentiation of nephrons that have formed during this period. The second phase lasts through the remainder of the postnatal period and is concerned with further differentiation and growth of established nephrons. During this latter period the tubular portion of the nephron increases in length and the renal corpuscle increases in diameter. Ultrastructural observations suggest that metanephric nephrons are not functional during the first 4 days of postnatal life, while the mesonephros reaches the height of its development during this period: there may be some functional overlap between the mesonephros and metanephros during the latter part of the first week of postnatal life. The pattern of nephron induction and differentiation in the opossum is discussed.

  13. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development.

  14. In utero Transplanted Human Hepatocytes Allows for Postnatal Engraftment of Human Hepatocytes in Pigs

    PubMed Central

    Fisher, James E; Lillegard, Joseph B; Mckenzie, Travis J; Rodysill, Brian R; Wettstein, Peter J; Nyberg, Scott L

    2012-01-01

    In utero cell transplantation (IUCT) can lead to postnatal engraftment of human cells in the xenogeneic recipient. Most reports of IUCTs have involved hematopoietic stem cells. It is unknown if human hepatocytes used for IUCT in fetal pigs will lead to engraftment of these same cells in the postnatal environment. In this study, fetal pigs received direct liver injections of 1×107 human hepatocytes in utero and were delivered by cesarean-section at term. Piglets received a second direct liver injection of 5×107 human hepatocytes 1 week postnatally. Serum was analyzed for human albumin at 2, 4, and 6 weeks post-engraftment. Piglet livers were harvested 6 weeks after transplantation and examined by immunohistochemistry, PCR and fluorescence in situ hybridization for human specific sequences. Piglets receiving IUCT with human hepatocytes that were postnatally engrafted with human hepatocytes showed significant levels of human albumin production in their serum at all post-engraftment time points. Human albumin gene expression, the presence of human hepatocytes and the presence of human beta-2 microglobulin were all confirmed 6 weeks post-engraftment. IUCT in fetal pigs using human hepatocytes early in gestation allowed for engraftment of human hepatocytes, which remained viable and functional for weeks after transplantation. IUCT followed by postnatal engraftment may provide a future means for large scale expansion of human hepatocytes in genetically-engineered pigs. PMID:23280879

  15. [Review and guidelines on the prevention, diagnosis and treatment of post-natal cytomegalovirus infection].

    PubMed

    Alarcón Allen, A; Baquero-Artigao, F

    2011-01-01

    Postnatal cytomegalovirus (CMV) infection in the newborn can occur from exposure to maternal cervical secretions during birth, ingestion of breast milk, transfusion of blood products or transmission by body fluids of infected people. Breast milk is the main source of infection, given the high rate of CMV-positive mothers excreting CMV in milk. Freezing reduces the risk of CMV transmission by breastfeeding, although it does not eliminate it completely. Pasteurisation prevents such transmission, but it can alter the immunological properties of breast milk. Postnatal CMV infection is usually asymptomatic, as it normally results from viral reactivation in the mother, and the neonate is born with protective antibodies. However, in the very low birth weight premature infant the amount of transferred antibodies is smaller and a symptomatic infection can occur. Symptomatic post-natal CMV infection in the newborn typically causes hepatitis, neutropenia, thrombocytopenia or sepsis-like syndrome. Pneumonitis and enteritis are less common, but very characteristic. Diagnosis is based on urine virus detection at the time of onset of symptoms. Postnatal CMV infection in the newborn generally resolves spontaneously without antiviral treatment. Ganciclovir should be reserved for severe cases. Unlike congenital CMV disease, post-natal CMV infection in the preterm infant does not seem to be associated with hearing loss or abnormal neuro-development in long term follow-up.

  16. Determinants of antenatal care, institutional delivery and postnatal care services utilization in Nigeria

    PubMed Central

    Dahiru, Tukur; Oche, Oche Mansur

    2015-01-01

    Introduction Utilization of antenatal care, institutional delivery and postnatal care services in Nigeria are poor even by african average. Methods We analysed the 2013 Nigeria DHS to determine factors associated with utilization of these health MCH indicators by employing both bivariate and multivariate logistic regressions. Results Overall, 54% of women had at least four ANC visits, 37% delivered in health facility and 29% of new born had postnatal care within two of births. Factors that consistently predict the utilization of the three MCH services are maternal and husband's level education, place of residence, wealth level and parity. Antenatal care strongly predicts both health facility delivery (OR = 2.16, 95%CI: 1.99-2.34) and postnatal care utilization (OR = 4.67, 95%CI: 3.95-5.54); while health facility delivery equally predicting postnatal care (OR = 2.84, 95%CI: 2.20-2.80). Conclusion Improving utilization of these three MCH indicators will require targeting women in the rural areas and those with low level of education as well as creating demand for health facility delivery. Improving ANC use by making it available and accessible will have a multiplier effect of improving facility delivery which will lead to improved postnatal care utilization. PMID:26587168

  17. Influences of prenatal and postnatal stress on adult hippocampal neurogenesis: the double neurogenic niche hypothesis.

    PubMed

    Ortega-Martínez, Sylvia

    2015-03-15

    Adult hippocampal neurogenesis (AHN) is involved in learning, memory, and stress, and plays a significant role in neurodegenerative and psychiatric disorders. As an age-dependent process, AHN is largely influenced by changes that occur during the pre- and postnatal stages of brain development, and constitutes an important field of research. This review examines the current knowledge regarding the regulators of AHN and the influence of prenatal and postnatal stress on later AHN. In addition, a hypothesis is presented suggesting that each kind of stress influences a specific neurogenic pool, developmental or postnatal, that later becomes a precursor with important repercussions for AHN. This hypothesis is referred to as "the double neurogenic niche hypothesis." Discovering what receptors, transcription factors, or genes are specifically activated by different stressors is proposed as an essential line of future research in the field. Such knowledge shall constitute an important starting point toward the goal of modifying AHN in neurodegenerative or psychiatric diseases.

  18. Child maltreatment and foster care: unpacking the effects of prenatal and postnatal parental substance use.

    PubMed

    Smith, Dana K; Johnson, Amber B; Pears, Katherine C; Fisher, Philip A; DeGarmo, David S

    2007-05-01

    Parental substance use is a well-documented risk for children. However, little is known about specific effects of prenatal and postnatal substance use on child maltreatment and foster care placement transitions. In this study, the authors unpacked unique effects of (a) prenatal and postnatal parental alcohol and drug use and (b) maternal and paternal substance use as predictors of child maltreatment and foster care placement transitions in a sample of 117 maltreated foster care children. Models were tested with structural equation path modeling. Results indicated that prenatal maternal alcohol use predicted child maltreatment and that combined prenatal maternal alcohol and drug use predicted foster care placement transitions. Prenatal maternal alcohol and drug use also predicted postnatal paternal alcohol and drug use, which in turn predicted foster care placement transitions. Findings highlight the potential integrative role that maternal and paternal substance use has on the risk for child maltreatment and foster care placement transitions.

  19. Fetal Brain Magnetic Resonance Imaging Findings In Congenital Cytomegalovirus Infection With Postnatal Imaging Correlation.

    PubMed

    Averill, Lauren W; Kandula, Vinay V R; Akyol, Yakup; Epelman, Monica

    2015-12-01

    Fetal brain magnetic resonance imaging (MRI) is a powerful tool in the diagnosis of symptomatic congenital cytomegalovirus infection, requiring a detailed search for specific features. A combination of anterior temporal lobe abnormalities, white matter lesions, and polymicrogyria is especially predictive. Fetal MRI may provide a unique opportunity to detect anterior temporal cysts and occipital horn septations, as dilation of these areas may decrease later in development. Cortical migration abnormalities, white matter abnormalities, cerebellar dysplasia, and periventricular calcifications are often better depicted on postnatal imaging but can also be detected on fetal MRI. We present the prenatal brain MRI findings seen in congenital cytomegalovirus infection and provide postnatal imaging correlation, highlighting the evolution of findings at different times in prenatal and postnatal developments. PMID:26614131

  20. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring.

  1. Age-dependent changes in porcine alveolar macrophage function during the postnatal period of alveolarization

    PubMed Central

    Dickie, R.; Tasat, D.R.; Fernandez Alanis, E.; Delfosse, V.; Tsuda, A.

    2008-01-01

    During early postnatal ontogeny in most mammals, the lung is structurally and functionally immature. In some species with relatively altricial lung morphology, there is evidence of a coupling between functional maturity of the pulmonary cellular immune system and alveolar maturation. Herein, we examine changes in alveolar macrophage (AM) number and function occurring during alveolarization in a more precocial species, the pig, to determine if heightened oxidative metabolism and phagocytic ability is similarly delayed until completion of lung morphogenesis. We assessed cell differential in lavage fluid and evaluated two main functional parameters of AM phagocytic response, the generation of reactive oxygen species (ROS), and particle internalization. AM functional maturation occurred mainly during the first postnatal week: the proportion of AMs, ROS generation, and phagocytosis all increased significantly. These results suggest maturational improvement of the impaired AM-based pulmonary immune system of the neonate piglet occurs during the postnatal period of rapid alveolarization. PMID:18775449

  2. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  3. Postnatal onset of retinal degeneration by loss of embryonic Ezh2 repression of Six1

    PubMed Central

    Yan, Naihong; Cheng, Lin; Cho, Kinsang; Malik, Muhammad Taimur A.; Xiao, Lirong; Guo, Chenying; Yu, Honghua; Zhu, Ruilin; Rao, Rajesh C.; Chen, Dong Feng

    2016-01-01

    Some adult-onset disorders may be linked to dysregulated embryonic development, yet the mechanisms underlying this association remain poorly understood. Congenital retinal degenerative diseases are blinding disorders characterized by postnatal degeneration of photoreceptors, and affect nearly 2 million individuals worldwide, but ∼50% do not have a known mutation, implicating contributions of epigenetic factors. We found that embryonic deletion of the histone methyltransferase (HMT) Ezh2 from all retinal progenitors resulted in progressive photoreceptor degeneration throughout postnatal life, via derepression of fetal expression of Six1 and its targets. Forced expression of Six1 in the postnatal retina was sufficient to induce photoreceptor degeneration. Ezh2, although enriched in the embryonic retina, was not present in the mature retina; these data reveal an Ezh2-mediated feed-forward pathway that is required for maintaining photoreceptor homeostasis in the adult and suggest novel targets for retinal degeneration therapy. PMID:27677711

  4. Postnatal choline supplementation in preweanling mice: sexually dimorphic behavioral and neurochemical effects.

    PubMed

    Ricceri, L; Berger-Sweeney, J

    1998-12-01

    The aim of this study was to investigate the effects of postnatal choline supplementation on neurochemical and behavioral parameters in preweanling BALB/cByJ mice. Mouse pups were injected daily subcutaneously with choline chloride (0.85 mM/g body weight) from Postnatal Day (PND) 1 to PND 16. Pups performed a passive avoidance (PA) learning task on PND 17-18 and a 30-min locomotor activity test on PND 19. The choline treatment affected retention of the PA task on PND 18. The treatment also increased locomotor activity in females, but not in males, on PND 19. Choline acetyltransferase (ChAT) enzymatic activity was measured on PND 20 and revealed that choline administration in the first 2 weeks of postnatal life selectively affects male pups. Choline's effect, as seen in previous rat experiments, was to decrease ChAT activity in the hippocampal region.

  5. Postnatal Development of the Craniofacial Skeleton in Male C57BL/6J Mice

    PubMed Central

    2016-01-01

    C57BL/6J is one of the most commonly used inbred mouse strains in biomedical research, including studies of craniofacial development and teratogenic studies of craniofacial malformation. The current study quantitatively assessed the development of the skull in male C57BL/6J mice by using high-resolution 3D imaging of 55 landmarks from 48 male mice over 10 developmental time points from postnatal day 0 to 90. The growth of the skull plateaued at approximately postnatal day 60, and the shape of the skull did not change markedly thereafter. The amount of asymmetry in the craniofacial skeleton seemed to peak at birth, but considerable variation persisted in all age groups. For C57BL/6J male mice, postnatal day 60 is the earliest time point at which the skull achieves its adult shape and proportions. In addition, C57BL/6J male mice appear to have an inherent susceptibility to craniofacial malformation. PMID:27025802

  6. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring.

    PubMed

    Wasinski, Frederick; Estrela, Gabriel R; Arakaki, Aline M; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  7. PTH Receptor Signaling in Osteoblasts Regulates Endochondral Vascularization in Maintenance of Postnatal Growth Plate

    PubMed Central

    Qiu, Tao; Xian, Lingling; Crane, Janet; Wen, Chunyi; Hilton, Matthew; Lu, William; Newman, Peter; Cao, Xu

    2016-01-01

    Longitudinal growth of postnatal bone requires precise control of growth plate cartilage chondrocytes and subsequent osteogenesis and bone formation. Little is known about the role of angiogenesis and bone remodeling in maintenance of cartilaginous growth plate. Parathyroid hormone (PTH) stimulates bone remodeling by activating PTH receptor (PTH1R). Mice with conditional deletion of PTH1R in osteoblasts showed disrupted trabecular bone formation. The mice also exhibited postnatal growth retardation with profound defects in growth plate cartilage, ascribable predominantly to a decrease in number of hypertrophic chondrocytes, resulting in premature fusion of the growth plate and shortened long bones. Further characterization of hypertrophic zone and primary spongiosa revealed that endochondral angiogenesis and vascular invasion of the cartilage were impaired, which was associated with aberrant chondrocyte maturation and cartilage development. These studies reveal that PTH1R signaling in osteoblasts regulates cartilaginous growth plate for postnatal growth of bone. PMID:25196529

  8. Facility Delivery, Postnatal Care and Neonatal Deaths in India: Nationally-Representative Case-Control Studies

    PubMed Central

    Fadel, Shaza A.; Ram, Usha; Morris, Shaun K.; Begum, Rehana; Shet, Anita; Jotkar, Raju; Jha, Prabhat

    2015-01-01

    Objective Clinical studies demonstrate the efficacy of interventions to reduce neonatal deaths, but there are fewer studies of their real-life effectiveness. In India, women often seek facility delivery after complications arise, rather than to avoid complications. Our objective was to quantify the association of facility delivery and postnatal checkups with neonatal mortality while examining the “reverse causality” in which the mothers deliver at a health facility due to adverse perinatal events. Methods We conducted nationally representative case-control studies of about 300,000 live births and 4,000 neonatal deaths to examine the effect of, place of delivery and postnatal checkup on neonatal mortality. We compared neonatal deaths to all live births and to a subset of live births reporting excessive bleeding or obstructed labour that were more comparable to cases in seeking care. Findings In the larger study of 2004–8 births, facility delivery without postnatal checkup was associated with an increased odds of neonatal death (Odds ratio = 2.5; 99% CI 2.2–2.9), especially for early versus late neonatal deaths. However, use of more comparable controls showed marked attenuation (Odds ratio = 0.5; 0.4–0.5). Facility delivery with postnatal checkup was associated with reduced odds of neonatal death. Excess risks were attenuated in the earlier study of 2001–4 births. Conclusion The combined effect of facility deliveries with postnatal checks ups is substantially higher than just facility delivery alone. Evaluation of the real-life effectiveness of interventions to reduce child and maternal deaths need to consider reverse causality. If these associations are causal, facility delivery with postnatal check up could avoid about 1/3 of all neonatal deaths in India (~100,000/year). PMID:26479476

  9. Attractive action of FGF-signaling contributes to the postnatal developing hippocampus.

    PubMed

    Cuccioli, V; Bueno, C; Belvindrah, R; Lledo, P-M; Martinez, S

    2015-04-01

    During brain development neural cell migration is a crucial, well-orchestrated, process, which leads to the proper whole brain structural organization. As development proceeds, new neurons are continuously produced, and this protracted neurogenesis is maintained throughout life in specialized germinative areas inside the telencephalon: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. In the anterior SVZ, newly generated neurons migrate through long distances, along the rostral migratory stream (RMS), before reaching their final destinations in the olfactory bulb (OB). Intriguingly, recent observations pointed out the existence of other postnatal tangential routes of migration alternative to the RMS but still starting from the SVZ. The presence of such dynamic and heterogeneous cell movements contributes to important features in the postnatal brain such as neural cell replacement and plasticity in cortical regions. In this work, we asked whether a caudal migratory pathway starting from the caudal SVZ continues through life. Strikingly, in vivo analysis of this caudal migration revealed the presence of a postnatal contribution of SVZ to the hippocampus. In vitro studies of the caudal migratory stream revealed the role of FGF signaling in attracting caudally the migrating neuroblasts during postnatal stages. Our findings demonstrate a postnatal neuronal contribution from the caudal ganglionic eminence (CGE) CGE-SVZ to the hippocampus through an FGF-dependent migrating mechanism. All together our data emphasizes the emerging idea that a developmental program is still operating in discrete domains of the postnatal brain and may contribute to the regulation of neural cell replacement processes in physiological plasticity and/or pathological circumstances.

  10. Discerning Neurogenic vs. Non-Neurogenic Postnatal Lateral Ventricular Astrocytes via Activity-Dependent Input

    PubMed Central

    Adlaf, Elena W.; Mitchell-Dick, Aaron; Kuo, Chay T.

    2016-01-01

    Throughout development, neural stem cells (NSCs) give rise to differentiated neurons, astrocytes, and oligodendrocytes which together modulate perception, memory, and behavior in the adult nervous system. To understand how NSCs contribute to postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV) neurogenic niche in the rodent postnatal brain serves as an excellent model system. It is a specialized area containing self-renewing GFAP+ astrocytes functioning as NSCs generating new neurons throughout life. In addition to this now well-studied regenerative process, the LV niche also generates differentiated astrocytes, playing an important role for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic identity of NSCs has complicated their distinction from terminally-differentiated astrocytes in the niche. Our current models of postnatal/adult LV neurogenesis do not take into account local astrogenesis, or the possibility that cellular markers may be similar between non-dividing GFAP+ NSCs and their differentiated astrocyte daughters. Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with extracellular/niche-driven cues. It is generally believed that these local effects are responsible for sustaining neurogenesis, though behavioral paradigms and disease states have suggested possibilities for neural circuit-level modulation. With recent experimental findings that neuronal stimulation can directly evoke responses in LV NSCs, it is possible that this exciting property will add a new dimension to identifying postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia. PMID:27047330

  11. The postnatal origin of adult neural stem cells and the effects of glucocorticoids on their genesis.

    PubMed

    Ortega-Martínez, Sylvia; Trejo, José L

    2015-02-15

    The relevance of adult neurogenesis in hippocampal function is well documented, as is the potential impact stress has on the adult neurogenic niche. Adult born neurons are generated from neural precursors in the dentate gyrus (DG), although the point in postnatal development that these cell precursors originate is not known. This is particularly relevant if we consider the effects stress may have on the development of neural precursors, and whether such effects on adult neurogenesis and behavior may persist in the long-term. We have analyzed the proportion of neural precursors in the adult murine hippocampus born on specific days during postnatal development using a dual birth-dating analysis, and we assessed their sensitivity to dexamethasone (DEX) on the peak day of cell generation. We also studied the consequences of postnatal DEX administration on adult hippocampal-dependent behavior. Postnatal day 6 (P6) is a preferred period for proliferating neural stem cells (NSCs) to become the precursors that remain in a proliferative state throughout adulthood. This window is independent of gender, the cell's location in the DG granule cell layer or their rostro-caudal position. DEX administration at P6 reduces the size of the adult NSC pool in the DG, which is correlated with poor learning/memory capacity and increased anxiety-like behavior. These results indicate that aNSCs are generated non-uniformly during postnatal development, with peak generation on day P6, and that stress receptor activation during the key period of postnatal NSC generation has a profound impact on both adult hippocampal neurogenesis and behavior.

  12. Postnatal growth defects in mice with constitutive depletion of central serotonin.

    PubMed

    Narboux-Nême, Nicolas; Angenard, Gaelle; Mosienko, Valentina; Klempin, Friederike; Pitychoutis, Pothitos M; Deneris, Evan; Bader, Michael; Giros, Bruno; Alenina, Natalia; Gaspar, Patricia

    2013-01-16

    Although the trophic actions of serotonin (5-HT) are well established, only few developmental defects have been reported in mouse strains with constitutive hyposerotonergia. We analyzed postnatal growth and cortical development in three different mutant mouse strains with constitutive reductions in central 5-HT levels. We compared two previously published mouse strains with severe (-95%) depletions of 5-HT, the tryptophan hydroxylase (Tph) 2(-/-) mouse line and VMAT2(sert-cre) mice, with a new strain, in which VMAT2 deletion is driven by Pet1 (VMAT2(pet1-cre)) in 5-HT raphe neurons leading to partial (-75%) reduction in brain 5-HT levels. We find that normal embryonic growth and postnatal growth retardation are common features of all these mouse strains. Postnatal growth retardation varied from mild to severe according to the extent of the brain 5-HT reduction and gender. Normal growth was reinstated in VMAT2(sert-cre) mice by reconstituting central 5-HT stores. Growth abnormalities could not be linked to altered food intake or temperature control. Morphological study of the cerebral cortex over postnatal development showed a delayed maturation of the upper cortical layers in the VMAT2(sert-cre) and Tph2(-/-) mice, but not in the VMAT2(pet1-cre) mice. No changes in layer-specific gene expression or morphological alterations of barrel cortex development were found. Overall, these observations sustain the notion that central 5-HT signaling is required for the preweaning growth spurt of mouse pups. Brain development appeared to be immune to severe central 5-HT depletion for its overall growth during prenatal life, whereas reduced brain growth and delayed cortical maturation development occurred during postnatal life. Reduced developmental 5-HT signaling during postnatal development might modulate the function and fine structure of neural circuits in ways that affect adult behavior. PMID:23336056

  13. Crying babies, tired mothers - challenges of the postnatal hospital stay: an interpretive phenomenological study

    PubMed Central

    2010-01-01

    Background According to an old Swiss proverb, "a new mother lazing in childbed is a blessing to her family". Today mothers rarely enjoy restful days after birth, but enter directly into the challenge of combining baby- and self-care. They often face a combination of infant crying and personal tiredness. Yet, routine postnatal care often lacks effective strategies to alleviate these challenges which can adversely affect family health. We explored how new mothers experience and handle postnatal infant crying and their own tiredness in the context of changing hospital care practices in Switzerland. Methods Purposeful sampling was used to enroll 15 mothers of diverse parity and educational backgrounds, all of who had given birth to a full term healthy neonate. Using interpretive phenomenology, we analyzed interview and participant observation data collected during the postnatal hospital stay and at 6 and 12 weeks post birth. This paper reports on the postnatal hospital experience. Results Women's personal beliefs about beneficial childcare practices shaped how they cared for their newborn's and their own needs during the early postnatal period in the hospital. These beliefs ranged from an infant-centered approach focused on the infant's development of a basic sense of trust to an approach that balanced the infants' demands with the mother's personal needs. Getting adequate rest was particularly difficult for mothers striving to provide infant-centered care for an unsettled neonate. These mothers suffered from sleep deprivation and severe tiredness unless they were able to leave the baby with health professionals for several hours during the night. Conclusion New mothers often need permission to attend to their own needs, as well as practical support with childcare to recover from birth especially when neonates are fussy. To strengthen family health from the earliest stage, postnatal care should establish conditions which enable new mothers to balance the care of their

  14. Postnatal development of lateralized motor preference in the African grey parrot (Psittacus erithacus).

    PubMed

    Snyder, P J; Bonner, J A

    2001-01-01

    The parrot appears to provide a potentially unique animal model of handedness in humans, but few (if any) observational studies of early postnatal development of postural/motor asymmetries have been published. We studied three African Grey hatchlings, raised without human physical contact, for the first 5 months of life. All three animals failed to show consistent postural and/or motor asymmetries until the end of the 4 postnatal week. These results appear to be comparable to data from prior studies with human infants. Delayed development of lateral motor and/or postural preferences may represent an evolutionarily adaptive strategy for altricial animals.

  15. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review.

    PubMed

    Grayson, B; Barnes, S A; Markou, A; Piercy, C; Podda, G; Neill, J C

    2016-01-01

    Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely

  16. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review.

    PubMed

    Grayson, B; Barnes, S A; Markou, A; Piercy, C; Podda, G; Neill, J C

    2016-01-01

    Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely

  17. The Effects of Maternal Postnatal Depression and Child Sex on Academic Performance at Age 16 Years: A Developmental Approach

    ERIC Educational Resources Information Center

    Murray, Lynne; Arteche, Adriane; Fearon, Pasco; Halligan, Sarah; Croudace, Tim; Cooper, Peter

    2010-01-01

    Background: Postnatal depression (PND) is associated with poor cognitive functioning in infancy and the early school years; long-term effects on academic outcome are not known. Method: Children of postnatally depressed (N = 50) and non-depressed mothers (N = 39), studied from infancy, were followed up at 16 years. We examined the effects on…

  18. Effects of Prenatal and Postnatal Parent Depressive Symptoms on Adopted Child HPA Regulation: Independent and Moderated Influences

    ERIC Educational Resources Information Center

    Laurent, Heidemarie K.; Leve, Leslie D.; Neiderhiser, Jenae M.; Natsuaki, Misaki N.; Shaw, Daniel S.; Harold, Gordon T.; Reiss, David

    2013-01-01

    This study used a prospective adoption design to investigate effects of prenatal and postnatal parent depressive symptom exposure on child hypothalamic-pituitary-adrenal (HPA) activity and associated internalizing symptoms. Birth mother prenatal symptoms and adoptive mother/father postnatal (9-month, 27-month) symptoms were assessed with the Beck…

  19. Exploring risk of experiencing intimate partner violence after HIV infection: a qualitative study among women with HIV attending postnatal services in Swaziland

    PubMed Central

    Mulrenan, Claire; Colombini, Manuela; Kikuvi, Joshua; Mayhew, Susannah H

    2015-01-01

    Objective To explore risks of experiencing intimate partner violence (IPV) after HIV infection among women with HIV in a postnatal care setting in Swaziland. Design A qualitative semistructured in-depth interview study, using thematic analysis with deductive and inductive coding, of IPV experiences after HIV infection extracted from service-integration interview transcripts. Setting Swaziland. Participants 19 women with HIV, aged 18–44, were purposively sampled for an in-depth interview about their experiences of services, HIV and IPV from a quantitative postnatal cohort participating in an evaluation of HIV and reproductive health services integration in Swaziland. Results Results indicated that women were at risk of experiencing IPV after HIV infection, with 9 of 19 disclosing experiences of physical violence and/or coercive control post-HIV. IPV was initiated through two key pathways: (1) acute interpersonal triggers (eg, status disclosure, mother-to-child transmission of HIV) and (2) chronic normative tensions (eg, fertility intentions, initiating contraceptives). Conclusions The results highlight a need to mitigate the risk of IPV for women with HIV in shorter and longer terms in Swaziland. While broader changes are needed to resolve gender disparities, practical steps can be institutionalised within health facilities to reduce, or avoid increasing, IPV pathways for women with HIV. These might include mutual disclosure between partners, greater engagement of Swazi males with HIV services, and promoting positive masculinities that support and protect women. Trial registration number NCT01694862. PMID:25976760

  20. Hominins do not share a common postnatal facial ontogenetic shape trajectory.

    PubMed

    Cobb, S N; O'Higgins, P

    2004-05-15

    This paper examines the hypothesis raised by recent studies that postnatal trajectories of shape change in the facial skeleton are parallel between, at least, chimpanzees, modern humans and also fossil hominins, specifically australopithecines and possibly Neanderthals. In contrast, other studies point to divergences in postnatal shape trajectories within diverse groups of primates. As such there is some debate regarding the relative contributions of pre and postnatal ontogeny to adult morphological differences. This paper presents a series of geometric morphometric studies of the ontogeny of facial shape in hominins with the specific aim of resolving these issues. The results indicate that many differences in facial shape between hominins are established prenatally, however highly significant divergences of postnatal facial ontogeny are found among living hominins. Our studies point to possible differences between the shape ontogeny of the Australopithecus africanus face and that of African apes on the one hand and humans on the other. However, sampling experiments indicate that the small sample size of available specimens of A. africanus does not permit any conclusions to be drawn regarding comparative shape ontogeny of the face. PMID:15211688

  1. Use of Edinburgh Postnatal Depression Scale in a North American population.

    PubMed

    Roy, A; Gang, P; Cole, K; Rutsky, M; Reese, L; Weisbord, J A

    1993-05-01

    1. The authors mailed the Edinburgh Post-natal Depression Scale to 308 women at six weeks postpartum. 2. It was completed and return by 185 women (60.0%). 3. Thirty-two of them (17.4%) scored 12 and above, the threshold reported to identify most women with postpartum depressive disorder.

  2. Postnatal quality of life, depressive symptoms, and social support among women in southern India.

    PubMed

    Bodhare, Trupti N; Sethi, Pruthwiraj; Bele, Samir D; Gayatri, Dasari; Vivekanand, Achanta

    2015-01-01

    Evaluation of postnatal quality of life (QOL) has remained a poorly researched area in India. The present cross-sectional study assessed postnatal QOL, using the Mother Generated Index (MGI) and its associated risk factors, and was conducted during January-March 2013 among 274 mothers, 6-8 weeks postnatally. A semi-structured questionnaire was used to evaluate sociodemographic and obstetric characteristics and social support. Depressive symptoms were assessed by the Patient Health Questionnaire (PHQ-9) and QOL using the MGI. The vast majority (90.1 percent) of respondents in our study had a primary MGI score <5, those with significantly higher prevalence of physical problems and psychological distress. A total of 39.8 percent of respondents were screened as having other (not major) depressive symptoms and 4.7 percent as having major depressive symptoms. Multiple regression analysis revealed that age (β = 0.033, p = .018) and socioeconomic status (β = 0.156, p < .001) were significantly positively associated with QOL, while increased depressive symptom scores (β = -0.075, p < .001) were significantly negatively associated with QOL. A wide spectrum of QOL aspects were reported, including physical, emotional, social, and economic concerns by the mothers. Prevention, evaluation, and treatment of postnatal depressive symptoms and impaired QOL are warranted, taking into account the role of various biopsychosocial risk factors and specific concerns raised by the mothers. PMID:25719436

  3. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis

    PubMed Central

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D.; Lee, Chang H.; Kong, Kimi; Embree, Mildred C.; Zhou, Yanheng; Mao, Jeremy J.

    2014-01-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4–5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop significantly enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed by pivotal signals towards bioengineered tooth regeneration. PMID:24345734

  4. Pre- and Postnatal Influences on Preschool Mental Health: A Large-Scale Cohort Study

    ERIC Educational Resources Information Center

    Robinson, Monique; Oddy, Wendy H.; Li, Jianghong; Kendall, Garth E.; de Klerk, Nicholas H.; Silburn, Sven R.; Zubrick, Stephen R.; Newnham, John P.; Stanley, Fiona J.; Mattes, Eugen

    2008-01-01

    Background: Methodological challenges such as confounding have made the study of the early determinants of mental health morbidity problematic. This study aims to address these challenges in investigating antenatal, perinatal and postnatal risk factors for the development of mental health problems in pre-school children in a cohort of Western…

  5. A BIOASSAY THAT IDENTIFIES POSTNATAL FUNCTIONAL DEFICITS IN MICE PRENATALLY EXPOSED TO XENOBIOTICS

    EPA Science Inventory

    Experimental strategies to evaluate adverse postnatal effects due to prenatal exposure exist for many organ systems. Often, however, there is insufficient information to suggest that a particular organ system(s) may be sensitive to the test agent. A single bioassay to identify ...

  6. [Recent advances in nutritional support and postnatal growth in premature infants].

    PubMed

    Senterre, T; Rigo, J

    2013-02-01

    Nutrition has always been described as challenging in premature infants, especially in very low birth weight (VLBW, < 1500 g) infants. Therefore, postnatal malnutrition is frequently observed in these infants and most develop a severe postnatal growth restriction with a very high incidence of hypotrophy at term corrected age. Otherwise, both insufficient nutritional intakes and postnatal growth restriction during the perinatal period have been associated with adverse developmental outcomes. In this article, an optimized nutritional policy characterized by a standardization of nutritional support is discussed. This policy implies the use of one standardized parenteral nutrition solution and a rapidly enriched feeding regimen. Recent studies in VLBW infants have demonstrated that this approach is associated with significant improvement of nutritional support, postnatal growth and biological homeostasis. Only 6% of appropriate for gestational age infants at birth were described small for gestational age at discharge. This policy has recently been reproduced by the industry that developed the first manufactured triple-chamber parenteral nutrition bags specifically designed for premature infants. It represents a great opportunity for premature infants to improve their development and long-term outcomes.

  7. Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms.

    PubMed

    Pryce, Christopher R; Feldon, Joram

    2003-01-01

    The major characteristics of the postnatal environment of the rat pup are its mother and littermates. The pup, which is poorly developed at birth, matures rapidly in this environment, and regulates the behaviour and physiology of the dam and littermates, as well as vice versa. The study of the impact of the rat's postnatal environment on its long-term neurobehavioural development is of fundamental importance. In fact, it is one of the major examples--at the interface of the biological, social and medical sciences--of animal models for the study of the interaction between the environment and the genome in both the acute and chronic regulation of the phenotype. Specific experimental manipulations of the rat postnatal environment have been demonstrated to exert robust and marked effects on neurobiological, physiological and behavioural phenotypes in adulthood. In the present review we present some of the major findings, including some original data, and discuss what these existing data can tell us about the long-term neurobehavioural effects of the postnatal environment in rats, the external and internal mechanisms that mediate these effects, and the most appropriate directions for future basic and applied research in this area. PMID:12732223

  8. Predictors of Maternal Parental Self-Efficacy Among Primiparas in the Early Postnatal Period.

    PubMed

    Shorey, Shefaly; Chan, Sally Wai-Chi; Chong, Yap Seng; He, Hong-Gu

    2015-12-01

    Maternal parental self-efficacy is a crucial factor for facilitating the smooth transition into motherhood, particularly for primiparas. The aims of this study were to examine the predictors of maternal parental self-efficacy and its relationship with social support, postnatal depression (PND), and socio-demographic variables of primiparas during the early postnatal period. A descriptive correlational study design was adopted. The instruments, Perceived Maternal Parental Self-Efficacy, Perinatal Infant Care Social Support, and Edinburgh Postnatal Depression Scale, were used to collect data from a purposive sample of 122 primiparas on the day of discharge (1-3 days post delivery) in a tertiary public hospital in Singapore. There were significant correlations among maternal parental self-efficacy, social support, and postnatal depression. The main predictors of maternal parental self-efficacy were social support, ethnicity, maternal age, and family income. The maternal parental self-efficacy, social support, and PND should be routinely assessed to provide necessary support to needy mothers.

  9. Clonidine treatment delays postnatal motor development and blocks short-term memory in young mice.

    PubMed

    Calvino-Núñez, Cristina; Domínguez-del-Toro, Eduardo

    2014-01-01

    During the development of the nervous system, the perinatal period is particularly sensitive as neuronal connections are still forming in the brain of the neonate. Alpha2-adrenergic receptors are overexpressed temporarily in proliferative zones in the developing brain, reaching a peak during the first postnatal week of life. Both stimulation and blocking of these receptors during this period alter the development of neural circuits, affecting synaptic connectivity and neuronal responses. They even affect motor and cognitive skills later on in the adult. It's especially important to look for the early neurological consequences resulting from such modifications, because they may go unnoticed. The main objective of the present study has been to reaffirm the importance of the maturation of alpha-adrenergic system in mice, by carrying out a comprehensive examination of motor, behavioral and cognitive effects in neonates, during early postnatal development, following chronic administration of the drug Clonidine, an alpha2 adrenergic system agonist. Our study shows that mice treated postnatally with clonidine present a temporal delay in the appearance of developmental markers, a slow execution of vestibular reflexes during first postnatal week of life and a blockade of the short term memory in the novel object recognition task. Shortly after the treatment the startle response is hyperreactive.

  10. The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning.

    PubMed

    Li, Ki Angel; Lund, Emilie Torp; Voigt, Jörg-Peter W

    2016-01-01

    The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats.

  11. Non-School Influences and Educational Disadvantage: Pre and Post-natal Nutritional Deprivation

    ERIC Educational Resources Information Center

    Doll, Russell C.

    1973-01-01

    Deals with pre and post-natal malnutrition and its possible influence on the child, focusing on these points: How wide-spread and severe is the malnutrition? What might be the effects of the malnutrition at certain critical points in development? (Author/JM)

  12. In utero heat stress increases postnatal core body temperature in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well-understood. Objectives were to characterize future temperature indices and bioenergetic markers in pigs originating from differing in utero...

  13. The Long-Term Economic Impact of in Utero and Postnatal Exposure to Malaria

    ERIC Educational Resources Information Center

    Barreca, Alan I.

    2010-01-01

    I use an instrumental-variables identification strategy and historical data from the United States to estimate the long-term economic impact of in utero and postnatal exposure to malaria. My research design matches adults in the 1960 Decennial Census to the malaria death rate in their respective state and year of birth. To address potential…

  14. Evidence for Hippocampus-Dependent Contextual Learning at Postnatal Day 17 in the Rat

    ERIC Educational Resources Information Center

    Foster, Jennifer A.; Burman, Michael A.

    2010-01-01

    Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…

  15. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  16. Meis1 Is Required for the Maintenance of Postnatal Thymic Epithelial Cells

    PubMed Central

    Hirayama, Takehiro; Asano, Yusuke; Iida, Hajime; Watanabe, Takeshi; Nakamura, Takuro; Goitsuka, Ryo

    2014-01-01

    Most epithelial tissues retain stem/progenitor cells to maintain homeostasis of the adult tissues; however, the existence of a thymic epithelial cell (TEC) progenitor capable of maintaining homeostasis of the postnatal thymus remains unclear. Here, we show that a cell population expressing high levels of Meis1, a homeodomain transcription factor, is enriched in TECs with an immature cellular phenotype. These TECs selectively express genes involved in embryonic thymic organogenesis and epithelial stem cell maintenance, and also have the potential to proliferate and differentiate into mature TEC populations. Furthermore, postnatal inactivation of Meis1 in TECs caused disorganization of the thymic architecture, which ultimately leads to premature disappearance of the thymus. There was an age-associated reduction in the proportion of the TEC population expressing high levels of Meis1, which may also be related to thymic involution. These findings indicate that Meis1 is potentially involved in the maintenance of postnatal TECs with progenitor activity that is required for homeostasis of the postnatal thymus. PMID:24594519

  17. Hominins do not share a common postnatal facial ontogenetic shape trajectory.

    PubMed

    Cobb, S N; O'Higgins, P

    2004-05-15

    This paper examines the hypothesis raised by recent studies that postnatal trajectories of shape change in the facial skeleton are parallel between, at least, chimpanzees, modern humans and also fossil hominins, specifically australopithecines and possibly Neanderthals. In contrast, other studies point to divergences in postnatal shape trajectories within diverse groups of primates. As such there is some debate regarding the relative contributions of pre and postnatal ontogeny to adult morphological differences. This paper presents a series of geometric morphometric studies of the ontogeny of facial shape in hominins with the specific aim of resolving these issues. The results indicate that many differences in facial shape between hominins are established prenatally, however highly significant divergences of postnatal facial ontogeny are found among living hominins. Our studies point to possible differences between the shape ontogeny of the Australopithecus africanus face and that of African apes on the one hand and humans on the other. However, sampling experiments indicate that the small sample size of available specimens of A. africanus does not permit any conclusions to be drawn regarding comparative shape ontogeny of the face.

  18. Relationship of prenatal transportation stress with postnatal temperament of Brahman calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prenatal stress resulting from repeated transportation during gestation has been shown to increase postnatal adrenal responsiveness of calves to a stressor. The objective of the current experiment was to examine the relationship between prenatal stress and gestation length, calf birth weight, and su...

  19. Receiving the Initial Down Syndrome Diagnosis: A Comparison of Prenatal and Postnatal Parent Group Experiences

    ERIC Educational Resources Information Center

    Nelson Goff, Briana S.; Springer, Nicole; Foote, Laura Cline; Frantz, Courtney; Peak, Madison; Tracy, Courtney; Veh, Taylor; Bentley, Gail E.; Cross, Kayli A.

    2013-01-01

    This study explored the preliminary experiences of parents upon learning of their child's diagnosis of Down syndrome. Qualitative data from a web-based, national survey were analyzed based on two groups: prenatal ("n" = 46) or postnatal ("n" = 115) diagnosis. Three primary categories emerged from the data analysis:…

  20. Developmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus.

    PubMed

    Anstötz, Max; Huang, Hao; Marchionni, Ivan; Haumann, Iris; Maccaferri, Gianmaria; Lübke, Joachim H R

    2016-02-01

    Cajal-Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas.

  1. Prenatal and early postnatal stress exposure influences long bone length in adult rat offspring

    PubMed Central

    Dancause, Kelsey Needham; Cao, Xiu Jing; Veru, Franz; Xu, Susan; Long, Hong; Yu, Chunbo; Laplante, David P.; Walker, Claire Dominique; King, Suzanne

    2012-01-01

    Stress during the prenatal and early postnatal periods (perinatal stress, PS) is known to impact offspring cognitive, behavioral, and physical development, but effects on skeletal growth are not clear. Our objective was to analyze effects of variable, mild, daily PS exposure on adult offspring long bone length. Twelve pregnant rat dams were randomly assigned to receive variable stress from gestational days 14-21 (Prenatal group), postpartum days 2-9 (Postnatal), both periods (Pre-Post), or no stress (Control). Differences in adult offspring tibia and femur length were analyzed among treatment groups. Mean tibia length differed among groups for males (p=0.016) and females (p=0.009), and differences for femur length approached significance for males (p=0.051). Long bone length was shorter among PS-exposed offspring, especially those exposed to postnatal stress (Postnatal and Pre-Post groups). Results persisted when controlling for nose-tail length. These differences might reflect early stunting that is maintained in adulthood, or delayed growth among PS-exposed offspring. This study suggests that PS results in shorter long bones in adulthood, independently of effects on overall body size. Stunting and growth retardation are major global health burdens. Our study adds to a growing body of evidence suggesting that PS is a risk factor for poor linear growth. PMID:22826037

  2. Exposure to Lipopolysaccharide in Utero Alters the Postnatal Metabolic Response in Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant crossbred cows (n = 50) were assigned to a prenatal immune stimulation (PIS; n = 25; administered 0.1 micrograms/kg BW LPS s...

  3. In utero exposure to lipopolysaccharide alters the postnatal metabolic response in heifers.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram body weight LPS ...

  4. Altered postnatal acute phase response in heifers exposed to lipopolysachcharide in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram...

  5. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation

    EPA Science Inventory

    The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated ...

  6. ADVERSE PRE- AND POSTNATAL EVENTS REPORTED TO FDA IN ASSOCIATION WITH MATERNAL ATENOLOL TREATMENT IN PREGNANCY

    EPA Science Inventory

    Atenolol is a beta-adrenoreceptor blocker used for treatment of hypertension in pregnancy. This study evaluates the reporting frequency of adverse pre- and postnatal outcomes in a series of 70 cases of maternal exposure during gestation, derived from 140 reports to FDA with Ateno...

  7. POSTNATAL DISPOSITION OF TCDD IN LONG EVANS RATS FOLLOWING GESTATIONAL EXPOSURE

    EPA Science Inventory

    POSTNATAL DISPOSITION OF TCDD IN LONG EVANS RATS FOLLOWING GESTATIONAL EXPOSURE.
    J J Diliberto', J T Hamm'.2, F McQuaid', and L S Birnbaum'. 'US EPA, ORD/NHEERL/ETD, RTP, NC; 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC.
    2,3,7,8-Tetrachlorodibenz...

  8. Postnatal breast development of preterm infants. An index of gonadal function.

    PubMed Central

    McKiernan, J

    1984-01-01

    Development of breast nodules after birth was examined in 17 preterm infants; nodules developed regularly in girls but not boys. It is concluded that the pituitary-gonadal axis of preterm infants is active in the months after birth and that in preterm infants there is a definite phase of breast growth in early postnatal life. PMID:6508344

  9. Prenatal-Postnatal Health Needs and Medical Care of Children, United States.

    ERIC Educational Resources Information Center

    Roberts, Jean; Slaby, David

    The report of the Health Examination Survey program contained national estimates of infant health needs and the extent of prenatal and postnatal medical care received by 7,119 normal and handicapped children who were 6 to 11 years of age in 1963 through 1965. Children were chosen to be representative of American noninstitutionalized children with…

  10. Postnatal developmental changes in the responses of mouse primary vestibular neurons to externally applied galvanic currents.

    PubMed

    Desmadryl, G

    1991-12-17

    The ontogenesis of vestibular primary neuron sensitivity to depolarisation produced by galvanic current stimulations was studied in mouse inner ear explants maintained in vitro. Cathodal galvanic stimulations, which elicit an increase of the discharge frequencies, are assumed to act on the spike initiation site by depolarizing the neuron. The responses of neurons to galvanic currents at various developmental stages were recorded. The pattern of responses reflected the sensitivities of the neurons to depolarization. At birth, about 75% of the vestibular neurons responded weakly to high intensity galvanic currents thus indicating that they were able to generate action potentials. However, the very low gain of the response to the stimulation revealed the immaturity of the neurons at the spike generation site. Between the day of birth and the ninth postnatal day, an increase in the gain of the responses was observed, indicating the enhancement of the sensitivity of the vestibular neurons to the galvanic currents. This increase in sensitivity was more pronounced from the fourth postnatal day. The response of the neurons to galvanic stimulation increased gradually during postnatal development without reaching a plateau at postnatal day 9 indicating that a further physiological maturation occurs after this stage. These results are consistent with the morphological maturation of the vestibular primary afferents and with previous studies showing that the physiological maturation parallels myelination of the afferent fibers.

  11. Nitrergic neurons during early postnatal development of the prefrontal cortex in the rat: histochemical study.

    PubMed

    Hvizdosova, Natalia; Tomasova, Lenka; Bolekova, Adriana; Kolesar, Dalibor; Kluchova, Darina

    2014-06-01

    The presence of nitrergic cells in the prefrontal cortex has been confirmed, however little is known about the postnatal development of these cells. Nitrergic neurons were studied histochemically by using NADPH-diaphorase staining in the prefrontal cortex of male Wistar rats from postnatal day 7-21 (P7-21). Neuronal NADPH-diaphorase is a nitric oxide synthase that provides a specific histochemical marker for neurons producing nitric oxide (NO). NO acts as a neurotransmitter and intracellular signaling molecule in the nervous system. We observed in 7 day old rats NADPH-d containing neurons that were intensely stained. These neurons were bipolar with a short dendrite with average length of 23 μm. During the second postnatal week, the neurons were mainly bipolar and were rarely multipolar. By P14 the cells were located primarily in cortical layers III-VI. Nitrergic neurons of the 21 day old rats were histochemically identified as multipolar cells with long radial extending dendrites. Dendrites of neurons in 14 and 21 day old rats were a similar length with an average of 57 μm. These results suggest that nitrergic neurons differentiate during a relatively short period of time and reach their structural maturity by the end of the second week of postnatal development.

  12. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs.

    PubMed

    Thorngren-Jerneck, K; Ley, D; Hellström-Westas, L; Hernandez-Andrade, E; Lingman, G; Ohlsson, T; Oskarsson, G; Pesonen, E; Sandell, A; Strand, S E; Werner, O; Marsal, K

    2001-12-01

    The effects of fetal asphyxia on cerebral function and development, involve the transition from fetal to neonatal life. Changes in cerebral glucose metabolism may be an early postnatal indicator of fetal asphyxia. The objective is to develop an experimental lamb model involving the transition from fetal to neonatal life and to examine the effect of fetal asphyxia with cerebral hypoxic ischemia on early postnatal cerebral glucose metabolism. Fetal asphyxia was induced by total umbilical cord occlusion in eight near-term fetal lambs (134-138 days) with the ewe under isoflurane-opiate anesthesia. The mean occlusion time until cardiac arrest was 14.5 (4.2) min (SD). Lambs were immediately delivered and standardized resuscitation was instituted after 2 min asystole. At 4 hr postnatal age, [18-F]Fluoro-2-deoxy-glucose (18-FDG) was injected intravenously in eight asphyxiated lambs and in eight controls. Cerebral glucose metabolism was examined by positron emission tomography (PET). As a result the mean arterial blood pressure, acid-base values, blood glucose and serum lactate at 4 hr postnatal age did not differ significantly between lambs subjected to umbilical cord occlusion and controls. EEG was abnormal in all lambs subjected to cord occlusion and normal in the controls at 4 hr postnatal age. Global cerebral metabolic rate (CMRgl) as determined by PET was significantly lower in lambs subjected to cord occlusion mean/median (SD) 22.2/19.6 (8.4) micromol/min/100 g) than in controls mean/median (SD) 37.8/35.9 (6.1); P < 0.01). Global CMRgl is significantly reduced in newborn lambs 4 hr after fetal asphyxia induced by umbilical cord occlusion. A reduction in CMRgl is an early indicator of global hypoxic cerebral ischemia.

  13. Longitudinal measurements of postnatal rat brain mechanical properties in-vivo.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Cheng, Shaokoon; Bilston, Lynne E

    2016-06-14

    Information on pediatric brain tissue mechanical properties and, more pertinently, how they change during postnatal development remains scarce despite its importance to investigate mechanisms of neural injury. The aim of this study is to determine whether brain mechanical properties change in-vivo during early postnatal development in a rat model. Rat brain viscoelastic properties were measured longitudinally in ten healthy Sprague Dawley rats at five different time points from postnatal week one to week six using magnetic resonance elastography at 800Hz. Myelination and cell density were assessed histologically at the same time points to understand how the underlying tissue microstructure may be associated with changes in mechanical properties at different brain regions. Longitudinal changes in each variable were assessed using a generalized linear model with pairwise comparisons of means between weeks. The brain shear modulus in the cortical gray matter at postnatal week one was 6.3±0.4kPa, and increased significantly from week one to week two (pairwise comparison, p<0.01), remained stable from week two to week four and decreased significantly by week six (pairwise comparison, p<0.001). In the deep gray matter, brain tissue stiffness at postnatal week one was 6.1±2.0kPa, and increased significantly from one to week four (pairwise comparison, p<0.05) before decreasing significantly by week six (pairwise comparison, p<0.001). Stiffness changes were not directly correlated to histological observations. These data suggest that brain tissue shear modulus initially increases during a period equivalent to early childhood, and then decreases during a period equivalent to adolescence. PMID:27126986

  14. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice.

    PubMed Central

    Ramirez, J M; Quellmalz, U J; Richter, D W

    1996-01-01

    1. Spontaneous rhythmic activity in hypoglossal (XII) rootlets is generated at all postnatal stages from postnatal day (P) 0 to P22 in the transverse brainstem slice of mice containing the pre-Bötzinger complex (PBC). The PBC is known to be a region essential for respiratory rhythm generation. It contains neurones generating periodic bursts that occur in synchrony with rhythmic XII activity. This synchrony indicates that the rhythmic PBC activity generated by the transverse slice is the central respiratory rhythm. 2. The strength of coupling between XII bursts and PBC bursts decreased during early postnatal development. In younger mice (P0-4) each burst in XII rootlets corresponded to one burst in the PBC. In older mice (P5-18) one burst in XII rootlets occurred only every third to fourth burst in PBC neurones. 3. Cycle length and burst duration of rhythmic XII activity did not change significantly during the first three postnatal weeks. However, the pattern of XII bursts changed from decrementing (P0-7) to bell shaped (P8-18) while the rate of rise of XII bursts decreased significantly. 4. The rate of rise of rhythmic depolarizations in neurones of the PBC discharging in phase with XII bursts ('inspiratory neurones') decreased with postnatal development. During interburst intervals, membrane potentials of neurones of older mice (P6-18) were characterized by waves of synaptic input that were not observed in neonatal animals (P0-5). 5. Blockade of glycine receptors by strychnine increased the frequency of rhythmic XII activity in neonatal and older mice (P0-22). Although in expiratory PBC neurones glycinergic transmission was blocked at 10 microM strychnine, in inspiratory PBC neurones and XII rootlets even higher concentrations of up to 50 microM strychnine failed to abolish rhythmic activity. PMID:8815212

  15. Association between Prenatal and Postnatal Psychological Distress and Toddler Cognitive Development: A Systematic Review

    PubMed Central

    2015-01-01

    Purpose Maternal psychological distress is one of the most common perinatal complications, affecting up to 25% of pregnant and postpartum women. Research exploring the association between prenatal and postnatal distress and toddler cognitive development has not been systematically compiled. The objective of this systematic review was to determine the association between prenatal and postnatal psychological distress and toddler cognitive development. Methods Articles were included if: a) they were observational studies published in English; b) the exposure was prenatal or postnatal psychological distress; c) cognitive development was assessed from 13 to 36 months; d) the sample was recruited in developed countries; and e) exposed and unexposed women were included. A university-based librarian conducted a search of electronic databases (Embase, CINAHL, Eric, PsycInfo, Medline) (January, 1990-March, 2014). We searched gray literature, reference lists, and relevant journals. Two reviewers independently evaluated titles/abstracts for inclusion, and quality using the Scottish Intercollegiate Guideline Network appraisal tool for observational studies. One reviewer extracted data using a standardized form. Results Thirteen of 2448 studies were included. There is evidence of an association between prenatal and postnatal distress and cognitive development. While variable effect sizes were reported for postnatal associations, most studies reported medium effect sizes for the association between prenatal psychological distress and cognitive development. Too few studies were available to determine the influence of the timing of prenatal exposure on cognitive outcomes. Conclusion Findings support the need for early identification and treatment of perinatal mental health problems as a potential strategy for optimizing toddler cognitive development. PMID:25996151

  16. Postnatal experiences influence the behavior in adult male and female Fischer and Lewis rats.

    PubMed

    Skripuletz, Thomas; Kruschinski, Carsten; Pabst, Reinhard; von Hörsten, Stephan; Stephan, Michael

    2010-11-01

    The postnatal environment with the rat pups' dam as the most important regulator, plays a central role in determining developmental processes of the offspring. Early disturbances of the dam-pup-dyade, like separation from the dam for hours (maternal deprivation, MD), or a short period of separation, and exposure to novelty, like the handling stimulation (HA), might induce long-lasting changes within the individual. To further investigate the susceptibility to these postnatal manipulations with regard to both, sex and genetic background, we used male and female Fischer (F344) and Lewis (LEW) rats. F344 and LEW rats were daily subjected to either HA, MD, or were left undisturbed until weaning. The immediate effects of these manipulations were studied using the mother-pup-interaction-test on postnatal days 3-7. At the age of 4 months, animals were subjected to a behavioral test battery, determining activity, exploration, and anxiety-like behavioral parameters. Postnatal manipulations induced significant alterations of the mother-pup-interaction patterns that were more pronounced in F344 dams. MD and HA F344 dams were longer off pups than LEW dams. MD F344 pups were longer groomed than MD LEW pups and HA F344 pups were longer passive nursed than HA LEW pups. In adulthood, F344 rats showed increased anxiety-like behavior compared to LEW rats. Furthermore, females of both strains exhibited more anxiety-like behavior than males. Test independently, MD led to more anxiety-like behavior and less exploratory responses, while handled rats exhibited an anxiolytic-like behavior and increased exploratory responses. In conclusion, postnatal experiences specifically altered the behavioral phenotype in adulthood. While these changes were co-directional in the two strains and in both sexes, the degree of susceptibility varied.

  17. Neonatal pain in relation to postnatal growth in infants born very preterm.

    PubMed

    Vinall, Jillian; Miller, Steven P; Chau, Vann; Brummelte, Susanne; Synnes, Anne R; Grunau, Ruth E

    2012-07-01

    Procedural pain is associated with poorer neurodevelopment in infants born very preterm (≤ 32 weeks gestational age), however, the etiology is unclear. Animal studies have demonstrated that early environmental stress leads to slower postnatal growth; however, it is unknown whether neonatal pain-related stress affects postnatal growth in infants born very preterm. The aim of this study was to examine whether greater neonatal pain (number of skin-breaking procedures adjusted for medical confounders) is related to decreased postnatal growth (weight and head circumference [HC] percentiles) early in life and at term-equivalent age in infants born very preterm. Participants were n=78 preterm infants born ≤ 32 weeks gestational age, followed prospectively since birth. Infants were weighed and HC measured at birth, early in life (median: 32 weeks [interquartile range 30.7-33.6]) and at term-equivalent age (40 weeks [interquartile range 38.6-42.6]). Weight and HC percentiles were computed from sex-specific British Columbia population-based data. Greater neonatal pain predicted lower body weight (Wald χ(2)=7.36, P=0.01) and HC (Wald χ(2)=4.36, P=0.04) percentiles at 32 weeks postconceptional age, after adjusting for birth weight percentile and postnatal risk factors of illness severity, duration of mechanical ventilation, infection, and morphine and corticosteroid exposure. However, later neonatal infection predicted lower weight percentile at term (Wald χ(2)=5.09, P=0.02). Infants born very preterm undergo repetitive procedural pain during a period of physiological immaturity that appears to impact postnatal growth, and may activate a downstream cascade of stress signaling that affects later growth in the neonatal intensive care unit. PMID:22704600

  18. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  19. Developmental programming: postnatal estradiol modulation of prenatally organized reproductive neuroendocrine function in sheep.

    PubMed

    Puttabyatappa, Muraly; Cardoso, Rodolfo C; Herkimer, Carol; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2016-08-01

    Gestational testosterone (TS) excess, acting via both the androgenic and estrogenic pathways, advances puberty and disrupts the neuroendocrine estradiol (E2) feedback and periovulatory hormonal dynamics in female sheep. These prenatally programmed defects may be subject to postnatal modifications by continued organizational and/or activational effects of steroids. This study investigated (1) the organizational contribution of prenatal estrogen excess and (2) the impact of postnatal exposure to E2 in modulating the effects of prenatal androgen excess (TS and dihydrotestosterone (DHT)) on puberty, neuroendocrine feedback mechanisms, and periovulatory hormonal dynamics in sheep. Pregnant Suffolk sheep were treated with TS, DHT, E2, or E2 plus DHT (ED) from days 30 to 90 of gestation. A subset of the control (C), TS, and DHT female offspring received a constant-release E2 implant postnatally. Findings revealed that (1) prenatal E2-treatment failed to reproduce the neuroendocrine disruptions predicted to be programmed by the estrogenic pathway and (2) prenatal E2D-treatment did not adequately replicate the reproductive neuroendocrine defects induced by prenatal TS excess. More importantly, continuous postnatal E2-treatment, while delaying the onset of puberty and reducing the inhibitory effects of E2 on tonic luteinizing hormone (LH) release, failed to amplify the E2-positive feedback and periovulatory defects induced by prenatal TS-treatment. Our results indicate that disruptions in E2-positive feedback mechanisms and periovulatory gonadotropin secretion induced by prenatal TS-treatment are programmed predominantly during the prenatal life with postnatal exposure to E2 excess not contributing further to these disruptions.

  20. Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain.

    PubMed

    Han, Yixing; Han, Dali; Yan, Zheng; Boyd-Kirkup, Jerome D; Green, Christopher D; Khaitovich, Philipp; Han, Jing-Dong J

    2012-12-01

    Epigenetic modifications are critical determinants of cellular and developmental states. Epigenetic changes, such as decreased H3K27me3 histone methylation on insulin/IGF1 genes, have been previously shown to modulate lifespan through gene expression regulation. However, global epigenetic changes during aging and their biological functions, if any, remain elusive. Here, we examined the histone modification H3K4 dimethylation (H3K4me2) in the prefrontal cortex of individual rhesus macaques at different ages by chromatin immunoprecipitation, followed by deep sequencing (ChIP-seq) at the whole genome level. Through integrative analysis of the ChIP-seq profiles with gene expression data, we found that H3K4me2 increased at promoters and enhancers globally during postnatal development and aging, and those that correspond to gene expression changes in cis are enriched for stress responses, such as the DNA damage response. This suggests that metabolic and environmental stresses experienced by an organism are associated with the progressive opening of chromatin. In support of this, we also observed increased expression of two H3K4 methyltransferases, SETD7 and DPY30, in aged macaque brain. PMID:22978322

  1. Oral antibiotics increase blood neutrophil maturation and reduce bacteremia and necrotizing enterocolitis in the immediate postnatal period of preterm pigs.

    PubMed

    Nguyen, Duc Ninh; Fuglsang, Eva; Jiang, Pingping; Birck, Malene M; Pan, Xiaoyu; Kamal, Shamrulazhar B S; Pors, Susanne E; Gammelgaard, Pernille L; Nielsen, Dennis S; Thymann, Thomas; Levy, Ofer; Frøkiær, Hanne; Sangild, Per T

    2016-01-01

    Immature immunity may predispose preterm neonates to infections and necrotizing enterocolitis (NEC). Intravenous antibiotics are frequently given to prevent and treat sepsis, while oral antibiotics are seldom used. We hypothesized that oral antibiotics promote maturation of systemic immunity and delay gut bacterial colonization and thereby protect preterm neonates against both NEC and bacteremia in the immediate postnatal period. Preterm pigs were given formula and administered saline (CON) or broad-spectrum antibiotics orally (ORA) or systemically (SYS) for 5 d after birth. Temporal changes in blood parameters and bacterial composition in the intestine, blood and immune organs were analyzed. Newborn preterm pigs had few blood neutrophils and a high frequency of progenitor cells. Neutrophils gradually matured after preterm birth with increasing CD14 and decreasing CD172a expressions. Preterm neutrophil and monocyte TLR2 expression and TLR2-mediated blood cytokine responses were low relative to adults. ORA pigs showed enhanced blood neutrophil maturation with reduced cell size and CD172a expression. Only ORA pigs, but not SYS pigs, were protected from a high density of gut Gram-positive bacteria, high gut permeability, Gram-positive bacteremia and NEC. Neonatal oral antibiotics may benefit mucosal and systemic immunity via delayed gut colonization and enhanced blood neutrophil maturation just after preterm birth.

  2. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth

    PubMed Central

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R.; Andl, Thomas; Millar, Sarah E.

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  3. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth.

    PubMed

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R; Andl, Thomas; Millar, Sarah E; Zhang, Yuhang

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  4. Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC function.

    PubMed

    Rebello, Tahilia J; Yu, Qinghui; Goodfellow, Nathalie M; Caffrey Cagliostro, Martha K; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y; Chemiakine, Alexei; Rosoklija, Gorazd B; Dwork, Andrew J; Lambe, Evelyn K; Gingrich, Jay A; Ansorge, Mark S

    2014-09-10

    Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.

  5. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function

    PubMed Central

    Rebello, Tahilia J.; Yu, Qinghui; Goodfellow, Nathalie M.; Caffrey Cagliostro, Martha K.; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y.; Chemiakine, Alexei; Rosoklija, Gorazd B.; Dwork, Andrew J.; Lambe, Evelyn K.; Ansorge, Mark S.

    2014-01-01

    Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2–P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2–P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors. PMID:25209278

  6. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling

    PubMed Central

    Menéndez-Gutiérrez, María P.; Rőszer, Tamás; Fuentes, Lucía; Núñez, Vanessa; Escolano, Amelia; Redondo, Juan Miguel; De Clerck, Nora; Metzger, Daniel; Valledor, Annabel F.; Ricote, Mercedes

    2015-01-01

    Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis. PMID:25574839

  7. Impact of a Manualized Multifocal Perinatal Home-Visiting Program Using Psychologists on Postnatal Depression: The CAPEDP Randomized Controlled Trial

    PubMed Central

    Dugravier, Romain; Tubach, Florence; Saias, Thomas; Guedeney, Nicole; Pasquet, Blandine; Purper-Ouakil, Diane; Tereno, Susana; Welniarz, Bertrand; Matos, Joana

    2013-01-01

    Context Postnatal maternal depression (PND) is a significant risk factor for infant mental health. Although often targeted alongside other factors in perinatal home-visiting programs with vulnerable families, little impact on PND has been observed. Objective This study evaluates the impact on PND symptomatology of a multifocal perinatal home-visiting intervention using psychologists in a sample of women presenting risk factors associated with infant mental health difficulties. Methods 440 primiparous women were recruited at their seventh month of pregnancy. All were future first-time mothers, under 26, with at least one of three additional psychosocial risk factors: low educational level, low income, or planning to raise the child without the father. The intervention consisted of intensive multifocal home visits through to the child’s second birthday. The control group received care as usual. PND symptomatology was assessed at baseline and three months after birth using the Edinburgh Postnatal Depression Scale (EPDS). Results At three months postpartum, mean (SD) EPDS scores were 9.4 (5.4) for the control group and 8.6 (5.4) for the intervention group (p = 0.18). The difference between the mean EPDS scores was 0.85 (95% CI: 0.35; 1.34). The intervention group had significantly lower EPDS scores than controls in certain subgroups: women with few depressive symptoms at inclusion (EPDS <8): difference = 1.66 (95%CI: 0.17; 3.15), p = 0.05, adjusted for baseline EPDS score), women who were planning to raise the child with the child’s father: difference = 1.45 (95%CI: 0.27; 2.62), p = 0.04 (adjusted); women with a higher educational level: difference = 1.59 (95%CI: 0.50; 2.68) p = 0.05 (adjusted). Conclusion CAPEDP failed to demonstrate an overall impact on PND. However, post-hoc analysis reveals the intervention was effective in terms of primary prevention and in subgroups of women without certain risk factors. Effective overall reduction

  8. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries

    PubMed Central

    Girard, Sylvie; Sébire, Hugues; Brochu, Marie-Elsa; Briota, Sinziana; Sarret, Philippe; Sébire, Guillaume

    2016-01-01

    New therapeutic strategies are needed to protect neonates, especially premature newborns, against brain injury and associated neurobehavioral deficits. The role of pro-inflammatory cytokines, especially IL-1β, in the pathophysiological pathway leading to neonatal brain damage is increasingly recognized and represents an attractive therapeutic target. We investigated the therapeutic potential of postnatal systemic administration of the interleukin (IL)-1 receptor antagonist (IL-1Ra) in an animal model of perinatal brain injury using the insults most common to human neonates, i.e. prenatal exposure to inflammation and/or postnatal hypoxia-ischaemia (HI). We found that postnatal administration of IL-1Ra preserved motor function and exploratory behavior after either prenatal exposure to inflammatory agent lipopolysaccharide (LPS) or postnatal HI insult. The deleterious effect of combined prenatal LPS and postnatal HI on brain development was also alleviated by administration of IL-1Ra, as seen by the protected neural stem cell population, prevention of myelin loss in the internal capsule, decreased gliosis, and decreased neurobehavioral impairment. This study showed the distinct pattern of functional deficits induced by prenatal inflammation as compared to postnatal HI and the therapeutic potential of IL-1Ra administration against neonatal brain injury. Furthermore, our results highlight the potential for postnatal treatment of prenatal inflammatory stressors. PMID:22982341

  9. Low-intensity and moderate exercise training improves autonomic nervous system activity imbalanced by postnatal early overfeeding in rats

    PubMed Central

    2014-01-01

    Background Postnatal early overfeeding and physical inactivity are serious risk factors for obesity. Physical activity enhances energy expenditure and consumes fat stocks, thereby decreasing body weight (bw). This study aimed to examine whether low-intensity and moderate exercise training in different post-weaning stages of life is capable of modulating the autonomic nervous system (ANS) activity and inhibiting perinatal overfeeding-induced obesity in rats. Methods The obesity-promoting regimen was begun two days after birth when the litter size was adjusted to 3 pups (small litter, SL) or to 9 pups (normal litter, NL). The rats were organized into exercised groups as follows: from weaning until 90-day-old, from weaning until 50-day-old, or from 60- until 90-days-old. All experimental procedures were performed just one day after the exercise training protocol. Results The SL-no-exercised (SL-N-EXE) group exhibited excess weight and increased fat accumulation. We also observed fasting hyperglycemia and glucose intolerance in these rats. In addition, the SL-N-EXE group exhibited an increase in the vagus nerve firing rate, whereas the firing of the greater splanchnic nerve was not altered. Independent of the timing of exercise and the age of the rats, exercise training was able to significantly blocks obesity onset in the SL rats; even SL animals whose exercise training was stopped at the end of puberty, exhibited resistance to obesity progression. Fasting glycemia was maintained normal in all SL rats that underwent the exercise training, independent of the period. These results demonstrate that moderate exercise, regardless of the time of onset, is capable on improve the vagus nerves imbalanced tonus and blocks the onset of early overfeeding-induced obesity. Conclusions Low-intensity and moderate exercise training can promote the maintenance of glucose homeostasis, reduces the large fat pad stores associated to improvement of the ANS activity in adult rats that were

  10. Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats.

    PubMed

    Hrubá, L; Schutová, B; Šlamberová, R

    2012-01-18

    The aim of the present study was to investigate the impact of prenatal and postnatal methamphetamine (MA) exposure on behavior and anxiety in adult male and female rats. Mothers were daily exposed to injection of MA (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother raised 6 saline-exposed pups and 6 MA-exposed pups. Based on the prenatal and postnatal exposure 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in the Open field (OF) and in the Elevated plus maze (EPM) in adulthood. Locomotion, exploration, immobility and comforting behavior were evaluated in the OF, while anxiety was assessed in the EPM. While prenatal MA exposure did not affect behavior and anxiety in adulthood, postnatal MA exposure (i.e. MA administration to lactating mothers) induced long-term changes. Specifically, adult female rats in diestrus and adult males postnatally exposed to MA via breast milk (S/MA and MA/MA) had decreased locomotion and exploratory behavior in the OF and showed increased anxiety-like behavior in the EPM when compared to female rats in diestrus or males postnatally exposed to saline (S/S and MA/S). In adult females in proestrus, postnatal exposure to MA affected only exploratory behavior in the OF when compared to rats in proestrus postnatally exposed to saline. Thus, the present study shows that postnatal exposure to MA via breast milk impairs behavior in unfamiliar environment and anxiety-like behavior of adult male and female rats more than prenatal MA exposure. PMID:21884713

  11. Predictors of postnatal mother-infant bonding: the role of antenatal bonding, maternal substance use and mental health.

    PubMed

    Rossen, Larissa; Hutchinson, Delyse; Wilson, Judy; Burns, Lucy; A Olsson, Craig; Allsop, Steve; J Elliott, Elizabeth; Jacobs, Sue; Macdonald, Jacqueline A; Mattick, Richard P

    2016-08-01

    The emotional bond that a mother feels towards her baby is critical to social, emotional and cognitive development. Maternal health and wellbeing through pregnancy and antenatal bonding also play a key role in determining bonding postnatally, but the extent to which these relationships may be disrupted by poor mental health or substance use is unclear. This study aimed to examine the extent to which mother-fetal bonding, substance use and mental health through pregnancy predicted postnatal mother-infant bonding at 8 weeks. Participants were 372 women recruited from three metropolitan hospitals in Australia. Data was collected during trimesters one, two and three of pregnancy and 8 weeks postnatal using the Maternal Antenatal Attachment Scale (MAAS), Maternal Postnatal Attachment Scale (MPAS), the Edinburgh Antenatal and Postnatal Depression Scale (EPDS), the Depression and Anxiety Scales (DASS-21), frequency and quantity of substance use (caffeine, alcohol and tobacco) as well as a range of demographic and postnatal information. Higher antenatal bonding predicted higher postnatal bonding at all pregnancy time-points in a fully adjusted regression model. Maternal depressive symptoms in trimesters two and three and stress in trimester two were inversely related to poorer mother-infant bonding 8 weeks postnatally. This study extends previous work on the mother's felt bond to her developing child by drawing on a large sample of women and documenting the pattern of this bond at three time points in pregnancy and at 8 weeks postnatally. Utilising multiple antenatal waves allowed precision in isolating the relationships in pregnancy and at key intervention points. Investigating methods to enhance bonding and intervene in pregnancy is needed. It is also important to assess maternal mental health through pregnancy. PMID:26867547

  12. Association between Postnatal Dexamethasone for Treatment of Bronchopulmonary Dysplasia and Brain Volumes at Adolescence in Infants Born Very Preterm

    PubMed Central

    Cheong, Jeanie L.Y.; Burnett, Alice C.; Lee, Katherine J.; Roberts, Gehan; Thompson, Deanne K.; Wood, Stephen J.; Connelly, Alan; Anderson, Peter J.; Doyle, Lex W.

    2014-01-01

    Objectives To compare brain volumes in adolescents who were born extremely preterm (<28 weeks gestation) who had received postnatal dexamethasone, and to determine if there was a postnatal dexamethasone dose–response effect on brain volumes. Study design Geographical cohort study of extremely preterm adolescents born in 1991-1992 in Victoria, Australia. T1-weighted magnetic resonance imaging was performed at 18 years of age. Segmented and parcellated brain volumes were calculated using an automated segmentation method (FreeSurfer) and compared between groups, with and without adjustment for potential confounders. The relationships between total postnatal dexamethasone dose and brain volumes were explored using linear regression. Results Of the 148 extremely preterm participants, 55 (37%) had received postnatal dexamethasone, with a cumulative mean dose of 7.7 mg/kg. Compared with participants who did not receive postnatal dexamethasone, those who did had smaller total brain tissue volumes (mean difference −3.6%, 95% CI [−7.0%, −0.3%], P value = .04) and smaller white matter, thalami, and basal ganglia volumes (all P < .05). There was a trend of smaller total brain and white matter volumes with increasing dose of postnatal dexamethasone (regression coefficient −7.7 [95% CI −16.2, 0.8] and −3.2 [−6.6, 0.2], respectively). Conclusions Extremely preterm adolescents who received postnatal dexamethasone in the newborn period had smaller total brain tissue volumes than those who did not receive postnatal dexamethasone, particularly white matter, thalami, and basal ganglia. Vulnerability of brain tissues or structures associated with postnatal dexamethasone varies by structure and persists into adolescence. PMID:24332820

  13. Effects of in utero heat stress on postnatal body composition in pigs: I. Growing phase.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Gutierrez, N A; Patience, J F; Ross, J W; Gabler, N K; Lucy, M C; Safranski, T J; Rhoads, R P; Baumgard, L H

    2015-01-01

    Environmentally induced heat stress (HS) negatively influences production variables in agriculturally important species. However, the extent to which HS experienced in utero affects nutrient partitioning during the rapid lean tissue accretion phase of postnatal growth is unknown. Study objectives were to compare future whole-body tissue accretion rates in pigs exposed to differing in utero and postnatal thermal environments when lean tissue deposition is likely maximized. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 12) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 30.8 ± 0.2 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 30.3 ± 0.2 kg BW) were euthanized as an initial slaughter group (ISG). Following the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 34.1 ± 0.5 kg BW) and IUHS (n = 12 gilts and 12 barrows; 33.3 ± 0.3 kg BW) were exposed to constant HS (34.1 ± 2.4°C) or TN (21.5 ± 2.0°C) conditions until they reached 61.5 ± 0.8 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased (P < 0.01) during postnatal HS compared to TN (39.4 vs. 39.0°C and 94 vs. 49 breaths per minute, respectively). Regardless of in utero environment, postnatal HS reduced (P < 0.01) feed intake (2.06 vs. 2.37 kg/d) and ADG (0.86 vs. 0.98 kg/d) compared to TN conditions. Postnatal HS did not alter water, protein, and ash accretion rates but reduced lipid accretion rates (198 vs. 232 g/d; P < 0.04) compared to TN-reared pigs. In utero environment had no effect on future tissue deposition rates; however, IUHS pigs from the ISG had reduced liver weight (P < 0.04; 17.9%) compared

  14. Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons.

    PubMed

    Cohen, A S; Lin, D D; Coulter, D A

    2000-11-01

    In the CNS, inhibitory synaptic function undergoes profound transformation during early postnatal development. This is due to variations in the subunit composition of subsynaptic GABA(A) receptors (GABA(A)Rs) at differing developmental stages as well as other factors. These include changes in the driving force for chloride-mediated conductances as well as the quantity and/or cleft lifetime of released neurotransmitter. The present study was undertaken to investigate the nature and time course of developmental maturation of GABAergic synaptic function in hippocampal CA1 pyramidal neurons. In neonatal [postnatal day (P) 1-7] and immature (P8-14) CA1 neurons, miniature inhibitory postsynaptic currents (mIPSCs) were significantly larger, were less frequent, and had slower kinetics compared with mIPSCs recorded in more mature neurons. Adult mIPSC kinetics were achieved by the third postnatal week in CA1 neurons. However, despite this apparent maturation of mIPSC kinetics, significant differences in modulation of mIPSCs by allosteric agonists in adolescent (P15-21) neurons were still evident. Diazepam (1-300 nM) and zolpidem (200 nM) increased the amplitude of mIPSCs in adolescent but not adult neurons. Both drugs increased mIPSC decay times equally at both ages. These differential agonist effects on mIPSC amplitude suggest that in adolescent CA1 neurons, inhibitory synapses operate differently than adult synapses and function as if subsynaptic receptors are not fully occupied by quantal release of GABA. Rapid agonist application experiments on perisomatic patches pulled from adolescent neurons provided additional support for this hypothesis. In GABA(A)R currents recorded in these patches, benzodiazepine amplitude augmentation effects were evident only when nonsaturating GABA concentrations were applied. Furthermore nonstationary noise analysis of mIPSCs in P15-21 neurons revealed that zolpidem-induced mIPSC augmentation was not due to an increase in single

  15. [Novel calretinin-positive cells with polymorphous spines in the mouse forebrain during early postnatal ontogenesis].

    PubMed

    Revishchin, A V; Okhotin, V E; Pavlova, G V

    2009-01-01

    Using an immunocytochemical method for calretinin (CR) detection, we have earlier described (Morfologiya, 2009 v. 135. No. 3, p. 7-19) the population of previously unknown mono- and bipolar cells with polymorphous spines (PS) covering their cell bodies and processes, in adult mice forebrain structures adjacent to anterior horn of lateral ventricle. CR-positive spiny (CR+PS) cells were negative to GAD67 and were detected in the white matter and in layers V and VI of frontal area of dorsomedial cortex close to the cingulum, in in rostro-dorsal part of the caudate nucleus-putamen complex, anterior olfactory nucleus and in subependymal layer of the dorso-lateral angle of the lateral ventricle. In this work, the distribution of these cells in 7-day-old mice was studied. Comparative topographical analysis of definitive and early CR+PS cells demonstrated that in 7-day-old mice CR+PS cells were absent from the areas of their localization in adult animals - anterior olfactory nucleus, cortical plate and inner portion of neostriatum. Meanwhile, some CR+PS-like cells were detected in 7-day-old mice inside the rostral migratory route, close to neostriatum anterior boundary, along the dorsal border between neostriatum and corpus callosum, subependymal layer of lateral wall of the lateral ventricle, and in the cingulum area. These findings are indicative of the possible postnatal appearance of CR+PS cells. To test this hypothesis, the experiments were conducted in which bromodeoxyuridine (BrdU) was administered to the mice on their postnatal days 2-4 with the subsequent study of the brain sections of these animals sacrificed on their postnatal day 20. Double immunolabeling of these sections for CR and BrdU has detected the presence of CR+PS cells that contained postnatally administered BrdU. These results strongly suggest that, at least, some portion of CR+PS cells have their mitosis postnatally. It may be assumed, that CR+PS cells migrate to the sites of their distribution in

  16. Sex and Tissue Specificity of Peg3 Promoters

    PubMed Central

    Perera, Bambarendage P. U.; Kim, Joomyeong

    2016-01-01

    The expression of mouse Peg3 (Paternally expressed gene 3) is driven by 4 promoters, including its main and three alternative promoters. The sexual, temporal and spatial specificity of these promoters was characterized in the current study. According to the results, the main promoter displays ubiquitous expression patterns throughout different stages and tissues. In contrast, the expression of Peg3 driven by the alternative promoter U2 was detected mainly in muscle and skin, but not in brain, starting from the late embryonic stage, revealing its tissue and stage specificity. The expression levels of both the main and U2 promoters are also sexually biased: the levels in females start higher but become lower than those in males during early postnatal stages. As an imprinted locus, the paternal alleles of these promoters are active whereas the maternal alleles are silent. Interestingly, deletion of the repressed maternal allele of the main promoter has an unusual effect on the opposite paternal allele, causing the up-regulation of both the main and U2 promoters. Overall, the promoters of Peg3 derive sexually biased and tissue-specific expression patterns. PMID:27711129

  17. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    PubMed

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  18. Progesterone and Nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex

    PubMed Central

    el-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2014-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation and axonal degeneration. Current therapies are limited to immunomodulators and anti-inflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2+ oligodendrocyte progenitor cells and CA II+ mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  19. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    PubMed

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.

  20. Indian hedgehog roles in post-natal TMJ development and organization.

    PubMed

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function. PMID:20200412

  1. Effects of postnatal aluminum lactate exposure on neuromotor maturation in the rat

    SciTech Connect

    Bernuzzi, V.; Desor, D.; Lehr, P.R.

    1989-03-01

    In alkaline or neutral soils, aluminum is insoluble, but its solubility progressively increases with acidity, so acid precipitations have a considerable influence in mobilizing aluminum in natural waters, leading to higher alimentary ingestion of this element. In normal subjects aluminum is absorbed by the gastrointestinal tract and is excreted in urine. But even discrete renal failure may lead to Al accumulation in various tissues. Certain neurologic diseases have been related to Al intoxication. In patients undergoing chronic hemodialysis and ingesting aluminum-containing drugs, Al exposure is considered to be the causal factor for a high incidence of dialysis encephalopathy. Microcytic anemia and osteomalacia usually appeared before the neurologic symptoms. The authors have recently reported that the surviving pups of rats treated with aluminum during gestation showed a delay in their neuromotor development, as well as weight delay during the first postnatal week. This paper examines the effects of postnatal aluminum lactate exposure on mortality, weight evolution and neuromotor maturation in the rat.

  2. Podophyllum hexandrum prevents radiation-induced neuronal damage in postnatal rats exposed in utero.

    PubMed

    Sajikumar, S; Goel, H C

    2003-08-01

    Podophyllum hexandrum has been shown to mitigate radiation injuries and especially the haemopoietic syndrome in adult mice. To monitor the radiation-induced changes in the nervous system, the neurons of postnatal young mice and their modification by P. hexandrum, were studied histologically for differences in the apical and basal dendritic branching and intersections in the CA1 neurons of the hippocampal region of rats which were delivered a 2 Gy gamma dose while in utero (day 17 of gestation). Irradiation significantly reduced the dendritic branching and intersections but pre-irradiation administration of the extract of P. hexandrum (i.p. 200 mg/kg/b.w., 2 h) reduced the damage in postnatal young mice. These studies indicate that P. hexandrum provides protection to neurons against radiation-induced damage and the mechanism of neuronal damage and its repair need to be investigated further.

  3. Generation of Murine Sympathoadrenergic Progenitor-Like Cells from Embryonic Stem Cells and Postnatal Adrenal Glands

    PubMed Central

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S.; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS. PMID:23675538

  4. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  5. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.

    PubMed

    Belforte, Juan E; Zsiros, Veronika; Sklar, Elyse R; Jiang, Zhihong; Yu, Gu; Li, Yuqing; Quinlan, Elizabeth M; Nakazawa, Kazu

    2010-01-01

    Cortical GABAergic dysfunction may underlie the pathophysiology of psychiatric disorders, including schizophrenia. Here, we characterized a mouse strain in which the essential NR1 subunit of the NMDA receptor (NMDAR) was selectively eliminated in 40-50% of cortical and hippocampal interneurons in early postnatal development. Consistent with the NMDAR hypofunction theory of schizophrenia, distinct schizophrenia-related symptoms emerged after adolescence, including novelty-induced hyperlocomotion, mating and nest-building deficits, as well as anhedonia-like and anxiety-like behaviors. Many of these behaviors were exacerbated by social isolation stress. Social memory, spatial working memory and prepulse inhibition were also impaired. Reduced expression of glutamic acid decarboxylase 67 and parvalbumin was accompanied by disinhibition of cortical excitatory neurons and reduced neuronal synchrony. Postadolescent deletion of NR1 did not result in such abnormalities. These findings suggest that early postnatal inhibition of NMDAR activity in corticolimbic GABAergic interneurons contributes to the pathophysiology of schizophrenia-related disorders.

  6. [Morphological features of the rat stellate ganglion during early postnatal development].

    PubMed

    Korzina, M B; Korobkin, A A; Vasil'eva, O A; Masliukov, P M

    2010-01-01

    The aim of this work was to study the anatomical characteristics of the stellate ganglion (SG) and the morphometric characteristics of its neurons in rats of different age groups (newborn, 10-, 20-, 30-, 60- and 180-day-old) using anatomical and histological methods. The results obtained indicated that in rats since birth there were three variants of branch origin from the medial margin of SG. No differences were observed in these variants between right and left SG. The sizes of both SG and its neurons increased during the first two months of postnatal development. The density of neurons in SG sections decreased from the moment of birth until the six months of age. The number of SG neurons did not change significantly in the postnatal ontogenesis. Thus, SG in rats is anatomically formed by the moment of birth, while the sizes and morphometric characteristics of SG neurons become finally stabilized by the second month of age. PMID:20572389

  7. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain.

    PubMed

    Wälchli, Thomas; Mateos, José María; Weinman, Oliver; Babic, Daniela; Regli, Luca; Hoerstrup, Simon P; Gerhardt, Holger; Schwab, Martin E; Vogel, Johannes

    2015-01-01

    During development and in various diseases of the CNS, new blood vessel formation starts with endothelial tip cell selection and vascular sprout migration, followed by the establishment of functional, perfused blood vessels. Here we describe a method that allows the assessment of these distinct angiogenic steps together with antibody-based protein detection in the postnatal mouse brain. Intravascular and perivascular markers such as Evans blue (EB), isolectin B4 (IB4) or laminin (LN) are used alongside simultaneous immunofluorescence on the same sections. By using confocal laser-scanning microscopy and stereological methods for analysis, detailed quantification of the 3D postnatal brain vasculature for perfused and nonperfused vessels (e.g., vascular volume fraction, vessel length and number, number of branch points and perfusion status of the newly formed vessels) and characterization of sprouting activity (e.g., endothelial tip cell density, filopodia number) can be obtained. The entire protocol, from mouse perfusion to vessel analysis, takes ∼10 d.

  8. Measurement and associations of pregnancy risk factors with genetic influences, postnatal environmental influences, and toddler behavior

    PubMed Central

    Marceau, Kristine; Hajal, Nastassia; Leve, Leslie D.; Reiss, David; Shaw, Daniel S.; Ganiban, Jody M.; Mayes, Linda C.; Neiderhiser, Jenae M.

    2014-01-01

    This study demonstrates the unique contributions of perinatal risk and genetic and environmental influences on child behavior using data from 561 domestic US adoption triads (birth mothers, adopted child, and adoptive parents). Findings show distinct patterns of associations among genetic (birth mother psychopathology), prenatal (six maternal reported aggregate scores characterizing total obstetric complications, perinatal internalizing symptoms, pregnancy complications, exposure to toxins, substance use, and neonatal complications), and postnatal influences (adoptive parent 18-month internalizing symptoms and over-reactive parenting) and toddler behavior problems (CBCL subscales at 27 months). Findings highlight multiple pathways for toddler’s behavioral development, including genetic, pregnancy, and postnatal main effects. Findings suggest distinct types of pregnancy risk may transmit genetic influences for specific behavior problems rather than broadband problems. PMID:24839336

  9. The heterogeneity of hepatocytes during the postnatal development of the mouse.

    PubMed

    Kanamura, S; Asada-Kubota, M

    1980-01-01

    Development of the hepatocyte heterogeneity was studied histochemically during the postnatal period. At birth ornithine carbamoyltransferase (OCT). succinate dehydrogenase (SDH) and NADH dehydrogenase (NADHDH) activities were evenly distributed throughout the liver acinus. Slightly uneven distribution within the acinus appeared at 3 days after birth in SDH and at 4 days after birth in OCT and NADHDH, changing to that of adult type at 10 or 12 days after birth which is characterized by a marked difference in the activities between zone 1 and 3. However, in animals of all age groups studied, glycogen was decreased mainly in zone 1 and 2 after 6 or 10 h of fasting and glucose 6-phosphatase activity was markedly reduced or disappeared in zone 3 and often in zone 2 after carbon tetrachloride administration. The results show that so-called "functional and structural heterogeneity among hepatocytes" consists of at least two different components, that formed gradually during the postnatal development and that existing already at birth.

  10. Prevalence and psychological correlates of postnatal depression in rural Taiwanese women.

    PubMed

    Tsao, Ying; Creedy, Debra K; Gamble, Jenny

    2015-01-01

    This descriptive longitudinal cohort study investigated the prevalence and psychological risk factors for depression in new mothers living in Pingtung County, southern Taiwan. Expectant mothers (n = 236) were recruited through antenatal clinics, and 162 participants were followed up at 6 weeks postpartum. The estimated prevalence of probable depression (at a cut-off score ≧ 13 on the Edinburgh Postnatal Depression Scale) was 17.3% before birth and 24.1% after birth. Several risk factors for postnatal depression were identified, including maternal self-esteem, antenatal depression, and psychiatric morbidity. The regression of intention on predictive variables yielded an adjusted R(2) of.70. The findings can help clinical nurses effectively recognize and implement risk mitigation plans for the health benefits of rural childbearing women. PMID:25148390

  11. Gap junctions are involved in cell migration in the early postnatal subventricular zone.

    PubMed

    Marins, Mônica; Xavier, Anna L R; Viana, Nathan B; Fortes, Fábio S A; Fróes, Maira M; Menezes, João R L

    2009-09-15

    The massive migration of neuroblasts and young neurons through the anterior extension of the postnatal subventricular zone (SVZ), known as the rostral migratory stream (RMS) is still poorly understood on its molecular basis. In this work, we investigated the involvement of gap junctional communication (GJC) in the robust centrifugal migration from SVZ/RMS explants obtained from early postnatal (P4) rats. Cells were dye-coupled in homocellular and heterocellular pairings and expressed at least two connexins, Cx 43 and 45. Treatment with the uncoupler agent carbenoxolone (CBX, 10-100 microM) reversibly reduced outgrowth from SVZ explants, while its inactive analog, glycyrhizinic acid (GZA), had no effect. Consistent with a direct effect on cell migration, time-lapse video microscopy show that different pharmacological uncouplers cause an abrupt and reversible arrest of cell movement in explants. Our results indicate that GJC is positively involved in the migration of neuroblasts within the SVZ/RMS.

  12. Measurement and associations of pregnancy risk factors with genetic influences, postnatal environmental influences, and toddler behavior.

    PubMed

    Marceau, Kristine; Hajal, Nastassia; Leve, Leslie D; Reiss, David; Shaw, Daniel S; Ganiban, Jody M; Mayes, Linda C; Neiderhiser, Jenae M

    2013-07-01

    This study demonstrates the unique contributions of perinatal risk and genetic and environmental influences on child behavior using data from 561 domestic US adoption triads (birth mothers, adopted child, and adoptive parents). Findings show distinct patterns of associations among genetic (birth mother psychopathology), prenatal (six maternal reported aggregate scores characterizing total obstetric complications, perinatal internalizing symptoms, pregnancy complications, exposure to toxins, substance use, and neonatal complications), and postnatal influences (adoptive parent 18-month internalizing symptoms and over-reactive parenting) and toddler behavior problems (CBCL subscales at 27 months). Findings highlight multiple pathways for toddler's behavioral development, including genetic, pregnancy, and postnatal main effects. Findings suggest distinct types of pregnancy risk may transmit genetic influences for specific behavior problems rather than broadband problems.

  13. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands.

    PubMed

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.

  14. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    PubMed Central

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss; Wiese, Maria; Lundsager, Mia; Buschard, Karsten Stig; Hansen, Axel Kornerup; Frøkiær, Hanne

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice. PMID:26783537

  15. Developmental changes and regional localization of Dspp, Mepe, Mimecan and Versican in postnatal developing mouse teeth.

    PubMed

    Hou, C; Liu, Z X; Tang, K L; Wang, M G; Sun, J; Wang, J; Li, S

    2012-02-01

    It has been implicated noncollagenous proteins act as important regulators during odontogenesis. To test the hypothesis that the roles of Dspp, Mepe, Versican and Mimecan in the regulation of odontogenesis may be complementary, comparative investigations on the localization of four proteins were performed by immunohistochemical staining using mouse first molar at different developmental stages as a model. In postnatal 1- day-old mice, all the proteins, excluding Mepe, showed co-expression in young odontoblasts. At postnatal 3, strong immunoreactions for all proteins were detected in odontoblasts. Interestingly, Mepe was present within both cytoplasm and nucleus in odontoblasts. In mice older than 5 days, the expression of Dspp, Mimecan and Versican accumulated in subodontoblastic layer of the coronal pulp at high levels while the co-expression of Mepe and Mimecan significantly existed in predentin. The temporal-spatial specific pattern and unique co-localization of Dspp, Mepe, Mimecan and Versican suggest they play complementary roles during odontogenesis.

  16. Why postnatal abortion throws the baby out with the bath water.

    PubMed

    Loi, Michele

    2013-09-01

    This paper articulates a careful and detailed objection to the moral permissibility of postnatal abortion. Giubilini and Minerva (2012) claim that if being unable to nurture one's newborn child without significant burdens to oneself, family or society, is a proper moral ground for the demand that the life of a fetus be terminated, then 'after-birth abortion should be considered a permissible option for women who would be damaged by [rearing the child or] giving up their newborns for adoption.' It will be shown that the permissibility of postnatal abortion does not follow from the argument's premises, in particular, the premise that the newborn is not a person in the morally relevant sense.

  17. [Techniques for functional tissue and organ replacement using postnatal stem cells].

    PubMed

    Aigner, J; Eblenkamp, M; Wintermantel, E

    2005-05-01

    Postnatal stem cells play a decisive role in cell-based therapies due to their high proliferation activity and functional plasticity. On the one hand, basic research in cell biological processes of adult stem cells is crucial in order to establish them as therapeutic tools. On the other hand, development and enhancements of appropriate techniques are required: we need to establish defined technologies for extraction and differentiation of stem cells and to develop adequate cell carrier devices, scaffolds, and bioreactors for in vitro purposes. Furthermore, it is an interdisciplinary challenge to consider logistical aspects concerning isolation, transport, and storage of stem cells in order to use them in a wide range of activities in regenerative medicine. In this review we present the current methods of work and research on adult stem cells. We explain their therapeutic use and define requirements for future technological developments for work with postnatal stem cells.

  18. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction.

    PubMed

    Hu, Liang; Liu, Yan; Yan, Chuan; Peng, Xie; Xu, Qin; Xuan, Yue; Han, Fei; Tian, Gang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Zhang, Keying; Chen, Daiwen; Wu, De; Che, Lianqiang

    2015-07-14

    Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets. PMID:26059215

  19. Fetal Aortic Valvuloplasty for Evolving Hypoplastic Left Heart Syndrome: Postnatal Outcomes of the First 100 Patients

    PubMed Central

    Freud, Lindsay R.; McElhinney, Doff B.; Marshall, Audrey C.; Marx, Gerald R.; Friedman, Kevin G.; del Nido, Pedro J.; Emani, Sitaram M.; Lafranchi, Terra; Silva, Virginia; Wilkins-Haug, Louise E.; Benson, Carol B.; Lock, James E.; Tworetzky, Wayne

    2015-01-01

    Background Fetal aortic valvuloplasty (FAV) can be performed for severe mid-gestation aortic stenosis (AS) in an attempt to prevent progression to hypoplastic left heart syndrome (HLHS). A subset of patients has achieved a biventricular (BV) circulation after FAV. The postnatal outcomes and survival of the BV patients, compared to those managed as HLHS, have not been reported. Methods and Results We included 100 patients who underwent FAV for severe mid-gestation AS with evolving HLHS from March 2000 to January 2013. Patients were categorized based on postnatal management as BV or HLHS. Clinical records were reviewed. Eighty-eight fetuses were live-born, and 38 had a BV circulation (31 from birth, 7 converted after initial univentricular palliation). Left-sided structures, namely aortic and mitral valve sizes and LV volume, were significantly larger in the BV group at the time of birth (p-values <0.01). After a median follow-up of 5.4 years, freedom from cardiac death among all BV patients was 96±4% at 5 years and 84±12% at 10 years, which was better than HLHS patients (log-rank p=0.04). There was no cardiac mortality in patients with a BV circulation from birth. All but 1 of the BV patients required postnatal intervention; 42% underwent aortic and/or mitral valve replacement. On most recent echocardiogram, the median LV end-diastolic volume z-score was +1.7 (range: -1.3, +8.2), and 80% had normal ejection fraction. Conclusions Short- and intermediate-term survival among patients who underwent FAV and achieved a BV circulation postnatally is encouraging. However, morbidity still exists, and on-going assessment is warranted. PMID:25052401

  20. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations.

    PubMed

    Boullu-Ciocca, S; Tassistro, V; Dutour, A; Grino, M

    2015-12-01

    Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism. PMID:26084260

  1. Dynamic changes of the neurogenic potential in the rat cochlear nucleus during post-natal development.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzed, Agmal; Radeloff, Andreas; Hagen, Rudolf; Mlynski, Robert

    2013-05-01

    Neuronal stem cells have been described in the post-natal cochlear nucleus recently. The aim of the study was to analyse the neurogenic potential in the cochlear nucleus from the early post-natal days until adulthood. Cochlear nuclei from Sprague-Dawley rats from post-natal day P3 up to P40 were examined. Neurosphere assays showed persistent neurosphere formation from the early post-natal days until adulthood. The numbers of generated neurospheres were fewer in older ages. Neurospheres were smaller, but displayed the same pattern of neuronal stem cell markers. The markers GFAP, MBP and ß-III Tubulin showed differentiation of dissociated cells from the neurospheres in all cells of the neuronal lineage. BrdU incorporation could be detected, in an age-dependent decrease, in whole-mount experiments of the cochlear nucleus on all examined days. BrdU co-labelled with Atoh1 and ß-III Tubulin. In addition, gene expression and cellular distribution studies of the neuronal stem cell markers displayed an age-dependent reduction in both quantity and numbers. The presented results display a possible neurogenic potential until adulthood in the cochlear nucleus by in vitro and in vivo experiments. The fact that this potential is highest at a critical period of development reveals possible functional importance for the development of the cochlear nucleus and the auditory function. The persistent neurogenic potential displayed until adulthood could be a neurogenic niche in the adult cochlear nucleus, which might be used for potential therapeutic strategies. PMID:23455726

  2. Postnatal persistent infection with classical Swine Fever virus and its immunological implications.

    PubMed

    Muñoz-González, Sara; Ruggli, Nicolas; Rosell, Rosa; Pérez, Lester Josué; Frías-Leuporeau, Maria Teresa; Fraile, Lorenzo; Montoya, Maria; Cordoba, Lorena; Domingo, Mariano; Ehrensperger, Felix; Summerfield, Artur; Ganges, Llilianne

    2015-01-01

    It is well established that trans-placental transmission of classical swine fever virus (CSFV) during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs might go unnoticed

  3. Postnatal Support Strategies for Improving Rates of Exclusive Breastfeeding in Case of Caesarean Baby.

    PubMed

    Jesmin, E; Chowdhury, R B; Begum, S; Shapla, N R; Shahida, S M

    2015-10-01

    Despite awarness of the many advantages of breast feeding exclusive breastfeeding (EBF) rate is still lower than recommended practice and the rate is less in case of caesarean baby. In an effort towards achieving better breast feeding practices, UNICEF and WHO launched the baby friendly hospital initiative in 1991 to ensure that all maternity facilities support mothers in making the best choice about feeding. The implementation of effective programs improves rates of short and long term exclusive breast feeding even in case of caesarean baby. The objective of present study was to investigate whether postnatal support improves the rate of exclusive breast feeding in case of caesarean baby compared with usual hospital care. This was a longitudinal study over one and half year period, from April 2009 to October 2011 done in Combined Military Hospital in Mymensingh. A total of 565 pregnant women were included this study. Primary outcome was early establishment of breast feeding after caesarean section. Secondary outcome was exclusive breast feeding at discharge from hospital, two weeks and six weeks after caesarean section delivery. Early establishment of breast feeding within one hour after caesarean section was higher in postnatal support group than usual care group (70.29% vs. 57.14%). Rates of exclusive breastfeeding in the postnatal support strategies group were significantly higher when compared with those who received usual hospital care at discharge (89.13% vs. 75.94%, p=0.004), at 2 weeks (85.51% vs. 53.38%, p<0.001) and at 6 weeks (74.64% vs. 38.35%, p<0.001). Postnatal lactation support, as single intervention based in hospital significantly improves rates of exclusive breast feeding.

  4. Transient expression of neuropeptide W in postnatal mouse hypothalamus--a putative regulator of energy homeostasis.

    PubMed

    Motoike, T; Skach, A G; Godwin, J K; Sinton, C M; Yamazaki, M; Abe, M; Natsume, R; Sakimura, K; Yanagisawa, M

    2015-08-20

    Neuropeptide B and W (NPB and NPW) are cognate peptide ligands for NPBWR1 (GPR7), a G protein-coupled receptor. In rodents, they have been implicated in the regulation of energy homeostasis, neuroendocrine/autonomic responses, and social interactions. Although localization of these peptides and their receptors in adult rodent brain has been well documented, their expression in mouse brain during development is unknown. Here we demonstrate the transient expression of NPW mRNA in the dorsomedial hypothalamus (DMH) of postnatal mouse brain and its co-localization with neuropeptide Y (NPY) mRNA. Neurons expressing both NPW and NPY mRNAs begin to emerge in the DMH at about postnatal day 0 (P-0) through P-3. Their expression is highest around P-14, declines after P-21, and by P-28 only a faint expression of NPW and NPY mRNA remains. In P-18 brains, we detected NPW neurons in the region spanning the subincertal nucleus (SubI), the lateral hypothalamic (LH) perifornical (PF) areas, and the DMH, where the highest expression of NPW mRNA was observed. The majority of these postnatal hypothalamic NPW neurons co-express NPY mRNA. A cross of NPW-iCre knock-in mice with a Cre-dependent tdTomato reporter line revealed that more than half of the reporter-positive neurons in the adult DMH, which mature from the transiently NPW-expressing neurons, are sensitive to peripherally administrated leptin. These data suggest that the DMH neurons that transiently co-express NPW and NPY in the peri-weaning period might play a role in regulating energy homeostasis during postnatal development.

  5. Alterations in central monoamine systems after postnatal lead acetate treatment in rats

    SciTech Connect

    Luthman, J. Univ. of Colorado Health Sciences Center, Denver, CO ); Lindqvist, E.; Olson, L. ); Gerhardt, G.A.; Hoffer, B.H. )

    1994-04-01

    The present study was undertaken to investigate the effect of postnatal lead exposure on central monoamine systems. Newborn male Sprague-Dawley rats were given 1 or 8 mg/kg lead acetate intraperitoneally for 20 days postnatally. Two groups of control rats received sodium acetate, or sodium acetate in oversized litters to compensate for lead-induced malnutrition in the high lead dose group, while nontreated animals also served as controls. At Day 21 or 51 regional tissue levels of monoamines were determined using HPLC techniques. No major changes were seen after the lead exposures in the levels of dopamine, noradrenaline, and serotonin, or metabolites of dopamine and serotonin, when compared to respective control groups. On the other hand, in the control group given sodium acetate in oversized litters some alterations of the monoamine levels were observed in frontal cortex and striatum at Day 21 compared to controls. At Day 51, the striatal homovanillic acid and 5-hydroxyindoleacetic acid levels were higher in the low lead dose group compared to those in the controls, No other changes in the monoamine levels were seen at Day 51. At 50-70 days postnatally, potassium-stimulated dopamine overflow was studied in striatum with in vivo chronoamperometry. In the high lead dose group the amplitudes of signals were lower in both the dorsal and ventral striatum compared to the controls, while no difference was seen in the clearance time of dopamine. The capacity of the dopamine terminals to respond to repeated stimulation was not affected by the lead exposure. Thus, the steady-state levels of monoamines were essentially unaltered after postnatal lead exposure in rats, while functional aspects of striatal dopamine transmission were affected after exposure to the higher dose of lead. These findings support the hypothesis that lead-induced changes in motor skills and exploratory behavior may be related to altered dopamine neurotransmission. 77 refs., 3 figs., 2 tabs.

  6. Variation in elemental intensities among teeth and between pre- and postnatal regions of enamel.

    PubMed

    Dolphin, Alexis E; Goodman, Alan H; Amarasiriwardena, Dulasiri D

    2005-12-01

    Microspatial analyses of the trace element composition of dental enamel are made possible using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Fine spatial resolution, multielement capabilities, and minimal sample destruction make this technique particularly well-suited for documenting the distribution of elements in sequentially calcifying layers of enamel. Because deciduous enamel forms from week 13 in utero up to 9 months postnatally (thereafter essentially becoming inert), the application of LA-ICP-MS allows for the retrospective measurement of prenatal and early postnatal trace-element uptake during a critical period of child development. In this study, we compared intra- and intertooth intensities of 25Mg, 57Fe, 66Zn, 68Zn, 88Sr, 138Ba, and 208Pb via LA-ICP-MS of 38 exfoliated deciduous incisors and canines donated by 36 participants in the Solís Valley Mexico Nutrition Collaborative Research Support Program (NCRSP). Pre- and postnatal comparisons within teeth showed significant increases (P < 0.001) and greater variation in the abundance of all isotopes in postnatal enamel, with the exception of a decrease in 25Mg (P < 0.001) and constant values for 88Sr (P = 0.681). Conversely, comparisons by tooth type and mouth quadrant revealed few significant differences between teeth of the same individual. We argue that more variation in the trace element composition of teeth occurs across developmental areas within a tooth than among different teeth of the same person. This study further demonstrates that sequentially calcifying areas of enamel have different chemical concentrations. The results support the use of microspatial analyses of enamel for understanding changes in nutrition, pollution, and residence.

  7. Pre- and postnatal nutrition in sheep affects β-cell secretion and hypothalamic control.

    PubMed

    Kongsted, Anna H; Husted, Sanne V; Thygesen, Malin P; Christensen, Vibeke G; Blache, Dominique; Tolver, Anders; Larsen, Torben; Quistorff, Bjørn; Nielsen, Mette O

    2013-11-01

    Maternal undernutrition increases the risk of type 2 diabetes and metabolic syndrome later in life, particularly upon postnatal exposure to a high-energy diet. However, dysfunctions of, for example, the glucose-insulin axis are not readily detectable by conventional tests early in life, making it difficult to identify individuals at risk. Thus, other methods are required. We hypothesised that prenatally undernourished individuals (but not postnatally overnourished ones) are adapted to a life with limited food availability, which would be evident under conditions reflecting starvation, stress and short-term abundance of food. In this study, twin-pregnant sheep were fed diets meeting 100% (NORM) or 50% (LOW) of energy and protein requirements during the last trimester. Twin offspring were fed either a normal moderate (CONV) diet or a high-carbohydrate-high-fat (HCHF) diet from 3 days to 6 months of age (approximately puberty) and the same moderate diet thereafter until 2 years of age (young adulthood; only females), resulting in four groups: NORM-CONV, LOW-CONV, NORM-HCHF and LOW-HCHF. At the age of 6 months and 2 years respectively, they were subjected to fasting and propionate (nutrient abundance) and adrenalin challenges. At 6 months of age, postnatal HCHF diet exposure caused metabolic alterations, reflecting hypertriglyceridaemia and altered pancreatic β-cell secretion. Irrespective of postnatal diet, prenatal undernutrition was found to be associated with unexpected endocrine responses of leptin, IGF1 and cortisol during fasting (lack of or the opposite response compared with the controls) in 2-year-old adults. In conclusion, a HCHF diet interfered with β-cell function, whereas maternal undernutrition did not lead to any changes in the LOW offspring, except to abnormal hormone responses, suggesting that fetal programming interferes with hypothalamic integration of important endocrine axis.

  8. Prenatal and postnatal residential usage of insecticides in a multicenter birth cohort in Spain.

    PubMed

    Llop, Sabrina; Casas, Lidia; Santa Marina, Loreto; Estarlich, Marisa; Fernández-Somoano, Ana; Esplugues, Ana; Jimenez, Ana; Zock, Jan-Paul; Tardón, Adonina; Marco, Alfredo; Ballester, Ferran

    2013-02-15

    This study aimed to describe the residential use of insecticides in a birth cohort in Spain. Study subjects were 2,456 women enrolled into the INMA (Environment and Childhood) birth cohort followed prospectively during pregnancy and in the early postnatal period. The women were recruited at the beginning of their pregnancy between 2003 and 2008 in four regions of Spain. Socio-demographic, environmental and lifestyle information was obtained at two interviews during pregnancy, one at the first (mean:13.8±2.6 weeks of gestation) and the other at the third trimester (mean: 33.3±2.3 weeks of gestation). Information about prenatal use of indoor and outdoor insecticides (type, timing, place of application, place of storage) was obtained from the second interview. In a 3rd interview (mean: 16.2±6.9 months of age of children), information about postnatal indoor and outdoor insecticide use was obtained. Regression models examined the association between demographic and lifestyle factors and pesticide use to determine which characteristics predicted use prenatally and postnatally. Fifty-four percent of women reported using indoor insecticides during pregnancy, 45% in their bedroom and 47% elsewhere in the house. Plug-in devices were the most frequent application methods used in the pregnant woman's bedroom and insecticide sprays elsewhere in the house. The maternal factors related to prenatal use of indoor insecticides were parity, country of birth, educational level, region of residence, having a garden or yard with plants, and living near an agricultural area. These products continued to be used postnatally, although 20% of the women stopped using them. Foetuses and children are especially vulnerable to pesticide exposure; thus knowing how pesticides are used during pregnancy and infancy may be a starting point for the study of their potential effects on health as well as useful for designing preventive actions.

  9. Postnatal Hyperoxia Exposure Differentially Affects Hepatocytes and Liver Haemopoietic Cells in Newborn Rats

    PubMed Central

    Marconi, Guya Diletta; Zara, Susi; De Colli, Marianna; Di Valerio, Valentina; Rapino, Monica; Zaramella, Patrizia; Dedja, Arben; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea

    2014-01-01

    Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells) and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase 9 (MMP-9), Hypoxia-Inducible Factor-1α (HIF-1α), endothelial Nitric Oxide Synthase (eNOS), and Nuclear Factor-kB (NF-kB). Experimental design of the study involved exposure of newborn rats to room air (controls), 60% O2 (moderate hyperoxia), or 95% O2 (severe hyperoxia) for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia) and eNOS (severe hyperoxia) in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized. PMID:25115881

  10. Variation in elemental intensities among teeth and between pre- and postnatal regions of enamel.

    PubMed

    Dolphin, Alexis E; Goodman, Alan H; Amarasiriwardena, Dulasiri D

    2005-12-01

    Microspatial analyses of the trace element composition of dental enamel are made possible using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Fine spatial resolution, multielement capabilities, and minimal sample destruction make this technique particularly well-suited for documenting the distribution of elements in sequentially calcifying layers of enamel. Because deciduous enamel forms from week 13 in utero up to 9 months postnatally (thereafter essentially becoming inert), the application of LA-ICP-MS allows for the retrospective measurement of prenatal and early postnatal trace-element uptake during a critical period of child development. In this study, we compared intra- and intertooth intensities of 25Mg, 57Fe, 66Zn, 68Zn, 88Sr, 138Ba, and 208Pb via LA-ICP-MS of 38 exfoliated deciduous incisors and canines donated by 36 participants in the Solís Valley Mexico Nutrition Collaborative Research Support Program (NCRSP). Pre- and postnatal comparisons within teeth showed significant increases (P < 0.001) and greater variation in the abundance of all isotopes in postnatal enamel, with the exception of a decrease in 25Mg (P < 0.001) and constant values for 88Sr (P = 0.681). Conversely, comparisons by tooth type and mouth quadrant revealed few significant differences between teeth of the same individual. We argue that more variation in the trace element composition of teeth occurs across developmental areas within a tooth than among different teeth of the same person. This study further demonstrates that sequentially calcifying areas of enamel have different chemical concentrations. The results support the use of microspatial analyses of enamel for understanding changes in nutrition, pollution, and residence. PMID:16118782

  11. Catch-up growth after dexamethasone withdrawal occurs in cultured postnatal rat metatarsal bones.

    PubMed

    Chagin, Andrei S; Karimian, Elham; Sundström, Katja; Eriksson, Emma; Sävendahl, Lars

    2010-01-01

    Children exposed to systemic glucocorticoids often exhibit growth retardation and after the cessation of therapy catch-up growth occurs in many, but not all patients. The developmental regulation and underlying cellular mechanisms of catch-up growth are not fully understood. To clarify this issue, we established an in vitro model of catch-up growth. Here we present a protocol for the long-term culture (up to 160 days) of fetal (E20) as well as postnatal (P8) rat metatarsal bones which allowed us to characterize ex vivo the phenomenon of catch-up growth without any influence by systemic factors. The relevance of the model was confirmed by the demonstration that the growth of fetal and postnatal bones were stimulated by IGF1 (100 ng/ml) and inhibited by dexamethasone (Dexa; 1 microM). We found that the capacity to undergo catch-up growth was restricted to postnatal bones. Catch-up growth occurred after postnatal bones had been exposed to Dexa for 7 or 12 days but not after a more prolonged exposure (19 days). Incomplete catch-up growth resulted in compromised bone length when assessed at the end of the 4-month period of culture. While exposure to Dexa was associated with decreased chondrocyte proliferation and differentiation, catch-up growth was only associated with increased cell proliferation. We conclude that the phenomenon of catch-up growth after Dexa treatment is intrinsic to the growth plate and primarily mediated by an upregulation of chondrocyte proliferation.

  12. Environmental effects on thermoregulation and breathing patterns during early postnatal development in hand-reared lambs.

    PubMed

    Symonds, M E; Andrews, D C; Buss, D S; Clarke, L; Darby, C J; Johnson, P; Lomax, M A

    1995-09-01

    This study examines the effect of hand-rearing developing lambs in a warm (WR; 25 degrees C) or cool (CR; 10-15 degrees C) ambient temperature on the control of thermoregulation and breathing patterns, when maintained at a fixed level of nutrition over the first month of postnatal life. Measurements were made during non-rapid eye movement sleep whilst lambs were maintained for at least 1 h at warm (28-19 degrees C) and cold (14-5 degrees C) ambient temperatures at 1, 7, 14 and 30 days of age. All lambs were able to maintain normal body temperature, but oxygen consumption was higher in CR lambs at 14 and 30 days of age. At 1 day of age shivering was rarely observed in any lambs, but at 7 and 14 days of age more WR than CR lambs responded to cold exposure via shivering. Plasma concentrations of triiodothyronine were higher at 7 and 14 days of age in CR lambs. Breathing frequencies were similar in WR and CR lambs, and from 7 days of age the incidence of expiratory laryngeal braking was higher in warm compared with cold study temperatures. By 30 days of age the recruitment of this mechanism was greater in CR lambs. Mean growth rate was slower over the first week of postnatal life in CR compared with WR lambs. This difference decreased over the first month of life, as growth rate increased from 83 to 130 g day-1 in the CR group but remained constant at approximately 150 g day-1 in the WR lambs. Total weight of the lungs and heart, but not the liver, were lower at 1 month but not at 1 week of postnatal life in CR lambs. It is concluded that a modest decrease in the ambient temperature in which postnatal lambs are reared, when on a fixed feed intake, alters lung size, the recruitment of laryngeal braking and the control of body temperature.

  13. Outcome of Preterm Infants With Postnatal Cytomegalovirus Infection via Breast Milk

    PubMed Central

    Jim, Wai-Tim; Chiu, Nan-Chang; Ho, Che-Sheng; Shu, Chyong-Hsin; Chang, Jui-Hsing; Hung, Han-Yang; Kao, Hsin-An; Chang, Hung-Yang; Peng, Chun-Chih; Yui, Bey-Hwa; Chuu, Chih-Pin

    2015-01-01

    Abstract Approximately 15% of preterm infants may develop postnatal cytomegalovirus (CMV) infection from seropositive mothers via breast milk and are at risk for neurological sequelae in childhood. The aims of this study were to assess the effects and outcomes on growth, neurodevelopmental status, and hearing in very low birth weight (VLBW) premature infants with postnatal CMV infection via breast milk at the corrected age of 12 and 24 months. The prospective follow-up study population comprised all living preterm children (n = 55) with a birth weight ≤1500 g and gestational age of ≤35 weeks, who had been participated in our “postnatal CMV infection via breast milk” studies in 2000 and 2009, respectively. The cohort of children was assessed at 12 and 24 months. Clinical outcomes were documented during hospitalization and after discharge. Long-term outcomes included anthropometry, audiologic tests, gross motor quotient, Infant International Battery, and neurodevelopmental outcomes; all were assessed at postcorrected age in 12 and 24 months during follow-up visits. Of the 55 infants enrolled in the study (4 noninfected infants were excluded because their parents did not join this follow-up program later), 14 infants postnatally acquired CMV infection through breast-feeding (infected group) and were compared with 41 infants without CMV infection (control group). No significant differences were observed between the groups with regard to baseline characteristics, clinical outcomes, anthropometry, or psychomotor and mental development on the Bayley scale of infant development. None of the infants had CMV-related death or permanent sensorineural hearing loss. Transmission of CMV from seropositive mother via breast milk to preterm infants does not appear at this time to have major adverse effects on clinical outcomes, growth, neurodevelopmental status, and hearing function at 12 and 24 months corrected age. PMID:26512588

  14. Epileptic activity during early postnatal life in the AY-9944 model of atypical absence epilepsy.

    PubMed

    Jung, Seungmoon; Jeong, Yong; Jeon, Daejong

    2015-05-01

    Atypical absence epilepsy (AAE) is an intractable disorder characterized by slow spike-and-wave discharges in electroencephalograms (EEGs) and accompanied by severe cognitive dysfunction and neurodevelopmental or neurological deficits in humans. Administration of the cholesterol biosynthesis inhibitor AY-9944 (AY) during the postnatal developmental period induces AAE in animals; however, the neural mechanism of seizure development remains largely unknown. In this study, we characterized the cellular manifestations of AY-induced AAE in the mouse. Treatment of brain slices with AY increased membrane excitability of hippocampal CA1 neurons. AY treatment also increased input resistance of CA1 neurons during early postnatal days (PND) 5-10. However, these effects were not observed during late PND (14-21) or in adulthood (7-10 weeks). Notably, AY treatment elicited paroxysmal depolarizing shift (PDS)-like epileptiform discharges during the early postnatal period, but not during late PND or in adults. The PDS-like events were not compromised by application of glutamate or GABA receptor antagonists. However, the PDS-like events were abolished by blockage of voltage-gated Na(+) channels. Hippocampal neurons isolated from an in vivo AY model of AAE showed similar PDS-like epileptiform discharges. Further, AY-treated neurons from T-type Ca(2+) channel α1G knockout (Cav3.1(-/-)) mice, which do not exhibit typical absence seizures, showed similar PDS-like epileptiform discharges. These results demonstrate that PDS-like epileptiform discharges during the early postnatal period are dependent upon Na(+) channels and are involved in the generation of AY-induced AAE, which is distinct from typical absence epilepsy. Our findings may aid our understanding of the pathophysiological mechanisms of clinical AAE in individuals, such as those with Lennox-Gastaut syndrome. PMID:25890840

  15. Prenatal and Postnatal Fruit and Vegetable Intake Among US Women: Associations with WIC Participation.

    PubMed

    Stallings, Tiffany L; Gazmararian, Julie A; Goodman, Michael; Kleinbaum, David

    2016-08-01

    Objective Evaluate variation in fruit and vegetable intake by Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) participation and poverty status among pregnant, and postpartum women participating in the Infant Feeding Practice Study II (IFPSII). Methods IFPSII (2005-2007) followed US women from third trimester through 1 year postpartum through mailed questionnaires measuring income, WIC participation, breastfeeding; and dietary history questionnaires (DHQ) assessing prenatal/postnatal fruit and vegetable consumption. Poverty measurements used U.S. Census Bureau Federal Poverty thresholds to calculate percent of poverty index ratio (PIR) corresponding to WIC's financial eligibility (≤185 % PIR). Comparison groups: WIC recipients; WIC eligible (≤185 % PIR), but non-recipients; and women not financially WIC eligible (>185 % PIR). IFPSII participants who completed at least one DHQ were included. Intake variation among WIC/poverty groups was assessed by Kruskal-Wallis tests and between groups by Mann-Whitney Wilcoxon tests and logistic regression. Mann-Whitney Wilcoxon tests examined postnatal intake by breastfeeding. Results Prenatal vegetable intake significantly varied by WIC/poverty groups (p = 0.04) with WIC recipients reporting significantly higher intake than women not financially WIC eligible (p = 0.02); association remained significant adjusting for confounders [odds ratio 0.66 (95 % confidence interval: 0.49-0.90)]. Prenatal fruit and postnatal consumption did not significantly differ by WIC/poverty groups. Postnatal intake was significantly higher among breastfeeding than non-breastfeeding women (fruit: p < 0.0001; vegetable: p = 0.006). Conclusions for Practice Most intakes did not significantly differ by WIC/poverty groups and thus prompts research on WIC recipient's dietary behaviors, reasons for non-participation in WIC, and the influence of the recent changes to the WIC food package.

  16. Postnatal Growth of the Human Pons: A Morphometric and Immunohistochemical Analysis

    PubMed Central

    Tate, Matthew C.; Lindquist, Robert A.; Nguyen, Thuhien; Sanai, Nader; Barkovich, A. James; Huang, Eric J.; Rowitch, David H.; Alvarez-Buylla, Arturo

    2014-01-01

    Despite its critical importance to global brain function, the postnatal development of the human pons remains poorly understood. In the present study, we first performed MRI-based morphometric analyses of the postnatal human pons (0–18 years; n=6–14/timepoint). Pons volume increased 6-fold from birth to 5 years, followed by continued slower growth throughout childhood. The observed growth was primarily due to expansion of the basis pontis. T2-based MRI analysis suggests that this growth is linked to increased myelination, and histological analysis of myelin basic protein in human postmortem specimens confirmed a dramatic increase in myelination during infancy. Analysis of cellular proliferation revealed many Ki67+ cells during the first 7 months of life, particularly during the first month where proliferation was increased in the basis relative to tegmentum. The majority of proliferative cells in the postnatal pons expressed the transcription factor Olig2, suggesting an oligodendrocyte lineage. The proportion of proliferating cells that were Olig2+ was similar through the first 7 months of life and between basis and tegmentum. The number of Ki67+ cells declined dramatically from birth to 7 months and further decreased by 3 years, with a small number of Ki67+ cells observed throughout childhood. In addition, two populations of vimentin/nestin-expressing cells were identified: a dorsal group near the ventricular surface, which persists throughout childhood, and a parenchymal population that diminishes by 7 months and was not evident later in childhood. Together, our data reveal remarkable postnatal growth in the ventral pons, particularly during infancy when cells are most proliferative and myelination increases. PMID:25307966

  17. Effects of synchronous and asynchronous embryo transfer on postnatal development, adult health, and behavior in mice.

    PubMed

    López-Cardona, Angela P; Fernández-González, Raúl; Pérez-Crespo, Miriam; Alén, Francisco; de Fonseca, Fernando Rodriguez; Orio, Laura; Gutierrez-Adan, Alfonso

    2015-10-01

    Asynchronous embryo transfer (ET) is a common assisted reproduction technique used in several species, but its biological effects on postnatal and early development remain unknown. The aim of this study was to determine whether asynchronous ET produces long-term effects in mice. Postnatal development, animal weight, systolic blood pressure (SBP), relative organ weight (liver, spleen, kidneys, heart, lungs, brain, and testicles), and behavior (assessed in open-field and elevated plus maze tests) were assessed in CD1 mice produced by different ET procedures: 1) the transfer of Day 3.5 (D3.5) blastocysts to the uterus (BL-UT); 2) the transfer of D3.5 blastocysts to the oviduct (BL-OV); or 3) the transfer of D0.5 zygotes to the oviduct (Z-OV). In vivo conceived animals served as controls (CT). The transfer of blastocysts to the uterus or zygotes to the oviduct was defined as synchronous, and transfer of blastocysts to the oviduct was defined as asynchronous. Both synchronous and asynchronous ET resulted in increased weight at birth that normalized thereafter with the exception of asynchronous ET females. In this group, female BL-OV, a clear lower body weight was recorded along postnatal life when compared with controls (P < 0.05). No effects on animal weight were produced during postnatal development in the synchronous ET groups (BL-UT, Z-OV, and CT). Both synchronous and asynchronous ET had impacts on adult (Wk 30) organ weight. SBP was modified in animals derived from blastocyst but not zygote ET. Effects on behavior (anxiety in the plus maze) were only detected in the BL-UT group (P < 0.05). Our findings indicate that zygotes are less sensitive than blastocysts to ET and that both synchronous and asynchronous blastocyst ET may have long-term consequences on health, with possible impacts on weight, arterial pressure, relative organ weight, and behavior.

  18. Sensory and Motor Characterization in the Post-natal Valproate Rat Model of Autism

    PubMed Central

    Reynolds, Stacey; Millette, Alexandre; Devine, Darragh P.

    2013-01-01

    Although autism is diagnosed according to three core features of social deficits, communication impairments, and repetitive or stereotyped behaviors, other behavioral features such as sensory and motor impairments are present in more than 70% of individuals with autism spectrum disorders. Exposure of rat pups to the teratogen valproate during sensitive periods of brain development has been shown to elicit behavioral features associated with autism diagnosis and has been proposed as a valid animal model of the disorder. The purpose of this study was to characterize sensory and motor performance in rats post-natally treated with valproate. Thirty four rat pups were injected with either valproate (150 mg/kg) or saline on post-natal days 6–12. Auditory and tactile startle as well as auditory sensory gating was assessed during both the juvenile and adolescent stages of development; motor testing was conducted during late adolescence and included a sunflower seed eating task and a vermicelli-handling task. Valproate-treated rats were under-responsive to auditory stimuli, showed deficits in auditory sensory gating, and demonstrated impairments in motor speed and performance. These findings suggest that post-natal valproate treatment elicits sensory and motor features often seen in individuals with ASD. Further, the hypo-sensitivity seen in post-natally valproate-treated rats contrasted with hyper-sensitivity previously reported in pre-natally valproate-exposed rats. This suggests that timing of teratogenic exposure during early brain development may be important to consider when investigating the neurobiological basis of sensory-motor impairments in ASD. PMID:22627078

  19. Deciduous enamel defects in prehistoric Americans from Dickson Mounds: prenatal and postnatal stress.

    PubMed

    Blakey, M L; Armelagos, G J

    1985-04-01

    The month of onset, duration, and incidence of dental enamel hypoplasia and hypocalcification was determined in sub-adults from the Dickson Mounds (Illinois) skeletal series (A.D. 950-1300). The onset of enamel defects occurred predominantly during the intrauterine period, suggesting maternal stress. There are marked differences in survivorship and the duration of enamel disruption in those affected prenatally and postnatally. The relationship between these data and studies of adult dentition is examined.

  20. Postnatal development of the vallate papilla and taste buds in rats.

    PubMed

    Hosley, M A; Oakley, B

    1987-06-01

    The postnatal maturation of the vallate papilla and its taste buds was quantitatively investigated in rats by ligh microscopy. Specifically, we measured postnatal increases in the size of mature vallate taste buds and the vallate papilla, increases in the thickness of the gustatory epidermis, and increases in the number of mature taste buds and taste cells per bud. Mature taste buds, defined as those having a taste pore, are rare at birth but proliferate rapidly during the first postnatal month until an average of 610 mature taste buds has accumulated by 90 days. Throughout this postnatal period, mature taste buds adjust to the developmental thickening of the epidermis by continuously increasing in length. Mature taste buds also increase in width, in part due to a threefold increase from 10 and 45 days in the number of taste cells per bud. From 10 to 21 days there is an average daily net increase of three cells per mature taste bud. The maturational increase in taste buds and cells may contribute to the functional changes in taste nerve responses known to occur over the course of several generations of taste receptor cells. The dimensions of the vallate papilla and the surface area of the gustatory epithelium increase logarithmically with age. Although mature taste buds continue to increase in number until 90 days, both taste bud density (178/mm2) and the number of cells per mature taste bud (70-75 cells) reach ceilings by 45 days. Thus, density-dependent factors appear to control vallate taste bud maturation. The immaturity of lingual taste buds in newborn rats supports the view that odor, rather than taste, is the chemosensory signal that guides suckling in altricial rodents. PMID:3619089

  1. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus.

    PubMed

    Li, Ge; Zhang, Wenjuan; Baker, Maria S; Laritsky, Eleonora; Mattan-Hung, Natalia; Yu, Dahai; Kunde-Ramamoorthy, Govindarajan; Simerly, Richard B; Chen, Rui; Shen, Lanlan; Waterland, Robert A

    2014-03-15

    Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these processes, it is essential to develop approaches to disentangle the cellular and regional heterogeneity of hypothalamic developmental epigenetics. We therefore performed genome-scale DNA methylation profiling in hypothalamic neurons and non-neuronal cells at postnatal day 0 (P0) and P21 and found, surprisingly, that most of the DNA methylation differences distinguishing these two cell types are established postnatally. In particular, neuron-specific increases in DNA methylation occurred extensively at genes involved in neuronal development. Quantitative bisulfite pyrosequencing verified our methylation profiling results in all 15 regions examined, and expression differences were associated with DNA methylation at several genes. We also identified extensive methylation differences between the arcuate (ARH) and paraventricular nucleus of the hypothalamus (PVH). Integrating these two data sets showed that genomic regions with PVH versus ARH differential methylation strongly overlap with those undergoing neuron-specific increases from P0 to P21, suggesting that these developmental changes occur preferentially in either the ARH or PVH. In particular, neuron-specific methylation increases at the 3' end of Shh localized to the ARH and were positively associated with gene expression. Our data indicate a key role for DNA methylation in establishing the gene expression potential of diverse hypothalamic cell types, and provide the novel insight that early postnatal life is a critical period for cell type-specific epigenetic development in the murine hypothalamus.

  2. Promoting innovation in pediatric nutrition.

    PubMed

    Bier, Dennis M

    2010-01-01

    Truly impactful innovation can only be recognized in retrospect. Moreover, almost by definition, developing algorithmic paths on roadmaps for innovation are likely to be unsuccessful because innovators do not generally follow established routes. Nonetheless, environments can be established within Departments of Pediatrics that promote innovating thinking. The environmental factors necessary to do so include: (1) demand that academic Pediatrics Departments function in an aggressively scholarly mode; (2) capture the most fundamental science in postnatal developmental biology; (3) focus education and training on the boundaries of our knowledge, rather than the almost exclusive attention to what we think we already know; (4) devote mentoring, time and resources to only the most compelling unanswered questions in the pediatric sciences, including nutrition; (5) accept only systematic, evidence-based answers to clinical questions; (6) if systematic, evidence-based data are not available, design the proper studies to get them; (7) prize questioning the answers to further move beyond the knowledge limit; (8) support the principle that experiments in children will be required to convincingly answer clinical questions important to children, and (9) establish the multicenter resources in pediatric scientist training, clinical study design and implementation, and laboratory and instrument technologies required to answer today's questions with tomorrow's methods.

  3. Histologic Features of Postnatal Development of Immune System Organs in the Sprague-Dawley Rat.

    PubMed

    Parker, George A; Picut, Catherine A; Swanson, Cynthia; Toot, Jonathan D

    2015-08-01

    The immune system of the rat undergoes substantial functional and morphological development during the postnatal period. Some aspects of this development are genetically predetermined, while other aspects depend on environmental influences. Detailed information on postnatal development is important in the interpretation of histopathologic findings in juvenile toxicology and pubertal assay studies, as well as other studies conducted in juvenile rats. Studies were conducted to provide detailed characterization of histologic features of the major functional compartments of immune system organs in male and female Sprague-Dawley rats at weekly intervals from the day of birth through postnatal day (PND) 42. Maturation of the individual immune system organs occurred across a range of ages, with histologic maturation of T-cell-related compartments typically occurring prior to maturation of B-cell-related compartments. The sequence of histologic maturation was bone marrow and thymus on PND 14, mesenteric lymph node on PND 21, Peyer's patches and bronchus-associated lymphoid tissue on PND 28, mandibular lymph node, nasopharynx-associated lymphoid tissue, and diffuse mucosal mononuclear cell population of small intestine on PND 35, and spleen on PND 42. An estimation of functional maturation can be made based on the morphological indications of maturity of each compartment of immune system organs, but histologic indications of maturity do not confirm functional immunocompetence.

  4. Local generation of glia is a major astrocyte source in postnatal cortex

    PubMed Central

    Ge, Woo-Ping; Miyawaki, Atsushi; Gage, Fred H.; Jan, Yuh Nung; Jan, Lily Yeh

    2013-01-01

    Glial cells constitute nearly 50% of the cells in the human brain1. Astrocytes, which make up the largest glial population, are crucial to the regulation of synaptic connectivity during postnatal development2. Because defects in astrocyte generation are associated with severe neurological disorders such as brain tumours3, it is important to understand how astrocytes are produced. Astrocytes reportedly arise from two sources4–6: radial glia in the ventricular zone and progenitors in the subventricular zone, with the contribution from each region shifting with time. During the first three weeks of postnatal development, the glial cell population, which contains predominantly astrocytes, expands 6–8-fold in the rodent brain7. Little is known about the mechanisms underlying this expansion. Here we show that a major source of glia in the postnatal cortex in mice is the local proliferation of differentiated astrocytes. Unlike glial progenitors in the subventricular zone, differentiated astrocytes undergo symmetric division, and their progeny integrate functionally into the existing glial network as mature astrocytes that form endfeet with blood vessels, couple electrically to neighbouring astrocytes, and take up glutamate after neuronal activity. PMID:22456708

  5. Disentangling prenatal and postnatal maternal genetic effects reveals persistent prenatal effects on offspring growth in mice.

    PubMed

    Wolf, Jason B; Leamy, Larry J; Roseman, Charles C; Cheverud, James M

    2011-11-01

    Mothers are often the most important determinant of traits expressed by their offspring. These "maternal effects" (MEs) are especially crucial in early development, but can also persist into adulthood. They have been shown to play a role in a diversity of evolutionary and ecological processes, especially when genetically based. Although the importance of MEs is becoming widely appreciated, we know little about their underlying genetic basis. We address the dearth of genetic data by providing a simple approach, using combined genotype information from parents and offspring, to identify "maternal genetic effects" (MGEs) contributing to natural variation in complex traits. Combined with experimental cross-fostering, our approach also allows for the separation of pre- and postnatal MGEs, providing rare insights into prenatal effects. Applying this approach to an experimental mouse population, we identified 13 ME loci affecting body weight, most of which (12/13) exhibited prenatal effects, and nearly half (6/13) exhibiting postnatal effects. MGEs contributed more to variation in body weight than the direct effects of the offsprings' own genotypes until mice reached adulthood, but continued to represent a major component of variation through adulthood. Prenatal effects always contributed more variation than postnatal effects, especially for those effects that persisted into adulthood. These results suggest that MGEs may be an important component of genetic architecture that is generally overlooked in studies focused on direct mapping from genotype to phenotype. Our approach can be used in both experimental and natural populations, providing a widely practicable means of expanding our understanding of MGEs.

  6. Postnatal development of retrosplenial projections to the parahippocampal region of the rat.

    PubMed

    Sugar, Jørgen; Witter, Menno P

    2016-01-01

    The rat parahippocampal region (PHR) and retrosplenial cortex (RSC) are cortical areas important for spatial cognition. In PHR, head-direction cells are present before eye-opening, earliest detected in postnatal day (P)11 animals. Border cells have been recorded around eye-opening (P16), while grid cells do not obtain adult-like features until the fourth postnatal week. In view of these developmental time-lines, we aimed to explore when afferents originating in RSC arrive in PHR. To this end, we injected rats aged P0-P28 with anterograde tracers into RSC. First, we characterized the organization of RSC-PHR projections in postnatal rats and compared these results with data obtained in the adult. Second, we described the morphological development of axonal plexus in PHR. We conclude that the first arriving RSC-axons in PHR, present from P1 onwards, already show a topographical organization similar to that seen in adults, although the labeled plexus does not obtain adult-like densities until P12.

  7. Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development

    PubMed Central

    Kim, Donghee; Papreck, Justin R.; Kim, Insook; Donnelly, David F.; Carroll, John L.

    2011-01-01

    A post-natal increase in carotid body (CB) hypoxia responsiveness occurs at the level of carotid sinus nerve activity, intracellular calcium, cell membrane depolarization and hypoxic inhibition of O2-sensitive background K+ conductance. TASK-1, TASK-1/3 and TASK-3 are functionally expressed in CB glomus cells, with TASK-1/3 providing the major part of the O2-sensitive TASK-like background K+ conductance. Here we report the effects of graded hypoxia on TASK-like channel activity in CB glomus cells from rats aged 0-1, 6-7 and 16-18 days; the time frame of postnatal CB functional maturation. TASK was active in nearly all cell-attached patches and TASK activity during normoxia did not differ across ages. Hypoxia produced a progressive decrease in channel opening frequency with graded decreases in O2 level and also produced glomus cell depolarization, as assessed by the shift in reversal potential of TASK single channel current. Hypoxic inhibition of TASK activity was least at P0-P1 and increased with age mainly between 6-7 and 16-18 days. The O2-sensitive TASK activity was significantly greater in glomus cells from P16-P18 when compared to cells from P0-P1 day old rats. These results support the hypothesis that postnatal carotid body functional maturation is due, at least in part, to changes in the sensitivity of TASK to the hypoxic signals generated in glomus cells. PMID:21530688

  8. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  9. Postnatal change in sulcal length asymmetry in cerebrum of cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Sakamoto, Kazuhito; Sawada, Kazuhiko; Fukunishi, Katsuhiro; Noritaka, Imai; Sakata-Haga, Hiromi; Yoshihiro, Fukui

    2014-02-01

    The purpose of this study was to determine the timing of the onset of adult-type sulcal length asymmetry during postnatal development of the male cynomolgus monkey cerebrum. The monkey brain has already reached adult size by 3 months of age, although the body weight only represents 1/8 of the adult body weight by that time. The fronto-occipital length and the cerebral width also reached adult levels by that postnatal age with no left/right bias. Consistently, lengths of the major primary sulci reached adult levels by 3 months of age, and then decreased slightly in sexually mature monkeys (4-6.5 years of age). Asymmetry quotient analysis showed that sulcal length asymmetry patterns gradually changed during postnatal development. The male adult pattern of sulcal length asymmetry was acquired after 24 months of age. In particular, age-dependent rightward lateralization of the arcuate sulcal length was revealed during cerebral maturation by three-way ANOVA. The results suggest that the regional difference in cerebral maturation from adolescence to young adulthood modifies the sulcal morphology with characteristic asymmetric patterns in male cynomolgus monkeys.

  10. Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats

    PubMed Central

    Mony, Tamanna Jahan; Lee, Jae Won; Dreyfus, Cheryl; DiCicco-Bloom, Emanuel; Lee, Hee Jae

    2016-01-01

    Objective We reported that postnatal exposure of rats to valproic acid (VPA) stimulated proliferation of glial precursors during cortical gliogenesis. However, there are no reports whether enhanced postnatal gliogenesis affects behaviors related to neuropsychiatric disorders. Methods After VPA treatment during the postnatal day (PND) 2 to PND 4, four behavioral test, such as open field locomotor test, elevated plus maze test, three-chamber social interaction test, and passive avoidance test, were performed at PND 21 or 22. Results VPA treated rats showed significant hyperactive behavior in the open field locomotor test (p<0.05). Moreover, the velocity of movement in the VPA group was increased by 69.5% (p<0.01). In the elevated plus maze test, VPA exposed rats expressed significantly lower percentage of time spent on and of entries into open arms more than the control group (p<0.05). Also, both sociability and social preference indices with strangers in the three-chamber social interaction test were significantly lower in the VPA exposed rats (p<0.05). Conclusion Our results suggest that altered glial cell development is another locus at which pathogenetic factors can operate to contribute to the neurodevelopmental disorder. PMID:27776385

  11. β-defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios

    PubMed Central

    Ribeiro, Camilla M; Silva, Erick JR; Hinton, Barry T; Avellar, Maria Christina W

    2016-01-01

    β-defensins are components of host defense, with antimicrobial and pleiotropic immuno-modulatory properties. Research over the last 15 years has demonstrated abundant expression of a variety of β-defensins in the postnatal epididymis of different species. A gradient of region- and cell-specific expression of these proteins is observed in the epithelium of the postnatal epididymis. Their secretion into the luminal fluid and binding to spermatozoa as they travel along the epididymis has suggested their involvement in reproduction-specific tasks. Therefore, continuous attention has been given to various β-defensins for their role in sperm function and fertility. Although β-defensins are largely dependent on androgens, the underlying mechanisms regulating their expression and function in the epididymis are not well understood. Recent investigation has pointed out to a new and interesting scenario where β-defensins emerge with a different expression pattern in the Wolffian duct, the embryonic precursor of the epididymis, as opposed to the adult epididymis, thereby redefining the concept concerning the multifunctional roles of β-defensins in the developing epididymis. In this review, we summarize some current views of β-defensins in the epididymis highlighting our most recent data and speculations on their role in the developing epididymis during the prenatal-to-postnatal transition, bringing attention to the many unanswered questions in this research area that may contribute to a better understanding of epididymal biology and male fertility. PMID:26763543

  12. Adult neuropsychological performance following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure.

  13. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    PubMed

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  14. The link between postnatal abstinence and extramarital sex in Côte d'Ivoire.

    PubMed

    Ali, M M; Cleland, J G

    2001-09-01

    Whether the link, found in Benin, between postnatal abstinence and husbands' extramarital contacts can be generalized to other West African countries is assessed in this study. Data from the 1994 Demographic and Health Survey, Côte d'Ivoire, obtained from monogamous husbands concerning their extramarital sexual behavior in the two months preceding the survey were linked to data reported by wives concerning postnatal abstinence over the same time period. Logistic regression was applied to assess the link between these two factors, net of the effects of possible confounders. A significant effect of postnatal abstinence on the probability that the husband reported at least one extramarital partner was found. Unprotected extramarital sex was two times more common among men who observed conjugal abstinence than it was among other men. Other predictors of extramarital sex were urban-rural residence, region, education, and whether or not husband and wife had the same religious affiliation. Because condom use is low in this population, the protective effect of marital abstinence is offset by an increased probability that husbands will seek extramarital partners during the postpartum period. The results confirm the earlier findings for Benin and can likely be generalized to most of West Africa.

  15. The Postnatal Maternal Environment Affects Autoimmune Disease Susceptibility in A/J mice

    PubMed Central

    Case, Laure K.; Rio, Roxana del; Bonney, Elizabeth A.; Zachary, James F.; Blankenhorn, Elizabeth P.; Tung, Kenneth S. K.; Teuscher, Cory

    2009-01-01

    The postnatal maternal environment is known to increase susceptibility to a number of autoimmune diseases. Here we asked whether the postnatal maternal environment could influence autoimmune disease development to day 3 thymectomy (d3tx)-induced autoimmune ovarian disease (AOD) and experimental allergic encephalomyelitis (EAE) in cross-fostered A/J and B6 mice. A/J pups foster-nursed by B6 mothers exhibit an increase in autoimmune disease development while cross-fostering B6 pups on A/J mothers did not alter their susceptibility. The increase in AOD incidence seen in foster-nursed d3tx A/J mice correlated with a decrease in the total number of CD4+ T cells in the lymph nodes of these animals. Analysis of the cellular composition in the milk revealed that B6 mice shed significantly more maternally derived lymphocytes into their milk compared to A/J mothers. These data suggest that there are maternally derived postnatal factors that influence the development of autoimmune disease in A/J mice. PMID:19914609

  16. [Parenteral nutrition in premature infants: practical aspects to optimize postnatal growth and development].

    PubMed

    Senterre, T; Rigo, J

    2013-09-01

    Nutrition and growth are still a major challenge in neonatal intensive care. Many studies have demonstrated that premature infants frequently develop severe cumulative nutritional deficit during the first weeks of life. This malnutrition is the primary etiology of postnatal growth restriction, which is still universally described in very premature infants. Furthermore, both postnatal nutritional deficit and postnatal growth restriction have been associated with adverse long-term outcome in adulthood. Due to their immaturity, premature infants are frequently not fed by the enteral route. Therefore, parenteral nutrition remains an essential therapy in neonatology. Most recent recommendations suggest starting parenteral nutrition as soon as possible after birth with a minimum of 40 kcal/kg/day with around 2-3g/kg/day of amino acids and 1g/kg/day of lipids. Afterwards, intake should increase rapidly during the first week of life, up to 90-120 kcal/kg/day with around 3.5 g/kg/day amino acids and 3g/kg/day of lipids. There is great heterogeneity in parenteral nutrition practices among neonatal units, with frequent discrepancies. This article discusses the principal theoretical aspects of parenteral nutrition in premature infants, the guidelines, and the opportunity to optimize nutritional support routinely, especially in very premature infants. PMID:23845601

  17. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia.

    PubMed

    Jantzie, Lauren L; Corbett, Christopher J; Firl, Daniel J; Robinson, Shenandoah

    2015-09-01

    Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.

  18. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  19. Postnatal development of GABAergic signalling in the rat lateral geniculate nucleus: presynaptic dendritic mechanisms

    PubMed Central

    Perreault, Marie-Claude; Qin, Yi; Heggelund, Paul; Zhu, J Julius

    2003-01-01

    Diverse forms of GABAergic inhibition are found in the mature brain. To understand how this diversity develops, we studied the changes in morphology of inhibitory interneurons and changes in interneuron-mediated synaptic transmission in the rat dorsal lateral geniculate nucleus (dLGN). We found a steady expansion of the dendritic tree of interneurons over the first three postnatal weeks. During this period, the area around a thalamocortical cell from which GABAA inhibition could be elicited also expanded. Dendritic branching and burst firing in interneurons evolved more slowly. The distal dendrites of interneurons began to branch extensively after the third week, and at the same time burst firing appeared. The appearance of burst firing and an elaborated dendritic tree were accompanied by a pronounced GABAB inhibition of thalamocortical cells. Thus, GABA inhibition of thalamocortical cells developed from one type of GABAA inhibition (spatially restricted) in the young animal into two distinct types of GABAA inhibition (short- and long-range) and GABAB inhibition in the adult animal. The close temporal relationships between the development of the diverse forms of inhibition and the postnatal changes in morphology of local GABAergic interneurons in the dLGN suggest that postnatal dendritic maturation is an important presynaptic factor for the developmental time course of the various types of feedforward inhibition in thalamus. PMID:12509484

  20. Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus.

    PubMed

    Ouhaz, Zakaria; Ba-M'hamed, Saadia; Mitchell, Anna S; Elidrissi, Abdeslem; Bennis, Mohamed

    2015-10-01

    Early insults to the thalamus result in functional and/or structural abnormalities in the cerebral cortex. However, differences in behavioral and cognitive changes after early insult are not well characterized. The present study assessed whether early postnatal damage to mediodorsal nucleus of the thalamus (MD), reciprocally interconnected with the prefrontal cortex, causes behavioral and cognitive alterations in young adult rats. Rat pups at postnatal day 4 received bilateral electrolytic lesion of MD, or a MD Sham lesion or were anesthetized controls; on recovery they were returned to their mothers until weaning. Seven weeks later, all rats were tested with the following behavioral and cognitive paradigms: T-maze test, open field test, actimetry, elevated plus maze test, social interactions test and passive avoidance test. Rats with bilateral MD damage presented with disrupted recognition memory, deficits in shifting response rules, significant hypoactivity, increased anxiety-like behavior, deficits in learning associations as well as decreased locomotor activity, and reduced social interactions compared to MD Sham lesion and anesthetized Control rats. The lesion also caused significant decreases in pyramidal cell density in three frontal cortex regions: medial infralimbic cortex, dorsolateral anterior cortex, and cingulate Cg1 cortex. The present findings suggest a functional role for MD in the postnatal maturation of affective behavior. Further some of the behavioral and cognitive alterations observed in these young adult rats after early MD lesion are reminiscent of those present in major psycho-affective disorders, such as schizophrenia in humans.

  1. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    PubMed

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy.

  2. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    PubMed

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy. PMID:26646100

  3. Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone.

    PubMed

    Alves, José A J; Barone, Patrick; Engelender, Simone; Fróes, Maira M; Menezes, João R L

    2002-09-01

    In the early postnatal subventricular zone (SVZ), two seemingly unrelated events occur simultaneously: a massive tangential migration of neuroblasts towards the olfactory bulb, known as the rostral migratory stream (RMS), and the outward movement of radial glia (RG) undergoing astrocytic transformation. Because of the orthogonal arrangement between these two sets of cells, little, if any, relevance has been ascribed for their possible interactions. By depositing DiI at the pial surface we have studied RG transformation within the SVZ/RMS, from birth up to the end of the first postnatal week. While still within the SVZ/RMS, RG morphology changed from simple bipolar to highly complex branched profiles, attaining their highest degree of complexity at the interface of the SVZ with the overlying white matter. At this interface cell bodies of radial glia accumulate and their processes run tangentially, surrounding the SVZ/RMS. Processes of RG surrounding the SVZ/RMS could also be observed by immunostaining for vimentin, GFAP, and nestin. In contrast, in the white matter all DiI-labeled RG presented a simple bipolar profile. These results indicate that the outward radial migration of the transforming RG does not occur uniformly. Instead, the different morphologies and cell densities that RG assume when they cross the SVZ/RMS and overlying white matter imply different migratory behaviors. Finally, our data suggest that RG provide a cellular scaffold to the early postnatal SVZ/RMS, much in the same way as astrocytes in the adult RMS.

  4. Dye coupling and connexin expression by cortical radial glia in the early postnatal subventricular zone.

    PubMed

    Freitas, Andressa S; Xavier, Anna L R; Furtado, Carla M; Hedin-Pereira, Cecilia; Fróes, Maira M; Menezes, João R L

    2012-12-01

    In this study, we have analyzed the specific contribution of the cortical radial glia (RG) for gap junctional communication (GJC) within the postnatal subventricular zone (SVZ). To specifically target RG as source of dye-coupling in situ, we have developed a new technique that involves direct cell loading through the processes that reach the pial surface, with a mix of gap junction permeant (Lucifer yellow, LY) and nonpermeant (rhodamine-conjugated dextran 3 KDa, RD) fluorochromes, the latter used as a marker for direct loaded cells. Tissue sections were analyzed for identification of directly loaded (LY+RD+) and coupled cells (LY+RD-) in the SVZ. Directly loaded cells were restricted to the region underlying the pial loading surface area. Coupled cells were distributed in a bistratified manner, along the outer dorsal surface of the SVZ and aligning the ventricle, leaving the SVZ core relatively free. Blocking GJC prior to pial loading greatly reduced dye coupling. Phenotypic analysis indicated that coupling by RG excludes neuroblasts and is mostly restricted to cells of glial lineage. Notwithstanding, no corresponding restriction to specific cell phenotype was found for two connexin isotypes, Cx43 and Cx45, in the postnatal SVZ. The extensive homocellular cell coupling by RG suggests an important role in the regulation of neurogenesis and functional compartmentalization of the postnatal SVZ.

  5. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice

    PubMed Central

    Zhou, Xin; Zhang, Zhaoping; Feng, Jian Q.; Dusevich, Vladmir M.; Sinha, Krishna; Zhang, Hua; Darnay, Bryant G.; de Crombrugghe, Benoit

    2010-01-01

    The transcription factor Osterix (Osx) is required for osteoblast differentiation and bone formation during embryonic development, but it is not known whether Osx has an essential function in postnatal bone growth and in bone homeostasis. Conditional deletion of Osx at several time points postnatally revealed that Osx was essential for osteoblast differentiation and new bone formation in growing and adult bones. Additionally, inactivation of Osx in bones severely disrupted the maturation, morphology, and function of osteocytes. These findings identify Osx as having an essential role in the cell-specific genetic program of osteocytes. Interestingly, Osx inactivation also led to the massive accumulation of unresorbed calcified cartilage in a large area below the growth plate of endochondral bones. This specific area was also marked by an unanticipated almost complete lack of bone marrow cells and a marked decrease in the density and size of osteoclasts. This diminished density of osteoclasts could contribute to the lack of resorption of mineralized cartilage. In addition, we speculate that the abnormally accumulated, mainly naked cartilage represents an unfavorable substrate for osteoclasts. Our study identifies Osx as an essential multifunctional player in postnatal bone growth and homeostasis. PMID:20615976

  6. Maternal postnatal psychiatric symptoms and infant temperament affect early mother-infant bonding.

    PubMed

    Nolvi, Saara; Karlsson, Linnea; Bridgett, David J; Pajulo, Marjukka; Tolvanen, Mimmi; Karlsson, Hasse

    2016-05-01

    Postnatal mother-infant bonding refers to the early emotional bond between mothers and infants. Although some factors, such as maternal mental health, especially postnatal depression, have been considered in relation to mother-infant bonding, few studies have investigated the role of infant temperament traits in early bonding. In this study, the effects of maternal postnatal depressive and anxiety symptoms and infant temperament traits on mother-infant bonding were examined using both mother and father reports of infant temperament. Data for this study came from the first phase of the FinnBrain Birth Cohort Study (n=102, father reports n=62). After controlling for maternal symptoms of depression and anxiety, mother-reported infant positive emotionality, measured by infant smiling was related to better mother-infant bonding. In contrast, infant negative emotionality, measured by infant distress to limitations was related to lower quality of bonding. In regards to father-report infant temperament, only infant distress to limitations (i.e., frustration/anger) was associated with lower quality of mother-infant bonding. These findings underline the importance of infant temperament as one factor contributing to early parent-infant relationships, and counseling parents in understanding and caring for infants with different temperament traits. PMID:27054496

  7. Postnatal development of retrosplenial projections to the parahippocampal region of the rat

    PubMed Central

    Sugar, Jørgen; Witter, Menno P

    2016-01-01

    The rat parahippocampal region (PHR) and retrosplenial cortex (RSC) are cortical areas important for spatial cognition. In PHR, head-direction cells are present before eye-opening, earliest detected in postnatal day (P)11 animals. Border cells have been recorded around eye-opening (P16), while grid cells do not obtain adult-like features until the fourth postnatal week. In view of these developmental time-lines, we aimed to explore when afferents originating in RSC arrive in PHR. To this end, we injected rats aged P0-P28 with anterograde tracers into RSC. First, we characterized the organization of RSC-PHR projections in postnatal rats and compared these results with data obtained in the adult. Second, we described the morphological development of axonal plexus in PHR. We conclude that the first arriving RSC-axons in PHR, present from P1 onwards, already show a topographical organization similar to that seen in adults, although the labeled plexus does not obtain adult-like densities until P12. DOI: http://dx.doi.org/10.7554/eLife.13925.001 PMID:27008178

  8. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice

    PubMed Central

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Blanquet, Véronique; Maftah, Abderrahman

    2016-01-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1cax/cax (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1cax/cax mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1cax/cax SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7+/MYOD− progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  9. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    PubMed

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  10. In utero dimethadione exposure causes postnatal disruption in cardiac structure and function in the rat.

    PubMed

    Aasa, Kristiina L; Purssell, Elizabeth; Adams, Michael A; Ozolinš, Terence R S

    2014-12-01

    In utero exposure of rat embryos to dimethadione (DMO), the N-demethylated teratogenic metabolite of the anticonvulsant trimethadione, induces a high incidence of cardiac heart defects including ventricular septal defects (VSDs). The same exposure regimen also leads to in utero cardiac functional deficits, including bradycardia, dysrhythmia, and a reduction in cardiac output (CO) and ejection fraction that persist until parturition (10 days after the final dose). Despite a high rate of spontaneous postnatal VSD closure, we hypothesize that functional sequelae will persist into adulthood. Pregnant Sprague Dawley rats were administered six 300 mg/kg doses of DMO, one every 12 h in mid-pregnancy beginning on the evening of gestation day 8. Postnatal cardiac function was assessed in control (CTL) and DMO-exposed offspring using radiotelemetry and ultrasound at 3 and 11 months of age, respectively. Adult rats exposed to DMO in utero had an increased incidence of arrhythmia, elevated blood pressure and CO, greater left ventricular volume and elevated locomotor activity versus CTL. The mean arterial pressure of DMO-exposed rats was more sensitive to changes in dietary salt load compared with CTL. Importantly, most treated rats had functional deficits in the absence of a persistent structural defect. It was concluded that in utero DMO exposure causes cardiovascular deficits that persist into postnatal life in the rat, despite absence of visible structural anomalies. We speculate this is not unique to DMO, suggesting possible health implications for infants with unrecognized gestational chemical exposures.

  11. Antenatal and postnatal psychopathology among women with current and past eating disorders: longitudinal patterns.

    PubMed

    Easter, Abigail; Solmi, Francessca; Bye, Amanda; Taborelli, Emma; Corfield, Freya; Schmidt, Ulrike; Treasure, Janet; Micali, Nadia

    2015-01-01

    This study aims to investigate longitudinal patterns of psychopathology during the antenatal and postnatal periods among women with current (C-ED) and past (P-ED) eating disorders. Women were recruited to a prospective longitudinal study: C-ED (n = 31), P-ED (n = 29) and healthy control (HC; n = 57). Anxiety, depression and ED symptoms were measured at four time points: first/second trimester, third trimester, 8 weeks and 6 months postpartum. Linear mixed effects models were used to test for group differences. Women with C-ED and P-ED, in all diagnostic categories, had significantly higher levels of psychopathology at all time points. ED symptoms decreased in the C-ED group, compared with an overall increase in the other two groups but subsequently increased after pregnancy. Overall, depression and state and trait anxiety scores decreased in the C-ED group compared with the HC group throughout the antenatal and postnatal periods. High levels of psychopathology are common throughout the antenatal and postnatal periods among women with current and past ED, and despite some overall reductions, symptoms remain clinically significant. © 2014 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd.

  12. Indeterminate rapid HIV-1 test results among antenatal and postnatal mothers

    PubMed Central

    Matemo, D; Kinuthia, J; John, F; Chung, M; Farquhar, C; John-Stewart, G; Kiarie, J

    2011-01-01

    Summary The sensitivity and specificity of rapid HIV-1 tests may be altered during pregnancy and postpartum. We conducted a study to determine the prevalence and correlates of false-positive Abbott Determine™ and false-negative Uni-Gold™ rapid HIV-1 test results among antenatal and postnatal mothers attending a primary care clinic in Nairobi, Kenya. Mothers were tested for HIV-1 using Abbott Determine™ and non-reactive results were considered HIV-1 antibody negative. Reactive samples by Determine were re-tested by Uni-Gold™. Vironostika HIV-1 and Uni-FORM II Enzyme-linked immunosorbent assays were used to confirm samples that had positive Abbott Determine™ and negative Uni-Gold™. Among 2311 women who accepted HIV-1 testing, 1238 (54%) were tested antenatally and 1073 (46%) were tested postnatally. Of tested women, 274 (12%) women were reactive by Abbott Determine™ and on retesting with Uni-Gold™ 30 (11%) had indeterminate results. The prevalence of indeterminate results was significantly higher in antenatal women than in postnatal women (2% versus 1%, P = 0.03). In conclusion, indeterminate rapid HIV-1 test results are more common in the antenatal period and appropriate safeguards to confirm HIV-1 infection status should be implemented in antenatal programmes. PMID:19875832

  13. Postnatal development of retrosplenial projections to the parahippocampal region of the rat.

    PubMed

    Sugar, Jørgen; Witter, Menno P

    2016-01-01

    The rat parahippocampal region (PHR) and retrosplenial cortex (RSC) are cortical areas important for spatial cognition. In PHR, head-direction cells are present before eye-opening, earliest detected in postnatal day (P)11 animals. Border cells have been recorded around eye-opening (P16), while grid cells do not obtain adult-like features until the fourth postnatal week. In view of these developmental time-lines, we aimed to explore when afferents originating in RSC arrive in PHR. To this end, we injected rats aged P0-P28 with anterograde tracers into RSC. First, we characterized the organization of RSC-PHR projections in postnatal rats and compared these results with data obtained in the adult. Second, we described the morphological development of axonal plexus in PHR. We conclude that the first arriving RSC-axons in PHR, present from P1 onwards, already show a topographical organization similar to that seen in adults, although the labeled plexus does not obtain adult-like densities until P12. PMID:27008178

  14. Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid.

    PubMed

    Kazlauskas, Nadia; Campolongo, Marcos; Lucchina, Luciana; Zappala, Cecilia; Depino, Amaicha Mara

    2016-10-01

    In Autism Spectrum Disorders (ASD), a bias to a higher incidence in boys than in girls has been reported. With the aim to identify biological mechanisms acting in female animals that could underlie this bias, we used an extensively validated mouse model of ASD: the prenatal exposure to valproic acid (VPA). We found postnatal behavioral alterations in female VPA pups: a longer latency in righting reflex at postnatal day (P) 3, and a delay in the acquisition of the acoustic startle response. We also analyzed the density of glial cells in the prefrontal cortex, hippocampus and cerebellum, in VPA and control animals. Female VPA pups showed alterations in the density of astrocytes and microglial cells between P21 and P42, with specific dynamics in each brain region. We also found a decrease in histone 3 acetylation in the cerebellum of female VPA pups at P14, suggesting that the changes in glial cell density could be due to alterations in the epigenetic developmental program. Finally, no differences in maternal behavior were found. Our results show that female VPA pups exhibit behavioral and inflammatory alterations postnatally, although they have been reported to have normal levels of sociability in adulthood. With our work, we contribute to the understanding of biological mechanisms underlying different effects of VPA on male and female rodents, and we hope to help elucidate whether there are factors increasing susceptibility to ASD in boys and/or resilience in girls.

  15. Effect of postnatal methamphetamine trauma and adolescent methylphenidate treatment on adult hippocampal neurogenesis in gerbils.

    PubMed

    Schaefers, Andrea T; Teuchert-Noodt, Gertraud; Bagorda, Francesco; Brummelte, Susanne

    2009-08-15

    Methylphenidate (e.g. Ritalin) is the most common drug used in the treatment of attention-deficit hyperactivity disorder. However, only a few studies have investigated the neuroanatomical long-term effects of this treatment. Prolonged application of methylphenidate during adolescence causes alterations in dopaminergic fiber or receptor densities in adult rodents. This study was conducted to investigate the effects of adolescent methylphenidate treatment on adult hippocampal neurogenesis in male gerbils (Meriones unguiculatus). Animals were first treated with either a single methamphetamine challenge on postnatal day 14 (to cause a disturbance in the dopaminergic system, to mimic the disturbed dopaminergic system seen in ADHD children) or saline and then received a daily oral application of 5 mg/kg methylphenidate or water from postnatal day 30-60 or were left undisturbed. On postnatal 90 gerbils were injected with bromodeoxyuridine (BrdU, a DNA synthesis marker) and sacrificed seven days later. Results reveal that the pretreatment with methamphetamine causes a decrease in the number of BrdU-positive cells in the dentate gyrus. Methylphenidate treatment however did not cause any differences in the number of labelled cells in any group. This implies that, despite methylphenidate's efficiency in inducing changes in the dopaminergic system and associated areas, it might be less effective in altering neurogenesis in the hippocampus.

  16. Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus

    PubMed Central

    Ouhaz, Zakaria; Ba-M’hamed, Saadia; Mitchell, Anna S.; Elidrissi, Abdeslem; Bennis, Mohamed

    2015-01-01

    Early insults to the thalamus result in functional and/or structural abnormalities in the cerebral cortex. However, differences in behavioral and cognitive changes after early insult are not well characterized. The present study assessed whether early postnatal damage to mediodorsal nucleus of the thalamus (MD), reciprocally interconnected with the prefrontal cortex, causes behavioral and cognitive alterations in young adult rats. Rat pups at postnatal day 4 received bilateral electrolytic lesion of MD, or a MD Sham lesion or were anesthetized controls; on recovery they were returned to their mothers until weaning. Seven weeks later, all rats were tested with the following behavioral and cognitive paradigms: T-maze test, open field test, actimetry, elevated plus maze test, social interactions test and passive avoidance test. Rats with bilateral MD damage presented with disrupted recognition memory, deficits in shifting response rules, significant hypoactivity, increased anxiety-like behavior, deficits in learning associations as well as decreased locomotor activity, and reduced social interactions compared to MD Sham lesion and anesthetized Control rats. The lesion also caused significant decreases in pyramidal cell density in three frontal cortex regions: medial infralimbic cortex, dorsolateral anterior cortex, and cingulate Cg1 cortex. The present findings suggest a functional role for MD in the postnatal maturation of affective behavior. Further some of the behavioral and cognitive alterations observed in these young adult rats after early MD lesion are reminiscent of those present in major psycho-affective disorders, such as schizophrenia in humans. PMID:26079768

  17. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  18. Postnatal changes in Rho and Rho-related proteins in the mouse brain.

    PubMed

    Komagome, R; Kimura, K; Saito, M

    2000-02-01

    To provide information on the role of Rho, a GTP-binding protein, in postnatal development of the brain cells, the change in the levels of Rho protein and Rho-related proteins was examined in the brain of mice for two weeks after birth, in parallel with the changes in the activity of marker enzymes for neuronal and glial cells. The activities of acetylcholine esterase and choline acetyltransferase of whole brain homogenate, both of which are neuronal marker enzymes, were progressively increased in an age-dependent manner. The activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, a glial marker enzyme, increased markedly between one and two weeks after birth. In contrast, the levels of RhoA and RhoB in the membrane fraction were decreased during the postnatal period. The amount of Rho GDP dissociation inhibitor, a regulatory protein for Rho, was unchanged, while those of Rho target proteins, Rock-2 and citron, were gradually increased. Since the inactivation of Rho is known to induce neurite extension and neuronal and glial differentiation in vitro, our results suggest that the Rho signalling pathway plays a regulatory role in the postnatal differentiation of neuronal and glial cells in vivo.

  19. Autosomal Recessive Hypophosphatasia Manifesting in Utero with Long Bone Deformity but Showing Spontaneous Postnatal Improvement

    PubMed Central

    Stevenson, David A.; Carey, John C.; Coburn, Stephen P.; Ericson, Karen L.; Byrne, Janice L. B.; Mumm, Steven; Whyte, Michael P.

    2008-01-01

    Context: Hypophosphatasia (HPP) is a heritable metabolic disorder of the skeleton that includes variable expressivity conditioned by gene dosage effect and the variety of mutations in the tissue nonspecific alkaline phosphatase (TNSALP) gene. Patient age when skeletal problems first manifest generally predicts the clinical course, with perinatal HPP causing bone disease in utero with postnatal lethality. Objective: Our objective was to identify TNSALP mutations and characterize the inheritance pattern of a family with clinically variable HPP with one child manifesting in utero with long bone deformity but showing spontaneous prenatal and postnatal improvement. Design: TNSALP enzyme and substrate analysis and TNSALP mutation analysis were performed on all family members. Patients: A boy with HPP showing long bone deformity that spontaneously improved in utero and after birth is described. His older brother has the childhood form of HPP without findings until after infancy. His parents and twin sister are clinically unaffected. Results: Both boys are compound heterozygotes for the same missense mutations in TNSALP, documenting autosomal recessive inheritance for their HPP. The parents each carry one defective allele. Conclusions: The patient is an autosomal recessive case of HPP with prenatal long bone deformity but with spontaneous prenatal and postnatal improvement. Thus, prenatal detection by sonography of bowing of long bones from HPP, even with autosomal recessive inheritance, does not necessarily predict lethality but can represent variable expressivity or the effects of modifiers on the TNSALP defect(s). PMID:18559907

  20. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis.

    PubMed

    Yuen, Tracy J; Silbereis, John C; Griveau, Amelie; Chang, Sandra M; Daneman, Richard; Fancy, Stephen P J; Zahed, Hengameh; Maltepe, Emin; Rowitch, David H

    2014-07-17

    Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.

  1. Pre- and postnatal exposure to tobacco smoke and respiratory outcomes during the first year.

    PubMed

    Fuentes-Leonarte, V; Estarlich, M; Ballester, F; Murcia, M; Esplugues, A; Aurrekoetxea, J J; Basterrechea, M; Fernández-Somoano, A; Morales, E; Gascón, M; Tardón, A; Rebagliato, M

    2015-02-01

    The different role of prenatal and postnatal exposure to tobacco smoke in respiratory outcomes in infants has not yet been clearly established. Our objective is to assess the effects of these exposures on the risk of respiratory outcomes during the first year of life of infants from a Spanish multicenter cohort study. A total of 2506 women were monitored until delivery. About 2039 infants made up the final population. The outcomes were caused by the occurrence of the following: otitis, cough persisting for more than 3 weeks, lower respiratory tract symptoms (wheezing or chestiness), and lower respiratory tract infections (bronchitis, bronchiolitis, or pneumonia). The relationship between prenatal and postnatal exposure and health outcomes was explored using logistic regression analysis. Maternal smoking during pregnancy increased the odds for wheezing (OR: 1.41, 95% CI: 0.99-2.01) and chestiness (OR: 1.46, 95% CI: 1.03-2.01). Postnatal exposure from fathers was associated with otitis (OR: 1.25, 95% CI: 1.01-1.54). Passive exposure at work of non-smoking mothers during pregnancy was related to cough (OR: 1.62, 95% CI: 1.05-2.51). Exposure to tobacco smoke was related to a higher risk of experiencing respiratory outcomes in young infants. Prenatal exposure was that most clearly associated with the respiratory outcomes analyzed.

  2. Prenatal stress induces a phase advance of circadian corticosterone rhythm in adult rats which is prevented by postnatal stress.

    PubMed

    Koehl, M; Barbazanges, A; Le Moal, M; Maccari, S

    1997-06-13

    Prenatal and postnatal stressors can have different long-term neuroendocrine effects including modifications of stress-induced corticosterone secretion. However, very little is known about the possible long-term effects of prenatal or postnatal stress on the rhythmicity of basal corticosterone secretion in adult offspring. Corticosterone levels were thus determined at six different time points over 24 h in adult rats whose mothers had undergone restraint stress manipulations. The results demonstrate that prenatal stress induces a phase advance in the evening increase of corticosterone levels, and that this change is prevented by postnatal stress. It thus appears that the circadian system governing the HPA axis is modifiable by a prenatal stress, and remains susceptible to compensatory changes during the postnatal period. PMID:9221956

  3. PROMOTING RESILIENCE.

    PubMed

    Desjardins, Eric; Barker, Gillian; Lindo, Zoë; Dieleman, Catherine; Dussault, Antoine C

    2015-06-01

    Broadening contingents of ecologists and environmental scientists have recently begun to promote ecological resilience both as a conceptual framework and as a practical goal. As some critics have noted, this growing interest has brought with it a multiplication of notions of ecological resilience. This paper reviews how and why the notion of ecological resilience has been adopted, used, and defended in ecology since its introduction by C. S. Holling in 1973. We highlight the many faces of ecological resilience, but unlike other reviewers who see these as disunified and confused, we interpret ecological resilience as an evolving, multidimensional, theoretical concept unified by its role in guiding practical response to ecological and environmental challenges. This perspective informs a review of some of the factors often recognized as favoring resilience (structural and response diversity, functional redundancy, modularity, and spatial heterogeneity); we show how the roles and relationships of these factors can be clarified by considering them in the theoretical framework of Complex Adaptive Systems (CASs).

  4. Daily and Cultural Issues of Postnatal Depression in African Women Immigrants in South East London: Tips for Health Professionals

    PubMed Central

    Babatunde, Titilayo; Moreno-Leguizamon, Carlos Julio

    2012-01-01

    Postnatal depression has profound effects on the quality of life, social functioning, and economic productivity of women and families. This paper presents the findings of an earlier exploration of the perception of postnatal depression in African women immigrants in South East London. The aims of this research were twofold: firstly, to establish cultural elements related to postnatal depression through women's narratives regarding their daily life situations, including the nuances and complexities present in postnatal depression, and secondly, to help health professionals understand and acknowledge postnatal depression signs in these immigrant women and some of the cultural ambiguities surrounding them. The study used a qualitative approach mainly through the implementation of two focus groups. Thematic analysis of the women's narratives suggested that almost half of the participants in the study struggle with some signs of postnatal depression. The women did not perceive the signs as related to illness but as something else in their daily lives, that is, the notion “that you have to get on with it.” The study also highlights the fact that the signs were not identified by health visitors, despite prolonged contact with the women, due to the lack of acknowledgement of women's silence regarding their emotional struggle, household and family politics, and intercultural communication in health services. PMID:23056936

  5. Pre- and Post-Natal Maternal Depressive Symptoms in Relation with Infant Frontal Function, Connectivity, and Behaviors

    PubMed Central

    Soe, Ni Ni; Wen, Daniel J.; Poh, Joann S.; Li, Yue; Broekman, Birit F. P.; Chen, Helen; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D.; Meaney, Michael J.; Rifkin-Graboi, Anne; Qiu, Anqi

    2016-01-01

    This study investigated the relationships between pre- and early post-natal maternal depression and their changes with frontal electroencephalogram (EEG) activity and functional connectivity in 6- and 18-month olds, as well as externalizing and internalizing behaviors in 24-month olds (n = 258). Neither prenatal nor postnatal maternal depressive symptoms independently predicted neither the frontal EEG activity nor functional connectivity in 6- and 18-month infants. However, increasing maternal depressive symptoms from the prenatal to postnatal period predicted greater right frontal activity and relative right frontal asymmetry amongst 6-month infants but these finding were not observed amongst 18-month infants after adjusted for post-conceptual age on the EEG visit day. Subsequently increasing maternal depressive symptoms from the prenatal to postnatal period predicted lower right frontal connectivity within 18-month infants but not among 6-month infants after controlling for post-conceptual age on the EEG visit day. These findings were observed in the full sample and the female sample but not in the male sample. Moreover, both prenatal and early postnatal maternal depressive symptoms independently predicted children’s externalizing and internalizing behaviors at 24 months of age. This suggests that the altered frontal functional connectivity in infants born to mothers whose depressive symptomatology increases in the early postnatal period compared to that during pregnancy may reflect a neural basis for the familial transmission of phenotypes associated with mood disorders, particularly in girls. PMID:27073881

  6. Daily and cultural issues of postnatal depression in african women immigrants in South East london: tips for health professionals.

    PubMed

    Babatunde, Titilayo; Moreno-Leguizamon, Carlos Julio

    2012-01-01

    Postnatal depression has profound effects on the quality of life, social functioning, and economic productivity of women and families. This paper presents the findings of an earlier exploration of the perception of postnatal depression in African women immigrants in South East London. The aims of this research were twofold: firstly, to establish cultural elements related to postnatal depression through women's narratives regarding their daily life situations, including the nuances and complexities present in postnatal depression, and secondly, to help health professionals understand and acknowledge postnatal depression signs in these immigrant women and some of the cultural ambiguities surrounding them. The study used a qualitative approach mainly through the implementation of two focus groups. Thematic analysis of the women's narratives suggested that almost half of the participants in the study struggle with some signs of postnatal depression. The women did not perceive the signs as related to illness but as something else in their daily lives, that is, the notion "that you have to get on with it." The study also highlights the fact that the signs were not identified by health visitors, despite prolonged contact with the women, due to the lack of acknowledgement of women's silence regarding their emotional struggle, household and family politics, and intercultural communication in health services. PMID:23056936

  7. Estimated in vivo postnatal surface growth patterns of the ovine main pulmonary artery and ascending aorta.

    PubMed

    Fata, Bahar; Gottlieb, Danielle; Mayer, John E; Sacks, Michael S

    2013-07-01

    Delineating the normal postnatal development of the pulmonary artery (PA) and ascending aorta (AA) can inform our understanding of congenital abnormalities, as well as pulmonary and systolic hypertension. We thus conducted the following study to delineate the PA and AA postnatal growth deformation characteristics in an ovine model. MR images were obtained from endoluminal surfaces of 11 animals whose ages ranged from 1.5 months/15.3 kg mass (very young) to 12 months/56.6 kg mass (adult). A bicubic Hermite finite element surface representation was developed for the each artery from each animal. Under the assumption that the relative locations of surface points were retained during growth, the individual animal surface fits were subsequently used to develop a method to estimate the time-evolving local effective surface growth (relative to the youngest measured animal) in the end-diastolic state. Results indicated that the spatial and temporal surface growth deformation patterns of both arteries, especially in the circumferential direction, were heterogeneous, leading to an increase in taper and increase in cross-sectional ellipticity of the PA. The longitudinal PA growth stretch of a large segment on the posterior wall reached 2.57 ± 0.078 (mean ± SD) at the adult stage. In contrast, the longitudinal growth of the AA was smaller and more uniform (1.80 ± 0.047). Interestingly, a region of the medial wall of both arteries where both arteries are in contact showed smaller circumferential growth stretches-specifically 1.12 ± 0.012 in the PA and 1.43 ± 0.071 in the AA at the adult stage. Overall, our results indicated that contact between the PA and AA resulted in increasing spatial heterogeneity in postnatal growth, with the PA demonstrating the greatest changes. Parametric studies using simplified geometric models of curved arteries during growth suggest that heterogeneous effective surface growth deformations must occur to account for the

  8. Peri- and Postnatal Effects of Prenatal Adenoviral VEGF Gene Therapy in Growth-Restricted Sheep.

    PubMed

    Carr, David J; Wallace, Jacqueline M; Aitken, Raymond P; Milne, John S; Martin, John F; Zachary, Ian C; Peebles, Donald M; David, Anna L

    2016-06-01

    Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period. PMID:27103444

  9. Identification of Active Retinaldehyde Dehydrogenase Isoforms in the Postnatal Human Eye

    PubMed Central

    Harper, Angelica R.; Wiechmann, Allan F.; Moiseyev, Gennadiy; Ma, Jian-Xing; Summers, Jody A.

    2015-01-01

    Background/Objectives Retinaldehyde dehydrogenase 2 (RALDH2) has been implicated in regulating all-trans-retinoic acid (atRA) synthesis in response to visual signals in animal models of myopia. To explore the potential role of retinaldehyde dehydrogenase (RALDH) enzymes and atRA in human postnatal ocular growth, RALDH activity, along with the distribution of RALDH1, RALDH2, and RALDH3 in the postnatal eye was determined. Methodology Retina, retinal pigment epithelium (RPE), choroid, and sclera were isolated from donor human eyes. RALDH catalytic activity was measured in tissue homogenates using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Homogenates were compared by western blotting for RALDH1, RALDH2, and RALDH3 protein. Immunohistochemistry was used to determine RALDH1 and RALDH2 localization in posterior fundal layers of the human eye. Principal Findings In the postnatal human eye, RALDH catalytic activity was detected in the choroid (6.84 ± 1.20 pmol/hr/ug), RPE (5.46 ± 1.18 pmol/hr/ug), and retina (4.21 ± 1.55 pmol/hr/ug), indicating the presence of active RALDH enzymes in these tissues. RALDH2 was most abundant in the choroid and RPE, in moderate abundance in the retina, and in relatively low abundance in sclera. RALDH1 was most abundant in the choroid, in moderate abundance in the sclera, and substantially reduced in the retina and RPE. RALDH3 was undetectable in human ocular fundal tissues. In the choroid, RALDH1 and RALDH2 localized to slender cells in the stroma, some of which were closely associated with blood vessels. Conclusions/Significance Results of this study demonstrated that: 1) Catalytically active RALDH is present in postnatal human retina, RPE, and choroid, 2) RALDH1 and RALDH2 isoforms are present in these ocular tissues, and 3) RALDH1 and RALDH2 are relatively abundant in the choroid and/or RPE. Taken together, these results suggest that RALDH1 and 2 may play a role in the regulation of

  10. The neurogenic competence of progenitors from the postnatal rat retina in vitro.

    PubMed

    Engelhardt, Maren; Wachs, Frank-Peter; Couillard-Despres, Sebastien; Aigner, Ludwig

    2004-05-01

    The mammalian retina develops from stem or progenitor cells that are of neuroectodermal origin and derive from bilateral invaginations of the neuroepithelium, the optic vesicles. Shortly after birth, around 12 days postnatal in rats, the retina is fully developed in its cellular parts. Even though different cell types in the adult might be potential sources for retinal stem cells or progenitor cells, the retina is a non-neurogenic region and the diseased retina is devoid of any spontaneous regeneration. In an attempt to link late developmental processes to the adult situation, we analyzed the presence and the neurogenic potential of retinal progenitors during the postnatal period and compared it to adult ciliary body (CB) derived retinal progenitors and subventricular zone (SVZ) derived neural stem cells. Retinal progenitor properties were identified by the capacity to proliferate and by the expression of the progenitor markers Nestin, Flk-1, Chx10, Pax6 and the radial glia marker BLBP. The neurogenic potential was assayed by the expression of the neuronal markers doublecortin, betaIII Tubulin, Map2 and NSE, the glial makers A2B5, NG2, GalC and GFAP, and by incorporation of BrdU. The number of Flk-1 positive cells and concomitantly the number of newly born betaIII Tubulin-positive cells decreased within the first postnatal week in retinal progenitor cultures and no newly generated betaIII Tubulin, but GFAP positive cells were detected thereafter. In contrast to neural stem cells derived from the adult SVZ, postnatal and adult CB derived progenitors had a lower and a restricted proliferation potential and did not generate oligodendrocytes. The work demonstrates, however, that the existence of retinal progenitor cells is not restricted to embryonic development. In the sensory retina the differentiation potential of late retinal progenitors becomes restricted to the glial lineage, whereas neurogenic progenitor cells are still present in the CB. In addition, major

  11. Peri- and Postnatal Effects of Prenatal Adenoviral VEGF Gene Therapy in Growth-Restricted Sheep.

    PubMed

    Carr, David J; Wallace, Jacqueline M; Aitken, Raymond P; Milne, John S; Martin, John F; Zachary, Ian C; Peebles, Donald M; David, Anna L

    2016-06-01

    Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period.

  12. New calretinin-positive cells with polymorphous spines in the mouse forebrain during early postnatal ontogeny.

    PubMed

    Revishchin, A V; Okhotin, V E; Pavlova, G V

    2010-10-01

    Immunohistochemical studies of calretinin (CR) in forebrain structures adjacent to the anterior horn of the lateral ventricle in adult mice allowed us to detect a population of previously unknown mono- and bipolar cells whose bodies and processes were coated with polymorphous spines (PS) (Morfologiya, 135, No. 3, 7-19 (2009)). CR-positive spiny (CR(+)PS) cells did not contain GAD67 and were located in the white matter and layers V-VI of the frontal area of the dorsomedial cortex close to the cingulum, the rostrodorsal part of the caudate-putamen, the anterior olfactory nucleus, and the subependyma of the dorsolateral angle of the lateral ventricle. We report here studies of the distribution of these cells in seven-day-old mice. Comparative topographic analysis of definitive and early CR(+)PS cells showed that in seven-day-old mice, CR(+)PS cells were absent from the sites at which they were seen in adults, i.e., the anterior olfactory cortex, the cortical plate, and the inner part of the neostriatum. In addition, small numbers of CR(+)PS-like cells were seen at this age within the dorsal migration pathway, at the anterior margin of the neostriatum, along the dorsal border of the neostriatum with the corpus callosum, in the subependymal layer of the lateral wall of the lateral ventricle, and in the cingulum area. These data demonstrate that CR(+)PS cells may have a postnatal origin. Experiments to verify this hypothesis were performed using postnatal administration of bromodeoxyuridine (BrdU) to mice aged 2-4 days, followed by assessment of brain sections fixed at age 20 days. Double immunolabeling of sections for CR and BrdU demonstrated the presence of CR(+)PS cells containing postnatally supplied BrdU. These data provide evidence that at least some CR(+)PS cells undergo mitosis at postnatal age. In all probability, during the period from 7 to 20 days of postnatal development, CR(+)PS cells migrate to the sites that they occupy in adult animals. PMID:20721693

  13. The use of antenatal and postnatal care: perspectives and experiences of women and health care providers in rural southern Tanzania

    PubMed Central

    Mrisho, Mwifadhi; Obrist, Brigit; Schellenberg, Joanna Armstrong; Haws, Rachel A; Mushi, Adiel K; Mshinda, Hassan; Tanner, Marcel; Schellenberg, David

    2009-01-01

    Background Although antenatal care coverage in Tanzania is high, worrying gaps exist in terms of its quality and ability to prevent, diagnose or treat complications. Moreover, much less is known about the utilisation of postnatal care, by which we mean the care of mother and baby that begins one hour after the delivery until six weeks after childbirth. We describe the perspectives and experiences of women and health care providers on the use of antenatal and postnatal services. Methods From March 2007 to January 2008, we conducted in-depth interviews with health care providers and village based informants in 8 villages of Lindi Rural and Tandahimba districts in southern Tanzania. Eight focus group discussions were also conducted with women who had babies younger than one year and pregnant women. The discussion guide included information about timing of antenatal and postnatal services, perceptions of the rationale and importance of antenatal and postnatal care, barriers to utilisation and suggestions for improvement. Results Women were generally positive about both antenatal and postnatal care. Among common reasons mentioned for late initiation of antenatal care was to avoid having to make several visits to the clinic. Other concerns included fear of encountering wild animals on the way to the clinic as well as lack of money. Fear of caesarean section was reported as a factor hindering intrapartum care-seeking from hospitals. Despite the perceived benefits of postnatal care for children, there was a total lack of postnatal care for the mothers. Shortages of staff, equipment and supplies were common complaints in the community. Conclusion Efforts to improve antenatal and postnatal care should focus on addressing geographical and economic access while striving to make services more culturally sensitive. Antenatal and postnatal care can offer important opportunities for linking the health system and the community by encouraging women to deliver with a skilled

  14. Methamidophos Exposure During the Early Postnatal Period of Mice: Immediate and Late-Emergent Effects on the Cholinergic and Serotonergic Systems and Behavior

    PubMed Central

    Abreu-Villaça, Yael

    2013-01-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  15. Functional coupling of transcription factor HiNF-P and histone H4 gene expression during pre- and post-natal mouse development.

    PubMed

    Liu, Li-Jun; Xie, Ronglin; Hussain, Sadiq; Lian, Jane B; Rivera-Perez, Jaime; Jones, Stephen N; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J

    2011-09-01

    Transcription factor Histone Nuclear Factor P (HiNF-P; gene symbol Hinfp) mediates cell cycle control of histone H4 gene expression to support the packaging of newly replicated DNA as chromatin. The HiNF-P/p220(NPAT) complex controls multiple H4 genes in established human cell lines and is critical for cell proliferation. The mouse Hinfp(LacZ) null allele causes early embryonic lethality due to a blastocyst defect. However, neither Hinfp function nor its temporal expression relative to histone H4 genes during fetal development has been explored. Here, we establish that expression of Hinfp is biologically coupled with expression of twelve functional mouse H4 genes during pre- and post-natal tissue-development. Both Hinfp and H4 genes are robustly expressed at multiple embryonic (E) days (from E5.5 to E15.5), coincident with ubiquitous LacZ staining driven by the Hinfp promoter. Five highly expressed mouse H4 genes (Hist1h4d, Histh4f, Hist1h4m and Hist2h4) account for >90% of total histone H4 mRNA throughout development. Post-natal expression of H4 genes in mice is most evident in lung, spleen, thymus and intestine, and with few exceptions (e.g., adult liver) correlates with Hinfp gene expression. Histone H4 gene expression decreases butHinfp levels remain constitutive upon cell growth inhibition in culture. The in vivo co-expression of Hinfp and histone H4 genes is consistent with the biological function of Hinfp as a principal transcriptional regulator of histone H4 gene expression during mouse development.

  16. Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior.

    PubMed

    Lima, Carla S; Dutra-Tavares, Ana C; Nunes, Fernanda; Nunes-Freitas, André L; Ribeiro-Carvalho, Anderson; Filgueiras, Cláudio C; Manhães, Alex C; Meyer, Armando; Abreu-Villaça, Yael

    2013-07-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  17. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain

    PubMed Central

    2015-01-01

    Background As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. Results A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development. Conclusions Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines. PMID:26693966

  18. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies

    PubMed Central

    Yu, Grace Z.; Aye, Christina Y.L.; Lewandowski, Adam J.; Davis, Esther F.; Khoo, Cheen P.; Newton, Laura; Yang, Cheng T.; Al Haj Zen, Ayman; Simpson, Lisa J.; O’Brien, Kathryn; Cook, David A.; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M.; Watt, Suzanne M.

    2016-01-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (−17.7±16.4% versus −9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth. PMID:27456522

  19. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies.

    PubMed

    Yu, Grace Z; Aye, Christina Y L; Lewandowski, Adam J; Davis, Esther F; Khoo, Cheen P; Newton, Laura; Yang, Cheng T; Al Haj Zen, Ayman; Simpson, Lisa J; O'Brien, Kathryn; Cook, David A; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M; Watt, Suzanne M; Leeson, Paul

    2016-09-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (-17.7±16.4% versus -9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth.

  20. Mechanisms of Resilience in Children of Mothers Who Self-Report with Depressive Symptoms in the First Postnatal Year

    PubMed Central

    Savage-McGlynn, Emily; Redshaw, Maggie; Heron, Jon; Stein, Alan; Quigley, Maria A.; Evans, Jonathan; Ramchandani, Paul; Gray, Ron

    2015-01-01

    Background Symptoms of maternal postnatal depression are associated with an increased risk of adverse effects on child development. However, some children exposed to postnatal depression have outcomes similar to unexposed children, and can be referred to as resilient. This study aimed to determine the mechanisms of resilience in children exposed to depressive symptoms postnatally. Method Data are from a prospective cohort study, the Avon Longitudinal Study of Parents and Children. Self-report questionnaire data were collected during pregnancy and the child’s first 2 years regarding maternal views of parenting and her perception of the child. The Edinburgh Postnatal Depression Scale (EPDS) was completed postnatally at 8 months and the Strengths and Difficulties Questionnaire (SDQ) at age 11 years. Exposed children who scored above the median score of non-exposed children were defined as resilient. Structural equation modeling was used to investigate the development of resilience. Results From the core ALSPAC cohort, 1,009 children (6.9%) were exposed to maternal depression at 8 months postnatally. The SDQ total difficulties scores at 11 years of age indicated that 325 (32.2%) were resilient, 684 were non-resilient. Maternal positive feelings about parenting and child non-verbal communication at 15 months increased the likelihood of later resilience. Conclusions In this study, resilience was associated with two factors: the child’s nonverbal communication at 15 months and by maternal positive feelings about parenting. Early intervention to support mother-child interaction and foster child development in women identified with postnatal depressive symptoms may benefit later child resilience. PMID:26618860

  1. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies.

    PubMed

    Yu, Grace Z; Aye, Christina Y L; Lewandowski, Adam J; Davis, Esther F; Khoo, Cheen P; Newton, Laura; Yang, Cheng T; Al Haj Zen, Ayman; Simpson, Lisa J; O'Brien, Kathryn; Cook, David A; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M; Watt, Suzanne M; Leeson, Paul

    2016-09-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (-17.7±16.4% versus -9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth. PMID:27456522

  2. Prenatal and postnatal psychological symptoms of parents and family functioning: the impact on child emotional and behavioural problems.

    PubMed

    Velders, Fleur P; Dieleman, Gwen; Henrichs, Jens; Jaddoe, Vincent W V; Hofman, Albert; Verhulst, Frank C; Hudziak, James J; Tiemeier, Henning

    2011-07-01

    Although relations of various parental psychological problems and family functioning with child development are well documented, it remains unclear whether specific prenatal or specific postnatal risk factors are independently associated with child emotional and behavioural problems, or whether observed associations can be explained by general parental psychopathology. Using a stepwise approach, we examined the effects of prenatal and postnatal parental depressive symptoms, prenatal and postnatal hostility of the parents, as well as prenatal family functioning on the risk of child emotional and behavioural problems. This study was embedded in Generation R: a population-based cohort from foetal life onwards. Mothers and fathers of 2,698 children provided information about depressive symptoms, symptoms of hostility and family functioning during pregnancy and 3 years after birth. Mother and father each reported on child behaviour when the child was 3 years old. Parental depressive symptoms increased the risk of child emotional and behavioural problems, but this increase was explained by postnatal parental hostile behaviour. Postnatal symptoms of hostility of mothers (OR = 1.34, p value <0.001) and postnatal symptoms of hostility of fathers (OR = 1.30, p value <0.001) each contributed independently to the risk of child emotional and behavioural problems. Postnatal parental hostility is associated with an increased risk of child emotional and behavioural problems, independent of parental depressive symptoms. These findings suggest that prevention and intervention strategies should focus on psychological symptoms of both mothers and fathers, in particular on hostile behaviour, in families with young children.

  3. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity

    PubMed Central

    Koltz, Michael T.; Tosun, Cigdem; Kurland, David B.; Coksaygan, Turhan; Castellani, Rudolph J.; Ivanova, Svetlana; Gerzanich, Volodymyr; Simard, J. Marc

    2012-01-01

    Object Encephalopathy of prematurity (EP) is common in preterm, low birth weight infants who require postnatal mechanical ventilation. The worst types of EP are the hemorrhagic forms, including choroid plexus, germinal matrix, periventricular, and intraventricular hemorrhages. Survivors exhibit life-long cognitive, behavioral, and motor abnormalities. Available preclinical models do not fully recapitulate the salient features of hemorrhagic EP encountered in humans. In this study, the authors evaluated a novel model using rats that featured tandem insults of transient prenatal intrauterine ischemia (IUI) plus transient postnatal raised intrathoracic pressure (RIP). Methods Timed-pregnant Wistar rats were anesthetized and underwent laparotomy on embryonic Day 19. Intrauterine ischemia was induced by clamping the uterine and ovarian vasculature for 20 minutes. Natural birth occurred on embryonic Day 22. Six hours after birth, the pups were subjected to an episode of RIP, induced by injecting glycerol (50%, 13 µl/g intraperitoneally). Control groups included naive, sham surgery, and IUI alone. Pathological, histological, and behavioral analyses were performed on pups up to postnatal Day 52. Results Compared with controls, pups subjected to IUI+RIP exhibited significant increases in postnatal mortality and hemorrhages in the choroid plexus, germinal matrix, and periventricular tissues as well as intraventricularly. On postnatal Days 35–52, they exhibited significant abnormalities involving complex vestibulomotor function and rapid spatial learning. On postnatal Day 52, the brain and body mass were significantly reduced. Conclusions Tandem insults of IUI plus postnatal RIP recapitulate many features of the hemorrhagic forms of EP found in humans, suggesting that these insults in combination may play important roles in pathogenesis. PMID:22132923

  4. New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus.

    PubMed

    Bátiz, Luis Federico; Jiménez, Antonio J; Guerra, Montserrat; Rodríguez-Pérez, Luis Manuel; Toledo, César D; Vio, Karin; Páez, Patricia; Pérez-Fígares, José Manuel; Rodríguez, Esteban M

    2011-06-01

    A heterogeneous population of ependymal cells lines the brain ventricles. The evidence about the origin and birth dates of these cell populations is scarce. Furthermore, the possibility that mature ependymal cells are born (ependymogenesis) or self-renewed (ependymal proliferation) postnatally is controversial. The present study was designed to investigate both phenomena in wild-type (wt) and hydrocephalic α-SNAP mutant (hyh) mice at different postnatal stages. In wt mice, proliferating cells in the ventricular zone (VZ) were only found in two distinct regions: the dorsal walls of the third ventricle and Sylvian aqueduct (SA). Most proliferating cells were monociliated and nestin+, likely corresponding to radial glial cells. Postnatal cumulative BrdU-labeling showed that most daughter cells remained in the VZ of both regions and they lost nestin-immunoreactivity. Furthermore, some labeled cells became multiciliated and GLUT-1+, indicating they were ependymal cells born postnatally. Postnatal pulse BrdU-labeling and Ki-67 immunostaining further demonstrated the presence of cycling multiciliated ependymal cells. In hydrocephalic mutants, the dorsal walls of the third ventricle and SA expanded enormously and showed neither ependymal disruption nor ventriculostomies. This phenomenon was sustained by an increased ependymogenesis. Consequently, in addition to the physical and geometrical mechanisms traditionally explaining ventricular enlargement in fetal-onset hydrocephalus, we propose that postnatal ependymogenesis could also play a role. Furthermore, as generation of new ependymal cells during postnatal stages was observed in distinct regions of the ventricular walls, such as the roof of the third ventricle, it may be a key mechanism involved in the development of human type 1 interhemispheric cysts.

  5. Effect of Lycopersicon esculentum extract on apoptosis in the rat cerebellum, following prenatal and postnatal exposure to an electromagnetic field.

    PubMed

    Köktürk, Sibel; Yardimoglu, Melda; Celikozlu, Saadet D; Dolanbay, Elif Gelenli; Cimbiz, Ali

    2013-07-01

    The expansion of mobile phone technology has raised concerns regarding the effect of 900-MHz electromagnetic field (EMF) exposure on the central nervous system. At present, the developing human brain is regularly exposed to mobile telephones, pre- and postnatally. Several studies have demonstrated the acute effects of EMF exposure during pre- or postnatal periods; however, the chronic effects of EMF exposure are less understood. Thus, the aim of the present study was to determine the chronic effects of EMF on the pre- and postnatal rat cerebellum. The control group was maintained in the same conditions as the experimental groups, without the exposure to EMF. In the EMF1 group, the rats were exposed to EMF during pre- and postnatal periods (until postnatal day 80). In the EMF2 group, the rats were also exposed to EMF pre- and postnatally; in addition, however, they were provided with a daily oral supplementation of Lycopersicon esculentum extract (∼2 g/kg). The number of caspase-3-labeled Purkinje neurons and granule cells present in the rats in the control and experimental groups were then counted. The neurodegenerative changes were studied using cresyl violet staining, and these changes were evaluated. In comparison with the control animals, the EMF1 group demonstrated a significant increase in the number of caspase-3-labeled Purkinje neurons and granule cells present in the cerebellum (P<0.001). However, in comparison with the EMF1 group, the EMF2 group exhibited significantly fewer caspase-3-labeled Purkinje neurons and granule cells in the cerebellum. In the EMF1 group, the Purkinje neurons were revealed to have undergone dark neuron degenerative changes. However, the presence of dark Purkinje neurons was reduced in the EMF2 group, compared with the EMF1 group. The results indicated that apoptosis and neurodegeneration in rats exposed to EMF during pre- and postnatal periods may be reduced with Lycopersicon esculentum extract therapy. PMID:23935717

  6. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development.

    PubMed

    Martin, Lee J; Cork, Linda C

    2014-01-01

    We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm(3) during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons

  7. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development

    PubMed Central

    Martin, Lee J.; Cork, Linda C.

    2014-01-01

    We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm3 during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons but

  8. Postnatal development and histofunctional differentiation of the oviduct in the broad-snouted caiman (Caiman latirostris).

    PubMed

    Galoppo, G H; Stoker, C; Canesini, G; Schierano-Marotti, G; Durando, M; Luque, E H; Muñoz-de-Toro, M

    2016-09-15

    Caiman latirostris is a South American crocodilian species characterized as a sentinel of the presence of endocrine-disrupting compounds (EDCs). Evaluating developmental events in hormone-dependent organs, such as the oviduct, is crucial to understand physiological postnatal development, to identify putative periods of exposure sensitive to EDCs, and/or to identify biomarkers useful to evaluate the effects of EDC exposure. In this study, we describe the histomorphological features of C. latirostris oviducts by establishing the ontogeny of changes at cellular, tissue and molecular levels from the neonatal to the pre-pubertal juvenile stages. Since the histological diagnosis of the adenogenic oviduct lies on a group of features, here we defined a histofunctional score system and a cut-off value to distinguish between preadenogenic and adenogenic oviducts. Our results showed that the maturation of the C. latirostris oviduct is completed postnatally and characterized by changes that mimic the pattern of histological modifications described for the mammalian uterus. Ontogenic changes in the oviductal epithelium parallel changes at subepithelial level, and include collagen remodeling and characteristic spatial-temporal patterns of α-actin and desmin. The expression pattern of estrogen receptor alpha and progesterone receptor evidenced that, even at early postnatal developmental stages, the oviduct of C. latirostris is a target organ of endogenous and environmental hormones. Besides, oviductal adenogenesis seems to be an estrogen-dependent process. Results presented here provide not only insights into the histophysiological aspect of caiman female reproductive ducts but also new tools to better characterize caimans as sentinels of endocrine disruption. PMID:27388661

  9. Early experience modifies the postnatal assembly of autonomic emotional motor circuits in rats.

    PubMed

    Card, J Patrick; Levitt, Pat; Gluhovsky, Maxim; Rinaman, Linda

    2005-10-01

    Rat pups that are repeatedly handled and separated from their dam exhibit altered adult behavioral, endocrine, and autonomic responses to stress, but the extent to which early handling and/or maternal separation (H/S) alters the development of circuits that underlie these responses is unknown. The present study tested the hypothesis that early H/S alters the postnatal assembly of synapses within preautonomic emotional motor circuits. Circuit development was traced by synapse-dependent retrograde transneuronal transport of pseudorabies virus (PRV) from the stomach wall. Control and H/S rats were analyzed between postnatal day 6 (P6) and P10, a period of rapid synaptic assembly among preautonomic circuit components. Pups in H/S groups were removed from their dam daily for either 15 min or 3 h beginning on P1, and were injected with virus on P8 and perfused on P10. Quantitative analyses of primary and transsynaptic PRV immunolabeling confirmed an age-dependent assembly of hypothalamic, limbic, and cortical inputs to autonomic nuclei. Circuit assembly was significantly altered in H/S pups, in which fewer neurons in the central amygdala, the bed nucleus of the stria terminalis, and visceral cortices were infected compared with age-matched controls. In contrast, H/S did not alter the assembly of paraventricular hypothalamic inputs to gastric autonomic neurons. H/S-related reductions in limbic and cortical transneuronal infection were similar in pups exposed daily to 15 min or 3 h maternal separation. These findings support the view that environmental events during early postnatal life can influence the formation of neural circuits that provide limbic and cortical control over autonomic emotional motor output.

  10. Development of glutamatergic synapses in the rat retina: the postnatal expression of ionotropic glutamate receptor subunits.

    PubMed

    Hack, Iris; Koulen, Peter; Peichl, Leo; Brandstätter, Johann Helmut

    2002-01-01

    We examined the distribution of the AMPA glutamate receptor subunits GluR1 to GluR4, of the kainate receptor subunits GluR6/7 and KA2, and of the glutamate receptor subunits delta1/2, during postnatal development of the rat retina by immunocytochemistry and light microscopy using receptor subunit specific antisera. The various ionotropic glutamate receptor subunits were expressed early in postnatal rat retina, and most of the subunits, with the exception of delta1/2. were found in both synaptic layers of rat retina. The glutamate receptor subunits studied showed differences in their time of appearance, their spatial distribution patterns, and in their expression levels in the developing rat retina. Interestingly, most of the AMPA receptor subunits were expressed earlier than the kainate receptor subunits in the two synaptic layers of the retina, indicating that AMPA glutamate receptors play an important role in early postnatal glutamatergic synaptic transmission. We also studied the ultrastructural localization of the AMPA glutamate receptor subunits GluR1 to GluR4 by immunocytochemistry and electron microscopy in the inner plexiform layer of the mature rat retina. Most of the subunits were found postsynaptic to the ribbon synapses of OFF-cone, ON-cone, and rod bipolar cells. The results of this study suggest an involvement of ionotropic glutamate receptors in processes of synaptic maturation and the formation of synaptic circuitries in the developing plexiform layers of the retina. Furthermore, AMPA and kainate receptors play a role in synaptic processing and in the development of both the scotopic and photopic pathways in the rat retina.

  11. The effectiveness of a pram-walking exercise programme in reducing depressive symptomatology for postnatal women.

    PubMed

    Armstrong, Kylie; Edwards, Helen

    2004-08-01

    The purpose of the research project was to examine the effects of exercise, social support and depression on postnatal women who reported experiencing postnatal depression. A 12-week randomized, controlled trial was conducted investigating the effects of an exercise intervention group (a pram-walking programme for mothers and their babies ) compared to a social support group (non-structured sessions, similar to a playgroup). Participants in both groups had given birth in the past 12 months. Pretest data of physical fitness and structured questionnaires were compared to post-test effects. The primary outcomes were to reduce the depressive symptomatology and improve fitness levels of participants in the pram-walking group. Secondary outcomes were to improve the social support levels of the participants in both groups and explore women's views about the programmes. It was hypothesized that the pram-walking group participants would improve their feelings of depression and fitness levels compared to the social support group, but that both groups would improve their perceived levels of social support. The results showed that mothers in the pram-walking intervention group improved their fitness levels and reduced their level of depressive symptomatology significantly more than the social support group. There were no significant changes to social support levels for both groups. Therefore, a direct association between improvement in fitness was related to improvement in depression for the pram-walking group. However, it is also suggested that other factors in combination with improvements in fitness influenced improvements in depression levels. It is recommended that pram-walking programmes for mothers with postnatal depression be implemented as pilot research into existing available services. PMID:15265228

  12. Early postnatal stress alters place conditioning to both mu- and kappa-opioid agonists.

    PubMed

    Michaels, Clifford C; Holtzman, Stephen G

    2008-04-01

    Clinical literature has established a link between early childhood incidents of neglect and trauma and adult problems with substance abuse. In rats, such early life stress has been modeled using a maternal separation (MS) paradigm in which rat pups were removed from their mothers for a few hours daily during the first two postnatal weeks. In this study, we used the MS model to investigate the effects of early postnatal stress on place conditioning to both mu- and kappa-opioid agonists in male and female Long-Evans rats. Offspring of both rearing conditions [MS or nonhandled (NH)] were conditioned using a biased procedure to saline, the mu-opioid agonist morphine (3.0, 5.6, and 10 mg/kg s.c.), or the kappa-opioid agonist spiradoline (0.3, 1.0, and 3.0 mg/kg) for 3 days, followed by a drug-free place-conditioning test 24 h later. Saline was administered in the morning, 30 min before confinement in one compartment, whereas morphine or spiradoline was administered in a similar manner 6 h later in the opposite compartment. MS offspring spent significantly more time in the morphine-paired compartment than NH offspring, indicating a greater place preference for the mu-opioid agonist. In the case of spiradoline, N