Science.gov

Sample records for postnatal whole-body exposure

  1. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  2. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  3. Interchangeable whole-body and nose-only exposure system

    DOEpatents

    Cannon, William C.; Allemann, Rudolph T.; Moss, Owen R.; Decker, Jr., John R.

    1992-01-01

    An exposure system for experimental animals includes a container for a single animal which has a double wall. The animal is confined within the inner wall. Gaseous material enters a first end, flows over the entire animal, then back between the walls and out the first end. The system also includes an arrangement of valve-controlled manifolds for supplying gaseous material to, and exhausting it from, the containers.

  4. Interchangeable whole-body and nose-only exposure system

    DOEpatents

    Cannon, W.C.; Allemann, R.T.; Moss, O.R.; Decker, J.R. Jr.

    1992-03-31

    An exposure system for experimental animals includes a container for a single animal which has a double wall. The animal is confined within the inner wall. Gaseous material enters a first end, flows over the entire animal, then back between the walls and out the first end. The system also includes an arrangement of valve-controlled manifolds for supplying gaseous material to, and exhausting it from, the containers. 6 figs.

  5. Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population

    NASA Astrophysics Data System (ADS)

    Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.

    2010-11-01

    In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.

  6. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  7. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than

  8. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC

  9. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  10. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  11. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    PubMed

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. PMID:22674152

  12. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    PubMed

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male.

  13. Using consumer electronic devices to estimate whole-body vibration exposure.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  14. Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease

    SciTech Connect

    Coon , Steven; Stark, Azadeh; Peterson, Edward; Gloi, Aime; Kortsha, Gene; Pounds, Joel G.; Chettle, D. R.; Gorell, Jay M.

    2006-12-01

    We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.

  15. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit. PMID:20037244

  16. Whole body retention in rats of different 191Pt compounds following inhalation exposure.

    PubMed Central

    Moore, W; Malanchuk, M; Crocker, W; Hysell, D; Cohen, A; Stara, J F

    1975-01-01

    The whole body retention, excretion, lung clearance, distribution, and concentration of 191Pt in other tissues was determined in rats following a single inhalation exposure to different chemical forms of 191Pt. The chemical forms of 191Pt used in study were 191PtCl4, 191Pt(SO4)2, 191PtO, and 191Pt metal. Immediately after exposure most of the 191Pt was found in the gastrointestinal and respiratory tract. Movement of the 191Pt through the gastrointestinal tract was rapid, most of the 191Pt being eliminated within 24 hr after exposure. Lung clearance was much slower, with a clearance half-time of about 8 days. In addition to the lungs, kidney and bone contained the highest concentrations of 191Pt. PMID:1227859

  17. Whole body vibration exposures in forklift operators: comparison of a mechanical and air suspension seat.

    PubMed

    Blood, Ryan P; Ploger, James D; Johnson, Peter W

    2010-11-01

    Using a repeated measures design, this study compared differences in whole body vibration (WBV) exposures when 12 forklift operators drove the same forklift with a mechanical suspension and an air suspension seat. A portable PDA-based WBV data acquisition system collected and analysed time-weighted and raw WBV data per ISO 2631-1 and 2631-5 WBV measurement standards. Tri-axial measurements of weighted vibration (A(w)), crest factor, vibration dose values, time-weighted average-peak, raw (+) peak, raw (-) peak and static compression dose (S(ed)) were compared between seats. There were significant differences in z-axis WBV exposures with the air suspension seat, yielding lower WBV exposures. In addition, there were differences between seats in how they attenuated WBV exposures based on the driver's weight. In the mechanical suspension seat, WBV exposures were weight-dependent, with lighter drivers having higher WBV exposures, whereas with the air suspension seat, the same trends were not as prevalent. STATEMENT OF RELEVANCE: This study contributes to the understanding of how different seat suspensions can influence WBV transmission and how some components of vibration transmission are dependent on the weight of the driver. Additional systematic studies are needed to quantify how various factors can influence WBV exposures.

  18. Metal exposures to native populations of the caddisfly Hydropsyche (Trichoptera: Hydropsychidae) determined from cytosolic and whole body metal concentrations

    USGS Publications Warehouse

    Cain, D.J.; Luoma, S.N.

    1998-01-01

    Metal concentrations of the soluble fraction of the cytoplasm (cytosol) and the whole body were determined in the caddisfly Hydropsyche spp. (Trichoptera). Metal accumulation in the cytosol and the whole body were compared in samples collected along 380 kms of a contamination gradient in the Clark Fork river in four consecutive years (1992-1995), and from a contaminated tributary (Flint Creek). Samples from the contaminated sites were compared to an uncontaminated tributary (Blackfoot River). Relations between cytosolic metal concentration and cytosolic protein (used as a general biomarker of protein metabolism) also were examined in 1994 and 1995. Relative to whole body concentrations, cytosolic metal concentrations varied among metals and years. Spatial patterns in whole body and cytosolic Cd, Cu and Pb concentrations were qualitatively similar each year, and these concentrations generally corresponded to contamination levels measured in bed sediments. The proportions of metals recovered in the cytosol of ranged from 12 to 64% for Cd and Cu and from 2 to 38% for Pb. Zinc in the whole body also was consistent with contamination levels, but cytosolic Zn concentrations increased only at the highest whole body Zn concentrations. As a result, the proportion of Zn recovered in the cytosol ranged from 16 to 63% and tended to be inversely related to whole body Zn concentrations. The proportions of cytosolic metals varied significantly among years and, as a result, interannual differences in metal concentrations were greater in the cytosol than in the whole body. The results demonstrated that Hydropsyche in the river were chronically exposed to biologically available metals. Some features of this exposure were not evident from whole body concentrations. In general, protein levels did not correspond to cytosolic metal concentrations. A variety of environmental factors could interact with metal exposures to produce complex responses in protein metabolism. Systematic study

  19. Influence of copper exposure on whole-body sodium levels in larval fathead minnows (Pimephales promelas).

    PubMed

    Van Genderen, Eric J; Tomasso, Joseph R; Klaine, Stephen J

    2008-06-01

    Because metals such as Cu inhibit ionoregulation, the increased energy requirement to counter passive diffusive losses in soft water may translate into increased sensitivity to metal exposure. We developed a method to determine whole-body Na concentrations of larval fathead minnows (Pimephales promelas) as a physiological indicator of health. This method was used to characterize net rates of Na flux from fish exposed to Cu in the presence of varying levels of hardness and alkalinity. In extremely soft waters (hardness, < or = 10 mg/L as CaCO(3)), larval fish experienced rates of net whole-body Na loss greater than what has been observed in juvenile and adult fish when exposed to Cu at concentrations near the median lethal concentration. Elevating hardness (>10 mg/L as CaCO(3)), however, decreased the apparent kinetics of Na loss caused by Cu exposure, which suggests the process was related to uncompetitive inhibition of Cu by hardness cations. Although the percentage of Na loss associated with mortality in larval fish was similar to that in juvenile and adult fish (30% loss of exchangeable Na pool), larvae reached this level within 12 h of exposure, and it was not representative of the onset of mortality. These results suggested that ionoregulatory measures by themselves are not a conclusive metric for Cu regulation using larval fish. To account for increased sensitivity in low-hardness waters in the development of biotic ligand models, the critical amount of Cu associated with the gill to cause mortality (i.e., the median lethal accumulation value) should be characterized more appropriately as a function of hardness below 20 mg/L as CaCO(3).

  20. Validity of self reported occupational exposures to hand transmitted and whole body vibration

    PubMed Central

    Palmer, K.; Haward, B.; Griffin, M.; Bendall, H.; Coggon, D.

    2000-01-01

    OBJECTIVES—To assess the accuracy with which workers report their exposure to occupational sources of hand transmitted (HTV) and whole body vibration (WBV).
METHODS—179 Workers from various jobs involving exposure to HTV or WBV completed a self administered questionnaire about sources of occupational exposure to vibration in the past week. They were then observed at work over 1 hour, after which they completed a second questionnaire concerning their exposures during this observation period. The feasibility of reported sources of exposure during the past week was examined by questioning managers and by inspection of tools and machines in the workplace. The accuracy of reported sources and durations of exposure in the 1 hour period were assessed relative to what had been observed.
RESULTS—The feasibility of exposure in the previous week was confirmed for 97% of subjects who reported exposure to HTV, and for 93% of subjects who reported exposure to WBV. The individual sources of exposure reported were generally plausible, but occupational use of cars was substantially overreported, possibly because of confusion with their use in travel to and from work. The accuracy of exposures reported during the observation period was generally high, but some sources of HTV were confused—for example, nailing and stapling guns reported as riveting hammers, and hammer drills not distinguished from other sorts of drill. Workers overestimated their duration of exposure to HTV by a median factor of 2.5 (interquartile range (IQR) 1.6-5.9), but estimated durations of exposure were more accurate when the exposure was relatively continuous rather than for intermittent short periods. Reported durations of exposure to WBV were generally accurate (median ratio of reported to observed time 1.1, IQR 1.0-1.2).
CONCLUSIONS—Sources of recent occupational exposure to vibration seem to be reported with reasonable accuracy, but durations of exposure to HTV are systematically

  1. Acute exposure to 2,4-dinitrophenol alters zebrafish swimming performance and whole body triglyceride levels.

    PubMed

    Marit, Jordan S; Weber, Lynn P

    2011-06-01

    While swimming endurance (critical swimming speed or U(crit)) and lipid stores have both been reported to acutely decrease after exposure to a variety of toxicants, the relationship between these endpoints has not been clearly established. In order to examine these relationships, adult zebrafish (Danio rerio) were aqueously exposed to solvent control (ethanol) or two nominal concentrations of 2,4-dinitrophenol (DNP), a mitochondrial electron transport chain uncoupler, for a 24-h period. Following exposure, fish were placed in a swim tunnel in clean water for swimming testing or euthanized immediately without testing, followed by analysis of whole body triglyceride levels. U(crit) decreased in both the 6 mg/L and 12 mg/L DNP groups, with 12 mg/L approaching the LC₅₀. A decrease in tail beat frequency was observed without a significant change in tail beat amplitude. In contrast, triglyceride levels were elevated in a concentration-dependent manner in the DNP exposure groups, but only in fish subjected to swimming tests. This increase in triglyceride stores may be due to a direct interference of DNP on lipid catabolism as well as increased triglyceride production when zebrafish were subjected to the co-stressors of swimming and toxicant exposure. Future studies should be directed at determining how acute DNP exposure combines with swimming to cause alterations in triglyceride accumulation. PMID:21406246

  2. Whole Body Vibration Exposures and Health Status among Professional Truck Drivers: A Cross-sectional Analysis.

    PubMed

    Kim, Jeong Ho; Zigman, Monica; Aulck, Lovenoor S; Ibbotson, Jennifer A; Dennerlein, Jack T; Johnson, Peter W

    2016-10-01

    Many professional truck drivers suffer from low back pain (LBP) which is thought to be associated with exposure to whole-body vibration (WBV). The objectives of this study were to: (i) characterize general health, regional body pain and WBV exposures, (ii) evaluate the associations between different WBV parameters and health outcomes, and (iii) determine whether there were factors which affect a truck driver's WBV exposures. This study analyzed WBV exposures from 96 long-haul truck drivers over their regular work shift (6-15h) per International Standards Organization (ISO) 2631-1 and 2631-5 WBV standards. This study also evaluated regional body pain (10-point scale), low back disability (the Oswestry Disability Index), and physical and mental health (the Short Form 12-item Health Survey). The results demonstrated that the daily vector sum WBV exposures [A(8), VDV(8) and Sed(8)] were above action limits while the predominant z-axis exposures were below action limits. Among all the musculoskeletal outcomes, LBP was the most prevalent (72.5%) with average LBP score of 2.9 (SD: 2.0). The SF-12 health scores demonstrated that truck drivers in general had lower physical health status than the general US population (P's < 0.04) and that physical health status decreased as WBV exposures increased (P = 0.03). In addition, the correlations between the WBV measures and health outcomes indicated that A(8) exposure measures had a stronger link to musculoskeletal (LBP) and other health outcomes than the VDV(8) and Sed(8) measures. Finally, seat manufacturer and seat age were two factors which had a strong influence on WBV exposures.

  3. Simplified segmented human models for whole body and localised SAR evaluation of 20 MHz to 6 GHz electromagnetic field exposures.

    PubMed

    Wu, Tongning; Shao, Qing; Yang, Lei

    2013-03-01

    The digital human model is a key element in evaluating the electromagnetic field (EMF) exposure. This paper proposes the application of simplified segmented human models for EMF exposure compliance evaluation with the whole body and the localised limits. The method is based on the fact that most of the EMF power absorption is concentrated in several major tissues. Two kinds of human models were simply (the proposed method) and precisely segmented from two sets of whole body magnetic resonance imaging (MRI) scanned images. The whole body average-specific absorption rate (WBA-SAR) and the peak localised SAR averaging over 10 g tissues for the two kinds of models are calculated for various exposure configurations. The results confirmed the efficiency and the validity of the proposed method. The application as evaluating the MRI radiofrequency EMF exposure is also discussed in the paper.

  4. Exposure to whole-body vibration in open-cast mines in the Barents region

    PubMed Central

    Burström, Lage; Hyvärinen, Ville; Johnsen, Magnar; Pettersson, Hans

    2016-01-01

    Objectives We aimed to measure and evaluate whole-body vibration (WBV) exposure among drivers of mining vehicles in the Barents region. Study design In the period from November 2012 to August 2014, this cross-sectional study was carried out at 3 mines in Finland, Norway and Sweden as part of the MineHealth project. Methods Measurements of WBV were conducted on the surface of the driver's seat during normal work in accordance with international standards. Personal data on daily exposure times were collected by a questionnaire. Results Measurements were conducted on 95 different mining vehicles both as root mean square (RMS) value and vibration dose value (VDV) representing different manufacturers, models and capacities. Of the 453 miners who answered the questionnaire, 232 indicated that they were exposed to WBV during their working day. The results show that the mean daily exposure time varies between 1.9 and 6.7 h for different vehicles. The calculated mean A(8) could be found in an interval between 0.2 and 1.0 m/s2 and the corresponding 8-h VDV fell between 7 and 17 m/s1.75. Conclusions Exposure to WBV among operators of mining vehicles may be a serious health and safety problem in the mines studied. The employers ought, therefore, take active steps to reduce exposure in accordance with the European vibration directive. Moreover, since some groups of drivers are exposed to vibration that is close to or exceeds the exposure limit values, the employer should take immediate action to reduce exposure below these values. PMID:26864832

  5. Six-degree-of-freedom whole-body vibration exposure levels during routine skidder operations.

    PubMed

    Jack, R J; Oliver, M; Dickey, J P; Cation, S; Hayward, G; Lee-Shee, N

    2010-05-01

    This research focuses on quantifying six-degree-of-freedom (6-DOF) whole-body vibration (WBV) exposure levels that occur in Northern Ontario skidders during routine field operating tasks. 6-DOF vibration running root-mean-square (RMS) acceleration levels at the operator/seat interface were determined for eight skidders while driving loaded, driving unloaded, picking up a load, dropping off a load and ploughing logs under field operating conditions. The acceleration data were weighted in accordance with ISO 2631-1:1997 and evaluated for both health and comfort outcomes. The mean running RMS weighted translational and rotational accelerations all exceeded 0.36 m/s(2) and 0.14 rad/s(2). The greatest average accelerations occurred while driving unloaded with this condition displaying translational vibration total values (VTV) that exceeded the upper limit of the ISO 2631-1:1997 health caution zone within an average of 2.3 h. Utilizing 6-DOF VTV, virtually all operating conditions would be designated as uncomfortable. STATEMENT OF RELEVANCE: This study provides one of the most comprehensive reports on vibration exposures in seated vehicle operators. The results are geared towards ergonomists with discussions on health effects and measurement concerns, while providing the raw vibration exposure data that will be useful to vehicle, component and vibration sensor designers.

  6. Systemic immunotoxicity in AJ mice following 6-month whole body inhalation exposure to diesel exhaust.

    PubMed

    Burchiel, Scott W; Lauer, Fredine T; McDonald, Jacob D; Reed, Matthew D

    2004-05-01

    The purpose of these studies was to determine the effects of subchronic diesel exposure on indicators of systemic immunity in mice. AJ mice were exposed daily for 6 months (6 h/day) to atmospheres containing one of four concentrations (30, 100, 300, and 1000 microg/m(3)) of diluted diesel exhaust (DE) in whole body exposure chambers. The effects of DE were compared to chamber exposure controls receiving fresh air. DE was assessed for effects on systemic immunity by measuring the proliferative response of spleen cells following stimulation with T cell (phytohemagglutinin, or PHA) or B cell (lipopolysaccharide, or LPS) mitogens. The results showed that DE at all exposure levels suppressed the proliferative response of T cells. B cell proliferation was increased at 30 microg/m(3) and was unaffected at the 100, 300, and 1000 microg/m(3) exposures. Polycyclic aromatic hydrocarbons (PAHs) are known to suppress spleen cell mitogenic responses, and it has been hypothesized by several groups that PAHs and perhaps benzo(a)pyrene (BaP)-quinones (BPQs) may be responsible for the effects of DE or diesel exhaust particles (DEP). Therefore, a second purpose of these studies was to determine the effects of in vitro BPQs on AJ mouse spleen cell mitogenic responses and compare to DE in preliminary studies. Unlike DE, BPQs were found to increase T cell proliferation. In addition, analysis of chamber atmospheres showed that there was little if any PAH and BPQs in DE. Therefore, these results demonstrate that because of the absence of BPQs in DE, they are likely not responsible for the immunosuppressive effect of DE on murine spleen cell responses.

  7. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  8. Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks

    PubMed Central

    Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Varsier, N.; Martens, L.

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  9. Biomonitoring and whole body cotton dosimetry to estimate potential human dermal exposure to semivolatile chemicals.

    PubMed

    Krieger, R I; Bernard, C E; Dinoff, T M; Fell, L; Osimitz, T G; Ross, J H; Ongsinthusak, T

    2000-01-01

    Current methods of estimating absorbed dosage (AD) of chemicals were evaluated to determine residue transfer from a carpet treated with chlorpyrifos (CP) to humans who performed a structured exercise routine. To determine the dislodgeability of residue, a California Department of Food and Agriculture (CDFA) roller was applied to a flat cotton cloth upon a treated carpet. Levels ranged from 0.06 to 0.99 microg CP/cm2. Cotton whole body dosimeters (WBD) were also used to assess residue transfer. The dosimeters retained 1.5 to 38 mg CP/person. Urine biomonitoring (3 days) for 3,5,6-trichloro-2-pyridinol (TCP) of persons who wore only swimsuits revealed a mean AD of 176 microg CP equivalents/person. The results show that the AD depends on the extent of contact transfer and dermal absorption of the residue. Default exposure assessments based upon environmental levels of chemicals and hypothetical transport pathways predict excessive exposure. The cotton WBD retains chemical residues and may be effectively used to predict dermal dose under experimental conditions.

  10. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    PubMed Central

    Sonza, Anelise; Robinson, Caroline C.; Achaval, Matilde; Zaro, Milton A.

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  11. Biomonitoring and whole body cotton dosimetry to estimate potential human dermal exposure to semivolatile chemicals.

    PubMed

    Krieger, R I; Bernard, C E; Dinoff, T M; Fell, L; Osimitz, T G; Ross, J H; Ongsinthusak, T

    2000-01-01

    Current methods of estimating absorbed dosage (AD) of chemicals were evaluated to determine residue transfer from a carpet treated with chlorpyrifos (CP) to humans who performed a structured exercise routine. To determine the dislodgeability of residue, a California Department of Food and Agriculture (CDFA) roller was applied to a flat cotton cloth upon a treated carpet. Levels ranged from 0.06 to 0.99 microg CP/cm2. Cotton whole body dosimeters (WBD) were also used to assess residue transfer. The dosimeters retained 1.5 to 38 mg CP/person. Urine biomonitoring (3 days) for 3,5,6-trichloro-2-pyridinol (TCP) of persons who wore only swimsuits revealed a mean AD of 176 microg CP equivalents/person. The results show that the AD depends on the extent of contact transfer and dermal absorption of the residue. Default exposure assessments based upon environmental levels of chemicals and hypothetical transport pathways predict excessive exposure. The cotton WBD retains chemical residues and may be effectively used to predict dermal dose under experimental conditions. PMID:10703847

  12. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism.

  13. A new whole-body vapor exposure chamber for protection performance research on chemical protective ensembles.

    PubMed

    Duncan, E J Scott; Dickson, Eva F Gudgin

    2003-01-01

    A chemical vapor exposure chamber was designed to permit the study of whole-body vapor exposure of individuals wearing full protective clothing and equipment systems. A methodology also was developed to quantify the vapor protection performance of chemical protective ensembles (CPE) under safe and validated laboratory procedures. The principal research objectives were to (1) provide a methodology to accurately assess the performance of CPE and equipment under different environmental and chemical vapor challenge conditions; (2) quantify the vapor protection on a per body region basis; (3) have a systems level tool to aid in the research and development of more effective CPE for use in chemical biological environments; and (4) have a safe and reliable means of qualifying new CPE on the basis of vapor protection. Although designed for the evaluation of military-style protective equipment, the procedures apply equally to other styles of CPE used by civilian agencies such as firefighters, police, and hazmat units. The chamber and methodology were specifically designed to examine the vapor protection performance of clothing ensembles, including the details of protection variation over the body. A variety of exposure conditions appropriate to indoor and outdoor scenarios are possible, including the effects of wind, temperature, and relative humidity. Protection performance results from a number of individuals wearing typical military-style CPE are presented. These results demonstrate that there is no such thing as a unique protection performance level obtained for a given CPE. Rather, the individual and the ensemble interact differently in each situation, resulting in a protection performance distribution for individuals, and for groups of wearers, even under a standardized set of exposure conditions. PMID:12688845

  14. Acute, whole-body microwave exposure and testicular function of rats.

    PubMed

    Lebovitz, R M; Johnson, L

    1987-01-01

    Male Sprague-Dawley rats were exposed for 8 h to continuous-wave microwave radiation (MWR, 1.3 Ghz) at a mean specific absorbed dose rate of 9 mW/g. MWR exposure and sham-irradiation took place in unidirectionally energized cylindrical waveguide sections, within which the animals were essentially unrestrained. The MWR treatment in this setting was determined to yield an elevation of deep rectal temperature to 4.5 degrees C. The animals were taken for analysis at 6.5, 13, 26, and 52 days following treatment, which corresponded to .5, 1, 2, and 4 cycles of the seminiferous epithelium. Net mass of testes, epididymides, and seminal vesicles; daily sperm production (DSP) per testis and per gram of testis; and the number of epididymal sperm were determined. The levels of circulating follicle-stimulating hormone (FSH) and leutinizing hormone (LH) were derived via radioimmunoassay of plasma samples taken at the time of sacrifice. Despite the evident acute thermogenesis of the MWR at 9 mW/g, no substantial decrement in testicular function was found. We conclude that, in the unrestrained rat, whole body irradiation at 9 mW/g, while sufficient to induce evident hyperthermia, is not a sufficient condition for disruption of any of these key measures of testicular function.

  15. Perchlorate exposure does not modulate temporal variation of whole-body thyroid and androgen hormone content in threespine stickleback

    PubMed Central

    Gardell, Alison M.; Dillon, Danielle M.; Smayda, Lauren C.; von Hippel, Frank A.; Cresko, William A.; Postlethwait, John H.; Buck, C. Loren

    2015-01-01

    Previously we showed that exposure of threespine stickleback (Gasterosteus aculeatus) to the endocrine disruptor perchlorate results in pronounced structural changes in thyroid and gonad, while surprisingly, whole-body thyroid hormone concentrations remain unaffected. To test for hormone titer variations on a finer scale, we evaluated the interactive effects of time (diel and reproductive season) and perchlorate exposure on whole-body contents of triiodothyronine (T3), thyroxine (T4), and 11-ketotestosterone (11-KT) in captive stickleback. Adult stickleback were exposed to 100 ppm perchlorate or control water and sampled at four-hour intervals across the 24-hour day and at one time-point (1100 h) weekly across the reproductive season (May-July). Neither whole-body T3 nor T4 concentration significantly differed across the day in control or perchlorate treated stickleback. Across the reproductive season, whole-body T3 concentration remained stable while T4 significantly increased. However, neither hormone concentration was significantly affected by perchlorate, verifying our previous studies. The concentration of whole-body 11-KT, a major fish androgen, displayed significant diel variation and also steadily declined across the reproductive season in untreated males; perchlorate exposure did not influence the concentration of 11-KT in either diel or reproductive season schedules. Diel and reproductive season variations in 11-KT content in male stickleback are likely related to reproductive physiology and behavior. The observed increase in T4 content across the reproductive season may be reflective of increased energy investment in reproduction near the end of the life cycle. PMID:25733204

  16. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum. PMID:27665775

  17. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.

  18. Identification of Possible Candidate Biomarkers for Local or Whole Body Radiation Exposure in C57BL/6 Mice

    SciTech Connect

    Lee, Hae-June; Lee, Minyoung; Kang, Chang-Mo; Jeoung, Dooil; Bae, Sangwoo; Cho, Chul-Koo; Lee, Yun-Sil

    2007-11-15

    Purpose: Specific genes expressed as a result of whole body exposure to {gamma}-radiation have been previously identified. In this study, we examined the genes further as possible biomarkers for the blood lymphocytes of C57BL/6 mice after whole body or local irradiation of the thorax, abdomen, and left subphrenic area. Methods and Materials: We performed reverse transcriptase-polymerase chain reaction and real-time reverse transcriptase-polymerase chain reaction analysis of genes encoding platelet membrane glycoprotein IIb, protein tyrosine kinase, sialyltransferase, and Cu/ZnSOD in blood lymphocytes, lung tissue, spleen, and intestines. The protein expression in blood lymphocytes was confirmed by Western blot analysis. Results: The expression of platelet membrane glycoprotein IIb, protein tyrosine kinase, sialyltransferase, and Cu/ZnSOD was significantly greater after 3 days as a result of 1 Gy of whole body irradiation. Moreover, local irradiation to the thorax, abdomen, or left subphrenic area, which are frequently exposed to therapeutic radiation doses, showed a tendency toward radiation-induced increased expression of these genes in both the blood and the locally irradiated organs. Western blot analysis also corroborated these results. Conclusion: Platelet membrane glycoprotein IIb, protein tyrosine kinase, sialyltransferase, and Cu/ZnSOD might be candidates for biomarkers of radiation exposure. However, additional experiments are required to reveal the relationship between the expression levels and the prognostic effects after irradiation.

  19. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  20. Postnatal Exposure History and Airways

    PubMed Central

    Murphy, Shannon R.; Schelegle, Edward S.; Edwards, Patricia C.; Miller, Lisa A.; Hyde, Dallas M.

    2012-01-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O3) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O3 exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurokinin-1 receptor (NK-1R). Infant rhesus monkeys received episodic exposure to O3 biweekly with or without house dust mite antigen (HDMA) from 6 to 12 months of age. Age-matched monkeys were exposed to filtered air (FA). Microdissected airway explants from midlevel airways (intrapulmonary generations 5–8) for four to six animals in each of four groups (FA, O3, HDMA, and HDMA+O3) were tested for NK-1R gene responses to acute oxidant stress using exposure to hydrogen peroxide (1.2 mM), a lipid ozonide (10 μM), or sham treatment for 4 hours in vitro. Airway responses were measured using real-time quantitative RT-PCR of NK-1R and IL-8 gene expression. Basal NK-1R gene expression levels were not different between the exposure groups. Treatment with ozonide or hydrogen peroxide did not change NK-1R gene expression in animals exposed to FA, HDMA, or HDMA+O3. However, treatment in vitro with lipid ozonide significantly increased NK-1R gene expression in explants from O3–exposed animals. We conclude that a history of prior O3 exposure resets the steady state of the airways to increase the NK-1R response to subsequent acute oxidant stresses. PMID:22962062

  1. Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey

    PubMed Central

    Palmer, K.; Griffin, M.; Bendall, H.; Pannett, B.; Coggon, D.

    2000-01-01

    OBJECTIVES—To estimate the number of workers in Great Britain with significant occupational exposure to whole body vibration (WBV) and to identify the common sources of exposure and the occupations and industries where such exposures arise.
METHODS—A postal questionnaire was posted to a random community sample of 22 194 men and women of working age. Among other things, the questionnaire asked about exposure to WBV in the past week, including occupational and common non-occupational sources. Responses were assessed by occupation and industry, and national prevalence estimates were derived from census information. Estimates were also made of the average estimated daily personal dose of vibration (eVDV).
RESULTS—From the 12 907 responses it was estimated that 7.2 million men and 1.8 million women in Great Britain are exposed to WBV at work in a 1 week period if the occupational use of cars, vans, buses, trains, and motor cycles is included within the definition of exposure. The eVDV of >374 000 men and 9000 women was estimated to exceed a proposed British Standard action level of 15 ms-1.75. Occupations in which the estimated exposures most often exceeded 15 ms-1.75 included forklift truck and mechanical truck drivers, farm owners and managers, farm workers, and drivers of road goods vehicles. These occupations also contributed the largest estimated numbers of workers in Great Britain with such levels of exposure. The highest estimated median occupational eVDVs were found in forklift truck drivers, drivers of road goods vehicles, bus and coach drivers, and technical and wholesale sales representatives, among whom a greater contribution to total dose was received from occupational exposures than from non-occupational ones; but in many other occupations the reverse applied. The most common sources of occupational exposure to WBV are cars, vans, forklift trucks, lorries, tractors, buses, and loaders.
CONCLUSIONS—Exposure to whole body vibration is

  2. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  3. Lack of adverse effects of whole-body exposure to a mobile telecommunication electromagnetic field on the rat fetus.

    PubMed

    Takahashi, Satoru; Imai, Norio; Nabae, Kyoko; Wake, Kanako; Kawai, Hiroki; Wang, Jianqing; Watanabe, So-ichi; Kawabe, Mayumi; Fujiwara, Osamu; Ogawa, Kumiko; Tamano, Seiko; Shirai, Tomoyuki

    2010-03-01

    Abstract The recent steep increase in the number of users of cellular phones is resulting in marked increase of exposure of humans to radiofrequency electromagnetic fields (EMFs). Children are of particular concern. Our goal was to evaluate potential adverse effects of long-term whole-body exposure to EMFs simulating those from base stations for cellular phone communication. Pregnant rats were given low, high or no exposure. At the high level, the average specific absorption rate (SAR)for the dams was 0.066-0.093 W/kg. The SAR for the fetuses and the F(1) progeny was 0.068-0.146 W/kg. At the low level, the SARs were about 43% of these. The 2.14 GHz signals were applied for 20 h per day during the gestation and lactation periods. No abnormal findings were observed in either the dams or the F(1) generation exposed to the EMF or in the F(2) offspring. Parameters evaluated included growth, gestational condition and organ weights for dams and survival rates, development, growth, physical and functional development, hormonal status, memory function and reproductive ability of the F(1) offspring (at 10 weeks of age) along with embryotoxicity and teratogenicity in the F(2) rats. Thus, under our experimental conditions, whole-body exposure to 2.14 GHz for 20 h per day during gestation and lactation did not cause any adverse effects on pregnancy or the development of rats.

  4. Immediate postnatal rise in whole body androgen content in male rats: correlation with increased testicular content and reduced body clearance of testosterone.

    PubMed

    Baum, M J; Brand, T; Ooms, M; Vreeburg, J T; Slob, A K

    1988-06-01

    Whole body content of androgen (testosterone + 5 alpha-dihydrotestosterone) was invariably higher in male than in female rat pups killed 1 or 3 h after natural delivery, whereas androgen content was equivalent in males and females killed immediately or 6, 12, and 24 h after birth. Testicular content of androgen was significantly elevated in males killed 1 and 24 h after birth, compared with levels in males killed immediately, or 3, 6, and 12 h after birth. Thus, heightened testicular androgen content was only initially associated with increased systemic levels of androgen in males during the immediate postpartum period. A second study assessed the possibility that the body's clearance (i.e., metabolism plus excretion) of testosterone is lower in newborn rats upon separation from the placental circulation than in slightly older pups. Rats of both sexes killed 1 and 3 h after s.c. injection of [3H] testosterone had significantly higher plasma concentrations of [3H] testosterone as well as several 5 alpha-reduced androgens (5 alpha-dihydrotestosterone, 3 alpha-androstanediol, and androsterone) when injections were given within minutes as opposed to 24 h after birth. This suggests that in both sexes the clearance of testosterone is slower immediately after birth than at later ages. This phenomenon together with a brief postnatal elevation in the testicular synthesis and secretion of testosterone may explain the temporary rise in circulating androgen concentrations that occurs in the newborn male rat.

  5. Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.

  6. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-01

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 °C at a whole-body-averaged specific absorption rate of 0.08 W kg-1, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  7. The impact of self-reported exposure to whole-body-vibrations on the risk of disability pension among men: a 15 year prospective study

    PubMed Central

    2010-01-01

    Background Whole-body-vibrations are often associated with adverse health effect but the long term effects are less known. This study investigates the association between occupational exposures to whole-body vibrations, and subsequent transition to disability pension. Methods A total of 4215 male employees were followed up for subsequent disability pension retirement. Exposure to whole-body-vibration was self-reported while new cases of disability pension were retrieved from a national register. Results The hazard ratio (HR) for disability pension retirement among men exposed to whole-body-vibrations was 1.61 (95% confidence interval (CI) 1.07-2.40) after adjustment for age, smoking habits, BMI, physical job demands and awkward work postures. In our model, with the available explanatory variables, 5.6% of the male disability pension cases were attributable to whole-body-vibrations. Conclusions Exposure to whole-body-vibrations predicts subsequent disability pension retirement. Continued reduction of whole-body-vibrations may reduce the number of new cases of disability pension. PMID:20525268

  8. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    SciTech Connect

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki; Botaitis, Sotirios; Torvinen, Sira; Simopoulos, Constantinos; Kortsaris, Alexandros; Sivridis, Efthimios; Koukourakis, Michael I.

    2011-01-07

    Research highlights: {yields} We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. {yields} Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. {yields} The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. {yields} Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body {gamma}-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function

  9. Analytical method for assessing potential dermal exposure to captan, using whole body dosimetry, in small vegetable production units in Argentina.

    PubMed

    Hughes, Enrique A; Zalts, Anita; Ojeda, Javier J; Flores, Andrea P; Glass, Richard C; Montserrat, Javier M

    2006-09-01

    An analytical method has been developed that can be used to determine the potential dermal exposure (PDE) of workers to the pesticide captan in small-scale horticultural production units. The methodology is based on the whole body dosimetry technique, using a cotton coverall and cotton gloves as sampling media, with protective clothing worn beneath the cotton media to protect the operator. The quantitative determination of captan was done by gas chromatography-electron capture detector (GC-ECD), with the analytical method validated by measuring limits of detection and quantification, linear ranges, sample recovery and precision. Special emphasis is placed on factors that affected the stability of captan during chromatographic determination. The data generated for potential dermal exposure are presented separately for mixing/loading and application activities. These data are compared with values obtained with visible tracers using a similar field technique. Margin of safety (MOS) values are also calculated for the agricultural procedures studied.

  10. {sup 137}Cs exposure in the Marshallese populations: An assessment based on whole-body counting measurements (1989-1994)

    SciTech Connect

    Sun, L.C.; Clinton, J.H.; Kaplan, E.

    1997-07-01

    The Marshall Islands were the site of numerous tests of nuclear weapons by the United States. From 1946 to 1958, nuclear devices were detonated at Enemetak and Bikini Atolls. Following the inadvertent contamination of the northern islands downwind of the 1954 Bravo Test, Brookhaven National Laboratory became involved in the medical care and the radiological safety of the affected populations. One important technique employed in assessing the internally deposited radionuclides is whole-body counting. To estimate current and future exposures to 1376, data from 1989 to 1994 were analyzed and are reported in this paper. During this period, 3,618 measurements were made for the Marshallese. The cesium body contents were assumed to result from a series of chronic intakes. Also, it was assumed that cesium activity in the body reaches a plateau that is maintained over 365 d. We estimated the annual effective dose rate for each population, derived from the recommendations of the International Commission on Radiological Protection. The average {sup 137}Cs uptake measured by the whole-body counting method varies from one population to another; it was consistent with measurements of external exposure rate. The analysis. though based on limited data, indicates that there is no statistical support for a seasonal effect on {sup 137}Cs uptake. The critical population group for cesium uptake is adult males. Within the 5-y monitoring period, all internal exposures to {sup 137}Cs mere less than 0.2 mSv y{sup -1}. Similarly, a persistent average cesium effective dose rate of 2 {mu}Sv y{sup -1} was determined for Majuro residents. 73 refs., 6 figs., 10 tabs.

  11. Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China.

    PubMed

    Cao, Lidong; Chen, Bo; Zheng, Li; Wang, Dongwei; Liu, Feng; Huang, Qiliang

    2015-01-01

    In China, although improvements to the pesticide registration process have been made in last thirty years, no occupational exposure data are required to obtain a commercial license for a pesticide product. Consequently, notably little research has been conducted to establish an exposure assessment procedure in China. The present study monitored the potential dermal operator exposure from knapsack electric sprayer wheat field application of imidacloprid in Liaocheng City, Shandong Province and in Xinxiang City, Henan Province, China, using whole-body dosimetry. The potential inhalation exposure was determined using a personal air pump and XAD-2 sample tubes. The analytical method was developed and validated, including such performance parameters as limits of detection and quantification, linear range, recovery and precision. The total potential dermal and inhalation exposures were 14.20, 16.80, 15.39 and 20.78 mL/hr, respectively, for the four operators in Liaocheng and Xinxiang, corresponding to 0.02% to 0.03% of the applied volume of spray solution. In all trials, the lower part (thigh, lower leg) of the body was the most contaminated, accounting for approximately 76% to 88% of the total exposure. The inhalation exposure was less than 1% of the total exposure. Such factors as the application pattern, crop type, spray equipment, operator experience and climatic conditions have been used to explain the exposure distribution over the different parts of the body. As indicated by the calculated Margin of Exposure, the typical wheat treatment scenarios when a backpack sprayer was used are considered to be safe in terms of imidacloprid exposure.

  12. Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China.

    PubMed

    Cao, Lidong; Chen, Bo; Zheng, Li; Wang, Dongwei; Liu, Feng; Huang, Qiliang

    2015-01-01

    In China, although improvements to the pesticide registration process have been made in last thirty years, no occupational exposure data are required to obtain a commercial license for a pesticide product. Consequently, notably little research has been conducted to establish an exposure assessment procedure in China. The present study monitored the potential dermal operator exposure from knapsack electric sprayer wheat field application of imidacloprid in Liaocheng City, Shandong Province and in Xinxiang City, Henan Province, China, using whole-body dosimetry. The potential inhalation exposure was determined using a personal air pump and XAD-2 sample tubes. The analytical method was developed and validated, including such performance parameters as limits of detection and quantification, linear range, recovery and precision. The total potential dermal and inhalation exposures were 14.20, 16.80, 15.39 and 20.78 mL/hr, respectively, for the four operators in Liaocheng and Xinxiang, corresponding to 0.02% to 0.03% of the applied volume of spray solution. In all trials, the lower part (thigh, lower leg) of the body was the most contaminated, accounting for approximately 76% to 88% of the total exposure. The inhalation exposure was less than 1% of the total exposure. Such factors as the application pattern, crop type, spray equipment, operator experience and climatic conditions have been used to explain the exposure distribution over the different parts of the body. As indicated by the calculated Margin of Exposure, the typical wheat treatment scenarios when a backpack sprayer was used are considered to be safe in terms of imidacloprid exposure. PMID:25597672

  13. Dental silver tooth fillings: A source of mercury exposure revealed by whole-body image scan and tissue analysis

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L. )

    1989-12-01

    Mercury (Hg) vapor is released from dental silver tooth fillings into human mouth air after chewing, but its possible uptake routes and distribution among body tissues are unknown. This investigation demonstrates that when radioactive 203Hg is mixed with dental Hg/silver fillings (amalgam) and placed in teeth of adult sheep, the isotope will appear in various organs and tissues within 29 days. Evidence of Hg uptake, as determined by whole-body scanning and measurement of isotope in specific tissues, revealed three uptake sites: lung, gastrointestinal, and jaw tissue absorption. Once absorbed, high concentrations of dental amalgam Hg rapidly localize in kidneys and liver. Results are discussed in view of potential health consequences from long-term exposure to Hg from this dental material.

  14. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab.

    PubMed

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W

    2011-06-01

    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators.

  15. A formula for human average whole-body SARwb under diffuse fields exposure in the GHz region

    NASA Astrophysics Data System (ADS)

    Bamba, A.; Joseph, W.; Vermeeren, G.; Thielens, A.; Tanghe, E.; Martens, L.

    2014-12-01

    A simple formula to determine the human average whole-body SAR (SARwb) under realistic propagation conditions is proposed in the GHz region, i.e. from 1.45 GHz to 5.8 GHz. The methodology is based on simulations of ellipsoidal human body models. Only the exposure (incident power densities) and the human mass are needed to apply the formula. Diffuse scattered illumination is addressed for the first time and the possible presence of a Line-of-Sight (LOS) component is addressed as well. As validation, the formula is applied to calculate the average whole-body SARwb in 3D heterogeneous phantoms, i.e. the virtual family (34 year-old male, 26 year-old female, 11 year-old girl, and 6 year-old boy) and the results are compared with numerical ones—using the Finite-Difference Time-Domain (FDTD) method—at 3 GHz. For the LOS exposure, the average relative error varies from 28% to 12% (resp. 14-12%) for the vertical polarization (resp. horizontal polarization), depending on the heteregeneous phantom. Regarding the diffuse illumination, relative errors of -39.40%, -11.70%, 10.70%, and 10.60% are obtained for the 6 year-old boy, 11 year-old girl, 26 year-old female, and 34 year-old male, respectively. The proposed formula estimates well (especially for adults) the SARwb induced by diffuse illumination in realistic conditions. In general, the correctness of the formula improves when the human mass increases. Keeping the uncertainties of the FDTD simulations in mind, the proposed formula might be important for the dosimetry community to assess rapidly and accurately the human absorption of electromagnetic radiation caused by diffuse fields in the GHz region. Finally, we show the applicability of the proposed formula to personal dosimetry for epidemiological research.

  16. Chromosome Damage Caused by Accidental Chronic Whole-Body Gamma Radiation Exposure in Thailand

    PubMed Central

    Dolling, J.; Lavoie, J.; Mitchel, R. E. J.; Boreham, D. R.

    2015-01-01

    In February 2000, a radiation incident involving a medical 60Co source occurred in a metal scrapyard in Thailand. Several individuals were suspected to have received chronic or fractionated exposures ranging from a few mGy to a several Gy. Using fluorescence in situ hybridization to paint chromosomes, we determined the frequencies of chromosome aberrations in peripheral blood lymphocytes of 13 people who entered the scrapyard, 3 people who involved in recovering the source, and 9 nearby residents. Aberration frequencies greater than controls were observed in 13 of the donors at 3 months postexposure. The predominant form of aberration observed was simple, complete, symmetrical translocations. An approximate 50% decrease in these aberrations and in total color junctions was observed in 7 donors resampled at 16 months postexposure. Although high, acute exposures are known to have detrimental effects, the biological consequences of chronic, low dose-rate radiation exposures are unclear. Thirteen of the donors had elevated aberration frequencies, and 6 also had symptoms of acute radiation syndrome. If there are any long-term health consequences of this incident, it will most likely occur among this group of individuals. The consequences for the remaining donors, who presumably received lower total doses delivered at lower dose rates, are less clear. PMID:26740811

  17. Whole-body microwave exposure emitted by cellular phones and testicular function of rats.

    PubMed

    Dasdag, S; Ketani, M A; Akdag, Z; Ersay, A R; Sari, I; Demirtas, O C; Celik, M S

    1999-06-01

    This study investigated whether there are adverse effects due to microwave exposure emitted by cellular phones in male rats. Eighteen Wistar Albino rats were separated into three groups, a sham group and two experimental groups. The rats were confined in Plexiglas cages and cellular phones were placed 0.5 cm under the cages. In the first experimental group, cellular phones were in standby position for 2 h. In the second experimental group, phones were turned to the speech position three times each for 1 min duration over 2 h. Rats in the first and second experimental groups were exposed to microwaves emitted by phones for 2 h/day for a duration of 1 month. After the last exposure the rats were killed. Brain, eyes, ears, liver, heart, lungs, stomach, kidneys, testes, small and large intestines and skin of the rats were observed histologically. The decrease of epididymal sperm counts in the speech groups were not found to be significant (P > 0.05). Differences in terms of normal and abnormal sperm forms were not observed (P > 0.05). Histological changes were especially observed in the testes of rats of the speech groups. Seminiferous tubular diameter of rat testes in the standby and speech groups was found to be lower than the sham group (P < 0.05). Rectal temperatures of rats in the speech group were found to be higher than the sham and standby groups (P < 0.05). The rectal temperatures of rats before and after exposure were also found to be significantly higher in the speech group (P < 0.05). Specific absorption rate (SAR) was determined as 0.141 W/kg.

  18. A computer-controlled whole-body inhalation exposure system for the oil dispersant COREXIT EC9500A.

    PubMed

    Goldsmith, William Travis; McKinney, Walter; Jackson, Mark; Law, Brandon; Bledsoe, Toni; Siegel, Paul; Cumpston, Jared; Frazer, David

    2011-01-01

    An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer-controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m(3), mean ± SD).

  19. A COMPUTER-CONTROLLED WHOLE-BODY INHALATION EXPOSURE SYSTEM FOR THE OIL DISPERSANT COREXIT EC9500A

    PubMed Central

    Goldsmith, William Travis; McKinney, Walter; Jackson, Mark; Law, Brandon; Bledsoe, Toni; Siegel, Paul; Cumpston, Jared; Frazer, David

    2015-01-01

    An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer–controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m3, mean ± SD). PMID:21916743

  20. Influence of pregnancy stage and fetus position on the whole-body and local exposure of the fetus to RF-EMF

    NASA Astrophysics Data System (ADS)

    Varsier, N.; Dahdouh, S.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Bloch, I.; Wiart, J.

    2014-09-01

    This paper analyzes the influence of pregnancy stage and fetus position on the whole-body and brain exposure of the fetus to radiofrequency electromagnetic fields. Our analysis is performed using semi-homogeneous pregnant woman models between 8 and 32 weeks of amenorrhea. By analyzing the influence of the pregnancy stage on the environmental whole-body and local exposure of a fetus in vertical position, head down or head up, in the 2100 MHz frequency band, we concluded that both whole-body and average brain exposures of the fetus decrease during the first pregnancy trimester, while they advance during the pregnancy due to the rapid weight gain of the fetus in these first stages. From the beginning of the second trimester, the whole-body and the average brain exposures are quite stable because the weight gains are quasi proportional to the absorbed power increases. The behavior of the fetus whole-body and local exposures during pregnancy for a fetus in the vertical position with the head up were found to be of a similar level, when compared to the position with the head down they were slightly higher, especially in the brain.

  1. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    PubMed

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models.

  2. An Updated Review of Epidemiologic Studies on the Relationship Between Exposure to Whole-Body Vibration and Low Back Pain

    NASA Astrophysics Data System (ADS)

    Bovenzi, M.; Hulshof, C. T. J.

    1998-08-01

    The aim of this paper is to update the information on the epidemiologic evidence of the adverse health effects of whole-body vibration (WBV) on the spinal system by means of a review of the epidemiologic studies published between 1986 and 1996. In a systematic search of epidemiologic studies of low back pain (LBP) disorders and occupations with exposure to WBV, 37 articles were retrieved. The quality of each study was evaluated according to criteria concerning the assessment of vibration exposure, assessment of health effects, and methodology. The epidemiologic studies reaching an adequate score on each of the above mentioned criteria, were included in the final review. A meta-analysis was also conducted in order to combine the results of independent epidemiologic studies. After applying the selection criteria, 16 articles reporting the occurrence of LBP disorders in 19 WBV-exposed occupational groups, reached a sufficient score. The study design was cross-sectional for 13 occupational groups, longitudinal for 5 groups and of case-control type for one group. The main reasons for the exclusion of studies were insufficient quantitative information on WBV exposure and the lack of control groups. The findings of the selected studies and the results of the meta-analysis of both cross-sectional and cohort studies showed that occupational exposure to WBV is associated with an increased risk of LBP, sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. Owing to the cross-sectional design of the majority of the reviewed studies, this epidemiologic evidence is not sufficient to outline a clear exposure-response relationship between WBV exposure and LBP disorders. Upon comparing the epidemiological studies included in this review with those conducted before 1986, it is concluded that research design and the quality of exposure and health effect data in the field of WBV have improved in the last decade.

  3. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  4. The Effect of Three Different (-135°C) Whole Body Cryotherapy Exposure Durations on Elite Rugby League Players

    PubMed Central

    Selfe, James; Alexander, Jill; Costello, Joseph T.; May, Karen; Garratt, Nigel; Atkins, Stephen; Dillon, Stephanie; Hurst, Howard; Davison, Matthew; Przybyla, Daria; Coley, Andrew; Bitcon, Mark; Littler, Greg; Richards, Jim

    2014-01-01

    Background Whole body cryotherapy (WBC) is the therapeutic application of extreme cold air for a short duration. Minimal evidence is available for determining optimal exposure time. Purpose To explore whether the length of WBC exposure induces differential changes in inflammatory markers, tissue oxygenation, skin and core temperature, thermal sensation and comfort. Method This study was a randomised cross over design with participants acting as their own control. Fourteen male professional first team super league rugby players were exposed to 1, 2, and 3 minutes of WBC at −135°C. Testing took place the day after a competitive league fixture, each exposure separated by seven days. Results No significant changes were found in the inflammatory cytokine interleukin six. Significant reductions (p<0.05) in deoxyhaemoglobin for gastrocnemius and vastus lateralis were found. In vastus lateralis significant reductions (p<0.05) in oxyhaemoglobin and tissue oxygenation index (p<0.05) were demonstrated. Significant reductions (p<0.05) in skin temperature were recorded. No significant changes were recorded in core temperature. Significant reductions (p<0.05) in thermal sensation and comfort were recorded. Conclusion Three brief exposures to WBC separated by 1 week are not sufficient to induce physiological changes in IL-6 or core temperature. There are however significant changes in tissue oxyhaemoglobin, deoxyhaemoglobin, tissue oxygenation index, skin temperature and thermal sensation. We conclude that a 2 minute WBC exposure was the optimum exposure length at temperatures of −135°C and could be applied as the basis for future studies. PMID:24489726

  5. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed. PMID:21088545

  6. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed.

  7. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  8. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  9. Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Supanpaiboon, Wisa; Whorton, Elbert

    collected from CBA/CaJ and C57BL/6J mice at different times up to 3 months following an acute whole-body exposure to various doses of 1 GeV/amu 56 Fe ions (0, 0.1, 0.5 and 1.0 cGy) or 137 Cs gamma rays (0, 0.5, 1.0 and 3.0 cGy, as a reference radiation). These strains of mouse are known to be sensitive (CBA/CaJ) or resistant (C57BL/6J) to radiation-induced chromosomal damage and AML. At 2 days after the exposure, our data indicated that there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56 Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in either strain of mouse exposed to either 56 Fe ions or 137 Cs gamma rays. We also found that at the early sacrifice times (2 and 4 days) the 56 Fe ions were slightly more effective, per unit dose, in inducing MN-NCEs than 137 Cs gamma rays in both strains. Likewise, no increase in the frequency of MN-NCEs was found at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCE frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo. Research funded by NASA Grant #NAG9- 1 52 .

  10. Prenatal immunotoxicant exposure and postnatal autoimmune disease.

    PubMed Central

    Holladay, S D

    1999-01-01

    Reports in humans and rodents indicate that immune development may be altered following perinatal exposure to immunotoxic compounds, including chemotherapeutics, corticosteroids, polycyclic hydrocarbons, and polyhalogenated hydrocarbons. Effects from such exposure may be more dramatic or persistent than following exposure during adult life. For example, prenatal exposure to the insecticide chlordane or to the polycyclic aromatic hydrocarbon benzo[(italic)a(/italic)]pyrene produces what appears to be lifelong immunosuppression in mice. Whether prenatal immunotoxicant exposure may predispose the organism to postnatal autoimmune disease remains largely unknown. In this regard, the therapeutic immunosuppressant cyclosporin A (CsA) crosses the placenta poorly. However, lethally irradiated rodents exposed to CsA postsyngeneic bone marrow transplant (i.e., during re-establishment of the immune system) develop T-cell-mediated autoimmune disease, suggesting this drug may produce a fundamental disruption in development of self-tolerance by T cells. The environmental contaminant 2,3,7, 8-tetrachlorodibenzo-(italic)p(/italic)-dioxin (TCDD) crosses the placenta and produces fetal thymic effects (italic)in vivo(/italic) similar to effects of CsA in fetal thymic organ culture, including inhibited thymocyte maturation and reduced expression of thymic major histocompatability complex class II molecules. These observations led to the suggestion that gestational exposure to TCDD may interfere with normal development of self-tolerance. Possibly supporting this hypothesis, when mice predisposed to development of autoimmune disease were treated with TCDD during gestation, postnatal autoimmunity was exacerbated. Similar results have been reported for mice exposed to diethylstilbestrol during development. These reports suggest that prenatal exposure to certain immunotoxicants may play a role in postnatal expression of autoimmunity. PMID:10502532

  11. Assessing combined exposures of whole-body vibration and awkward posture--further results from application of a simultaneous field measurement methodology.

    PubMed

    Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg

    2010-01-01

    The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads.

  12. Assessing combined exposures of whole-body vibration and awkward posture--further results from application of a simultaneous field measurement methodology.

    PubMed

    Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg

    2010-01-01

    The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads. PMID:20953080

  13. Evaluation of exposure to water aerosol or air by nose-only or whole-body inhalation procedures for CD-1 mice in developmental toxicity studies.

    PubMed

    Tyl, R W; Ballantyne, B; Fisher, L C; Fait, D L; Savine, T A; Pritts, I M; Dodd, D E

    1994-08-01

    This study was performed to evaluate the effects of nose-only restraint versus whole-body exposure procedures in the absence of test chemical, and to determine the appropriate control environment (water aerosol or air) for subsequent developmental toxicity studies of test materials administered as aerosols. Timed-pregnant CD-1 mice, 30/group, were exposed to high concentrations of water aerosol or to air by whole-body or nose-only inhalation procedures on Gestational Days (GD) 6 through 15 for 6 hr per day. The group exposed to air by whole-body procedures was designated as the control group. Clinical observations and maternal body weights were recorded throughout gestation. At scheduled necropsy on GD 18, maternal animals were evaluated for body weight, gravid uterine weight, liver weight, number of ovarian corpora lutea, and status of uterine implantation sites. Fetuses were counted, weighed, and sexed and were examined for external, visceral (including craniofacial), and skeletal alterations. Indices of maternal toxicity were affected in both nose-only groups. Maternal body weights were reduced during and after the exposure period; maternal weight gain was reduced during the exposure period. Clinical signs observed, from animals struggling during restraint, were resolved by GD 18. At sacrifice on GD 18, maternal body weights and maternal gestational weight gains (both corrected for gravid uterine weights) and absolute liver weights were reduced in both nose-only groups. Four females died (13.3%, all pregnant) in the air nose-only group, and maternal liver weight (relative to body weight) was reduced in the aerosol nose-only group. Gestational parameters were unaffected by any of the treatments. There were no statistically significant differences in the incidences of any individual malformations or malformations by category (external, visceral, or skeletal) or of total malformations. However, exencephaly, low set ears, cleft palate and ventricular septal defect

  14. Contribution of individual components of a job cycle on overall severity of whole-body vibration exposure: a study in Indian mines.

    PubMed

    Mandal, Bibhuti B; Mansfield, Neil J

    2016-01-01

    Drivers of earth-moving machines are exposed to whole-body vibration (WBV). In mining operations there can be a combination of relatively high magnitudes of vibration and long exposure times. Effective risk mitigation requires understanding of the main aspects of a task that pose a hazard to health. There are very few published studies of WBV exposure from India. This paper reports on a study that considered the contribution of the component phases of dumper operations, on the overall vibration exposure of the drivers. It shows that vibration magnitudes are relatively high, and that haulage tasks are the main contributor to the exposure. It is recommended that driver speed, haul road surfaces and vehicle maintenance/selection are optimized to ensure minimization of vibration. If this is not sufficient, operation times might need to be reduced in order to ensure that the health guidance caution zone from Standard No. ISO 2631-1:1997 is not exceeded.

  15. Accumulation, whole-body depletion, and debromination of decabromodiphenyl ether in male sprague-dawley rats following dietary exposure.

    PubMed

    Huwe, Janice K; Smith, David J

    2007-04-01

    Decabromodiphenyl ether (BDE-209) isthe major component in the flame-retardant formulation DecaBDE which is incorporated into numerous consumer goods ranging from upholsteries to electronics. Because of the high volume of DecaBDE produced, its presence in consumer products and the environment, and the finding of BDE-209 in the blood of exposed workers, the extent of bioavailability, persistence, and potential debromination are important issues. To measure the bioconcentration, distribution, reductive debromination, and whole-body half-lives of BDE-209 after multiple low doses in an animal model, we dosed rats with a commercial DecaBDE (0.3 microg/g of diet) for 21 days and measured tissue polybrominated diphenyl ether levels during a 21 day withdrawal period. BDE-209, three nona-BDEs, and four octa-BDEs accumulated in the rats and distributed proportionately throughout the body. Only 5% of the total BDE-209 dose was present as parent compound in the rats after 21 days of dosing and <4% in the feces, suggesting extensive metabolism. A nona-BDE (BDE-207) and two octa-BDEs (BDEs-201 and -197) appeared to form via meta-debromination(s) of BDE-209 to a minimal extent (1% of the total BDE-209 dose). The wholebody half-lives tended to increase with decreasing bromination; however, two octa-BDEs, presumably forming from debromination, increased in the rats after 21 days of withdrawal and demonstrated the potential for BDE-209 to form more persistent lipophilic compounds in vivo.

  16. Hearing threshold and heart rate in men after repeated exposure to dynamic muscle work, sinusoidal vs stochastic whole body vibration and stable broadband noise.

    PubMed

    Manninen, O

    1984-01-01

    Changes in the temporary hearing threshold ( TTS2 ) and heart rate (HR) were examined in subjects exposed to stable noise, whole body vibration and dynamic muscular work at a dry-bulb temperature of 30 degrees C. The exposure combinations consisted of three categories of dynamic muscular work with varying loads ( 2W , 4W , 8W ), of two categories of noise and of three categories of vibration. The noise categories were: (1) no noise, and (2) stable, broadband (bandwidth 0.2-16.0 kHz) A-weighted noise with an intensity of 90 dB. The vibration categories were: (1) no vibration, (2) sinusoidal whole body vibration (Z-axis) with a frequency of 5 Hz, and (3) stochastic broadband (bandwidth 2.8-11.2 Hz) whole body vibration. A single test consisted of a control period of 30 min, three consecutive exposure periods of 16 min, each followed by a 4-min post-exposure interval and a recovery period of 15 min. The results of the variance analyses indicated that noise had the most notable effect on the TTS2 values at the hearing frequencies of both 4 and 6 kHz. Of the paired combinations, noise plus vibration and noise plus dynamic muscular work caused the most obvious combined effects. The combined effect of all three factors (noise, vibration and work) on the TTS2 values after three consecutive exposure periods was significant at the 2.5% level at the 4 kHz hearing frequency and at the 5% level at the 6 kHz hearing frequency. The added effect of vibration on enhanced TTS2 values was particularly clear when the vibration was stochastic and when the subjects had a low ( 2W ) working efficiency. Increasing the working efficiency, on the other hand, seemed to retard increases in the hearing threshold. Thus TTS2 values seemed to reflect the changes in HR values. It is as if the low rate of cardiovascular activity during light dynamic muscular work had enabled the manifestation of the cardiovascular effects of noise and vibration; during strenuous dynamic muscular work, however, the

  17. Occupational exposure to the whole body, extremities and to the eye lens in interventional radiology in Poland, as based on personnel dosimetry records at IFJ PAN

    NASA Astrophysics Data System (ADS)

    Szumska, Agnieszka; Budzanowski, M.; Kopeć, R.

    2014-11-01

    We report results of measurements of Hp(10) from whole body dosimeters (about 53 thousand readouts), of Hp(0.07) from finger ring dosimeters (23 thousand readouts) and of Hp(3) from eye lens dosimeters (100 readouts), issued in the years 2010-12 to over 150 medical departments in Poland which apply X-rays in radiology, interventional radiology (haemodynamic, angiology, cardiac surgery), urology, orthopaedics, electrophysiology or electro-cardiology. In all measurements thermoluminescence detectors (TLD) were used: the well-known standard MTS-N (LiF:Mg, Ti) for whole body and extremity dosimetry, and the high-sensitivity MCP-N (LiF:Mg, Cu, P) for eye lens dosimetry and environmental monitoring. We analysed the data base of the accredited Laboratory of Individual and Environmental Dosimetry (LADIS) at the Institute of Nuclear Physics PAN which offers its dosimetry service to these departments on a regular basis. We found that in the population of radiation workers that studied over the years 2010-2012 in 84%, 87%, and 34% of Hp(10), Hp(0.07) and Hp(3) measurements, respectively, the level of 0.1 mSv/quarter did not exceed, indicating lack of their occupational exposure. In the remaining 16%, 13% and 66% of individual cases, the 0.1 mSv/quarter exceeded, occasionally reaching several hundreds of mSv/quarter.

  18. Aconitine "challenge" test reveals a single whole-body exposure to diesel exhaust increases cardiac arrhythmia risk in hypertensive rats

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between cardiac electrical dysfunction, arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electri...

  19. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    PubMed Central

    Tiemessen, Ivo JH; Hulshof, Carel TJ; Frings-Dresen, Monique HW

    2007-01-01

    Background Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE) of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure. PMID:18005400

  20. Changes in serum 25-hydroxyvitamin D and cholecalciferol after one whole-body exposure in a commercial tanning bed: a randomized study.

    PubMed

    Langdahl, Jacob H; Schierbeck, Louise Lind; Bang, Ulrich Christian; Jensen, Jens-Erik Beck

    2012-10-01

    We wanted to evaluate the cutaneous synthesis of 25OHD and cholecalciferol after one whole-body exposure to ultraviolet radiation type B (UVB) in a randomized setup. Healthy volunteers were randomized to one whole-body exposure in a commercial tanning bed with UVB emission (UVB/UVA ratio 1.8-2.0%) or an identical placebo tanning bed without UVB. The output in the 280-320 nm range was 450 µW/cm². Blood samples were analyzed for 25OHD and cholecalciferol at baseline and during 7 days after treatment. We included 20 volunteers, 11 to UVB and 9 to placebo treatment. During the first 6 h, no significant differences in 25OHD between the groups were found. At the end of the study, we found a mean increase of 25OHD in the UVB group of 4.5 nmol/l (SD 7 nmol/l) compared to a decline of -1.2 nmol/l (SD 7 nmol/l) in the placebo group (p = 0.1). A linear mixed model yielded an increase of 25OHD in the UVB group of 1.0 nmol/l per 24 h (p < 0.01). For cholecalciferol, we found a near significant increase of 1 pmol/l per hour in the UVB group compared to the placebo group during the first 6 h (p = 0.052). One tanning bed session had significant, but modest impact on the level of 25OHD during 7 days after exposure to UVB.

  1. Multigenerational effects of whole body exposure to 2.14 GHz W-CDMA cellular phone signals on brain function in rats.

    PubMed

    Shirai, Tomoyuki; Imai, Norio; Wang, Jianqing; Takahashi, Satoru; Kawabe, Mayumi; Wake, Kanako; Kawai, Hiroki; Watanabe, So-Ichi; Furukawa, Fumio; Fujiwara, Osamu

    2014-10-01

    The present experimental study was carried out with rats to evaluate the effects of whole body exposure to 2.14 GHz band code division multiple access (W-CDMA) signals for 20 h a day, over three generations. The average specific absorption rate (SAR, in unit of W/kg) for dams was designed at three levels: high (<0.24 W/kg), low (<0.08 W/kg), and 0 (sham exposure). Pregnant mothers (4 rats/group) were exposed from gestational day (GD) 7 to weaning and then their offspring (F1 generation, 4 males and 4 females/dam, respectively) were continuously exposed until 6 weeks of age. The F1 females were mated with F1 males at 11 weeks old, and then starting from GD 7, they were exposed continuously to the electromagnetic field (EMF; one half of the F1 offspring was used for mating, that is, two of each sex per dam and 8 males and 8 females/group, except for all offspring for the functional development tests). This protocol was repeated in the same manner on pregnant F2 females and F3 pups; the latter were killed at 10 weeks of age. No abnormalities were observed in the mother rats (F0 , F1 , and F2 ) and in the offspring (F1 , F2 , and F3 ) in any biological parameters, including neurobehavioral function. Thus, it was concluded that under the experimental conditions applied, multigenerational whole body exposure to 2.14 GHz W-CDMA signals for 20 h/day did not cause any adverse effects on the F1 , F2 , and F3 offspring.

  2. Single whole-body exposure to sarin vapor in rats: Long-term neuronal and behavioral deficits

    SciTech Connect

    Grauer, Ettie Chapman, Shira; Rabinovitz, Ishai; Raveh, Lily; Weissman, Ben-Avi; Kadar, Tamar; Allon, Nahum

    2008-03-01

    Freely moving rats were exposed to sarin vapor (34.2 {+-} 0.8 {mu}g/l) for 10 min. Mortality at 24 h was 35% and toxic sings in the surviving rats ranged from sever (prolonged convulsions) through moderate to almost no overt signs. Some of the surviving rats developed delayed, intermittent convulsions. All rats were evaluated for long-term functional deficits in comparison to air-exposed control rats. Histological analysis revealed typical cell loss at 1 week post inhalation exposure. Neuronal inflammation was demonstrated by a 20-fold increase in prostaglandin (PGE{sub 2}) levels 24 h following exposure that markedly decreased 6 days later. An additional, delayed increase in PGE{sub 2} was detected at 1 month and continued to increase for up to 6 months post exposure. Glial activation following neural damage was demonstrated by an elevated level of peripheral benzodiazepine receptors (PBR) seen in the brain 4 and 6 months after exposure. At the same time muscarinic receptors were unaffected. Six weeks, four and six months post exposure behavioral evaluations were performed. In the open field, sarin-exposed rats showed a significant increase in overall activity with no habituation over days. In a working memory paradigm in the water maze, these same rats showed impaired working and reference memory processes with no recovery. Our data suggest long lasting impairment of brain functions in surviving rats following a single sarin exposure. Animals that seem to fully recover from the exposure, and even animals that initially show no toxicity signs, developed some adverse neural changes with time.

  3. Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and loader operators

    PubMed Central

    Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean

    2015-01-01

    To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493

  4. Hardwood smoke alters murine splenic T cell responses to mitogens following a 6-month whole body inhalation exposure

    SciTech Connect

    Burchiel, Scott W. . E-mail: Sburchiel@salud.unm.edu; Lauer, Fredine T.; Dunaway, Sandy L.; Zawadzki, Jerome; McDonald, Jacob D.; Reed, Matthew D.

    2005-02-01

    The purpose of these studies was to assess the effects of hardwood smoke (HWS) inhalation (30-1000 {mu}g/m{sup 3}) on the systemic immune responses of A/J mice evaluated after 6 months of daily exposures. Spleen cells obtained from mice were assessed for changes in cell number, cell surface marker expression [B, T, macrophage, and natural killer (NK) cells], and responses to B cell (LPS, endotoxin) and T cell (Con A) mitogens. Results showed that HWS smoke increased T cell proliferation in the 100 {mu}g/m{sup 3} exposure group and produced a concentration-dependent suppression of T cell proliferation at concentrations >300 {mu}g/m{sup 3}. There were no effects on B cell proliferation or in spleen cell surface marker expression. Analyses of the exposure atmospheres revealed the presence of significant levels of naphthalene and methylated napthalenes, fluorene, phenanthrene, and anthracene in the exposure chambers, as well as low concentrations of several metals (K, Ca, and Fe). Our results demonstrate that environmentally relevant concentrations of HWS may be immunosuppressive to the immune system of mice exposed during a 6-month period.

  5. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  6. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  7. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  8. Early Adolescence: Whole Body Learning.

    ERIC Educational Resources Information Center

    Cannon, Roger K., Jr.; Padilla, Michael J.

    1982-01-01

    "Whole body" denotes using the entire body to sense and experience a concept or idea. Typical whole body learning activities involve use of several senses: muscle sense, temperature, pain, pressure, and sense of equilibrium. Four whole body science activities are described, including identifying trees by touch. (Author/JN)

  9. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  10. Cardiovascular changes and hearing threshold shifts in men under complex exposures to noise, whole body vibrations, temperatures and competition-type psychic load.

    PubMed

    Manninen, O

    1985-01-01

    This study deals with changes in the temporary hearing threshold (TTS2), heart rate (HR), R-wave amplitude (RWA), diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP) and reaction time (RT) in subjects (n = 108) who, while working on a choice reaction apparatus, were exposed in an exposure chamber to combinations of noise and vibration at dry bulb temperatures of 20 degrees and 30 degrees C. The study was carried out as a type 2-3-3 factorial experiment, the number of the exposure combinations thus being 18. To find out the effects of competition-type psychic stress, some of the subjects were placed in a competitive group and some in a non-competitive group. The members of the competitive group were given financial encouragement and information on their progress during the test, whereas those in the non-competitive group worked at the rate they considered best without any monetary rewards or interim information. The noise classes were: no noise, a stable broadband (bandwidth 0.2-16.0 kHz) A-weighted noise of 90 dB not related to competition, and a stable broadband A-weighted noise of 90 dB related to competition about the fastest reaction time. The vibration classes were: no vibration, sinusoidal whole body vibration (Z-axis) at a frequency of 5 Hz, and stochastic broadband (bandwidth 2.8-11.2 Hz) whole body vibration (Z-axis). The acceleration (rms) of both vibrations was 2.12 m/s2. One experiment consisted of a control period of 30 min, three consecutive exposure periods of 16 min with an interval of 4 min, and a 15-min recovery period. The variance analysis model best explained the variation in TTS2 values at 4 kHz and second best the variation in TTS2 values at 6 kHz; it explained the variation in HR values third best, the variation in SBP values fourth best and the variation in PP values fifth best. On the other hand, the model explained least well the variation in DBP and RWA values. In general, the explanatory power of the model

  11. Whole-body aerosol exposure of cadmium chloride (CdCl2) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice.

    PubMed

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie; Pan, Bishu; Huang, Changjiang; Dong, Qiaoxiang

    2016-11-15

    Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8μg/m(3)), TBBPA (16μg/m(3)) and Cd/TBBPA mixture for 8h/day and 6days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver.

  12. Whole-body aerosol exposure of cadmium chloride (CdCl2) and tetrabromobisphenol A (TBBPA) induced hepatic changes in CD-1 male mice.

    PubMed

    Chen, Yuanhong; Hu, Yabing; Liu, Shuyun; Zheng, Huiying; Wu, Xiaojuan; Huang, Zhengyu; Li, Hao; Peng, Baoqi; Long, Jinlie; Pan, Bishu; Huang, Changjiang; Dong, Qiaoxiang

    2016-11-15

    Cadmium (Cd) and tetrabromobisphenol A (TBBPA) are two prevalent contaminants in e-waste recycling facilities. However, the potential adversely health effect of co-exposure to these two types of pollutants in an occupational setting is unknown. In this study, we investigated co-exposure of these two pollutants on hepatic toxicity in CD-1 male mice through a whole-body aerosol inhalation route. Specifically, mice were exposed to solvent control (5% DMSO), Cd (8μg/m(3)), TBBPA (16μg/m(3)) and Cd/TBBPA mixture for 8h/day and 6days a week for 60 days. Hepatic changes include increased organ weight, focal necrosis, and elevated levels of liver enzymes in serum. These changes were most severe in mice exposed to TBBPA, followed by Cd/TBBPA mixture and Cd. These chemicals also led to suppressed antioxidant defensive mechanisms and increased oxidative stress. Further, these chemicals induced gene expression of apoptosis-related genes, activated genes encoding for phase I detoxification enzymes and inhibited genes encoding for phase II detoxification enzymes. These findings indicate that the hepatic damages induced by subchronic aerosol exposure of Cd and TBBPA may result from the oxidative damages caused by excessive ROS production when these chemicals were metabolized in the liver. PMID:27415598

  13. Influence of forest machine function on operator exposure to whole-body vibration in a cut-to-length timber harvester.

    PubMed

    Sherwin, L M; Owende, P M O; Kanali, C L; Lyons, J; Ward, S M

    2004-09-15

    The influence of machine function (tree felling and processing, and machine movement over the terrain) on operator exposure to whole-body vibration in a cut-to-length (CTL) timber harvester was evaluated. Vibrations were measured on the seat and the cabin chassis in three orthogonal (x, y, z) axes for the tree felling and processing, and during motion on a test track. It was found that the level of vibration transmitted to the operator during felling and processing was mainly affected by the tree size (diameter). For tree diameter at breast height (dbh) range of 0.25-0.35 m that was investigated, the vertical (z-axis) vibration component during processing increased by up to 300%, and increased by 50% during felling. However, the associated vibration levels were not sufficient to pose any serious health risks to the operator for an exposure limit of 8 h. Vibration at the operator seat and cabin chassis was predominant in the lateral (y-axis) and vertical (z-axis) respectively, during vehicle motion over the standard test track. Vibration peaks of approximately 0.20 and 0.17 ms(-2) occurred at 5 and 3.2 Hz respectively. PMID:15370853

  14. Whole-body new-born and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz

    NASA Astrophysics Data System (ADS)

    Wu, Tongning; Hadjem, Abdelhamid; Wong, Man-Fai; Gati, Azzedine; Picon, Odile; Wiart, Joe

    2010-03-01

    This paper presents the whole-body specific absorption rate (WBSAR) assessment of embryos and new-born rats' exposure in a reverberating chamber (RC) operating at 2.4 GHz (WiFi). The finite difference in time domain (FDTD) method often used in bio-electromagnetism is facing very slow convergence. A new simulation-measurement hybrid approach has been proposed to characterize the incident power related to the RC and the WBSAR in rats, which are linked by the mean squared electric field strength in the working volume. Peak localized SAR in the rat under exposure is not included in the content of the study. Detailed parameters of this approach are determined by simulations. Evolutions for the physical and physiological parameters of the small rats at different ages are discussed. Simulations have been made to analyse all the variability factors contributing to the global results. WBSAR information and the variability for rats at different ages are also discussed in the paper.

  15. Whole-body new-born and young rats' exposure assessment in a reverberating chamber operating at 2.4 GHz.

    PubMed

    Wu, Tongning; Hadjem, Abdelhamid; Wong, Man-Fai; Gati, Azzedine; Picon, Odile; Wiart, Joe

    2010-03-21

    This paper presents the whole-body specific absorption rate (WBSAR) assessment of embryos and new-born rats' exposure in a reverberating chamber (RC) operating at 2.4 GHz (WiFi). The finite difference in time domain (FDTD) method often used in bio-electromagnetism is facing very slow convergence. A new simulation-measurement hybrid approach has been proposed to characterize the incident power related to the RC and the WBSAR in rats, which are linked by the mean squared electric field strength in the working volume. Peak localized SAR in the rat under exposure is not included in the content of the study. Detailed parameters of this approach are determined by simulations. Evolutions for the physical and physiological parameters of the small rats at different ages are discussed. Simulations have been made to analyse all the variability factors contributing to the global results. WBSAR information and the variability for rats at different ages are also discussed in the paper. PMID:20182003

  16. Modelling the effects of exposure to whole-body vibration on low-back pain and its long-term consequences for sickness absence and associated work disability

    NASA Astrophysics Data System (ADS)

    Burdorf, A.; Hulshof, C. T. J.

    2006-12-01

    BackgroundExposure to whole-body vibration (WBV) is a well-known risk factor for the occurrence of low-back pain (LBP). Little is known about the long-term course of back pain in workers exposed to WBV and the consequences for (temporary) disability, due to lack of cohort studies with sufficiently long follow-up periods. MethodsA systematic review of the literature was performed to assess associations between exposure to WBV and LBP, sickness absence due to low-back disorders and permanent disability. A meta-analysis was used to estimate the prevalences of LBP and sickness absence due to low-back disorders in occupational populations, depending on relevant exposure characteristics. These prevalences were converted into probabilities for transitions between no complaints, LBP, sickness due to LBP, and disability. A Markov model was applied to evaluate a hypothetical cohort of workers without LBP at the start of the cohort and a follow-up of 40 years (40 cycles of 1 year) to reflect a long-life career with continuous exposure to WBV. ResultsIn this hypothetical cohort it was estimated that among workers with the highest exposure to WBV on average about 47 weeks of their working life were lost due to sick leave because of LBP, which is approximately 2.5% of their working life. When all workers on prolonged sick leave for 52 weeks would remain disabled for the rest of their working life, a maximum of 23.4% of their working life could be lost due to high WBV exposure. Among workers without or low exposure to WBV the corresponding losses were 0.8% and 7.8%, respectively. ConclusionThe approach to assess years of work lost due to an occupational exposure may provide a more adequate description for stakeholders than the traditional measures of relative risk or attributable risk fraction. The concept of work years lost may also facilitate a better appreciation of the potential benefits of preventive measures.

  17. Effect of whole-body mild-cold exposure on arterial stiffness and central haemodynamics: a randomised, cross-over trial in healthy men and women.

    PubMed

    King, Sibella G; Ahuja, Kiran D K; Wass, Jezreel; Shing, Cecilia M; Adams, Murray J; Davies, Justin E; Sharman, James E; Williams, Andrew D

    2013-05-01

    Aortic pulse wave velocity (PWV) and augmentation index (AIx) are independent predictors of cardiovascular risk and mortality, but little is known about the effect of air temperature changes on these variables. Our study investigated the effect of exposure to whole-body mild-cold on measures of arterial stiffness (aortic and brachial PWV), and on central haemodynamics [including augmented pressure (AP), AIx], and aortic reservoir components [including reservoir and excess pressures (P ex)]. Sixteen healthy volunteers (10 men, age 43 ± 19 years; mean ± SD) were randomised to be studied under conditions of 12 °C (mild-cold) and 21 °C (control) on separate days. Supine resting measures were taken at baseline (ambient temperature) and after 10, 30, and 60 min exposure to each experimental condition in a climate chamber. There was no significant change in brachial blood pressure between mild-cold and control conditions. However, compared to control, AP [+2 mmHg, 95 % confidence interval (CI) 0.36-4.36; p = 0.01] and AIx (+6 %, 95 % CI 1.24-10.1; p = 0.02) increased, and time to maximum P ex (a component of reservoir function related to timing of peak aortic in-flow) decreased (-7 ms, 95 % CI -15.4 to 2.03; p = 0.01) compared to control. Yet there was no significant change in aortic PWV (+0.04 m/s, 95 % CI -0.47 to 0.55; p = 0.87) or brachial PWV (+0.36 m/s; -0.41 to 1.12; p = 0.35) between conditions. We conclude that mild-cold exposure increases central haemodynamic stress and alters timing of peak aortic in-flow without differentially affecting arterial stiffness.

  18. Assessment of internal exposure doses in Fukushima by a whole body counter within one month after the nuclear power plant accident.

    PubMed

    Matsuda, Naoki; Kumagai, Atsushi; Ohtsuru, Akira; Morita, Naoko; Miura, Miwa; Yoshida, Masahiro; Kudo, Takashi; Takamura, Noboru; Yamashita, Shunichi

    2013-06-01

    Information on early internal radiation doses in Fukushima after the nuclear power plant accident on March 11, 2011, is quite limited due to initial organizational difficulties, high background radiation and contamination of radiation measuring devices. In Nagasaki, approximately 1,200 km away from Fukushima, the internal radioactivity in evacuees and short-term visitors to Fukushima has been measured by a whole body counter (WBC) since March 15, 2011. A horizontal bed-type scanning WBC equipped with two NaI(Tl) scintillation detectors was used for 173 people who stayed in the Fukushima prefecture between March 11 and April 10, 2011. The average length of stay was 4.8 days. The internal radioactivity was converted to an estimated amount of intake according to the scenario of acute inhalation, and then the committed effective dose and the thyroid dose were evaluated. (131)I, (134)Cs and (137)Cs were detected in more than 30% of examined individuals. In subjects who stayed in Fukushima from March 12 to March 18, the detection rate was approximately 50% higher for each radionuclide and 44% higher for all three nuclides. The maximum committed effective dose and thyroid equivalent dose were 1 mSv and 20 mSv, respectively. Although the number of subjects and settlements in the study are limited, the results suggest that the internal radiation exposure in Fukushima due to the intake of radioactive materials shortly after the accident will probably not result in any deterministic or stochastic health effects.

  19. Mathematical equations and system identification models for a portable pneumatic bladder system designed to reduce human exposure to whole body shock and vibration

    NASA Astrophysics Data System (ADS)

    Aziz Ayyad, Ezzat

    A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose is to be able to predict the response of such system due to random vibrations and shock within reasonable margin of error. The constructed models were found to be accurate within accepted confidence level. Beside the analytic set of physical equations model representation, a linear SID model was selected to take advantage of the available vast amount of mathematical tools available to further analyze and redesign the bladder as a dynamic system. Measured field-test and lab test data have been collected from several helicopter and land terrain vehicle experiments. Numerous excitation and response acceleration measurement records were collected and used to prove the agreement with predictions. The estimation of two selected models were later applied to standard metrics in the frequency domain realization and compared with measurement responses. The collected test records are obtained from measured data at the US Army fields and facilities and at UNLV-CMEST environmental lab. The emerged models have been validated for conformity with actual accelerometer measurement responses and found within accepted error tolerance that is in both time and frequency domains. Further, standard metrics have been used to further confirm the confidence in the validation results. When comparing model prediction with

  20. Neurotoxicity from prenatal and postnatal exposure to methylmercury

    PubMed Central

    Grandjean, Philippe; Weihe, Pal; Debes, Frodi; Choi, Anna L.; Budtz-Jørgensen, Esben

    2014-01-01

    The extent to which postnatal methylmercury exposure contributes to neurobehavioral delays is uncertain. Confounding may occur because the child's dietary exposure likely correlates with the mother's. This conundrum was examined in the Faroese birth cohort 1 born in 1986–1987. Exposure parameters included mercury concentrations in maternal hair at parturition, cord blood, and child blood and hair at the age-7 clinical examination (N = 923). In regression analyses, the child's current blood-mercury at age 7 (N = 694) showed only weak associations with the neuropsychological test variables, but visuospatial memory revealed a significant negative association. Mutual adjustment caused decreases of the apparent effect of the prenatal exposure. However, such adjustment may lead to underestimations due to the presence of correlated, error-prone exposure variables. In structural equation models, all methylmercury exposure parameters were instead entered into a latent exposure variable that reflected the total methylmercury load. This latent exposure showed significant associations with neurodevelopmental deficits, with prenatal exposure providing the main information. However, postnatal methylmercury exposure appeared to contribute to neurotoxic effects, in particular in regard to visuospatial processing and memory. Thus, addition in the regression analysis of exposure information obtained at a different point in time was not informative and should be avoided. Further studies with better information on exposure profiles are needed to characterize the effects of postnatal methylmercury exposure. PMID:24681285

  1. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    PubMed Central

    Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen

    2015-01-01

    Background This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s2)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = −0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = –1.135, SE = 0.235). Conclusion Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system. PMID:26929838

  2. The ORNL whole body counter

    SciTech Connect

    Not Available

    1988-01-01

    This report is a non-technical document intended to provide an individual about to undergo a whole-body radiation count with a general understanding of the counting procedure and with the results obtained. 9 figs. (TEM)

  3. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs.

  4. Prenatal nicotine exposure alters postnatal cardiorespiratory integration in young male but not female rats

    PubMed Central

    Boychuk, Carie R.; Hayward, Linda F.

    2011-01-01

    The present study tested the hypothesis that prenatal nicotine exposure (PNE) induces sex specific alternations in indices of cardiorespiratory coupling during early development. Rat pups exposed to either nicotine (6mg/kg/day) or saline (control) in utero were chronically instrumented with ECG electrodes for measurement of heart rate (HR) and respiratory frequency (RF) was monitored by whole body plethysmography on postnatal days (P)13, P16 and P26. PNE had no identifiable effect on resting respiratory frequency (RF) in either sex. There was however a strong trend (p=0.057) for resting HR to be elevated by PNE in male offspring only. Alternatively, the HR response to hypoxia (10% O2), was significantly blunted at P13 but significantly elevated at P26 s in the absence of any significant change in RF in PNE males only. Indicators of respiratory sinus arrhythmia (RSA) were also significantly reduced in P26 PNE males. No significant effects of PNE on HR, RF or RSA were identified in female offspring at any age. Our results demonstrate that PNE induces very specific changes in cardiorespiratory integration at select postnatal ages and these changes are more prominent in males. Additionally, alternations in cardiorespiratory integration appear to persist into later development in males only, potentially increasing the risk for cardiovascular diseases such as hypertension later in life. PMID:21945005

  5. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  6. Prenatal and postnatal cocaine exposure predict teen cocaine use.

    PubMed

    Delaney-Black, Virginia; Chiodo, Lisa M; Hannigan, John H; Greenwald, Mark K; Janisse, James; Patterson, Grace; Huestis, Marilyn A; Partridge, Robert T; Ager, Joel; Sokol, Robert J

    2011-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n=316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use.

  7. Prenatal and postnatal cocaine exposure predict teen cocaine use

    PubMed Central

    Delaney-Black, Virginia; Chiodo, Lisa M.; Hannigan, John H.; Greenwald, Mark K.; Janisse, James; Patterson, Grace; Huestis, Marilyn A.; Partridge, Robert T.; Ager, Joel; Sokol, Robert J.

    2015-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n = 316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. PMID:20609384

  8. Prenatal Alcohol Exposure Increases Postnatal Acceptability of Nicotine Odor and Taste in Adolescent Rats

    PubMed Central

    Mantella, Nicole M.; Youngentob, Steven L.

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our

  9. Estimating whole-body fish PCB concentrations from fillet data

    SciTech Connect

    Rigg, D.; Hohreiter, D.; Strause, K.; Brown, M.; Barnes, C.

    1995-12-31

    A study was designed to assess a potentially cost-effective method for generating both types of data from single fish specimens. The method is based on the testable hypothesis that whole-body PCE concentrations are predictable from fillet PCB concentrations and fillet and whole-body lipid concentrations. The study involved the collection of small-mouth bass (Micropterus dolomieui) and carp (Cyprinus carpio) from several locations in the Kalamazoo River (Michigan) watershed to represent a range in PCB exposure. PCB and lipid concentrations were determined in aliquots of homogenized fillets and remaining carcasses. Wet-weight total PCB concentrations in carp ranged from 0.06 to 17 mg/kg in fillets, and from 0.11 to 14 mg/kg for remaining carcass; small-mouth bass ranged from 0.08 to 5.8 mg/kg in fillets, and from 0.21 to 13.2 mg/kg for remaining carcass. Whole-body PCB concentrations predicted using fillet PCB concentrations and fillet and carcass lipid concentrations accounted for 94% and 88% of the variability in measured whole-body small-mouth and whole-body carp concentrations, respectively. Predicted and measured whole-body PCB concentrations had a correlation of 91% for small-mouth bass, and 84% for carp. These results demonstrate that value of the lipid-based model in predicting whole-body PCB concentrations from measured fillet PCB concentrations and lipid concentrations in fillet and remaining carcass.

  10. Impact of Early Postnatal Androgen Exposure on Voice Development

    PubMed Central

    Grisa, Leila; Leonel, Maria L.; Gonçalves, Maria I. R.; Pletsch, Francisco; Sade, Elis R.; Custódio, Gislaine; Zagonel, Ivete P. S.; Longui, Carlos A.; Figueiredo, Bonald C.

    2012-01-01

    Background The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood. Methods The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels. Results Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz. Conclusions Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors. PMID:23284635

  11. Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD).

    PubMed

    Banaceur, Sana; Banasr, Sihem; Sakly, Mohsen; Abdelmelek, Hafedh

    2013-03-01

    The present investigation aimed at evaluating the effects of long-term exposure to WIFI type radiofrequency (RF) signals (2.40 GHz), two hours per day during one month at a Specific Absorption Rate (SAR) of 1.60 W/kg. The effects of RF exposure were studied on wildtype mice and triple transgenic mice (3xTg-AD) destined to develop Alzheimer's-like cognitive impairment. Mice were divided into four groups: two sham groups (WT, TG; n=7) and two exposed groups (WTS, TGS; n=7). The cognitive interference task used in this study was designed from an analogous human cognitive interference task including the Flex field activity system test, the two-compartment box test and the Barnes maze test. Our data demonstrate for the first time that RF improves cognitive behavior of 3xTg-AD mice. We conclude that RF exposure may represent an effective memory-enhancing approach in Alzheimer's disease.

  12. [The dose-response of unstable chromosome exchanges in lymphocytes of cancer patients undergone whole-body fractionated gamma-rays exposure at the total dose 1.15 Gy].

    PubMed

    Semenov, A V; Vorobtsova, I E; Zharinov, G M

    2010-01-01

    The dose-response of unstable chromosome exchanges (UCE) in lymphocytes of 4 cancer patients undergone whole-body fractionated gamma-rays exposure (at the daily dose of 0.115 Gy up to the total dose 1.15 Gy) was compared with corresponding dose-response for lymphocytes of the same patients, irradiated in vitro at the same dose range. In vivo irradiation yielded lower frequency of UCE on the dose unit than in vitro irradiation. It was shown that the in vivo dose-response curve gives more adequate dose estimation than in vitro one. This curve could be used for reconstruction of absorbed dose in the cases of analogous character of in-controlled irradiation of people.

  13. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat

    PubMed Central

    Torres-Duran, Patricia V; Ferreira-Hermosillo, Aldo; Juarez-Oropeza, Marco A; Elias-Viñas, David; Verdugo-Diaz, Leticia

    2007-01-01

    Backgound The effects of extremely low-frequency electromagnetic fields (ELF-EMF) on the blood serum and liver lipid concentrations of male Wistar rats were assessed. Methods Animals were exposed to a single stimulation (2 h) of ELF-EMF (60 Hz, 2.4 mT) or sham-stimulated and thereafter sacrificed at different times (24, 48 or 96 h after beginning the exposure). Results Blood lipids showed, at 48 h stimulated animals, a significant increase of cholesterol associated to high density lipoproteins (HDL-C) than those observed at any other studied time. Free fatty acid serum presented at 24 h significant increases in comparison with control group. The other serum lipids, triacylglycerols and total cholesterol did not show differences between groups, at any time evaluated. No statistical differences were shown on total lipids of the liver but total cholesterol was elevated at 24 h with a significant decrease at 96 h (p = 0.026). The ELF-EMF stimulation increased the liver content of lipoperoxides at 24 h. Conclusion Single exposures to ELF-EMF increases the serum values of HDL-C, the liver content of lipoperoxides and decreases total cholesterol of the liver. The mechanisms for the effects of ELF-EMF on lipid metabolism are not well understand yet, but could be associated to the nitric oxide synthase EMF-stimulation. PMID:18021407

  14. Whole-body imaging modalities in oncology.

    PubMed

    Carty, Fiona; Shortt, Conor P; Shelly, Martin J; Eustace, Stephen J; O'Connell, Martin J

    2010-03-01

    This article outlines the expanding approaches to whole-body imaging in oncology focusing on whole-body MRI and comparing it to emerging applications of whole-body CT, scintigraphy, and above all PET CT imaging. Whole-body MRI is widely available, non-ionizing and rapidly acquired, and inexpensive relative to PET CT. While it has many advantages, WBMRI is non-specific and, when compared to PET CT, is less sensitive. This article expands each of these issues comparing individual modalities as they refer to specific cancers.

  15. Short-term effects of whole-body exposure to (56)fe ions in combination with musculoskeletal disuse on bone cells.

    PubMed

    Yumoto, Kenji; Globus, Ruth K; Mojarrab, Rose; Arakaki, Joy; Wang, Angela; Searby, Nancy D; Almeida, Eduardo A C; Limoli, Charles L

    2010-04-01

    Space travel and prolonged bed rest cause bone loss due to musculoskeletal disuse. In space, radiation fields may also have detrimental consequences because charged particles traversing the tissues of the body can elicit a wide range of cytotoxic and genotoxic lesions. The effects of heavy-ion radiation exposure in combination with musculoskeletal disuse on bone cells and tissue are not known. To explore this, normally loaded 16-week-old male C57BL/6 mice were exposed to (56)Fe ions (1 GeV/nucleon) at doses of 0 cGy (sham), 10 cGy, 50 cGy or 2 Gy 3 days before tissue harvest. Additional mice were hindlimb unloaded by tail traction continuously for 1 week to simulate weightlessness and exposed to (56)Fe-ion radiation (0 cGy, 50 cGy, 2 Gy) 3 days before tissue harvest. Despite the short duration of this study, low-dose (10, 50 cGy) irradiation of normally loaded mice reduced trabecular volume fraction (BV/TV) in the proximal tibiae by 18% relative to sham-irradiated controls. Hindlimb unloading together with 50 cGy radiation caused a 126% increase in the number of TRAP(+) osteoclasts on cancellous bone surfaces relative to normally loaded, sham-irradiated controls. Together, radiation and hindlimb unloading had a greater effect on suppressing osteoblastogenesis ex vivo than either treatment alone. In sum, low-dose exposure to heavy ions (50 cGy) caused rapid cancellous bone loss in normally loaded mice and increased osteoclast numbers in hindlimb unloaded mice. In vitro irradiation also was more detrimental to osteoblastogenesis in bone marrow cells that were recovered from hindlimb unloaded mice compared to cells from normally loaded mice. Furthermore, irradiation in vitro stimulated osteoclast formation in a macrophage cell line (RAW264.7) in the presence of RANKL (25 ng/ml), showing that heavy-ion radiation can stimulate osteoclast differentiation even in the absence of osteoblasts. Thus heavy-ion radiation can acutely increase osteoclast numbers in cancellous

  16. Postnatal arsenic exposure and attention impairment in school children.

    PubMed

    Rodríguez-Barranco, Miguel; Gil, Fernando; Hernández, Antonio F; Alguacil, Juan; Lorca, Andres; Mendoza, Ramón; Gómez, Inmaculada; Molina-Villalba, Isabel; González-Alzaga, Beatriz; Aguilar-Garduño, Clemente; Rohlman, Diane S; Lacasaña, Marina

    2016-01-01

    additional evidence that postnatal arsenic exposure impairs neurological function in children.

  17. Kappa Delta Award. Low back pain and whole body vibration.

    PubMed

    Pope, M H; Magnusson, M; Wilder, D G

    1998-09-01

    The investigators describe their multifaceted approach to the study of the relationship between whole body vibration and low back pain. The epidemiologic study was a two center study of drivers and sedentary workers in the United States and Sweden. The vibration exposure was measured in the vehicles. It was found that the career vibration exposure was related to low back, neck, and shoulder pain. However, disability was related to job satisfaction. In vivo experiments, using percutaneous pin mounted accelerometers have shown that the natural frequency is at 4.5 Hz. The frequency response is affected by posture, seating, and seat back inclination. The response appears to be determined largely by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration, should be reduced for those recovering from these problems. Vibration attenuating seats and correct ergonomic layout of the cabs may reduce the risks of recurrence. PMID:9755785

  18. The effects of prenatal and postnatal (via nursing) exposure to alcohol in rats

    SciTech Connect

    Nekvasil, N.; Baggio, C. )

    1992-02-26

    Pregnant and post-partum rats were given daily doses of 20% alcohol during days 13-21 gestation and postnatal days 3-12, respectively. Following exposure, all rat pups, were tested for balance, blood pressure, right and left cerebral hemisphere weights, and cerebellar weight. Results were grouped according to exposure and gender. The postnatal group was the only one to demonstrate difficulties with balance. The mean arterial pressure in males exposed postnatally was significantly lower than the control and prenatal males. Females exposed postnatally had a significantly higher blood pressure than control females. Within the postnatal group, males had a significantly lower blood pressure than the females. Prenatal and control females differed significantly for left cerebral hemisphere (LCH) weight with the prenatal weighing less. Male pups exposed prenatally had significantly heavier LCH than the postnatal and control males. For both males and females, postnatal LCH weights did not differ from those of the control pups. Within the prenatal group, the LCH weight in females was significantly lower than in males. Mean cerebellar weights were significantly lower in postnatal animals compared to control animals. A major finding of this study is that the effect of alcohol exposure on rat pups depends on gender and developmental age.

  19. Postnatal exposure to predator odor (TMT) enhances spatial learning in mice adulthood.

    PubMed

    Hacquemand, R; Jacquot, L; Brand, G

    2012-04-01

    Adult behavioral and physiological responses are partly dependent on neonatal experiences. In several animal species, enriched/aprovished environments and stressful/appeasing events are crucial in the setting of adaptative behaviors. However, little is known about the effects of postnatal exposure to predator odor (as unconditioned fear-related stimulus) on spatial learning at adulthood. Thus, the aim of the present study was to investigate the effects of a postnatal exposure to 2,4,5-trimethylthiazoline (TMT, as a predator odor) on radial arm maze (RAM), Tolman maze (TM) and Morris water maze (MWM) in mice at adulthood. The results showed that a TMT group constituted by mice exposed postnatally during 3 weeks to TMT presented significantly better spatial learning achievements in adulthood compared to a water group, postnatally exposed to water only, as well as compared to a butanol group (butanol used as an odor without ecological significance) exposed postnatally to butanol during 3 weeks. PMID:22245526

  20. Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) following whole-body exposure.

    PubMed

    Emmen, H H; Hoogendijk, E M; Klöpping-Ketelaars, W A; Muijser, H; Duistermaat, E; Ravensberg, J C; Alexander, D J; Borkhataria, D; Rusch, G M; Schmit, B

    2000-08-01

    HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) are used to replace chlorofluorocarbons (CFCs) in refrigerant and aerosol applications, including medical use in metered-dose inhalers. Production and consumption of CFCs are being phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer. The safety and pharmacokinetics of HFC 134a and HFC 227 were assessed in two separate double-blind studies. Each HFC (hydrofluorocarbon) was administered via whole-body exposure as a vapor to eight (four male and four female) healthy volunteers. Volunteers were exposed, once weekly for 1 h, first to air and then to ascending concentrations of HFC (1000, 2000, 4000, and 8000 parts per million (ppm)), interspersed with a second air exposure and two CFC 12 (dichlorodifluoromethane) exposures (1000 and 4000 ppm). Comparison of either HFC 134a or HFC 227 to CFC 12 or air gave no clinically significant results for any of the measured laboratory parameters. There were no notable adverse events, there was no evidence of effects on the central nervous system, and there were no symptoms of upper respiratory tract irritation. HFC 134a, HFC 227, and CFC 12 blood concentrations increased rapidly and in an exposure-concentration-dependent manner, although not strictly proportionally, and approached steady state. Maximum blood concentrations (C(max)) tended to be higher in males than females; in the HFC 227 study, these were statistically significantly (P < 0. 05) higher in males for each HFC 227 and CFC 12 exposure level. In the HFC 134a study, the gender difference in C(max) was only statistically significant (P < 0.05) for CFC 12 at 4000 ppm and HFC 134a at 8000 ppm. Following the end of exposure, blood concentrations declined rapidly, predominantly biphasically and independent of exposure concentration. For the HFC 134a study, the t(1/2)alpha (alpha elimination half-life) was short for both CFC 12 and HFC 134a (<11 min). The t(1

  1. European whole body counter measurement intercomparison.

    PubMed

    Thieme, M; Hunt, E L; König, K; Schmitt-Hannig, A; Gödde, R

    1998-04-01

    In order to test the common quality standards for the performance of measurements of internal radioactivity, the European Commission funded a European intercomparison of whole body counters, which was organized and carried out by the Institut fuer Strahlenhygiene (part of the German Bundesamt fuer Strahlenschutz). Forty-four whole body counting facilities from forty-two institutions in nineteen countries (the fifteen member states of the European Union plus Hungary, the Czech Republic, Switzerland and Norway) took part in this intercomparison, which made it the most comprehensive ever carried out in Europe. For the study, the 70 kg tissue equivalent St Petersburg phantom was used with rods containing 40K, 57Co, 60Co, and 137Cs. The overall results of the whole body counter study were rather good.

  2. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  3. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  4. An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10 MHz to 2 GHz

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Togashi, Toshihiro; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Watanabe, Soichi

    2007-11-01

    The numerical dosimetry of pregnant women is an important issue in electromagnetic-field safety. However, an anatomically realistic whole-body pregnant-woman model for electromagnetic dosimetry has not been developed. Therefore, we have developed a high-resolution whole-body model of pregnant women. A new fetus model including inherent tissues of pregnant women was constructed on the basis of abdominal magnetic resonance imaging data of a 26-week-pregnant woman. The whole-body pregnant-woman model was developed by combining the fetus model and a nonpregnant-woman model that was developed previously. The developed model consists of about 7 million cubical voxels of 2 mm size and is segmented into 56 tissues and organs. This pregnant-woman model is the first completely anatomically realistic voxel model that includes a realistic fetus model and enables a numerical simulation of electromagnetic dosimetry up to the gigahertz band. In this paper, we also present the basic specific absorption rate characteristics of the pregnant-woman model exposed to vertically and horizontally polarized electromagnetic waves from 10 MHz to 2 GHz.

  5. The Long-Term Economic Impact of in Utero and Postnatal Exposure to Malaria

    ERIC Educational Resources Information Center

    Barreca, Alan I.

    2010-01-01

    I use an instrumental-variables identification strategy and historical data from the United States to estimate the long-term economic impact of in utero and postnatal exposure to malaria. My research design matches adults in the 1960 Decennial Census to the malaria death rate in their respective state and year of birth. To address potential…

  6. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  7. Exposure to Lipopolysaccharide in Utero Alters the Postnatal Metabolic Response in Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant crossbred cows (n = 50) were assigned to a prenatal immune stimulation (PIS; n = 25; administered 0.1 micrograms/kg BW LPS s...

  8. In utero exposure to lipopolysaccharide alters the postnatal metabolic response in heifers.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram body weight LPS ...

  9. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation

    EPA Science Inventory

    The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated ...

  10. POSTNATAL DISPOSITION OF TCDD IN LONG EVANS RATS FOLLOWING GESTATIONAL EXPOSURE

    EPA Science Inventory

    POSTNATAL DISPOSITION OF TCDD IN LONG EVANS RATS FOLLOWING GESTATIONAL EXPOSURE.
    J J Diliberto', J T Hamm'.2, F McQuaid', and L S Birnbaum'. 'US EPA, ORD/NHEERL/ETD, RTP, NC; 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC.
    2,3,7,8-Tetrachlorodibenz...

  11. Whole body MR imaging: applications in oncology.

    PubMed

    Johnston, C; Brennan, S; Ford, S; Eustace, S

    2006-04-01

    This article reviews technique and clinical applications of whole body MR imaging as a diagnostic tool in cancer staging. In particular the article reviews its role as an alternative to scintigraphy (bone scan and PET) in staging skeletal spread of disease, its role in assessing total tumour burden, its role in multiple myeloma and finally its evolving non oncologic role predominantly assessing total body composition.

  12. Whole-body hyperthermia induction techniques.

    PubMed

    Milligan, A J

    1984-10-01

    Currently, there are three techniques used for delivery of whole-body hyperthermia. The simplest of these is direct contact between skin and some surrounding fluid. The surrounding fluid can be either water, wax, air, or other fluid medium; heat is transferred from the surrounding fluid to the body surface. Vessels in the skin surface transfer heat to the perfusing blood, which uniformly distributes it throughout the body. The second technique uses irradiation of the body surface with nonionizing radiation to deliver heat to the first few cm from the surface. This heat can be picked up by local blood perfusion and distributed throughout the body. One advantage of this method over direct contact methods is that heat is deposited throughout the first few cm and therefore temperature increases at the surface are lower. The third technique is extracorporeal perfusion which seems the most promising method for delivery of whole-body hyperthermia. This allows for greater control of central temperature via rapid change in temperature of blood passing through the external heat exchanger. The increased ability to control temperature resulting from this advanced instrumentation allows accurate delivery of whole-body hyperthermia. This permits comparison studies of therapeutic effectiveness.

  13. Hepatobiliary kinetics after whole-body irradiation

    SciTech Connect

    Durakovic, A.

    1986-09-01

    The purpose of this investigation was to study hepatobiliary kinetics after whole-body gamma irradiation. Two groups of nine male beagle dogs were irradiated with a single whole body dose of 4- and 8-Gy cobalt-60 photons. Each animal was injected with 2 mCi Tc-99m DISIDA and scintigraphic studies were obtained with a gamma camera with a parallel hole multipurpose collimator. The parameters studied included: peak activity of the liver and gall bladder and gall bladder and intestinal visualization from the time of Tc-99m DISIDA administration. Total and indirect bilirubin, LDH, SGOT, and SGPT determined as baseline studies before irradiation and at different time intervals after irradiation were not changed in irradiated animals. Whole body Co-60 irradiation with 4 and 8 Gy produced no significant changes in the Tc-99m DISIDA visualization of the gall bladder or in the peak activity in the gall bladder or the liver 1 and 7 days after irradiation. Intestinal visualization occurred significantly earlier in 8 Gy Co-60 irradiated animals on both day 1 and day 7 post irradiation, compared to baseline values where it was never observed before 195.0 minutes. Gall bladder emptying is significantly accelerated after 8 Gy but not after 4-Gy Co-60 gamma irradiation. These observations suggest that gamma irradiation stimulates gall bladder contractility without modifying intrahepatic biliary kinetics.

  14. Muscle and whole body metabolism after norepinephrine.

    PubMed

    Kurpad, A V; Khan, K; Calder, A G; Elia, M

    1994-06-01

    The effect of an infusion of norepinephrine (0.42 nmol.kg-1.min-1) on energy metabolism in the whole body (using indirect calorimetry and the arteriovenous forearm catheterization techniques in eight healthy young male adults. The activity of the triglyceride-fatty acid cycle, which mainly operates in nonmuscular tissues, was also assessed by measuring glycerol turnover using [2H5]glycerol (to indicate lipolysis) and indirect calorimetry (to indicate net fat oxidation). Norepinephrine increased whole body oxygen consumption by almost 10% (P < 0.01), but the estimated oxygen consumption of muscles tended to decrease. Muscle blood flow (measured by 133Xe) and forearm blood flow (measured by strain-gauge plethysmography) were not significantly affected by norepinephrine, but the rate of uptake of nonesterified fatty acids and beta-hydroxybutyrate increased severalfold (P < 0.05), whereas that of glucose did not. The activity of the triglyceride-fatty acid cycle increased fourfold after norepinephrine administration, having a marginal effect on resting energy expenditure (approximately 1.5%) but accounting for approximately 15% of the increase in whole body energy expenditure. This study provides no evidence that skeletal muscle is an important site for norepinephrine-induced thermogenesis and suggests that an increase in the activity of the triglyceride-fatty acid cycle contributes to the norepinephrine-induced increase in energy expenditure of nonmuscular tissues.

  15. Pre- and postnatal exposure to tobacco smoke and respiratory outcomes during the first year.

    PubMed

    Fuentes-Leonarte, V; Estarlich, M; Ballester, F; Murcia, M; Esplugues, A; Aurrekoetxea, J J; Basterrechea, M; Fernández-Somoano, A; Morales, E; Gascón, M; Tardón, A; Rebagliato, M

    2015-02-01

    The different role of prenatal and postnatal exposure to tobacco smoke in respiratory outcomes in infants has not yet been clearly established. Our objective is to assess the effects of these exposures on the risk of respiratory outcomes during the first year of life of infants from a Spanish multicenter cohort study. A total of 2506 women were monitored until delivery. About 2039 infants made up the final population. The outcomes were caused by the occurrence of the following: otitis, cough persisting for more than 3 weeks, lower respiratory tract symptoms (wheezing or chestiness), and lower respiratory tract infections (bronchitis, bronchiolitis, or pneumonia). The relationship between prenatal and postnatal exposure and health outcomes was explored using logistic regression analysis. Maternal smoking during pregnancy increased the odds for wheezing (OR: 1.41, 95% CI: 0.99-2.01) and chestiness (OR: 1.46, 95% CI: 1.03-2.01). Postnatal exposure from fathers was associated with otitis (OR: 1.25, 95% CI: 1.01-1.54). Passive exposure at work of non-smoking mothers during pregnancy was related to cough (OR: 1.62, 95% CI: 1.05-2.51). Exposure to tobacco smoke was related to a higher risk of experiencing respiratory outcomes in young infants. Prenatal exposure was that most clearly associated with the respiratory outcomes analyzed.

  16. Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (β: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: β: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: β: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied.

  17. Uncertainties in estimated body burdens of caesium-137 by whole-body counting.

    PubMed

    Kinase, S; Noguchi, H

    2001-01-01

    It is very important to evaluate the uncertainties in individual monitoring for internal exposure of workers. The uncertainties in estimated body burdens of 137Cs with the JAERI whole-body counter were investigated using Monte Carlo simulation and measurements. It was found that the uncertainties of estimated body burdens with the whole-body counter are strongly dependent on various sources of uncertainty, such as radioactivity distribution within the body and counting statistics and that the 137Cs body burden assessed from the result of the whole-body count can be within +/- 60% in error.

  18. Whole-body cryotherapy in athletes.

    PubMed

    Banfi, Giuseppe; Lombardi, Giovanni; Colombini, Alessandra; Melegati, Gianluca

    2010-06-01

    Cold therapy is commonly used as a procedure to relieve pain symptoms, particularly in inflammatory diseases, injuries and overuse symptoms. A peculiar form of cold therapy (or stimulation) was proposed 30 years ago for the treatment of rheumatic diseases. The therapy, called whole-body cryotherapy (WBC), consists of exposure to very cold air that is maintained at -110 degrees C to -140 degrees C in special temperature-controlled cryochambers, generally for 2 minutes. WBC is used to relieve pain and inflammatory symptoms caused by numerous disorders, particularly those associated with rheumatic conditions, and is recommended for the treatment of arthritis, fibromyalgia and ankylosing spondylitis. In sports medicine, WBC has gained wider acceptance as a method to improve recovery from muscle injury. Unfortunately, there are few papers concerning the application of the treatment on athletes. The study of possible enhancement of recovery from injuries and possible modification of physiological parameters, taking into consideration the limits imposed by antidoping rules, is crucial for athletes and sports physicians for judging the real benefits and/or limits of WBC. According to the available literature, WBC is not harmful or detrimental in healthy subjects. The treatment does not enhance bone marrow production and could reduce the sport-induced haemolysis. WBC induces oxidative stress, but at a low level. Repeated treatments are apparently not able to induce cumulative effects; on the contrary, adaptive changes on antioxidant status are elicited--the adaptation is evident where WBC precedes or accompanies intense training. WBC is not characterized by modifications of immunological markers and leukocytes, and it seems to not be harmful to the immunological system. The WBC effect is probably linked to the modifications of immunological molecules having paracrine effects, and not to systemic immunological functions. In fact, there is an increase in anti

  19. Adult neuropsychological performance following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure.

  20. Pre- and Postnatal Exposure to Low Dose Glufosinate Ammonium Induces Autism-Like Phenotypes in Mice

    PubMed Central

    Laugeray, Anthony; Herzine, Ameziane; Perche, Olivier; Hébert, Betty; Aguillon-Naury, Marine; Richard, Olivier; Menuet, Arnaud; Mazaud-Guittot, Séverine; Lesné, Laurianne; Briault, Sylvain; Jegou, Bernard; Pichon, Jacques; Montécot-Dubourg, Céline; Mortaud, Stéphane

    2014-01-01

    Glufosinate ammonium (GLA) is one of the most widely used herbicides in agriculture. As is the case for most pesticides, potential adverse effects of GLA have not been studied from the perspective of developmental neurotoxicity. Early pesticides exposure may weaken the basic structure of the developing brain and cause permanent changes leading to a wide range of lifelong effects on health and/or behavior. Here, we addressed the developmental impact of GLA by exposing female mice to low dose GLA during both pre- and postnatal periods and analyzed potential developmental and behavioral changes of the offspring during infancy and adulthood. A neurobehavioral test battery revealed significant effects of GLA maternal exposure on early reflex development, pup communication, affiliative behaviors, and preference for social olfactory cues, but emotional reactivity and emotional memory remained unaltered. These behavioral alterations showed a striking resemblance to changes seen in animal models of Autistic Spectrum Disorders. At the brain level, GLA maternal exposure caused some increase in relative brain weight of the offspring. In addition, reduced expression of Pten and Peg3 – two genes implicated in autism-like deficits – was observed in the brain of GLA-exposed pups at postnatal day 15. Our work thus provides new data on the link between pre- and postnatal exposure to the herbicide GLA and the onset of autism-like symptoms later in life. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during critical developmental periods. PMID:25477793

  1. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    PubMed

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy.

  2. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    PubMed

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy. PMID:26646100

  3. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  4. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  5. Whole-body vibration and disorders of the spine.

    PubMed

    Dupuis, H; Zerlett, G

    1987-01-01

    This cross-sectional study is based on interviews and medical examinations of 352 operators of earth-moving machines who had been exposed to whole-body vibrations for at least three years. In addition, available X-rays showing different parts of the spines of 251 machine operators who had been exposed to vibration for at least ten years were used for evaluation. One hundred and forty-nine of the operators were asked about discomfort occurring immediately after an eight-hour work shift. The group of exposed persons was compared with a control group of 215 non-exposed persons. The percentage of subjects reporting spinal discomfort was much higher for the exposed group than for the non-exposed group. 68.7% of the operators complained of spinal discomfort in the lumbar spine, 6.8% in the thoracic column and 18.2% in the cervical column. The discomfort reported immediately after an eight-hour exposure to whole-body vibration was highly age-dependent. The epidemiological study resulted in an objective conformation of the spinal discomfort reported, 2/3 of which were related by the operators to the lumbar syndrome. Lumbar syndrome (81%) accounted for by far the highest number of spinal disorders. Examinations of the operators with at least ten years of exposure to whole-body vibrations showed that morphological changes in the lumbar spine occur earlier and much more frequently than in the case of non-exposed persons. Problems of etiology and pathogenesis are discussed.

  6. In utero dimethadione exposure causes postnatal disruption in cardiac structure and function in the rat.

    PubMed

    Aasa, Kristiina L; Purssell, Elizabeth; Adams, Michael A; Ozolinš, Terence R S

    2014-12-01

    In utero exposure of rat embryos to dimethadione (DMO), the N-demethylated teratogenic metabolite of the anticonvulsant trimethadione, induces a high incidence of cardiac heart defects including ventricular septal defects (VSDs). The same exposure regimen also leads to in utero cardiac functional deficits, including bradycardia, dysrhythmia, and a reduction in cardiac output (CO) and ejection fraction that persist until parturition (10 days after the final dose). Despite a high rate of spontaneous postnatal VSD closure, we hypothesize that functional sequelae will persist into adulthood. Pregnant Sprague Dawley rats were administered six 300 mg/kg doses of DMO, one every 12 h in mid-pregnancy beginning on the evening of gestation day 8. Postnatal cardiac function was assessed in control (CTL) and DMO-exposed offspring using radiotelemetry and ultrasound at 3 and 11 months of age, respectively. Adult rats exposed to DMO in utero had an increased incidence of arrhythmia, elevated blood pressure and CO, greater left ventricular volume and elevated locomotor activity versus CTL. The mean arterial pressure of DMO-exposed rats was more sensitive to changes in dietary salt load compared with CTL. Importantly, most treated rats had functional deficits in the absence of a persistent structural defect. It was concluded that in utero DMO exposure causes cardiovascular deficits that persist into postnatal life in the rat, despite absence of visible structural anomalies. We speculate this is not unique to DMO, suggesting possible health implications for infants with unrecognized gestational chemical exposures.

  7. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.

  8. Effects of postnatal aluminum lactate exposure on neuromotor maturation in the rat

    SciTech Connect

    Bernuzzi, V.; Desor, D.; Lehr, P.R.

    1989-03-01

    In alkaline or neutral soils, aluminum is insoluble, but its solubility progressively increases with acidity, so acid precipitations have a considerable influence in mobilizing aluminum in natural waters, leading to higher alimentary ingestion of this element. In normal subjects aluminum is absorbed by the gastrointestinal tract and is excreted in urine. But even discrete renal failure may lead to Al accumulation in various tissues. Certain neurologic diseases have been related to Al intoxication. In patients undergoing chronic hemodialysis and ingesting aluminum-containing drugs, Al exposure is considered to be the causal factor for a high incidence of dialysis encephalopathy. Microcytic anemia and osteomalacia usually appeared before the neurologic symptoms. The authors have recently reported that the surviving pups of rats treated with aluminum during gestation showed a delay in their neuromotor development, as well as weight delay during the first postnatal week. This paper examines the effects of postnatal aluminum lactate exposure on mortality, weight evolution and neuromotor maturation in the rat.

  9. In utero and postnatal exposure to arsenic alters pulmonary structure and function

    SciTech Connect

    Lantz, R. Clark Chau, Binh; Sarihan, Priyanka; Witten, Mark L.; Pivniouk, Vadim I.; Chen, Guan Jie

    2009-02-15

    In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 {mu}m in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

  10. Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development

    SciTech Connect

    Bellinger, D.; Leviton, A.; Waternaux, C.; Needleman, H.; Rabinowitz, M.

    1987-04-23

    In a prospective cohort study of 249 children from birth to two years of age, we assessed the relation between prenatal and postnatal lead exposure and early cognitive development. On the basis of lead levels in umbilical-cord blood, children were assigned to one of three prenatal-exposure groups: low (less than 3 micrograms per deciliter), medium (6 to 7 micrograms per deciliter), or high (greater than or equal to 10 micrograms per deciliter). Development was assessed semiannually, beginning at the age of six months, with use of the Mental Development Index of the Bayley Scales of Infant Development (mean +/- SD, 100 +/- 16). Capillary-blood samples obtained at the same times provided measures of postnatal lead exposure. Regression methods for longitudinal data were used to evaluate the association between infants' lead levels and their development scores after adjustment for potential confounders. At all ages, infants in the high-prenatal-exposure group scored lower than infants in the other two groups. The estimated difference between the overall performance of the low-exposure and high-exposure groups was 4.8 points (95 percent confidence interval, 2.3 to 7.3). Between the medium- and high-exposure groups, the estimated difference was 3.8 points (95 percent confidence interval, 1.3 to 6.3). Scores were not related to infants' postnatal blood lead levels. It appears that the fetus may be adversely affected at blood lead concentrations well below 25 micrograms per deciliter, the level currently defined by the Centers for Disease Control as the highest acceptable level for young children.

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section...

  12. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  15. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  16. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  17. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  18. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  19. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  20. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  1. Whole-body magnetic resonance imaging: assessment of skeletal metastases.

    PubMed

    Moynagh, Michael R; Colleran, Gabrielle C; Tavernaraki, Katarina; Eustace, Stephen J; Kavanagh, Eoin C

    2010-03-01

    The concept of a rapid whole-body imaging technique with high resolution and the absence of ionizing radiation for the assessment of osseous metastatic disease is a desirable tool. This review article outlines the current perspective of whole-body magnetic resonance imaging in the assessment of skeletal metastatic disease, with comparisons made to alternative whole-body imaging modalities.

  2. Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats.

    PubMed

    Hrubá, L; Schutová, B; Šlamberová, R

    2012-01-18

    The aim of the present study was to investigate the impact of prenatal and postnatal methamphetamine (MA) exposure on behavior and anxiety in adult male and female rats. Mothers were daily exposed to injection of MA (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother raised 6 saline-exposed pups and 6 MA-exposed pups. Based on the prenatal and postnatal exposure 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in the Open field (OF) and in the Elevated plus maze (EPM) in adulthood. Locomotion, exploration, immobility and comforting behavior were evaluated in the OF, while anxiety was assessed in the EPM. While prenatal MA exposure did not affect behavior and anxiety in adulthood, postnatal MA exposure (i.e. MA administration to lactating mothers) induced long-term changes. Specifically, adult female rats in diestrus and adult males postnatally exposed to MA via breast milk (S/MA and MA/MA) had decreased locomotion and exploratory behavior in the OF and showed increased anxiety-like behavior in the EPM when compared to female rats in diestrus or males postnatally exposed to saline (S/S and MA/S). In adult females in proestrus, postnatal exposure to MA affected only exploratory behavior in the OF when compared to rats in proestrus postnatally exposed to saline. Thus, the present study shows that postnatal exposure to MA via breast milk impairs behavior in unfamiliar environment and anxiety-like behavior of adult male and female rats more than prenatal MA exposure. PMID:21884713

  3. Prenatal and early postnatal stress exposure influences long bone length in adult rat offspring

    PubMed Central

    Dancause, Kelsey Needham; Cao, Xiu Jing; Veru, Franz; Xu, Susan; Long, Hong; Yu, Chunbo; Laplante, David P.; Walker, Claire Dominique; King, Suzanne

    2012-01-01

    Stress during the prenatal and early postnatal periods (perinatal stress, PS) is known to impact offspring cognitive, behavioral, and physical development, but effects on skeletal growth are not clear. Our objective was to analyze effects of variable, mild, daily PS exposure on adult offspring long bone length. Twelve pregnant rat dams were randomly assigned to receive variable stress from gestational days 14-21 (Prenatal group), postpartum days 2-9 (Postnatal), both periods (Pre-Post), or no stress (Control). Differences in adult offspring tibia and femur length were analyzed among treatment groups. Mean tibia length differed among groups for males (p=0.016) and females (p=0.009), and differences for femur length approached significance for males (p=0.051). Long bone length was shorter among PS-exposed offspring, especially those exposed to postnatal stress (Postnatal and Pre-Post groups). Results persisted when controlling for nose-tail length. These differences might reflect early stunting that is maintained in adulthood, or delayed growth among PS-exposed offspring. This study suggests that PS results in shorter long bones in adulthood, independently of effects on overall body size. Stunting and growth retardation are major global health burdens. Our study adds to a growing body of evidence suggesting that PS is a risk factor for poor linear growth. PMID:22826037

  4. Pediatric whole-body MRI: A review of current imaging techniques and clinical applications.

    PubMed

    Davis, Joseph T; Kwatra, Neha; Schooler, Gary R

    2016-10-01

    There are many congenital, neoplastic, inflammatory, and infectious processes in the pediatric patient for which whole-body imaging may be of benefit diagnostically and prognostically. With recent improvements in magnetic resonance imaging (MRI) hardware and software and resultant dramatically reduced scan times, imaging of the whole body with MRI has become a much more practicable technique in children. Whole-body MRI can provide a high level of soft tissue and skeletal detail while avoiding the exposure to ionizing radiation inherent to computed tomography and nuclear medicine imaging techniques. This article reviews the more common current whole-body MRI techniques in children and the primary pathologies for which this imaging modality may be most useful to the radiologists and referring clinicians. J. MAGN. RESON. IMAGING 2016;44:783-793.

  5. Effect of whole body vibration on stereotypy of young children with autism

    PubMed Central

    Bressel, Eadric; Gibbons, Mandi W; Samaha, Andrew

    2011-01-01

    The objective of this case was report on the effects of acute whole body vibration exposure on stereotyped behaviour of young children with autism. Four young boys (ages 4–5 years) diagnosed with autism participated. The children were participants in an early intensive behavioural intervention clinic and during downtimes stood on a whole body vibration platform with the machine turned off (control condition) and on (treatment condition) for three to four, 30 s periods (frequency=28 Hz; amplitude 0.97 mm). The outcome measure was frequency of stereotypic behaviour, which was evaluated for 5 min before and after standing on the vibration platform. The results revealed that whole body vibration was not able to uniformly decrease the rates of all types of stereotypy; that is, some stereotypy decreased while others were unchanged. Subjectively, the children enjoyed whole body vibration which was easy to integrate into the behavioural programme. PMID:22696626

  6. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy. PMID:24937778

  7. Postnatal Hyperoxia Exposure Differentially Affects Hepatocytes and Liver Haemopoietic Cells in Newborn Rats

    PubMed Central

    Marconi, Guya Diletta; Zara, Susi; De Colli, Marianna; Di Valerio, Valentina; Rapino, Monica; Zaramella, Patrizia; Dedja, Arben; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea

    2014-01-01

    Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells) and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase 9 (MMP-9), Hypoxia-Inducible Factor-1α (HIF-1α), endothelial Nitric Oxide Synthase (eNOS), and Nuclear Factor-kB (NF-kB). Experimental design of the study involved exposure of newborn rats to room air (controls), 60% O2 (moderate hyperoxia), or 95% O2 (severe hyperoxia) for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia) and eNOS (severe hyperoxia) in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized. PMID:25115881

  8. Sensory Neural Responses to Ozone Exposure during Early Postnatal Development in Rat Airways

    PubMed Central

    Hunter, Dawn D.; Wu, Zhongxin; Dey, Richard D.

    2010-01-01

    Airway infections or irritant exposures during early postnatal periods may contribute to the onset of childhood asthma. The purpose of this study was to examine critical periods of postnatal airway development during which ozone (O3) exposure leads to heightened neural responses. Rats were exposed to O3 (2 ppm) or filtered air for 1 hour on specific postnatal days (PDs) between PD1 and PD29, and killed 24 hours after exposure. In a second experiment, rats were exposed to O3 on PD2–PD6, inside a proposed critical period of development, or on PD19–PD23, outside the critical period. Both groups were re-exposed to O3 on PD28, and killed 24 hours later. Airways were removed, fixed, and prepared for substance P (SP) immunocytochemistry. SP nerve fiber density (NFD) in control extrapulmonary (EXP) epithelium/lamina propria (EPLP) increased threefold, from 1% to 3.3% from PD1–PD3 through PD13–PD15, and maintained through PD29. Upon O3 exposure, SP-NFD in EXP–smooth muscle (SM) and intrapulmonary (INT)-SM increased at least twofold at PD1–PD3 through PD13–PD15 in comparison to air exposure. No change was observed at PD21–PD22 or PD28–PD29. In critical period studies, SP-NFD in the INT-SM and EXP-SM of the PD2–PD6 O3 group re-exposed to O3 on PD28 was significantly higher than that of the group exposed at PD19–PD23 and re-exposed at PD28. These findings suggest that O3-mediated changes in sensory innervation of SM are more responsive during earlier postnatal development. Enhanced responsiveness of airway sensory nerves may be a contributing mechanism of increased susceptibility to environmental exposures observed in human infants and children. PMID:20118220

  9. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    SciTech Connect

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H.; Mougey, E.H.

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  10. Local metabolic rate during whole body vibration.

    PubMed

    Friesenbichler, Bernd; Nigg, Benno M; Dunn, Jeff F

    2013-05-15

    Whole body vibration (WBV) platforms are currently used for muscle training and rehabilitation. However, the effectiveness of WBV training remains elusive, since scientific studies vary largely in the vibration parameters used. The origin of this issue may be related to a lack in understanding of the training intensity that is imposed on individual muscles by WBV. Therefore, this study evaluates the training intensity in terms of metabolic rate of two lower-extremity muscles during WBV under different vibration parameters. Fourteen healthy male subjects were randomly exposed to 0 (control)-, 10-, 17-, and 28-Hz vibrations while standing upright on a vibration platform. A near-infrared spectrometer was used to determine the gastrocnemius medialis (GM) and vastus lateralis (VL) muscles' metabolic rates during arterial occlusion. The metabolic rates during each vibration condition were significantly higher compared with control for both muscles (P < 0.05). Each increase in vibration frequency translated into a significantly higher metabolic rate than the previous lower frequency (P < 0.05) for both muscles. The current study showed that the local metabolic rate during WBV at 28 Hz was on average 5.4 times (GM) and 3.7 times (VL) of the control metabolic rate. The substantial changes in local metabolic rate indicate that WBV may represent a significant local training stimulus for particular leg muscles.

  11. Whole-body MRI in paediatric oncology.

    PubMed

    Nievelstein, Rutger A J; Littooij, Annemieke S

    2016-05-01

    Imaging plays a crucial role in the diagnosis and follow-up of paediatric malignancies. Until recently, computed tomography (CT) has been the imaging technique of choice in children with cancer, but nowadays there is an increasing interest in the use of functional imaging techniques like positron emission tomography and single-photon emission tomography. These later techniques are often combined with CT allowing for simultaneous acquisition of image data on the biological behaviour of tumour, as well as the anatomical localisation and extent of tumour spread. Because of the small but not negligible risk of radiation induced secondary cancers and the significantly improved overall survival rates of children with cancer, there is an increasing interest in the use of alternative imaging techniques that do not use ionising radiation. Magnetic resonance imaging (MRI) is a radiation-free imaging tool that allows for acquiring images with a high spatial resolution and excellent soft tissue contrast throughout the body. Moreover, recent technological advances have resulted in fast diagnostic sequences for whole-body MR imaging (WB-MRI), including functional techniques such as diffusion weighted imaging. In this review, the current status of the technique and major clinical applications of WB-MRI in children with cancer will be discussed.

  12. Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats

    PubMed Central

    Mony, Tamanna Jahan; Lee, Jae Won; Dreyfus, Cheryl; DiCicco-Bloom, Emanuel; Lee, Hee Jae

    2016-01-01

    Objective We reported that postnatal exposure of rats to valproic acid (VPA) stimulated proliferation of glial precursors during cortical gliogenesis. However, there are no reports whether enhanced postnatal gliogenesis affects behaviors related to neuropsychiatric disorders. Methods After VPA treatment during the postnatal day (PND) 2 to PND 4, four behavioral test, such as open field locomotor test, elevated plus maze test, three-chamber social interaction test, and passive avoidance test, were performed at PND 21 or 22. Results VPA treated rats showed significant hyperactive behavior in the open field locomotor test (p<0.05). Moreover, the velocity of movement in the VPA group was increased by 69.5% (p<0.01). In the elevated plus maze test, VPA exposed rats expressed significantly lower percentage of time spent on and of entries into open arms more than the control group (p<0.05). Also, both sociability and social preference indices with strangers in the three-chamber social interaction test were significantly lower in the VPA exposed rats (p<0.05). Conclusion Our results suggest that altered glial cell development is another locus at which pathogenetic factors can operate to contribute to the neurodevelopmental disorder. PMID:27776385

  13. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus

    PubMed Central

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-01-01

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet. PMID:27070590

  14. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus.

    PubMed

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-04-08

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats' intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14-20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. "Programming" of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  15. Prenatal and Postnatal Exposure to Persistent Organic Pollutants and Infant Growth: A Pooled Analysis of Seven European Birth Cohorts

    PubMed Central

    Iszatt, Nina; Stigum, Hein; Verner, Marc-André; White, Richard A.; Govarts, Eva; Murinova, Lubica Palkovicova; Schoeters, Greet; Trnovec, Tomas; Legler, Juliette; Pelé, Fabienne; Botton, Jérémie; Chevrier, Cécile; Wittsiepe, Jürgen; Ranft, Ulrich; Vandentorren, Stéphanie; Kasper-Sonnenberg, Monika; Klümper, Claudia; Weisglas-Kuperus, Nynke; Polder, Anuschka

    2015-01-01

    Background Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. However, many studies so far have been small, focused on transplacental exposure, used an inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not discern between prenatal and postnatal effects. Objectives We investigated prenatal and postnatal exposure to POPs and infant growth (a predictor of obesity). Methods We pooled data from seven European birth cohorts with biomarker concentrations of polychlorinated biphenyl 153 (PCB-153) (n = 2,487), and p,p´-dichlorodiphenyldichloroethylene (p,p´-DDE) (n = 1,864), estimating prenatal and postnatal POPs exposure using a validated pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 months. Per compound, multilevel models were fitted with either POPs total exposure from conception to 24 months or prenatal or postnatal exposure. Results We found a significant increase in growth associated with p,p´-DDE, seemingly due to prenatal exposure (per interquartile increase in exposure, adjusted β = 0.12; 95% CI: 0.03, 0.22). Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate that an association with infant growth is present on average. In contrast, a significant decrease in growth was associated with postnatal PCB-153 exposure (β = –0.10; 95% CI: –0.19, –0.01). Conclusion To our knowledge, this is the largest study to date of POPs exposure and infant growth, and it contains state-of-the-art exposure modeling. Prenatal p,p´-DDE was associated with increased infant growth, and postnatal PCB-153 with decreased growth at European exposure levels. Citation Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Palkovicova Murinova L, Schoeters G, Trnovec T, Legler J, Pelé F, Botton J, Chevrier C, Wittsiepe J, Ranft U, Vandentorren S, Kasper-Sonnenberg M, Klümper C, Weisglas-Kuperus N, Polder A, Eggesbø M, OBELIX

  16. Whole-body vibration perception thresholds

    NASA Astrophysics Data System (ADS)

    Parsons, K. C.; Griffin, M. J.

    1988-03-01

    This paper presents the results of a series of laboratory experiments concerned with perception thresholds for whole-body vibration. The nature of absolute perception thresholds is discussed and a method of determining vibration thresholds, based upon signal detection theory, is proposed. Thresholds of subjects exposed to x-, y- and z-axis sinusoidal vibration were determined for sitting and standing subjects (from 2 to 100 Hz). Perception thresholds have also been determined for supine subjects exposed to vertical ( x-axis) sinusoidal vibration (10-63 Hz). In additional experiments the effects of complex (e.g., random) vibration and the effects of duration on the perception thresholds were investigated. The relation between perception thresholds and vibration levels, said by subjects to be unacceptable if they occurred in their own homes, was investigated as well as the effects of subjects' personality and the visual and acoustic conditions in the laboratory. For the vertical vibration of seated subjects no significant differences were found between the responses of male and female subjects. Significant differences were found between perception thresholds for sitting and standing postures. The median threshold was approximately 0·01 m/s 2 r.m.s. between 2 and 100 Hz. Perception thresholds for x-axis and y-axis vibration were not significantly different in either sitting or standing subjects but significant differences in thresholds were found between sitting and standing positions for both x-axis and y-axis vibration. Subjects tended to be more sensitive to vibration when lying than when sitting or standing. The results suggested that the perception of random vibrations can be predicted from a knowledge of the perception of its component vibrations. The number of cycles of vibration did not affect perception thresholds for vibration durations of more than about 0·25 s. Some assessments suggested that vibration at more than twice the perception threshold may not

  17. Physical, behavioral, and cognitive effects of prenatal tobacco and postnatal secondhand smoke exposure.

    PubMed

    Zhou, Sherry; Rosenthal, David G; Sherman, Scott; Zelikoff, Judith; Gordon, Terry; Weitzman, Michael

    2014-09-01

    The purpose of this review is to examine the rapidly expanding literature regarding the effects of prenatal tobacco and postnatal secondhand smoke (SHS) exposure on child health and development. Mechanisms of SHS exposure are reviewed, including critical periods during which exposure to tobacco products appears to be particularly harmful to the developing fetus and child. The biological, biochemical, and neurologic effects of the small fraction of identified components of SHS are described. Research describing these adverse effects of both in utero and childhood exposure is reviewed, including findings from both animal models and humans. The following adverse physical outcomes are discussed: sudden infant death syndrome, low birth weight, decreased head circumference, respiratory infections, otitis media, asthma, childhood cancer, hearing loss, dental caries, and the metabolic syndrome. In addition, the association between the following adverse cognitive and behavioral outcomes and such exposures is described: conduct disorder, attention-deficit/hyperactivity disorder, poor academic achievement, and cognitive impairment. The evidence supporting the adverse effects of SHS exposure is extensive yet rapidly expanding due to improving technology and increased awareness of this profound public health problem. The growing use of alternative tobacco products, such as hookahs (a.k.a. waterpipes), and the scant literature on possible effects from prenatal and secondhand smoke exposure from these products are also discussed. A review of the current knowledge of this important subject has implications for future research as well as public policy and clinical practice.

  18. Chronic prenatal ethanol exposure alters glucocorticoid signalling in the hippocampus of the postnatal Guinea pig.

    PubMed

    Iqbal, U; Brien, J F; Banjanin, S; Andrews, M H; Matthews, S G; Reynolds, J N

    2005-09-01

    The present study tested the hypothesis that chronic prenatal ethanol exposure causes long-lasting changes in glucocorticoid signalling in postnatal offspring. Pregnant guinea pigs were treated with ethanol (4 g/kg maternal body weight/day), isocaloric-sucrose/pair-feeding or water throughout gestation, and maternal saliva cortisol concentration was determined 2 h after treatment at different stages of gestation. Electrically-stimulated release of glutamate and GABA, in the presence or absence of dexamethasone, as well as glucocorticoid and mineralocorticoid receptor mRNA expression, was determined in the hippocampus and prefrontal cortex of adult offspring of treated pregnant guinea pigs. Maternal saliva cortisol concentration increased throughout pregnancy, which was associated with increased foetal plasma and amniotic fluid cortisol concentration. Ethanol administration to pregnant guinea pigs increased maternal saliva cortisol concentration during early and mid-gestation. In late gestation, ethanol administration did not increase saliva cortisol concentration above that induced by pregnancy. Chronic prenatal ethanol exposure had no effect on stimulated glutamate or GABA release, but selectively prevented dexamethasone-mediated suppression of stimulated glutamate release, and decreased expression of mineralocorticoid, but not glucocorticoid, receptor mRNA in the hippocampus of adult offspring. These data indicate that maternal ethanol administration leads to excessively increased maternal cortisol concentration that can impact negatively the developing foetal brain, leading to persistent postnatal deficits in glucocorticoid regulation of glutamate signalling in the adult hippocampus. PMID:16101899

  19. Ntp technical report on toxicity, reproductive, and developmental studies of 60-Hz magnetic fields, administered by whole body exposure to F344/N rats, Sprague-Dawley rats, and B6C3F1 mice. Toxicity report series

    SciTech Connect

    Boorman, G.A.

    1996-09-01

    Electric and magnetic fields are associated with the production, transmission, and use of electricity; thus the potential for human exposure is high. These electric and magnetic fields are predominantly of low frequency (60 Hz) and generally of low intensity. The prevailing view among physicists is that exposure to these low-frequency, low-intensity fields does not pose a health hazard. However, this view has been challenged by reports linking magnetic field exposure to the development of leukemia and other cancers. Because multiple epidemiologic studies suggested a potential for increased cancer rates with increasing exposure, and because of public concern, the effects of 60-Hz magnetic field exposure were examined in F344/N rats and B6C3F1 mice in 8-week full-body-exposure studies. Animals were evaluated for hematology and clinical chemistry (rats only) parameters, pineal gland hormone concentrations, and histopathology. Additional studies were performed in Sprague-Dawley rats to examine teratologic and reproductive effects of magnetic field exposure.

  20. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures.

    PubMed

    Tao, Guorong; Luo, Yan; Xue, Qingsheng; Li, Guohui; Tan, Yongchang; Xiao, Jinglei; Yu, Buwei

    2016-01-01

    Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures. PMID:27597963

  1. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures

    PubMed Central

    Tao, Guorong; Luo, Yan; Xue, Qingsheng; Li, Guohui; Tan, Yongchang

    2016-01-01

    Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures. PMID:27597963

  2. Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures

    PubMed Central

    Tao, Guorong; Luo, Yan; Xue, Qingsheng; Li, Guohui; Tan, Yongchang

    2016-01-01

    Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures.

  3. Effect of Lycopersicon esculentum extract on apoptosis in the rat cerebellum, following prenatal and postnatal exposure to an electromagnetic field.

    PubMed

    Köktürk, Sibel; Yardimoglu, Melda; Celikozlu, Saadet D; Dolanbay, Elif Gelenli; Cimbiz, Ali

    2013-07-01

    The expansion of mobile phone technology has raised concerns regarding the effect of 900-MHz electromagnetic field (EMF) exposure on the central nervous system. At present, the developing human brain is regularly exposed to mobile telephones, pre- and postnatally. Several studies have demonstrated the acute effects of EMF exposure during pre- or postnatal periods; however, the chronic effects of EMF exposure are less understood. Thus, the aim of the present study was to determine the chronic effects of EMF on the pre- and postnatal rat cerebellum. The control group was maintained in the same conditions as the experimental groups, without the exposure to EMF. In the EMF1 group, the rats were exposed to EMF during pre- and postnatal periods (until postnatal day 80). In the EMF2 group, the rats were also exposed to EMF pre- and postnatally; in addition, however, they were provided with a daily oral supplementation of Lycopersicon esculentum extract (∼2 g/kg). The number of caspase-3-labeled Purkinje neurons and granule cells present in the rats in the control and experimental groups were then counted. The neurodegenerative changes were studied using cresyl violet staining, and these changes were evaluated. In comparison with the control animals, the EMF1 group demonstrated a significant increase in the number of caspase-3-labeled Purkinje neurons and granule cells present in the cerebellum (P<0.001). However, in comparison with the EMF1 group, the EMF2 group exhibited significantly fewer caspase-3-labeled Purkinje neurons and granule cells in the cerebellum. In the EMF1 group, the Purkinje neurons were revealed to have undergone dark neuron degenerative changes. However, the presence of dark Purkinje neurons was reduced in the EMF2 group, compared with the EMF1 group. The results indicated that apoptosis and neurodegeneration in rats exposed to EMF during pre- and postnatal periods may be reduced with Lycopersicon esculentum extract therapy. PMID:23935717

  4. Effect of pre- and postnatal nicotine exposure on vasopressinergic system in rats.

    PubMed

    Zbuzek, V K; Zbuzek, V

    1999-02-01

    Timed pregnant Sprague-Dawley rats were infused subcutaneously either with nicotine (NIC, 6 mg kg-1 day-1; n=17) or saline (control, n=15) on the 3rd day of gestation, via Alzet osmotic pumps, for 28 days. After the parturition, the pups of both, control and NIC infused dams, were each randomly divided into 2 groups and placed to be nursed as following: (1) control dams nursing pups born to control mother (control group); (2) control dams nursing pups born to NIC-infused mother (prenatal NIC group); (3) NIC-infused dams nursing pups born to control mother (postnatal NIC group); (4) NIC-infused dams nursing pups born to NIC-infused mother (pre- and postnatal NIC group). Vasopressin (VP) was measured by RIA in plasma, neurointermediate lobe (NIL) and hypothalamus (HT) in the pups of both sexes, at the following age: 0 (within 24 h after birth); 1, 2, 3, 4 and 6 weeks. At the age of 3, 4 and 6 weeks, the isolated NILs were individually superfused and VP was measured as a basal release and the response to a 10-min 56 mM potassium stimulation. A marked suppression in the activity of VP-ergic system was observed in both sexes of offspring exposed to NIC prenatally, being first detectable at the age of 3 weeks, when the HT-NIL system becomes fully developed. However, the significant changes were observed at the age of 6 weeks: decreased serum VP concentration, lower VP contents in the HT and NIL, and suppressed VP release, basal and stimulated, from the isolated NIL. Postnatal exposure to nicotine was ineffective.

  5. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E; Saraf, Manish K; Labbe, Sebastien M; Hurren, Nicholas M; Yfanti, Christina; Chao, Tony; Andersen, Clark R; Cesani, Fernando; Hawkins, Hal; Sidossis, Labros S

    2014-12-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT(+) group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans.

  6. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    PubMed

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-01

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  7. Prenatal and Postnatal Polycyclic Aromatic Hydrocarbon Exposure, Airway Hyperreactivity, and Beta-2 Adrenergic Receptor Function in Sensitized Mouse Offspring

    PubMed Central

    Zhang, Hanjie; Maher, Christina; McDonald, Jacob D.; Zhang, Xiang; Ho, Shuk-Mei; Yan, Beizhan; Chillrud, Steven; Perera, Frederica; Factor, Phillip; Miller, Rachel L.

    2013-01-01

    Despite data associating exposure to traffic-related polycyclic aromatic hydrocarbons (PAH) in asthma, mechanistic support has been limited. We hypothesized that both prenatal and early postnatal exposure to PAH would increase airway hyperreactivity (AHR) and that the resulting AHR may be insensitive to treatment with a β2AR agonist drug, procaterol. Further, we hypothesized that these exposures would be associated with altered β2AR gene expression and DNA methylation in mouse lungs. Mice were exposed prenatally or postnatally to a nebulized PAH mixture versus negative control aerosol 5 days a week. Double knockout β2AR mice were exposed postnatally only. Prenatal exposure to PAH was associated with reduced β2AR gene expression among nonsensitized mice offspring, but not increases in DNA methylation or AHR. Postnatal exposure to PAH was borderline associated with increased AHR among sensitized wildtype, but not knockout mice. In the first study that delivers PAH aerosols to mice in a relatively physiological manner, small effects on AHR and β2AR gene expression, but not β2AR agonist drug activity, were observed. If confirmed, the results may suggest that exposure to PAH, common ambient urban pollutants, affects β2AR function, although the impact on the efficacy of β2AR agonist drugs used in treating asthma remains uncertain. PMID:24454363

  8. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    PubMed

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  9. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    PubMed

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  10. Detrimental effects of postnatal exposure to propofol on memory and hippocampal LTP in mice.

    PubMed

    Wang, Yuan-Lin; Chen, Xin; Wang, Zhi-Ping

    2015-10-01

    Acute effects of propofol on memory and hippocampal long-term potentiation (LTP) in adult animals were reported. However, long-term effect of early postnatal application of propofol on memory was not totally disclosed. In this study, experiments were designed to verify the mechanisms underlying the long-term detrimental effects of propofol on memory and hippocampal synaptic plasticity. A consecutive propofol protocol from postnatal day 7 was applied to model anesthesia, long term memory and hippocampal synaptic plasticity were detected 2 months later. Our results showed that repeated propofol exposure in early phase affect the memory in the adult phase. Through recording the field excitatory postsynaptic potentials (fEPSPs) at Schaffer colletaral-CA1 synapses, both of basal synaptic transmission and hippocampal LTP were decreased after propofol application. While LTD induced by low frequency stimulation and 3,5-dihydroxyphenylglycine (3,5-DHPG) were not affected. Through analyzing the ultrastructure of dendrite in CA1 region, we found that propofol application decreased the spine density, which was consistent with the decrease of PSD-95 expression. In addition, p-AKT level was reduced after first propofol application. Intracerebroventricular injection of Akt inhibitor could mimic the propofol effects on basal synaptic transmission, hippocampal LTP and memory. Taken together, these results suggested that propofol possibly decreased AKT signaling pathway to restrict the spine development, finally leading to hippocampal LTP impairment and memory deficit.

  11. Effects of tetrabromobisphenol A, brominated flame retardant, in ICR mice after prenatal and postnatal exposure.

    PubMed

    Tada, Y; Fujitani, T; Yano, N; Takahashi, H; Yuzawa, K; Ando, H; Kubo, Y; Nagasawa, A; Ogata, A; Kamimura, H

    2006-08-01

    Tetrabromobisphenol A (TBBPA), brominated flame retardant, is produced in the largest amounts globally for use in plastics or building materials. TBBPA has been detected in sediment, air at the dismantling plant or human serum samples. In the present study, we examined the effects of prenatal and postnatal exposure to TBBPA in mice. TBBPA (99.1% pure) in diet was administered to pregnant ICR mice at doses of 0% (control), 0.01%, 0.1% or 1.0% from gestational day 0 to weaning at postnatal day 27. The average daily food intake and body weight of dams showed no significant differences between the control and treated groups. There were no dose-related effects on reproductive data. Serum concentrations of total-cholesterol and liver weights of treated dams and offspring were higher than those of the control mice. Histological findings in treated dams or offspring showed the increase of focal necrosis of hepatocytes and inflammatory cell infiltration in the liver, and increase of dilation or atrophy of renal tubules and cyst in the kidney. TBBPA was developed as a new, safe class of flame retardant and was not highly toxic. However, the present data suggested that TBBPA caused a lipid metabolic disorder and hepatic or kidney lesion, under these conditions. PMID:16716481

  12. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  13. Adolescent Initiation of Licit and Illicit Substance Use: Impact of Intrauterine Exposures and Post-natal Exposure to Violence

    PubMed Central

    Frank, Deborah A.; Rose-Jacobs, Ruth; Crooks, Denise; Cabral, Howard J.; Gerteis, Jessie; Hacker, Karen A.; Martin, Brett; Weinstein, Zohar B.; Heeren, Timothy

    2010-01-01

    Whether intrauterine exposures to alcohol, tobacco, marijuana, or cocaine predispose offspring to substance use in adolescence has not been established. We followed a sample of 149 primarily African American/African Caribbean, urban adolescents recruited at term birth until age 16 to investigate intrauterine cocaine exposure (IUCE). We found that in Kaplan-Meier analyses higher levels of IUCE were associated with a greater likelihood of initiation of any substance (licit or illicit), as well as marijuana and alcohol specifically. Adolescent initiation of other illicit drugs and cigarettes were analyzed only in the “any” summary variable since they were used too infrequently to analyze as individual outcomes. In Cox proportional hazard models controlling for intrauterine exposure to alcohol, tobacco, and marijuana and demographic and postnatal covariates, those who experienced heavier IUCE had a greater likelihood of initiation of any substance, and those with lighter intrauterine marijuana exposure had a greater likelihood of initiation of any substance as well as of marijuana specifically. Time-dependent higher levels of exposure to violence between ages of 8 and 16 were also robustly associated with initiation of any licit or illicit substance, and of marijuana, and alcohol particularly. PMID:20600847

  14. Behavioral Effects of Pre- and Postnatal Exposure to Smoking, Alcohol, and Caffeine in 5-Month-Old Infants.

    ERIC Educational Resources Information Center

    Dowler, Jeffrey K.; Jacobson, Sandra W.

    This study examined the behavioral effects of prenatal and postnatal exposure to smoking, alcohol, and caffeinated beverages on 5-month-old infants. The sample consisted of 179 Caucasian infants and their mothers. All mothers were 19 years of age or older and had at least a tenth-grade education. Mental and motor portions of the Bayley Scales of…

  15. The Relationship between Prenatal and Postnatal Exposure to Polychlorinated Biphenyls (PCBs) and Cognitive, Neuropsychological, and Behavioral Deficits: A Critical Appraisal

    ERIC Educational Resources Information Center

    Cicchetti, Domenic V.; Kaufman, Alan S.; Sparrow, Sara S.

    2004-01-01

    Our purpose in this report is to evaluate scientifically that body of literature relating the effects of prenatal and postnatal exposure to polychlorinated biphenyls (PCBs) upon neurobehavioral, health-related, and cognitive deficits in neonates, developing infants, children, and adults. The data derive from seven cohorts: six cohorts of mothers…

  16. Sex-based differences in gene expression in hippocampus following postnatal lead exposure

    SciTech Connect

    Schneider, J.S. Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-10-15

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7 {+-} 2.1 {mu}g/dl and 27.1 {+-} 1.7 {mu}g/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. - Highlights: > Postnatal lead exposure has a significant effect on hippocampal gene expression patterns. > At least one set of genes was affected in opposite directions in males and females. > Differentially expressed genes were associated with diverse biological pathways.

  17. An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.

    PubMed

    McGlothlin, James; Burgess-Limerick, R; Lynas, D

    2015-01-01

    Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration.

  18. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    examination, which includes recording any change in exposure to WBV. The findings for the individual should be compared with previous examinations. Group data should also be compiled periodically. Medical removal may be considered along with re-placement in working practices without exposure to WBV. This paper presents opinions on health surveillance for whole-body vibration developed within a working group of partners funded on a European Community Network (BIOMED2 concerted action BMH4-CT98-3251: Research network on detection and prevention of injuries due to occupational vibration exposures). The health surveillance protocol and the draft questionnaire with explanation comments are presented for wider consideration by the science community and others before being considered appropriate for implementation.

  19. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    PubMed

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior.

  20. Preliminary Morphological and Immunohistochemical Changes in Rat Hippocampus Following Postnatal Exposure to Sodium Arsenite

    PubMed Central

    Kaler, Saroj; Dhar, Pushpa; Bhattacharya, Arnab; Mehra, Raj D.

    2013-01-01

    The effects of arsenic exposure during rapid brain growth period (RBGP) (postnatal period 4-11) on pyramidal neurons of cornu ammonis (specifically CA1 and CA3 regions) and granule cells of dentate gyrus (DG) of rat hippocampus were studied. Wistar rat pups, subdivided into the control (group I) and the experimental groups (group II, III, and IV), received distilled water and sodium arsenite (aqueous solution of 1.0, 1.5, and 2.0 mg/kg body weight, respectively) by intraperitoneal (i.p.) route. On postnatal day (PND) 12, the animals were sacrificed and brain tissue obtained. Paraffin sections (8 μm thick) stained with Cresyl Violet (CV) were observed for morphological and morphometric parameters. Arsenic induced programmed cell death (apoptosis) was studied using Terminal deoxyribonucleotidyl transferase mediated dUTP biotin Nick End Labeling (TUNEL) technique on the paraffin sections. Microscopy revealed decreased number and isolation of pyramidal neurons in superficial layers, misalignments of pyramidal cells in stratum pyramidale (SP) of CA1 and CA3 in experimental group III and IV, and presence of polymorphic cells in subgranular zone of ectal limb of dentate gyrus (suggestive of arsenic induced proliferation and migration of granule cells in the dentate gyrus). Morphometric assessments quantified and confirmed the microscopic findings. The mean nuclear area of pyramidal cells was increased and cell density was decreased in the CA1, CA3, and DG of experimental groups in comparison to the control group. Increase in the TUNEL positive cells in DG was observed in the experimental group IV, suggestive of increased apoptosis. These observations confirm vulnerability of pyramidal (CA1, CA3) and granule cells (DG) of hippocampus during RBGP. PMID:24082510

  1. Preliminary morphological and immunohistochemical changes in rat hippocampus following postnatal exposure to sodium arsenite.

    PubMed

    Kaler, Saroj; Dhar, Pushpa; Bhattacharya, Arnab; Mehra, Raj D

    2013-05-01

    The effects of arsenic exposure during rapid brain growth period (RBGP) (postnatal period 4-11) on pyramidal neurons of cornu ammonis (specifically CA1 and CA3 regions) and granule cells of dentate gyrus (DG) of rat hippocampus were studied. Wistar rat pups, subdivided into the control (group I) and the experimental groups (group II, III, and IV), received distilled water and sodium arsenite (aqueous solution of 1.0, 1.5, and 2.0 mg/kg body weight, respectively) by intraperitoneal (i.p.) route. On postnatal day (PND) 12, the animals were sacrificed and brain tissue obtained. Paraffin sections (8 μm thick) stained with Cresyl Violet (CV) were observed for morphological and morphometric parameters. Arsenic induced programmed cell death (apoptosis) was studied using Terminal deoxyribonucleotidyl transferase mediated dUTP biotin Nick End Labeling (TUNEL) technique on the paraffin sections. Microscopy revealed decreased number and isolation of pyramidal neurons in superficial layers, misalignments of pyramidal cells in stratum pyramidale (SP) of CA1 and CA3 in experimental group III and IV, and presence of polymorphic cells in subgranular zone of ectal limb of dentate gyrus (suggestive of arsenic induced proliferation and migration of granule cells in the dentate gyrus). Morphometric assessments quantified and confirmed the microscopic findings. The mean nuclear area of pyramidal cells was increased and cell density was decreased in the CA1, CA3, and DG of experimental groups in comparison to the control group. Increase in the TUNEL positive cells in DG was observed in the experimental group IV, suggestive of increased apoptosis. These observations confirm vulnerability of pyramidal (CA1, CA3) and granule cells (DG) of hippocampus during RBGP.

  2. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation.

    PubMed

    Lau, Christopher; Thibodeaux, Julie R; Hanson, Roger G; Rogers, John M; Grey, Brian E; Stanton, Mark E; Butenhoff, John L; Stevenson, Lisa A

    2003-08-01

    The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 18. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. In the highest dosage groups (10 mg/kg for rat and 20 mg/kg for mouse), the neonates became pale, inactive, and moribund within 30-60 min, and all died soon afterward. In the 5 mg/kg (rat) and 15 mg/kg (mouse) dosage groups, the neonates also became moribund but survived for a longer period of time (8-12 h). Over 95% of these animals died within 24 h. Approximately 50% of offspring died at 3 mg/kg for rat and 10 mg/kg for mouse. Cross-fostering the PFOS-exposed rat neonates (5 mg/kg) to control nursing dams failed to improve survival. Serum concentrations of PFOS in newborn rats mirrored the maternal administered dosage and were similar to those in the maternal circulation at GD 21; PFOS levels in the surviving neonates declined in the ensuing days. Small but significant and persistent growth lags were detected in surviving rat and mouse pups exposed to PFOS prenatally, and slight delays in eye opening were noted. Significant increases in liver weight were observed in the PFOS-exposed mouse pups. Serum thyroxine levels were suppressed in the PFOS-treated rat pups, although triiodothyronine and thyroid-stimulating hormone [TSH] levels were not altered. Choline acetyltransferase activity (an enzyme that is sensitive to thyroid status) in the prefrontal cortex of rat pups exposed to PFOS prenatally was slightly reduced, but activity in the hippocampus was not affected. Development of learning, determined by T-maze delayed

  3. Association of prenatal maternal or postnatal child environmental tobacco smoke exposure and neurodevelopmental and behavioral problems in children.

    PubMed Central

    Eskenazi, B; Castorina, R

    1999-01-01

    We review the potential neurodevelopmental and behavioral effects of children's prenatal and/or postnatal exposure to environmental tobacco smoke (ETS). Children's exposure to ETS has been assessed in epidemiologic studies as a risk factor for a variety of behavioral and neurodevelopmental problems including reduced general intellectual ability, skills in language and auditory tasks, and academic achievement, and behavioral problems such as hyperactivity and decreased attention spans. We review 17 epidemiologic studies that have attempted to separate the effects of maternal active smoking during pregnancy from passive ETS smoke exposure by the pregnant mother or the child. Based on the available data, we found that ETS exposure could cause subtle changes in children's neurodevelopment and behavior. However, studies to date are difficult to interpret because of the unknown influence of uncontrolled confounding factors, imprecision in measurements of smoking exposure, and collinearity of pre- and postnatal maternal smoking. Although some evidence suggests that maternal smoking during pregnancy may be associated with deficits in intellectual ability and behavioral problems in children, the impact of prenatal or postnatal ETS exposure remains less clear. PMID:10585903

  4. Assessment of pre- and postnatal exposure to polychlorinated biphenyls: lessons from the Inuit Cohort Study.

    PubMed Central

    Ayotte, Pierre; Muckle, Gina; Jacobson, Joseph L; Jacobson, Sandra W; Dewailly, Eric

    2003-01-01

    Polychlorinated biphenyls (PCBs) are food-chain contaminants that have been shown to induce adverse developmental effects in humans. In the course of an epidemiologic study established to investigate neurodevelopmental deficits induced by environmental PCB exposure in the Inuit population of northern Québec (Nunavik, Canada), we compared three biomarkers of prenatal exposure and models to predict PCB plasma concentration at 6 months postpartum. Concentrations of 14 PCB congeners were measured by high-resolution gas chromatography with electron capture detection in lipids extracted from maternal plasma, cord plasma, breast milk (collected at approximately 1 month postpartum), and 6-month-old infant plasma samples. Similar congener profiles were observed in all biologic samples, and PCB-153, the most abundant and persistent PCB congener, was strongly correlated with other frequently detected PCB congeners in all biologic media. When expressed on a lipid basis, maternal plasma, cord plasma, and milk concentrations of this congener were strongly intercorrelated, indicating that PCB concentration in any of these biologic media is a good indicator of prenatal exposure to PCBs. A multivariate model that included maternal PCB-153 plasma lipid concentration, breast-feeding duration, and the sum of two skin-fold thicknesses (an index of infant body fat mass) explained 72% of PCB-153 plasma concentration variance at 6 months postpartum (p < 0.001). By contrast, based on the product of breast-feeding duration times the concentration of PCBs in plasma lipids, which was used as an index of postnatal PCB exposure in several studies, only 36% of infant plasma concentration was explained. PMID:12842782

  5. Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats

    PubMed Central

    Dai, Xuemei; Roller, Anna; Carter, Kathleen; Paul, Ian; Bhatt, Abhay J.; Lin, Rick C. S.; Fan, Lir-Wan

    2016-01-01

    Perinatal infection is a well-identified risk factor for a number of neurodevelopmental disorders, including brain white matter injury (WMI) and Autism Spectrum Disorders (ASD). The underlying mechanisms by which early life inflammatory events cause aberrant neural, cytoarchitectural, and network organization, remain elusive. This study is aimed to investigate how systemic lipopolysaccharide (LPS)-induced neuroinflammation affects microglia phenotypes and early neural developmental events in rats. We show here that LPS exposure at early postnatal day 3 leads to a robust microglia activation which is characterized with mixed microglial proinflammatory (M1) and anti-inflammatory (M2) phenotypes. More specifically, we found that microglial M1 markers iNOS and MHC-II were induced at relatively low levels in a regionally restricted manner, whereas M2 markers CD206 and TGFβ were strongly upregulated in a sub-set of activated microglia in multiple white and gray matter structures. This unique microglial response was associated with a marked decrease in naturally occurring apoptosis, but an increase in cell proliferation in the subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus. LPS exposure also leads to a significant increase in oligodendrocyte lineage population without causing discernible hypermyelination. Moreover, LPS-exposed rats exhibited significant impairments in communicative and cognitive functions. These findings suggest a possible role of M2-like microglial activation in abnormal neural development that may underlie ASD-like behavioral impairments. PMID:27723799

  6. The consequences of prenatal and/or postnatal methamphetamine exposure on neonatal development and behaviour in rat offspring.

    PubMed

    McDonnell-Dowling, Kate; Kelly, John P

    2015-12-01

    Methamphetamine (MA) has become a popular drug of abuse in recent years not only in the general population but also amongst pregnant women. Although there is a growing body of preclinical investigations of MA exposure during pregnancy, there has been little investigation of the consequences of such exposure via the breast milk during the neonatal period. Therefore, the aim of this study was to determine the consequences of MA exposure during pregnancy and lactation on neurodevelopment and behaviour in the rat offspring. Pregnant Sprague-Dawley dams received MA (3.75 mg/kg) or control (distilled water) once daily via oral gavage from gestation day 7-21, postnatal day 1-21 or gestation day 7- postnatal day 21. A range of well-recognised neurodevelopmental parameters were examined in the offspring. Prenatal MA significantly reduced maternal weight gain, with a concomitant reduction in food intake. A significant increase in neonatal pup mortality was observed, being most marked in the prenatal/postnatal MA group. Significant impairments in neurodevelopmental parameters were also evident in all MA treatment groups including somatic development (e.g. pinna unfolding, fur appearance, eye opening) and behavioural development (e.g. surface righting, inclined plane test, forelimb grip). In conclusion, this study demonstrates that exposure to MA during any of these exposure periods (prenatal and/or postnatal) can have a profound effect on neonatal outcome, suggesting that regardless of the exposure period MA is associated with detrimental consequences in the offspring. These results indicate that in the clinical scenario, exposure during lactation needs to be considered when assessing the potential harmful effects of MA on offspring development. PMID:26391019

  7. The consequences of prenatal and/or postnatal methamphetamine exposure on neonatal development and behaviour in rat offspring.

    PubMed

    McDonnell-Dowling, Kate; Kelly, John P

    2015-12-01

    Methamphetamine (MA) has become a popular drug of abuse in recent years not only in the general population but also amongst pregnant women. Although there is a growing body of preclinical investigations of MA exposure during pregnancy, there has been little investigation of the consequences of such exposure via the breast milk during the neonatal period. Therefore, the aim of this study was to determine the consequences of MA exposure during pregnancy and lactation on neurodevelopment and behaviour in the rat offspring. Pregnant Sprague-Dawley dams received MA (3.75 mg/kg) or control (distilled water) once daily via oral gavage from gestation day 7-21, postnatal day 1-21 or gestation day 7- postnatal day 21. A range of well-recognised neurodevelopmental parameters were examined in the offspring. Prenatal MA significantly reduced maternal weight gain, with a concomitant reduction in food intake. A significant increase in neonatal pup mortality was observed, being most marked in the prenatal/postnatal MA group. Significant impairments in neurodevelopmental parameters were also evident in all MA treatment groups including somatic development (e.g. pinna unfolding, fur appearance, eye opening) and behavioural development (e.g. surface righting, inclined plane test, forelimb grip). In conclusion, this study demonstrates that exposure to MA during any of these exposure periods (prenatal and/or postnatal) can have a profound effect on neonatal outcome, suggesting that regardless of the exposure period MA is associated with detrimental consequences in the offspring. These results indicate that in the clinical scenario, exposure during lactation needs to be considered when assessing the potential harmful effects of MA on offspring development.

  8. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus.

    PubMed

    Cao, Jinyan; Mickens, Jillian A; McCaffrey, Katherine A; Leyrer, Stephanie M; Patisaul, Heather B

    2012-01-01

    Developmental exposure to Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been purported to adversely impact reproductive function in female rodents. Because neonatal life is a critical window for the sexual dimorphic organization of the hypothalamic-pituitary-gonadal (HPG) axis, interference with this process could underlie compromised adult reproductive physiology. The goal of the present study was to determine if neonatal BPA exposure interferes with sex specific gene expression of estrogen receptor alpha (ERα), ER beta (ERβ) and kisspeptin (Kiss1) in the anterior and mediobasal hypothalamus. Long Evans (LE) neonatal rats were exposed to vehicle, 10μg estradiol benzoate (EB), 50mg/kg BPA or 50μg/kg BPA by subcutaneous injection daily from postnatal day 0 (PND 0) to PND 2. Gene expression was assessed by in situ hybridization on PNDs 4 and 10. Within the anterior hypothalamus ERα expression was augmented by BPA in PND 4 females, then fell to male-typical levels by PND 10. ERβ expression was not altered by BPA on PND 4, but significantly decreased or eliminated in both sexes by PND 10. Kiss1 expression was diminished by BPA in the anterior hypothalamus, especially in females. There were no significant impacts of BPA in the mediobasal hypothalamus. Collectively, BPA effects did not mirror those of EB. The results show that neonatal hypothalamic ER and Kiss1 expression is sensitive to BPA exposure. This disruption may alter sexually dimorphic hypothalamic organization and underlie adult reproductive deficiencies. Additionally, the discordant effects of EB and BPA indicate that BPA likely disrupts hypothalamic organization by a mechanism other than simply acting as an estrogen mimic.

  9. Whole Body Vibration Training - Improving Balance Control and Muscle Endurance

    PubMed Central

    Ritzmann, Ramona; Kramer, Andreas; Bernhardt, Sascha; Gollhofer, Albert

    2014-01-01

    Exercise combined with whole body vibration (WBV) is becoming increasingly popular, although additional effects of WBV in comparison to conventional exercises are still discussed controversially in literature. Heterogeneous findings are attributed to large differences in the training designs between WBV and “control” groups in regard to training volume, load and type. In order to separate the additional effects of WBV from the overall adaptations due to the intervention, in this study, a four-week WBV training setup was compared to a matched intervention program with identical training parameters in both training settings except for the exposure to WBV. In a repeated-measures matched-subject design, 38 participants were assigned to either the WBV group (VIB) or the equivalent training group (CON). Training duration, number of sets, rest periods and task-specific instructions were matched between the groups. Balance, jump height and local static muscle endurance were assessed before and after the training period. The statistical analysis revealed significant interaction effects of group×time for balance and local static muscle endurance (p<0.05). Hence, WBV caused an additional effect on balance control (pre vs. post VIB +13%, p<0.05 and CON +6%, p = 0.33) and local static muscle endurance (pre vs. post VIB +36%, p<0.05 and CON +11%, p = 0.49). The effect on jump height remained insignificant (pre vs. post VIB +3%, p = 0.25 and CON ±0%, p = 0.82). This study provides evidence for the additional effects of WBV above conventional exercise alone. As far as balance and muscle endurance of the lower leg are concerned, a training program that includes WBV can provide supplementary benefits in young and well-trained adults compared to an equivalent program that does not include WBV. PMID:24587114

  10. Whole-Body Clinical Applications of Digital Tomosynthesis.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016.

  11. Whole-Body Clinical Applications of Digital Tomosynthesis.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27163590

  12. Alternate electrode placement for whole body and segmental bioimpedance spectroscopy.

    PubMed

    Grisbrook, T L; Kenworthy, P; Phillips, M; Gittings, P M; Wood, F M; Edgar, D W

    2015-10-01

    Bioimpedance spectroscopy (BIS) is frequently used to monitor body fluid and body composition in healthy and clinical populations. BIS guidelines state that there should be no skin lesions at the site of electrodes, and if lesions are present, electrode positions should be changed. However, alternate electrode positions are yet to be reported. This study aimed to determine if ventral electrode placements were suitable alternatives for whole body and segmental BIS measurements. Three alternate electrode placements were assessed for whole body BIS using a combination of ventral hand and foot electrode placements. An alternate position was assessed for upper and lower body segmental BIS. The results demonstrated that for whole body BIS, if drive and sense electrodes on the hand are moved to ventral positions, but foot electrodes remain in standard positions, then whole body BIS variables were comparable to standard electrode positioning (percentage difference range  =  0.01 to 1.65%, p  =  0.211-0.937). The alternate electrode placement for upper limb segmental BIS, results in BIS variables that are comparable to that of the standard positioning (percentage difference range  =  0.24-3.51%, p  =  0.393-0.604). The alternate lower limb electrode position significantly altered all resistance and predicted BIS variables for whole body and lower limb segmental BIS (percentage difference range  =  1.06-12.09%, p  <  0.001). If wounds are present on the hands and/or wrist, then the alternate electrode position described in this study is valid, for whole body and upper limb segmental BIS.

  13. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    PubMed Central

    Yeung, Ella W.; Lau, Cheuk C.; Kwong, Ada P.K.; Sze, Yan M.; Zhang, Wei Y.; Yeung, Simon S.

    2014-01-01

    The acute effect of whole-body vibration (WBV) training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD)] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF) and vastus lateralis (VL; p = 0.934 and 0.935, respectively) EMD of RF and VL (p = 0.474 and 0.551, respectively) and peak torque production (p = 0.483) measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults. Key Points There is no acute potentiation of stretch reflex right after whole body vibration. Acute whole body vibration does not improve mus-cle peak torque performance in healthy young adults. PMID:24570602

  14. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  15. Design specification for the whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    The necessary requirements and guidelines for the construction of a computer program of the whole-body algorithm are presented. The minimum subsystem models required to effectively simulate the total body response to stresses of interest are (1) cardiovascular (exercise/LBNP/tilt); (2) respiratory (Grodin's model); (3) thermoregulatory (Stolwijk's model); and (4) long-term circulatory fluid and electrolyte (Guyton's model). The whole-body algorithm must be capable of simulating response to stresses from CO2 inhalation, hypoxia, thermal environmental exercise (sitting and supine), LBNP, and tilt (changing body angles in gravity).

  16. Prenatal and Postnatal Exposure to DDT by Breast Milk Analysis in Canary Islands

    PubMed Central

    Vall, Oriol; Gomez-Culebras, Mario; Puig, Carme; Rodriguez-Carrasco, Ernesto; Gomez Baltazar, Arelis; Canchucaja, Lizzeth; Joya, Xavier; Garcia-Algar, Oscar

    2014-01-01

    Introduction The use of p,p′-dichlorodiphenyltrichloroethane (DDT) has been banned since the late 1970s due to its toxicity. However, its long half-life makes it persistent in the environment and, consequently, almost everyone has DDT residues in the body. Human milk constitutes an ideal non-conventional matrix to investigate environmental chronic exposure to organochlorine compounds (OCs) residues. The study aimed to identify potential population risk factors of exposure to DDT due to the proximity to countries where it is still used. Methods Seventy-two consecutive lactating women were prospectively included in Tenerife, Canary Islands (Spain). A validated questionnaire was used to obtain socioeconomic, demographics data, and daily habits during pregnancy. DDT levels in breast milk were measured by gas chromatography with-electron capture detector (GC-ECD). Anthropometrics measurements in newborns were obtained. Results Thirty-four out of 72 (47.2%) of the analysed milk samples presented detectable levels of DDT (mean: 0.92 ng/g), ranging between 0.08 to 16.96 ng/g. The socio-demographic variables did not significantly differ between detectable DDT and non-detectable DDT groups. We found positive association between DDT levels and vegetables (OR (95%CI): 1.23 (1.01–1.50)) and poultry meat (OR (95%CI): 2.05 (1.16–3.60)) consumption, and also between the presence of DDT in breast milk and gestational age (OR (95%CI): 0.59 (0.40–0.90)). Conclusions DDT is present in breast milk of women at the time of delivery. Residual levels and the spread from countries still using DDT explain DDT detection from vegetables and from animal origin food. The presence of this compound in breast milk represents a pre- and postnatal exposure hazard for foetuses and infants due to chronic bioaccumulation and poor elimination, with possible deleterious effects on health. This data should be used to raise awareness of the risks of OCs exposure and to help establish health policies

  17. Problematic Substance Use in Urban Adolescents: Role of Intrauterine Exposures to Cocaine and Marijuana and Post-Natal Environment

    PubMed Central

    Frank, Deborah A.; Kuranz, Seth; Appugliese, Danielle; Cabral, Howard; Chen, Clara; Crooks, Denise; Heeren, Timothy; Liebschutz, Jane; Richardson, Mark; Rose-Jacobs, Ruth

    2014-01-01

    Background Linkages between intrauterine exposures to cocaine and marijuana and adolescents’ problematic substance use have not been fully delineated. Methods Prospective longitudinal study with assessors unaware of intrauterine exposure history followed 157 urban participants from birth until late adolescence. Level of intrauterine exposures was identified by mother's report and infant’s meconium. Problematic substance use, identified by the Voice Diagnostic Interview Schedule for Children (V-DISC) or the Audio Computer Assisted Self-Interview (ACASI) and urine assay, was a composite encompassing DSM-IV indication of tolerance, abuse, and dependence on alcohol, marijuana, and tobacco and any use of cocaine, glue, or opiates. Results Twenty percent (32/157) of the sample experienced problematic substance use by age 18 years, of whom the majority (22/157) acknowledged abuse, tolerance or dependence on marijuana with or without other substances. Structural equation models examining direct and indirect pathways linking a Cox survival model for early substance initiation to a logistic regression models found effects of post-natal factors including childhood exposure to violence and household substance use, early youth substance initiation, and ongoing youth violence exposure contributing to adolescent problematic substance use. Conclusion We did not identify direct relationships between intrauterine cocaine or marijuana exposure and problematic substance use, but did find potentially modifiable post-natal risk factors also noted to be associated with problematic substance use in the general population including earlier substance initiation, exposure to violence and to household substance use. PMID:24999059

  18. Postnatal Isoflurane Exposure Induces Cognitive Impairment and Abnormal Histone Acetylation of Glutamatergic Systems in the Hippocampus of Adolescent Rats.

    PubMed

    Liang, Bing; Fang, Jie

    2016-09-01

    Isoflurane can elicit cognitive impairment. However, the pathogenesis in the brain remains inconclusive. The present study investigated the mechanism of glutamate neurotoxicity in adolescent male rats that underwent postnatal isoflurane exposure and the role of sodium butyrate (NaB) in cognitive impairment induced by isoflurane exposure. Seven-day-old rats were exposed to 1.7 % isoflurane for 35 min every day for four consecutive days, and then glutamate neurotoxicity was examined in the hippocampus. Morris water maze analysis showed cognitive impairments in isoflurane-exposed rats. High-performance liquid chromatography found higher hippocampal glutamate concentrations following in vitro and in vivo isoflurane exposure. The percentage of early apoptotic hippocampal neurons was markedly increased after isoflurane exposure. Decreased acetylation and increased HDAC2 activity were observed in the hippocampus of isoflurane-exposed rats and hippocampal neurons. Furthermore, postnatal isoflurane exposure decreased histone acetylation of hippocampal neurons in the promoter regions of GLT-1 and mGLuR1/5, but not mGLuR2/3. Treatment with NaB not only restored the histone acetylation of the GLT-1 and mGLuR1/5 promoter regions and glutamate excitatory neurotoxicity in hippocampal neurons, but also improved cognitive impairment in vivo. Moreover, NaB may be a potential therapeutic drug for cognitive impairment caused by isoflurane exposure. These results suggest that postnatal isoflurane exposure contributes to cognitive impairment via decreasing histone acetylation of glutamatergic systems in the hippocampus of adolescent rats. PMID:27307148

  19. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

    PubMed Central

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274

  20. Biological and behavioral effects of prenatal and postnatal exposure to 2450-MHz electromagnetic radiation in the squirrel monkey

    NASA Astrophysics Data System (ADS)

    Kaplan, J.; Polson, P.; Rebert, C.; Lunan, K.; Gage, M.

    1982-01-01

    Near the beginning of the second trimester of pregnancy, 33 squirrel monkeys were exposed to 2450-MHz irradiation in a multimode cavity at whole-body average specific absorption rates equivalent to those resulting from exposure to plane wave irradiation at 0.034, 0.34, and 3.4 W/kg; exposed monkeys were compared with eight pregnant sham-exposed monkeys. Eighteen of the irradiated mothers and their offspring were exposed for an additional 6 months after parturition, and then their offspring were exposed for another 6 months. No differences were found between irradiated and control adults with respect to the number of live births produced or to measures of locomotor activity, maternal care, urinary catecholamines, plasma cortisol, 3H-thymidine and 14C-uridine uptake by phytohemagglutininstimulated blood lymphocytes, or electroencephalographic (EEG) activity. Similarly, no differences were found between exposed and nonexposed offspring on the same blood, urine, and EEG parameters. Growth rate and most aspects of behavioral development were not altered by exposure. The major difference between irradiated and control offspring was the high mortality rate (4/5) before 6 months of age in those exposed at 3.4 W/kg both before and after birth. These results indicate that microwaves at power densities to 3.4 W/kg might have little direct effect on the monkey fetus when exposures occur in utero during the latter half to two-thirds of pregnancy, but that continued exposure after birth might be harmful.

  1. Whole body bone tissue and cardiovascular risk in rheumatoid arthritis.

    PubMed

    Popescu, Claudiu; Bojincă, Violeta; Opriş, Daniela; Ionescu, Ruxandra

    2014-01-01

    Introduction. Atherosclerosis and osteoporosis share an age-independent bidirectional correlation. Rheumatoid arthritis (RA) represents a risk factor for both conditions. Objectives. The study aims to evaluate the connection between the estimated cardiovascular risk (CVR) and the loss of bone tissue in RA patients. Methods. The study has a prospective cross-sectional design and it includes female in-patients with RA or without autoimmune diseases; bone tissue was measured using whole body dual X-ray absorptiometry (wbDXA); CVR was estimated using SCORE charts and PROCAM applications. Results. There were 75 RA women and 66 normal women of similar age. The wbDXA bone indices correlate significantly, negatively, and age-independently with the estimated CVR. The whole body bone percent (wbBP) was a significant predictor of estimated CVR, explaining 26% of SCORE variation along with low density lipoprotein (P < 0.001) and 49.7% of PROCAM variation along with glycemia and menopause duration (P < 0.001). Although obese patients had less bone relative to body composition (wbBP), in terms of quantity their bone content was significantly higher than that of nonobese patients. Conclusions. Female patients with RA and female patients with cardiovascular morbidity have a lower whole body bone percent. Obese female individuals have higher whole body bone mass than nonobese patients.

  2. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  3. Student Attitudes to Whole Body Donation Are Influenced by Dissection

    ERIC Educational Resources Information Center

    Cahill, Kevin C.; Ettarh, Raj R.

    2008-01-01

    Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial…

  4. Long-term behavioral effects in a rat model of prolonged postnatal morphine exposure.

    PubMed

    Craig, Michael M; Bajic, Dusica

    2015-10-01

    Prolonged morphine treatment in neonatal pediatric populations is associated with a high incidence of opioid tolerance and dependence. Despite the clinical relevance of this problem, our knowledge of long-term consequences is sparse. The main objective of this study was to investigate whether prolonged morphine administration in a neonatal rat is associated with long-term behavioral changes in adulthood. Newborn animals received either morphine (10 mg/kg) or equal volume of saline subcutaneously twice daily for the first 2 weeks of life. Morphine-treated animals underwent 10 days of morphine weaning to reduce the potential for observable physical signs of withdrawal. Animals were subjected to nonstressful testing (locomotor activity recording and a novel-object recognition test) at a young age (Postnatal Days [PDs] 27-31) or later in adulthood (PDs 55-56), as well as stressful testing (calibrated forceps test, hot plate test, and forced swim test) only in adulthood. Analysis revealed that prolonged neonatal morphine exposure resulted in decreased thermal but not mechanical threshold. Importantly, no differences were found for total locomotor activity (proxy of drug reward/reinforcement behavior), individual forced swim test behaviors (proxy of affective processing), or novel-object recognition test. Performance on the novel-object recognition test was compromised in the morphine-treated group at the young age, but the effect disappeared in adulthood. These novel results provide insight into the long-term consequences of opioid treatment during an early developmental period and suggest long-term neuroplastic differences in sensory processing related to thermal stimuli.

  5. Effects of prenatal cocaine exposure on early postnatal rodent brain structure and diffusion properties

    PubMed Central

    McMurray, Matthew S.; Oguz, Ipek; Rumple, Ashley M.; Paniagua, Beatriz; Styner, Martin A.; Johns, Josephine M.

    2014-01-01

    Prenatal cocaine exposure has been associated with numerous behavioral phenotypes in clinical populations, including impulsivity, reduced attention, alterations in social behaviors, and delayed language and sensory-motor development. Detecting associated changes in brain structure in these populations has proven difficult, and results have been inconclusive and inconsistent. Due to their more controlled designs, animal models may shed light on the neuroanatomical changes caused by prenatal cocaine; however, to maximize clinical relevance data must be carefully collected using translational methods. The goal of this study was two-fold: 1) determine if prenatal cocaine alters developmental neuroanatomy using methods that are available to human researchers, specifically structural MRI and diffusion tensor imaging; and 2) to determine the feasibility of rodent in vivo neuroimaging for usage in longitudinal studies of developmental disorders. Cocaine-exposed (prenatal days 1–20, 30mg/kg/day) rat pups were sedated and imaged live using diffusion tensor imaging and postmortem (fixed) using magnetic resonance histology on postnatal day 14. Volume and diffusion properties in whole brain as well as specific regions of interest were then assessed from the resulting images. Whole brain analyses revealed that cocaine-exposed animals showed no change in whole brain volume. Additionally, we found alterations in fractional anisotropy across regions associated with reward processing and emotional regulation, especially in the thalamus and globus palladus, as well as sex-dependent effects of cocaine in the right cortex. Reductions in fractional anisotropy were paired with reductions only in axial diffusivity, which preliminarily suggests that the changes observed here may be due to axonal damage, as opposed to reductions in myelination of the affected regions/pathways. Our data indicate that prenatal cocaine may target a number of developing brain structures, but does not result

  6. Effects of prenatal cocaine exposure on early postnatal rodent brain structure and diffusion properties.

    PubMed

    McMurray, Matthew S; Oguz, Ipek; Rumple, Ashley M; Paniagua, Beatriz; Styner, Martin A; Johns, Josephine M

    2015-01-01

    Prenatal cocaine exposure has been associated with numerous behavioral phenotypes in clinical populations, including impulsivity, reduced attention, alterations in social behaviors, and delayed language and sensory-motor development. Detecting associated changes in brain structure in these populations has proven difficult, and results have been inconclusive and inconsistent. Due to their more controlled designs, animal models may shed light on the neuroanatomical changes caused by prenatal cocaine; however, to maximize clinical relevance, data must be carefully collected using translational methods. The goal of this study was two-fold: (1) to determine if prenatal cocaine alters developmental neuroanatomy using methods that are available to human researchers, specifically structural MRI and diffusion tensor imaging, and (2) to determine the feasibility of rodent in vivo neuroimaging for usage in longitudinal studies of developmental disorders. Cocaine-exposed (prenatal days 1-20, 30mg/kg/day) rat pups were sedated and imaged live using diffusion tensor imaging and postmortem (fixed) using magnetic resonance histology on postnatal day 14. Volume and diffusion properties in whole brain as well as specific regions of interest were then assessed from the resulting images. Whole brain analyses revealed that cocaine-exposed animals showed no change in whole brain volume. Additionally, we found alterations in fractional anisotropy across regions associated with reward processing and emotional regulation, especially in the thalamus and globus pallidus, as well as sex-dependent effects of cocaine in the right cortex. Reductions in fractional anisotropy were paired with reductions only in axial diffusivity, which preliminarily suggests that the changes observed here may be due to axonal damage, as opposed to reductions in myelination of the affected regions/pathways. Our data indicate that prenatal cocaine may target a number of developing brain structures but does not

  7. Effects of prenatal cocaine exposure on early postnatal rodent brain structure and diffusion properties.

    PubMed

    McMurray, Matthew S; Oguz, Ipek; Rumple, Ashley M; Paniagua, Beatriz; Styner, Martin A; Johns, Josephine M

    2015-01-01

    Prenatal cocaine exposure has been associated with numerous behavioral phenotypes in clinical populations, including impulsivity, reduced attention, alterations in social behaviors, and delayed language and sensory-motor development. Detecting associated changes in brain structure in these populations has proven difficult, and results have been inconclusive and inconsistent. Due to their more controlled designs, animal models may shed light on the neuroanatomical changes caused by prenatal cocaine; however, to maximize clinical relevance, data must be carefully collected using translational methods. The goal of this study was two-fold: (1) to determine if prenatal cocaine alters developmental neuroanatomy using methods that are available to human researchers, specifically structural MRI and diffusion tensor imaging, and (2) to determine the feasibility of rodent in vivo neuroimaging for usage in longitudinal studies of developmental disorders. Cocaine-exposed (prenatal days 1-20, 30mg/kg/day) rat pups were sedated and imaged live using diffusion tensor imaging and postmortem (fixed) using magnetic resonance histology on postnatal day 14. Volume and diffusion properties in whole brain as well as specific regions of interest were then assessed from the resulting images. Whole brain analyses revealed that cocaine-exposed animals showed no change in whole brain volume. Additionally, we found alterations in fractional anisotropy across regions associated with reward processing and emotional regulation, especially in the thalamus and globus pallidus, as well as sex-dependent effects of cocaine in the right cortex. Reductions in fractional anisotropy were paired with reductions only in axial diffusivity, which preliminarily suggests that the changes observed here may be due to axonal damage, as opposed to reductions in myelination of the affected regions/pathways. Our data indicate that prenatal cocaine may target a number of developing brain structures but does not

  8. Mitigating effects of combined prenatal and postnatal exposure to ethanol on learned persistence in the weanling rat: a replication under high-peak conditions.

    PubMed

    Diaz-Granados, J L; Greene, P L; Amsel, A

    1993-12-01

    Replicating an earlier report under low-peak blood ethanol concentration (BEC) conditions, weanling rats, exposed in utero or postnatally to levels of ethanol that resulted in high-peak BECs, showed an attenuated partial reinforcement extinction effect, whereas pups exposed both pre- and postnatally did not differ from controls. Also supporting earlier work, postnatal exposure resulted in significantly reduced brain weight and had effects on hippocampal measures. These results from the combined-exposure group, along with earlier work, point to a possible mitigating influence in the rat of prenatal exposure to ethanol on the behavioral effects of postnatal exposure. They suggest that a protective factor may be operating, akin to the proactive immunoreactive effects of heat shock proteins shown in recent work at the cellular and hippocampal levels.

  9. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  10. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children

    PubMed Central

    Donohue, Kathleen M.; Miller, Rachel L.; Perzanowski, Matthew S.; Just, Allan C.; Hoepner, Lori A.; Arunajadai, Srikesh; Canfield, Stephen; Resnick, David; Calafat, Antonia M.; Perera, Frederica P.; Whyatt, Robin M.

    2013-01-01

    Background Bisphenol A (BPA) is used widely to manufacture food container linings. Mouse models suggest exposure to BPA might increase allergic inflammation. Objectives We hypothesized that BPA exposure, as assessed based on urinary BPA concentrations, would be associated with increased odds of wheeze and asthma and increased fraction of exhaled nitric oxide (FENO) values in children. Methods The Columbia Center for Children’s Environmental Health recruited pregnant women for a prospective birth cohort study (n = 568). Mothers during the third trimester and children at ages 3, 5, and 7 years provided spot urine samples. Total urinary BPA concentrations were measured by using online solid-phase extraction, high-performance liquid chromatography, isotope-dilution tandem mass spectrometry. Wheeze in the last 12 months was measured by using questionnaires at ages 5, 6, and 7 years. Asthma was determined by a physician once between ages 5 and 12 years. FENO values were measured at ages 7 to 11 years. Results Prenatal urinary BPA concentrations were associated inversely with wheeze at age 5 years (odds ratio [OR], 0.7; 95% CI, 0.5–0.9; P = .02). Urinary BPA concentrations at age 3 years were associated positively with wheeze at ages 5 years (OR, 1.4; 95% CI, 1.1–1.8; P = .02) and 6 years (OR, 1.4; 95% CI, 1.0–1.9; P = .03). BPA concentrations at age 7 years were associated with wheeze at age 7 years (OR, 1.4; 95% CI, 1.0–1.9; P = .04) and FENO values (β = 0.1; 95% CI, 0.02–0.2; P = .02). BPA concentrations at ages 3, 5, and 7 years were associated with asthma (OR, 1.5 [95% CI, 1.1–2.0], P = .005; OR, 1.4 [95% CI, 1.0–1.9], P = .03; and OR, 1.5 [95% CI, 1.0–2.1], P = .04, respectively). Conclusions This is the first report of an association between postnatal urinary BPA concentrations and asthma in children. PMID:23452902

  11. Prenatal exposure of a novel antipsychotic aripiprazole: impact on maternal, fetal and postnatal body weight modulation in rats.

    PubMed

    Singh, K P; Tripathi, Nidhi

    2014-03-01

    Nearly all atypical antipsychotic drugs (AAPDs) of second- generation are associated with body weight gain in adults with prolonged exposure; but reports on third-generation AAPDs like Aripiprazole (ARI) and weight gain are scanty and ambiguous. This may be attributed to some unknown mechanism of action, the study of which is essential to investigate gestational exposure of equivalent therapeutic doses of ARI on maternal and fetal weight gain and its longlasting impact on postnatal development and growth of offspring in rodent model. 30 pregnant Wistar rats were exposed to selected doses (2mg, 3mg and 5mg/kg BW) of ARI from GD3-21 orally, with control subjects. Half of the pregnant subjects of each group were sacrificed at GD22 and rest dams were allowed to deliver normally and pups were reared postnatally up to 10 weeks of age. In ARI treated groups, there was no substantial alteration of body weight gain and food intake in pregnant subjects while significant reduction was found in fetal and postnatal (pre-and post weaning) body weight gain. ARI was found neutral for substantial weight gain in pregnant rats but may induce significant weight loss in fetuses, creating long-lasting negative impact on offspring growth (in weight) till PND70. Therefore, ARI could be a good alternative of second- generation AAPDs for adult females but may not be safe for developing fetuses and offspring.

  12. Pre- and post-natal exposure of children to EMF generated by domestic induction cookers.

    PubMed

    Kos, Bor; Valič, Blaž; Miklavčič, Damijan; Kotnik, Tadej; Gajšek, Peter

    2011-10-01

    Induction cookers are a type of cooking appliance that uses an intermediate-frequency magnetic field to heat the cooking vessel. The magnetic flux density produced by an induction cooker during operation was measured according to the EN 62233 standard, and the measured values were below the limits set in the standard. The measurements were used to validate a numerical model consisting of three vertically displaced coaxial current loops at 35 kHz. The numerical model was then used to compute the electric field (E) and induced current (J) in 26 and 30 weeks pregnant women and 6 and 11 year old children. Both E and J were found to be below the basic restrictions of the 2010 low-frequency and 1998 ICNRIP guidelines. The maximum computed E fields in the whole body were 0.11 and 0.66 V m(-1) in the 26 and 30 weeks pregnant women and 0.28 and 2.28 V m(-1) in the 6 and 11 year old children (ICNIRP basic restriction 4.25 V m(-1)). The maximum computed J fields in the whole body were 46 and 42 mA m(-2) in the 26 and 30 weeks pregnant women and 27 and 16 mA m(-2) in the 6 and 11 year old children (ICNIRP basic restriction 70 mA m(-2)).

  13. Pre- and post-natal exposure of children to EMF generated by domestic induction cookers

    NASA Astrophysics Data System (ADS)

    Kos, Bor; Valič, Blaž; Miklavčič, Damijan; Kotnik, Tadej; Gajšek, Peter

    2011-10-01

    Induction cookers are a type of cooking appliance that uses an intermediate-frequency magnetic field to heat the cooking vessel. The magnetic flux density produced by an induction cooker during operation was measured according to the EN 62233 standard, and the measured values were below the limits set in the standard. The measurements were used to validate a numerical model consisting of three vertically displaced coaxial current loops at 35 kHz. The numerical model was then used to compute the electric field (E) and induced current (J) in 26 and 30 weeks pregnant women and 6 and 11 year old children. Both E and J were found to be below the basic restrictions of the 2010 low-frequency and 1998 ICNRIP guidelines. The maximum computed E fields in the whole body were 0.11 and 0.66 V m-1 in the 26 and 30 weeks pregnant women and 0.28 and 2.28 V m-1 in the 6 and 11 year old children (ICNIRP basic restriction 4.25 V m-1). The maximum computed J fields in the whole body were 46 and 42 mA m-2 in the 26 and 30 weeks pregnant women and 27 and 16 mA m-2 in the 6 and 11 year old children (ICNIRP basic restriction 70 mA m-2).

  14. Adverse Associations of both Prenatal and Postnatal Exposure to Organophosphorous Pesticides with Infant Neurodevelopment in an Agricultural Area of Jiangsu Province, China

    PubMed Central

    Liu, Ping; Wu, Chunhua; Chang, Xiuli; Qi, Xiaojuan; Zheng, Minglan; Zhou, Zhijun

    2016-01-01

    Background: Prenatal exposure to organophosphorous (OP) pesticides has been found to be associated with adverse effects on child neurodevelopment, but evidence on potential effects induced by both prenatal and postnatal OP exposure in infants is limited. Objectives: Our aim was to investigate the associations of both prenatal and postnatal OP exposure with birth outcomes and infant neurodevelopment. Methods: Exposure to OP in 310 mother–infant pairs was assessed by measuring dimethylphosphate (DM), diethylphosphate (DE), and total dialkylphosphate (DAP) metabolites in urines from pregnant women and their children at 2 years of age. The Gesell Developmental Schedules was administered to examine neurodevelopment of 2-year-old children. Results: Based on the Gesell Developmental Schedules, the proportions of children with developmental delays were < 6%. Adverse associations between head circumference at birth and prenatal OP exposure were demonstrated. Both prenatal and postnatal OP exposure was significantly associated with increased risk of being developmentally delayed. Specifically, odds ratio (OR) value for prenatal DEs was 9.75 (95% CI: 1.28, 73.98, p = 0.028) in the adaptive area, whereas in the social area, OR values for postnatal DEs and DAPs were 9.56 (95% CI: 1.59, 57.57, p = 0.014) and 12.00 (95% CI: 1.23, 117.37, p = 0.033), respectively. Adverse associations were observed only in boys, not in girls. Conclusions: Both prenatal and postnatal OP exposure may adversely affect the neurodevelopment of infants living in the agricultural area. The present study adds to the accumulating evidence on associations of prenatal and postnatal OP exposure with infant neurodevelopment. Citation: Liu P, Wu C, Chang X, Qi X, Zheng M, Zhou Z. 2016. Adverse associations of both prenatal and postnatal exposure to organophosphorous pesticides with infant neurodevelopment in an agricultural area of Jiangsu Province, China. Environ Health Perspect 124:1637–1643; http

  15. Whole-Body Vibration to Treat Low Back Pain: Fact or Fad?

    PubMed Central

    Perraton, Luke; Machotka, Zuzana

    2011-01-01

    ABSTRACT Purpose: The purpose of this systematic review was to evaluate the current evidence base for whole-body vibration as a treatment for low back pain (LBP). Summary of key points: Whole-body vibration through occupational exposure has previously been recognized as an aetiological factor in LBP. Previous studies have identified whole-body vibration (WBV) as a cause of LBP in various sitting-based occupations that involve machinery and repetitive vibration. In the last decade, however, WBV has been advocated as a safe and effective treatment for LBP. Despite the growing popularity of WBV in clinical practice, this systematic review of the literature identified only two studies that investigated the effectiveness of WBV as a treatment option for LBP, and an assessment of the quality of these studies demonstrated several methodological problems that may have biased their findings. While there is emerging evidence for the effectiveness of WBV in treating some medical conditions, the evidence for WBV as a treatment for LBP remains equivocal. Recommendations: Based on the current body of evidence, routine use of WBV to treat LBP should be undertaken with caution. Further rigorous research designed to investigate the effectiveness of WBV as a safe and high-quality treatment for LBP is required. PMID:22210985

  16. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  17. Whole-body MRI evaluation of facioscapulohumeral muscular dystrophy

    PubMed Central

    Leung, Doris G.; Carrino, John A.; Wagner, Kathryn R.; Jacobs, Michael A.

    2015-01-01

    Introduction Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary disorder that causes progressive muscle wasting. Increasing knowledge of the pathophysiology of FSHD has stimulated interest in developing biomarkers of disease severity. Methods Two groups of MRI scans were analyzed: whole-body scans from 13 subjects with FSHD, and upper and lower extremity scans from 34 subjects with FSHD who participated in the MYO-029 clinical trial. Muscles were scored for fat infiltration and edema-like changes. Fat infiltration scores were compared to muscle strength and function. Results Our analysis reveals a distinctive pattern of both frequent muscle involvement and frequent sparing in FSHD. Averaged fat infiltration scores for muscle groups in the legs correlated with quantitative muscle strength and 10-meter walk times. Discussion Advances in MRI technology allow for the acquisition of rapid, high-quality whole-body imaging in diffuse muscle disease. This technique offers a promising disease biomarker in FSHD and other muscle diseases. PMID:25641525

  18. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  19. Regional Myelin and Axon Damage and Neuroinflammation in the Adult Mouse Brain After Long-Term Postnatal Vanadium Exposure.

    PubMed

    Azeez, Idris A; Olopade, Funmilayo; Laperchia, Claudia; Andrioli, Anna; Scambi, Ilaria; Onwuka, Silas K; Bentivoglio, Marina; Olopade, James O

    2016-09-01

    Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice. Myelin histochemistry and immunohistochemistry for astrocytes, microglia, and nonphosphorylated neurofilaments revealed striking regional heterogeneity. Myelin damage involved the midline corpus callosum and fibers in cortical gray matter, hippocampus, and diencephalon that were associated with axonal damage. Astrocyte and microglial activation was identified in the same regions and in the internal capsule; however, no overt myelin and axon damage was observed in the latter. Double immunofluorescence revealed induction of high tumor necrosis factor (TNF) immunoreactivity in reactive astrocytes. Western blotting analysis showed significant induction of TNF and interleukin-1β expression. Together these findings show that chronic postnatal vanadium exposure leads to functional deficit and region-dependent myelin damage that does not spare axons. This injury is associated with glial cell activation and proinflammatory cytokine induction, which may reflect both neurotoxic and neuroprotective responses. PMID:27390101

  20. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat.

    PubMed

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  1. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  2. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood. PMID:27630615

  3. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  4. Whole-Body Pediatric Neuroblastoma Imaging: 123I-mIBG and Beyond.

    PubMed

    Pai Panandiker, Atmaram S; Coleman, Jamie; Shulkin, Barry

    2015-09-01

    Pediatric cancer imaging stands to benefit from higher tumor detection sensitivity without ionizing radiation exposure. A prospective protocol compared diagnostic I-metaiodobenzylguanidine (I-mIBG) with whole-body diffusion-weighted MRI (DWI) to validate adjunctive methods of identifying small-volume oligometastatic neuroblastoma tumor deposits. Dual-modality imaging (I-mIBG and DWI) was obtained within a 3- and 25-day window at baseline and again at one year in the first enrolled patient. MRI was able to define the full extent of metastatic disease foci with improved resolution. These findings may provide critical information for definitive locoregional surgery and radiotherapy for high-risk neuroblastoma treatment.

  5. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan; Cooney, Craig A; Gilbert, Kathleen M; James, S Jill

    2012-12-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity.

  6. Limbic system activation is affected by prenatal predator exposure and postnatal environmental enrichment and further moderated by dam and sex.

    PubMed

    Korgan, Austin C; Green, Amanda D; Perrot, Tara S; Esser, Michael J

    2014-02-01

    Epilepsy is a relatively common and chronic neurological condition, affecting 1-2% of the population. However, understanding of the underlying pathophysiology remains incomplete. To identify potential factors in the early environment that may increase the risk for experiencing seizures, maternal stress and environmental enrichment (EE) were utilized. Pregnant Long-Evans rats were exposed to an ethologically relevant predator stress (PS) and maternal glucocorticoid (GC) response was assessed across the exposure period. At birth, litters were divided into standard care (SC) and EE groups until postnatal day 14 (PD14) when a model of febrile convulsions was used to determine seizure susceptibility of the various groups. Pup brains were then processed for immunohistochemical detection of FosB from several structures in the limbic system as a measure of neuronal activation. Maternal PS-induced GC levels were elevated early in the exposure period, and pup birth weights, in both sexes, were lower in litters from dams exposed to PS. Seizure scores at PD14 were highly individualized and litter dependent, suggesting a dam-dependent and variable effect of controlled pre- and postnatal environmental factors. Further, analysis of FosB-immunoreactive (-ir) patterns revealed an activity dependent distribution, reflecting individual seizure susceptibility. EE had a varying effect on FosB-ir that was dependent on region. In the hippocampus FosB-ir levels were greater in the EE groups while extra-hippocampal regions showed lower levels of FosB-ir. Our results support the concept that pre- and postnatal environmental influences affect fetal programming and neurodevelopment of processes that could underlie seizure susceptibility, but that the magnitude of these effects appears to be dam- or litter-dependent.

  7. Directional acuity of whole-body perturbations during standing balance.

    PubMed

    Puntkattalee, M Jane; Whitmire, Clarissa J; Macklin, Alix S; Stanley, Garrett B; Ting, Lena H

    2016-07-01

    The ability to perceive the direction of whole-body motion during standing may be critical to maintaining balance and preventing a fall. Our first goal was to quantify kinesthetic perception of whole-body motion by estimating directional acuity thresholds of support-surface perturbations during standing. The directional acuity threshold to lateral deviations in backward support-surface motion in healthy, young adults was quantified as 9.5±2.4° using the psychometric method (n=25 subjects). However, inherent limitations in the psychometric method, such as a large number of required trials and the predetermined stimulus set, may preclude wider use of this method in clinical populations. Our second goal was to validate an adaptive algorithm known as parameter estimation by sequential testing (PEST) as an alternative threshold estimation technique to minimize the required trial count without predetermined knowledge of the relevant stimulus space. The directional acuity threshold was estimated at 11.7±3.8° from the PEST method (n=11 of 25 subjects, psychometric threshold=10.1±3.1°) using only one-third the number of trials compared to the psychometric method. Furthermore, PEST estimates of the direction acuity threshold were highly correlated with the psychometric estimates across subjects (r=0.93) suggesting that both methods provide comparable estimates of the perceptual threshold. Computational modeling of both techniques revealed similar variance in the estimated thresholds across simulations of about 1°. Our results suggest that the PEST algorithm can be used to more quickly quantify whole-body directional acuity during standing in individuals with balance impairments. PMID:27477713

  8. Prenatal and Early Postnatal Exposure to Cigarette Smoke Decreases BDNF/TrkB Signaling and Increases Abnormal Behaviors Later in Life

    PubMed Central

    Xiao, Lan; Kish, Vincent L.; Benders, Katherine M.

    2016-01-01

    Background: Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic factor/neurotrophic tyrosine kinase receptor B signaling in the brain. Methods: Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59. Results: Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure group compared with FA group. Conclusions: These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in the hippocampus and enhances depression-like behaviors later in life. PMID:26503133

  9. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  10. Behavioral effects in mice of postnatal exposure to low-doses of 137-cesium and bisphenol A.

    PubMed

    Heredia, Luis; Bellés, Montserrat; LLovet, Maria Isabel; Domingo, Jose L; Linares, Victoria

    2016-01-18

    Bisphenol A (BPA) is the most important plasticizer used in many household products such as polycarbonate plastics or epoxy resins. Public and scientific concerns exist regarding the possibility that the neonatal exposure to BPA may contribute to neurobehavioral disorders. On the other hand, there is little information on the effects of low doses of ionizing radiation during critical phases of postnatal brain development, as well as the combination of radiation and environmental chemicals. In this study, C57BL/6J mice were exposed to low doses of internal radiation ((137)Cs), and/or BPA on postnatal day 10 (PND10). At the age of two months, animals were submitted to several tests to assess anxiety, activity, learning, and memory. Results showed that exposure to (137)Cs, alone or in combination with BPA, increased the anxiety-like of the animals without changing the activity levels. Animals exposed to (137)Cs showed impaired learning, and spatial memory, an impairment that was not observed in the groups co-exposed to BPA.

  11. Behavioral effects in mice of postnatal exposure to low-doses of 137-cesium and bisphenol A.

    PubMed

    Heredia, Luis; Bellés, Montserrat; LLovet, Maria Isabel; Domingo, Jose L; Linares, Victoria

    2016-01-18

    Bisphenol A (BPA) is the most important plasticizer used in many household products such as polycarbonate plastics or epoxy resins. Public and scientific concerns exist regarding the possibility that the neonatal exposure to BPA may contribute to neurobehavioral disorders. On the other hand, there is little information on the effects of low doses of ionizing radiation during critical phases of postnatal brain development, as well as the combination of radiation and environmental chemicals. In this study, C57BL/6J mice were exposed to low doses of internal radiation ((137)Cs), and/or BPA on postnatal day 10 (PND10). At the age of two months, animals were submitted to several tests to assess anxiety, activity, learning, and memory. Results showed that exposure to (137)Cs, alone or in combination with BPA, increased the anxiety-like of the animals without changing the activity levels. Animals exposed to (137)Cs showed impaired learning, and spatial memory, an impairment that was not observed in the groups co-exposed to BPA. PMID:26719215

  12. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice

    PubMed Central

    Hougaard, Karin S; Jensen, Keld A; Nordly, Pernille; Taxvig, Camilla; Vogel, Ulla; Saber, Anne T; Wallin, Håkan

    2008-01-01

    Background Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ≅ 240 nm) on gestational days 9–19, for 1 h/day. Results Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances. Conclusion In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies. PMID:18331653

  13. Post-Natal Inhibition of NF-κB Activation Prevents Renal Damage Caused by Prenatal LPS Exposure

    PubMed Central

    Sun, Xiongshan; Wang, Fangjie; Ji, Yan; Huang, Pei; Deng, Yafei; Zhang, Qi; Han, Qi; Yi, Ping; Namaka, Michael; Liu, Ya; Li, Xiaohui

    2016-01-01

    Prenatal exposure to an inflammatory stimulus has been shown to cause renal damage in offspring. Our present study explored the role of intra-renal NF-κB activation in the development of progressive renal fibrosis in offspring that underwent prenatal exposure to an inflammatory stimulus. Time-dated pregnant rats were treated with saline (control group) or 0.79 mg/kg lipopolysaccharide (LPS) through intra-peritoneal injection on gestational day 8, 10 and 12. At the age of 7 weeks, offspring from control or LPS group were treated with either tap water (Con+Ve or LPS+Ve group) or pyrollidine dithiocarbamate (PDTC, 120mg/L), a NF-κB inhibitor, via drinking water starting (Con+PDTC or LPS+PDTC group), respectively, till the age of 20 or 68 weeks. The gross structure of kidney was assessed by hematoxylin-eosin, periodic acid–Schiff staining and Sirius red staining. The expression levels of TNF-α, IL-6, α-smooth muscle actin (α-SMA) and renin-angiotensin system (RAS) genes were determined by real time polymerase chain reaction and/or immunohistochemical staining. Our data showed that post-natal persistent PDTC administration efficiently repressed intra-renal NF-κB activation, TNF-α and IL-6 expression. Post-natal PDTC also prevented intra-renal glycogen deposition and collagenous fiber generation as evident by the reduced expression of collagen III and interstitial α-SMA in offspring of prenatal LPS exposure. Furthermore, post-natal PDTC administration reversed the intra-renal renin-angiotensin system (RAS) over-activity in offspring of prenatal LPS exposure. In conclusion, prenatal inflammatory exposure results in offspring’s intra-renal NF-κB activation along with inflammation which cross-talked with excessive RAS activation that caused exacerbation of renal fibrosis and dysfunction in the offspring. Thus, early life prevention of NF-κB activation may be a potential preventive strategy for chronic renal inflammation and progressive renal damage. PMID

  14. Gestational and Early Postnatal Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants: General Toxicity and Skeletal Variations.

    PubMed

    Tung, Emily W Y; Yan, Han; Lefèvre, Pavine L C; Berger, Robert G; Rawn, Dorothea F K; Gaertner, Dean W; Kawata, Alice; Rigden, Marc; Robaire, Bernard; Hales, Barbara F; Wade, Michael G

    2016-06-01

    Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine-disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti-androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague-Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30-45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity. PMID:27286044

  15. Gestational and Early Postnatal Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants: General Toxicity and Skeletal Variations.

    PubMed

    Tung, Emily W Y; Yan, Han; Lefèvre, Pavine L C; Berger, Robert G; Rawn, Dorothea F K; Gaertner, Dean W; Kawata, Alice; Rigden, Marc; Robaire, Bernard; Hales, Barbara F; Wade, Michael G

    2016-06-01

    Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine-disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti-androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague-Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30-45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity.

  16. Neural systemic impairment from whole-body vibration.

    PubMed

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments.

  17. Whole-body vibration exercise in postmenopausal osteoporosis.

    PubMed

    Weber-Rajek, Magdalena; Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-03-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used 'postmenopausal osteoporosis' and 'whole-body vibration exercise'.

  18. The effect of whole-body cooling on hematological and coagulation parameters in asphyxic newborns.

    PubMed

    Oncel, Mehmet Yekta; Erdeve, Omer; Calisici, Erhan; Oguz, Serife Suna; Canpolat, Fuat Emre; Uras, Nurdan; Dilmen, Ugur

    2013-04-01

    Although moderate therapeutic hypothermia is the only proven neuroprotective therapy in neonatal hypoxic ischemic encephalopathy secondary to perinatal asphyxia (PA), there is lack of data for its effect on hemostasis. To investigate the effect of neonatal asphyxia on hemostasis and to evaluate the effect of whole body cooling on hematological parameters. Hematological parameters evaluated on the first day of patients with PA before start of hypothermia were compared with those of healthy controls. The effects of whole body cooling on the same parameters were also evaluated on the fourth day. A total of 17 neonates with PA and 15 healthy controls were included. Mean values for prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), and d-dimer obtained on the first day were significantly higher in the PA group compared to healthy controls (P ≤ .001 for all comparisons), whereas platelet count, levels of fibrinogen, factors II, V, VII, IX, X, and XI were significantly lower (P ≤ .005 for all comparisons). Levels of factor XIII were normal in both groups. In the study group, mean values for PT, INR, aPTT, and d-dimer evaluated on postnatal day 4 were significantly lower compared to values obtained on the first day of birth in PA group (P < .05 for all comparisons), with statistically significant increases in mean levels of fibrinogen, factor II, V, VII, IX, X, and XII (P < .05 for all comparisons). PA results in significant reductions in levels of factors of the extrinsic pathway and has been associated with thrombocytopenia and disseminated intravascular coagulation. Hypothermia may actually improve the clinical picture in such patients rather than aggravating the hemostatic disturbance, particularly with the implementation of supportive treatment.

  19. Effects of HCFC-123 exposure to maternal and infant rhesus monkeys on hepatic biochemistry, lactational parameters and postnatal growth.

    PubMed

    Cappon, G D; Keller, D A; Brock, W J; Slauter, R W; Hurtt, M E

    2002-11-01

    Peroxisome proliferators are a class of nongenotoxic rodent hepatocarcinogens that cause peroxisome proliferation and liver tumors when administered to rats and mice; but other species, including guinea pigs, dogs, and primates are less sensitive or refractory to the induction of peroxisome proliferation. Therefore, rodent peroxisome proliferators are not believed to pose a hepatocarcinogenic hazard to humans. Some peroxisome proliferators produce developmental toxicity in rats that is expressed as suppressed postnatal growth. To evaluate the relevance of the rat developmental effect to primates, groups of 4 lactating female Rhesus monkeys and their infants were exposed for 6 h/day, 7 days/week for 3 weeks to air or 1000 ppm HCFC-123. Animals were evaluated for clinical signs, body weights, clinical pathology parameters, and biochemical and pathological evaluations of liver biopsy samples. The effect of HCFC-123 exposure on milk quality (protein and fat concentration) was evaluated. The concentrations of HCFC-123 and the major metabolite, trifluoroacetic acid (TFA), were measured in the blood of the mothers and infants and in the milk. Exposure of monkeys to 1000 ppm HCFC-123 did not result in exposure-related clinical observations, or changes in body weight, appetence and behavior. There were no exposure-related effects on serum triglycerides, cholesterol, or glucose levels. HCFC-123 and TFA were present in milk, although maternal HCFC-123 exposure did not affect milk protein and fat content. In general, HCFC-123 was not detected in maternal or infant blood. TFA was detected in the majority of the mothers and TFA levels in infants ranged from 2 to 6 times higher than levels in the corresponding maternal blood. A pharmacokinetic analysis in a maternal animal indicated a peak concentration of TFA at approximately 1 h post-exposure, with a half-life of approximately 20 h. Liver microsomal P450 and peroxisome oxidase activities showed exposure-related decreases in CYP

  20. Postnatal exposure to a progestin does not prevent uterine adenogenesis in domestic dogs

    PubMed Central

    Ponchon, Tamara; Lopez Merlo, Mariana; Faya, Marcela; Priotto, Marcelo; Barbeito, Claudio

    2016-01-01

    To assess the effects of a single supraphysiological postnatal administration of a progestogen on uterine glands in dogs, 10 females were randomly assigned to a medroxyprogesterone acetate 35 mg (MPA; n = 6) or placebo (n = 4) group within the first 24 h of birth. The safety of the treatment was also evaluated. A transient mild clitoris enlargement appeared in MPA-treated females. Microscopic postpubertal uterine assessment revealed the presence of uterine glands in all cases without significant differences in the area occupied by the glands per µm2 of endometrium nor in the height of the uterine epithelium. PMID:27051347

  1. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  2. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  3. Prenatal Exposure to Perfluorocarboxylic Acids (PFCAs) and Fetal and Postnatal Growth in the Taiwan Maternal and Infant Cohort Study

    PubMed Central

    Wang, Yan; Adgent, Margaret; Su, Pen-Hua; Chen, Hsiao-Yen; Chen, Pau-Chung; Hsiung, Chao A.; Wang, Shu-Li

    2016-01-01

    Background: Perfluorocarboxylic acids (PFCAs) are environmentally and biologically persistent synthetic chemicals. PFCAs include perfluorooctanoic acid (PFOA; C8) and long-chain PFCAs (C9–C20). Studies examining long-chain PFCAs and fetal and postnatal growth are limited. Objectives: We investigated the associations of prenatal exposure to long-chain PFCAs with fetal and postnatal growth. Methods: For 223 Taiwanese mothers and their term infants, we measured PFOA and four long-chain PFCAs (ng/mL) in third-trimester maternal serum; infant weight (kg), length and head circumference (cm) at birth; and childhood weight and height at approximately 2, 5, 8, and 11 years of age. For each sex, we used multivariable linear regression to examine associations between ln-transformed prenatal PFCAs and continuous infant measures, and logistic regression to examine small for gestational age (SGA). Linear mixed models were applied to prenatal PFCAs and childhood weight and height z-scores. Results: In girls, prenatal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) concentrations were inversely associated with birth weight [e.g., βbirth weight (kg) = –0.06, 95% CI: –0.11, –0.01 per 1 ln-unit PFUnDA increase]; prenatal PFDeA and PFUnDA were associated with elevated odds of SGA; and PFDeA, PFUnDA, and PFDoDA were associated with lower average childhood height z-score. In boys, prenatal PFNA, and PFDoDA were associated with reductions in height at certain ages in childhood, but not with size at birth. Conclusions: Prenatal exposure to long-chain PFCAs may interfere with fetal and childhood growth in girls, and childhood growth in boys. Citation: Wang Y, Adgent M, Su PH, Chen HY, Chen PC, Hsiung CA, Wang SL. 2016. Prenatal exposure to perfluorocarboxylic acids (PFCAs) and fetal and postnatal growth in the Taiwan Maternal and Infant Cohort Study. Environ Health Perspect 124:1794–1800;

  4. Performance Evaluation of Whole Body Counting Facilities in the Marshall Islands (2002-2005)

    SciTech Connect

    Kehl, S R; Hamilton, T; Jue, T; Hickman, D

    2007-04-03

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands (https://eed.llnl.gov/mi/). Local atoll governments have been actively engaged in developing shared responsibilities for protecting the health and safety of resettled and resettling population at risk from exposure to elevated levels of residual fallout contamination in the environment. Under the program, whole body counting facilities have been established at three locations in the Marshall Islands. These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing technical support services including data quality assurance and performance testing. We have also established a mirror whole body counting facility at the Lawrence Livermore National Laboratory as a technician training center. The LLNL facility also allows program managers to develop quality assurance and operational procedures, and test equipment and corrective actions prior to deployment at remote stations in the Marshall Islands. This document summarizes the results of external performance evaluation exercises conducted at each of the facilities (2002-2005) under the umbrella of the Oak Ridge National Laboratory Intercomparison Studies Program (ISP). The ISP was specifically designed to meet intercomparison requirements of the United States (U.S.) Department of Energy Laboratory Accreditation Program (DOELAP). In this way, the Marshall Islands Radiological Surveillance Program has attempted to establish quality assurance measures in whole body counting that are consistent with standard requirements used to monitor DOE workers in the United States. Based on ANSI N13.30, the acceptable performance criteria for relative measurement bias and precision for radiobioassay service laboratory quality control

  5. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis.

    PubMed

    Perkins, Amy E; Fadel, Jim R; Kelly, Sandra J

    2015-05-01

    Fetal alcohol spectrum disorders (FASD) are characterized by damage to multiple brain regions, including the hippocampus, which is involved in learning and memory. The acetylcholine neurotransmitter system provides major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intubation to male rat pups (postnatal day [PD] 2-10; ethanol-treated [ET]). Controls received a sham intubation (IC) or no treatment (NC). Acetylcholine efflux was measured using in vivo microdialysis (PD 32-35). ET animals were not different at baseline, but had decreased K(+)/Ca(2+)-induced acetylcholine efflux compared to NC animals and an enhanced acetylcholine response to galantamine (acetylcholinesterase inhibitor; 2.0 mg/kg) compared to both control groups. A separate cohort of animals was tested in the context pre-exposure facilitation effect task (CPFE; PD 30-32) following postnatal alcohol exposure and administration of galantamine (2.0 mg/kg; PD 11-30). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Using immunohistochemistry, we found that neither alcohol exposure nor behavioral testing significantly altered the density of vesicular acetylcholine transporter or alpha7 nicotinic acetylcholine receptor in the ventral hippocampus (CA1). In the medial septum, the average number of choline acetyltransferase (ChAT+) cells was increased in ET animals that displayed the context-shock association; there were no changes in IC and NC animals that learned the context-shock association or in any animals that were in the control task that entailed no learning. Taken together, these results indicate that the hippocampal acetylcholine system is significantly disrupted under conditions of pharmacological manipulations (e.g., galantamine) in alcohol-exposed animals. Furthermore, ChAT was up‑regulated in ET animals that learned the CPFE, which may account for their ability

  6. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis.

    PubMed

    Perkins, Amy E; Fadel, Jim R; Kelly, Sandra J

    2015-05-01

    Fetal alcohol spectrum disorders (FASD) are characterized by damage to multiple brain regions, including the hippocampus, which is involved in learning and memory. The acetylcholine neurotransmitter system provides major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intubation to male rat pups (postnatal day [PD] 2-10; ethanol-treated [ET]). Controls received a sham intubation (IC) or no treatment (NC). Acetylcholine efflux was measured using in vivo microdialysis (PD 32-35). ET animals were not different at baseline, but had decreased K(+)/Ca(2+)-induced acetylcholine efflux compared to NC animals and an enhanced acetylcholine response to galantamine (acetylcholinesterase inhibitor; 2.0 mg/kg) compared to both control groups. A separate cohort of animals was tested in the context pre-exposure facilitation effect task (CPFE; PD 30-32) following postnatal alcohol exposure and administration of galantamine (2.0 mg/kg; PD 11-30). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Using immunohistochemistry, we found that neither alcohol exposure nor behavioral testing significantly altered the density of vesicular acetylcholine transporter or alpha7 nicotinic acetylcholine receptor in the ventral hippocampus (CA1). In the medial septum, the average number of choline acetyltransferase (ChAT+) cells was increased in ET animals that displayed the context-shock association; there were no changes in IC and NC animals that learned the context-shock association or in any animals that were in the control task that entailed no learning. Taken together, these results indicate that the hippocampal acetylcholine system is significantly disrupted under conditions of pharmacological manipulations (e.g., galantamine) in alcohol-exposed animals. Furthermore, ChAT was up‑regulated in ET animals that learned the CPFE, which may account for their ability

  7. Principal component analysis and discrimination of variables associated with pre- and post-natal exposure to mercury.

    PubMed

    Marques, Rejane C; Bernardi, José V E; Dórea, José G; Bastos, Wanderley R; Malm, Olaf

    2008-10-01

    The variance of variables associated with neurodevelopment at 180 days, pre-natal variables (Hg in placenta, blood and hair) and post-natal Hg exposure (including Thimerosal-containing vaccines, TCV) were examined in 82 exclusively breastfed infants using principal component analysis (PCA). This multivariate method was applied to identify hierarchy and sets of interrelated variables. The PCA yielded a two-factor solution, explaining 92% of variance and summarizing most of the relevant information in the dataset matrix: the first component represented birth weight and vaccine (first doses of Hepatitis B and DTP) variability and explained 57% of variance; the second component represented a gradient of neurodevelopment (Gesell scores) and explained 35% of variance. The third component explained only 3% of the remaining 8% variance. Beside CNS priming by breastfeeding, infant development (birth weight) and time of immunization with TCV should be considered in epidemiological studies. PCA can classify sets of variables related to vaccination and neuromotor development schedules, clearly discriminating between earlier and later TCV exposures of exclusively breastfed infants. In conclusion, the incommensurable concept of the chance of toxic risk caused by TCV-EtHg exposure against the proven benefit of immunization is in no way disputed here. However, infant neurodevelopmental (ND) disorders linked to Thimerosal-Hg stands in need of proof, but PCA points to the possibility of identifying exposure risk variables associated with ND schedules.

  8. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  9. Conceptual design of a whole body pet machine

    SciTech Connect

    Rogers, J.G.; Harrop, R.; Kinahan, P.E.; Wilkinson, N.A.; Coombes, G.H.; Doherty, P.W.; Saylor, D.P.

    1988-02-01

    The authors are designing a whole body Positron Emission Tomography (PET) machine based on a new type of large area sodium iodide (NaI) detector. As pointed out in earlier publications, a tomograph based on these new detectors can have several advantages over conventional PET machines, which are based on small Bismuth Germanate (BGO) detectors. Monte Carlo computer simulations have been used to compare some of the performance parameters of a tomograph based on the new detectors to similar parameters of conventional small crystal machines. Three different variants of prototype detectors have been constructed and many tests performed, including measurements of transverse spatial resolution, depth-of-interaction resolution, energy resolution, time resolution, and high counting-rate capabilities.

  10. Preoperative whole body disinfection--a controlled clinical study.

    PubMed

    Hayek, L J; Emerson, J M

    1988-04-01

    Preoperative whole body washing with chlorhexidine scrub was compared with soap for its effect on prevention of wound infection in clean surgery. Two thousand and fifteen patients were studied using chlorhexidine scrub, placebo or plain soap. The overall infection rate in the control and placebo groups was 12.8% (p less than 0.05) and 11.7% as opposed to 9% (p less than 0.05) in the treated group. Three per cent fewer infections were found in treated 'clean surgery' patients, and the incidence of Staphylococcus aureus infections was reduced from 6% (bar soap) to 3% (chlorhexidine). The saving in bed occupancy from prevention of infection is a significant cost-saving.

  11. Applications of quantitative whole body autoradiographic technique in radiopharmaceutical research

    SciTech Connect

    Som, P.; Oster, Z.H.; Yonekura, Y.; Meyer, M.A.; Fand, I.; Brill, A.B.

    1982-01-01

    The routine evaluation of radiopharmaceuticals involves dissecting tissue distribution studies (DTDS) and gamma or positron imaging. DTDS have the following disadvantages: since not all tissues can always be sampled, sites of radiopharmaceutical uptake may be missed and because the procedure involves weighing of dissected tissue samples, the spatial resolution of this method is low and determined by the smallest amount that can be weighed accurately. Gamma camera imaging and positron emission tomography though more comprehensive in evaluating the global distribution of a compound, have relative low spatial resolution. Whole body autoradiography of small animals has a much higher spatial resolution as compared to the above and depicts the global distribution of radiopharmaceuticals. A computer-assisted quantification method of WBARG applied to positron, beta, and gamma emitters will complement the method by producing quantitative values comparable to those obtained by dissection and direct tissue counting, with the advantages of depicting the global distribution at high spatial resolution.

  12. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  13. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  14. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation.

    PubMed

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  15. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  16. Whole-body kinetics and dosimetry of L-3--123I-iodo-alpha-methyltyrosine.

    PubMed

    Schmidt, D; Langen, K J; Herzog, H; Wirths, J; Holschbach, M; Kiwit, J C; Ziemons, K; Coenen, H H; Müller-Gärtner, H

    1997-09-01

    The synthetic amino acid L-3--123I-iodo-alpha-methyltyrosine (IMT) is currently under clinical evaluation as a single-photon emission tomography (SPET) tracer of amino acid uptake in brain tumours. So far, dosimetric data in respect of IMT are not available. Therefore we investigated the whole-body distribution of IMT in six patients with cerebral gliomas and the radiation doses were estimated. Whole-body scans were acquired at 1.5, 3 and 5 h after i.v. injection of 370-550 MBq IMT. The bladder was voided prior to each scan and the radioactivity excreted in the urine was measured. Based on the MIRD-11 method and the updated MIRDOSE3, the mean absorbed doses for various organs and the effective dose were calculated from geometric means of the anterior and posterior whole-body scans using seven source organs and the residence time. IMT was predominantly excreted by the kidneys (52.8%+/-11.5% at 1.5 h p.i., 63.0%+/-15.7% at 3 h p.i. and 74.6%+/-9.8% at 5 h p.i.). No organ system other than the urinary tract showed significant retention of the tracer. Early whole-body scans revealed slightly increased tracer uptake in the liver and in the bowel. Highest absorbed doses were found for the urinary bladder wall (0.047 mGy/MBq), the kidneys (0.010 mGy/MBq), the lower large intestinal wall (0.011 mGy/MBq) and the upper large intestinal wall (0.008 mGy/MBq). The effective dose according to ICRP 60 was estimated to be 0.0073 mSv/MBq for adults. This leads to an effective dose of 3.65 mSv in a typical brain SPET study using 500 MBq IMT. The MIRDOSE3 scheme yielded similar results. Thus, in spite of the relatively high tracer dose required for optimal brain scanning, radiation exposure in SPET studies with IMT is in the normal range of routine nuclear medicine investigations. PMID:9283111

  17. Early postnatal parathion exposure in rats causes sex-selective cognitive impairment and neurotransmitter defects which emerge in aging.

    PubMed

    Levin, Edward D; Timofeeva, Olga A; Yang, Liwei; Petro, Ann; Ryde, Ian T; Wrench, Nicola; Seidler, Frederic J; Slotkin, Theodore A

    2010-04-01

    Developmental exposure of rats to the organophosphate (OP) pesticides leads to altered neurobehavioral function in juvenile and young adult stages. The current study was conducted to determine whether effects of neonatal parathion exposure on cognitive performance persist in older adult and aged rats, and the relationship of behavioral changes to underlying cholinergic and serotonergic mechanisms. We administered parathion to rat pups on postnatal days 1-4, at doses spanning the threshold for the initial signs of systemic toxicity and for barely detectable cholinesterase inhibition (0.1 or 0.2 mg/kg/day). Beginning at 14 months of age and continuing until 19 months, the rats were trained in the 16-arm radial maze. Controls showed the normal sex difference in this spatial learning and memory task, with the males committing significantly fewer working memory errors than females. Neonatal parathion exposure eliminated the sex difference primarily by causing impairment in males. In association with the effects on cognitive performance, neonatal parathion exposure elicited widespread abnormalities in indices of serotonergic (5HT) and cholinergic synaptic function, characterized by upregulation of 5HT(2) receptors and the 5HT transporter, deficits in choline acetyltransferase activity and nicotinic cholinergic receptors, and increases in hemicholinium-3 binding to the presynaptic choline transporter. Within-animal correlations between behavior and neurochemistry indicated a specific correlation between working memory performance and hippocampal hemicholinium-3 binding; parathion exposure eliminated this relationship. Like the behavioral effects, males showed greater effects of parathion on neurochemical parameters. This study demonstrates the sex-selective, long-term behavioral alterations caused by otherwise nontoxic neonatal exposure to parathion, with effects increasingly expressed with aging.

  18. Early postnatal parathion exposure in rats causes sex-selective cognitive impairment and neurotransmitter defects which emerge in aging.

    PubMed

    Levin, Edward D; Timofeeva, Olga A; Yang, Liwei; Petro, Ann; Ryde, Ian T; Wrench, Nicola; Seidler, Frederic J; Slotkin, Theodore A

    2010-04-01

    Developmental exposure of rats to the organophosphate (OP) pesticides leads to altered neurobehavioral function in juvenile and young adult stages. The current study was conducted to determine whether effects of neonatal parathion exposure on cognitive performance persist in older adult and aged rats, and the relationship of behavioral changes to underlying cholinergic and serotonergic mechanisms. We administered parathion to rat pups on postnatal days 1-4, at doses spanning the threshold for the initial signs of systemic toxicity and for barely detectable cholinesterase inhibition (0.1 or 0.2 mg/kg/day). Beginning at 14 months of age and continuing until 19 months, the rats were trained in the 16-arm radial maze. Controls showed the normal sex difference in this spatial learning and memory task, with the males committing significantly fewer working memory errors than females. Neonatal parathion exposure eliminated the sex difference primarily by causing impairment in males. In association with the effects on cognitive performance, neonatal parathion exposure elicited widespread abnormalities in indices of serotonergic (5HT) and cholinergic synaptic function, characterized by upregulation of 5HT(2) receptors and the 5HT transporter, deficits in choline acetyltransferase activity and nicotinic cholinergic receptors, and increases in hemicholinium-3 binding to the presynaptic choline transporter. Within-animal correlations between behavior and neurochemistry indicated a specific correlation between working memory performance and hippocampal hemicholinium-3 binding; parathion exposure eliminated this relationship. Like the behavioral effects, males showed greater effects of parathion on neurochemical parameters. This study demonstrates the sex-selective, long-term behavioral alterations caused by otherwise nontoxic neonatal exposure to parathion, with effects increasingly expressed with aging. PMID:20015457

  19. A whole body counting facility in a remote Enewetak Island setting.

    PubMed

    Bell, Thomas R; Hickman, David; Yamaguchi, Lance; Jackson, William; Hamilton, Terry

    2002-08-01

    The U.S. Department of Energy (DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection programs for resettled and resettling populations. As part of this new initiative, DOE agreed to design and construct a radiological laboratory on Enewetak Island, and help develop the necessary local resources to maintain and operate the facility. This cooperative effort was formalized in August 2000 between the DOE, the Republic of the Marshall Islands (RMI), and the Enewetak/Ujelang Local Atoll Government (EULGOV). The laboratory facility was completed in May 2001. The laboratory incorporates both a permanent whole body counting system to assess internal exposures to 137Cs, and clean living space for people providing 24-h void urine samples. DOE continues to provide on-going technical assistance, training, and data quality review while EULGOV provides manpower and infrastructure development to sustain facility operations on a full-time basis. This paper will detail the special construction, transportation and installation issues in establishing a whole body counting facility in an isolated, harsh environmental setting.

  20. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  1. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  2. Effects of in utero and lactational exposure to triphenyltin chloride on pregnancy outcome and postnatal development in rat offspring.

    PubMed

    Grote, Konstanze; Hobler, Carolin; Andrade, Anderson J M; Grande, Simone Wichert; Gericke, Christine; Talsness, Chris E; Appel, Klaus E; Chahoud, Ibrahim

    2007-09-01

    The organotin compound (OTC) triphenyltin (TPT) is used extensively as a herbicide, pesticide and fungicide in agriculture as well as, together with tributyltin (TBT), in marine antifouling paints. We studied the effects of in utero exposure to 2 or 6 mg triphenyltinchloride (TPTCl)/kgb.w. on pregnancy outcome and postnatal development in rat offspring. Gravid Wistar rats were treated per gavage from gestational day 6 until the end of lactation. In the 6 mg TPTCl dose group gestational mortality in dams as well as an increased incidence of anticipated and delayed parturition was observed. Furthermore, treatment resulted in a significant increase in perinatal mortality, a decrease in lactational body weight gain as well as in delayed physical maturation of offspring. Similarily, exposure to 2mg TPTCl/kgb.w. resulted in a significant increase in perinatal mortality and in delayed eye opening. Lactational body weight gain and other landmarks of physical maturation were unaffected in the low dose group. We conclude, that in utero exposure to TPTCl at the described dose levels severely affected pregnancy outcome and perinatal survival of offspring. These results were unexpected, as in two earlier studies with pubertal rats TPTCl at the same dose levels no signs of general toxicity were observed. PMID:17644232

  3. Alterations in the hematological profile in rat following whole body gamma radiation with and without venoruton pretreatment

    SciTech Connect

    Kanwar, K.C.; Verma, A.

    1992-07-01

    The radioprotective effect of venoruton [O-({beta}-hydroxyethyl)-rutoside] has been assessed in the hematological profile of Swiss albino male rats subjected to a single dose of 300 rads whole body gamma radiation. The results showed that the severity of the radiation-induced abnormalities in the red and white blood cells is significantly lessened by venoruton administered prior to radiation exposure. 34 refs., 2 tabs.

  4. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis

    PubMed Central

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-01-01

    Abstract Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  5. Assessment of disc injury in subjects exposed to long-term whole-body vibration.

    PubMed

    Drerup, B; Granitzka, M; Assheuer, J; Zerlett, G

    1999-01-01

    Long-term exposure to whole-body vibration is known to increase the risk of low back problems. The chain of events leading from repeated loading of the lumbar spine to back complaints and the exact nature of the vibration-induced damage are, however, obscure. Fluid in- and outflow as well as viscoelastic deformation are important aspects of the physiological function of the lumbar disc. Precision measurement of stature, termed 'stadiometry', has previously been applied in healthy subjects to document changes in disc height in relation to the load on the lumbar spine. The purpose of this study was to explore the relation between spinal loading and stature in a cohort of 20 subjects with long-term exposure to whole-body vibration. If the change of stature (and thus the change of disc height) caused by changes in spinal loading differed between exposed and normal subjects, this would point to vibration-induced changes in structure and material properties of the discs. For this purpose, four hypotheses were tested: (1) the viscoelastic deformation and fluid exchange of intervertebral discs during phases of spinal loading and unloading differs from normal; (2) the water content of lumbar discs of subjects exposed to long-term whole-body vibration deviates from normal; (3) the mean disc height of the lumbar spine depends on the total time of vibration exposure; (4) repeated loading influences trabecular bone density of vertebrae in the lumbar spine. A cohort of 20 operators of heavy earth-moving machinery was enrolled. Back complaints suspected to be due to long-term exposure (mean 17.6 +/- 2.1 years) to whole-body vibration and application for early retirement were the selection criteria used. Change of stature during a regular 8-h shift and change of stature in standing, carrying and sitting activities were measured. The stadiometric investigations were supplemented by magnetic resonance imaging (MRI) of the lumbar spine to assess whether the water content of the discs

  6. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. PMID:27485766

  7. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling. PMID:22325978

  8. Whole-body counting in the Marshall Islands

    SciTech Connect

    Sun, L.C.; Clinton, J.; Kaplan, E.; Meinhold, C.B.

    1991-01-01

    In 1978 the Marshall Islands Radiological Safety Program was organized to perform radiation measurements and assess radiation doses for the people of the Bikini, Enewetak, Rongelap and Utirik Atolls. One of the major field components of this program is whole- body counting (WBC). WBC is used to monitor the quantity of gamma- emitting radionuclides present in individuals. A primary objective of the program was to establish {sup 137}Cesium body contents among the Enewetak, Rongelap and Utirik populations. {sup 137}Cs was the only gamma-emitting fission radionuclide detected in the 1,967 persons monitored. {sup 137}Cs body burdens tended to increase with age for both sexes, and were higher in males. The average {sup 137}Cs dose Annual Effective Dose for the three populations was as follows: For Enewetak, the dose was 22{+-}4 {mu}Sv. For Utirik, the dose was 33{+-} 3 {mu}Sv. Since 1985 the Rongelap people have been self-exiled to Mejatto. Biological elimination should have reduced their dose to virtually zero, and the measured dose was 2{+-}2 {mu}Sv. If they had remained on Rongelap Island, the calculated dose would have been 99 {mu}Sv, which is about one-third of the background dose. 7 refs., 1 tab. (MHB)

  9. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  10. Whole body vibration improves cognition in healthy young adults.

    PubMed

    Regterschot, G Ruben H; Van Heuvelen, Marieke J G; Zeinstra, Edzard B; Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Van Der Zee, Eddy A

    2014-01-01

    This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise. PMID:24949870

  11. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  12. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies.

  13. Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex.

    PubMed

    Miller, M W; Robertson, S

    1993-11-01

    Postmitotic neurons migrate from a zone(s) near the ventricles to the neocortex. During this migration, neurons associate with radial glia. After serving their role as guides for neuronal migration, the radial glia transform into astrocytes. Prenatal exposure to ethanol causes abnormal neuronal migration. We examined the effects of gestational exposure to ethanol on radial glia and astrocytes. Radial glia were stained immunohistochemically with the antibody RAT-401, and astrocytes were labeled with an antibody directed against glial fibrillary acidic protein (GFAP). The subjects were the offspring of rats fed an ethanol-containing liquid diet (Et), pair-fed a liquid control diet (Ct), or fed chow and water (Ch). During the first postnatal week, radial glial fibers (in Et-treated rats and controls) stretched from the ventricular surface through the developing cerebral wall to the pial surface. In the Et-treated rats, the radial processes were less dense and more poorly fasciculated than they were in the Ch- and Ct-treated rats. Moreover, by postnatal day (P) 5, there was a significant reduction in RAT-401 immunostaining in the Et-treated rats, particularly in the superficial cortex. A similar reduction in control rats did not begin until P10. In all three treatment groups, GFAP-immunoreactive astrocytes were in the cortex throughout the period from P1 to P45. In neonates, GFAP-positive cells were distributed in the marginal zone (layer I) and the intermediate zone (the white matter). The number of GFAP-positive cells in the cortical plate increased steadily with time so that, by P26, GFAP-immunoreactive astrocytes were distributed evenly through all cortical laminae. Interestingly, between P5 and P12, the number of astrocytes was significantly greater in Et-treated rats than in controls. Thus prenatal exposure to ethanol induces the premature loss of RAT-401-positive processes and the precocious increase in GFAP immunostaining. These ethanol-induced changes in glial

  14. Persistent Cognitive Alterations in Rats after Early Postnatal Exposure to Low Doses of the Organophosphate Pesticide, Diazinon

    PubMed Central

    Timofeeva, Olga A.; Roegge, Cindy S.; Seidler, Frederic J.; Slotkin, Theodore A.; Levin, Edward D.

    2008-01-01

    Background Developmental neurotoxicity of organophosphorous insecticides (OPs) involves multiple mechanisms in addition to cholinesterase inhibition. We have found persisting effects of developmental chlorpyrifos (CPF) and diazinon (DZN) on cholinergic and serotonergic neurotransmitter systems and gene expression as well as behavioral function. Both molecular/neurochemical and behavioral effects of developmental OP exposure have been seen at doses below those which cause appreciable cholinesterase inhibition. Objectives We sought to determine if developmental DZN exposure at doses which do not produce significant acetylcholinesterase inhibition cause cognitive deficits. Methods Rats were exposed to DZN on postnatal days 1-4 at doses (0.5 and 2 mg/kg/d) that span the threshold for cholinesterase inhibition. They were later examined with a cognitive battery tests similar to that used with CPF. Results In the T-maze DZN caused significant hyperactivity in the initial trials of the session, but not later. In a longer assessment of locomotor activity no DZN-induced changes were seen over a 1-hour session. Prepulse inhibition was reduced by DZN exposure selectively in males vs. females; DZN eliminated the sex difference present in controls. In the radial maze, the lower but not higher DZN dose significantly impaired spatial learning. This has previously been seen with CPF as well. The lower dose DZN group also showed significantly greater sensitivity to the memory-impairing effects of the anticholinergic drug scopolamine. Conclusions Neonatal DZN exposure below the threshold for appreciable cholinesterase inhibition caused neurocognitive deficits in adulthood. The addition of some inhibition of AChE with a higher dose reversed the cognitive impairment. This non-monotonic dose-effect function has also been seen with neurochemical effects. Some of the DZN effects on cognition resemble those seen earlier for CPF, some differ. Our data suggest that DZN and CPF affect

  15. Kinetic brain analysis and whole-body imaging in monkey of [11C]MNPA: a dopamine agonist radioligand.

    PubMed

    Seneca, Nicholas; Skinbjerg, Mette; Zoghbi, Sami S; Liow, Jeih-San; Gladding, Robert L; Hong, Jinsoo; Kannan, Pavitra; Tuan, Edward; Sibley, David R; Halldin, Christer; Pike, Victor W; Innis, Robert B

    2008-09-01

    With a view to future extension of the use of the agonist radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine) from animals to humans, we performed two positron emission tomography (PET) studies in monkeys. First, we assessed the ability to quantify the brain uptake of [(11)C]MNPA with compartmental modeling. Second, we estimated the radiation exposure of [(11)C]MNPA to human subjects based on whole-body imaging in monkeys. Brain PET scans were acquired for 90 min and included concurrent measurements of the plasma concentration of unchanged radioligand. Time-activity data from striatum and cerebellum were quantified with two methods, a reference tissue model and distribution volume. Whole-body PET scans were acquired for 120 min using four bed positions from head to mid thigh. Regions of interest were drawn on compressed planar whole-body images to identify organs with the highest radiation exposures. After injection of [(11)C]MNPA, the highest concentration of radioactivity in brain was in striatum, with lowest levels in cerebellum. Distribution volume was well identified with a two-tissue compartmental model and was quite stable from 60 to 90 min. Whole-body PET scans showed the organ with the highest radiation burden (muSv/MBq) was the urinary bladder wall (26.0), followed by lungs (22.5), gallbladder wall (21.9), and heart wall (16.1). With a 2.4-h voiding interval, the effective dose was 6.4 muSv/MBq (23.5 mrem/mCi). In conclusion, brain uptake of [(11)C]MNPA reflected the density of D(2/3) receptors, quantified relative to serial arterial measurements, and caused moderate to low radiation exposure.

  16. The effects of pre- and post-natal nicotine exposure and genetic background on the striatum and behavioral phenotypes in the mouse.

    PubMed

    Balsevich, Georgia; Poon, Anna; Goldowitz, Dan; Wilking, Jennifer A

    2014-06-01

    Maternal tobacco use increases the risk of complications in pregnancy and also the risk of adverse fetal outcomes. Studies have established nicotine as the principal component of tobacco smoke that leads to the majority of negative reproductive outcomes associated with maternal tobacco use. It appears the neuroteratogenicity of nicotine is mediated by complex gene-environment interactions. Genetic background contributes to individual differences in nicotine-related phenotypes. The aim of the current study was to investigate the interaction between pre- and post-natal nicotine exposure and genetic background on the histology of the striatum and behavioral measures using DBA/2J (D2) and C57BL/6J (B6) inbred mice. Alterations in neuronal cell populations, striatal brain volume, and behavior - open field (OF) activity, novel object recognition (NOR), elevated plus maze (EPM), and passive avoidance (PA) - were evaluated on post-natal day (PN) 24 and PN75. Histological data showed that pre- and post-natal nicotine exposure resulted in decreased striatal volume among preadolescent B6 and reduced neuronal number within the striatum of preadolescent B6 mice. Behavioral data showed that pre- and post-natal nicotine exposure promoted hyperactivity in D2 female mice and disrupted NOR and PA memory. Specifically, NOR deficits were significant amongst adult male mice whereas PA deficits were seen across genetic background and sex. These data suggest that nicotine treatment, genetic background, developmental stage, and sex effect striatal morphology can lead to neurobehavioral alterations.

  17. Individual and combined effects of noise-like whole-body vibration and parathyroid hormone treatment on bone defect repair in ovariectomized mice.

    PubMed

    Matsumoto, Takeshi; Sato, Daisuke; Hashimoto, Yoshihiro

    2016-01-01

    The effectiveness of intermittent administration of parathyroid hormone and exposure to whole-body vibration on osteoporotic fracture healing has been previously investigated, but data on their concurrent use are lacking. Thus, we evaluated the effects of intermittent administration of parathyroid hormone, whole-body vibration, and their combination on bone repair in osteoporotic mice. Noise-like whole-body vibration with a broad frequency range was used instead of conventional sine-wave whole-body vibration at a specific frequency. Mice were ovariectomized at 9 weeks of age and subjected to drill-hole surgery in the right tibial diaphysis at 11 weeks. The animals were divided into four groups (n = 12 each): a control group, and groups treated with intermittent administration of parathyroid hormone, noise-like whole-body vibration, and both. From postoperative day 2, the groups treated with intermittent administration of parathyroid hormone and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were subcutaneously administered parathyroid hormone at a dose of 30 µg/kg/day. The groups treated with noise-like whole-body vibration and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were exposed to noise-like whole-body vibration at a root mean squared acceleration of 0.3g and frequency components of 45-100 Hz for 20 min/day. Following 18 days of interventions, the right tibiae were harvested, and the regenerated bone was analyzed by micro-computed tomography and nanoindentation testing. Compared with the control group, callus volume fraction was 40% higher in groups treated with intermittent administration of parathyroid hormone and 73% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and callus thickness was 35% wider in groups treated with both

  18. Individual and combined effects of noise-like whole-body vibration and parathyroid hormone treatment on bone defect repair in ovariectomized mice.

    PubMed

    Matsumoto, Takeshi; Sato, Daisuke; Hashimoto, Yoshihiro

    2016-01-01

    The effectiveness of intermittent administration of parathyroid hormone and exposure to whole-body vibration on osteoporotic fracture healing has been previously investigated, but data on their concurrent use are lacking. Thus, we evaluated the effects of intermittent administration of parathyroid hormone, whole-body vibration, and their combination on bone repair in osteoporotic mice. Noise-like whole-body vibration with a broad frequency range was used instead of conventional sine-wave whole-body vibration at a specific frequency. Mice were ovariectomized at 9 weeks of age and subjected to drill-hole surgery in the right tibial diaphysis at 11 weeks. The animals were divided into four groups (n = 12 each): a control group, and groups treated with intermittent administration of parathyroid hormone, noise-like whole-body vibration, and both. From postoperative day 2, the groups treated with intermittent administration of parathyroid hormone and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were subcutaneously administered parathyroid hormone at a dose of 30 µg/kg/day. The groups treated with noise-like whole-body vibration and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were exposed to noise-like whole-body vibration at a root mean squared acceleration of 0.3g and frequency components of 45-100 Hz for 20 min/day. Following 18 days of interventions, the right tibiae were harvested, and the regenerated bone was analyzed by micro-computed tomography and nanoindentation testing. Compared with the control group, callus volume fraction was 40% higher in groups treated with intermittent administration of parathyroid hormone and 73% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and callus thickness was 35% wider in groups treated with both

  19. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes

  20. Early postnatal nicotine exposure causes hippocampus-dependent memory impairments in adolescent mice: association with altered nicotinic cholinergic modulation of LTP, but not impaired LTP

    PubMed Central

    Nakauchi, Sakura; Malvaez, Melissa; Su, Hailing; Kleeman, Elise; Dang, Richard; Wood, Marcelo A.; Sumikawa, Katumi

    2014-01-01

    Fetal nicotine exposure from smoking during pregnancy causes long-lasting cognitive impairments in offspring, yet little is known about the mechanisms that underlie this effect. Here we demonstrate that early postnatal exposure of mouse pups to nicotine via maternal milk impairs long-term, but not short-term, hippocampus-dependent memory during adolescence. At the Schaffer collateral (SC) pathway, the most widely studied synapses for a cellular correlate of hippocampus-dependent memory, the induction of N-methyl-d-aspartate receptor-dependent transient long-term potentiation (LTP) and protein synthesis-dependent long-lasting LTP are not diminished by nicotine exposure, but rather unexpectedly the threshold for LTP induction becomes lower after nicotine treatment. Using voltage sensitive dye to visualize hippocampal activity, we found that early postnatal nicotine exposure also results in enhanced CA1 depolarization and hyperpolarization after SC stimulation. Furthermore, we show that postnatal nicotine exposure induces pervasive changes to the nicotinic modulation of CA1 activity: activation of nicotinic receptors no longer increases CA1 network depolarization, acute nicotine inhibits rather than facilitates the induction of LTP at the SC pathway by recruiting an additional nicotinic receptor subtype, and acute nicotine no longer blocks LTP induction at the temporoammonic pathway. These findings reflect the pervasive impact of nicotine exposure during hippocampal development, and demonstrate an association of hippocampal memory impairments with altered nicotinic cholinergic modulation of LTP, but not impaired LTP. The implication of our results is that nicotinic cholinergic-dependent plasticity is required for long-term memory formation and that postnatal nicotine exposure disrupts this form of plasticity. PMID:25545599

  1. Neurobehavioral Development following Exposure of Male Mice to Polybrominated Diphenyl Ether 47 on Postnatal Day 10

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are commonly used as commercial flame retardants in a variety of products including plastics and textiles. Previous studies in our laboratory and in the literature have shown that exposure to a specific PBDE congener, PBDE 47, during a crit...

  2. Role of Whole-Body MR with DWIBS in child's Bartonellosis.

    PubMed

    Rossi, E; Perrone, A; Narese, D; Cangelosi, M; Sollai, S; Semeraro, A; Mortilla, M; Defilippi, C

    2016-01-01

    Cat-scratch disease (CSD) is a zoonosis in children, result of infection by Bartonella henselae, a gram-negative bacillus. Infection is generally characterized by regional and self-limited lymphadenopathy after exposure to a scratch or bite from a cat. Rarely, B. henselae is cause of fever of unknown origin (FUO), with dissemination to various organs, most often involving the reticuloendothelial system (liver, spleen, bone marrow), mimicking an inflammatory rather than a lymphoproliferative disease. Whole-body Magnetic Resonance Imaging (WBMRI), in association with diffusion-weighted imaging (DWIBS), allows a comprehensive evaluation of pediatric patients, without the risks inherent to ionizing radiation. It is a rapid and sensitive method for detecting and monitoring multifocal lesions such as proliferative or inflammatory and infectious processes. We report a case of systemic CDS in an immunocompetent young boy with fever of unknown origin, without history of cat contact, investigated by WBMRI. PMID:27598022

  3. Ergometer within a whole-body plethysmograph to evaluate performance of guinea pigs under toxic atmospheres

    SciTech Connect

    Malek, D.E.; Alarie, Y. )

    1989-11-01

    A guinea pig ergometer was constructed within an enclosure, with inlet and outlet ports for continuous ventilation, designed so that the enclosure would work as a whole-body plethysmograph as well as an inhalation exposure chamber. This system provided continuous measurement of tidal volume, respiratory frequency, oxygen uptake, and carbon dioxide output which enabled an evaluation of performance in terms of distance traveled over time with the animals running at a known speed and constant oxygen uptake. The effects of CO or HCl in running versus sedentary animals were investigated using this apparatus. For CO, exercise increased the rapidity of the onset of incapacitation as would be predicted by the increase in metabolic rate. HCl produced a more severe incapacitating effect in exercising animals that was out of proportion with the increase in minute volume induced by exercise.

  4. Whole-Body Pediatric Neuroblastoma Imaging: 123I-mIBG and Beyond.

    PubMed

    Pai Panandiker, Atmaram S; Coleman, Jamie; Shulkin, Barry

    2015-09-01

    Pediatric cancer imaging stands to benefit from higher tumor detection sensitivity without ionizing radiation exposure. A prospective protocol compared diagnostic I-metaiodobenzylguanidine (I-mIBG) with whole-body diffusion-weighted MRI (DWI) to validate adjunctive methods of identifying small-volume oligometastatic neuroblastoma tumor deposits. Dual-modality imaging (I-mIBG and DWI) was obtained within a 3- and 25-day window at baseline and again at one year in the first enrolled patient. MRI was able to define the full extent of metastatic disease foci with improved resolution. These findings may provide critical information for definitive locoregional surgery and radiotherapy for high-risk neuroblastoma treatment. PMID:26053707

  5. ALARA considerations for the whole body neutron irradiation facility source removal project at Brookhaven National Laboratory.

    PubMed

    Sullivan, Patrick T

    2006-02-01

    This paper describes the activities that were involved with the safe removal of fourteen PuBe sources from the Brookhaven National Laboratory (BNL) Whole Body Neutron Irradiation Facility (WBNIF). As part of a Department of Energy and BNL effort to reduce the radiological inventory, the WBNIF was identified as having no future use. In order to deactivate the facility and eliminate the need for nuclear safety management and long-term surveillance, it was decided to remove the neutron sources and dismantle the facility. In addition, the sources did not have DOT Special Form documentation so they would need to be encapsulated once removed for offsite storage or disposal. The planning and the administrative as well as engineering controls put in place enabled personnel to safely remove and encapsulate the sources while keeping exposure as low as reasonably achievable (ALARA). PMID:16404183

  6. Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary.

    PubMed

    Uzumcu, Mehmet; Kuhn, Peter E; Marano, Jason E; Armenti, AnnMarie E; Passantino, Lisa

    2006-12-01

    Methoxychlor [1,1,1-trichloro-2,2-bis(4-methoxyphenyl) ethane; MXC] is a chlorinated hydrocarbon pesticide commonly used in the United States as a replacement for DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane]. While MXC is a weak estrogenic compound, its more active, major metabolite [2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane; HPTE] shows estrogenic, anti-estrogenic, or anti-androgenic properties depending on the receptor subtype with which it interacts. Anti-Mullerian hormone (AMH) is a paracrine factor that suppresses initial follicle recruitment in the ovary. Studies have shown the effects of exposure to MXC on adult ovarian morphology and function. However, the effect of exposure to MXC at an early postnatal stage on pre-pubertal follicular development and ovarian AMH production has not been studied. Around postnatal day (P) 4, most of the primordial follicular assembly in rats is complete, and a large number of primordial follicles transition into the primary follicle stage, a process that is inhibited by estrogen. The objective of this study was to examine the effect of early postnatal (P3-P10) MXC exposure on ovarian morphology and size, follicle number, and AMH production in the pre-pubertal (P20) rat ovary and to investigate the effect of HPTE on AMH production in immature rat granulosa cells in vitro. Female rats were injected (s.c.) daily with vehicle (control) or 1, 10, 50, 100, or 500 mg MXC/kg per day (referred to here as 1MXC, 10MXC, and so forth.) between P3 and P10. On P20, uterine and ovarian weights were determined, ovarian histology was examined, and follicles were counted and classified into primordial, primary, secondary, pre-antral, or antral stages using the two largest serial sections at the center of the ovary. Ovarian AMH production was examined using immunohistochemistry and western blot analysis. The effect of HPTE (0.5-25 microM) on AMH production in cultured immature rat granulosa cells was determined by western blot

  7. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  8. Perinatal risk factors for severe injury in neonates treated with whole-body hypothermia for encephalopathy

    PubMed Central

    Wayock, Christopher P.; Meserole, Rachel L.; Saria, Suchi; Jennings, Jacky M.; Huisman, Thierry A. G. M.; Northington, Frances J.; Graham, Ernest M.

    2016-01-01

    Objective Our objective was to identify perinatal risk factors that are available within 1 hour of birth that are associated with severe brain injury after hypothermia treatment for suspected hypoxic-ischemic encephalopathy. Study Design One hundred nine neonates at ≥35 weeks' gestation who were admitted from January 2007 to September 2012 with suspected hypoxic-ischemic encephalopathy were treated with whole-body hypothermia; 98 of them (90%) underwent brain magnetic resonance imaging (MRI) at 7-10 days of life. Eight neonates died before brain imaging. Neonates who had severe brain injury, which was defined as death or abnormal MRI results (cases), were compared with surviving neonates with normal MRI (control subjects). Logistic regression models were used to identify risk factors that were predictive of severe injury. Results Cases and control subjects did not differ with regard to gestational age, birthweight, mode of delivery, or diagnosis of non-reassuring fetal heart rate before delivery. Cases were significantly (P ≤ .05) more likely to have had an abruption, a cord and neonatal arterial gas level that showed metabolic acidosis, lower platelet counts, lower glucose level, longer time to spontaneous respirations, intubation, chest compressions in the delivery room, and seizures. In multivariable logistic regression, lower initial neonatal arterial pH (P = .004), spontaneous respiration at >30 minutes of life (P = .002), and absence of exposure to oxytocin (P = .033) were associated independently with severe injury with 74.3% sensitivity and 74.4% specificity. Conclusion Worsening metabolic acidosis at birth, longer time to spontaneous respirations, and lack of exposure to oxytocin correlated with severe brain injury in neonates who were treated with whole-body hypothermia. These risk factors may help quickly identify neonatal candidates for time-sensitive investigational therapies for brain neuroprotection. PMID:24657795

  9. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  10. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  11. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  12. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200–870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000–20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  13. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  14. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  15. Sex-Based Differences in Gene Expression in Hippocampus Following Postnatal Lead Exposure

    PubMed Central

    Schneider, J.S.; Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-01-01

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning. Blood lead levels were 26.7 ± 2.1 μg/dl and 27.1 ± 1.7 μg/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. PMID:21864555

  16. Neural stem cell apoptosis after low-methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits.

    PubMed

    Sokolowski, Katie; Obiorah, Maryann; Robinson, Kelsey; McCandlish, Elizabeth; Buckley, Brian; DiCicco-Bloom, Emanuel

    2013-12-01

    The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1-3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, which actively produce new neurons that migrate to the granule cell layer (GCL). Using this well-characterized NSC population, we examined the impact of low levels of methylmercury (MeHg) on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6 µg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non-proliferative CA1-3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal-dependent memory deficits during adolescence.

  17. Estimation of desvenlafaxine transfer into milk and infant exposure during its use in lactating women with postnatal depression.

    PubMed

    Rampono, Jonathan; Teoh, Stephanie; Hackett, L Peter; Kohan, Rolland; Ilett, Kenneth F

    2011-02-01

    This study characterises the extent of desvenlafaxine transfer into milk and provides data on infant exposure to desvenlafaxine via breast milk in ten women with postnatal depression and their breastfed infants. Desvenlafaxine concentration in milk and plasma was measured chromatographically in milk and in maternal and infant plasma collected at steady state. Theoretic and relative infant doses via milk were estimated and the per cent drug in infant versus mother's plasma was calculated. Theoretic infant dose via milk was 85 (53-117) μg kg(-1) day(-1) (mean and 95% confidence interval) and relative infant dose was 6.8% (5.5-8.1%). The ratio of drug in infant/maternal plasma also gave an infant exposure estimate of 4.8% (3.5-6.2%) for all ten infants and 5.3% (4.2-5.7%) in the eight infants who were exclusively breastfed. No adverse effects were seen in the infants. The relative infant dose was similar to that for previous studies using venlafaxine and was supported by a separate exposure measure using the ratio of drug in the infant's plasma relative to that in the mother's plasma. The theoretic infant dose of desvenlafaxine was 41-45% of that for venlafaxine and its metabolite desvenlafaxine in previous studies, reflecting the lower recommended maternal dose for desvenlafaxine. Although our data for desvenlafaxine use in lactation are encouraging and there are supporting data from venlafaxine studies, more patients and their infants need to be studied before the safety of desvenlafaxine as a single therapeutic agent can be fully assessed.

  18. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia.

    PubMed

    Hunt, Nicholas J; Russell, Benjamin; Du, Man K; Waters, Karen A; Machaalani, Rita

    2016-06-01

    We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40-50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone-sleeping) and chronic nicotine exposure (cigarette-smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2 /8% CO2 alternating with 6-min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin-positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin-positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine-induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS. PMID:27038133

  19. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    SciTech Connect

    Tsai, W.-L.; Tsai, I-C.; Lee Tain; Hsieh, C.-W.

    2008-07-15

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  20. Whole-body MR imaging. Practical issues, clinical applications, and future directions.

    PubMed

    Eustace, S J; Walker, R; Blake, M; Yucel, E K

    1999-05-01

    Whole-body MR imaging is in evolution, and although accepting and recognizing limitations, it is likely that both technique and incurred acquisition times will shorten over the next decade. Although the development of dedicated whole-body MR scanners appears to offer the greatest promise for the future, the development of moving table tops, optimized pulse sequences, and advances in gradient technology now facilitate practical whole-body MR imaging using existing clinical systems.

  1. Excess perigestational folic acid exposure induces metabolic dysfunction in post-natal life.

    PubMed

    Keating, Elisa; Correia-Branco, Ana; Araújo, João R; Meireles, Manuela; Fernandes, Rita; Guardão, Luísa; Guimarães, João T; Martel, Fátima; Calhau, Conceição

    2015-03-01

    The aim of this study was to understand whether high folic acid (HFA) exposure during the perigestational period induces metabolic dysfunction in the offspring, later in life. To do this, female Sprague-Dawley rats (G0) were administered a dose of folic acid (FA) recommended for pregnancy (control, C, 2 mg FA/kg of diet, n=5) or a high dose of FA (HFA, 40 mg FA/kg of diet, n=5). Supplementation began at mating and lasted throughout pregnancy and lactation. Body weight and food and fluid intake were monitored in G0 and their offspring (G1) till G1 were 13 months of age. Metabolic blood profiles were assessed in G1 at 3 and 13 months of age (3M and 13M respectively). Both G0 and G1 HFA females had increased body weight gain when compared with controls, particularly 22 (G0) and 10 (G1) weeks after FA supplementation had been stopped. G1 female offspring of HFA mothers had increased glycemia at 3M, and both female and male G1 offspring of HFA mothers had decreased glucose tolerance at 13M, when compared with matched controls. At 13M, G1 female offspring of HFA mothers had increased insulin and decreased adiponectin levels, and G1 male offspring of HFA mothers had increased levels of leptin, when compared with matched controls. In addition, feeding of fructose to adult offspring revealed that perigestational exposure to HFA renders female progeny more susceptible to developing metabolic unbalance upon such a challenge. The results of this work indicate that perigestational HFA exposure the affects long-term metabolic phenotype of the offspring, predisposing them to an insulin-resistant state.

  2. Whole body vibration induces forepaw and hind paw behavioral sensitivity in the rat.

    PubMed

    Baig, Hassam A; Guarino, Benjamin B; Lipschutz, Daniel; Winkelstein, Beth A

    2013-11-01

    Whole body vibration (WBV) has been linked to neck and back pain, but the biomechanical and physiological mechanisms responsible for its development and maintenance are unknown. A rodent model of WBV was developed in which rats were exposed to different WBV paradigms, either daily for 7 consecutive days (repeated WBV) or two single exposures at Day 0 and 7 (intermittent WBV). Each WBV session lasted for 30 min and was imposed at a frequency of 15 Hz and RMS platform acceleration of 0.56 ± 0.07 g. Changes in the withdrawal response of the forepaw and hind paw were measured, and were used to characterize the onset and maintenance of behavioral sensitivity. Accelerations and displacements of the rat and deformations in the cervical and lumbar spines were measured during WBV to provide mechanical context for the exposures. A decrease in withdrawal threshold was induced at 1 day after the first exposure in both the hind paw and forepaw. Repeated WBV exhibited a sustained reduction in withdrawal threshold in both paws and intermittent WBV induced a sustained response only in the forepaw. Cervical deformations were significantly elevated which may explain the more robust forepaw response. Findings suggest that a WBV exposure leads to behavioral sensitivity.

  3. Prenatal MDMA exposure delays postnatal development in the rat: a preliminary study.

    PubMed

    Heuland, Emilie; Germaux, Marie-Aure; Galineau, Laurent; Chalon, Sylvie; Belzung, Catherine

    2010-01-01

    3,4-methylenedioxymethamphetamine or MDMA (ecstasy) is a synthetic illicit drug which is widely consumed throughout the world. Drug abuse during pregnancy may have an impairing effect on the progeny of drug-abusing mothers. The purpose of the present study was to assess the effect of prenatal MDMA exposure on the progeny development, using a rat model. Pregnant animals were injected daily with MDMA (10 mg/kg) between the 13th and 20th days of gestation. Male and female pups were then tested throughout the lactation period on the appearance and improvement of physical and sensory motor parameters. Appearance of some physical features (eyes opening and incisor eruption) and neurological reflexes as well as improving performances in negative geotaxis, gait and inclined board tests were delayed in pups prenatally exposed to MDMA compared to saline-treated pups. In contrast, functions that are necessary for survival such as forelimb reflex (that enables suckling) were present in both groups. At four weeks of age, MDMA animals recovered to normal level in all studied parameters. The delay in physical and neurological reflex development could be interpreted as alterations in maturation of some neuronal circuitries induced by prenatal MDMA exposure.

  4. Prenatal exposure to the viral mimetic poly I:C alters fetal brain cytokine expression and postnatal behaviour.

    PubMed

    Ratnayake, Udani; Quinn, Tracey; LaRosa, Domenic A; Dickinson, Hayley; Walker, David W

    2014-01-01

    An increased incidence of mental illness disorders is found in children and adolescents born to mothers who experienced an infection-based illness during pregnancy. Animal models to study the prenatal origin of such outcomes of pregnancy have largely used conventional rodents, which are immature (altricial) at birth compared with the human neonate. In this study, we used the precocial spiny mouse (Acomys cahirinus), whose offspring have completed organogenesis at birth, and administered a single subcutaneous injection of a 5 mg/kg dose of the viral mimetic poly I:C (polyriboinosinic-polyribocytidylic acid) at mid gestation (20 days; term is 39 days). Prenatal exposure to poly I:C caused a transient weight loss in the pregnant dam, produced a downregulation of the proinflammatory cytokine tumour necrosis factor-α in the fetal brain, and resulted in abnormalities in sensorimotor gating and reduced social interaction, memory and learning in juvenile offspring. No changes in exploratory activity or anxiety and fear behaviours were found between the treatment groups. This study provides evidence that, in a rodent model that more closely resembles human brain development, prenatal infection can lead to behavioural abnormalities in postnatal life. PMID:24863806

  5. Cytokine production after whole body and localized hyperthermia.

    PubMed

    Haveman, J; Geerdink, A G; Rodermond, H M

    1996-01-01

    The levels of TNF, IL-1 and IL-6 in circulating blood female WAG/Ry rats were assessed in relation to treatment with localized hyperthermia of the right hind leg or with whole-body hyperthermia (WBH). After a localized treatment for 30 min at 43 or 44 degrees C no detectable increase in levels of IL-6 or TNF was obtained. Hyperthermia for 30 min at 45 degrees C led to an elevated level of IL-6 of 19.4 +/- 5.2 U/ml above the control level of 24 h after treatment. Levels of IL-1 were never higher than those in control animals that received only anaesthesia. Anaesthesia induced a peak level of approximately 131 U/ml IL-1 6 h after treatment. Serum levels of IL-1 and IL-6 are enhanced after WBH. IL-1 reaches a peak level already during WBH about 15 after reaching 41.5 degrees C. IL-6 levels were not enhanced during WBH but 1 h after WBH a clear peak was observed. Anaesthesia with sham WBH did not lead to enhanced IL-6 levels but enhanced IL-1 levels were clearly detected. We did not detect TNF in any sample after WBH. It is concluded from the present results that IL-6 is not induced by a 'standard' treatment of localized hyperthermia as used in oncotherapy (i.e. 60 min at 43 degrees C) to such a high level locally that this is reflected in increased levels in circulating blood. WBH at clinically relevant temperatures leads to enhanced levels of IL-1 and IL-6. The difference in IL-6 response after WBH or localized hyperthermia probably is related to the fact that in WBH also the bone marrow is treated. This may lead to stimulation of this important stem cell compartment of the peripheral blood. The sequence of appearance of IL-1 and IL-6 after hyperthermia is akin to the sequence in an inflammatory response. However, the experiments with sham treatment show that IL-1 may appear in the circulating blood not followed by IL-6. These results indicate that enhanced IL-1 levels may reflect a stress reaction of the animal related to the (sham) treatment. Enhanced levels of IL

  6. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation.

    PubMed

    Reis, Karina Pires; Heimfarth, Luana; Pierozan, Paula; Ferreira, Fernanda; Loureiro, Samanta Oliveira; Fernandes, Carolina Gonçalves; Carvalho, Rônan Vivian; Pessoa-Pureur, Regina

    2015-11-01

    Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.

  7. Associations between Prenatal and Recent Postnatal Methylmercury Exposure and Auditory Function at age 19 years in the Seychelles Child Development Study

    PubMed Central

    Orlando, Mark S.; Dziorny, Adam C.; Harrington, Donald; Love, Tanzy; Shamlaye, Conrad F.; Watson, Gene E.; van Wijngaarden, Edwin; Davidson, Philip W.; Myers, Gary J.

    2014-01-01

    Objectives To determine if prenatal or recent postnatal methylmercury (MeHg) exposure from consuming ocean fish and seafood is associated with auditory deficits in young adults. Some investigators have reported adverse associations while others have found no associations. Ocean fish is an important nutrient source for billions of people around the world. Consequently, determining if there is an adverse association with objective auditory measures is important in assessing whether a risk is present or not. Design The peripheral and central auditory function of 534 subjects in the Seychelles Child Development Study (SCDS) Main Cohort was examined at age 19 years. The auditory test battery included standard pure-tone audiometry, tympanometry, Auditory Brainstem Response (ABR) latencies, and both click-evoked and distortion-product Otoacoustic Emissions (OAE). Associations with MeHg were evaluated with multiple linear regression models, adjusting for sex, recent postnatal MeHg exposure, and hearing loss. Results Bilateral hearing loss (defined as a mean pure-tone threshold of greater than 25 dB) was present in 1.1% of the subjects and was not associated with prenatal or recent postnatal MeHg exposure. As expected, absolute and interwave ABR latencies were shorter for women as compared to men, as the stimulus presentation rate decreased from 69.9 to 19.9 clicks/sec and as the stimulus intensity increased from 60 to 80 dBnHL. Similarly, larger OAE amplitudes were elicited in women as compared to men and in the right ears as compared to the left. There was no association of prenatal MeHg exposure with hearing loss, ABR absolute and interwave latencies or OAE amplitudes. As recent postnatal MeHg increased, some associations were found with a few ABR absolute and interwave latencies and a few OAE amplitudes. However, the direction of these associations was inconsistent. As recent postnatal MeHg levels increased the wave I absolute latencies were shorter at 80 dBnHL for all

  8. In utero and lactational exposure to ammonium perchlorate in drinking water: effects on developing deer mice at postnatal day 21.

    PubMed

    Thuett, Kerry A; Roots, Ellen H; Mitchell, Lisa P; Gentles, B Angella; Anderson, Todd A; Smith, Ernest E

    2002-08-01

    The effects of in utero and lactational exposure to ammonium perchlorate (AP), a component of rocket fuel and a thyroid toxicant, on developing deer mice (Peromyscus maniculatus) were evaluated. Breeding pairs were dosed continuously with 0, 1 nM, 1 micro M, or 1 mM AP in drinking water, from cohabitation until pups were euthanized at postnatal day (PND) 21. Pups from the second litter were used for evaluation in this study. No significant differences were observed in any analysis performed when litter means were used in statistical analysis. All reported significant differences occurred when statistical analysis was performed on individual pup data. Body weights were significantly different between treatments at PND 5 and PND 20, with the 1- micro M body weights being lower than that of controls. Body weight and liver weight in the 1-mM group were significantly higher than the 1- micro M weights at PND 21 when analyzed by analysis of variance (ANOVA). However, there were no significant differences in liver weights when analyzed with body weight as the covariate. Heart weights were significantly different between males and females. Male heart weights in the 1- microM and 1-mM groups were significantly lower than in controls when analyzed by analysis of covariance (ANCOVA) with body weight as the covariate. Litter size and survival percentage were not significantly different among treatments. Although significant differences were observed only when the individual pup was used as the experimental unit, these data suggest that AP exposure at different concentrations may variably alter body weight and male heart weight during mammalian development.

  9. Effect of pre- and postnatal manganese exposure on brain histamine content in a rodent model of Parkinson's disease.

    PubMed

    Brus, Ryszard; Jochem, Jerzy; Nowak, Przemysław; Adwent, Marta; Boroń, Dariusz; Brus, Halina; Kostrzewa, Richard M

    2012-02-01

    Rats lesioned shortly after birth with 6-hydroxydopamine (6-OHDA; 134 μg icv) represent a near-ideal model of severe Parkinson's disease because of the near-total destruction of nigrostriatal dopaminergic fibers. There are scarce data that in Parkinson's disease, activity of the central histaminergic system is increased. The element manganese, an essential cofactor for many enzymatic reactions, itself in toxic amount, replicates some clinical features similar to those of Parkinson's disease. The aim of this study was to examine the effect of neonatal manganese exposure on 6-OHDA modeling of Parkinson's disease in rats, and to determine effects on histamine content in the brain of these rats in adulthood. Manganese (MnCl₂·4H₂O; 10,000 ppm) was included in the drinking water of pregnant Wistar rats from the time of conception until the 21st day after delivery, the age when neonatal rats were weaned. Control rats consumed tap water. Other groups of neonatal rat pups, on the 3rd day after birth, were pretreated with desipramine (20 mg/kg ip 1 h) prior to bilateral icv administration of 6-OHDA (60 or 134 μg) or its vehicle saline-ascorbic (0.1%) (control). At 2 months after birth, in rats lesioned with 60 or 134 μg 6-OHDA, endogenous striatal dopamine (DA) content was reduced, respectively, by 92 and 98% (HPLC/ED), while co-exposure of these groups to perinatal manganese did not magnify the DA depletion. However, there was prominent enhancement of histamine content in frontal cortex, hippocampus, hypothalamus, and medulla oblongata of adult rat brain after 6-OHDA (60 and 134 μg) injection on the day 3rd postnatal day. These findings indicate that histamine and the central histaminergic system are altered in the brain of rats lesioned to model Parkinson's disease, and that manganese enhances effects of 6-OHDA on histamine in brain. PMID:21822760

  10. Salivary steroid hormone response to whole-body cryotherapy in elite rugby players.

    PubMed

    Grasso, D; Lanteri, P; Di Bernardo, C; Mauri, C; Porcelli, S; Colombini, A; Zani, V; Bonomi, F G; Melegati, G; Banfi, G; Lombardi, G

    2014-01-01

    Saliva represents a low stress, not-invasively collected matrix that allows steroid hormone monitoring in athletes by reflecting type, intensity and duration of exercise. Whole body cryotherapy (WBC) consists of short whole-body exposures to extremely cold air (-110° to -140°C) which, despite being initially used to treat inflammatory diseases, is currently acquiring increasing popularity in sports medicine. Cryostimulation practice is now widely accepted as an effective treatment to accelerate muscle recovery in rugby players. The aim of this work was to study the changes of steroid hormones in saliva of rugby players after both 2 and 14 consecutive WBC sessions, in order to investigate the effects of the treatment on their salivary steroid hormonal profile. Twenty-five professional rugby players, belonging to the Italian National Team, underwent a 7-day cryotherapy protocol consisting of 2 daily sessions. Saliva samples were taken in the morning prior to the start of the WBC, in the evening after the end of the second WBC, and in the morning of the day after the last WBC session. The samples were analyzed for cortisol, DHEA, testosterone and estradiol using competitive enzyme-linked immunosorbent assays. Cortisol and DHEA showed a reduction already after the 2 WBC sessions of the first day; after 14 consecutive WBC sessions cortisol, DHEA, and estradiol levels decreased, while testosterone increased as did the testosterone to cortisol ratio. These results were confirmed by the fact that the majority of subjects showed variations exceeding the critical difference (CD). In conclusion, we found that WBC acutely affects the salivary steroid hormone profile, and the results are evident already after only one twice-daily session. Most significantly, after one-week of consecutive twice-daily WBC sessions, all the hormones were modified. This is the first experimental report that links changes in the hormonal asset to WBC.

  11. LONG TERM EFFECTS OF PRENATAL AND POSTNATAL AIRBORNE PAH EXPOSURE ON VENTILATORY LUNG FUNCTION OF NON-ASTHMATIC PREADOLESCENT CHILDREN. PROSPECTIVE BIRTH COHORT STUDY IN KRAKOW

    PubMed Central

    Jedrychowski, Wieslaw A.; Perera, Frederica P.; Maugeri, Umberto; Majewska, Renata; Mroz, Elzbieta; Flak, Elzbieta; Camman, David; Sowa, Agata; Jacek, Ryszard

    2014-01-01

    The main goal of the study was to test the hypothesis that prenatal and postnatal exposure to polycyclic aromatic hydrocarbons (PAH) is associated with depressed lung function in non-asthmatic children. The study sample comprises 195 non-asthmatic children of non-smoking mothers, among whom the prenatal PAH exposure was assessed by personal air monitoring in pregnancy. At the age of 3, residential air monitoring was carried out to evaluate the residential PAH exposure indoors and outdoors. At the age of 5 to 8, children were given allergic skin tests for indoor allergens; and between 5–9 years lung function testing (FVC, FEV05, FEV1 and FEF25–75) was performed. The effects of prenatal PAH exposure on lung function tests repeated over the follow-up were adjusted in the General Estimated Equation (GEE) model for the relevant covariates. No association between FVC with prenatal PAH exposure was found; however for the FEV1 deficit associated with higher prenatal PAH exposure (above 37ng/m3) amounted to 53 mL (p = 0.050) and the deficit of FEF25–75 reached 164 mL (p=0.013). The corresponding deficits related to postnatal residential indoor PAH level (above 42 ng/m3) were 59 mL of FEV1 (p=0.028) and 140 mL of FEF25–75 (p=0.031). At the higher residential outdoor PAH level (above 90 ng/m3) slightly greater deficit of FEV1 (71mL, p = 0.009) was observed. The results of the study suggest that transplacental exposure to PAH compromises the normal developmental process of respiratory airways and that this effect is compounded by postnatal PAH exposure. PMID:25300014

  12. Early postnatal lead exposure: behavioral effects in common tern chicks (Sterna Hirundo)

    SciTech Connect

    Burger, J.; Gochfeld, M.

    1985-01-01

    Exposure to lead early in life is known to affect behavioral and intellectual development. To develop an animal model the authors chose the common tern, Sterna hirundo, a species whose early developmental landmarks are well known. One potential for avian models lies in the reliance of birds on visual and acoustic rather than olfactory (and ultrasonic) modes of communication. One randomly chosen member from each of 8 pairs of young common tern chicks was injected with lead nitrate solution at a concentration of 0.2 mg/g. The pairs were not siblings but were matched for age (+/-1 d) and weight (+/-3 g). The second member of each pair was injected with an equal volume of sterile saline. Behavioral tests performed examined locomotion, balance and righting response, feeding tasks and begging, depth perception and response on a visual cliff, and behavioral thermoregulation. In each pair the control chick was heavier at 4 wk of age. For most behavioral measures, except begging and movement on a stationary incline, the lead-injected chicks performed less well than the control chicks. When presented with a novel feeding situation (reversal of fish position), the lead-injected chicks required significantly more time to eat the same number of fish. The single injection of lead, thus, affected a variety of behavioral patterns, with effects apparent within 5 d after injection.

  13. An analysis of dependency of counting efficiency on worker anatomy for in vivo measurements: whole-body counting

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Mille, Matthew; Xu, X. George

    2008-07-01

    In vivo radiobioassay is integral to many health physics and radiological protection programs dealing with internal exposures. The Bottle Manikin Absorber (BOMAB) physical phantom has been widely used for whole-body counting calibrations. However, the shape of BOMAB phantoms—a collection of plastic, cylindrical shells which contain no bones or internal organs—does not represent realistic human anatomy. Furthermore, workers who come in contact with radioactive materials have rather different body shape and size. To date, there is a lack of understanding about how the counting efficiency would change when the calibrated counter is applied to a worker with complicated internal organs or tissues. This paper presents a study on various in vivo counting efficiencies obtained from Monte Carlo simulations of two BOMAB phantoms and three tomographic image-based models (VIP-Man, NORMAN and CNMAN) for a scenario involving homogeneous whole-body radioactivity contamination. The results reveal that a phantom's counting efficiency is strongly dependent on the shape and size of a phantom. Contrary to what was expected, it was found that only small differences in efficiency were observed when the density and material composition of all internal organs and tissues of the tomographic phantoms were changed to water. The results of this study indicate that BOMAB phantoms with appropriately adjusted size and shape can be sufficient for whole-body counting calibrations when the internal contamination is homogeneous.

  14. Uptake, depuration and bioconcentration of bisphenol AF (BPAF) in whole-body and tissues of zebrafish (Danio rerio).

    PubMed

    Shi, Jiachen; Yang, Yunjia; Zhang, Jing; Feng, Yixing; Shao, Bing

    2016-10-01

    Bisphenol AF (BPAF) is an analog of Bisphenol A (BPA) and is widely used as a raw material in the plastics industry. However, an understanding of the potential risks posed by BPAF in the aquatic environment is lacking. The bioconcentration factor (BCF) is a measure used to assess the secondary poisoning potential as well as risks to human health. In this work we measured the accumulation and elimination of BPAF in the whole-body and in liver, muscle and gonad tissues of zebrafish. BPAF uptake was relatively rapid with equilibrium concentrations reached after 24-72h of exposure. We observed gender differences both in whole-body and in tissue accumulation. Muscle was the primary BPAF storage tissue during the uptake phase in this study. In the elimination phase, BPAF concentrations declined rapidly during depuration, especially during the initial 2h, and the rate of elimination in males was faster than females from the whole-body and from tissues. The appearance of BPAF glucuronide (BPAF-G) at the start of the uptake phase indicated the rapid biotransformation of BPAF to BPAF-G in vivo. The high lipid content of female gonad could act to delay the diffusion of the xenobiotic within the body in a contaminated environment, but it also acts to delay xenobiotic elimination from the body. PMID:27362491

  15. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  16. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice. PMID:26248045

  17. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  18. Whole-Body Proton Irradiation Causes Long-Term Damage to Hematopoietic Stem Cells in Mice

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R.; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  19. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  20. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  1. In Utero Exposure to a Cardiac Teratogen Causes Reversible Deficits in Postnatal Cardiovascular Function, But Altered Adaptation to the Burden of Pregnancy.

    PubMed

    Aasa, Kristiina L; Maciver, Rebecca D; Ramchandani, Shyamlal; Adams, Michael A; Ozolinš, Terence R S

    2015-11-01

    Congenital heart defects (CHD) are the most common birth anomaly and while many resolve spontaneously by 1 year of age, the lifelong burden on survivors is poorly understood. Using a rat model of chemically induced CHD that resolve postnatally, we sought to characterize the postnatal changes in cardiac function, and to investigate whether resolved CHD affects the ability to adapt to the increased the cardiovascular (CV) burden of pregnancy. To generate rats with resolved CHD, pregnant rats were administered distilled water or dimethadione (DMO) [300 mg/kg b.i.d. on gestation day (gd) 9 and 10] and pups delivered naturally. To characterize structural and functional changes in the heart, treated and control offspring were scanned by echocardiography on postnatal day 4, 21, and 10-12 weeks. Radiotelemeters were implanted for continuous monitoring of hemodynamics. Females were mated and scanned by echocardiography on gd12 and gd18 during pregnancy. On gd18, maternal hearts were collected for structural and molecular assessment. Postnatal echocardiography revealed numerous structural and functional differences in treated offspring compared with control; however, these resolved by 10-12 weeks of age. The CV demand of pregnancy revealed differences between treated and control offspring with respect to mean arterial pressure, CV function, cardiac strain, and left ventricular gene expression. In utero exposure to DMO also affected the subsequent generation. Gd18 fetal and placental weights were increased in treated F2 offspring. This study demonstrates that in utero chemical exposure may permanently alter the capacity of the postnatal heart to adapt to pregnancy and this may have transgenerational effects.

  2. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects.

  3. LONG-TERM BEHAVIORAL EFFECTS IN A RAT MODEL OF PROLONGED POSTNATAL MORPHINE EXPOSURE

    PubMed Central

    Craig, Michael M.; Bajic, Dusica

    2015-01-01

    Prolonged morphine treatment in neonatal pediatric populations is associated with a high incidence of opioid tolerance and dependence. Despite the clinical relevance of this problem, our knowledge of the long-term consequences is sparse. The main objective of this study was to investigate whether prolonged morphine administration in a neonatal rat is associated with long-term behavioral changes in adulthood. Newborn animals received either morphine (10mg/kg) or equal volume of saline subcutaneously twice daily for the first 2 weeks of life. Morphine treated animals underwent 10 days of morphine weaning to reduce the potential for observable physical signs of withdrawal. Animals were subjected to non-stressful testing (locomotor activity recording and a Novel-Object Recognition test) at a young age (PD27-31) or later in adulthood (PD55-56), as well as stressful testing (calibrated forceps test, Hot Plate test, and Forced Swim test) only in adulthood. Analysis revealed that prolonged neonatal morphine exposure resulted in decreased thermal, but not mechanical threshold. Importantly, no differences were found for total locomotor activity (proxy of drug reward/reinforcement behavior), individual Forced Swim test behaviors (proxy of affective processing), or Novel-Object Recognition test. Performance on the Novel-Object Recognition test was compromised in the morphine treated group at the young age, however the effect disappeared in adulthood. These novel results provide insight into the long-term consequences of opioid treatment during an early developmental period and suggest long-term neuroplastic differences in sensory processing related to thermal stimuli. PMID:26214209

  4. A high protein diet upregulated whole-body protein turnover during energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of higher protein diets and sustained energy deficit (ED) on whole-body protein turnover (WBPTO) are not well described. This study examined whether dietary protein level influences whole-body protein breakdown (Ra), non-oxidative leucine disposal (NOLD), and oxidation (Ox) during ED. ...

  5. Oak Ridge National Laboratory whole-body counter: internal operating procedure manual

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1982-08-01

    The general purpose of the ORNL Whole Body Counter is to provide a rapid estimation of the type and quantity of radionuclide deposited in the human body. This report contains a review of the equipment in use at the facility and the procedure for its operation, the standard procedure for performing a routine whole body count, and a discussion of interpretation of results.

  6. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  7. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    BMD and BMC agreement, did not detect substantial lean and fat differences observed using BBCP and in vivo assessments. Consequently, spine phantoms are inadequate for dual-energy X-ray absorptiometry whole body composition cross-calibration.

  8. Synaptotoxicity of chronic low-dose pre- and post-natal ethanol exposure: A new animal model

    SciTech Connect

    Walewski, J.L.

    1992-01-01

    Chronic Low-dose Pre- and Post-natal Ethanol exposure (CLPPEE) is the most frequent cause of teratogenically induced mental deficiency in the Western world. Although the Fetal Alcohol Syndrome (FAAS) is associated with high levels of alcohol consumption, the relative teratogenic risk of moderate ethanol consumption is not well defined. CLPPEE may affect some processes involved in synapse formation, affecting the proper development and maturation of the nervous system. Ethanol was admixed (3 v/v%) with high-protein liquid diet (Bio-Serve) as the only nutrient source. The controls received an isocaloric sucrose liquid diet mixture. Ethanol treatment began on day 8 of pregnancy. 3 v/v% ethanol did not significantly reduce the body weights or diet consumption of dams, nor the gross growth of ethanol-exposed pups. Standard neuromuscular twitch preparations in vivo, utilizing the sciatic nerve-gastrocnemius muscle, were done on 1, 2, 3 and 7 week old pups. The physiologic functional tests of nursing pups (1-3 weeks), indicated that the ethanol-treated pups had abnormal responses to indirect stimulation. The deficit was determined to be pre-synaptic. The ethanol-exposed at these ages demonstrated abnormal responses to presynaptic challenge. Histochemical staining revealed motor nerve terminal morphology. In 2 and 3 week ethanol-treated pups, the number of nerve terminal branches, and endplate lengths were significantly reduced. Reversibility was examined by allowing the pups to mature while receiving only standard rat chow and water. Tests were repeated at 7 weeks of age. The responses of the ethanol-exposed to pharmacologic challenge, and motor nerve terminal morphology were still significantly different in the young adult animals. CLPPEE, at doses sub-threshold for FAS, affects the normal development of the skeletal neuromuscular system, with long-lasting effects on motor nerve terminal function and morphology.

  9. Whole-body vibration and ergonomic study of US railroad locomotives

    NASA Astrophysics Data System (ADS)

    Johanning, Eckardt; Landsbergis, Paul; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Luhrman, Raymond

    2006-12-01

    US locomotive operators have exposure to multi-axis whole-body vibration (WBV) and shocks while seated. This study assessed operator-related and ergonomic seating design factors that may have confounding or mitigating influence on WBV exposure and its effects. Vibration exposure was measured according to international guidelines (ISO 2631-1; 1997); ergonomic work place factors and vibration effects were studied with a cross-sectional survey instrument distributed to a randomly selected group of railroad engineers ( n=2546) and a control group; and during vehicle inspections. The survey response rate was 47% for the RR engineers ( n=1195) and 41% for the controls ( n=323). Results of the mean basic vibration measurements were for the x, y, z-direction and vector sum 0.14, 0.22, 0.28 and 0.49 m/s 2 respectively; almost all crest factors (CF), MTVV and VDV values were above the critical ratios given in ISO 2631-1. The prevalence of serious neck and lower back disorders among locomotive engineers was found to be nearly double that of the sedentary control group without such exposure. Railroad engineers rated their seats mostly unacceptable regarding different adjustment and comfort aspects (3.02-3.51; scale 1=excellent to 4=unacceptable), while the control group rated their chairs more favorably (1.96-3.44). Existing cab and seat design in locomotives can result in prolonged forced awkward spinal posture of the operator combined with WBV exposure. In a logistic regression analysis, time at work being bothered by vibration (h/day) was significantly associated with an increased risk of low back pain, shoulder and neck pain, and sciatic pain among railroad engineers. Customized vibration attenuation seats and improved cab design of the locomotive controls should be further investigated.

  10. The influence of whole body vibration on the central and peripheral cardiovascular system.

    PubMed

    Robbins, Dan; Yoganathan, Priya; Goss-Sampson, Mark

    2014-09-01

    The purpose of this study was to investigate the physiological changes of the cardiovascular system in response to whole body vibration during quiet standing and identify whether there is a greater influence on the central or peripheral cardiovascular system. Twenty healthy participants (12 male and 8 female) were assessed over two separate testing sessions for changes in peripheral skin temperature, peripheral venous function, blood flow velocity in the dorsalis pedis artery, blood pressure and heart rate during quiet standing with 40 Hz 1·9 mm synchronous vibration. Vibration exposure totalled 5 min in 1 min increments with 5 min recovery during each testing session. There were no significant changes in heart rate, blood pressure or peripheral skin temperature. Significant results were obtained for blood flow velocity with increases from 0·5 + 0·2 cm·s(-1) at baseline to 1 + 0·2 cm·s(-1) during vibration, returning to baseline levels during the recovery period. Due to the absence of changes in heart rate, blood pressure or lower leg and foot temperature, the change in blood flow velocity can be attributed to changes in peripheral vascular function. The results suggest a high level of sensitivity of the peripheral vascular system to vibration exposure; therefore, further studies should be completed to ascertain the physiological mechanisms underlying the effects of vibration on the peripheral vascular system.

  11. Two way assessment of other physical work demands while measuring the whole body vibration magnitude

    NASA Astrophysics Data System (ADS)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.

    2008-03-01

    Direct observation, instead of using self-administered questionnaires might give more reliable and specific information about physical work demands at the workplace. This information is of use in a population already at risk of developing low back pain (LBP) due to whole body vibration (WBV) exposure. The aims of this study are to assess the WBV exposure in an exposed population and to assess other physical work demands in two ways, by direct observation and with the use of a self-administered questionnaire. We therefore assessed the WBV magnitude and 5 WBV-related physical work demands by using the PalmTrac system and a self-administered questionnaire in a group of drivers ( N=10). The main findings are 7 out of 10 drivers are exceeding the EU action value. About 50% of the drivers under-estimated the time 'bending', 60% the time 'walking+standing' and 60% over-estimated the time when 'lifting.' We concluded that 7 drivers from this group are at risk of developing LBP and substantial differences exists for the 5 physical work demands comparing the PalmTrac method with the questionnaire. Direct observational assessment in WBV measurements yields extra information. This is useful for preventive activities necessary as drivers are exceeding the EU action value.

  12. Effects of whole-body cryotherapy duration on thermal and cardio-vascular response.

    PubMed

    Fonda, Borut; De Nardi, Massimo; Sarabon, Nejc

    2014-05-01

    Whole-body cryotherapy (WBC) is the exposure of minimally dressed participants to very cold air, either in a specially designed chamber (cryo-chamber) or cabin (cryo-cabin), for a short period of time. Practitioners are vague when it comes to recommendations on the duration of a single session. Recommended exposure for cryo-chamber is 150s, but no empirically based recommendations are available for a cryo-cabin. Therefore the aim of this study was to examine thermal and cardio-vascular responses after 90, 120, 150 and 180s of WBC in a cryo-cabin. Our hypothesis was that skin temperature would be significantly lower after longer exposers. Twelve male participants (age 23.9±4.2 years) completed four WBC of different durations (90, 120, 150 and 180s) in a cryo-cabin. Thermal response, heart rate and blood pressure were measured prior, immediately after, 5min after and 30min after the session. Skin temperature differed significantly among different durations, except between 150 and 180s. There was no significant difference in heart rate and blood pressure. Thermal discomfort during a single session displayed a linear increase throughout the whole session. Our results indicate that practitioners and clinicians using cryo-cabin for WBC do not need to perform sessions longer than 150s. We have shown that longer sessions do not substantially affect thermal and cardio-vascular response, but do increase thermal discomfort. PMID:24802149

  13. Use of whole-body and subcellular Cu residues of Lumbriculus variegatus to predict waterborne Cu toxicity to both L. variegatus and Chironomus riparius in fresh water.

    PubMed

    Ng, Tania Y T; Pais, Nish M; Dhaliwal, Tarunpreet; Wood, Chris M

    2012-06-01

    We tested the use of whole-body and subcellular Cu residues (biologically-active (BAM) and inactive compartments (BIM)), of the oligochaete Lumbriculus variegatus to predict Cu toxicity in fresh water. The critical whole-body residue associated with 50% mortality (CBR(50)) was constant (38.2-55.6 μg g(-1) fresh wt.) across water hardness (38-117 mg L(-1) as CaCO(3)) and exposure times during the chronic exposure. The critical subcellular residue (CSR(50)) in metal-rich granules (part of BIM) associated with 50% mortality was approximately 5 μg g(-1) fresh wt., indicating that Cu bioavailability is correlated with toxicity:subcellular residue is a better predictor of Cu toxicity than whole-body residue. There was a strong correlation between the whole-body residue of L. variegatus (biomonitor) and survival of Chironomus riparius (relatively sensitive species) in a hard water Cu co-exposure. The CBR(50) in L. variegatus for predicting mortality of C. riparius was 29.1-45.7 μg g(-1) fresh wt., which was consistent within the experimental period; therefore use of Cu residue in an accumulator species to predict bioavailability of Cu to a sensitive species is a promising approach.

  14. Long term effects of murine postnatal exposure to decabromodiphenyl ether (BDE-209) on learning and memory are dependent upon APOE polymorphism and age.

    PubMed

    Reverte, Ingrid; Klein, Anders B; Domingo, José L; Colomina, Maria Teresa

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) are a group of chemicals widely used as flame retardants; the lower brominated forms (1-5 bromine atoms) are highly neurotoxic and are presently not in commercial use. The highest brominated, the decabromodiphenyl ether (BDE-209) remains in use and its adverse and persistent effects are subject to debate. Of special concern are developmental exposures that can disrupt later-in-life adult health or aging. In this study, we investigated the effects of postnatal exposure to BDE-209 in combination with apolipoprotein E (apoE) genotype, a genetic factor that is associated with varied vulnerability for the development of neurodegenerative diseases. On postnatal day 10, transgenic mice of both sexes carrying apoE2, apoE3 and apoE4 were orally exposed to 0, 10 or 30mg/kg of BDE-209. Spatial reference memory was assessed in a Morris Water Maze (MWM) task at 4 and 12months of age. The levels of the brain-derived neurotrophic factor (BDNF) were determined in hippocampus and frontal cortex of mice at 5months of age. Mice carrying different apoE polymorphisms showed differences in the acquisition and retention of the spatial navigation task both at 4 and 12months of age. Postnatal exposure to BDE-209 induced long term effects in spatial learning, which were dependent upon age, sex and apoE genotype; these effects were more evident in apoE3 mice. BDNF levels were lower in the frontal cortex of apoE4 mice and higher in the hippocampus of exposed mice, independent of the genotype. The results of the present study provide evidence of long-lasting effects in spatial learning and memory after early exposure to BDE-209. Developmental exposure to this neurotoxicant may contribute to cognitive decline and abnormal aging.

  15. Early postnatal nicotine exposure disrupts the α2* nicotinic acetylcholine receptor-mediated control of oriens-lacunosum moleculare cells during adolescence in rats.

    PubMed

    Chen, Kang; Nakauchi, Sakura; Su, Hailing; Tanimoto, Saki; Sumikawa, Katumi

    2016-02-01

    Maternal cigarette smoking during pregnancy and maternal nicotine exposure in animal models are associated with cognitive impairments in offspring. However, the underlying mechanism remains unknown. Oriens-lacunosum moleculare (OLM) cells expressing α2* nicotinic acetylcholine receptors (nAChRs) are an important component of hippocampal circuitry, gating information flow and long-term potentiation (LTP) in the CA1 region. Here we investigated whether early postnatal nicotine exposure alters the normal role of α2*-nAChR-expressing OLM cells during adolescence in rats. We found that early postnatal nicotine exposure significantly decreased not only the number of α2-mRNA-expressing interneurons in the stratum oriens/alveus, but also α2*-nAChR-mediated responses in OLM cells. These effects of nicotine were prevented by co-administration with the nonselective nAChR antagonist mecamylamine, suggesting that nicotine-induced activation, but not desensitization, of nAChRs mediates the effects. α2*-nAChR-mediated depolarization of OLM cells normally triggers action potentials, causing an increase in spontaneous inhibitory postsynaptic currents in synaptically connected pyramidal cells. However, these α2*-nAChR-mediated effects were profoundly reduced after early postnatal nicotine exposure, suggesting altered control of CA1 circuits by α2*-nAChR-expressing OLM cells. Furthermore, these effects were associated with altered excitatory neural activity and LTP as well as the loss of normal α2*-nAChR-mediated control of excitatory neural activity and LTP. These findings suggest the altered function of α2*-nAChR-expressing OLM cells as an important target of further study for identifying the mechanisms underlying the cognitive impairment induced by maternal smoking during pregnancy.

  16. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  17. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  18. Neuroimmune response and sleep studies after whole body irradiation with high-LET particles

    NASA Astrophysics Data System (ADS)

    Marquette, C.; Mathieu, J.; Bertho, J.-M.; Galonnier, M.; Wysoki, J.; Maubert, C.; Balanzat, E.; Gerbin, R.; Aigueperse, J.; Clarençon, D.

    2009-10-01

    In order to investigate the biological effects of galactic rays on astronaut cerebral functions after space flight, mice were exposed to different heavy ions (HZE) in whole-body conditions at doses comparable to the galactic flux: 12C, 16O and 20Ne (95 MeV/u, at 42-76 mGy). Animals were also exposed to 42 mGy of 60Co radiation for comparison with HZE. The neuroimmune response, evaluated by interleukin-1 (IL-1) measurement, showed that this cytokine was produced 3 h after irradiation by 16O or 60Co. In contrast, neither 12C (56.7 mGy) nor 20Ne (76 mGy) induced IL-1 production. However, immunohistochemical staining of 12C-irradiated mouse brain tissue showed 2 months later a marked inflammatory reaction in the hippocampus and a diffuse response in parenchyma. Sleep studies were realized before and after exposure to 42 mGy of 16O and 76 mGy of 20Ne: only the 20Ne radiation displayed a small effect. A slight decrease in paradoxical sleep, corresponding to a reduction in the number of episodes of paradoxical sleep, was manifested between 8 and 22 days after exposure. Exposure to 12C and 16O induced no changes either in cellularity of spleen or thymus, or in caspase 3 activity (as much as four months after irradiation). Taken together, these data indicate that the CNS could be sensitive to heavy ions and that responses to HZE impact depend on the nature of the particle, the dose threshold and the time delay to develop biological processes. Differences in responses to different HZE highlight the complex biological phenomena to which astronauts are submitted during space flight.

  19. Survey of Technical Preventative Measures to Reduce Whole-Body Vibration Effects when Designing Mobile Machinery

    NASA Astrophysics Data System (ADS)

    DONATI, P.

    2002-05-01

    Engineering solutions to minimize the effects on operators of vibrating mobile machinery can be conveniently grouped into three areas: Reduction of vibration at source by improvement of the quality of terrain, careful selection of vehicle or machine, correct loading, proper maintenance, etc.Reduction of vibration transmission by incorporating suspension systems (tyres, vehicle suspensions, suspension cab and seat) between the operator and the source of vibration.Improvement of cab ergonomics and seat profiles to optimize operator posture. These paper reviews the different techniques and problems linked to categories (2) and (3). According to epidemiological studies, the main health risk with whole-body vibration exposure would appear to be lower back pain. When designing new mobile machinery, all factors which may contribute to back injury should be considered in order to reduce risk. For example, optimized seat suspension is useless if the suspension seat cannot be correctly and easily adjusted to the driver's weight or if the driver is forced to drive in a bent position to avoid his head striking the ceiling due to the spatial requirement of the suspension seat.

  20. Whole-body vibration training induces hypertrophy of the human patellar tendon.

    PubMed

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-08-01

    Animal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque-angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque-angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans. PMID:26173589

  1. Whole-body cortisol response of zebrafish to acute net handling stress

    USGS Publications Warehouse

    Ramsay, J.M.; Feist, G.W.; Varga, Z.M.; Westerfield, M.; Kent, M.L.; Schreck, C.B.

    2009-01-01

    Zebrafish, Danio rerio, are frequently handled during husbandry and experimental procedures in the laboratory, yet little is known about the physiological responses to such stressors. We measured the whole-body cortisol levels of adult zebrafish subjected to net stress and air exposure at intervals over a 24 h period; cortisol recovered to near control levels by about 1 h post-net-stress (PNS). We then measured cortisol at frequent intervals over a 1 h period. Cortisol levels were more than 2-fold higher in net stressed fish at 3 min PNS and continued to increase peaking at 15 min PNS, when cortisol levels were 6-fold greater than the control cortisol. Mean cortisol declined from 15 to 60 min PNS, and at 60 min, net-stressed cortisol was similar to control cortisol. Because the age of fish differed between studies, we examined resting cortisol levels of fish of different ages (3, 7, 13, and 19 months). The resting cortisol values among tanks with the same age fish differed significantly but there was no clear effect of age. Our study is the first to report the response and recovery of cortisol after net handling for laboratory-reared zebrafish. ?? 2009 Elsevier B.V.

  2. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  3. Hematological and TGF-beta variations after whole-body proton irradiation

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.

  4. Targeted contrast agents--an adjunct to whole-body imaging: current concepts.

    PubMed

    Foran, Paul; Bolster, Ferdia; Crosbie, Ian; MacMahon, Peter; O'Kennedy, Richard; Eustace, Stephen J

    2010-03-01

    This article reviews the potential use of a combination of whole-body imaging and targeted contrast agents in improving diagnostics, with a particular focus on oncology imaging. It looks at the rationale for nanoparticles and their development as targeted contrast agents. It subsequently describes many of the advances made thus far in developing tissue-specific contrast agents capable of targeting tumors that combined with whole-body imaging may enable superior cancer detection and characterization.

  5. Whole-body magnetic resonance imaging: techniques, clinical indications, and future applications.

    PubMed

    Walker, R E; Eustace, S J

    2001-01-01

    This article reviews developments in both pulse sequence design and gradient technology that facilitate rapid imaging of the whole body. It discusses its application in patients with bone marrow neoplasms, including metastases, lymphoma, and myeloma and emphasizes the value of whole-body magnetic resonance imaging in patients with known vertebral lesions to detect other bone lesions that are easier to biopsy. It outlines possible applications in well-defined clinical situations, including pregnancy and unknown primary tumor.

  6. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

    NASA Astrophysics Data System (ADS)

    Han, Yeji

    2016-02-01

    Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.

  7. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children.

    PubMed

    Vardavas, C I; Hohmann, C; Patelarou, E; Martinez, D; Henderson, A J; Granell, R; Sunyer, J; Torrent, M; Fantini, M P; Gori, D; Annesi-Maesano, I; Slama, R; Duijts, L; de Jongste, J C; Aurrekoetxea, J J; Basterrechea, M; Morales, E; Ballester, F; Murcia, M; Thijs, C; Mommers, M; Kuehni, C E; Gaillard, E A; Tischer, C; Heinrich, J; Pizzi, C; Zugna, D; Gehring, U; Wijga, A; Chatzi, L; Vassilaki, M; Bergström, A; Eller, E; Lau, S; Keil, T; Nieuwenhuijsen, M; Kogevinas, M

    2016-07-01

    Maternal smoking during pregnancy increases childhood asthma risk, but health effects in children of nonsmoking mothers passively exposed to tobacco smoke during pregnancy are unclear. We examined the association of maternal passive smoking during pregnancy and wheeze in children aged ≤2 years.Individual data of 27 993 mother-child pairs from 15 European birth cohorts were combined in pooled analyses taking into consideration potential confounders.Children with maternal exposure to passive smoking during pregnancy and no other smoking exposure were more likely to develop wheeze up to the age of 2 years (OR 1.11, 95% CI 1.03-1.20) compared with unexposed children. Risk of wheeze was further increased by children's postnatal passive smoke exposure in addition to their mothers' passive exposure during pregnancy (OR 1.29, 95% CI 1.19-1.40) and highest in children with both sources of passive exposure and mothers who smoked actively during pregnancy (OR 1.73, 95% CI 1.59-1.88). Risk of wheeze associated with tobacco smoke exposure was higher in children with an allergic versus nonallergic family history.Maternal passive smoking exposure during pregnancy is an independent risk factor for wheeze in children up to the age of 2 years. Pregnant females should avoid active and passive exposure to tobacco smoke for the benefit of their children's health.

  8. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children.

    PubMed

    Vardavas, C I; Hohmann, C; Patelarou, E; Martinez, D; Henderson, A J; Granell, R; Sunyer, J; Torrent, M; Fantini, M P; Gori, D; Annesi-Maesano, I; Slama, R; Duijts, L; de Jongste, J C; Aurrekoetxea, J J; Basterrechea, M; Morales, E; Ballester, F; Murcia, M; Thijs, C; Mommers, M; Kuehni, C E; Gaillard, E A; Tischer, C; Heinrich, J; Pizzi, C; Zugna, D; Gehring, U; Wijga, A; Chatzi, L; Vassilaki, M; Bergström, A; Eller, E; Lau, S; Keil, T; Nieuwenhuijsen, M; Kogevinas, M

    2016-07-01

    Maternal smoking during pregnancy increases childhood asthma risk, but health effects in children of nonsmoking mothers passively exposed to tobacco smoke during pregnancy are unclear. We examined the association of maternal passive smoking during pregnancy and wheeze in children aged ≤2 years.Individual data of 27 993 mother-child pairs from 15 European birth cohorts were combined in pooled analyses taking into consideration potential confounders.Children with maternal exposure to passive smoking during pregnancy and no other smoking exposure were more likely to develop wheeze up to the age of 2 years (OR 1.11, 95% CI 1.03-1.20) compared with unexposed children. Risk of wheeze was further increased by children's postnatal passive smoke exposure in addition to their mothers' passive exposure during pregnancy (OR 1.29, 95% CI 1.19-1.40) and highest in children with both sources of passive exposure and mothers who smoked actively during pregnancy (OR 1.73, 95% CI 1.59-1.88). Risk of wheeze associated with tobacco smoke exposure was higher in children with an allergic versus nonallergic family history.Maternal passive smoking exposure during pregnancy is an independent risk factor for wheeze in children up to the age of 2 years. Pregnant females should avoid active and passive exposure to tobacco smoke for the benefit of their children's health. PMID:26965294

  9. Future directions in therapy of whole body radiation injury

    SciTech Connect

    Cronkite, E.P.

    1989-01-01

    Clinicians have long known that marked granulocytopenia predisposed patients to bacterial infections either from pathogens or commensal organisms with which an individual usually lives in harmony. Evidence that infection was of major importance derives from several observations: (a) clinical observations of bacterial infection in human beings exposed to atomic bomb radiation in Hiroshima and Nagasaki, in reactor accidents, and in large animals dying from radiation exposure, (b) correlative studies on mortality rate, time of death, and incidence of positive culture in animals, (c) challenge of irradiated animals with normally non-virulent organisms, (d) studies of germ free mice and rats, and (e) studies of the effectiveness of antibiotics in reducing mortality rate. General knowledge and sound experimental data on animals and man clearly demonstrated that the sequelae of pancytopenia (bacterial infection, thrombopenic hemorrhage, and anemia) are the lethal factors. A lot of research was required to demonstrate that there were no mysterious radiations toxins, that hyperheparinemia was not a cause of radiation hemorrhage and that radiation hemorrhage could be prevented by fresh platelet transfusions.

  10. The effects of early postnatal exposure to a low dose of decabromodiphenyl ether (BDE-209) on serum metabolites in male mice.

    PubMed

    Eguchi, Akifumi; Miyaso, Hidenobu; Mori, Chisato

    2016-01-01

    The toxicity of decabromodiphenyl ether (BDE-209) has been reported in several studies. However, there is not much known about the toxicological biomarkers that characterize BDE-209 exposure. In this study, we subcutaneously exposed mice to 0.025 mg/kg/day BDE-209 on postnatal days 1‑5 and sacrificed the animals at 12 weeks of age (day 84). Flow injection analysis and hydrophilic interaction chromatography-triple quadrupole mass spectrometry were used to determine the serum metabolomes of these mice in order to characterize the effects of BDE-209 exposure. Data analysis showed a good separation between control and exposed mice (R(2) = 0.953, Q(2) = 0.728, and ANOVA of the cross‑validated residuals (CV‑ANOVA): P‑value = 0.0317) and 54 metabolites were identified as altered in the exposed animals. These were selected using variable importance (VIP) and loadings scaled by a correlation coefficient criteria and orthogonal partial least squares discriminant analysis (OPLS‑DA). BDE‑209‑exposed mice showed lower levels of long-chain acylcarnitines and citrate cycle-related metabolites, and higher levels of some amino acids, long-chain phospholipids, and short-chain acylcarnitines. The disruption of fatty acid, carbohydrate, and amino acid metabolism observed in the serum metabolome might be related to the previously observed impaired spermatogenesis in mice with early postnatal exposure to a low dose of BDE-209. PMID:27665776

  11. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans

    PubMed Central

    Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro

    2015-01-01

    Abstract Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070

  12. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses.

    PubMed

    Koukorava, C; Farah, J; Struelens, L; Clairand, I; Donadille, L; Vanhavere, F; Dimitriou, P

    2014-09-01

    Monte Carlo calculations were used to investigate the efficiency of radiation protection equipment in reducing eye and whole body doses during fluoroscopically guided interventional procedures. Eye lens doses were determined considering different models of eyewear with various shapes, sizes and lead thickness. The origin of scattered radiation reaching the eyes was also assessed to explain the variation in the protection efficiency of the different eyewear models with exposure conditions. The work also investigates the variation of eye and whole body doses with ceiling-suspended shields of various shapes and positioning. For all simulations, a broad spectrum of configurations typical for most interventional procedures was considered. Calculations showed that 'wrap around' glasses are the most efficient eyewear models reducing, on average, the dose by 74% and 21% for the left and right eyes respectively. The air gap between the glasses and the eyes was found to be the primary source of scattered radiation reaching the eyes. The ceiling-suspended screens were more efficient when positioned close to the patient's skin and to the x-ray field. With the use of such shields, the Hp(10) values recorded at the collar, chest and waist level and the Hp(3) values for both eyes were reduced on average by 47%, 37%, 20% and 56% respectively. Finally, simulations proved that beam quality and lead thickness have little influence on eye dose while beam projection, the position and head orientation of the operator as well as the distance between the image detector and the patient are key parameters affecting eye and whole body doses. PMID:24938591

  13. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans.

    PubMed

    Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro

    2015-01-01

    Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070

  14. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  15. The whole body cryostimulation modifies irisin concentration and reduces inflammation in middle aged, obese men.

    PubMed

    Dulian, Katarzyna; Laskowski, Radosław; Grzywacz, Tomasz; Kujach, Sylwester; Flis, Damian J; Smaruj, Mirosław; Ziemann, Ewa

    2015-12-01

    The anti-inflammatory effect induced by exposure to low temperature might trigger the endocrine function of muscle and fat tissue. Thus, the aim of this study was to investigate the influence of the whole body cryostimulation (CRY) on irisin, a myokine which activates oxygen consumption in fat cells as well as thermogenesis. In addition, the relationship between hepcidin (Hpc) - hormone regulating iron metabolism, and inflammation was studied. A group of middle aged men (n = 12, 38 ± 9 years old, BMI > 30 kg m(-2)) participated in the study. Subjects were exposed to a series of 10 sessions in a cryogenic chamber (once a day at 9:30 am, for 3 min, at temperature -110 °C). Blood samples were collected before the first cryostimulation and after completing the last one. Prior to treatment body composition and fitness level were determined. The applied protocol of cryostimulation lead to rise the blood irisin in obese non-active men (338.8 ± 42.2 vs 407.6 ± 118.5 ng mL(-1)), whereas has no effect in obese active men (371.5 ± 30.0 vs 343.3 ± 47.6 ng mL(-1)). Values recorded 24 h after the last cryo-session correlated significantly with the fat tissue, yet inversely with the skeletal muscle mass. Therefore, we concluded the subcutaneous fat tissue to be the main source of irisin in response to cold exposures. The applied cold treatment reduced the high sensitivity C-reactive protein (hsCRP) and Hpc concentration confirming its anti-inflammatory effect.

  16. Whole body plethysmography reveals differential ventilatory responses to ozone in rat models of cardiovascular disease.

    PubMed

    Dye, Janice A; Ledbetter, Allen D; Schladweiler, Mette C; Costa, Daniel L; Kodavanti, Urmila P

    2015-01-01

    To elucidate key factors of host susceptibility to air pollution, healthy and cardiovascular (CV)-compromised rats were exposed to air or ozone (O3) at 0.25, 0.5, or 1.0 ppm for 4 h. We hypothesized that rat strains with the least cardiac reserve would be most prone to develop significant health effects. Using flow whole body plethysmography (FWBP), ventilatory responses in healthy 3-month-old male rats [i.e. Wistar-Kyoto (WKY), Wistar (WIS), and Sprague-Dawley (SD) strains] were compared with hypertensive [i.e. spontaneously hypertensive (SH), fawn-hooded-hypertensive (FHH), and SH-stroke-prone (SHSP)] strains and obese [i.e. SH-heart failure-prone (SHHF) and JCR:LA-cp, atherosclerosis-prone (JCR)] strains. SH were slower to acclimate to the FWBP chambers. At 0-h post-air-exposure, SHSP and SHHF exhibited hyperpnea, indicative of cardiopulmonary insufficiency. At 0-h-post-O3, all but one strain showed significant concentration-dependent decreases in minute volume [MV = tidal volume (TV) × breathing frequency]. Comparing air with 1.0 ppm responses, MV declined 20-27% in healthy, 21-42% in hypertensive, and 33% in JCR rats, but was unchanged in SHHF rats. Penh increased significantly in all strains, with disproportionate increases in "responder" WKY and FHH strains. By 20 h, most changes had resolved, although Penh remained elevated in WKY, SH, and SHSP. Based on the effective dose estimates (O3 ppm × h × MV), the most CV-compromised (SHSP and SHHF) strains received significantly greater O3 lung deposition (25% and 40%, respectively). Data support epidemiologic associations that individuals with cardiopulmonary insufficiency are at greater risk for urban pollutant exposure due, in part, to enhanced lung deposition and exacerbation of hypoxia and pathophysiologic processes of heart failure. PMID:26667328

  17. Radioprotective effects of amifostine (WR-2721) or cystamine on radiation damage and its repair in rats whole body exposed to fission neutrons.

    PubMed

    Kuna, Pavel; Dostál, Milan; Neruda, Otakar; Volenec, Karel; Vodicka, Ivan; Navrátil, Leos; Petýrek, Pavel; Svoboda, Václav; Simsa, Jan; Vávrová, Jirina; Hermanská, Jindriska; Prouza, Zdenek; Pitterman, Pavel; Listík, Evzen; Spurný, Frantisek; Knajfl, Josef; Podzimek, Frantisek; Spelda, Stanislav; Osterreicher, Jan; Konrád, Frantisek; Havránková, Renata

    2004-01-01

    Sulphur containing radioprotective drugs amifostine (gammaphos, WR-2721) or cystamine (disulfide of meracaptoethylamine) of Czechoslovak production were examined in whole body fission neutrons irradiated rats in the thermal column of reactor VVR-S. Using the split-dose technic the first sublethal neutron dose in the range 1-2 Gy was followed by second lethal exposures in the two time intervals (3 or 6 days) using whole body fission neutrons irradiations (3 days interval) or whole body gamma-irradiations (6 days interval) for LD50/30 evaluation within next 30 days survival observation. In other experiments the mean survival time (MST) in days was estimated in different rats group, when animals were whole body fission neutrons irradiated twice with 3-days interval using the total lethal doses of 4 or 5 Gy. Protected rats received amifostine (160 mg.kg(-1) i.p. and 200 mg.kg(-1) i.m.) or cystamine (40 mg.kg(-1) i.p. and 50 mg.kg(-1) i.m.), control rats obtained saline 20 min before beginning of irradiation in the amount of 0.5 ml.100 g(-1) of the rat's body weight. Non-significant DRF value 1.13 for WR-2721 i.p. was calculated in survival studies in rats twice neutron irradiated with 3 days interval (DRF 1.04 for cystamine). Chemical protectors were administered before each neutron exposure. MST of twice neutron lethal iradiated rats was prolonged not regularly by radioprotectors tested. WR-2721 and cystamine i.m. were not able to increase 6 days reparation processes after sublethal 2 Gy fission neutrons whole body irradiated rats.

  18. Early cognitive changes due to whole body γ-irradiation: a behavioral and diffusion tensor imaging study in mice.

    PubMed

    Kumar, Mayank; Haridas, Seenu; Trivedi, Richa; Khushu, Subhash; Manda, Kailash

    2013-10-01

    Radiation-induced aberration in the neuronal integrity and cognitive functions are well known. However, there is a lacuna between sparsely reported immediate effects and the well documented delayed effects of radiation on cognitive functions. The present study was aimed at investigating the radiation-dose dependent incongruities in the early cognitive changes, employing two approaches, behavioral functions and diffusion tensor imaging (DTI). Six-month old female C57BL/6 mice were exposed to whole-body doses of 2, 5 and 8 Gy of γ-radiation and 24 h after exposure, the stress and anxiety levels were examined in the open-field test (OFT). Forty-eight hours after irradiation, the hippocampal dependent recognition memory was observed by the novel object recognition task (NORT), and the cognitive functions related to memory processing and recall were tested using the elevated plus maze (EPM). Magnetic resonance imaging, including diffusion tensor imaging (DTI) was done at 48-hour post-irradiation to visualize microstructural damage in brain parenchyma. Our results indicate a complex dose independent effect on the cognitive functions immediately after exposure to gamma rays. Radiation exposure caused short-term memory dysfunctions at lower doses, which were seen to be abrogated at higher doses, but the long-term memory processing was disrupted at higher doses. The hippocampus emerged as one of the sensitive regions to be affected by whole-body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. The present study also emphasizes the importance of further research to unravel the complex pattern of neurobehavioral responses immediately following ionizing radiation exposure.

  19. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions.

  20. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions. PMID:26070030

  1. Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+ cells in infant rhesus monkeys

    SciTech Connect

    Miller, Lisa A. Gerriets, Joan E.; Tyler, Nancy K.; Abel, Kristina; Schelegle, Edward S.; Plopper, Charles G.; Hyde, Dallas M.

    2009-04-01

    The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air; animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking.

  2. Antenatal exposure to the selective serotonin reuptake inhibitor fluoxetine leads to postnatal metabolic and endocrine changes associated with type 2 diabetes in Wistar rats

    SciTech Connect

    De Long, Nicole E.; Barry, Eric J.; Pinelli, Christopher; Wood, Geoffrey A.; Hardy, Daniel B.; Morrison, Katherine M.; Taylor, Valerie H.; Gerstein, Hertzel C.; Holloway, Alison C.

    2015-05-15

    Hypothesis: 10–15% of women take antidepressant medications during pregnancy. A recent clinical study reported that the use of selective serotonin reuptake inhibitor antidepressants during pregnancy is linked with an increased risk of postnatal obesity. While obesity is often associated with fatty liver, dyslipidemia and inflammation, to date, the effects of perinatal exposure to SSRIs on these outcomes are unknown. Methods: Female nulliparous Wistar rats were given vehicle (N = 15) or fluoxetine hydrochloride (FLX 10 mg/kg/d; N = 15) orally for 2 weeks prior to mating until weaning. We assessed glucometabolic changes and hepatic pathophysiology in the offspring. Results: Fluoxetine exposed offspring demonstrated altered glucose homeostasis without any alterations to beta cell mass. FLX-exposed offspring had a significant increase in the number of offspring with mild to moderate NASH and dyslipidemia. There was also increased inflammation of the liver in FLX-exposed offspring; males had significant elevations in TNFα, IL6 and monocyte chemoattractant protein 1 (MCP1), while female offspring had higher expression of TNFα, and increased macrophage infiltration (MCP1). Limitations: This is an animal study. Further research examining the metabolic outcomes of children exposed to antidepressants in utero are required, given the increase in childhood obesity and psychiatric medication use during pregnancy. Conclusion: These data demonstrate that fetal and neonatal exposure to FLX results in evidence of increased adiposity, fatty liver and abnormal glycemic control. Since these are all hallmarks of the metabolic syndrome, this raises concerns regarding the long term metabolic sequelae of fetal exposure to SSRIs in human populations. - Highlights: • Antenatal exposure to fluoxetine results in postnatal adiposity in the offspring. • Offspring exposed to fluoxetine have abnormal glycemic control in adulthood. • Maternal exposure to fluoxetine causes fatty liver in

  3. Effect of a postnatal high-fat diet exposure on puberty onset, estrous cycle regularity, and kisspeptin expression in female rats.

    PubMed

    Lie, Maria E K; Overgaard, Agnete; Mikkelsen, Jens D

    2013-12-01

    Kisspeptin, encoded by Kiss1, plays a key role in pubertal maturation and reproduction as a positive upstream regulator of the hypothalamic-pituitary-gonadal (HPG) axis. To examine the role of high-fat diet (HFD) on puberty onset, estrous cycle regularity, and kisspeptin expression, female rats were exposed to HFD in distinct postnatal periods. Three groups of rats were exposed to HFD containing 60% energy from fat during the pre-weaning period (postnatal day (PND) 1-16, HFD PND 1-16), post-weaning period (HFD PND 21-34), or during both periods (HFD PND 1-34). Puberty onset, evaluated by vaginal opening, was monitored on days 30-34. Leptin, estradiol (E2), Kiss1 mRNA levels, and number of kisspeptin-immunoreactive cells in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were measured at day 34. Body weight increased only in rats exposed to HFD during post-weaning period, whereas the timing of vaginal opening was unaffected in all three groups. Leptin, Kiss1 mRNA levels, and number of kisspeptin-immunoreactive cells at day 34 were not affected by HFD. Additionally, the estrous cycle regularity was monitored in rats exposed to HFD for 40 days from weaning. Leptin, E2, and Kiss1 mRNA levels in the AVPV and ARC were measured after the HFD exposure. Thirty-three percent of rats exposed to HFD exhibited irregular estrous cycles and a two-fold increase in leptin. By contrast, E2 level and Kiss1 mRNA levels were not affected by the treatment. These data show that postnatal HFD exposure induced irregular estrous cycles, but had no effect on puberty onset or kisspeptin.

  4. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37

  5. Effects Related to Random Whole-Body Vibration and Posture on a Suspended Seatwith and Without Backrest

    NASA Astrophysics Data System (ADS)

    HINZ, B.; SEIDEL, H.; MENZEL, G.; BLÜTHNER, R.

    2002-05-01

    WBV-exposures are often linked with forced postures as prolonged sitting, bent forward sitting, or sitting without a backrest. No quantitative data are available to describe the exposure-effect relationships for different conditions of seating, posture, and the biological variability of workers. Experiments and subsequent predictions of forces acting within the spine during WBV can help to improve the assessment of the health risk. An experimental study was performed with 39 male subjects sitting on a suspension seat with or with no backrest contact. They were exposed to random whole-body vibration with a weighted r.m.s. value of 0·6 m/s2 at a relaxed or a forward bending posture. A two-dimensional finite element model was used for the calculation of the internal spinal load. The model simulates the human response on a suspension driver seat. Individual exposure conditions were considered by including the transfer functions between the seat cushion and the seat base as well as between the backrest and the seat base for the calculation of the vibration input to the buttocks and to the back respectively. The average peak seat transmissibility was higher for the seat with the backrest, but the peak seat-to-head transmissibility was higher for the seat without the backrest for both postures. The peak transmissibilities between the accelerations at the seat base and the compressive forces at L5/S1 were highest for the seat without the backrest during the bending posture. Various biological effects can result from identical exposures combined with different backrest contact and postures. The backrest contact and posture conditions should not be neglected in the assessment of health risk caused by whole-body vibration.

  6. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis.

  7. Patient-specific biomechanical model as whole-body CT image registration tool.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  8. Whole body mechanics differ among running and cutting maneuvers in skilled athletes.

    PubMed

    Havens, Kathryn L; Sigward, Susan M

    2015-09-01

    Quick changes of direction during running (cutting) represent a whole body mechanical challenge, as they require deceleration and translation of the body during ongoing movement. While much is known with respect to whole body demands during walking turns, whole body mechanics and anticipatory adjustments necessary for cutting are unclear. As the ability to rapidly change direction is critical to athletes' success in many sports, a better understanding of whole body adjustments made during cuts is needed. Whole body center of mass velocity and position during the approach and execution steps of three tasks (straight running, 45° sidestep cut, and 90° sidestep cut) performed as fast as possible were compared in 25 healthy soccer athletes. Repeated measure ANOVA revealed that overall, braking and translation were greater during the cuts compared to the straight run. Interestingly, with systematically increased cut angle, disproportionately greater braking but proportionately greater translation was observed. Anticipatory adjustments made prior to the execution of the cuts suggested that individuals evenly distributed the deceleration and redirection demands across steps of the 45° cut but prioritized deceleration over translation during the approach step of the 90° cut. PMID:25149902

  9. Cutaneous noradrenaline measured by microdialysis in complex regional pain syndrome during whole-body cooling and heating.

    PubMed

    Terkelsen, Astrid J; Gierthmühlen, Janne; Petersen, Lars J; Knudsen, Lone; Christensen, Niels J; Kehr, Jan; Yoshitake, Takashi; Madsen, Caspar S; Wasner, Gunnar; Baron, Ralf; Jensen, Troels S

    2013-09-01

    Complex regional pain syndrome (CRPS) is characterised by autonomic, sensory, and motor disturbances. The underlying mechanisms of the autonomic changes in CPRS are unknown. However, it has been postulated that sympathetic inhibition in the acute phase with locally reduced levels of noradrenaline is followed by an up-regulation of alpha-adrenoceptors in chronic CRPS leading to denervation supersensitivity to catecholamines. This exploratory study examined the effect of cutaneous sympathetic activation and inhibition on cutaneous noradrenaline release, vascular reactivity, and pain in CRPS patients and in healthy volunteers. Seven patients and nine controls completed whole-body cooling (sympathetic activation) and heating (sympathetic inhibition) induced by a whole-body thermal suit with simultaneous measurement of the skin temperature, skin blood flow, and release of dermal noradrenaline. CRPS pain and the perceived skin temperature were measured every 5 min during thermal exposure, while noradrenaline was determined from cutaneous microdialysate collected every 20 min throughout the study period. Cooling induced peripheral sympathetic activation in patients and controls with significant increases in dermal noradrenaline, vasoconstriction, and reduction in skin temperature. The main findings were that the noradrenaline response did not differ between patients and controls or between the CRPS hand and the contralateral unaffected hand, suggesting that the evoked noradrenaline release from the cutaneous sympathetic postganglionic fibres is preserved in chronic CRPS patients.

  10. Development of a Protocol for Epidemiologal Studies of Whole-Body Vibration and Musculoskeletal Disorders of the Lower Back

    NASA Astrophysics Data System (ADS)

    Magnusson, M. L.; Pope, M. H.; Hulshof, C. T. J.; Bovenzi, M.

    1998-08-01

    It seems evident from a large number of studies that there is a positive relationship between exposure to whole body vibration (WBV) and the occurrence of low back pain. There are existing standards for evaluating the human exposure to WBV, which are based on other factors than the effect of musculoskeletal disorders. Several national and international standards also exist for evaluating human exposure to WBV. The exposure limit values or health guidance caution zones included in some of these standards are not or only to a limited extent based on systematic epidemiological investigations. It has not yet been possible to establish a clear exposure-response relationship. There are many confounding or contributing factors which influence the hazards to workers caused by exposure to WBV. Reliable methods for the detection and prevention of injury due to vibration exposure at work, alone or in combination with other risk factors, need to be implemented. The aim of this paper was to design a protocol and a questionnaire for conducting collaborative studies of WBV and musculoskeletal back disorders. The protocol will be tested in a pilot study before it will be used in multi-center studies.

  11. The effect of whole-body resonance vibration in a porcine model of spinal cord injury.

    PubMed

    Streijger, Femke; Lee, Jae H T; Chak, Jason; Dressler, Dan; Manouchehri, Neda; Okon, Elena B; Anderson, Lisa M; Melnyk, Angela D; Cripton, Peter A; Kwon, Brian K

    2015-06-15

    Whole-body vibration has been identified as a potential stressor to spinal cord injury (SCI) patients during pre-hospital transportation. However, the effect that such vibration has on the acutely injured spinal cord is largely unknown, particularly in the frequency domain of 5 Hz in which resonance of the spine occurs. The objective of the study was to investigate the consequences of resonance vibration on the injured spinal cord. Using our previously characterized porcine model of SCI, we subjected animals to resonance vibration (5.7±0.46 Hz) or no vibration for a period of 1.5 or 3.0 h. Locomotor function was assessed weekly and cerebrospinal fluid (CSF) samples were collected to assess different inflammatory and injury severity markers. Spinal cords were evaluated histologically to quantify preserved white and gray matter. No significant differences were found between groups for CSF levels of monocyte chemotactic protein-1, interleukin 6 (IL-6) and lL-8. Glial fibrillary acidic protein levels were lower in the resonance vibration group, compared with the non-vibrated control group. Spared white matter tissue was increased within the vibrated group at 7 d post-injury but this difference was not apparent at the 12-week time-point. No significant difference was observed in locomotor recovery following resonance vibration of the spine. Here, we demonstrate that exposure to resonance vibration for 1.5 or 3 h following SCI in our porcine model is not detrimental to the functional or histological outcomes. Our observation that a 3.0-h period of vibration at resonance frequency induces modest histological improvement at one week post-injury warrants further study.

  12. Neurocognitive responses to a single session of static squats with whole body vibration.

    PubMed

    Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D

    2015-01-01

    The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.

  13. Neurocognitive responses to a single session of static squats with whole body vibration.

    PubMed

    Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D

    2015-01-01

    The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition. PMID:25536489

  14. Wearable Ballistocardiography: Preliminary Methods for Mapping Surface Vibration Measurements to Whole Body Forces

    PubMed Central

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.

    2015-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  15. Wearable ballistocardiography: preliminary methods for mapping surface vibration measurements to whole body forces.

    PubMed

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T

    2014-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements--such as taken with a weighing scale system--to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  16. The use of comparative 137Cs body burden estimates from environmental data/models and whole body counting to evaluate diet models for the ingestion pathway.

    PubMed

    Robison, W L; Sun, C

    1997-07-01

    Rongelap and Utirik Atolls were contaminated on 1 March 1954, by a U.S. nuclear test at Bikini Atoll code named BRAVO. The people at both atolls were removed from their atolls in the first few days after the detonation and were returned to their atolls at different times. Detailed studies have been carried out over the years by Lawrence Livermore National Laboratory (LLNL) to determine the radiological conditions at the atolls and estimate the doses to the populations. The contribution of each exposure pathway and radionuclide have been evaluated. All dose assessments show that the major potential contribution to the estimated dose is 137Cs uptake via the terrestrial food chain. Brookhaven National Laboratory (BNL) has carried out an extensive whole body counting program at both atolls over several years to directly measure the 137Cs body burden. Here we compare the estimates of the body burdens from the LLNL environmental method with body burdens measured by the BNL whole body counting method. The combination of the results from both methods is used to evaluate proposed diet models to establish more realistic dose assessments. Very good agreement is achieved between the two methods with a diet model that includes both local and imported foods. Other diet models greatly overestimate the body burdens (i.e., dose) observed by whole body counting. The upper 95% confidence limit of interindividual variability around the population mean value based on the environmental method is similar to that calculated from direct measurement by whole body counting. Moreover, the uncertainty in the population mean value based on the environmental method is in very good agreement with the whole body counting data. This provides additional confidence in extrapolating the estimated doses calculated by the environmental method to other islands and atolls.

  17. The use of comparative {sup 137}Cs body burden estimates from environmental data/models and whole body counting to evaluate diet models for the ingestion pathway

    SciTech Connect

    Robison, W.L.; Sun, C.

    1997-07-01

    Rongelap and Utirik Atolls were contaminated on 1 March 1954, by a U.S. nuclear test at Bikini Atoll code named BRAVO. The people at both atolls were removed from their atolls in the first few days after the detonation and were returned to their atolls at different times. Detailed studies have been carried out over the years by Lawrence Livermore National Laboratory (LLNL) to determine the radiological conditions at the atolls and estimate the doses to the populations. The contribution of each exposure pathway and radionuclide have been evaluated. All dose assessments show that the major potential contribution to the estimated dose is {sup 137}Cs uptake via the terrestrial food chain. Brookhaven National Laboratory (BNL) has carried out an extensive whole body counting program at both atolls over several years to directly measure the {sup 137}Cs body burden. Here we compare the estimates of the body burdens from the LLNL environmental method with body burdens measured by the BNL whole body counting method. The combination of the results from both methods is used to evaluate proposed diet models to establish more realistic dose assessments. Very good agreement is achieved between the two methods with a diet model that includes both local and imported foods. Other diet models greatly overestimate the body burdens (i.e., dose) observed by whole body counting. The upper 95% confidence limit of interindividual variability around the population mean value based on the environmental method is similar to that calculated from direct measurement by whole body counting. Moreover, the uncertainty in the population mean value based on the environmental method is in very good agreement with the whole body counting data. This provides additional confidence in extrapolating the estimated doses calculated by the environmental method to other islands and atolls. 46 refs., 8 figs., 5 tabs.

  18. In utero and postnatal exposure of Wistar rats to low frequency/high intensity noise depletes the tracheal epithelium of ciliated cells.

    PubMed

    Oliveira, M J; Pereira, A S; Castelo Branco, N A; Grande, N R; Aguas, A P

    2001-01-01

    Chronic exposure of men or rodents to low frequency/high intensity (LFHI) noise causes a number of systemic changes that make up the so-called vibroacoustic disease (VAD), a disorder that includes alterations of the respiratory system, namely, of its epithelial layer. We have investigated here the susceptibility of the tracheal epithelium of Wistar rats to in utero and postnatal exposure to LFHI noise by comparing its ultrastructure with that of the tracheal epithelium of control rats and of animals exposed to LFHI noise only after reaching adulthood (8 weeks of age). Scanning electron microscopy (SEM) of the inner surface of rat trachea was used to determine the relative areas covered by ciliated and non-ciliated cells. In rats that were exposed in utero and postnatally to LFHI noise, we observed that out of 100 microm(2) of tracheal epithelium only 31 +/- 14 microm(2) were covered by cilia, whereas in control rats; ciliated cells occupied an average of 60 +/- 18 microm(2) out of 100 microm(2) of the epithelium; this difference between the two groups was statistically significant (p <0.05). In rats that were exposed to LFHI noise only after reaching adulthood, cilia covered 55 +/- 22 microm(2) out of 100 microm(2) of the luminal surface of the trachea, a value that, although lower than that of controls, was not found to be statistically different. We conclude that (1) the tracheal ciliated cells are damaged by exposure of rats to LFHI noise if the animals are kept under this environmental aggression during in utero and postnatal periods; (2) tracheal ciliated cells from adult rats are more resistant to the deleterious effects of LFHI noise than pleura or lung alveolar cells that were shown before to undergo marked changes upon chronic exposure of rats to LFHI noise. These findings suggest a note of caution regarding pregnant women and young children: they should be prevented from areas where LFHI noise occurs, namely, in aircraft and textile industries where this

  19. Prenatal and Postnatal Exposure to Phthalate Esters and Asthma: A 9-Year Follow-Up Study of a Taiwanese Birth Cohort

    PubMed Central

    Ku, Hsiu Ying; Su, Pen Hua; Wen, Hui Ju; Sun, Hai Lun; Wang, Chien Jen; Chen, Hsiao Yen; Jaakkola, Jouni J. K.; Wang, Shu-Li

    2015-01-01

    Previous studies have shown that phthalate exposure in childhood is associated with the development of respiratory problems. However, few studies have assessed the relative impact of prenatal and postnatal exposure to phthalates on the development of asthma later in childhood. Therefore, we assessed the impact of prenatal and postnatal phthalate exposure on the development of asthma and wheezing using a Taiwanese birth cohort. A total of 430 pregnant women were recruited, and 171 (39.8%) of them had their children followed when they were aged 2, 5, and 8 years. The International Study of Asthma and Allergies in Childhood questionnaire was used to assess asthma and wheezing symptoms and serum total immunoglobulin E levels were measured at 8 years of age. Urine samples were obtained from 136 women during their third trimester of pregnancy, 99 children at 2 years of age, and 110 children at 5 years. Four common phthalate monoester metabolites in maternal and children’s urine were measured using liquid chromatography-electrospray ionization-tandem mass spectrometry. Maternal urinary mono-benzyl phthalate [MBzP] concentrations were associated with an increased occurrence of wheezing in boys at 8 years of age (odds ratio [OR] = 4.95 (95% CI 1.08–22.63)), for upper quintile compared to the others) after controlling for parental allergies and family members' smoking status. Urinary mono-2-ethylhexyl phthalate [MEHP] levels over the quintile at 2-year-old were associated with increased asthma occurrence (adjusted OR = 6.14 (1.17–32.13)) in boys. Similarly, the sum of di-2-ethyl-hexyl phthalate [DEHP] metabolites at 5 years was associated with asthma in boys (adjusted OR = 4.36 (1.01–18.86)). Urinary MEHP in maternal and 5-year-old children urine were significantly associated with increased IgE in allergic children at 8 years. Prenatal and postnatal exposure to phthalate was associated with the occurrence of asthma in children, particularly for boys. PMID:25875379

  20. Whole body heat stress attenuates baroreflex control of muscle sympathetic nerve activity during postexercise muscle ischemia

    PubMed Central

    Cui, Jian; Shibasaki, Manabu; Davis, Scott L.; Low, David A.; Keller, David M.; Crandall, Craig G.

    2009-01-01

    Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating (P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation. PMID:19213933

  1. Whole-body FDG-PET imaging for staging of Hodgkin`s disease and lymphoma

    SciTech Connect

    Hoh, C.K.; Glaspy, J.; Rosen, P.

    1997-03-01

    Accurate staging of Hodgkin`s disease (HD) and non-Hodgkin`s lymphoma (NHL) is important for treatment management. In this study, the utility of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) wholebody PET was evaluated as an imaging modality for initial staging or restaging of 7 HD and 11 NHL patients. Whole-body PET-based staging results were compared to the patient`s clinical stage based on conventional staging studies, which included combinations of CT of the chest, abdomen and pelvis, MRI scans, gallium scans, lymphangiograms, staging laparatomies and bone scans. Accurate staging was performed in 17 of 18 patients using a whole-body PET-based staging algorithm compared to the conventional staging algorithm in 15 of 18 patients. In 5 of 18 patients, whole-body PET-based staging showed additional lesions not detected by conventional staging modalities, whereas conventional staging demonstrated additional lesions in 4 of 18 patients not detected by whole-body PET. The total cost of conventional staging was $66,292 for 16 CT chest scans, 16 CT abdominal/pelvis scans, three limited MRI scans, four bone scans, give gallium scans, two laparotomies and one lymphangiogram. In contrast, scans cost $36,250 for 18 whole-body PET studies and additional selected correlative studies: one plain film radiograph, one limited CT, one bone marrow san, one upper GI and one endoscopy. A whole-body FDG-PET-based staging algorithm may be an accurate and cost-effective method for staging or restaging HD and NHL. 10 refs., 7 figs., 2 tabs.

  2. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists.

    PubMed

    Muggeridge, David J; Sculthorpe, Nicholas; Grace, Fergal M; Willis, Gareth; Thornhill, Laurence; Weller, Richard B; James, Philip E; Easton, Chris

    2015-08-01

    Dietary nitrate supplementation has been shown to increase nitric oxide (NO) metabolites, reduce blood pressure (BP) and enhance exercise performance. Acute exposure to ultraviolet (UV)-A light also increases NO bioavailability and reduces BP. We conducted a randomized, counterbalanced placebo-controlled trial to determine the effects of UV-A light alone and in combination with nitrate on the responses to sub-maximal steady-state exercise and time trial (TT) performance. Nine cyclists (VO2max 53.1 ± 4.4 ml/kg/min) completed five performance trials comprising 10 min submaximal steady-state cycling followed by a 16.1 km TT. Following a familiarization the final four trials were preceded, in random order, by either (1) Nitrate gels (NIT) + UV-A, (2) Placebo (PLA) + UV-A, (3) NIT + Sham light (SHAM) and (4) PLA + SHAM (control). The NIT gels (2 × 60 ml gels, ~8.1 mmol nitrate) or a low-nitrate PLA were ingested 2.5 h prior to the trial. The light exposure consisted of 20 J/cm(2) whole body irradiation with either UV-A or SHAM light. Plasma nitrite was measured pre- and post-irradiation and VO2 was measured continuously during steady-state exercise. Plasma nitrite was higher for NIT + SHAM (geometric mean (95% CI), 332 (292-377) nM; P = 0.029) and NIT + UV-A (456 (312-666) nM; P = 0.014) compared to PLA + SHAM (215 (167-277) nM). Differences between PLA + SHAM and PLA + UV-A (282 (248-356) nM) were small and non-significant. During steady-state exercise VO2 was reduced following NIT + UVA (P = 0.034) and tended to be lower in NIT + SHAM (P = 0.086) but not PLA + UV-A (P = 0.381) compared to PLA + SHAM. Performance in the TT was significantly faster following NIT + UV-A (mean ± SD 1447 ± 41 s P = 0.005; d = 0.47), but not PLA + UV-A (1450 ± 40 s; d = 0.41) or NIT + SHAM (1455 ± 47 s; d = 0.28) compared to PLA + SHAM (1469 ± 52 s). These findings demonstrate that exposure to UV-A light alone does not alter the physiological responses to exercise or improve

  3. a Decade of Improvement in Whole-Body Vibration and Low Back Pain for Freight Container Tractor Drivers

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Taoda, K.; Kitahara, T.

    1998-08-01

    The authors' study in 1983 revealed that the whole-body vibration of the tractor units of freight containers was most hazardous in the back-to-chest directions (x-axis). The allowable exposure time was considerably shorter than that for heavy duty trucks. The low back pain (LBP) among the drivers seemed to be due to the long working hours and the ergonomically unsound tractor design, as well as the vibration. A preventative measure was the introduction of a tractor cab suspended by an air spring instead of a steel spring. In 1992, a follow-up field study was conducted. A personal vibration exposure meter developed by us measured the whole-body vibration on eight tractors. Eighty-nine triplets matched with the age and the years of driving tractors answered a questionnaire evaluation of the ergonomics of their tractor units.The comparison of the newest steel suspension vehicles to the old ones produced by the same motor company revealed that in thex-axis the vibration level had decreased by as much as 4 to 9 dB. Some tractors showed an increase in vibration in the buttocks-to-head direction (z-axis). However, such adverse changes seemed not to affect evaluations according to the fatigue-decreased proficiency boundary (FDP) and the exposure limit (EL) recommended in ISO 2631-1978. The present models, regardless of the type of suspension, changed the direction of the most hazardous vibration from thex-axis to thez-axis. However, the effect of the air-suspension was not so remarkable as expected. Among 40% of drivers seemed to exceed the FDP boundary during a day.The questionnaire study showed an improvement in the ergonomic evaluation of the tractors. The air suspension models seemed to induce less LBP than the steel suspension models.

  4. False positive diagnosis on (131)iodine whole-body scintigraphy of differentiated thyroid cancers.

    PubMed

    Triggiani, Vincenzo; Giagulli, Vito Angelo; Iovino, Michele; De Pergola, Giovanni; Licchelli, Brunella; Varraso, Antonio; Dicembrino, Franca; Valle, Guido; Guastamacchia, Edoardo

    2016-09-01

    (131)Iodine is used both to ablate any residual thyroid tissue or metastatic disease and to obtain whole-body diagnostic images after total thyroidectomy for differentiated thyroid cancer (DTC). Even though whole-body scan is highly accurate in showing thyroid residues as well as metastases of DTC, false positive results can be found, possibly leading to diagnostic errors and unnecessary treatments. This paper reviews the physiological and pathological processes involved as well as the strategy to recognize and rule out false positive radioiodine images.

  5. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-01-01

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  6. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-12-31

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  7. Animal physiology. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus.

    PubMed

    Wegner, Nicholas C; Snodgrass, Owyn E; Dewar, Heidi; Hyde, John R

    2015-05-15

    Endothermy (the metabolic production and retention of heat to warm body temperature above ambient) enhances physiological function, and whole-body endothermy generally sets mammals and birds apart from other animals. Here, we describe a whole-body form of endothermy in a fish, the opah (Lampris guttatus), that produces heat through the constant "flapping" of wing-like pectoral fins and minimizes heat loss through a series of counter-current heat exchangers within its gills. Unlike other fish, opah distribute warmed blood throughout the body, including to the heart, enhancing physiological performance and buffering internal organ function while foraging in the cold, nutrient-rich waters below the ocean thermocline.

  8. Intercomparison of whole-body counters using a multinuclide calibration phantom.

    PubMed

    Fenwick, J D; McKenzie, A L; Boddy, K

    1991-02-01

    Whole-body counters in the UK have been compared using a multinuclide anthropomorphic phantom. A standard Bush phantom was modified by inserting channels into the long axis of each section. Radionuclide sources sealed in a urea-formaldehyde polymer were then inserted into the channels to simulate distributions of radioactivity in a human. The phantom was taken to 10 whole-body counters in the UK and estimates of 134Cs, 137Cs and 40K were obtained both separately and as mixtures. Results showed close agreement between the median estimates and the known activities. The technique also allowed diagnosis of particular problems in calibration for several of the counters.

  9. Low back pain in drivers: The relative role of whole-body vibration, posture and manual materials handling

    NASA Astrophysics Data System (ADS)

    Okunribido, O. O.; Magnusson, M.; Pope, M. H.

    2006-12-01

    A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.

  10. Braf Mutations Initiate the Development of Rat Gliomas Induced by Postnatal Exposure to N-Ethyl-N-Nitrosourea.

    PubMed

    Wang, Qi; Satomi, Kaishi; Oh, Ji Eun; Hutter, Barbara; Brors, Benedikt; Diessl, Nicolle; Liu, Hai-Kun; Wolf, Stephan; Wiestler, Otmar; Kleihues, Paul; Koelsch, Bernd; Kindler-Röhrborn, Andrea; Ohgaki, Hiroko

    2016-10-01

    A single dose of N-ethyl-N-nitrosourea (ENU) during late prenatal or early postnatal development induces a high incidence of malignant schwannomas and gliomas in rats. Although T->A mutations in the transmembrane domain of the Neu (c-ErbB-2) gene are the driver mutations in ENU-induced malignant schwannomas, the molecular basis of ENU-induced gliomas remains enigmatic. We performed whole-genome sequencing of gliomas that developed in three BDIV and two BDIX rats exposed to a single dose of 80 mg ENU/kg body weight on postnatal day one. T:A->A:T and T:A->C:G mutations, which are typical for ENU-induced mutagenesis, were predominant (41% to 55% of all somatic single nucleotide mutations). T->A mutations were identified in all five rat gliomas at Braf codon 545 (V545E), which corresponds to the human BRAF V600E. Additional screening revealed that 33 gliomas in BDIV rats and 12 gliomas in BDIX rats all carried a Braf V545E mutation, whereas peritumoral brain tissue of either strain had the wild-type sequence. The gliomas were immunoreactive to BRAF V600E antibody. These results indicate that Braf mutation is a frequent early event in the development of rat gliomas caused by a single dose of ENU. PMID:27658714

  11. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    SciTech Connect

    Dasari, Sameera; Yuan, Yukun

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.

  12. The effects of pre- and postnatal exposure to the nonsteroidal antiandrogen flutamide on testis descent and morphology in the Albino Swiss rat

    PubMed Central

    KASSIM, NORMADIAH M.; McDONALD, S. W.; REID, O.; BENNETT, N. K.; GILMORE, D. P.; PAYNE, A. P.

    1997-01-01

    Exposure of male Albino Swiss rats to the nonsteroidal antiandrogen flutamide during the period from gestational day (d) 10 to birth resulted in feminisation of the external genitalia and the suppression of growth of the male reproductive tract. In adulthood, testes were found to be located in diverse positions. True cryptorchidism occurred in 10% of cases, whereas 50% of testes descended to the scrotum and 40% were located in a suprainguinal ectopic region. Varying degrees of tubule abnormality were seen in the testes of flutamide-treated animals, ranging from completely normal tubules with full spermatogenesis (and the expected frequency of the stages of spermatogenesis) to severely abnormal tubules lined with Sertoli cells only. For each individual testis, the overall severity of tubule damage was strongly correlated with its adult location, with intra-abdominal testes worst affected and scrotally-located testes least; only the latter contained normal tubules. Similarly, intra-abdominal testes were the smallest in weight and contained the least testosterone. By contrast, postnatal treatment of male rats with flutamide from birth to postnatal d 14 did not impair development of the external genitalia, the process of testicular descent or adult spermatogenesis. These findings confirm that androgen blockade during embryonic development interferes with testicular descent but also demonstrate that (1) prenatal flutamide treatment per se has a detrimental effect on adult testis morphology but (2) the degree of abnormality of the testes is strongly influenced by location. PMID:9183680

  13. Effect of whole-body irradiation of mice on the number of background plaque-forming cells

    SciTech Connect

    Anderson, R.E.; Lefkovits, I.; Soeederberg, A.

    1983-08-01

    Mice were exposed in whole-body fashion to several doses of radiation and killed at various times thereafter for a determination of the number of background plaque-forming cells (PFCs) as assayed on either sheep erythrocytes or bromelain-treated autologous mouse erythrocytes. Increased numbers of both types of PFC were found in the irradiated groups. These increases were dependent on radiation dose and time after exposure. They did not appear to be caused by a disruption of normal lymphocyte traffic or a switch in immunoglobulin isotype. An increased number of PFCs on bromelain-treated mouse RBCs but not on sheep RBCs were found in irradiated congenitally athymic nude mice. On the basis of this and related observations, background PFCs on bromelain-treated mouse RBCs and on sheep RBCs appear to fall under different forms of homeostatic control.

  14. Effect of whole-body irradiation of mice on the number of background plaque-forming cells.

    PubMed

    Anderson, R E; Lefkovits, I; Söederberg, A

    1983-08-01

    Mice were exposed in whole-body fashion to several doses of radiation and killed at various times thereafter for a determination of the number of background plaque-forming cells (PFCs) as assayed on either sheep erythrocytes or bromelain-treated autologous mouse erythrocytes. Increased numbers of both types of PFC were found in the irradiated groups. These increases were dependent on radiation dose and time after exposure. They did not appear to be caused by a disruption of normal lymphocyte traffic or a switch in immunoglobulin isotype. An increased number of PFCs on bromelain-treated mouse RBCs but not on sheep RBCs were found in irradiated congenitally athymic nude mice. On the basis of this and related observations, background PFCs on bromelain-treated mouse RBCs and on sheep RBCs appear to fall under different forms of homeostatic control.

  15. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  16. Nasal visualization on radioiodine whole-body scintigraphy due to benign abnormality.

    PubMed

    Jiang, Xue; Wang, Qiao; Huang, Rui

    2015-04-01

    Nasal iodine activity can be observed on 123Iodine (123I) or 131I whole-body scintigraphy (WBS) commonly as a normal variant caused by nasal or salivary secretion of the tracer. We encountered 2 patients whose increased accumulation of 131I activity was associated with underlying abnormalities. One patient had a nasal polyp, whereas the other had an abscess.

  17. Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition

    ERIC Educational Resources Information Center

    Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.

    2012-01-01

    Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…

  18. Human and animal studies: portals into the whole body and whole population response

    EPA Science Inventory

    Human and animal studies: portals into the whole body and whole population response Michael C. Madden1 and Brett Winters21US Environmental Protection Agency and 2University of North Carolina Human Studies Facility, Chapel Hill, North Carolina, USA Studies involving collection and...

  19. Knowledge, Attitude, and Practices regarding Whole Body Donation among Medical Professionals in a Hospital in India

    ERIC Educational Resources Information Center

    Ballala, Kirthinath; Shetty, Avinash; Malpe, Surekha Bhat

    2011-01-01

    Voluntary body donation has become an important source of cadavers for anatomical study and education. The objective of this study was to assess knowledge, attitude, and practice (KAP) regarding whole body donation among medical professionals in a medical institute in India. A cross sectional study was conducted at Kasturba Hospital, Manipal,…

  20. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    PubMed Central

    Collado-Mateo, Daniel; Adsuar, Jose C.; Olivares, Pedro R.; del Pozo-Cruz, Borja; Parraca, Jose A.; del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  1. Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...

  2. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  3. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  4. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  5. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review.

    PubMed

    Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Del Pozo-Cruz, Borja; Parraca, Jose A; Del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  6. Whole-body turbo STIR MR imaging: controversies and avenues for development.

    PubMed

    Kavanagh, Eoin; Smith, Clare; Eustace, Stephen

    2003-09-01

    The idea of a non-ionizing high-resolution technique to screen the entire body for occult disease is immensely appealing. This article outlines an evolving technique, controversies and clinical application of whole-body scanning using MRI with turbo short tau inversion recovery tissue excitation.

  7. Tissue-specific distribution and whole-body burden estimates of persistent organic pollutants in the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Yordy, Jennifer E; Pabst, D Ann; McLellan, William A; Wells, Randall S; Rowles, Teri K; Kucklick, John R

    2010-06-01

    Most exposure assessments for free-ranging cetaceans focus on contaminant concentrations measured in blubber, and few data are available for other tissues or the factors governing contaminant distribution among tissues. The goal of this study was to provide a detailed description of the distribution of persistent organic pollutants (POPs) within the common bottlenose dolphin (Tursiops truncatus) body and assess the role of lipid dynamics in mediating contaminant distribution. Thirteen tissues (brain, blubber, heart, liver, lung, kidney, mammary gland, melon, skeletal muscle, spleen, thyroid, thymus, and testis/uterus) were sampled during necropsy from bottlenose dolphins (n = 4) and analyzed for lipid and 85 POPs, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers. Significant correlations between tissue POP concentrations and lipid suggest that distribution of POPs is generally related to tissue lipid content. However, blubber:tissue partition coefficients ranged widely from 0.753 to 6.25, suggesting that contaminant distribution is not entirely lipid-dependent. Tissue-specific and whole-body contaminant burdens confirmed that blubber, the primary site of metabolic lipid storage, is also the primary site for POP accumulation, contributing >90% to the whole-body burdens. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue concentrations. These results suggest that individuals with reduced blubber lipid may be at increased risk for exposure-related health effects. However, this study also provides evidence that the melon, a metabolically inert lipid-rich structure, may serve as an alternate depot for POPs, thus preventing the bulk of blubber contaminants from being directly available to other tissues. This unique physiological adaptation should be taken into consideration when assessing contaminant-related health effects in wild cetacean populations

  8. An information theoretic view of the scheduling problem in whole-body CAD

    NASA Astrophysics Data System (ADS)

    Zhan, Yiqiang; Zhou, Xiang Sean; Krishnan, Arun

    2008-03-01

    Emerging whole-body imaging technologies push computer aided detection/diagnosis (CAD) to scale up to a whole-body level, which involves multiple organs or anatomical structure. To be exploited in this paper is the fact that the various tasks in whole-body CAD are often highly dependent (e.g., the localization of the femur heads strongly predicts the position of the iliac bifurcation of the aorta). One way to effectively employ task dependency is to schedule the tasks such that outputs of some tasks are used to guide the others. In this sense, optimal task scheduling is key to improve overall performance of a whole-body CAD system. In this paper, we propose a method for task scheduling that is optimal in an information-theoretic sense. The central idea is to schedule tasks in such an order that each operation achieves maximum expected information gain over all the tasks. The formulation embeds two intuitive principles: (1) a task with higher confidence tends to be scheduled earlier; (2) a task with higher predictive power for other tasks tends to be scheduled earlier. More specifically, task dependency is modeled by conditional probability; the outcome of each task is assumed to be probabilistic as well; and the objective function is based on the reduction of the summed conditional entropy over all tasks. The validation is carried out on a challenging CAD problem, multi-organ localization in whole-body CT. Compared to unscheduled and ad hoc scheduled organ detection/localization, our scheduled execution achieves higher accuracy with much less computation time.

  9. Methamidophos Exposure During the Early Postnatal Period of Mice: Immediate and Late-Emergent Effects on the Cholinergic and Serotonergic Systems and Behavior

    PubMed Central

    Abreu-Villaça, Yael

    2013-01-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  10. Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice.

    PubMed

    Tanaka, Takeshi; Abe, Hajime; Kimura, Masayuki; Onda, Nobuhiko; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    To determine the developmental exposure effects of T-2 toxin on postnatal hippocampal neurogenesis, pregnant ICR mice were provided a diet containing T-2 toxin at 0, 1, 3, or 9 ppm from gestation day 6 to day 21 on weaning after delivery. Offspring were maintained through postnatal day (PND) 77 without T-2 toxin exposure. In the hippocampal dentate gyrus of male PND 21 offspring, GFAP(+) and BLBP(+) type-1 stem cells and PAX6(+) and TBR2(+) type-2 progenitor cells decreased in the subgranular zone (SGZ) at 9 and ≥3 ppm, respectively, in parallel with increased apoptosis at ≥3 ppm. In the dentate hilus, reelin(+) γ-aminobutyric acid (GABA)-ergic interneurons increased at 9 ppm, suggesting reflection of neuronal mismigration. T-2 toxin decreased transcript levels of cholinergic and glutamate receptor subunits (Chrna4, Chrnb2 and Gria2) and glutamate transporter (Slc17a6) in the dentate gyrus, suggesting decreased cholinergic signals on hilar GABAergic interneurons innervating type-2 cells and decreased glutamatergic signals on type-1 and type-2 cells. T-2 toxin decreased SGZ cells expressing stem cell factor (SCF) and increased cells accumulating malondialdehydes. Neurogenesis-related changes disappeared on PND 77, suggesting that T-2 toxin reversibly affects neurogenesis by inducing apoptosis of type-1 and type-2 cells with different threshold levels. Decreased cholinergic and glutamatergic signals may decrease type-2 cells at ≥3 ppm. Additionally, decreased SCF/c-Kit interactions and increased oxidative stress may decrease type-1 and type-2 cells at 9 ppm. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 1 ppm (0.14-0.49 mg/kg body weight/day).

  11. Methamidophos exposure during the early postnatal period of mice: immediate and late-emergent effects on the cholinergic and serotonergic systems and behavior.

    PubMed

    Lima, Carla S; Dutra-Tavares, Ana C; Nunes, Fernanda; Nunes-Freitas, André L; Ribeiro-Carvalho, Anderson; Filgueiras, Cláudio C; Manhães, Alex C; Meyer, Armando; Abreu-Villaça, Yael

    2013-07-01

    Organophosphates (OPs) are among the most used pesticides. Although some OPs have had their use progressively more restricted, other OPs are being used without sufficient investigation of their effects. Here, we investigated the immediate neurochemical and delayed neurochemical and behavioral actions of the OP methamidophos to verify whether there are concerns regarding exposure during early postnatal development. From the third to the nineth postnatal day (PN), Swiss mice were sc injected with methamidophos (1mg/kg). At PN10, we assessed cholinergic and serotonergic biomarkers in the cerebral cortex and brainstem. From PN60 to PN63, mice were submitted to a battery of behavioral tests and subsequently to biochemical analyses. At PN10, the effects were restricted to females and to the cholinergic system: Methamidophos promoted increased choline transporter binding in the brainstem. At PN63, in the brainstem, there was a decrease in choline transporter, a female-only decrease in 5HT1A and a male-only increase in 5HT2 receptor binding. In the cortex, choline acetyltransferase activity was decreased and 5HT2 receptor binding was increased both in males and females. Methamidophos elicited behavioral alterations, suggestive of increased depressive-like behavior and impaired decision making. There were no significant alterations on anxiety-related measures and on memory/learning. Methamidophos elicited cholinergic and serotonergic alterations that depended on brain region, sex, and age of the animals. These outcomes, together with the behavioral effects, indicate that this OP is deleterious to the developing brain and that alterations are indeed identified long after the end of exposure. PMID:23596261

  12. EURADOS INTERCOMPARISONS IN EXTERNAL RADIATION DOSIMETRY: SIMILARITIES AND DIFFERENCES AMONG EXERCISES FOR WHOLE-BODY PHOTON, WHOLE-BODY NEUTRON, EXTREMITY, EYE-LENS AND PASSIVE AREA DOSEMETERS.

    PubMed

    Romero, Ana M; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Figel, Markus; Dombrowski, Harald

    2016-09-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. PMID:26759475

  13. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice.

    PubMed

    Xi, Wei; Lee, C K F; Yeung, W S B; Giesy, John P; Wong, M H; Zhang, Xiaowei; Hecker, Markus; Wong, Chris K C

    2011-05-01

    Bisphenol A (BPA) is used in the manufacture of many products and is ubiquitous in the environment. Adverse effects of BPA on animal reproductive health have been reported, however most of the studies relied on the approaches in the assessment of conventional histology and anatomical features. The mechanistic actions of BPA are not clear. In the present study, a murine model was used to study potential effects of BPA exposure during perinatal and postnatal periods on endocrine functions of hypothalamic-pituitary-gonadal (HPG)-axis. At the hypothalamic-pituitary level, BPA exposure resulted in the up-regulation of the expression levels of KiSS-1, GnRH and FSH mRNA in both male and female pups. At the gonadal levels, BPA caused inhibition in the expressions of testicular steroidogenic enzymes and the synthesis of testosterone in the male pups. Conversely exposure to BPA resulted in a greater aromatase expression level and the synthesis of estrogen in the female pups. BPA is a weak estrogen agonist and its effects reported on animal studies are difficult to reconcile with mechanistic action of estrogen. In this study we hypothesized that the effects of BPA on reproductive dysfunction may be due to its actions on gonadal steroidogenesis and so the anomalous releases of endogenous steroid hormones. This non-ER-mediated effect is more potent in affecting the feedback regulatory circuits in the HPG-axis.

  14. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  15. Whole-body cryostimulation as an effective way of reducing exercise-induced inflammation and blood cholesterol in young men.

    PubMed

    Ziemann, Ewa; Olek, Robert A; Grzywacz, Tomasz; Kaczor, Jan J; Antosiewicz, Jędrzej; Skrobot, Wojciech; Kujach, Sylwester; Laskowski, Radosław

    2014-03-01

    Inflammation may accompany obesity and a variety of diseases, or result from excessive exercise. The aim of this study was to investigate the anti-inflammatory effect of whole-body cryostimulation on the inflammatory response induced by eccentric exercise under laboratory conditions. The study also sought to establish if cold treatment changes the lipid profile and modifies energy expenditure in young people. Eighteen healthy and physically active, college-aged men volunteered to participate in the experiment. They were divided into two subgroups: CRY- submitted to whole-body cryostimulation, and CONT- a control group. Both groups performed eccentric work to induce muscle damage. Blood samples were collected before and 24 h after the exercise. Over the five days that followed, the CRY group was exposed to a series of 10 sessions in a cryogenic chamber (twice a day, for 3 min, at a temperature of -110̊C). After this period of rest, both groups repeated a similar eccentric work session, following the same schedule of blood collection. The perceived pain was noted 24h after each session of eccentric workout. A 30-minute step up/down work-out induced delayed-onset muscle soreness in both groups. The five-day recovery period accompanied by exposure to cold significantly enhanced the concentration of the anti-inflammatory cytokine IL-10. It also led to a pronounced reduction in levels of the pro-inflammatory cytokine IL-1β, and reduced muscle damage. The values for IL-10 before the second bout of eccentric exercise in the CRY group were 2.0-fold higher in comparison to baseline, whereas in the CONT group, the concentration remained unchanged. Furthermore, blood concentrations of the pro-inflammatory cytokine IL-1β fell significantly in the CRY group. The main finding of this study was that a series of 10 sessions of whole body cryostimulation significantly reduced the inflammatory response induced by eccentric exercise. The lipid profile was also improved, but there

  16. The effect of the timing of ethanol exposure during early postnatal life on total number of Purkinje cells in rat cerebellum

    PubMed Central

    MIKI, TAKANORI; HARRIS, SIMON; WILCE, PETER; TAKEUCHI, YOSHIKI; BEDI, KULDIP S.

    1999-01-01

    We have previously shown that exposing rats to a high dose of ethanol on postnatal d 5 can affect Purkinje cell numbers in the cerebellum whilst similar exposure on d 10 had no such effect. The question arose whether a longer period of ethanol exposure after d 10 could produce loss of Purkinje cells. We have examined this question by exposing young rats to a relatively high dose (∼420–430 mg/dl) of ethanol for 6 d periods between the ages of either 4 and 9 d or 10 and 15 d of age. Exposure was carried out by placing the rats in an ethanol vapour chamber for 3 h per day during the exposure period. Groups of ethanol-treated (ET), separation controls (SC) and mother-reared controls (MRC) were anaesthetised and killed when aged 30 d by perfusion with buffered 2.5% glutaraldehyde. Stereological methods were used to determine the numbers of Purkinje cells in the cerebellum of each rat. MRC, SC and rats treated with ethanol between 10–15 d of age each had, on average, about 254–258 thousand cerebellar Purkinje cells; the differences between these various groups were not statistically significant. However, the rats treated with ethanol vapour between 4–9 d of age had an average of only about 128000±20000 Purkinje cells per cerebellum. This value was significantly different from both the MRC and group-matched SC animals. It is concluded that the period between 4 and 9 d of age is an extremely vulnerable period during which the rat cerebellar Purkinje cells are particularly susceptible to the effects of a high dose of ethanol. However, a similar level and duration of ethanol exposure commencing after 10 d of age has no significant effect on Purkinje cell numbers. PMID:10386779

  17. Effects of brief stress exposure during early postnatal development in balb/CByJ mice: I. Behavioral characterization.

    PubMed

    Hohmann, Christine F; Hodges, Amber; Beard, Nakia; Aneni, Justin

    2013-04-01

    Early life stress has been linked to the etiology of mental health disorders. Rodent models of neonatal maternal separation stress frequently have been used to explore the long-term effects of early stress on changes in affective and cognitive behaviors. However, most current paradigms risk metabolic deprivation, due to prolonged periods of pup removal from the dam. We have developed a new paradigm in Balb/CByJ mice, that combines very brief periods of maternal separation with temperature stress to avoid the confound of nutritional deficiencies. We have also included a within-litter control group of pups that are not removed from the dam. The present experiments provide an initial behavioral characterization of this new model. We show that neonatally stressed mice display increased anxiety and aggression along with increased locomotion but decreased exploratory behavior. In contrast, littermate controls show increased exploration of novelty, compared to age-matched, colony-reared controls. Behavioral changes in our briefly stressed mice substantially concur with the existing literature, except that we were unable to observe any cognitive deficits in our paradigm. However, we show that within litter control pups also sustain behavioral changes suggesting complex and long-lasting interactions between different environmental factors in early postnatal life.

  18. Low-magnitude whole-body vibration does not enhance the anabolic skeletal effects of intermittent PTH in adult mice.

    PubMed

    Lynch, Michelle A; Brodt, Michael D; Stephens, Abby L; Civitelli, Roberto; Silva, Matthew J

    2011-04-01

    Whole-body vibration (WBV) is a low-magnitude mechanical stimulus that may be anabolic for bone, yet we recently found that WBV did not improve bone properties in adult mice. Because intermittent parathyroid hormone (PTH) enhances the anabolic effects of high-magnitude skeletal loading, we sought to determine the skeletal effects of WBV in combination with PTH. Seven-month-old male BALB/c mice were assigned to six groups (n = 13-14/group) based on magnitude of applied acceleration (0 or 0.3 G) and PTH dose (0, 10, or 40 µg/kg/day). Mice were exposed to WBV (0.3 G, 90 Hz, sine wave) or sham loading (0 G) for 15 min/day, 5 days/week for 8 weeks. Vehicle or hPTH (1-34) was administered prior to each WBV session. Whole-body bone mineral content increased by ~ 5% from 0 to 8 weeks in the 40 µg/kg PTH group only, independent of WBV loading. Similarly, PTH treatment increased tibial cortical bone volume by ~5% from 0 to 8 weeks, independent of WBV loading. Neither PTH nor WBV stimulated trabecular bone formation. Consistent with the cortical bone effect, tibias from the 40 µg/kg PTH group had significantly greater ultimate force and energy to failure than tibias in the 0 and 10 µg/kg PTH groups, independent of WBV treatment. In summary, 8 weeks of intermittent PTH treatment increased cortical bone volume and strength in adult male BALB/c mice. Daily exposure to low-magnitude WBV by itself did not improve skeletal properties and did not enhance the PTH effect. No WBV-PTH synergy was found in this preclinical study.

  19. Carbon dioxide accumulation during small animal, whole body plethysmography: effects on ventilation, indices of airway function, and aerosol deposition.

    PubMed

    Kimmel, Edgar C; Whitehead, Gregory S; Reboulet, James E; Carpenter, Robert L

    2002-01-01

    Barometric (whole body) plethysmography is used to examine changes in ventilation and breathing pattern in unrestrained animals during exposure to therapeutic or toxic aerosols. Whole body plethysmographs (WBP) may be operated with a bias flow in order to maintain an adequate supply of oxygen and remove expired CO(2). However, some aerosol generation and delivery methods may require operation of the WBP without bias flow, which would artificially deplete aerosol concentration. Under these conditions, expired CO(2) accumulates in the plethysmograph and stimulates ventilation, increasing total aerosol deposition, shifting regional deposition, and significantly altering some airway function indices. We characterized these effects in guinea pigs using a commercially available 4.5-L WBP, with and without a 1 L/min bias flow. CO(2)-induced changes in breathing frequency (f), tidal volume (Vt), minute ventilation (Ve), and indices of airway function -- including enhanced pause (penh), flow derived parameter (FDP), and respiratory duty cycle -- were measured. Without bias flow, CO(2) in the plethysmograph increased steadily to 5.4% after 30 min compared to a steady state 0.9% with bias flow. This resulted in a moderate suppression of f, and significant increases in Vt and Ve by factors of 1.5 and 1.4, respectively. Changes in regional deposition were stimulated for 300 mg/m(3) polydisperse aerosols with mass median aerodynamic diameters of 0.3, 1, 3, or 7 microm and geometric standard deviations of 1.7. Percent increase in aerosol deposition from CO(2) inhalation ranged from 24% to 90%, by mass, depending on aerosol size distribution and respiratory tract region. In addition, fractional deposition shifted toward the pulmonary region. Empirical indices of airway constriction, penh and FDP, also were increased significantly to 1.7 and 1.3 times their respective baseline values. The study quantifies the effect of inadvertent coexposure to CO(2) on ventilation, aerosol

  20. EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS. (R826784)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. The ISO standard: Guide for the evaluation of human exposure to whole-body vibration

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.

    1975-01-01

    The international guideline is discussed in terms of safety and human tolerance. Charts for equal subjective vibration intensity, subjective judgement of equal fatigue, and severe discomfort boundaries are included.

  2. Effects of pre- and postnatal exposure to the UV-filter Octyl Methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring

    SciTech Connect

    Axelstad, Marta; Boberg, Julie; Hougaard, Karin Sorig; Christiansen, Sofie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Nellemann, Christine; Lund, Soren Peter; Hass, Ulla

    2011-02-01

    Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T{sub 4}), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. On postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T{sub 4}) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T{sub 4} deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both the

  3. Effects of pre- and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring.

    PubMed

    Axelstad, Marta; Boberg, Julie; Hougaard, Karin Sørig; Christiansen, Sofie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Nellemann, Christine; Lund, Søren Peter; Hass, Ulla

    2011-02-01

    Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T(4)), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. On postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T(4)) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T(4) deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both the reproductive and

  4. Investigation into the effects of prenatal alcohol exposure on postnatal spine development and expression of synaptophysin and PSD95 in rat hippocampus.

    PubMed

    Elibol-Can, Birsen; Kilic, Ertugrul; Yuruker, Sinan; Jakubowska-Dogru, Ewa

    2014-04-01

    Ethanol is known as a potent teratogen responsible for the fetal alcohol syndrome characterized by cognitive deficits especially pronounced in juveniles but ameliorating in adults. Since the mechanisms of these deficits and following partial recovery are not fully elucidated, the aim of the present study was to investigate the process of synaptogenesis in the hippocampus over the first two months of life in control and fetal-alcohol rats. Ethanol was delivered to the pregnant dams by intragastric intubation throughout 7-21 gestation days at the daily dose of 6g/kg generating a mean blood alcohol level of 246.6±40.9mg/dl on gestation day 20. The spine densities as well as the expression of pre- and postsynaptic proteins, synaptophysin (SYP) and PSD-95 protein, were evaluated for three distinct hippocampal regions: CA1, CA2+3, and DG and four postnatal days: PD1, PD10, PD30 and PD60, independently. Our results confirmed an intensive synaptogenesis within the brain spurt period (first 10 postnatal days), however, the temporal pattern of changes in the SYP and PSD-95 expression was different. The ethanol exposure during half of the 1st and the whole 2nd human trimester equivalent resulted in an overall trend toward lower values of synaptic indices at PD1 with a fast recovery from these deficits observed already at PD10. At PD30, around the age when the most pronounced behavioral deficits have been previously reported in juvenile fetal-alcohol subjects, no significant changes were found in either the hippocampal levels of synaptic proteins or in the spine density in principal hippocampal neurons.

  5. In Utero and Postnatal Exposure to Antiretrovirals Among HIV-Exposed But Uninfected Children in the United States

    PubMed Central

    Williams, Paige L.; Read, Jennifer S.; Seage, George R.; Crain, Marilyn; Yogev, Ram; Hazra, Rohan; Rich, Kenneth

    2011-01-01

    Abstract An increasing number of antiretroviral agents (ARVs) are approved for use, but their use during pregnancy in the United States has not been completely described. We used data from the Pediatric HIV/AIDS Cohort Study (PHACS) Surveillance Monitoring for ART Toxicities (SMARTT) study, a United States-based prospective cohort study of HIV-exposed but uninfected children, to assess temporal trends and maternal characteristics associated with the use of ARVs during pregnancy. The proportion of children exposed in utero to ARVs was calculated over time. A multivariable logistic regression model was used to estimate associations of maternal characteristics with use of highly active antiretroviral therapy (HAART) during pregnancy. We studied 1768 HIV-exposed but uninfected children born between 1995 and 2009 and enrolled in SMARTT. Prenatal HAART exposure increased from 19% in 1997 to 88% in 2009. Of children born in 2009, 99% had prenatal exposure to NRTIs (including zidovudine, 73%; lamivudine, 72%; tenofovir, 39%; and emtricitabine, 37%). Exposure to protease inhibitors increased from 15% in 1997 to 86% in 2009, while exposure to non-nucleoside reverse transcriptase inhibitors (NNRTIs) declined from 33% in 2003 to 11% in 2009. Higher maternal HIV RNA viral load (VL) concentration, lower maternal CD4 count, and earlier timing of the first maternal CD4 or VL measurement during pregnancy were associated with increased odds of HAART exposure. Prenatal HAART exposure has increased but is not universal. As ARV use during pregnancy continues to evolve, follow-up of children is needed to assess long-term effects of ARV exposures. PMID:21992592

  6. [Usefulness of top-hat transform processing in whole body bone scintigraphy].

    PubMed

    Kita, Akinobu; Sugimoto, Katsuya; Tsuchida, Tatsurou; Kishimoto, Takahiro; Toi, Akiko; Shimada, Masato; Adachi, Toshiki

    2013-01-01

    To assess the usefulness of top-hat transform processing in whole body bone scintigraphy, five radiological technicians interpreted both original and top-hat processed images to determine the improvement of lesion detectability and interpretation time. For the evaluation of detectability, receiver operating characteristic (ROC) analysis was performed. The area under the curve (AUC) calculated from the ROC curve was improved in all observers (from 0.786 to 0.864 in average), although no significant difference was observed. However, the interpretation time was improved significantly (from 24.5 to 16.2 s in average). Top-hat transform processing in whole body bone scintigraphy is thought to be useful for the improvement of lesion detectability and interpretation time.

  7. Measurement of whole-body human centers of gravity and moments of inertia.

    PubMed

    Albery, C B; Schultz, R B; Bjorn, V S

    1998-06-01

    With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population. PMID:11542768

  8. MRI compatible small animal monitoring and trigger system for whole body scanners.

    PubMed

    Herrmann, Karl-Heinz; Pfeiffer, Norman; Krumbein, Ines; Herrmann, Lutz; Reichenbach, Jürgen R

    2014-03-01

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is decribed. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts.

  9. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  10. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  11. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  12. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  13. Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss )

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.; Rach, J.J.

    1990-01-01

    1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA). 2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain. 3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines. 4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.

  14. Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience.

    PubMed

    Patriquin, L; Kassarjian, A; Barish, M; Casserley, L; O'Brien, M; Andry, C; Eustace, S

    2001-02-01

    The purpose of this study was to evaluate whole-body magnetic resonance imaging (MRI) of cadavers as an adjunct to autopsy. Eight consecutive patients underwent both whole-body MRI and autopsy [either conventional (six), limited (one), or percutaneous (one)] within 24 hours of death. Comparison was made of major and minor abnormalities and predicted cause of death recorded by independent readers at both MRI and autopsy. Major discrepancies between the recorded primary cause of death at imaging and autopsy occurred in five (5) patients. These included a myocardial infarction found at autopsy alone, bowel infarction and portal venous gas found at MRI alone, and aortic dissection and occipital infarct found at MRI alone in a patient on whom only limited autopsy was performed. Postmortem MRI may represent a useful adjunct to autopsy, particularly in patients in whom autopsy is limited due to patient/family consent, inoculation risks, and ethnic doctrines.

  15. Effects of Short-Period Whole-Body Vibration of 20 Hz on Selected Blood Biomarkers in Wistar Rats.

    PubMed

    Monteiro, Milena de Oliveira Bravo; de Sá-Caputo, Danúbia da Cunha; Carmo, Fernanda Santos do; Bernardo, Raquel Mattos; Pacheco, Raphaelle; Arnóbio, Adriano; Guimarães, Carlos Alberto Sampaio; Bernardo, Luciana Camargo; Santos-Filho, Sebastião David; Asad, Nasser Ribeiro; Unger, Marianne; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2015-08-31

    There is a growing interest in the use of vibration generated by oscillating/vibratory platforms - also known as whole-body vibration (WBV) - for achieving therapeutic, preventative and/or physical performance goals. This study investigated the effects of vibration generated by an oscillating platform on the concentration of blood biomarkers in rats. Wistar rats (n = 8) were divided in 2 groups, sedated and individually positioned on an oscillating platform. The experimental group (EG) was subjected to vibrations of 20 Hz for one min per day for one week while the control group (CG) experienced no vibration. Samples of heparinized whole blood were drawn by cardiac puncture for biochemical analysis. Concentrations of total cholesterol, triglycerides, HDL, LDL, VLDL, glucose, CK, albumin, alkaline phosphates, TGP, TGO, γGT, lipase, amylase, urea and creatinine were determined. White blood cell count and a platelet hemogram were also performed. Following seven sessions of exposure to the vibration, a significant (P < 0.05) reduction in γGT, VLDL and leukocytes was found. A weekly 1-min/day exposure of 20 Hz vibration can was shown to alter the concentrations of selected blood biomarkers in rats. The action mechanism associated with these effects seems highly complex, but the findings might contribute to the understanding of these mechanisms related to the exposure to 20 Hz vibration. PMID:26211644

  16. Effects of Short-Period Whole-Body Vibration of 20 Hz on Selected Blood Biomarkers in Wistar Rats.

    PubMed

    Monteiro, Milena de Oliveira Bravo; de Sá-Caputo, Danúbia da Cunha; Carmo, Fernanda Santos do; Bernardo, Raquel Mattos; Pacheco, Raphaelle; Arnóbio, Adriano; Guimarães, Carlos Alberto Sampaio; Bernardo, Luciana Camargo; Santos-Filho, Sebastião David; Asad, Nasser Ribeiro; Unger, Marianne; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2015-08-31

    There is a growing interest in the use of vibration generated by oscillating/vibratory platforms - also known as whole-body vibration (WBV) - for achieving therapeutic, preventative and/or physical performance goals. This study investigated the effects of vibration generated by an oscillating platform on the concentration of blood biomarkers in rats. Wistar rats (n = 8) were divided in 2 groups, sedated and individually positioned on an oscillating platform. The experimental group (EG) was subjected to vibrations of 20 Hz for one min per day for one week while the control group (CG) experienced no vibration. Samples of heparinized whole blood were drawn by cardiac puncture for biochemical analysis. Concentrations of total cholesterol, triglycerides, HDL, LDL, VLDL, glucose, CK, albumin, alkaline phosphates, TGP, TGO, γGT, lipase, amylase, urea and creatinine were determined. White blood cell count and a platelet hemogram were also performed. Following seven sessions of exposure to the vibration, a significant (P < 0.05) reduction in γGT, VLDL and leukocytes was found. A weekly 1-min/day exposure of 20 Hz vibration can was shown to alter the concentrations of selected blood biomarkers in rats. The action mechanism associated with these effects seems highly complex, but the findings might contribute to the understanding of these mechanisms related to the exposure to 20 Hz vibration.

  17. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.

    PubMed

    Bakker, Romy S; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  18. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.

    PubMed

    Kudo, Naoki; Choi, Kyuheong; Kagawa, Takahiro; Uno, Yoji

    2016-05-01

    It is well known that planar reaching movements of the human shoulder and elbow joints have invariant features: roughly straight hand paths and bell-shaped velocity profiles. The optimal control models with the criteria of smoothness or precision, which determine a unique movement pattern, predict such features of hand trajectories. In this letter on expanding the research on simple arm reaching movements, we examine whether the smoothness criteria can be applied to whole-body reaching movements with many degrees of freedom. Determining a suitable joint trajectory in the whole-body reaching movement corresponds to the optimization problem with constraints, since body balance must be maintained during a motion task. First, we measured human joint trajectories and ground reaction forces during whole-body reaching movements, and confirmed that subjects formed similar movements with common characteristics in the trajectories of the hand position and body center of mass. Second, we calculated the optimal trajectories according to the criteria of torque and muscle-tension smoothness. While the minimum torque change trajectories were not consistent with the experimental data, the minimum muscle-tension change model was able to predict the stereotyped features of the measured trajectories. To explore the dominant effects of the extension from the torque change to the muscle-tension change, we introduced a weighted torque change cost function. Considering the maximum voluntary contraction (MVC) force of the muscle as the weighting factor of each joint torque, we formulated the weighted torque change cost as a simplified version of the minimum muscle-tension change cost. The trajectories owing to the minimum weighted torque change criterion also showed qualitative agreement with the common features of the measured data. Proper estimation of the MVC forces in the body joints is essential to reproduce human whole-body movements according to the minimum muscle-tension change

  19. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion

    PubMed Central

    Bakker, Romy S.; Selen, Luc P. J.; Medendorp, W. Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  20. Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine.

    PubMed

    Madsen, Jan L; Sjögreen-Gleisner, Katarina; Elema, Dennis R; Søndergaard, Lasse R; Rasmussen, Palle; Fuglsang, Stefan; Ljungberg, Michael; Damgaard, Morten

    2014-02-01

    Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4 MBq [⁷⁵Se]L-SeMet ([⁷⁵Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [⁷⁵Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87·9 (sd 3·3)% of the administered activity of [⁷⁵Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8·2 (sd 1·1)% of the activity. Time-activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet.

  1. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.

    PubMed

    Bakker, Romy S; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion.

  2. Proprioceptive deficits of the lower limb following anterior cruciate ligament deficiency affect whole body steering control.

    PubMed

    Reed-Jones, Rebecca J; Vallis, Lori Ann

    2007-09-01

    The role of lower limb proprioception in the steering control of locomotion is still unclear. The purpose of the current study was to determine whether steering control is altered in individuals with reduced lower limb proprioception. Anterior cruciate ligament deficiency (ACLD) results in a decrease in proprioceptive information from the injured knee joint (Barrack et al. 1989). Therefore the whole body kinematics were recorded for eight unilateral ACLD individuals and eight CONTROL individuals during the descent of a 20 degrees incline ramp followed by either a redirection using a side or cross cutting maneuver or a continuation straight ahead. Onset of head and trunk yaw, mediolateral displacement of a weighted center of mass (COM(HT)) and mediolateral displacement of the swing foot were analyzed to evaluate differences in the steering control. Timing analyses revealed that ACLD individuals delayed the reorientation of body segments compared to CONTROL individuals. In addition, ACLD did not use a typical steering synergy where the head leads whole body reorientation; rather ACLD individuals reoriented the head, trunk and COM(HT) in the new direction at the same time. These results suggest that when lower limb proprioceptive information is reduced, the central nervous system (CNS) may delay whole body reorientation to the new travel direction, perhaps in order to integrate existing sensory information (vision, vestibular and proprioception) with the reduced information from the injured knee joint. This control strategy is maintained when visual information is present or reduced in a low light environment. Additionally, the CNS may move the head and trunk segments as, effectively, one segment to decrease the number of degrees of freedom that must be controlled and increase whole body stability during the turning task.

  3. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex.

    PubMed

    Kelly, Emily A; Opanashuk, Lisa A; Majewska, Ania K

    2014-01-01

    Bisphenol-A (BPA) is a monomer used in the production of polycarbonate plastics, epoxies and resins and is present in many common household objects ranging from water bottles, can linings, baby bottles, and dental resins. BPA exposure has been linked to numerous negative health effects throughout the body, although the mechanisms of BPA action on the developing brain are still poorly understood. In this study, we sought to investigate whether low dose BPA exposure during a developmental phase when brain connectivity is being organized can cause long-term deleterious effects on brain function and plasticity that outlast the BPA exposure. Lactating dams were orally exposed to 25 μg/kg/day of BPA (one half the U.S. Environmental Protection Agency's 50 μg/kg/day rodent dose reference) or vehicle alone from postnatal day (P)5 to P21. Pups exposed to BPA in their mother's milk exhibited deficits in activity-dependent plasticity in the visual cortex during the visual critical period (P28). To determine the possible mechanisms underlying BPA action, we used immunohistochemistry to examine histological markers known to impact cortical maturity and developmental plasticity and quantified cortical dendritic spine density, morphology, and dynamics. While we saw no changes in parvalbumin neuron density, myelin basic protein expression or microglial density in BPA-exposed animals, we observed increases in spine density on apical dendrites in cortical layer five neurons but no significant alterations in other morphological parameters. Taken together our results suggest that exposure to very low levels of BPA during a critical period of brain development can have profound consequences for the normal wiring of sensory circuits and their plasticity later in life. PMID:25374513

  4. The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex