Interference between oculomotor and postural tasks in 7-8-year-old children and adults.
Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle
2016-06-01
Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.
The effect of instructions on postural-suprapostural interactions in three working memory tasks.
Burcal, Christopher J; Drabik, Evan C; Wikstrom, Erik A
2014-06-01
Examining postural control while simultaneously performing a cognitive, or suprapostural task, has shown a fairly consistent trend of improving postural control in young healthy adults and provides insight into postural control mechanisms used in everyday life. However, the role of attention driven by explicit verbal instructions while dual-tasking is less understood. Therefore, the purpose of this investigation is to determine the effects of explicit verbal instructions on the postural-suprapostural interactions among various domains of working memory. A total of 22 healthy young adults with a heterogeneous history of ankle sprains volunteered to participate (age: 22.2±5.1 years; n=10 history of ankle sprains, n=12 no history). Participants were asked to perform single-limb balance trials while performing three suprapostural tasks: backwards counting, random number generation, and the manikin test. In addition, each suprapostural task was completed under three conditions of instruction: no instructions, focus on the postural control task, focus on the suprapostural task. The results indicate a significant effect of instructions on postural control outcomes, with postural performance improving in the presence of instructions across all three cognitive tasks which each stress different aspects of working memory. Further, postural-suprapostural interactions appear to be related to the direction or focus of an individual's attention as instructions to focus on the suprapostural task resulted in the greatest postural control improvements.Thus, attention driven by explicit verbal instructions influence postural-suprapostural interactions as measured by a temporal-spatial postural control outcome, time-to-boundary, regardless of the suprapostural task performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S
2017-11-01
Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. THE AIMS OF THIS SYSTEMATIC REVIEW ARE: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Background Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. Purpose The aims of this systematic review are: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Data sources Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Study selection Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. Data extraction All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Data synthesis Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. Limitations The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Conclusion Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed. PMID:24741296
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
Obesity Impact on the Attentional Cost for Controlling Posture
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2010-01-01
Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Static and dynamic single leg postural control performance during dual-task paradigms.
Talarico, Maria K; Lynall, Robert C; Mauntel, Timothy C; Weinhold, Paul S; Padua, Darin A; Mihalik, Jason P
2017-06-01
Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s -1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s -1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F 2,58 = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.
Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro
2016-01-01
To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555
Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Polskaia, Nadia; Richer, Natalie; Dionne, Eliane; Lajoie, Yves
2015-02-01
Research has demonstrated clear advantages of using an external focus of attention in postural control tasks, presumably since it allows a more automatic control of posture to emerge. However, the influence of cognitive tasks on postural stability has produced discordant results. This study aimed to compare the effects of an internal focus of attention, an external focus of attention and a continuous cognitive task on postural control. Twenty healthy participants (21.4±2.6 years) were recruited for this study. They were asked to stand quietly on a force platform with their feet together in three different attentional focus conditions: an internal focus condition (minimizing movements of the hips), an external focus condition (minimizing movements of markers placed on the hips) and a cognitive task condition (silently counting the total number of times a single digit was verbalized in a 3-digit sequence comprised of 30 numbers). Results demonstrated improved stability while performing the cognitive task as opposed to the internal and external focus conditions, as evidenced by a reduction in sway area, sway variability in the anterior-posterior (AP) and medial-lateral (ML) directions, and mean velocity (ML only). Results suggest that the use of a continuous cognitive task permits attention to be withdrawn from the postural task, thereby facilitating a more automatic control of posture. Copyright © 2014 Elsevier B.V. All rights reserved.
Cognitive tasks promote automatization of postural control in young and older adults.
Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves
2017-09-01
Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Howells, Brooke E; Clark, Ross A; Ardern, Clare L; Bryant, Adam L; Feller, Julian A; Whitehead, Timothy S; Webster, Kate E
2013-09-01
Postural control impairments may persist following anterior cruciate ligament (ACL) reconstruction. The effect of a secondary task on postural control has, however, not been determined. The purpose of this case-control study was to compare postural control in patients following ACL reconstruction with healthy individuals with and without a secondary task. 45 patients (30 men and 15 women) participated at least 6 months following primary ACL reconstruction surgery. Participants were individually matched by age, gender and sports activity to healthy controls. Postural control was measured using a Nintendo Wii Balance Board and customised software during static single-leg stance and with the addition of a secondary task. The secondary task required participants to match the movement of an oscillating marker by adducting and abducting their arm. Centre of pressure (CoP) path length in both medial-lateral and anterior-posterior directions, and CoP total path length. When compared with the control group, the anterior-posterior path length significantly increased in the ACL reconstruction patients' operated (12.3%, p=0.02) and non-operated limbs (12.8%, p=0.02) for the single-task condition, and the non-operated limb (11.5%, p=0.006) for the secondary task condition. The addition of a secondary task significantly increased CoP path lengths in all measures (p<0.001), although the magnitude of the increase was similar in both the ACL reconstruction and control groups. ACL reconstruction patients showed a reduced ability in both limbs to control the movement of the body in the anterior-posterior direction. The secondary task affected postural control by comparable amounts in patients after ACL reconstruction and healthy controls. Devices for the objective measurement of postural control, such as the one used in this study, may help clinicians to more accurately identify patients with deficits who may benefit from targeted neuromuscular training programs.
Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin
2016-01-01
Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626
Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B
2016-04-01
The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Aftanas, Lyubomir I; Bazanova, Olga M; Novozhilova, Nataliya V
2018-01-01
Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy ( E ) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: Δ E = ( E Dual-task - E Single-task ). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple linear regression analysis evidenced further that the dual-tasking energy cost (i.e., Δ E ) significantly predicted clinical scores of severity of MDD and depressive rumination. Conclusion: The findings allow to suggest that execution of concurrent actual or imaginary fine motor task with closed visual input deallocates attentional resources from compelling maladaptive depressive rumination thereby attenuating severity of absolute dual-tasking energy costs for balance maintenance in patients with MDD. Significance: Quantitative assessment of PMR through measures of the postural performance in dual-tasking may be useful to capture the negative impact of past depressive episodes, optimize the personalized treatment selection, and improve the understanding of the pathophysiological mechanisms underlying MDD.
Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou
2014-11-01
Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou
2016-01-01
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830
Nafati, Gilel; Vuillerme, Nicolas
2011-12-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they performed a short-term digit-span memory task. Decreased center-of-gravity displacements and decreased center-of-foot-pressure displacements minus center-of-gravity displacements were observed in the cognitive condition relative to the control condition. These results suggest that shifting the attentional focus away from postural control by executing a concurrent attention-demanding task could increase postural performance and postural efficiency.
Hwang, Ing-Shiou; Huang, Cheng-Ya
2016-01-01
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc
2014-11-15
Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. Copyright © 2014 the American Physiological Society.
Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe
2017-12-22
Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults experience difficulty predicting the timing of target presentation, which could be related to deteriorated cognitive function, resulting in reduced use of the ankle joints for postural control.
Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.
Borel, L; Alescio-Lautier, B
2014-01-01
In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali
2013-06-01
It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.
The effect of leg preference on postural stability in healthy athletes.
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H
2014-01-03
In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.
Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh
2018-04-01
To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.
Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease
Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto
2015-01-01
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032
The influence of an auditory-memory attention-demanding task on postural control in blind persons.
Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit
2011-05-01
In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Glofcheskie, Grace O; Brown, Stephen H M
2017-04-01
Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Peterson, Jeffrey J; Keenan, Kevin G
2018-02-01
The purpose of this study was to examine the influence of a visuospatial attention task on three measures of postural control in young and older adults. 20 young (19-36 years) and 20 older (67-91 years) adults performed a choice stepping response time (CSRT) task, a submaximal dorsiflexion force steadiness task, and quiet standing in 3 bilateral stances. All tasks were performed with and without a visuospatial (VS) attention task that involved visualizing a star moving within a 2 × 2 grid. CSRT increased with the addition of the VS task in both groups (p < .001), with a larger increase for older adults than young adults (p < .001). Older adults were less steady while performing the dorsiflexion task with the VS task (p < .001), while the VS task did not influence steadiness in young adults (p = .235). Performance during quiet standing was not influenced by the VS task in any stance (p > .084). The findings suggest that visuospatial attention differentially affects postural control in young and older adults and the effect is task-specific. These findings suggest the need to include stepping and force control tasks to further determine what role visuospatial attention plays in postural control. Copyright © 2017. Published by Elsevier Ltd.
Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic
2014-06-01
We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination
ERIC Educational Resources Information Center
Mitra, Suvobrata; Knight, Alec; Munn, Alexandra
2013-01-01
Performing a cognitive task while maintaining upright stance can lead to increased or reduced body sway depending on tasks and experimental conditions. Because greater sway is commonly taken to indicate loosened postural control, and vice versa, the precise impact of cognitive load on postural stability has remained unclear. In much of the large…
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Donker, Stella F.; Roerdink, Melvyn; Greven, An J.
2007-01-01
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553
Akizuki, Kazunori; Ohashi, Yukari
2014-12-01
The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous tasks. Therefore, we examined the effectiveness of salivary α-amylase, which is a physiological method for measuring attentional demand during postural control. Sixteen healthy participants performed a postural-control task using the Balance System, which is a device that can be calibrated to a specific stability level ("Level 1 = least stable" to "Level 8 = most stable"). Levels 1, 2, and 3 were used for this study. Dependent variables measured were overall stability index, which represents the variance of platform displacement in degrees from a horizontal plane; probe reaction time, which was measured using a sound stimulator and recorder; and salivary α-amylase, which was measured using a portable salivary amylase analyzer. As stability level of the test task decreased, both stability index and probe reaction time significantly increased. In addition, we identified a positive moderate correlation between probe reaction time and salivary α-amylase. Our results suggest that salivary α-amylase and probe reaction time reflect the change in attentional demands during a postural-control task and that salivary α-amylase may be an effective tool for evaluating attentional demands during postural control because it is noninvasive and simple to perform.
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni
2003-06-01
To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
NASA Astrophysics Data System (ADS)
Denomme, Luke T.
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the straight walking portion of the task in addition to a smaller DSM range (i.e., COM remained close to lateral BOS) during the entire steering task. These results suggest that IwMS adopt postural and dynamic control strategies (i.e., increased COP velocity, smaller self-selected maximal sway comfort zones and reduced walking speed) in order to maintain stability and complete the tasks. Results further revealed that IwMS display similar levels of postural and dynamic stability to OA despite differences in the type of sensory impairment possessed by each group. The findings also provide insights into the comparison of IwMS to two populations who represent the two extreme ends of the balance control continuum: HAMI and OA. Our data indicates that the level of postural and dynamic balance control in IwMS appears to express similar characteristics and may be located closer to the OA population on this continuum. Future research should evaluate the level of somatosensory impairment (i.e., monofilament testing and tuning fork tendon tap testing) between IwMS and OA in order to better differentiate levels of postural and dynamic balance control between groups and to gain a better understanding of where each group may be specifically located on the age-related balance control continuum.
Continuous and difficult discrete cognitive tasks promote improved stability in older adults.
Lajoie, Yves; Jehu, Deborah A; Richer, Natalie; Chan, Alan
2017-06-01
Directing attention away from postural control and onto a cognitive task affords the emergence of automatic control processes. Perhaps the continuous withdrawal of attention from the postural task facilitates an automatization of posture as opposed to only intermittent withdrawal; however this is unknown in the aging population. Twenty older adults (69.9±3.5years) stood with feet together on a force platform for 60s while performing randomly assigned discrete and continuous cognitive tasks. Participants were instructed to stand comfortably with their arms by their sides while verbally responding to the auditory stimuli as fast as possible during the discrete tasks, or mentally performing the continuous cognitive tasks. Participants also performed single-task standing. Results demonstrate significant reductions in sway amplitude and sway variability for the difficult discrete task as well as the continuous tasks relative to single-task standing. The continuous cognitive tasks also prompted greater frequency of sway in the anterior-posterior direction compared to single-standing and discrete tasks, and greater velocity in both directions compared to single-task standing, which could suggest ankle stiffening. No differences in the simple discrete condition were shown compared to single-task standing, perhaps due to the simplicity of the task. Therefore, we propose that the level of difficulty of the task, the specific neuropsychological process engaged during the cognitive task, and the type of task (discrete vs. continuous) influence postural control in older adults. Dual-tasking is a common activity of daily living; this work provides insight into the age-related changes in postural stability and attention demand. Copyright © 2017 Elsevier B.V. All rights reserved.
Intermittent use of an "anchor system" improves postural control in healthy older adults.
Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato
2013-07-01
Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
Tommasino, Paolo; Campolo, Domenico
2017-02-03
In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.
Bustillo-Casero, Pilar; Villarrasa-Sapiña, Israel; García-Massó, Xavier
2017-10-01
In the present study our aim was to compare dual-task performance in thirteen adolescents and fifteen young adults while concurrently performing a cognitive and a motor task. The postural control variables were obtained under three different conditions: i) bipedal stance, ii) tandem stance and iii) unipedal stance. The cognitive task consisted of a backward digit span test in which the participants were asked to memorize a sequence of numbers and then repeat the number in reverse order at three different difficulty levels (i.e. with 3, 4 and 5 digits). The difficulty of the cognitive task was seen to have different effects on adolescents and young adults. Adolescents seem to prioritize postural control during high difficulty postural conditions while a cross-domain competition model appeared in easy postural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecological Relevance Determines Task Priority in Older Adults' Multitasking.
Doumas, Michail; Krampe, Ralf Th
2015-05-01
Multitasking is a challenging aspect of human behavior, especially if the concurrently performed tasks are different in nature. Several studies demonstrated pronounced performance decrements (dual-task costs) in older adults for combinations of cognitive and motor tasks. However, patterns of costs among component tasks differed across studies and reasons for participants' resource allocation strategies remained elusive. We investigated young and older adults' multitasking of a working memory task and two sensorimotor tasks, one with low (finger force control) and one with high ecological relevance (postural control). The tasks were performed in single-, dual-, and triple-task contexts. Working memory accuracy was reduced in dual-task contexts with either sensorimotor task and deteriorated further under triple-task conditions. Postural and force performance deteriorated with age and task difficulty in dual-task contexts. However, in the triple-task context with its maximum resource demands, older adults prioritized postural control over both force control and memory. Our results identify ecological relevance as the key factor in older adults' multitasking. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel
2018-02-01
Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p < 0.001) similarly in both groups. The addition of the cognitive task decreased sway area and sway path (p < 0.001) similarly in both groups. Patients with ACLR who recently completed their rehabilitation have normalized postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Muscle Feasibility for Cosmos Rhesus
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie (Principal Investigator); Roland, Roy R.; Hodgson, John A.
1994-01-01
The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A
2010-12-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.
Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.
2010-01-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715
Aging worsens the effects of sleep deprivation on postural control.
Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie
2011-01-01
Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.
Aging Worsens the Effects of Sleep Deprivation on Postural Control
Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie
2011-01-01
Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly. PMID:22163330
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
A major presenting symptom in 'individuals with multiple sclerosis with mild balance disability' (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either 'healthy age-matched individuals' (HAMI) or 'community-dwelling older adults' (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).
Effects of Attentional Focus and Age on Suprapostural Task Performance and Postural Control
ERIC Educational Resources Information Center
McNevin, Nancy; Weir, Patricia; Quinn, Tiffany
2013-01-01
Purpose: Suprapostural task performance (manual tracking) and postural control (sway and frequency) were examined as a function of attentional focus, age, and tracking difficulty. Given the performance benefits often found under external focus conditions, it was hypothesized that external focus instructions would promote superior tracking and…
2018-01-01
Background Postural control may be impaired in children with foetal alcohol spectrum disorders (FASD). The study assessed the protocol feasibility in terms of (1) recruiting children with FASD in a rural, small town; (2) using the measurement instruments in a real-life setting; (3) the one-leg standing (OLS) task and (4) presenting preliminary results on postural stability of children with and without FASD. Methods Nine-year-old children diagnosed with and without FASD were invited to participate. Twenty-eight children performed OLS. Feasibility outcomes included recruitment, measurement instrument use and task instruction. Postural stability outcomes included standing duration, centre of pressure (COP) and body segment acceleration. Results Participants recruitment was feasible in terms of the (1) ability to sample a reasonable participant number in a rural town setting and the capacity to increase the sample size if more schools are included in the sampling frame and (2) use of assent and consent forms that were appropriate for this population. The measurement instruments were user-friendly, cost-effective and time-efficient. Instructions for the task require amendment to address foot placement of the non-weight–bearing leg. There was a significant difference between cases and controls on mean COP velocity (p = 0.001) and the pelvis segment acceleration in the mediolateral direction (p = 0.01) and the anteroposterior direction (p = 0.027). The control children took longer to achieve postural control. The girls demonstrated a significant difference for the COP anteroposterior displacement (p = 0.008) and velocity (p = 0.049). Conclusions The recruitment of children with and without FASD in a rural, small town and the administration of measurement instruments in a real-life, school-based setting was feasible. However, the verbal instructions for the task require revision. The male control group took longer to achieve postural control because the task was performed differently between the two groups. However, the case girls were slower to achieve postural control than control girls though performing the task similarly. PMID:29707515
Dementia alters standing postural adaptation during a visual search task in older adult men.
Jor'dan, Azizah J; McCarten, J Riley; Rottunda, Susan; Stoffregen, Thomas A; Manor, Brad; Wade, Michael G
2015-04-23
This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance--in the non-dementia group only--suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus, appears to disrupt this perception-action synergy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.
Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry
2009-06-01
The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.
Stelzel, Christine; Schauenburg, Gesche; Rapp, Michael A.; Heinzel, Stephan; Granacher, Urs
2017-01-01
Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. PMID:28484411
Tsang, William W N; Lam, Nazca K Y; Lau, Kit N L; Leung, Harry C H; Tsang, Crystal M S; Lu, Xi
2013-12-01
To investigate the effects of aging on postural control and cognitive performance in single- and dual-tasking. A cross-sectional comparative design was conducted in a university motion analysis laboratory. Young adults (n = 30; age 21.9 ± 2.4 years) and older adults (n = 30; age 71.9 ± 6.4 years) were recruited. Postural control after stepping down was measured with and without performing a concurrent auditory response task. Measurement included: (1) reaction time and (2) error rate in performing the cognitive task; (3) total sway path and (4) total sway area after stepping down. Our findings showed that the older adults had significantly longer reaction times and higher error rates than the younger subjects in both the single-tasking and dual-tasking conditions. The older adults had significantly longer reaction times and higher error rates when dual-tasking compared with single-tasking, but the younger adults did not. The older adults demonstrated significantly less total sway path, but larger total sway area in single-leg stance after stepping down than the young adults. The older adults showed no significant change in total sway path and area between the dual-tasking and when compared with single-tasking conditions, while the younger adults showed significant decreases in sway. Older adults prioritize postural control by sacrificing cognitive performance when faced with dual-tasking.
Balasubramaniam, Ramesh
2014-01-01
Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
ERIC Educational Resources Information Center
Jover, Marianne; Schmitz, Christina; Centelles, Laurie; Chabrol, Brigitte; Assaiante, Christine
2010-01-01
Aim: Postural control is a fundamental component of action in which deficits have been shown to contribute to motor difficulties in children with developmental coordination disorder (DCD). The purpose of this study was to examine anticipatory postural adjustments (APAs) in children with DCD in a bimanual load-lifting task. Method: Sixteen children…
Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S.
2016-01-01
Specific activities that require concurrent processing of postural and cognitive tasks may increase the risk for falls in older adults. We investigated whether peripheral receptor sensitivity was associated with postural performance in a dual-task and whether an intervention in form of subthreshold vibration could affect performance. Ten younger (age: 20–35 years) and ten older adults (70–85 years) performed repeated auditory-verbal 1-back tasks while standing quietly on a force platform. Foot sole vibration was randomly added during several trials. Several postural control and performance measures were assessed and statistically analyzed (significance set to α-levels of .05). There were moderate correlations between peripheral sensitivity and several postural performance and control measures (r = .45 to .59). Several postural performance measures differed significantly between older and younger adults (p < 0.05); addition of vibration did not affect outcome measures. Aging affects healthy older adults' performance in dual-tasks, and peripheral sensitivity may be a contributor to the observed differences. A vibration intervention may only be useful when there are more severe impairments of the sensorimotor system. Hence, future research regarding the efficacy of sensorimotor interventions in the form of vibrotactile stimulation should focus on older adults whose balance is significantly affected. PMID:27143967
Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A
2013-09-01
Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30s per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. Copyright © 2013 Elsevier B.V. All rights reserved.
Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A.
2013-01-01
Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30 seconds per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. PMID:23623606
The effects of concurrent cognitive tasks on postural sway in healthy subjects.
Mujdeci, Banu; Turkyilmaz, Didem; Yagcioglu, Suha; Aksoy, Songul
2016-01-01
Keeping balance of the upright stance is a highly practiced daily task for healthy adults and is effectively performed without overt attentional control in most. The purpose of this study was to examine the influence of concurrent cognitive tasks on postural sway in healthy participants. This was a prospective study. 20 healthy volunteer subjects were included. The cognitive and balance tasks were performed separately and then, concurrently. Postural control task consisted of 6 conditions (C) of the Sensory Organization Test. The cognitive task consisted of digit rehearsal task of varying presentation and varying levels of difficulty. A statistically significant difference was noted between dual task and no task for C1, C2, C3 and C4 Sensory Organization Test scores (p<0.05). There was no statistically significant difference between dual task versus non-task for C5, C6 and combined Sensory Organization Test scores (p>0.05). During dual task, increase has been determined in postural sway for C1, C2, C3 and C4 for all presentation modes and difficulty levels of the cognitive tasks. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Silva, Marcelo Guimarães; Struber, Lucas; Brandão, José Geraldo T; Daniel, Olivier; Nougier, Vincent
2018-04-01
One of the challenges regarding human motor control is making the movement fluid and at a limited cognitive cost. The coordination between posture and movement is a necessary requirement to perform daily life tasks. The present experiment investigated this interaction in 20 adult men, aged 18-30 years. The cognitive costs associated to postural and movement control when kicking towards a target was estimated using a dual-task paradigm (secondary auditory task). Results showed that addition of the attentional demanding cognitive task yielded a decreased kicking accuracy and an increased timing to perform the movement, mainly during the backswing motion. In addition, significant differences between conditions were found for COP and COM displacement (increased amplitude, mean speed) on the anteroposterior axis. However, no significant differences between conditions were found on the mediolateral axis. Finally, EMG analysis showed that dual-task condition modified the way anticipatory postural adjustments (APAs) were generated. More specifically, we observed an increase of the peroneus longus activity, whereas the temporal EMG showed a decrease of its latency with respect to movement onset. These results suggested a functional adaptation resulting in an invariance of overall APAs, emphasizing that cognitive, postural, and motor processes worked dependently.
Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars
2011-04-01
The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Richer, Natalie; Polskaia, Nadia; Lajoie, Yves
2017-01-01
Background/Study Context: Recent evidence suggests that removing attention from postural control using either an external focus or a cognitive task will improve stability in healthy young adults. Due to increases in attentional requirements of upright stance in older adults, it is unclear if similar benefits would be observed in this population. The aim of the present study was to examine the effect of attentional focus and of a continuous cognitive task on postural control in older adults. Sixteen healthy older adults (71.9 ± 4.32 years) were asked to stand quietly on a force platform with feet together in three different conditions: internal focus (minimizing movement of the hips), external focus (minimizing movement of markers placed on the hips), and cognitive task (silently counting the occurrence of a single digit in a 3-digit number sequence). A one-way analysis of variance with repeated measures on condition was performed for each postural control measure. Hypotheses were partially supported because the cognitive task led to greater stability than both focus conditions, as evidenced by a smaller sway area (p < .01, η p 2 = .41), reduced sway variability (anterior-posterior: p = .001, η p 2 = .37; medial-lateral: p < .0001, η p 2 = .49), and higher mean power frequency in the anterior-posterior direction (p = .01, η p 2 = .78). However, no difference was observed between internal and external focus conditions. A continuous, attention-demanding cognitive task significantly improved stability in older adults compared with an internal or external focus of attention. This suggests that older adults were able to effectively allocate their attention away from postural control, allowing a more automatic type of control to operate. Future studies should investigate a variety of cognitive tasks to determine the degree of postural improvement that can be observed in older adults.
ERIC Educational Resources Information Center
Wang, Hui-Yi; Long, I-Man; Liu, Mei-Fang
2012-01-01
Individuals with Down syndrome (DS) have been characterized by greater postural sway in quiet stance and insufficient motor ability. However, there is a lack of studies to explore the properties of dynamic postural sway, especially under conditions of task-oriented movement. The purpose of this study was to investigate the relationships between…
Childhood obesity affects postural control and aiming performance during an upper limb movement.
Boucher, François; Handrigan, Grant A; Mackrous, Isabelle; Hue, Olivier
2015-07-01
Obesity reduces the efficiency of postural and movement control mechanisms. However, the effects of obesity on a functional motor task and postural control in standing and seated position have not been closely quantified among children. The aim of this study is to examine the effects of obesity on the execution of aiming tasks performed in standing and seated conditions in children. Twelve healthy weight children and eleven obese children aged between 8 and 11 years pointed to a target in standing and seated position. The difficulty of the aiming task was varied by using 2 target sizes (1.0 cm and 5.0 cm width; pointing to the smaller target size needs a more precise movement and constitutes a more difficult task). Hand movement time (MT) and its phases were measured to quantify the aiming task. Mean speed of the center of pressure displacement (COP speed) was calculated to assess postural stability during the movement. Obese children had significantly higher MTs compared to healthy-weight children in seated and standing conditions explained by greater durations of deceleration phase when aiming. Concerning the COP speed during the movement, obese children showed significantly higher values when standing compared to healthy-weight children. This was also observed in the seated position. In conclusion, obesity adds a postural constraint during an aiming task in both seated and standing conditions and requires obese children to take more time to correct their movements due to a greater postural instability of the body when pointing to a target with the upper-limb. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A; Manor, Brad
2017-06-07
Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.
Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas
2016-06-01
Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level 3.
NASA Astrophysics Data System (ADS)
Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.
2012-10-01
The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.
Mezzarobba, Susanna; Grassi, Michele; Valentini, Roberto; Bernardis, Paolo
2018-03-01
The intricate linkage between Freezing of Gait (FoG) and postural control in Parkinson's disease (PD) is unclear. We analyzed the impact of FoG on dynamic postural control. 24 PD patients, 12 with (PD + FoG), 12 without FoG (PD-FoG), and 12 healthy controls, were assessed in ON state. Mobility and postural control were measured with clinical scales (UPDRS III, BBS, MPAS) and with kinematic and kinetic analysis during three tasks, characterized by levels of increasing difficulty to plan sequential movement of postural control: walk (W), gait initiation (GI) and sit-to-walk (STW). The groups were balanced by age, disease duration, disease severity, mobility and balance. During STW, the spatial distribution of COP trajectories in PD + FoG patients are spread over medial-lateral space more than in the PD-FoG (p < .001). Moreover, the distribution of COP positions. in the transition between sit-to-stand and gait initiation, is not properly shifted toward the leading leg, as in PD-FoG and healthy controls, but it is more centrally dispersed (p < .01) with a delayed weight forward progression (p < .05). In GI task and walk task, COM and COP differences are less evident and even absent between PD patients. PD + FoG show postural control differences in STW, compared with PD-FoG and healthy. Different spatial distribution of COP trajectories, between two PD groups are probably due to a deficit to plan postural control during a more demanding motor pattern, such as STW. Copyright © 2018 Elsevier B.V. All rights reserved.
Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S
2015-01-01
Postural control in certain situations depends on functioning of tactile or proprioceptive receptors and their respective dynamic integration. Loss of sensory functioning can lead to increased risk of falls in challenging postural tasks, especially in older adults. Stochastic resonance, a concept describing better function of systems with addition of optimal levels of noise, has shown to be beneficial for balance performance in certain populations and simple postural tasks. In this study, we tested the effects of aging and a tactile stochastic resonance stimulus (TSRS) on balance of adults in a sensory conflict task. Nineteen older (71-84 years of age) and younger participants (22-29 years of age) stood on a force plate for repeated trials of 20 s duration, while foot sole stimulation was either turned on or off, and the visual surrounding was sway-referenced. Balance performance was evaluated by computing an Equilibrium Score (ES) and anterior-posterior sway path length (APPlength). For postural control evaluation, strategy scores and approximate entropy (ApEn) were computed. Repeated-measures ANOVA, Wilcoxon signed-rank tests, and Mann-Whitney U-tests were conducted for statistical analysis. Our results showed that balance performance differed between older and younger adults as indicated by ES (p = 0.01) and APPlength (0.01), and addition of vibration only improved performance in the older group significantly (p = 0.012). Strategy scores differed between both age groups, whereas vibration only affected the older group (p = 0.025). Our results indicate that aging affects specific postural outcomes and that TSRS is beneficial for older adults in a visual sensory conflict task, but more research is needed to investigate the effectiveness in individuals with more severe balance problems, for example, due to neuropathy.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Kulikov, M A
2006-01-01
Supervised learning of different postural tasks in patients with lesions of the motor cortex or pyramidal system (poststroke hemiparesis: 20 patients), nigro-striatal system (Parkinson's disease: 33 patients) and cerebellum (spinocerebellar ataxia: 37 patients) was studied. A control group consisted of 13 healthy subjects. The subjects stood on a force platform and were trained to change the position of the center of pressure (CP) presented as a cursor on a monitor screen in front of the patient. Subjects were instructed to align the CP with the target and then move the target by shifting the CP in the indicated direction. Two different tasks were used. In "Balls", the target (a ball) position varied randomly, so the subject learned a general strategy of voluntary CP control. In "Bricks", the subject had to always move the target in a single direction (downward) from the top to the bottom of the screen, so that a precise postural coordination had to be learned. The training consisted of 10 sessions for each task. The number of correctly performed trials for a session (2 min for each task) was scored. The voluntary control of the CP position was initially impaired in all groups of patients in both tasks. In "Balls", there were no differences between the groups of the patients on the first day. The learning course was somewhat better in hemiparetic patients than in the other groups. In "Bricks", the initial deficit was greater in the groups of parkinsonian and cerebellar patients than in hemiparetic patients. However, learning was more efficient in parkinsonian than in hemiparetic and cerebellar patients. After 10 days of training, the hemiparetic and cerebellar patients completed the acquisition at a certain level whereas the parkinsonian patients showed the ability for further improvement. The results suggest that motor cortex, cerebellum, and basal ganglia are involved in voluntary control of posture and learning different postural tasks. However, these structures play different roles in postural control and learning: basal ganglia are mainly involved in learning a general strategy of CP control while the function of the motor cortex chiefly concerns learning a specific CP trajectory. The cerebellum is involved in both kinds of learning.
Advantages and disadvantages of stiffness instructions when studying postural control.
Bonnet, Cédrick T
2016-05-01
To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of cerebellum in learning postural tasks.
Ioffe, M E; Chernikova, L A; Ustinova, K I
2007-01-01
For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.
Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue
2015-08-01
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.
Matheron, Eric; Yang, Qing; Delpit-Baraut, Vincent; Dailly, Olivier; Kapoula, Zoï
2016-01-01
Performance of the vestibular, visual, and somatosensory systems decreases with age, reducing the capacity of postural control, and increasing the risk of falling. The purpose of this study is to measure the effects of vision, active vergence eye movements, viewing distance/vergence angle and a simple cognitive task on postural control during an upright stance, in completely autonomous elderly individuals. Participated in the study, 23 elderly subjects (73.4 ± 6.8 years) who were enrolled in a center dedicated to the prevention of falling. Their body oscillations were measured with the DynaPort(®) device, with three accelerometers, placed at the lumbosacral level, near the center of mass. The conditions were the following: eyes open fixating on LED at 20 cm or 150 cm (vergence angle 17.0° and 2.3° respectively) with or without additional cognitive tasks (counting down from one hundred), performing active vergence by alternating the fixation between the far and the near LED (convergence and divergence), eyes closed after having fixated the far LED. The results showed that the postural stability significantly decreased when fixating on the LED at a far distance (weak convergence angle) with or without cognitive tasks; active convergence-divergence between the LEDs improved the postural stability while eye closure decreased it. The privilege of proximity (with increased convergence at near), previously established with foot posturography, is shown here to be valid for accelerometry with the center of mass in elderly. Another major result is the beneficial contribution of active vergence eye movements to better postural stability. The results bring new perspectives for the role of eye movement training to preserve postural control and autonomy in elderly. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Monjo, Florian; Forestier, Nicolas
2017-08-01
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Luk'yanova, Yu A; Ivanova-Smolenskaya, I A; Kulikov, M A
2004-07-01
The aim of the study reported here was to investigate impairments on the learning of voluntary control of the center of pressures using visual feedback in patients with lesions of the corticospinal and nigrostriatal systems. Participants were 33 patients with Parkinson's disease and 20 patients with hemipareses due to circulatory lesions in the basin of the middle cerebral artery. Subjects stood on a stabilometric platform and used two computer games over 10 days to learn to shift the body relative to the foot to move the centre of pressures, indicated by the position of a cursor on the screen, with the target and to move the target to a specified part of the screen. The games differed in terms of the postural tasks. In one, the direction of movement of the center of pressures was not known to the subjects, and subjects learned a general strategy for posture control; the other formed a strictly defined postural coordination. Both groups of patients were found to have impairments of voluntary control of the position of the center of pressures. There were no differences between groups of patients, in terms of the severity of the initial performance deficit in the task involving shifts of the center of pressures in different directions (the general strategy for controlling the center of pressures), while learning of this task was more difficult for patients with Parkinson's disease. The initial deficit in the fine postural coordination task was more marked in patients with Parkinsonism, though learning in these patients was significantly better than in patients with hemipareses. It is suggested that the mechanisms of involvement of the nigrostriatal and corticospinal systems in learning the voluntary control of posture have elements in common as well as unique elements.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS
Klusendorf, Anna; Kernozek, Thomas
2016-01-01
ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. Conclusions When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level of Evidence Level 3 PMID:27274423
Regulation of dynamic postural control to attend manual steadiness constraints.
Teixeira, Luis Augusto; Coutinho, Joane Figueiredo Serpa; Coelho, Daniel Boari
2018-05-02
In daily living activities, performance of spatially accurate manual movements in upright stance depends on postural stability. In the present investigation, we aimed to evaluate the effect of the required manual steadiness (task constraint) on the regulation of dynamic postural control. A single group of young participants (n=20) were evaluated in the performance of a dual posturo-manual task of balancing on a platform oscillating in sinusoidal translations at 0.4 Hz (low) or 1 Hz (high) frequencies while stabilizing a cylinder on a handheld tray. Manual task constraint was manipulated by comparing the conditions of keeping the cylinder stationary on its flat or round side, corresponding to low and high manual task constraints, respectively. Results showed that in the low oscillation frequency the high manual task constraint led to lower oscillation amplitudes of the head, center of mass, and tray, in addition to higher relative phase values between ankle/hip-shoulder oscillatory rotations and between center of mass/center of pressure-feet oscillations as compared to values observed in the low manual task constraint. Further analyses showed that the high manual task constraint also affected variables related to both postural (increased amplitudes of center of pressure oscillation) and manual (increased amplitude of shoulder rotations) task components in the high oscillation frequency. These results suggest that control of a dynamic posturo-manual task is modulated in distinct parameters to attend the required manual steadiness in a complex and flexible way.
Postural control and attentional demand during adolescence.
Palluel, Estelle; Nougier, Vincent; Olivier, Isabelle
2010-10-28
In the present study we aimed to determine the attentional cost of postural control during adolescence by studying the influence of a cognitive task on concurrent postural control. 38 teenagers aged 12 to 17years and 13 young adults (mean age=26.1) stood barefoot on a force platform in a semi-tandem position. A dual-task paradigm consisted of performing a Stroop or a COUNTING BACKWARD task while simultaneously standing quietly on a firm or foam support surface. Different centre of pressure (CoP) measures were calculated (90% confidence ellipse area, mean velocity, root mean square on the antero-posterior (AP) and medio-lateral (ML) axes). The number and percentage of correct responses in the cognitive tasks were also recorded. Our results indicate (1) higher values of surface, ML mean velocity and ML RMS in the COUNTING BACKWARD task in adolescents aged 12 to 15 than in teenagers aged 16 to 17 and in adults, regardless of the complexity of the postural task and, (2) better cognitive performances in the Stroop than in the COUNTING BACKWARD task. The difference in the dual-task performance between the different age groups and particularly the existence of a turning point around 14-15years of age might be due to 1) difficulties in properly allocating attentional resources to two simultaneous tasks and/or, 2) the inability to manage increased cognitive requests because of a limited information processing capacity in adolescents aged 14-15years. Copyright © 2010 Elsevier B.V. All rights reserved.
Changes in Standing and Walking Performance Under Dual-Task Conditions Across the Lifespan.
Ruffieux, Jan; Keller, Martin; Lauber, Benedikt; Taube, Wolfgang
2015-12-01
Simultaneous performance of a postural and a concurrent task is rather unproblematic as long as the postural task is executed in an automatic way. However, in situations where postural control requires more central processing, cognitive resources may be exceeded by the addition of an attentionally demanding task. This may lead to interference between the two tasks, manifested in a decreased performance in one or both tasks (dual-task costs). Owing to changes in attentional demands of postural tasks as well as processing capacities across the lifespan, it might be assumed that dual-task costs are particularly pronounced in children and older adults probably leading to a U-shaped pattern for dual-task costs as a function of age. However, these changes in the ability of dual-tasking posture from childhood to old age have not yet been systematically reviewed. Therefore, Web of Science and PubMed databases were searched for studies comparing dual-task performance with one task being standing or walking in healthy groups of young adults and either children or older adults. Seventy-nine studies met inclusion criteria. For older adults, the expected increase in dual-task costs could be confirmed. In contrast, in children there was only feeble evidence for a trend towards enlarged dual-task costs. More good-quality studies comparing dual-task ability in children, young, and, ideally, also older adults within the same paradigm are needed to draw unambiguous conclusions about lifespan development of dual-task performance in postural tasks. There is evidence that, in older adults, dual-task performance can be improved by training. For the other age groups, these effects have yet to be investigated.
Haid, Thomas H.; Doix, Aude-Clémence M.; Nigg, Benno M.; Federolf, Peter A.
2018-01-01
Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: −9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: −8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control. PMID:29459826
Terada, Masafumi; Kosik, Kyle; Johnson, Nathan; Gribble, Phillip
2018-02-01
The current study aimed to examine postural control performance during a single-leg balance task in elderly individuals with and without a previous history of lateral ankle sprain (LAS). Eighteen adults with a previous history of LAS (mean age = 66 years old) and 12 healthy controls (mean age = 65 years old) were included in the study. Participants performed three trials of a single-leg balance task during an eyes-opened condition for 20-s. Center of pressure (COP) trajectories in the anteroposterior (AP) and mediolateral (ML) directions were collected with a force plate. The following postural control measures were calculated in the AP and ML directions: 1) Sample Entropy (SampEn); 2) Approximate Entropy (ApEn); 3) mean of Time-to-Boundary minima (mean TTB); and 4) COP velocity (COPV). Older-age participants with a history LAS exhibited lower ApEn-AP, SampEn-AP, and SampEn-ML values compared to healthy controls (p < 0.05). The information gained from this investigation indicates more rigid postural control patterns, less adaptability, and more difficulty maintaining COP during a single-leg balance task in adults with a previous history of LAS. Our data suggest that there is a need to consider history of musculoskeletal injury when evaluating factors for postural control and fall risk in the elderly. Future investigations are needed to assess the effect of LAS on age-related declines in postural control and discern associations between potential risk factors of fall-related injuries and LAS in an elderly population. Copyright © 2017 Elsevier B.V. All rights reserved.
Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E
2004-01-01
Background Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Conclusion Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control. PMID:15147586
Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E
2004-05-17
Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control.
ERIC Educational Resources Information Center
Bodfish, James W.; Parker, Dawn E.; Lewis, Mark H.; Sprague, Robert L.; Newell, Karl M.
2001-01-01
This study examined whether dynamic measures of postural stability differentiated stereotyped movement disorder from dyskinetic movement disorder in a severely mentally retarded population. Participants (N=20) with either stereotypy or dyskinesia movement disorders and a control group were given a goal-oriented postural stability task. Both groups…
Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults.
Lubetzky, Anat V; Price, Robert; Ciol, Marcia A; Kelly, Valerie E; McCoy, Sarah W
2015-01-01
Multiscale entropy (MSE) is a nonlinear measure of postural control that quantifies how complex the postural sway is by assigning a complexity index to the center of pressure (COP) oscillations. While complexity has been shown to be task dependent, the relationship between sway complexity and level of task challenge is currently unclear. This study tested whether MSE can detect short-term changes in postural control in response to increased standing balance task difficulty in healthy young adults and compared this response to that of a traditional measure of postural steadiness, root mean square of velocity (VRMS). COP data from 20 s of quiet stance were analyzed when 30 healthy young adults stood on the following surfaces: on floor and foam with eyes open and closed and on the compliant side of a Both Sides Up (BOSU) ball with eyes open. Complexity index (CompI) was derived from MSE curves. Repeated measures analysis of variance across standing conditions showed a statistically significant effect of condition (p < 0.001) in both the anterior-posterior and medio-lateral directions for both CompI and VRMS. In the medio-lateral direction there was a gradual increase in CompI and VRMS with increased standing challenge. In the anterior-posterior direction, VRMS showed a gradual increase whereas CompI showed significant differences between the BOSU and all other conditions. CompI was moderately and significantly correlated with VRMS. Both nonlinear and traditional measures of postural control were sensitive to the task and increased with increasing difficulty of standing balance tasks in healthy young adults.
Crockett, Rachel A.; Hsu, Chun Liang; Best, John R.; Liu-Ambrose, Teresa
2017-01-01
Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN–FPN and DMN–SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task ability, slower gait speed, and greater postural sway, resulting in the increased risk of mobility disability and falling in older adults with MCI. PMID:29311906
Crockett, Rachel A; Hsu, Chun Liang; Best, John R; Liu-Ambrose, Teresa
2017-01-01
Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN-FPN and DMN-SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task ability, slower gait speed, and greater postural sway, resulting in the increased risk of mobility disability and falling in older adults with MCI.
Janssens, Lotte; Brumagne, Simon; McConnell, Alison K.; Claeys, Kurt; Pijnenburg, Madelon; Goossens, Nina; Burtin, Chris; Janssens, Wim; Decramer, Marc; Troosters, Thierry
2014-01-01
Background Functional activities, such as the sit-to-stand-to-sit (STSTS) task, are often impaired in individuals with chronic obstructive pulmonary disease (COPD). The STSTS task places a high demand on the postural control system, which has been shown to be impaired in individuals with COPD. It remains unknown whether postural control deficits contribute to the decreased STSTS performance in individuals with COPD. Methods Center of pressure displacement was determined in 18 individuals with COPD and 18 age/gender-matched controls during five consecutive STSTS movements with vision occluded. The total duration, as well as the duration of each sit, sit-to-stand, stand and stand-to-sit phase was recorded. Results Individuals with COPD needed significantly more time to perform five consecutive STSTS movements compared to healthy controls (19±6 vs. 13±4 seconds, respectively; p = 0.001). The COPD group exhibited a significantly longer stand phase (p = 0.028) and stand-to-sit phase (p = 0.001) compared to the control group. In contrast, the duration of the sit phase (p = 0.766) and sit-to-stand phase (p = 0.999) was not different between groups. Conclusions Compared to healthy individuals, individuals with COPD needed significantly more time to complete those phases of the STSTS task that require the greatest postural control. These findings support the proposition that suboptimal postural control is an important contributor to the decreased STSTS performance in individuals with COPD. PMID:24533072
The Control of Posture in Newly Standing Infants is Task Dependent
ERIC Educational Resources Information Center
Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.
2012-01-01
The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…
The Role of Postural Support in Young Adults' Control of Stationary Kicking
ERIC Educational Resources Information Center
Sidaway, Ben; Bouchard, Matthew; Chasse, Julie; Dunn, Jonathan; Govoni, Andrea; McPherson, Breanne; Roy, Katherine; Anderson, David I.
2017-01-01
Purpose: The requirement for postural stability during the performance of motor skills has been clearly demonstrated in infants, but the necessity for such a postural substrate is not well documented in adults. The present study investigated the role of postural stability during a ballistic ball-kicking task in adults by providing varying degrees…
Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh
2017-01-01
Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm.
Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh
2017-01-01
Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm. PMID:28713252
Ihira, Hikaru; Makizako, Hyuma; Mizumoto, Atsushi; Makino, Keitarou; Matsuyama, Kiyoji; Furuna, Taketo
2016-01-01
In dual-task situations, postural control is closely associated with attentional cost. Previous studies have reported age-related differences between attentional cost and postural control, but little is known about the association in conditions with a one-legged standing posture. The purpose of this study was to determine age-related differences in postural control and attentional cost while performing tasks at various difficulty levels in a one-legged standing posture. In total, 29 healthy older adults aged 64 to 78 years [15 males, 14 females, mean (SD) = 71.0 (3.8) years] and 29 healthy young adults aged 20 to 26 years [14 males, 15 females, mean (SD) = 22.5 (1.5) years] participated in this study. We measured the reaction time, trunk accelerations, and lower limb muscle activity under 3 different one-legged standing conditions-on a firm surface, on a soft surface with a urethane mat, and on a softer more unstable surface with 2 piled urethane mats. Reaction time as an indication of attentional cost was measured by pressing a handheld button as quickly as possible in response to an auditory stimulus. A 2-way repeated-measures analysis of variance was performed to examine the differences between the 3 task conditions and the 2 age groups for each outcome. Trunk accelerations showed a statistically significant group-by-condition interaction in the anteroposterior (F = 9.1, P < .05), mediolateral (F = 9.9, P < .05), and vertical (F = 9.3, P < .05) directions. Muscle activity did not show a statistically significant group-by-condition interaction, but there was a significant main effect of condition in the tibialis anterior muscle (F = 33.1, P < .01) and medial gastrocnemius muscle (F = 14.7, P < .01) in young adults and the tibialis anterior muscle (F = 24.8, P < .01) and medial gastrocnemius muscle (F = 10.8, P < .01) in older adults. In addition, there was a statistically significant interaction in reaction time (F = 8.2, P < .05) for group-by-condition. The study results confirmed that reaction times in older adults are more prolonged than young adults in the same challenging postural control condition.
Gait post-stroke: Pathophysiology and rehabilitation strategies.
Beyaert, C; Vasa, R; Frykberg, G E
2015-11-01
We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
2013-01-01
Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958
Safavynia, Seyed A.
2012-01-01
Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219
Laessoe, Uffe; Grarup, Bo; Bangshaab, Jette
2016-01-01
Dual-task testing is relevant in the assessment of postural control. A combination of a primary (motor) and a secondary (distracting cognitive) tasks is most often used. It remains a challenge however, to standardize and monitor the cognitive task. In this study a new dual-task testing approach with a facilitating, rather than distracting, cognitive component was evaluated. Thirty-one community-dwelling elderly and fifteen young people were tested with respect to their ability to use anticipatory postural control strategies. The motor task consisted of twenty-five repetitive tasks in which the participants needed to exceed their limit of stability in order to touch one out of eight lights. The participants performed three tests. In two of the tests the color cues of the lights allowed the participants to utilize cognitive strategies to plan their next movement and improve their performance time. The young performed the baseline motor task test in an average of 29 seconds, while the average time for the elderly was 44 seconds. When comparing the performance time with a leading cue to the time with no cue, the young group improved their performance time significantly better than the elderly did: young: 17% (5), elderly: 5% (8); p<0.001. Similar differences were seen with a more complicated leading cue: young: 12% (5), elderly: 4% (9); p<0.01. The reliability of the test showed moderate to substantial agreement (ICC = 0.74), with a small learning effect between two sessions. The dual-task test was sensitive enough to discriminate between elderly and young people. It revealed that the elderly did not utilize cognitive cues for their anticipatory postural control strategies as well as the young were able to. The test procedure was feasible and comprehensible for the participants, and it may be relevant to standardize a similar test for an alternative dual-task approach in the clinical setting.
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Eye movements and postural control in dyslexic children performing different visual tasks.
Razuk, Milena; Barela, José Angelo; Peyre, Hugo; Gerard, Christophe Loic; Bucci, Maria Pia
2018-01-01
The aim of this study was to examine eye movements and postural control performance among dyslexic children while reading a text and performing the Landolt reading task. Fifteen dyslexic and 15 non-dyslexic children were asked to stand upright while performing two experimental visual tasks: text reading and Landolt reading. In the text reading task, children were asked to silently read a text displayed on a monitor, while in the Landolt reading task, the letters in the text were replaced by closed circles and Landolt rings, and children were asked to scan each circle/ring in a reading-like fashion, from left to right, and to count the number of Landolt rings. Eye movements (Mobile T2®, SuriCog) and center of pressure excursions (Framiral®, Grasse, France) were recorded. Visual performance variables were total reading time, mean duration of fixation, number of pro- and retro-saccades, and amplitude of pro-saccades. Postural performance variable was the center of pressure area. The results showed that dyslexic children spent more time reading the text and had a longer duration of fixation than non-dyslexic children. However, no difference was observed between dyslexic and non-dyslexic children in the Landolt reading task. Dyslexic children performed a higher number of pro- and retro-saccades than non-dyslexic children in both text reading and Landolt reading tasks. Dyslexic children had smaller pro-saccade amplitude than non-dyslexic children in the text reading task. Finally, postural performance was poorer in dyslexic children than in non-dyslexic children. Reading difficulties in dyslexic children are related to eye movement strategies required to scan and obtain lexical and semantic meaning. However, postural control performance, which was poor in dyslexic children, is not related to lexical and semantic reading requirements and might not also be related to different eye movement behavior.
Task and postural factors are related to back pain in helicopter pilots.
Bridger, R S; Groom, M R; Jones, H; Pethybridge, R J; Pullinger, N
2002-08-01
A previous survey by Shear et al. revealed a high prevalence of back pain in Royal Navy helicopter aircrew, compared with controls. It was recommended that a second survey be undertaken, taking account of flying tasks and cockpit ergonomics. This was the purpose of the present investigation. A questionnaire containing items on back pain and posture was circulated to all 246 acting pilots, with returns of 75%. The questionnaire sought information on pain in both the flying pilot and co-pilot/instructor roles. The 12-mo prevalence of back pain was 80%. Task-related back pain was greatest in instrument flying (72%) and least in the co-pilot and instructor roles (24%). Self-ratings of posture indicated that forward flexed trunk postures predominated in the flying roles and were most extreme in instrument flying. In non-flying roles, symmetrical, reclining postures were more often reported. No demographic or psychosocial variables were significantly related to back pain prevalence or disability. Much of the back pain experienced by helicopter pilots appears to be due to the posture needed to operate the cyclic and collective controls. In instrument flying, it is suggested that the visual demands of scanning the displays may exacerbate the pain by causing the pilot to lean further forward.
Huang, Cheng-Ya; Lin, Linda L.; Hwang, Ing-Shiou
2017-01-01
The aged brain may not make good use of central resources, so dual task performance may be degraded. From the brain connectome perspective, this study investigated dual task deficits of older adults that lead to task failure of a suprapostural motor task with increasing postural destabilization. Twelve younger (mean age: 25.3 years) and 12 older (mean age: 65.8 years) adults executed a designated force-matching task from a level-surface or a stabilometer board. Force-matching error, stance sway, and event-related potential (ERP) in the preparatory period were measured. The force-matching accuracy and the size of postural sway of the older adults tended to be more vulnerable to stance configuration than that of the young adults, although both groups consistently showed greater attentional investment on the postural task as sway regularity increased in the stabilometer condition. In terms of the synchronization likelihood (SL) of the ERP, both younger and older adults had net increases in the strengths of the functional connectivity in the whole brain and in the fronto-sensorimotor network in the stabilometer condition. Also, the SL in the fronto-sensorimotor network of the older adults was greater than that of the young adults for both stance conditions. However, unlike the young adults, the older adults did not exhibit concurrent deactivation of the functional connectivity of the left temporal-parietal-occipital network for postural-suprapostural task with increasing postural load. In addition, the older adults potentiated functional connectivity of the right prefrontal area to cope with concurrent force-matching with increasing postural load. In conclusion, despite a universal negative effect on brain volume conduction, our preliminary results showed that the older adults were still capable of increasing allocation of neural sources, particularly via compensatory recruitment of the right prefrontal loop, for concurrent force-matching under the challenging postural condition. Nevertheless, dual-task performance of the older adults tended to be more vulnerable to postural load than that of the younger adults, in relation to inferior neural economy or a slow adaptation process to stance destabilization for scant dissociation of control hubs in the temporal-parietal-occipital cortex. PMID:28446874
Adjustable task lighting: Field study assesses the benefits in an office environment.
Joines, Sharon; James, Tamara; Liu, Siwen; Wang, Wenjiao; Dunn, Rebecca; Cohen, Shane
2015-01-01
Lighting is a part of every work task in the office environment, yet it is often overlooked. Research links direct and indirect glare to increased risk of visual discomfort among office workers with symptoms ranging from dry eyes to blurry vision or headaches. Researchers have been primarily concerned with those characteristics of task lighting that cause glare including luminance level, position (line of sight), and control. It is unknown what the benefits of adjustable task lights are and whether or not their use has an effect on musculoskeletal comfort or posture. No comprehensive field evaluations of this type were found among peer-reviewed, indexed journals. The purpose of this study was to assess the ergonomic and calculated utility power consumption benefits of adjustable LED task lighting in an office environment using a control/intervention experiment design. One hundred participants were originally recruited and randomly assigned to intervention and control groups. Self-reported data was collected on level of eye fatigue, perception of job content, intervention usability, and musculoskeletal discomfort. Data was also collected on workspace level of illumination and posture during standardized tasks (assessed using RULA). Comparing baseline data to follow-up data for the intervention group, the use of the adjustable, LED task lights provided statistically significant, positive impacts on users' rating of discomfort, eye fatigue, perception of job content, and posture between baseline and the short-term follow up. Significant benefits to musculoskeletal comfort, posture, and visual comfort were documented when participants used the adjustable task lights. Participants' assessments of the light's usability, usefulness and desirability were positive. There were no negative results found with adjustable task light use.
Postural Stability in Older Adults With Alzheimer Disease.
Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh
2017-03-01
The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association
Lee, Szu-Ping; Souza, Richard B; Powers, Christopher M
2012-07-01
Hip abductors play an important role in maintaining trunk and pelvis stability during unipedal tasks. The purpose of the study was to compare postural stability between individuals with patellofemoral pain (PFP) and pain-free controls. A secondary purpose was to evaluate the effect of a hip stabilizing brace on postural stability. Twenty females with PFP (27.3±6.3 years) and 19 controls (26.1±4.5 years) participated. Each subject performed a unipedal step-down balance task with the stance leg on a force platform from which center of pressure (COP) excursion was recorded. Quantitative COP excursion patterns (mean and peak displacements) were used as measures of postural stability. For subjects with PFP, postural stability also was quantified following the application of a hip stabilizing brace. Hip abductor strength was significantly lower in PFP group compared to the control group (1.39±0.4 vs. 1.62±0.26 N/kg-BW, p=0.046). Peak and mean medial-lateral COP displacements during the balance task were greater in the PFP group (39.8±6.7 vs. 24.3±3.8 mm, p<0.001; 24.7±16.3 vs. 13.5±4.4 mm, p=0.005). Application of the hip stabilizing brace reduced the peak and mean COP displacement (39.8±6.7 vs. 24.7±4.7 mm, p<0.001; 24.7±16.3 vs. 16.8±15.1 mm, p=0.02). Our results demonstrate that females with PFP exhibit impaired medial-lateral postural stability when compared to control subjects. Application of a hip stabilizing brace significantly improved stability to a level comparable to the controls. Copyright © 2012 Elsevier B.V. All rights reserved.
Klous, Miriam; Mikulic, Pavle; Latash, Mark L
2011-05-01
We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼ 100-150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified using dissimilar sets of muscle modes show similar feedforward changes in preparation to action.
Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.
Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037
Bermejo, José Luis; García-Massó, Xavier; Paillard, Thierry; Noé, Frédéric
2018-02-01
This study investigated the effects of fatigue on balance control and cognitive performance in a standing shooting position. Nineteen soldiers were asked to stand while holding a rifle (single task - ST). They also had to perform this postural task while simultaneously completing a cognitive task (dual task - DT). Both the ST and DT were performed in pre- and post-fatigue conditions. In pre-fatigue, participants achieved better balance control in the DT than in the ST, thus suggesting that the increased cognitive activity associated with the DT improves balance control by shifting the attentional focus away from a highly automatised activity. In post-fatigue, balance control was degraded in both the ST and DT, while reaction time was enhanced in the first minutes following the fatiguing exercise without affecting the accuracy of response in the cognitive task, which highlights the relative independent effects of fatigue on balance control and cognitive performance.
Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N
2013-08-01
To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.
Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare
2014-01-01
Office workers perform tasks using different information and communication technologies (ICT) involving various postures. Adequate variation in postures and muscle activity is generally believed to protect against musculoskeletal complaints, but insufficient information exists regarding the effect on postural variation of using different ICT. Thus, this study among office workers aimed to determine and compare postures and postural variation associated with using distinct types of ICT. Upper arm, head and trunk postures of 24 office workers were measured with the Physiometer over a whole day in their natural work and away-from-work environments. Postural variation was quantified using two indices: APDF(90-10) and EVA(sd). Various ICT had different postural means and variation. Paper-based tasks had more non-neutral, yet also more variable postures. Electronics-based tasks had more neutral postures, with less postural variability. Tasks simultaneously using paper- and electronics-based ICT had least neutral and least variable postures. Tasks without ICT usually had the most posture variability. Interspersing tasks involving different ICT could increase overall exposure variation among office workers and may thus contribute to musculoskeletal risk reduction.
Sakamoto, Sadanori; Iguchi, Masaki
2018-06-08
Less attention to a balance task reduces the center of foot pressure (COP) variability by automating the task. However, it is not fully understood how the degree of postural automaticity influences the voluntary movement and anticipatory postural adjustments. Eleven healthy young adults performed a bipedal, eyes closed standing task under the three conditions: Control (C, standing task), Single (S, standing + reaction tasks), and Dual (D, standing + reaction + mental tasks). The reaction task was flexing the right shoulder to an auditory stimulus, which causes counter-clockwise rotational torque, and the mental task was arithmetic task. The COP variance before the reaction task was reduced in the D condition compared to that in the C and S conditions. On average the onsets of the arm movement and the vertical torque (Tz, anticipatory clockwise rotational torque) were both delayed, and the maximal Tz slope (the rate at which the torque develops) became less steep in the D condition compared to those in the S condition. When these data in the D condition were expressed as a percentage of those in the S condition, the arm movement onset and the Tz slope were positively and negatively, respectively, correlated with the COP variance. By using the mental-task induced COP variance reduction as the indicator of postural automaticity, our data suggest that the balance task for those with more COP variance reduction is less cognitively demanding, leading to the shorter reaction time probably due to the attention shift from the automated balance task to the reaction task. Copyright © 2018 Elsevier B.V. All rights reserved.
Fernandes, Ângela; Sousa, Andreia S P; Rocha, Nuno; Tavares, João Manuel R S
2017-07-01
The aim of this study was to compare postural control strategies during gait initiation in single- and dual-task conditions in individuals in early stages of Parkinson's Disease (PD). The activation timing of tibialis anterior occurred significantly later in the individuals with PD than in the controls (p = .05), and a significant interaction between the groups, conditions and limbs was found (p = .027). Differences between the single- and dual-task conditions were observed for the activation timing of the tibialis anterior (p = .042) and for the magnitude of soleus (p = .007), with lower values for the dual-task condition. Furthermore, not all the individuals followed the previously reported pattern of soleus inhibition followed by tibialis anterior activation. The duration of the mediolateral displacement of the center of pressure was longer in the individuals with PD than in the controls (p = .019). The anticipatory postural adjustments during gait initiation are impaired in PD and are expressed by an activation failure of tibialis anterior in both single- and dual-task conditions. Hence, it is important that during rehabilitation, intervention should concentrate on the tibialis anterior TA.
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults
Yu, Shu-Han
2017-01-01
In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A “posture-first” principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution. PMID:28151943
Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults.
Yu, Shu-Han; Huang, Cheng-Ya
2017-01-01
In a postural-suprapostural task, appropriate prioritization is necessary to achieve task goals and maintain postural stability. A "posture-first" principle is typically favored by elderly people in order to secure stance stability, but this comes at the cost of reduced suprapostural performance. Using a postural-suprapostural task with a motor suprapostural goal, this study investigated differences between young and older adults in dual-task cost across varying task prioritization paradigms. Eighteen healthy young (mean age: 24.8 ± 5.2 years) and 18 older (mean age: 68.8 ± 3.7 years) adults executed a designated force-matching task from a stabilometer board using either a stabilometer stance (posture-focus strategy) or force-matching (supraposture-focus strategy) as the primary task. The dual-task effect (DTE: % change in dual-task condition; positive value: dual-task benefit, negative value: dual-task cost) of force-matching error and reaction time (RT), posture error, and approximate entropy (ApEn) of stabilometer movement were measured. When using the supraposture-focus strategy, young adults exhibited larger DTE values in each behavioral parameter than when using the posture-focus strategy. The older adults using the supraposture-focus strategy also attained larger DTE values for posture error, stabilometer movement ApEn, and force-matching error than when using the posture-focus strategy. These results suggest that the supraposture-focus strategy exerted an increased dual-task benefit for posture-motor dual-tasking in both healthy young and elderly adults. The present findings imply that the older adults should make use of the supraposture-focus strategy for fall prevention during dual-task execution.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
The influence of aging and attentional demands on recovery from postural instability.
Stelmach, G E; Zelaznik, H N; Lowe, D
1990-06-01
It is well known that the risk of a debilitating injury from a fall is much higher for elderly than for young individuals. In addition, it is well documented that healthy elderly subjects exhibit increased postural sway during normal stance tasks. In the present experiment, we explored the notion that control of minor postural instability in elderly subjects is attention demanding. Postural sway of eight elderly (mean age = 70.0 years) and eight young (mean age = 20.0 years) subjects was measured under two different secondary demands during stable and mildly unstable upright stance. There were two types of work loads. Either a cognitive (math task) or motor (hand-squeeze) task was performed during the second segment of a 50-second standing trial. The effect of these work loads on mean velocity, range, and variability of range of center of foot pressure was measured during the destabilizing activity of arm swinging and subsequent recovery period. Following seven seconds of 1 Hz arm-swinging activity, elderly subjects showed a marked increase in recovery time to normal stance when concurrently performing an arithmetic task. This result suggests that recovery from a posturally destabilizing activity, involving proprioceptive and vestibular information, places increased attentional demands on the postural support system of the elderly.
Leach, Julia M.; Mancini, Martina; Kaye, Jeffrey A.; Hayes, Tamara L.; Horak, Fay B.
2018-01-01
Introduction: Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods: A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results: Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion: This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest. PMID:29780319
Leach, Julia M; Mancini, Martina; Kaye, Jeffrey A; Hayes, Tamara L; Horak, Fay B
2018-01-01
Introduction : Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods : A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results : Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion : This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest.
Postural sway and exposure to jet propulsion fuel 8 among US Air Force personnel.
Maule, Alexis L; Heaton, Kristin J; Rodrigues, Ema; Smith, Kristen W; McClean, Michael D; Proctor, Susan P
2013-04-01
To determine whether short-term jet propulsion fuel 8 (JP-8) exposure is associated with balance measurements in JP-8-exposed air force personnel. As part of a larger neuroepidemiology study, balance tasks were completed by JP-8-exposed individuals (n = 37). Short-term JP-8 exposure was measured using personal breathing zone levels and urinary biomarkers. Multivariate linear regression analyses were conducted to examine the relationship between workday JP-8 exposure and postural sway. Balance control decreased as the task became more challenging. Workday exposure to JP-8, measured by either personal air or urinary metabolite levels, was not significantly related to postural sway. Increases in workday postural sway were associated with demographic variables, including younger age, being a current smoker, and higher body mass index. Results suggest that short-term workday JP-8 exposure does not significantly contribute to diminished balance control.
Active video gaming to improve balance in the elderly.
Lamoth, Claudine J C; Caljouw, Simone R; Postema, Klaas
2011-01-01
The combination of active video gaming and exercise (exergaming) is suggested to improve elderly people's balance, thereby decreasing fall risk. Exergaming has been shown to increase motivation during exercise therapy, due to the enjoyable and challenging nature, which could support long-term adherence for exercising balance. However, scarce evidence is available of the direct effects of exergaming on postural control. Therefore, the aim of the study was to assess the effect of a six-week videogame-based exercise program aimed at improving balance in elderly people. Task performance and postural control were examined using an interrupted time series design. Results of multilevel analyses showed that performance on the dot task improved within the first two weeks of training. Postural control improved during the intervention. After the intervention period task performance and balance were better than before the intervention. Results of this study show that healthy elderly can benefit from a videogame-based exercise program to improve balance and that all subjects were highly motivated to exercise balance because they found gaming challenging and enjoyable.
Unilateral Hearing Loss Is Associated With Impaired Balance in Children: A Pilot Study.
Wolter, Nikolaus E; Cushing, Sharon L; Vilchez-Madrigal, Luis D; James, Adrian L; Campos, Jennifer; Papsin, Blake C; Gordon, Karen A
2016-12-01
To determine if children with unilateral sensorineural hearing loss (UHL) demonstrate impaired balance compared with their normal hearing (NH) peers. Prospective, case-control study. Balance was assessed in14 UHL and 14 NH children using the Bruininks-Oseretsky Test-2 (BOT-2) and time to fall (TTF) in an immersive, virtual-reality laboratory. Postural control was quantified by center of pressure (COP) using force plates. The effect of vision on balance was assessed by comparing scores and COP characteristics on BOT-2 tasks performed with eyes open and closed. Balance ability as measured by the BOT-2 score was significantly worse in children with UHL compared with NH children (p = 0.004). TTF was shorter in children with UHL compared with NH children in the most difficult tasks when visual and somatosensory inputs were limited (p < 0.01). Visual input improved postural control (reduced COP variability) in both groups in all tasks (p < 0.05) but postural control as measured by COP variability was more affected in children with UHL when visual input was removed while performing moderately difficult tasks (i.e., standing on one foot) (p = 0.02). In this pilot study, children with UHL show poorer balance skills than NH children. Significant differences in TTF between the two groups were only seen in the most difficult tasks and therefore may be missed on routine clinical assessment. Children with UHL appear to rely more on vision for maintaining postural control than their NH peers. These findings may point to deficits not only in the hearing but also the vestibular portion of the inner ear.
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults. PMID:29868597
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults.
Bonnet, Cédrick T; Szaffarczyk, Sébastien
2017-01-01
In studies of postural control, a control task is often used to understand significant effects obtained with experimental manipulations. This task should be the easiest task and (therefore) engage the lowest behavioral variability and cognitive workload. Since 1983, the stationary-gaze task is considered as the most relevant control task. Instead, the authors expected that free looking at small targets (white paper or images; visual angle: 12°) could be an easier task. To verify this assumption, 16 young individuals performed stationary-gaze, white-panel, and free-viewing 12° tasks in steady and relaxed stances. The stationary-gaze task led to significantly higher cognitive workload (mean score in the National Aeronotics and Space Administration Task Load Index questionnaire), higher interindividual body (head, neck, and lower back) linear variability, and higher interindividual body angular variability-not systematically yet-than both other tasks. There was more cognitive workload in steady than relaxed stances. The authors also tested if a free-viewing 24° task could lead to greater angular displacement, and hence greater body sway, than could the other tasks in relaxed stance. Unexpectedly, the participants mostly moved their eyes and not their body in this task. In the discussion, the authors explain why the stationary-gaze task may not be an ideal control task and how to choose this neutral task.
Walking delays anticipatory postural adjustments but not reaction times in a choice reaction task.
Haridas, C; Gordon, I T; Misiaszek, J E
2005-06-01
During standing, anticipatory postural adjustments (APAs) and focal movements are delayed while performing a choice reaction task, compared with a simple reaction task. We hypothesized that APAs and focal movements of a choice reaction task would be similarly delayed during walking. Furthermore, reaction times are delayed during walking compared with standing. We further hypothesized that APAs and focal movements would be delayed during walking, compared with standing, for both simple and choice reaction tasks. Subjects either walked or stood on a treadmill while holding on to stable handles. They were asked to push or pull on the handles in response to a visual cue. Muscle activity was recorded from muscles of the leg (APA) and arm (RT). Our results were in agreement with previous work showing APA onset was delayed in the choice reaction task compared with the simple reaction task. In addition, the interval between the onset of APA and focal movement activity increased with choice reaction tasks. The task of walking did not delay the onset of focal movement for either the simple or choice reaction tasks. Walking did delay the onset of the APA, but only during choice reaction tasks. The results suggest the added demand of walking does not significantly modify the control of focal arm movements. However, additional attentional demands while walking may compromise anticipatory postural control.
de Abreu, Daniela Cristina Carvalho; Takara, Kelly; Metring, Nathália Lopes; Reis, Júlia Guimarães; Cliquet, Alberto
2012-09-01
We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition were carried out on 11 individuals with a spinal cord injury (SCI) and six individuals without SCI. Trunk anterior displacement and the time spent to perform the test were assessed. No differences were found for the three types of seats in terms of trunk anterior displacement and the time spent to perform the test when intragroup comparisons were made in both groups (P>0.05). The intergroup comparison showed that body displacement was less prominent and the time spent to perform the test was more prolonged for individuals with SCI (P<0.05), which suggests a postural control deficit. The seat type did not affect the ability of the postural control system to maintain balance during the forward-reaching task.
Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Kristel; Hermans, Cedric; Lobet, Sebastien
2017-02-01
Literature is lacking information about postural control performance of typically developing children during a transition task from double-leg stance to single-leg stance. The purpose of the present study was therefore to evaluate the clinical feasibility of a transition task in typical developing age groups as well as to study the correlation between associated balance measures and age.Thirty-three typically developing boys aged 6-20 years performed a standard transition task from DLS to SLS with eyes open (EO) and eyes closed (EC). Balance features derived from the center of pressure displacement captured by a single force platform were correlated with age on the one hand and considered for differences in the perspective of limb dominance on the other hand.All TDB (typically developing boys) were able to perform the transition task with EO. With respect to EC condition, all TDB from the age group 6-7 years and the youngest of the age group 8-12 years (N = 4) were unable to perform the task. No significant differences were observed between the balance measures of the dominant and non-dominant limbs.With respect to EO condition, correlation analyses indicated that time to new stability point (TNSP) as well as the sway measure after this TNSP were correlated with age (p < 0.0001). For the EC condition, only the anthropometrically scaled sway measure was found to be correlated (p = 0.03). The results provide additional insight into balance development in childhood and may serve as a useful basis for assessing balance impairments in higher functioning children with musculoskeletal problems. What is Known: • Reference data regarding postural balance of typically developing children during walking, running, sit-to-stand, and bipodal and unipodal stance has been well documented in the literature. • These reference data provided not only insight into the maturation process of the postural control system, but also served in diagnosing and managing functional repercussions of neurological and orthopedic pathologies. What is New: • Objective data regarding postural balance of typical developing children during a transition task from double-leg stance to single-leg stance. • Insight into the role of maturation on the postural control system.
Papa, Evan V; Garg, Hina; Dibble, Leland E
2015-01-01
Falls are the leading cause of traumatic brain injury and fractures and the No. 1 cause of emergency department visits by older adults. Although declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. In an effort to increase awareness of the detrimental effects of skeletal muscle fatigue on postural control, we sought to systematically review research studies examining this issue. The specific purpose of this review was to provide a detailed assessment of how anticipatory and reactive postural control tasks are influenced by acute muscle fatigue in healthy older individuals. An extensive search was performed using the CINAHL, Scopus, PubMed, SPORTDiscus, and AgeLine databases for the period from inception of each database to June 2013. This systematic review used standardized search criteria and quality assessments via the American Academy for Cerebral Palsy and Developmental Medicine Methodology to Develop Systematic Reviews of Treatment Interventions (2008 version, revision 1.2, AACPDM, Milwaukee, Wisconsin). A total of 334 citations were found. Six studies were selected for inclusion, whereas 328 studies were excluded from the analytical review. The majority of articles (5 of 6) utilized reactive postural control paradigms. All studies incorporated extrinsic measures of muscle fatigue, such as declines in maximal voluntary contraction or available active range of motion. The most common biomechanical postural control task outcomes were spatial measures, temporal measures, and end-points of lower extremity joint kinetics. On the basis of systematic review of relevant literature, it appears that muscle fatigue induces clear deteriorations in reactive postural control. A paucity of high-quality studies examining anticipatory postural control supports the need for further research in this area. These results should serve to heighten awareness regarding the potential negative effects of acute muscle fatigue on postural control and support the examination of muscle endurance training as a fall risk intervention in future studies.
Naumann, Tim; Kindermann, Stefan; Joch, Michael; Munzert, Jörn; Reiser, Mathias
2015-03-01
Despite the increasing use of video games involving whole body movements to enhance postural control in health prevention and rehabilitation, there is no consistent proof that training effects actually transfer to other balance tasks. The present study aimed to determine whether training effects on two different video-game-based training devices were task-specific or could be transferred to either postural control in quiet stance or to performance on the other device. 37 young healthy adults were split into three groups: two intervention groups that trained for 30min on either the Nintendo(®) Wii Fit Balance Board or the MFT Challenge Disc(®) three times per week for 4 weeks and a control group that received no training. All games require participants to control virtual avatars by shifting the center of mass in different directions. Both devices differ in their physical properties. The Balance Board provides a stable surface, whereas the Challenge Disc can be tilted in all directions. Dependent variables were the game scores on both devices and the center of pressure (COP) displacements measured via force plate. At posttest, both intervention groups showed significant increases in performance on the trained games compared to controls. However, there were no relevant transfer effects to performance on the untrained device and no changes in COP path length in quiet stance. These results suggest that training effects on both devices are highly specific and do not transfer to tasks with different postural demands. Copyright © 2015 Elsevier B.V. All rights reserved.
Competing effects of pain and fear of pain on postural control in low back pain?
Mazaheri, Masood; Heidari, Elham; Mostamand, Javid; Negahban, Hossein; van Dieen, Jaap H
2014-12-01
A cross-sectional, observational study. To determine whether pain and fear of pain have competing effects on postural sway in patients with low back pain (LBP). Competing effects of pain and pain-related fear on postural control can be proposed as the likely explanation for inconsistent results regarding postural sway in the LBP literature. We hypothesized that although pain might increase postural sway, fear of pain might reduce sway through an increased cognitive effort or increased cocontraction to restrict body movement. The cognitive strategy would be less effective under dual-task conditions and the cocontraction strategy was expected to be less effective when standing on a narrow base of support surface. Postural sway was measured in combined conditions of base of support (full and narrow) and cognitive loading (single and dual tasks) in 3 experimental groups with current LBP, recent LBP, and no LBP. Sway amplitude, path length, mean power frequency, and sample entropy were extracted from center-of-pressure data. The current-LBP group and recent-LBP group reported significantly different levels of pain, but similar levels of pain catastrophizing and kinesiophobia. The current-LBP group tended to display larger sway amplitudes in the anteroposterior direction compared with the other 2 groups. Mean power frequency values in mediolateral direction were lower in patients with the current LBP compared with recent LBP. Smaller sample entropy was found in the current-LBP group than the other groups in most experimental conditions, particularly when standing on a narrow base of support. Alterations of postural sway are mostly mediated by pain but not pain-related fear. LBP tends to increase sway amplitude, which seems to be counteracted by increased effort invested in postural control leading to decreased frequency and increased regularity of sway particularly under increased task demands. Cross-sectional study.
Gauchard, Gérome C; Gangloff, Pierre; Jeandel, Claude; Perrin, Philippe P
2003-09-01
Balance disorders increase considerably with age due to a decrease in posture regulation quality, and are accompanied by a higher risk of falling. Conversely, physical activities have been shown to improve the quality of postural control in elderly individuals and decrease the number of falls. The aim of this study was to evaluate the impact of two types of exercise on the visual afferent and on the different parameters of static balance regulation. Static postural control was evaluated in 44 healthy women aged over 60 years. Among them, 15 regularly practiced proprioceptive physical activities (Group I), 12 regularly practiced bioenergetic physical activities (Group II), and 18 controls walked on a regular basis (Group III). Group I participants displayed lower sway path and area values, whereas Group III participants displayed the highest, both in eyes-open and eyes-closed conditions. Group II participants displayed intermediate values, close to those of Group I in the eyes-open condition and those of Group III in the eyes-closed condition. Visual afferent contribution was more pronounced for Group II and III participants than for Group I participants. Proprioceptive exercise appears to have the best impact on balance regulation and precision. Besides, even if bioenergetic activity improves postural control in simple postural tasks, more difficult postural tasks show that this type of activity does not develop a neurosensorial proprioceptive input threshold as well, probably on account of the higher contribution of visual afferent.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.;
2014-01-01
The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R
2008-02-01
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.
ERIC Educational Resources Information Center
Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.
2011-01-01
Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…
ERIC Educational Resources Information Center
Akizuki, Kazunori; Ohashi, Yukari
2014-01-01
Purpose: The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous…
Attention Demand and Postural Control in Children with Hearing Deficit
ERIC Educational Resources Information Center
Derlich, Malgorzata; Krecisz, Krzysztof; Kuczynski, Michal
2011-01-01
To elucidate the mechanisms responsible for deteriorated postural control in children with hearing deficit (CwHD), we measured center-of-pressure (COP) variability, mean velocity and entropy in bipedal quiet stance (feet together) with or without the concurrent cognitive task (reaction to visual stimulus) on hard or foam surface in 29 CwHD and a…
Balance ability and posture in postmenopausal women with chronic pelvic pain.
Fuentes-Márquez, Pedro; Rodríguez-Torres, Janet R; Valenza, Marie C; Ortíz-Rubio, Araceli; Ariza-Mateos, María J; Cabrera-Martos, Irene
2018-04-09
The aim of the present study was to analyze balance ability and posture in postmenopausal women with chronic pelvic pain (CPP). This study includes a sample of 48 women with CPP recruited from the Gynecology Service of Virgen de las Nieves and San Cecilio Hospitals in Granada (Spain) and 48 healthy control women matched with respect to age and anthropometric characteristics. Outcome variables collected included: balance ability (Mini-Balance Evaluation Systems Test and Timed Up an Go Test) and posture (photogrammetry and Spinal Mouse). Significant differences were found in all Mini Best Test subscales: total (P < 0.001), anticipatory (P = 0.002), reactive postural control (P < 0.001), sensory orientation (P < 0.001), and dynamic gait (P < 0.001), and all Timed Up and Go test subscales: alone (P < 0.001), with manual (P = 0.002) and cognitive task (P = 0.030). Significant differences were also found on spinal cervical angles with a forward head posture in women with CPP; global spine alignment exhibited more deviation in the women with CPP (P < 0.001); and a higher percentage of women with CPP (58%) presented with increased thoracic kyphosis and lumbar lordosis. Cohen's d was used to calculate the effect size. Some subscales of balance and posture tests showed a large effect size (d ≥0.8), indicating a more consistent result. Women with CPP presented poor balance including anticipatory, reactive postural control, sensory orientation, dynamic gait, and dual task-related conditions. Posture showed higher values on the dorsal angle and lower sacral inclination, less spine alignment, and a more prevalent posture with increased kyphosis and lumbar lordosis.
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Deschamps, Thibault; Sauvaget, Anne; Pichot, Anne; Valrivière, Pierre; Maroulidès, Maxime; Bois, Aurore; Bulteau, Samuel; Thomas-Ollivier, Véronique
2016-12-01
This study examined whether postural control variables, particularly the center-of-pressure (COP) velocity-based parameters, could be a relevant hallmark of depression-related psychomotor retardation (PMR). We first aimed at investigating the interplay between the PMR scores and the COP performance in patients with major depressive disorder (MDD), as compared to age-matched healthy controls; secondly, we focused on the impact of a repetitive transcranial magnetic stimulation (rTMS) treatment on depression, PMR scores and postural performance. 16 MDD patients, and a control group of 16 healthy adults, were asked to maintain quiet standing balance during two trials with or without vision, and while backward counting (dual task). All the position and velocity-based COP variables were computed. Before and after the rTMS session (n eligible MDD = 10), we assessed the depression level with the Montgomery-Asberg Depression Rating Scale (MADRS), the PMR scores with the French Retardation Rating Scale for Depression (ERD), and postural performance. Before the treatment, significant positive partial correlations were found between the pre-ERD scores and the velocity-based COP variables, especially in the dual-task conditions (p < 0.05). In contrast, there was no significant correlation between the post-ERD scores and any postural parameter after the treatment. The MADRS and ERD scores showed a significant decrease between before and after the rTMS intervention. For the first time, the findings clearly validated the view that the assessment of postural performance - easy to envisage in clinical settings-constitutes a reliable and objective marker of PMR in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Postural control strategies during single limb stance following acute lateral ankle sprain.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2014-06-01
Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Asseman, François B; Caron, Olivier; Crémieux, Jacques
2008-01-01
The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.
Development of Postural Muscles and Their Innervation
IJkema-Paassen, J.; Gramsbergen, A.
2005-01-01
Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482
The addition of body armor diminishes dynamic postural stability in military soldiers.
Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M
2013-01-01
Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.
Leisure sports and postural control: can a black belt protect your balance from aging?
Krampe, Ralf T; Smolders, Caroline; Doumas, Michail
2014-03-01
To determine potential benefits of intensive leisure sports for age-related changes in postural control, we tested 3 activity groups comprising 70 young (M = 21.67 years, SD = 2.80) and 73 older (M = 62.60 years, SD = 5.19) men. Activity groups were martial artists, who held at least 1st Dan (black belt), sportive individuals exercising sports without explicit balance components, and nonsportive controls. Martial artists had an advantage over sportive individuals in dynamic posture tasks (upright stance on a sway-referenced platform), and these 2 active groups showed better postural control than nonsportive participants. Age-related differences in postural control were larger in nonsportive men compared with the 2 active groups, who were similar in this respect. In contrast, negative age differences in other sensorimotor and cognitive functions did not differ between activity groups. We concluded that individuals engaging in intensive recreational sports have long-term advantages in postural control. However, even in older martial artists with years of practice in their sports, we observed considerable differences favoring the young. (c) 2014 APA, all rights reserved.
Liu, Na; Yu, Ruifeng
2018-06-01
This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.
Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas
2014-12-01
Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.
Characterization of postural control impairment in women with fibromyalgia
Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel
2018-01-01
The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (p<0.05) and a significant decrease in SampEn in both directions (p<0.05). Postural control also worsens with the gradual alteration of sensory inputs in this population (p<0.05). Performing a stressor dual task only impacts Ellipse in women with FMS (p>0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223
Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto
2016-12-01
In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with "reactive" balancing of external disturbances and "proactive" balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot.
Humanlike agents with posture planning ability
NASA Astrophysics Data System (ADS)
Jung, Moon R.; Badler, Norman I.
1992-11-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend versus squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of `lumped' control parameters, that is, control points and vectors.
Human-like agents with posture planning ability
NASA Technical Reports Server (NTRS)
Jung, Moon R.; Badler, Norman
1992-01-01
Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.
Multi-joint postural behavior in patients with knee osteoarthritis.
Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane
2015-12-01
Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.
Older adults utilize less efficient postural control when performing pushing task
Lee, Yun-Ju; Chen, Bing; Aruin, Alexander S.
2015-01-01
The ability to maintain balance deteriorates with increasing age. The aim was to investigate the role of age in generation of anticipatory (APA) and compensatory (CPA) postural adjustments during pushing an object. Older (68.8 ± 1.0 years) and young adults (30.1 ± 1.4 years) participated in the experiment involving pushing an object (a pendulum attached to the ceiling) using both hands. Electrical activity of six leg and trunk muscles and displacements of the center of pressure (COP) were recorded and analyzed during the APA and CPA phases. The onset time, integrals of muscle activity, and COP displacements were determined. In addition, the indexes of co-activation and reciprocal activation of muscles for the shank, thigh, and trunk segments were calculated. Older adults, compared to young adults, showed less efficient postural control seen as delayed anticipatory muscle onset times and delayed COP displacements. Moreover, older adults used co-activation of muscles during the CPA phase while younger subjects utilized reciprocal activation of muscles. The observed diminished efficiency of postural control during both anticipatory and compensatory postural adjustments observed in older adults might predispose them to falls while performing tasks involving pushing. The outcome provides a background for future studies focused on the optimization of the daily activities of older adults. PMID:26403099
Longo, Alessia; Meulenbroek, Ruud; Haid, Thomas; Federolf, Peter
2018-05-01
Movement variability in sustained repetitive tasks is an important factor in the context of work-related musculoskeletal disorders. While a popular hypothesis suggests that movement variability can prevent overuse injuries, pain evolving during task execution may also cause variability. The aim of the current study was to investigate, first, differences in movement behavior between volunteers with and without work-related pain and, second, the influence of emerging pain on movement variability. Upper-body 3D kinematics were collected as 22 subjects with musculoskeletal disorders and 19 healthy volunteers performed a bimanual repetitive tapping task with a self-chosen and a given rhythm. Three subgroups were formed within the patient group according to the level of pain the participants experienced during the task. Principal component analysis was applied to 30 joint angle coordinates to characterize in a combined analysis the movement variability associated with reconfigurations of the volunteers' postures and the cycle-to-cycle variability that occurred during the execution of the task. Patients with no task-related pain showed lower cycle-to-cycle variability compared to healthy controls. Findings also indicated an increase in movement variability as pain emerged, manifesting both as frequent postural changes and large cycle-to-cycle variability. The findings suggested a relationship between work-related musculoskeletal disorders and movement variability but further investigation is needed on this issue. Additionally, the findings provided clear evidence that pain increased motor variability. Postural reconfigurations and cycle-to-cycle variability should be considered jointly when investigating movement variability and musculoskeletal disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
EEG measures reveal dual-task interference in postural performance in young adults
Woollacott, Marjorie
2014-01-01
The study used a dual-task (DT) postural paradigm (two tasks performed at once) that included electroencephalography (EEG) to examine cortical interference when a visual working memory (VWM) task was paired with a postural task. The change detection task was used, as it requires storage of information without updating or manipulation and predicts VWM capacity. Ground reaction forces (GRFs) (horizontal and vertical), EMG, and EEG elements, time locked to support surface perturbations, were used to infer the active neural processes underlying the automatic control of balance in 14 young adults. A significant reduction was seen between single task (ST) and DT conditions in VWM capacity (F(1,13) = 6.175, p < 0.05, r = 0.6) and event-related potential (ERP) N1 component amplitude over the L motor (p < 0.001) and R sensory (p < 0.05) cortical areas. In addition, a significant increase in the COP trajectory peak (pkcopx) was seen in the DT versus ST condition. Modulation of VWM capacity as well as ERP amplitude and pkcopx in DT conditions provided evidence of an interference pattern, suggesting that the two modalities shared a similar set of attentional resources. The results provide direct evidence of the competition for central processing attentional resources between the two modalities, through the reduction in amplitude of the ERP evoked by the postural perturbation. PMID:25273924
de Andrade, Larissa P; Gobbi, Lilian T B; Coelho, Flávia G M; Christofoletti, Gustavo; Costa, José L Riani; Stella, Florindo
2013-11-01
To verify the effects of a systematized multimodal exercise intervention program on frontal cognitive function, postural control, and functional capacity components of individuals with Alzheimer's disease (AD). Nonrandomized controlled trial with pre- and posttraining tests in a training group and a control group. Kinesiotherapy program for seniors with AD, São Paulo State University. Convenience sample of older adults with AD (n = 30) were assigned to a training (n = 14; aged 78.6 ± 7.1) and a control (n = 16; aged 77.0 ± 6.3) group. The intervention program was structured with the aim of simultaneously promoting better balance and frontal cognitive capacity. The participants attended a 1-hour session three times a week for 16 weeks, whereas the control group did not participate in any activity during the same period. Frontal cognitive function was evaluated using the Montreal Cognitive Assessment, the Clock Drawing Test, the Frontal Assessment Battery, and the Symbol Search Subtest. Postural control (center of pressure area) was analyzed under four dual-task conditions. Functional capacity components were analyzed using the Timed Up and Go Test, the 30-second sit-to-stand test, the sit-and-reach test, and the Berg Functional Balance Scale. Intervention group participants showed a significant increase in frontal cognitive function (P < .001, partial η(2) = 0.838), with less body sway (P = .04, partial η(2) = 0.04) during the dual tasks, and greater functional capacity (P = .001, partial η(2) = 0.676) after the 16-week period. Intervention participants performed better on dual-task activities and had better postural balance and greater functional capacity than controls. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-02-01
Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot. PMID:29867428
The Stance Leads the Dance: The Emergence of Role in a Joint Supra-Postural Task
Davis, Tehran J.; Pinto, Gabriela B.; Kiefer, Adam W.
2017-01-01
Successfully meeting a shared goal usually requires co-actors to adopt complementary roles. However, in many cases, who adopts what role is not explicitly predetermined, but instead emerges as a consequence of the differences in the individual abilities and constraints imposed upon each actor. Perhaps the most basic of roles are leader and follower. Here, we investigated the emergence of “leader-follower” dynamics in inter-personal coordination using a joint supra-postural task paradigm (Ramenzoni et al., 2011; Athreya et al., 2014). Pairs of actors were tasked with holding two objects in alignment (each actor manually controlled one of the objects) as they faced different demands for stance (stable vs. difficult) and control (which actor controlled the larger or smaller object). Our results indicate that when actors were in identical stances, neither led the inter-personal (between actors) coordination by any systematic fashion. Alternatively, when asymmetries in postural demands were introduced, the actor with the more difficult stance led the coordination (as determined using cross-recurrence quantification analysis). Moreover, changes in individual stance difficulty resulted in similar changes in the structure of both intra-personal (individual) and inter-personal (dyadic) coordination, suggesting a scale invariance of the task dynamics. Implications for the study of interpersonal coordination are discussed. PMID:28536547
Assessing Somatosensory Utilization during Unipedal Postural Control.
Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P
2017-01-01
Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.
Assessing Somatosensory Utilization during Unipedal Postural Control
Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.
2017-01-01
Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004
ERIC Educational Resources Information Center
de Abreu, Daniela Cristina Carvalho; Takara, Kelly; Metring, Nathalia Lopes; Reis, Julia Guimaraes; Cliquet, Alberto, Jr.
2012-01-01
We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition…
ERIC Educational Resources Information Center
Przysucha, Eryk P.; Taylor, M. Jane; Weber, Douglas
2008-01-01
This study compared the nature of postural adaptations and control tendencies, between 7 (n = 9) and 11-year-old boys (n = 10) with Developmental Coordination Disorder (DCD) and age-matched, younger (n = 10) and older (n = 9) peers in a leaning task. Examination of anterior-posterior, medio-lateral, maximum and mean area of sway, and path length…
Hegeman, Judith; Nienhuis, Bart; van den Bemt, Bart; Weerdesteyn, Vivian; van Limbeek, Jacques; Duysens, Jacques
2011-04-01
Accidental falls in older individuals are a major health and research topic. Increased reaction time and impaired postural balance have been determined as reliable predictors for those at risk of falling and are important functions of the central nervous system (CNS). An essential risk factor for falls is medication exposure. Amongst the medications related to accidental falls are the non-steroidal anti-inflammatory drugs (NSAIDs). About 1-10% of all users experience CNS side effects. These side effects, such as dizziness, headaches, drowsiness, mood alteration, and confusion, seem to be more common during treatment with indomethacin. Hence, it is possible that maintenance of (static) postural balance and swift reactions to stimuli are affected by exposure to NSAIDs, indomethacin in particular, consequently putting older individuals at a greater risk for accidental falls. The present study investigated the effect of a high indomethacin dose in healthy middle-aged individuals on two important predictors of falls: postural balance and reaction time. Twenty-two healthy middle-aged individuals (59.5 ± 4.7 years) participated in this double-blind, placebo-controlled, randomized crossover trial. Three measurements were conducted with a week interval each. A measurement consisted of postural balance as a single task and while concurrently performing a secondary cognitive task and reaction time tasks. For the first measurement indomethacin 75 mg (slow-release) or a visually identical placebo was randomly assigned. In total, five capsules were taken orally in the 2.5 days preceding assessment. The second measurement was without intervention, for the final one the first placebo group got indomethacin and vice versa. Repeated measures GLM revealed no significant differences between indomethacin, placebo, and baseline in any of the balance tasks. No differences in postural balance were found between the single and dual task conditions, or on the performance of the dual task itself. Similarly, no differences were found on the manual reaction time tasks. The present study showed that a high indomethacin dose does not negatively affect postural balance and manual reaction time in this healthy middle-aged population. Although the relatively small and young sample limits the direct ability to generalize the results to a population at risk of falling, the results indicate that indomethacin alone is not likely to increase fall risk, as far as this risk is related to above mentioned important functions of the CNS, and not affected by comorbidities. Copyright © 2010 Elsevier B.V. All rights reserved.
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings. PMID:28356727
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review's inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16-2.10) and in patients suffering from chronic stroke (-0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (-0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive-motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings.
Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia
2017-09-15
The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.
Use of Video Analysis System for Working Posture Evaluations
NASA Technical Reports Server (NTRS)
McKay, Timothy D.; Whitmore, Mihriban
1994-01-01
In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.
Adaptability of anticipatory postural adjustments associated with voluntary movement
Yiou, Eric; Caderby, Teddy; Hussein, Tarek
2012-01-01
The control of balance is crucial for efficiently performing most of our daily motor tasks, such as those involving goal-directed arm movements or whole body displacement. The purpose of this article is twofold. Firstly, it is to recall how balance can be maintained despite the different sources of postural perturbation arising during voluntary movement. The importance of the so-called “anticipatory postural adjustments” (APA), taken as a “line of defence” against the destabilizing effect induced by a predicted perturbation, is emphasized. Secondly, it is to report the results of recent studies that questioned the adaptability of APA to various constraints imposed on the postural system. The postural constraints envisaged here are classified into biomechanical (postural stability, superimposition of motor tasks), (neuro) physiological (fatigue), temporal (time pressure) and psychological (fear of falling, emotion). Overall, the results of these studies point out the capacity of the central nervous system (CNS) to adapt the spatio-temporal features of APA to each of these constraints. However, it seems that, depending on the constraint, the “priority” of the CNS was focused on postural stability maintenance, on body protection and/or on maintenance of focal movement performance. PMID:22720267
Young, William R; Mark Williams, A
2015-01-01
It is widely reported that fear of falling (FOF) has a profound and largely detrimental effect on balance performance in older adults. However, the mechanisms by which FOF influence postural stability are poorly understood. In the current article, we use psychological theory to explain FOF-related changes to postural control. First, we review literature describing associations between FOF and the 'stiffening' strategies observed during control of posture, including observations of eye and head movements. Second, we present a framework illustrating the interactions between increased age, FOF, and altered attentional processes, which in turn influence balance performance and fall-risk. Psychological theory predicts that anxiety can cause attentional bias for threatening and task-irrelevant stimuli and compromise the efficiency of working memory resources. We argue that while the adoption of stiffening strategies is likely to be beneficial in avoiding a loss of balance during simple postural tasks, it will ultimately compromise performance in dynamic and highly demanding functional tasks. The adoption of stiffening strategies leads to inadequate acquisition of the sensory information necessary to plan and execute dynamic and interactive movements. We conclude with some suggestions for future research. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Xiaodi; Wang, Yuzhou; Wang, Zhanhang; Xu, Yan; Zheng, Wenhua
2018-01-01
The objective of the study is to evaluate postural dysfunction of multiple system atrophy-parkinsonian type (MSA-P) and cerebellar type (MSA-C) by static posturography exam. A total of 29 MSA-P patients, 40 MSA-C patients, and 23 healthy controls (HC) were recruited and engaged in a sensory organization test (SOT). The amplitude of the postural sway was measured and transformed into energy value by Fourier analyzer. SOT scores, frequency of falls and typical 3-Hz postural tremors during the four stance tasks, and energy value in three different frequency bands were recorded and compared. Compared with HC, SOT scores were significantly lower in MSA groups (P < 0.01). Compared with MSA-P, the vestibular scores were further reduced in MSA-C patients (P < 0.05). Falls were more frequent in MSA groups, especially in SOT4 task (foam surface with eyes closed) or in MSA-C group (P < 0.05). Typical 3-Hz postural tremor was observed in 97.5% MSA-C patients, in 24.1% MSA-P patients but in none of the HC (P < 0.05). Compared with HC, much more energy was consumed in every task, every direction, and nearly every frequency band in MSA groups. Energy value of MSA-C group was significantly higher than that of MSA-P, especially in higher frequency band (2 ~ 20 Hz) or in more difficult stance tasks (SOT 3 ~ 4, foam surface with eyes open or closed) (P < 0.05). Both MSA-P and MSA-C were characterized by severe static postural dysfunction. However, typical 3-Hz postural tremor was predominant in MSA-C and was very useful in the differential diagnosis between MSA-P and MSA-C.
Postural synergies associated with a stepping task.
Mercer, V S; Sahrmann, S A
1999-12-01
Synergistic relationships among multiple muscle components are thought to exist to simplify control of posture and movement. The purpose of this study was to examine the extent to which children, young adults, and older adults exhibit consistent sequences of postural muscle activation when lifting the right foot onto a step from a standing position. Twenty subjects without known impairments of the neuromuscular system (10 male, 10 female) in each of 3 age groups--children (8-12 years), young adults (25-35 years), and older adults (65-73 years)--participated. A pressure switch taped to the subject's right foot was used to determine movement onset and offset. Latencies of muscle activation were determined using surface electromyography. A preferred postural synergy was defined as the sequence of postural muscle activation observed during the majority of trials for each subject. Mean movement times did not differ among age groups. Although the left tibialis anterior (TA) muscle was the first of the postural muscles activated in 93% of the trials, subjects displayed considerable variability in the subsequent order of postural muscle activation. Across subjects, a total of 14 different preferred postural synergies were observed. Age groups did not differ in the number of different synergies. Early TA activation may reflect biomechanical constraints of the stepping task, producing forward displacement of the center of mass over the changing base of support. The fact that subjects of all ages were quite variable in the specific sequences of muscles activated subsequent to the TA suggests that, for this type of task, therapists should not focus their interventions on facilitating execution of particular synergy patterns.
Postural Control in Children with Dyslexia: Effects of Emotional Stimuli in a Dual-Task Environment.
Goulème, Nathalie; Gerard, Christophe-Loïc; Bucci, Maria Pia
2017-08-01
The aim of this study was to compare the visual exploration strategies used during a postural control task across participants with and without dyslexia. We simultaneously recorded eye movements and postural control while children were viewing different types of emotional faces. Twenty-two children with dyslexia and twenty-two aged-matched children without dyslexia participated in the study. We analysed the surface area, the length and the mean velocity of the centre of pressure for balance in parallel with visual saccadic latency, the number of saccades and the time spent in regions of interest. Our results showed that postural stability in children with dyslexia was weaker and the surface area of their centre of pressure increased significantly when they viewed an unpleasant face. Moreover, children with dyslexia had different strategies to those used by children without dyslexia during visual exploration, and in particular when they viewed unpleasant emotional faces. We suggest that lower performance in emotional face processing in children with dyslexia could be due to a difference in their visual strategies, linked to their identification of unpleasant emotional faces. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.
Helmich, Ingo; Berger, Alisa; Lausberg, Hedda
2016-12-01
Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.
Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-12-01
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.
Redfern, Mark S; Chambers, April J; Jennings, J Richard; Furman, Joseph M
2017-08-01
This study investigated the impact of attention on the sensory and motor actions during postural recovery from underfoot perturbations in young and older adults. A dual-task paradigm was used involving disjunctive and choice reaction time (RT) tasks to auditory and visual stimuli at different delays from the onset of two types of platform perturbations (rotations and translations). The RTs were increased prior to the perturbation (preparation phase) and during the immediate recovery response (response initiation) in young and older adults, but this interference dissipated rapidly after the perturbation response was initiated (<220 ms). The sensory modality of the RT task impacted the results with interference being greater for the auditory task compared to the visual task. As motor complexity of the RT task increased (disjunctive versus choice) there was greater interference from the perturbation. Finally, increasing the complexity of the postural perturbation by mixing the rotational and translational perturbations together increased interference for the auditory RT tasks, but did not affect the visual RT responses. These results suggest that sensory and motoric components of postural control are under the influence of different dynamic attentional processes.
Effect of higher muscle coactivation on standing postural response to perturbation in older adults.
Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao
2017-04-01
Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.
Yiou, E; Heugas, A M; Mezaour, M; Le Bozec, S
2009-01-01
This study tested the effect of lower limb muscle fatigue induced by series of high-level isometric contractions (IC) on postural adjustments and maintenance of erect posture. Subjects (N=7) displaced a bar (grasp-bar) forward with both hands at maximal velocity towards a target ("bilateral forward-reach" task, BFR), before and after a procedure designed to induce fatigue in dorsal leg muscles. This procedure included IC at 60% of maximum. Postural joint and grasp-bar motion, along with electrical activity of postural and focal muscles were recorded. Integrated electromyographical (EMG) activity per 20 ms period ranging from 400 ms before BFR onset (t0) to 400 ms after t0 was compared before and after the fatiguing procedure. This time-window included "anticipatory", "on-line" and "corrective" postural adjustments, i.e. those postural adjustments occurring before (APAs), during (OPAs) and after (CPAs) BFR, respectively. In contrast to the literature, results showed that the fatiguing procedure had no effect on muscle excitation or timing in any of the recorded postural muscles, regardless of APA, OPA or CPA-related time-window. Therefore, the postural drive did not change with fatigue. Furthermore, the peak-to-peak motion at postural joints did not change. Postural maintenance was therefore not additionally challenged. These results are in line with the hypothesis that the effect of fatigue on postural adjustments is dependent on the adequacy between fatigued motor units (MUs) and MUs recruited during the postural adjustments. Increasing IC intensity during the fatiguing procedure might therefore not necessarily exacerbate the effect of fatigue on postural control highlighted during lower level IC.
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.
Ciccarelli, Marina; Straker, Leon; Mathiassen, Svend Erik; Pollock, Clare
2011-01-01
There are concerns that insufficient variation in postural and muscle activity associated with use of modern information and communication technology (ICT) presents a risk for musculoskeletal ill-health among school children. However, scientific knowledge on physical exposure variation in this group is limited. The purpose of this study was to quantify postures and muscle activity of school children using different types of ICT. Postures of the head, upper back and upper arm, and muscle activity of the right and left upper trapezius and right forearm extensors were measured over 10-12 hours in nine school children using different types of ICT at school and away-from-school. Variation in postures and muscle activity was quantified using two indices, EVA{sd} and APDF₉₀-₁₀. Paper-based (Old) ICT tasks produced postures that were less neutral but more variable than electronics-based (New ICT) and Non-ICT tasks. Non-ICT tasks involved mean postures similar to New ICT tasks, but with greater variation. Variation of muscle activity was similar between ICT types in the right and left upper trapezius muscles. Non-ICT tasks produced more muscle activity variation in the right forearm extensor group compared to New and Old ICT tasks. Different ICT tasks produce different degrees of variation in posture and muscle activity. Combining tasks that use different ICT may increase overall exposure variation. More research is needed to determine what degree of postural and muscle activity variation is associated with reduced risk of musculoskeletal ill-health.
Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat
2013-09-01
The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.
Older adults utilize less efficient postural control when performing pushing task.
Lee, Yun-Ju; Chen, Bing; Aruin, Alexander S
2015-12-01
The ability to maintain balance deteriorates with increasing age. The aim was to investigate the role of age in generation of anticipatory (APA) and compensatory (CPA) postural adjustments during pushing an object. Older (68.8 ± 1.0 years) and young adults (30.1 ± 1.4 years) participated in the experiment involving pushing an object (a pendulum attached to the ceiling) using both hands. Electrical activity of six leg and trunk muscles and displacements of the center of pressure (COP) were recorded and analyzed during the APA and CPA phases. The onset time, integrals of muscle activity, and COP displacements were determined. In addition, the indexes of co-activation and reciprocal activation of muscles for the shank, thigh, and trunk segments were calculated. Older adults, compared to young adults, showed less efficient postural control seen as delayed anticipatory muscle onset times and delayed COP displacements. Moreover, older adults used co-activation of muscles during the CPA phase while younger subjects utilized reciprocal activation of muscles. The observed diminished efficiency of postural control during both anticipatory and compensatory postural adjustments observed in older adults might predispose them to falls while performing tasks involving pushing. The outcome provides a background for future studies focused on the optimization of the daily activities of older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.
Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin
2014-01-01
For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598
Casteran, Matthieu; Putot, Alain; Pfitzenmeyer, François; Thomas, Elizabeth; Manckoundia, Patrick
2016-11-01
While previous studies have demonstrated that depressive elderly subjects (DES) experience difficulties in the processing of simultaneous cognitive tasks, few have examined the coupling of cognitive tasks with seemingly 'automatic' tasks, such as standing upright. Current patient management focuses on pharmacological treatments and cognitive-behavioral therapies. Healthy elderly (HES) and non-treated DES were included. Postural sway in DES was compared with that in HES while in single-task and dual-task conditions. The single-task consisted of standing upright. For the dual-task, the subjects recalled various items from memory or counted while standing upright. Postural sway was evaluated by computing the center of pressure (CoP) area and path length. DES showed greater postural sway than HES in all conditions. The HES showed a greater CoP area in the dual-task than in the single-task conditions. In DES, the CoP area in the single-task condition was similar to that in the dual-task condition. The greater postural sway observed in DES may be a cause of a greater risk of falls. We showed that even seemingly automatic tasks, such as maintaining an upright posture, are affected by depression. These results are important for the management of DES. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula
2017-11-01
How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2 = 82.247; p < 0.001). The shift in balance coordination on the slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.
Jehu, Deborah A; Paquet, Nicole; Lajoie, Yves
2016-12-01
Improved performance may be inherent due to repeated exposure to a testing protocol. However, limited research has examined this phenomenon in postural control. The aim was to determine the influence of repeated administration of a dual-task testing protocol once per week for 5 weeks on postural sway and reaction time. Ten healthy older adults (67.0 ± 6.9 years) stood on a force plate for 30 s in feet apart and semi-tandem positions while completing simple reaction time (SRT) and choice reaction time (CRT) tasks. They were instructed to stand as still as possible while verbally responding as fast as possible to the stimuli. No significant differences in postural sway were shown over time (p > 0.05). A plateau in average CRT emerged as the time effect revealed longer CRT during session 1 compared to sessions 3-5 (p < 0.05). Furthermore, the time effect for within-subject variability of CRT uncovered no plateaus as it was less variable in session 5 than sessions 1-4 (p < 0.05). The lack of a plateau in variability of CRT may have emerged as older adults may require longer to reach optimal performance potential in a dual-task context. Postural sway and SRT were stable over the 5 testing sessions, but variability of CRT continued to improve over time. These findings form a basis for future studies to examine performance-related improvements due to repeated exposure to a testing protocol in a dual-task setting.
Federolf, Peter; Zandiyeh, Payam; von Tscharner, Vinzenz
2015-12-01
The center of pressure (COP) movement in studies of postural control reveals a highly regular structure (low entropy) over short time periods and a highly irregular structure over large time scales (high entropy). Entropic half-life (EnHL) is a novel measure that quantifies the time over which short-term temporal correlations in a time series deteriorate to an uncorrelated, random structure. The current study suggested and tested three hypotheses about how characteristics of the neuromuscular postural control system may affect stabilometric EnHL: (H1) control system activity hypothesis: EnHL decreases with increased frequency of control system interventions adjusting COP motion; (H2) abundance of states hypothesis: EnHL decreases with increased number of mechanically equivalent states available to the postural system; and (H3) neurologic process hierarchy hypothesis: EnHL increases if postural control functions shift from the spinal level to the motor cortex. Thirty healthy participants performed quiet stance tests for 90 s in 18 different conditions: stance (bipedal, one-legged, and tandem); footwear (bare foot, regular sports shoe, and rocker sole shoes); and simultaneous cognitive task (two-back working memory task, no challenge). A four-way repeated-measures ANOVA revealed significant changes in EnHL for the different stance positions and for different movement directions (medio-lateral, anterior-posterior). These changes support H1 and H2. Significant differences were also found between rocker sole shoes and normal or barefoot standing, which supports H3. This study contributes to the understanding of how and why EnHL is a useful measure to monitor neuromuscular control of balance.
Balance control during gait initiation: State-of-the-art and research perspectives.
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-11-18
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
Balance control during gait initiation: State-of-the-art and research perspectives
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-01-01
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. PMID:29184756
Bouisset, S; Richardson, J; Zattara, M
2000-05-01
Dynamic phenomena, termed anticipatory postural adjustments (APA), are known to precede the onset of voluntary movement. Their anticipatory nature confers a particular status on APAs: as they cannot be triggered reflexly by afferent signals induced by a voluntary movement, it can be asked whether the APA parameters are centrally programmed as a function of some task movement parameters or are only the peripheral consequence of control variables. To this end the present study aims to determine whether the APAs occurring at the different sites of the postural chain yield the same accelerometric patterns and follow the same organisational rules when the task movement velocity changes, independently of the inertial load value. Subjects performed unilateral shoulder flexions at maximal and submaximal velocities, with (IUF) and without (OUF) an additional inertial load. Accelerometers were attached to the wrist and trunk, and on both sides of the body at shank, thigh, hip and shoulder. The results show that: 1) there was evidence of anticipatory acceleration in all segments of the postural chain; 2) each acceleration profile for the anticipatory phase was maintained over different focal movement velocities whether there was an additional load or not; 3) there were significant linear relationships between the amplitude of each segmental anticipatory acceleration and the square of the task movement velocity, the slope of which differs as a function of the inertial load; 4) there were close intersegmental correlations between these anticipatory accelerations which did not depend on the inertial load. In addition the correlation between the lower limbs and the opposite side of the body was positive, suggesting a diagonal postural pattern. A comparison of the present kinematic data with the corresponding EMG data reported in the literature argues in favour of a centrally determined kinematic pattern. It is proposed that the diagonal postural pattern between postural segments be considered as one of the order rules which could simplify the control process of asymmetrical movement. The anticipatory kinematics of each of the body segments would be calibrated with the velocity and the inertial load and scaled to the other segments to counteract the perturbing effect of the asymmetrical focal movement on body balance.
Holden, Sinéad; Boreham, Colin; Delahunt, Eamonn
2016-02-01
The adolescent 'growth spurt' results in rapid growth of the skeletal system. It has been theorised that absence of a concomitant increase in muscular adaptations in female athletes may predispose them to an increased risk of anterior cruciate ligament injuries. To determine if sex differences exist in landing biomechanics and postural stability of adolescent athletes; with a further objective of determining if such differences are propagated during adolescence. The following databases were searched: MEDLINE, EMBASE, CINAHL, PEDro, PubMed, SPORTDiscus and Web of Science. Research papers were identified by including search terms for neuromuscular control, lower limb and pubertal development. Studies were required to be written in English; report on biomechanical analyses; include landing or postural control tasks; be cross-sectional or longitudinal; and include healthy adolescent/pubertal subjects. A modified version of the Strengthening the Reporting of Observational studies in Epidemiology checklist was used to rate methodological quality. Meta-analyses were performed when more than one study reported on an outcome measure. Sixteen articles were included. The overall methodological quality of evaluated studies was low (mean score = 5.75/10 points). Adolescent females exhibited increased knee valgus with increasing maturity. There was no consensus on sex differences in postural stability. With increasing maturation, females are characterized by increased knee valgus during landing tasks. To date, no research has longitudinally investigated postural stability development during adolescence in females, despite the importance of postural control training in injury prevention programmes. Therefore, further research on this topic is warranted.
Physiological and Functional Alterations after Spaceflight and Bed Rest.
Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J
2018-04-03
Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is required to maintain functional performance.
Neck postures in air traffic controllers with and without neck/shoulder disorders.
Arvidsson, Inger; Hansson, Gert-Ake; Mathiassen, Svend Erik; Skerfving, Staffan
2008-03-01
Prolonged computer work with an extended neck is commonly believed to be associated with an increased risk of neck-shoulder disorders. The aim of this study was to compare neck postures during computer work between female cases with neck-shoulder disorders, and healthy referents. Based on physical examinations, 13 cases and 11 referents were selected among 70 female air traffic controllers with the same computer-based work tasks and identical workstations. Postures and movements were measured by inclinometers, placed on the forehead and upper back (C7/Th1) during authentic air traffic control. A recently developed method was applied to assess flexion/extension in the neck, calculated as the difference between head and upper back flexion/extension. cases and referents did not differ significantly in neck posture (median neck flexion/extension: -10 degrees vs. -9 degrees ; p=0.9). Hence, the belief that neck extension posture is associated with neck-shoulder disorders in computer work is not supported by the present data.
Yelshyna, Darya; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090
Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.
Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder
Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.
2015-01-01
Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567
Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.
Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L
2017-01-01
Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p < 0.01 for all tests). The balance metric, in conjunction with mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
De Pauw, J; Mercelis, R; Hallemans, A; Van Gils, G; Truijen, S; Cras, P; De Hertogh, W
2018-03-01
Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (r s ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-01-01
Context: Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective: To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design: Randomized controlled trial. Setting: Research laboratory. Patients or Other Participants: A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s): All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s): Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results: Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions: A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257
Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo
Schniepp, Roman; Wuehr, Max; Pradhan, Cauchy; Novozhilov, Sergej; Krafczyk, Siegbert; Brandt, Thomas; Jahn, Klaus
2013-01-01
Background: Subjective postural imbalance is a key symptom in the somatoform phobic postural vertigo (PPV). It has been assumed that more attentional control of body posture and / or co-contraction of leg muscles during standing is used to minimize the physiological body sway in PPV. Here we analyze nonlinear variability of body sway in patients with PPV in order to disclose changes in postural control strategy associated with PPV. Methods: Twenty patients with PPV and 20 age-matched healthy subjects (HS) were recorded on a stabilometer platform with eyes open (EO), eyes closed (EC), and while standing on a foam rubber with eyes closed (ECF). Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed to assess the structure of postural variability by computing the scaling exponent α and the sample entropy (SEn) of the time series. Results: With EO on firm ground α and SEn of CoP displacement were significantly lower in patients (p < 0.001). For more difficult conditions (EC, ECF) postural variability in PPV assimilated to that of HS. Conclusion: Postural control in PPV patients differs from HS under normal stance condition. It is characterized by a reduced scaling behavior and higher regularity. These changes in the structure of postural variability might suggest an inappropriate attentional involvement with stabilizing strategies, which are used by HS only for more demanding balance tasks. PMID:23966974
ERIC Educational Resources Information Center
Newell, Karl M.; Ko, Young G.; Sprague, Robert L.; Mahorney, Steven L.; Bodfish, James W.
2002-01-01
The effect of neuroleptic withdrawal on postural task performance of 20 adults with mental retardation was examined. Assessments were conducted at baseline and monthly intervals, extending to one year following complete medication withdrawal, when significant changes in amount of postural motion and sequential pattern of postural movement…
Comparison of postural stability between injured and uninjured ballet dancers.
Lin, Cheng-Feng; Lee, I-Jung; Liao, Jung-Hsien; Wu, Hong-Wen; Su, Fong-Chin
2011-06-01
Ballet movements require a limited base of support; thus, ballet dancers require a high level of postural control. However, postural stability in ballet dancers is still unclear and needs to be understood. To evaluate ballet dancers' postural stability in performing single-leg standing, the en pointe task, and the first and fifth positions and to determine differences in task performance among healthy nondancers, healthy dancers, and dancers with ankle sprains. Controlled laboratory study. Injured dancers, uninjured dancers, and nondancers were recruited for this study (N = 33 age-matched participants; n= 11 per group). The tasks tested were single-leg standing with eyes open and closed, first position, fifth position, and en pointe. Center of pressure parameters were calculated from the ground-reaction force collected with 1 force plate. Analysis of variance was used to assess the differences of center of pressure parameters among 3 groups in single-leg standing; independent t test was used to examine the differences of center of pressure parameters between injured and uninjured dancers. During single-leg standing, injured dancers had significantly greater maximum displacement in the medial-lateral direction and total trajectory of center of pressure, compared with the uninjured dancers and nondancers. During the first and fifth positions, the injured dancers demonstrated significantly greater standard deviation of center of pressure position in the medial-lateral and anterior-posterior directions, compared with the uninjured dancers. During en pointe, the injured dancers had significantly greater maximum displacement in the medial-lateral direction and the anterior-posterior direction, compared with the uninjured dancers. The injured and uninjured dancers demonstrated differences in postural stability in the medial-lateral direction during single-leg standing and the ballet postures. Although the injured dancers received ballet training, their postural stability may still be inferior to that of the nondancers. This study is a first step in understanding that injured ballet dancers do not have the same postural stability as uninjured dancers and that it is even inferior to that of nondancers, which is important to understand for further study on rehabilitation. The future development of effective balance training programs for ballet dancers with ankle injuries should emphasize improvements in medial-lateral directional balance.
Luger, Tessy; Bosch, Tim; Hoozemans, Marco; de Looze, Michiel; Veeger, Dirkjan
2015-01-01
Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of shoulder muscle fatigue and discomfort; second, noticeable postural shoulder changes over time; third, if the association between task variation and EMG might be biased by postural changes. Outcome parameters were recorded using multichannel EMG, Optotrak and the Borg scale. Fourteen participants performed a one-hour repetitive Pegboard task in one continuous and two interrupted conditions with rest and a pick-and-place task, respectively. Manifestations of shoulder muscle fatigue and discomfort feelings were observed throughout the conditions but these were not significantly influenced by task variation. After correction for joint angles, the relation between task variation and EMG was significantly biased but significant effects of task variation remained absent. Comparing a one-hour continuous, repetitive Pegboard task with two interrupted conditions revealed no significant influences of task variation. We did observe that the relation between task variation and EMG was biased by posture and therefore advise taking account for posture when investigating manifestations of muscle fatigue in assembly tasks.
Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C
2015-08-01
Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.
Effects of Tai Chi intervention on dual-task ability in older adults: a pilot study.
Hall, Courtney D; Miszko, Tanya; Wolf, Steven L
2009-03-01
To determine if a 12-week program of Tai Chi that has been shown to reduce falls incidence in older adults would improve the ability to allocate attention to balance under dual-task conditions. Pre-/posttest experimental research design. Movement studies research laboratory. Community dwelling older adults (N=15; range, 62-85y) participated in either Tai Chi training or health education classes (controls) for 12 weeks. Participants in the Tai Chi group attended a twice-weekly, 1.5-hour class taught by an experienced instructor. The control group attended a biweekly, 1-hour class for lectures on health-related topics. Two cognitive tasks (responding to auditory or visual stimulus as quickly as possible) were performed concurrently while maintaining static balance during the Sensory Organization Test (SOT) and while avoiding obstacles while walking. The percent change in performance relative to the single-task condition was calculated and defined as the dual-task cost. The dual-task cost was calculated for both the postural and cognitive measures. There was no improvement in the performance of postural stability or cognitive task under dual-task conditions for the SOT for Tai Chi versus controls. There was no improvement in avoiding obstacles under dual-task conditions for Tai Chi versus controls. Contrary to our hypothesis, the findings of this study did not support a benefit of Tai Chi on the ability to allocate attention to balance under dual-task conditions.
Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph
2017-01-01
Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430
Adaptive Postural Control for Joint Immobilization during Multitask Performance
Hsu, Wei-Li
2014-01-01
Motor abundance is an essential feature of adaptive control. The range of joint combinations enabled by motor abundance provides the body with the necessary freedom to adopt different positions, configurations, and movements that allow for exploratory postural behavior. This study investigated the adaptation of postural control to joint immobilization during multi-task performance. Twelve healthy volunteers (6 males and 6 females; 21–29 yr) without any known neurological deficits, musculoskeletal conditions, or balance disorders participated in this study. The participants executed a targeting task, alone or combined with a ball-balancing task, while standing with free or restricted joint motions. The effects of joint configuration variability on center of mass (COM) stability were examined using uncontrolled manifold (UCM) analysis. The UCM method separates joint variability into two components: the first is consistent with the use of motor abundance, which does not affect COM position (VUCM); the second leads to COM position variability (VORT). The analysis showed that joints were coordinated such that their variability had a minimal effect on COM position. However, the component of joint variability that reflects the use of motor abundance to stabilize COM (VUCM) was significant decreased when the participants performed the combined task with immobilized joints. The component of joint variability that leads to COM variability (VORT) tended to increase with a reduction in joint degrees of freedom. The results suggested that joint immobilization increases the difficulty of stabilizing COM when multiple tasks are performed simultaneously. These findings are important for developing rehabilitation approaches for patients with limited joint movements. PMID:25329477
Arm Dominance Affects Feedforward Strategy more than Feedback Sensitivity during a Postural Task
Walker, Elise H. E.; Perreault, Eric J.
2015-01-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors, and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture, and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23–51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development. PMID:25850407
Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.
Walker, Elise H E; Perreault, Eric J
2015-07-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
Pre-shaping of the Fingertip of Robot Hand Covered with Net Structure Proximity Sensor
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Suzuki, Yosuke; Hasegawa, Hiroaki; Ming, Aiguo; Ishikawa, Masatoshi; Shimojo, Makoto
To achieve skillful tasks with multi-fingered robot hands, many researchers have been working on sensor-based control of them. Vision sensors and tactile sensors are indispensable for the tasks, however, the correctness of the information from the vision sensors decreases as a robot hand approaches to a grasping object because of occlusion. This research aims to achieve seamless detection for reliable grasp by use of proximity sensors: correcting the positional error of the hand in vision-based approach, and contacting the fingertip in the posture for effective tactile sensing. In this paper, we propose a method for adjusting the posture of the fingertip to the surface of the object. The method applies “Net-Structure Proximity Sensor” on the fingertip, which can detect the postural error in the roll and pitch axes between the fingertip and the object surface. The experimental result shows that the postural error is corrected in the both axes even if the object dynamically rotates.
Postural responses to unexpected perturbations of balance during reaching
Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.
2014-01-01
To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321
Mikolajczyk, Edyta; Jankowicz-Szymanska, Agnieszka
2015-03-01
Maintaining postural balance, overcoming visual and motor coordination disorders and experiencing problems with low general fitness - typical of intellectually disabled individuals - adversely affect the performance quality of their activities of daily living (ADLs). Physical fitness and postural balance can be improved by taking part in special intervention programs. Our study was designed to test whether extending the dual-task intervention program (combining ADLs with balance exercises on unstable surfaces) from 12 to 24 weeks additionally improved postural balance in individuals with intellectual disability (ID). We also attempted to assess whether the effects of the above intervention program were still noticeable after 8 weeks of holidays, in which participants did not take any rehabilitation exercises. A total of 34 adolescents, aged 14-16 years (15.06±0.9), with moderate ID took part in our study. The experimental group (E) consisted of 17 individuals, who continued the intervention program originated 3 months earlier, and the control group (C) comprised the same number of participants. Postural balance was assessed on a stabilometric platform Alfa. Having extended the workout period by another 12 weeks, we noticed that the path length of the center of pressure (COP) covered by participants on tests with their eyes open and closed significantly shortened. After a lapse of 8 weeks from the completion of the program, the experimental group revealed a statistically significant decrease in the velocity along the medio-lateral (M/L) and anterior-posterior (A/P) axes. The remaining variables stayed at the same level and the control group did not demonstrate any statistically significant changes. Dual-task exercises, in which enhancing functional tasks of daily living is combined with a parallel stimulation of balance reactions, may improve static balance in persons with ID. Copyright © 2014 Elsevier Ltd. All rights reserved.
McCaskey, Michael A; Wirth, Brigitte; Schuster-Amft, Corina; de Bruin, Eling D
2018-01-01
Reduced postural control is thought to contribute to the development and persistence of chronic non-specific low back pain (CNLBP). It is therefore frequently assessed in affected patients and commonly reported as the average amount of postural sway while standing upright under a variety of sensory conditions. These averaged linear outcomes, such as mean centre of pressure (CP) displacement or mean CP surface areas, may not reflect the true postural status. Adding nonlinear outcomes and multi-segmental kinematic analysis has been reported to better reflect the complexity of postural control and may detect subtler postural differences. In this cross-sectional study, a combination of linear and nonlinear postural parameters were assessed in patients with CNLBP (n = 24, 24-75 years, 9 females) and compared to symptom-free controls (CG, n = 34, 22-67 years, 11 females). Primary outcome was postural control measured by variance of joint configurations (uncontrolled manifold index, UI), confidence ellipse surface areas (CEA) and approximate entropy (ApEn) of CP dispersion during the response phase of a perturbed postural control task on a swaying platform. Secondary outcomes were segment excursions and clinical outcome correlates for pain and function. Non-parametric tests for group comparison with P-adjustment for multiple comparisons were conducted. Principal component analysis was applied to identify patterns of segmental contribution in both groups. CNLBP and CG performed similarly with respect to the primary outcomes. Comparison of joint kinematics revealed significant differences of hip (P < .001) and neck (P < .025) angular excursion, representing medium to large group effects (r's = .36 - .51). Significant (P's < .05), but moderate correlations of ApEn (r = -.42) and UI (r = -.46) with the health-related outcomes were observed. These findings lend further support to the notion that averaged linear outcomes do not suffice to describe subtle postural differences in CNLBP patients with low to moderate pain status.
Chen, Fu-Chen; Chen, Hsin-Lin; Tu, Jui-Hung; Tsai, Chia-Liang
2015-09-01
People often multi-task in their daily life. However, the mechanisms for the interaction between simultaneous postural and non-postural tasks have been controversial over the years. The present study investigated the effects of light digital touch on both postural sway and visual search accuracy for the purpose of assessing two hypotheses (functional integration and resource competition), which may explain the interaction between postural sway and the performance of a non-postural task. Participants (n=42, 20 male and 22 female) were asked to inspect a blank sheet of paper or visually search for target letters in a text block while a fingertip was in light contact with a stable surface (light touch, LT), or with both arms hanging at the sides of the body (no touch, NT). The results showed significant main effects of LT on reducing the magnitude of postural sway as well as enhancing visual search accuracy compared with the NT condition. The findings support the hypothesis of function integration, demonstrating that the modulation of postural sway can be modulated to improve the performance of a visual search task. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of vestibular information in initiation of rapid postural responses
NASA Technical Reports Server (NTRS)
Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)
1998-01-01
Patients with bilateral vestibular loss have difficulty maintaining balance without stepping when standing in tandem, on compliant surfaces, across narrow beams, or on one foot, especially with eyes closed. Normal individuals (with no sensory impairment) maintain balance in these tasks by employing quick, active hip rotation (a "hip strategy"). The absence of a hip strategy in vestibular patients responding to translations of a short support surface has previously been taken as evidence that the use of hip strategy requires an intact vestibular system. However, many tasks requiring hip strategy alter one or a combination of important system characteristics, such as initial state of the body (tandem stance), dynamics (compliant surfaces), or biomechanical limits of stability (narrow beams). Therefore, the balance deficit in these tasks may result from a failure to account for these support surface alterations when planning and executing sensorimotor responses. In this study, we tested the hypothesis that vestibular information is critical to trigger a hip strategy even on an unaltered support surface, which imposes no changes on the system characteristics. We recorded the postural responses of vestibular patients and control subjects with eyes closed to rearward support surface translations of varying velocity, in erect stance on a firm, flat surface. Subjects were instructed to maintain balance without stepping, if possible. Faster translation velocities (25 cm/s or more) produced a consistent pattern of early hip torque (first 400 ms) in control subjects (i.e., a hip strategy). Most of the patients with bilateral vestibular loss responded to the same translation velocities with similar torques. Contrary to our hypothesis, we conclude that vestibular function is not necessary to trigger a hip strategy. We postulate, therefore, that the balance deficit previously observed in vestibular patients during postural tasks that elicit a hip strategy may have been due to the sensorimotor consequences of the system alterations imposed by the postural tasks used in those studies. Preliminary results from two younger patients who lost vestibular function as infants indicate that age, duration of vestibular loss, and/or the timing of the loss may also be factors that can influence the use of hip strategy as a rapid postural response.
Dusing, Stacey C; Thacker, Leroy R; Galloway, James C
2016-08-01
Infants born preterm are at increased risk of developmental disabilities, that may be attributed to their early experiences and ability to learn. The purpose of this paper was to evaluate the ability of infants born preterm to adapt their postural control to changing task demands. This study included 18 infants born at 32 weeks of gestation or less whose posture was compared in supine under 2 conditions, with and without a visual stimulus presented. The postural variability, measured with root mean squared displacement of the center of pressure, and postural complexity, measured with the approximate entropy of the center of pressure displacement were measured longitudinally from 2.5 to 5 months of age. The infants looked at the toys in midline for several months prior to adapting their postural variability in a manner similar to full term infants. Only after postural variability was reduced in both the caudal cephalic and medial lateral direction in the toy condition did the infants learn to reach for the toy. Postural complexity did not vary between conditions. These findings suggest that infants used a variety of strategies to control their posture. In contrast to research with infants born full term, the infants born preterm in this study did not identify the successful strategy of reducing movement of the center of pressure until months after showing interest in the toy. This delayed adaptation may impact the infants ability to learn over time. Copyright © 2016 Elsevier Inc. All rights reserved.
Kadri, Mohamed Abdelhafid; Noé, Frederic; Nouar, Merbouha Boulahbel; Paillard, Thierry
2017-09-01
To compare the effects of unilateral strength training by stimulated and voluntary contractions on muscle strength and monopedal postural control of the contralateral limb. 36 non-active healthy male subjects were recruited and split randomly into three groups. Two groups of 12 subjects took part in a strength-training program (3 sessions a week over 8 weeks) comprising 43 contractions of the quadriceps femoris of the ipsilateral limb (at 20% of the MVC). One group carried out voluntary contractions exclusively (VOL group), while the other group benefited exclusively from electro-induced contractions (NMES group). The other 12 subjects formed the control (CON) group. Assessments of MVC and monopedal postural control in static and dynamic postural tasks were performed with the ipsilateral (ISPI) and contralateral (CONTRA) limbs before (PRE) and after (POST) completion of the training program. After the training program, the MVC of the IPSI and CONTRA limbs increased similarly for both experimental groups (VOL and NMES). There were no significant improvements of monopedal postural control for the IPSI or CONTRA limbs in either the VOL or NMES experimental group. No change was observed for the CON group over the protocol period. The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.
Fuhrman, Susan I.; Redfern, Mark S.; Jennings, J. Richard; Perera, Subashan; Nebes, Robert D.; Furman, Joseph M.
2013-01-01
Postural dual-task studies have demonstrated effects of various executive function components on gait and postural control in older adults. The purpose of the study was to explore the role of inhibition during lateral step initiation. Forty older adults participated (range 70–94 yr). Subjects stepped to the left or right in response to congruous and incongruous visual cues that consisted of left and right arrows appearing on left or right sides of a monitor. The timing of postural adjustments was identified by inflection points in the vertical ground reaction forces (VGRF) measured separately under each foot. Step responses could be classified into preferred and nonpreferred step behavior based on the number of postural adjustments that were made. Delays in onset of the first postural adjustment (PA1) and liftoff (LO) of the step leg during preferred steps progressively increased among the simple, choice, congruous, and incongruous tasks, indicating interference in processing the relevant visuospatial cue. Incongruous cues induced subjects to make more postural adjustments than they typically would (i.e., nonpreferred steps), representing errors in selection of the appropriate motor program. During these nonpreferred steps, the onset of the PA1 was earlier than during the preferred steps, indicating a failure to inhibit an inappropriate initial postural adjustment. The functional consequence of the additional postural adjustments was a delay in the LO compared with steps in which they did not make an error. These results suggest that deficits in inhibitory function may detrimentally affect step decision processing, by delaying voluntary step responses. PMID:23114211
Reaching while standing in microgravity: a new postural solution to oversimplify movement control.
Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry
2012-01-01
Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.
The dentist's operating posture - ergonomic aspects.
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-06-15
The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.
What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?
König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.
Lesion symptom map of cognitive-postural interference in multiple sclerosis.
Ruggieri, Serena; Fanelli, Fulvia; Castelli, Letizia; Petsas, Nikolaos; De Giglio, Laura; Prosperini, Luca
2018-04-01
To investigate the disease-altered structure-function relationship underlying the cognitive-postural interference (CPI) phenomenon in multiple sclerosis (MS). We measured postural sway of 96 patients and 48 sex-/age-matched healthy controls by force platform in quiet standing (single-task (ST)) while performing the Stroop test (dual-task (DT)) to estimate the dual-task cost (DTC) of balance. In patient group, binary T2 and T1 lesion masks and their corresponding lesion volumes were obtained from magnetic resonance imaging (MRI) of brain. Normalized brain volume (NBV) was also estimated by SIENAX. Correlations between DTC and lesion location were determined by voxel-based lesion symptom mapping (VLSM) analyses. Patients had greater DTC than controls ( p < 0.001). Among whole brain MRI metrics, only T1 lesion volume correlated with DTC ( r = -0.27; p < 0.01). However, VLSM analysis did not reveal any association with DTC using T1 lesion masks. By contrast, we found clusters of T2 lesions in distinct anatomical regions (anterior and superior corona radiata, bilaterally) to be correlated with DTC ( p < 0.01 false discovery rate (FDR)-corrected). A multivariable stepwise regression model confirmed findings from VLSM analysis. NBV did not contribute to fit the model. Our findings suggest that the CPI phenomenon in MS can be explained by disconnection along specific areas implicated in task-switching abilities and divided attention.
Postural trials: expertise in rhythmic gymnastics increases control in lateral directions.
Calavalle, A R; Sisti, D; Rocchi, M B L; Panebianco, R; Del Sal, M; Stocchi, V
2008-11-01
The first aim of this paper was to investigate if expertise in rhythmic gymnastics influences postural performance even in an easy non-specific task such as bipedal posture. Rhythmic gymnastics is a unique female sport which encompasses aspects of both artistic gymnastics and ballet and includes the use of a small apparatus (rope, hoop, ball, clubs and ribbon). Most previous studies have shown that expertise achieved by artistic gymnasts and dancers improves postural steadiness only in the situations for which those athletes are trained. Literature has not yet compared rhythmic gymnasts to other athletes in terms of their postural strategies. Hence, the study presented herein tested a group of high level rhythmic gymnasts and a group of female university students, trained in other sports, in the bipedal posture under eyes open and closed conditions. A force platform was used to record body sway. (1) Distance from the centre of sway, (2) lateral and (3) antero-posterior displacements were analyzed in time and frequency domains. Comparing the two groups, it was found that rhythmic gymnasts had better strategies than students in simple postural tasks, especially in lateral directions and in the period from 0.05 to 2 s. The most interesting finding in this study is that rhythmic gymnastics training seems to have a direct effect on the ability to maintain bipedal posture, which may confirm the "transfer" hypothesis of rhythmic gymnastics expertise to bipedal postural sway, especially in medio-lateral displacements. This finding has never been reported in previous studies on artistic gymnasts and ballet dancers. Furthermore, the present study confirmed the visual dependence of all the athletes, irrespective of their disciplines, in their postural trials.
The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.
Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J
2014-01-01
This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.
Risk Factors for Developing Work-Related Musculoskeletal Disorders during Dairy Farming.
Taghavi, Sayed Mohammad; Mokarami, Hamidreza; Ahmadi, Omran; Stallones, Lorann; Abbaspour, Asghar; Marioryad, Hossein
2017-01-01
Dairy farming work involves frequent use of poor postures. These postures may increase the risk of developing musculoskeletal disorders among dairy workers. To assess postural load during performance of various tasks related to dairy farming. This cross-sectional study was conducted on a dairy farm in Iran. In order to assess postural load, tasks related to dairy farming were divided into 3 categories: feeding, milking, and manure disposal. Each task was then divided into its constituent work subdivisions (tasks). Finally, the working posture for each work subdivision was evaluated using Rapid Entire Body Assessment (REBA). Based on the results from the REBA score, the poorest risk scores (risk level 4) were associated with the following tasks: (1) manure disposal, (2) filling feed bags, and (3) pouring milk into a bucket. Other tasks such as filling corn containers, pouring corn into the milling machine, preparing the feed, pouring food into mangers, attaching the milking machine, and pouring milk from a bucket into a tank imposed high risk (risk level 3). The risk for the tasks of washing and disinfecting the udders were assessed as medium risks. The risk levels associated with most of the tasks on the studied farm were unacceptably high. Therefore, it is essential to implement ergonomic interventions to reduce risk levels of the tasks.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability. PMID:29445655
Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.
Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S
2008-02-06
Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.
Sela, Itamar; Karni, Avi
2012-01-01
The ‘Cerebellar Deficit Theory’ of developmental dyslexia proposes that a subtle developmental cerebellar dysfunction leads to deficits in attaining ‘automatic’ procedures and therefore manifests as subtle motor impairments (e.g., balance control, motor skill learning) in addition to the reading and phonological difficulties. A more recent version of the theory suggests a core deficit in motor skill acquisition. This study was undertaken to compare the time-course and the nature of practice-related changes in volitional (manual) and non-volitional (posture) motor performance in dyslexic and typical readers while learning a new movement sequence. Seventeen dyslexic and 26 skilled young adult readers underwent a three-session training program in which they practiced a novel sequence of manual movements while standing in a quiet stance position. Both groups exhibited robust and well-retained gains in speed, with no loss of accuracy, on the volitional, manual, aspects of the task, with a time-course characteristic of procedural learning. However, the dyslexic readers exhibited a pervasive slowness in the initiation of volitional performance. In addition, while typical readers showed clear and well-retained task-related adaptation of the balance and posture control system, the dyslexic readers had significantly larger sway and variance of sway throughout the three sessions and were less efficient in adapting the posture control system to support the acquisition of the novel movement sequence. These results support the notion of a non-language-related deficit in developmental dyslexia, one related to the recruitment of motor systems for effective task performance rather than to a general motor learning disability. PMID:23049736
Doumas, Michail
2017-01-01
We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18–35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition–M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant’s body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS’ growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control. PMID:28099522
Craig, Chesney E; Doumas, Michail
2017-01-01
We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18-35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition-M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant's body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS' growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control.
(De)stabilization of Required and Spontaneous Postural Dynamics with Learning
ERIC Educational Resources Information Center
Faugloire, Elise; Bardy, Benoit G.; Stoffregen, Thomas A.
2009-01-01
The present research examined how learning a new ankle-hip coordination influenced the preexisting postural repertoire. Standing participants learned a new ankle-hip coordination mode (relative phase of 90[degrees]). Before and after practice, postural patterns were evaluated in two different tasks. In the required task, specific ankle-hip…
A multimodal assessment of balance in elderly and young adults.
King, Gregory W; Abreu, Eduardo L; Cheng, An-Lin; Chertoff, Keyna K; Brotto, Leticia; Kelly, Patricia J; Brotto, Marco
2016-03-22
Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation.
A multimodal assessment of balance in elderly and young adults
King, Gregory W.; Abreu, Eduardo L.; Cheng, An-Lin; Chertoff, Keyna K.; Brotto, Leticia; Kelly, Patricia J.; Brotto, Marco
2016-01-01
Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation. PMID:26934319
Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud
2018-06-01
In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.
Butchard-MacDonald, Emma; Paul, Lorna; Evans, Jonathan J
2018-03-01
People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined. A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measured via the Modified Fatigue Index Scale. No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527; p=.001) and depression (rho=0.451; p=.007). RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties. (JINS, 2018, 24, 247-258).
The effect of standing desks on manual control in children and young adults.
Britten, L; Shire, K; Coats, R O; Astill, S L
2016-07-01
The aim of the present study was to establish if and how the additional postural constraint of standing affects accuracy and precision of goal directed naturalistic actions. Forty participants, comprising 20 young adults aged 20-23 years and 20 children aged 9-10 years completed 3 manual dexterity tasks on a tablet laptop with a handheld stylus during two separate conditions (1) while standing and (2) while seated. The order of conditions was counterbalanced across both groups of participants. The tasks were (1) a tracking task, where the stylus tracked a dot in a figure of 8 at 3 speeds, (2) an aiming task where the stylus moved from dot to dot with individual movements creating the outline of a pentagram and (3) a tracing task, where participants had to move the stylus along a static pathway or maze. Root mean squared error (RMSE), movement time and path accuracy, respectively, were used to quantify the effect that postural condition had on manual control. Overall adults were quicker and more accurate than children when performing all 3 tasks, and where the task speed was manipulated accuracy was better at slower speeds for all participants. Surprisingly, children performed these tasks more quickly and more accurately when standing compared to when sitting. In conclusion, standing at a desk while performing goal directed tasks did not detrimentally affect children's manual control, and moreover offered a benefit. Copyright © 2016 Elsevier B.V. All rights reserved.
Tommasino, Paolo; Campolo, Domenico
2017-01-01
A major challenge in robotics and computational neuroscience is relative to the posture/movement problem in presence of kinematic redundancy. We recently addressed this issue using a principled approach which, in conjunction with nonlinear inverse optimization, allowed capturing postural strategies such as Donders' law. In this work, after presenting this general model specifying it as an extension of the Passive Motion Paradigm, we show how, once fitted to capture experimental postural strategies, the model is actually able to also predict movements. More specifically, the passive motion paradigm embeds two main intrinsic components: joint damping and joint stiffness. In previous work we showed that joint stiffness is responsible for static postures and, in this sense, its parameters are regressed to fit to experimental postural strategies. Here, we show how joint damping, in particular its anisotropy, directly affects task-space movements. Rather than using damping parameters to fit a posteriori task-space motions, we make the a priori hypothesis that damping is proportional to stiffness. This remarkably allows a postural-fitted model to also capture dynamic performance such as curvature and hysteresis of task-space trajectories during wrist pointing tasks, confirming and extending previous findings in literature. PMID:29249954
Rhine, Tara D; Byczkowski, Terri L; Clark, Ross A; Babcock, Lynn
2016-05-01
To examine postural instability in children acutely after concussion, using the Wii Balance Board (WBB). We hypothesized that children with traumatic brain injury would have significantly worse balance relative to children without brain injury. Prospective case-control pilot study. Emergency department of a tertiary urban pediatric hospital. Cases were a convenience sample 11-16 years old who presented within 6 hours of sustaining concussion. Two controls, matched on gender, height, and age, were enrolled for each case that completed study procedures. Controls were children who presented for a minor complaint that was unlikely to affect balance. Not applicable. The participant's postural sway expressed as the displacement in centimeters of the center of pressure during a timed balance task. Balance testing was performed using 4 stances (single or double limb, eyes open or closed). Three of the 17 (17.6%) cases were too dizzy to complete testing. One stance, double limbs eyes open, was significantly higher in cases versus controls (85.6 vs 64.3 cm, P = 0.04). A simple test on the WBB consisting of a 2-legged standing balance task with eyes open discriminated children with concussion from non-head-injured controls. The low cost and feasibility of this device make it a potentially viable tool for assessing postural stability in children with concussion for both longitudinal research studies and clinical care. These pilot data suggest that the WBB is an inexpensive tool that can be used on the sideline or in the outpatient setting to objectively identify and quantify postural instability.
Heilskov-Hansen, Thomas; Wulff Svendsen, Susanne; Frølund Thomsen, Jane; Mikkelsen, Sigurd; Hansson, Gert-Åke
2014-01-01
Objectives Sex differences in occupational biomechanical exposures may be part of the explanation why musculoskeletal complaints and disorders tend to be more common among women than among men. We aimed to determine possible sex differences in task distribution and task-specific postures and movements of the upper extremities among Danish house painters, and to establish sex-specific task exposure matrices. Methods To obtain task distributions, we sent out a questionnaire to all members of the Painters' Union in Denmark (N = 9364), of whom 53% responded. Respondents reported their task distributions in a typical week. To obtain task exposures, postures and movements were measured in 25 male and 25 female house painters for one whole working day per person. We used goniometers on the wrists, and inclinometers on the forehead and the upper arms. Participants filled in a logbook allowing task-specific exposures to be identified. Percentiles and % time with non-neutral postures were used to characterise postures. Velocity, range of motion, repetitiveness, and variation were used as measures of movement. Cochran-Mantel-Haenszel statistics and unpaired double-sided t-tests with post-hoc Bonferroni correction were used to evaluate sex differences. Results Statistically significant (p<0.05) sex differences were revealed in task proportions, but the proportions differed by less than 4%. For task exposures, no statistically significant sex differences were found. Conclusions Only minor sex differences were found in task distribution and task exposures regarding postures and movements among Danish house painters. Sex-specific task exposure matrices were established. PMID:25365301
Posture and performance: sitting vs. standing for security screening.
Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R
2008-03-01
A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.
Grasp posture alters visual processing biases near the hands
Thomas, Laura E.
2015-01-01
Observers experience biases in visual processing for objects within easy reach of their hands that may assist them in evaluating items that are candidates for action. I investigated the hypothesis that hand postures affording different types of actions differentially bias vision. Across three experiments, participants performed global motion detection and global form perception tasks while their hands were positioned a) near the display in a posture affording a power grasp, b) near the display in a posture affording a precision grasp, or c) in their laps. Although the power grasp posture facilitated performance on the motion task, the precision grasp posture instead facilitated performance on the form task. These results suggest that the visual system weights processing based on an observer’s current affordances for specific actions: fast and forceful power grasps enhance temporal sensitivity, while detail-oriented precision grasps enhance spatial sensitivity. PMID:25862545
... straight. Soft, sunken chairs and sofas do not foster proper alignment and may affect the position of ... dystonia, one should consider modifying the task to foster posture and muscle control. A person with trouble ...
The dentist’s operating posture – ergonomic aspects
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-01-01
Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007
Joly, Marine; Scheumann, Marina; Zimmermann, Elke
2012-01-01
Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.
Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur
2013-12-01
The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B
2015-01-01
To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Postural response to predictable and nonpredictable visual flow in children and adults.
Schmuckler, Mark A
2017-11-01
Children's (3-5years) and adults' postural reactions to different conditions of visual flow information varying in its frequency content was examined using a moving room apparatus. Both groups experienced four conditions of visual input: low-frequency (0.20Hz) visual oscillations, high-frequency (0.60Hz) oscillations, multifrequency nonpredictable visual input, and no imposed visual information. Analyses of the frequency content of anterior-posterior (AP) sway revealed that postural reactions to the single-frequency conditions replicated previous findings; children were responsive to low- and high-frequency oscillations, whereas adults were responsive to low-frequency information. Extending previous work, AP sway in response to the nonpredictable condition revealed that both groups were responsive to the different components contained in the multifrequency visual information, although adults retained their frequency selectivity to low-frequency versus high-frequency content. These findings are discussed in relation to work examining feedback versus feedforward control of posture, and the reweighting of sensory inputs for postural control, as a function of development and task context. Copyright © 2017 Elsevier Inc. All rights reserved.
Mazzà, Claudia; Zok, Mounir; Della Croce, Ugo
2005-06-01
The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.
Frank, Barnett S.; Gilsdorf, Christine M.; Goerger, Benjamin M.; Prentice, William E.; Padua, Darin A.
2014-01-01
Background: Females with history of anterior cruciate ligament (ACL) injury and subsequent ligament reconstruction are at high risk for future ACL injury. Fatigue may influence the increased risk of future injury in females by altering lower extremity biomechanics and postural control. Hypothesis: Fatigue will promote lower extremity biomechanics and postural control deficits associated with ACL injury. Study Design: Descriptive laboratory study. Methods: Fourteen physically active females with ACL reconstruction (mean age, 19.64 ± 1.5 years; mean height, 163.52 ± 6.18 cm; mean mass, 62.6 ± 13.97 kg) volunteered for this study. Postural control and lower extremity biomechanics were assessed in the surgical limb during single-leg balance and jump-landing tasks before and after a fatigue protocol. Main outcome measures were 3-dimensional hip and knee joint angles at initial contact, peak angles, joint angular displacements and peak net joint moments, anterior tibial shear force, and vertical ground reaction force during the first 50% of the loading phase of the jump-landing task. During the single-leg stance task, the main outcome measure was center of pressure sway speed. Results: Initial contact hip flexion angle decreased (t = −2.82, P = 0.01; prefatigue, 40.98° ± 9.79°; postfatigue, 36.75° ± 8.61°) from pre- to postfatigue. Hip flexion displacement (t = 2.23, P = 0.04; prefatigue, 45.19° ± 14.1°; postfatigue, 47.48° ± 14.21°) and center of pressure sway speed (t = 3.95, P < 0.05; prefatigue, 5.18 ± 0.96 cm/s; postfatigue, 6.20 ± 1.72 cm/s) increased from pre- to postfatigue. There was a trending increase in hip flexion moment (t = 2.14, P = 0.05; prefatigue, 1.66 ± 0.68 Nm/kg/m; postfatigue, 1.91 ± 0.62 Nm/kg/m) from pre- to postfatigue. Conclusion: Fatigue may induce lower extremity biomechanics and postural control deficits that may be associated with ACL injury in physically active females with ACL reconstruction. Clinical Relevance: Rehabilitation and maintenance programs should incorporate activities that aim to improve muscular endurance and improve the neuromuscular system’s tolerance to fatiguing exercise in efforts to maintain stability and safe landing technique during subsequent physical activity. PMID:24982701
Task parameters affecting ergonomic demands and productivity of HVAC duct installation.
Mitropoulos, Panagiotis; Hussain, Sanaa; Guarascio-Howard, Linda; Memarian, Babak
2014-01-01
Mechanical installation workers experience work-related musculoskeletal disorders (WMSDs) at high rates. (1) Quantify the ergonomic demands during HVAC installation, (2) identify the tasks and task parameters that generated extreme ergonomic demands, and (3) propose improvements to reduce the WMSDs among mechanical workers. The study focused on installation of rectangular ductwork components using ladders, and analyzed five operations by two mechanical contractors. Using continuous time observational assessment, the videotaped operations were analyzed along two dimensions: (1) the production tasks and durations, and (2) the ergonomic demands for four body regions (neck, arms/shoulders, back, and knees). The analysis identified tasks with low portion of productive time and high portion of extreme postures, and task parameters that generated extreme postures. Duct alignment was the task with the highest portion of extreme postures. The position of the ladder (angle and distance from the duct) was a task parameter that strongly influenced the extreme postures for back, neck and shoulders. Other contributing factors included the difficulty to reach the hand tools when working on the ladder, the congestion of components in the ceiling, and the space between the duct and the ceiling. The identified tasks and factors provide directions for improvement.
Yiou, Eric; Mezaour, Malha; Le Bozec, Serge
2009-04-01
This study investigated how young healthy subjects control their equilibrium in situations of instability specifically elicited by a reduced capacity of force production in the postural muscle system. Ten subjects displaced a bar forward with both hands at maximal velocity toward a target while standing on the dominant leg (UNID), on the nondominant leg (UNIND), or on both legs. In each stance condition, anticipatory postural adjustments (APAs) were elicited. Along the anteroposterior axis, APAs were two-times longer in UNID and UNIND than in bipedal stance, while the anticipatory inertia forces remained equivalent. The focal performance was maintained without any additive postural perturbation. A small effect of leg dominance could be detected on APAs along the mediolateral axis (i.e., anticipatory inertia forces were higher in UNIND than in UNID). These results stress the adaptability of the central nervous system to the instability specifically elicited by reduced postural muscle system efficiency.
Postural adjustments associated with voluntary contraction of leg muscles in standing man.
Nardone, A; Schieppati, M
1988-01-01
The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early features in the soleus or tibialis anterior EMG were absent, and the corresponding changes in the foot-floor reaction forces were lacking. The anticipatory phenomena observed are considered postural adjustments because they appear only in the free-standing situation, and induce a body sway in the appropriate direction to counteract the destabilizing thrust due to the voluntary contraction of soleus or tibialis anterior. The central organization and descending control of posture and movements are briefly discussed in the light of the short latency of the anticipatory phenomena and of their close association with the focal movement.
Scariot, Vanessa; Rios, Jaqueline L; Claudino, Renato; Dos Santos, Eloá C; Angulski, Hanna B B; Dos Santos, Marcio J
2016-01-01
The main objective of this study was to analyze the role of balance exercises on anticipatory (APA) and compensatory (CPA) postural adjustments in different conditions of postural stability. Sixteen subjects were required to catch a ball while standing on rigid floor, trampoline and foam cushion surfaces. Electromyographic activities (EMG) of postural muscles were analyzed during time windows typical for APAs and CPAs. Overall there were a reciprocal activation of the muscles around the ankle and co-activations between ventral and dorsal muscles of the thigh and trunk during the catching a ball task. Compared to the rigid floor, the tibialis anterior activation was greater during the trampoline condition (CPA: p = 0.006) and the soleus muscle inhibition was higher during foam cushion condition (APA: p = 0.001; CPA: p = 0.007). Thigh and trunk muscle activities were similar across the conditions. These results advance the knowledge in postural control during body perturbations standing on unstable surfaces. Published by Elsevier Ltd.
Coordination between posture and movement: interaction between postural and accuracy constraints.
Berrigan, Félix; Simoneau, Martin; Martin, Olivier; Teasdale, Normand
2006-04-01
We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). For both postural conditions, all targets were within the reaching space in front of the subjects and kept at a fixed relative position with respect to the subjects' body. Hence, for a given target size, the aiming was differentiated only by the postural context (seated vs. upright standing). For both postural conditions, movement time (MT) followed the well-known Fitts' law, that is, it increased with a decreasing target size. For the smallest target width, however, the increased MT was greater when subjects were standing than when they were seated suggesting that the difficulty of the aiming task could not be determined solely by the target size. When standing, a coordination between the trunk and the arm was observed. Also, as the target size decreased, the center of pressure (CP) displacement increased without any increase in CP speed suggesting that the subjects were regulating their CP to provide a controlled referential to assist the hand movement. When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints.
Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.
Zharikova, A V; Zhavoronkova, L A; Maksakova, O A; Kuptsova, S V
2012-01-01
Dual tasks with voluntary postural control and calculation have been done by 14 patients (25.7 +/- 4.7 yo.) after traumatic brain injury and 40 healthy volunteers (29.8 +/- 2.5 y.o.). Complex clinical (MMSE, FIM, MPAI-3 and Berg scales) and stabilographic evaluation has been performed. According to clinical evaluation 8 patients were included into group 1 with less severe functional deficit and 6 patients formed group 2 with more severe deficit. Parameters of motor and especially cognitive sub-tasks in patients were lower than in healthy subjects in both separate and dual tasks. In group 2 these parameters were lower than in group 1. Certain types of dual task where the quality of sub-tasks, especially of the motor-one increased in healthy subjects and patients of the first group were revealed. The complex of stabilographic parameters which could be used for estimation of quality of sub-tasks performance has been revealed. Dual tasks could be an additional method of evaluation of patients' adaptive possibilities and certain type of dual task could become a promising approach to recovery at late period of rehabilitation.
Effect of Task Constraint on Reaching Performance in Children with Spastic Diplegic Cerebral Palsy
ERIC Educational Resources Information Center
Ju, Yun-Huei; You, Jia-Yuan; Cherng, Rong-Ju
2010-01-01
The purposes of the study were to examine the effect of task constraint on the reaching performance in children with spastic cerebral palsy (CP) and to examine the correlations between the reaching performance and postural control. Eight children with CP and 16 typically developing (TD) children participated in the study. They performed a…
Davids, Keith; Liukkonen, Jarmo; Orth, Dominic; Chow, Jia Yi; Jaakkola, Timo
2017-01-01
Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges’ g) standardized mean differences (SMD) = 0.31–0.66) were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS), in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries), and under different task constraints (i.e., unipedal, bipedal, and eyes open). A Textured Material Stimulation Strategy (TMSS) enhanced postural control in the most challenging condition—eyes-closed on a stable surface (SMD = 0.61), and in older adults (SMD = 0.30). The Wearable Garments Stimulation Strategy (WGSS) showed no or adverse effects (SMD = -0.68–0.05) under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20). Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual needs. PMID:28355265
The Effects of Performance Fatigability on Postural Control and Rehabilitation in the Older Patient
Hassan, Mahdi; Bugnariu, Nicoleta
2016-01-01
Fatigue is common in older adults and has a significant effect on quality of life. Despite the high prevalence of fatigue in older individuals, several aspects are poorly understood. It is important to differentiate subjective fatigue complaints from fatigability of motor performance because the two are independent constructs with potentially distinct consequences on mobility. Performance fatigability is the magnitude of change in a performance criterion over a given time of task performance. Performance fatigability is a compulsory element of any strength training program, yet strength training is an important component of rehabilitation programs for older adults. The consequences of fatigability for older adults suggest that acute exercise of various types may result in acute impairments in postural control. The effects of performance fatigability on postural control in older adults are evaluated here to aid the rehabilitation clinician in making recommendations for evaluation of fall risks and exercise prescription. PMID:28154794
The Effects of Performance Fatigability on Postural Control and Rehabilitation in the Older Patient.
Papa, Evan V; Hassan, Mahdi; Bugnariu, Nicoleta
2016-09-01
Fatigue is common in older adults and has a significant effect on quality of life. Despite the high prevalence of fatigue in older individuals, several aspects are poorly understood. It is important to differentiate subjective fatigue complaints from fatigability of motor performance because the two are independent constructs with potentially distinct consequences on mobility. Performance fatigability is the magnitude of change in a performance criterion over a given time of task performance. Performance fatigability is a compulsory element of any strength training program, yet strength training is an important component of rehabilitation programs for older adults. The consequences of fatigability for older adults suggest that acute exercise of various types may result in acute impairments in postural control. The effects of performance fatigability on postural control in older adults are evaluated here to aid the rehabilitation clinician in making recommendations for evaluation of fall risks and exercise prescription.
Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; De Bellis, Francesco; Grossi, Dario; Trojano, Luigi
2015-04-01
Judgments on laterality of hand stimuli are faster and more accurate when dealing with one's own than others' hand, i.e. the self-advantage. This advantage seems to be related to activation of a sensorimotor mechanism while implicitly processing one's own hands, but not during explicit one's own hand recognition. Here, we specifically tested the influence of proprioceptive information on the self-hand advantage by manipulating participants' body posture during self and others' hand processing. In Experiment 1, right-handed healthy participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. In both experiments, the participants performed the task while holding their left or right arm flexed with their hand in direct contact with their chest ("flexed self-touch posture") or with their hand placed on a wooden smooth surface in correspondence with their chest ("flexed proprioceptive-only posture"). In an "extended control posture", both arms were extended and in contact with thighs. In Experiment 1 (hand laterality judgment), we confirmed the self-advantage and demonstrated that it was enhanced when the subjects judged left-hand stimuli at 270° orientation while keeping their left arm in the flexed proprioceptive-only posture. In Experiment 2 (explicit self-hand recognition), instead, we found an advantage for others' hand ("self-disadvantage") independently from posture manipulation. Thus, position-related proprioceptive information from left non-dominant arm can enhance sensorimotor one's own body representation selectively favouring implicit self-hands processing.
Children's catching performance when the demands on the postural system is altered.
Angelakopoulos, Georgios T; Tsorbatzoudis, Haralambos; Grouios, George
2014-07-01
In many dynamic interceptive actions performers need to integrate activity of manual and postural subsystems for successful performance. Groups of different skill level (poor and good catchers), (mean age = 9.1 and 9.4 respectively) were required to perform one-handed catches under different postural constraints: standing; standing in contact with a postural support aid by their side (PSAS) or to the left of their trunk (PSAF); Tandem; and sitting (control). Results revealed that, for poor catchers, the number of successful catches increased and grasp errors decreased significantly when sitting and with both postural aids in comparison with standing alone and Tandem conditions. Kinematic analyses showed that the postural aid devices reduced head sway in the anterior-posterior direction, while the PSAF reduced lateral head sway. The poor catchers' performance benefited from an enlarged support surface, and reduction of lateral sway. Good catchers performed successfully under all task constraints, signifying the existence of a functional relationship between postural and grasping subsystems during performance. The results are discussed in the frame of Bernstein's (1967) and Newell's (1986) theory.
THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT
Schmitz, Randy
2012-01-01
Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640
Huntley, Andrew H; Zettel, John L; Vallis, Lori Ann
2016-01-01
A "reach and transport object" task that represents common activities of daily living may provide improved insight into dynamic postural stability and movement variability deficits in older adults compared to previous lean to reach and functional reach tests. Healthy young and older, community dwelling adults performed three same elevation object transport tasks and two multiple elevation object transport tasks under two self-selected speeds, self-paced and fast-paced. Dynamic postural stability and movement variability was quantified by whole-body center of mass motion. Older adults demonstrated significant decrements in frontal plane stability during the multiple elevation tasks while exhibiting the same movement variability as their younger counterparts, regardless of task speed. Interestingly, older adults did not exhibit a tradeoff in maneuverability in favour of maintaining stability throughout the tasks, as has previously been reported. In conclusion, the multi-planar, ecologically relevant tasks employed in the current study were specific enough to elucidate decrements in dynamic stability, and thus may be useful for assessing fall risk in older adults with suspected postural instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Side-alternating vibration training for balance and ankle muscle strength in untrained women.
Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia
2013-01-01
Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.
Gilleard, W; Smith, T
2007-02-01
Effects of obesity on trunk forward flexion motion in sitting and standing, and postural adaptations and hip joint moment for a standing work task. Cross-sectional comparison of obese and normal weight groups. Ten obese subjects (waist girth 121.2+/-16.8 cm, body mass index (BMI) 38.9+/-6.6 kg m(-2)) and 10 age- and height-matched normal weight subjects (waist girth 79.6+/-6.4 cm, BMI 21.7+/-1.5 kg m(-2)). Trunk motion during seated and standing forward flexion, and trunk posture, hip joint moment and hip-to-bench distance during a simulated standing work task were recorded. Forward flexion motion of the thoracic segment and thoracolumbar spine was decreased for the obese group with no change in pelvic segment and hip joint motion. Obese subjects showed a more flexed trunk posture and increased hip joint moment and hip-to-bench distance for a simulated standing work task. Decreased range of forward flexion motion, differing effects within the trunk, altered posture during a standing work task and concomitant increases in hip joint moment give insight into the aetiology of functional decrements and musculoskeletal pain seen in obesity.
Specificity of postural sway to the demands of a precision task at sea.
Chen, Fu-Chen; Stoffregen, Thomas A
2012-06-01
Mariners actively adjust their body orientation in response to ship motion. On a ship at sea, we evaluated relations between standing postural activity and the performance of a precision aiming task. Standing participants (experienced mariners) maintained the beam from a handheld laser on a target. Targets were large or small, thereby varying the difficulty of the aiming task. Targets were located in front of the participant or to the participant's right (requiring participants to look over the right shoulder), thereby varying the functional consequences (for the aiming task) of postural activity in different body axes. The torso was oriented toward the bow or toward the ship's side (athwartship), thereby varying the effects on postural activity of differential motion of the ship in its different axes. The weather was rough, producing high magnitudes of ship motion, which sometimes caused participants to step or stagger. Our manipulations influenced the magnitude and dynamics of head and torso movements, as well as the organization of movement in different axes. The results provide the first empirical confirmation that postural activity can be influenced by orientation of the torso relative to a ship. Despite powerful effects of ship motion, postural activity was influenced by variations in target location and in the difficulty of the aiming task, replicating subtle effects that have been observed on land. We discuss implications for hull design and the placement of workstations on ships.
Analysis of postural load during tasks related to milking cows-a case study.
Groborz, Anna; Tokarski, Tomasz; Roman-Liu, Danuta
2011-01-01
The aim of this study was to analyse postural load during tasks related to milking cows of 2 farmers on 2 different farms (one with a manual milk transport system, the other with a fully automated milk transport system) as a case study. The participants were full-time farmers, they were both healthy and experienced in their job. The Ovako Working Posture Analyzing System (OWAS) was used to evaluate postural load and postural risk. Postural load was medium for the farmer on the farm with a manual milk transport system and high for the farmer working on the farm with a fully automated milk transport system. Thus, it can be concluded that a higher level of farm mechanization not always mean that the farmer's postural load is lower, but limitation of OWAS should be considered.
Postural dynamism during computer mouse and keyboard use: A pilot study.
Van Niekerk, S M; Fourie, S M; Louw, Q A
2015-09-01
Prolonged sedentary computer use is a risk factor for musculoskeletal pain. The aim of this study was to explore postural dynamism during two common computer tasks, namely mouse use and keyboard typing. Postural dynamism was described as the total number of postural changes that occurred during the data capture period. Twelve participants were recruited to perform a mouse and a typing task. The data of only eight participants could be analysed. A 3D motion analysis system measured the number of cervical and thoracic postural changes as well as, the range in which the postural changes occurred. The study findings illustrate that there is less postural dynamism of the cervical and thoracic spinal regions during computer mouse use, when compared to keyboard typing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Bekkers, Esther M J; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M P; Mirelman, Anat; Nieuwboer, Alice
2014-01-01
Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson's disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior-posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects.
Dutta, Arindam; Chugh, Sanjay; Banerjee, Alakananda; Dutta, Anirban
2014-01-01
Non-invasive brain stimulation (NIBS) is a promising tool for facilitating motor function. NIBS therapy in conjunction with training using postural feedback may facilitate physical rehabilitation following posture disorders (e.g., Pusher Syndrome). The objectives of this study were, 1) to develop a low-cost point-of-care-testing (POCT) system for standing posture, 2) to investigate the effects of anodal tDCS on functional reach tasks using the POCT system. Ten community-dwelling elderly (age >50 years) subjects evaluated the POCT system for standing posture during functional reach tasks where their balance score on Berg Balance Scale was compared with that from Center-of-Mass (CoM) - Center-of-Pressure (CoP) posturography. Then, in a single-blind, sham-controlled study, five healthy right-leg dominant subjects (age: 26.4 ± 5.3 yrs) were evaluated using the POCT system under two conditions - with anodal tDCS of primary motor representations of right tibialis anterior muscle and with sham tDCS. The maximum CoP-CoM lean-angle was found to be well correlated with the BBS score in the elderly subjects The anodal tDCS strongly (p = 0.0000) affected the maximum CoP excursions but not the return reaction time in healthy. It was concluded that the CoM-CoP lean-line could be used for posture feedback and monitoring during tDCS therapy in conjunction with balance training exercises.
Reed-Jones, James G; Reed-Jones, Rebecca J; Hollands, Mark A
2014-04-30
The useful field of view (UFOV) is the visual area from which information is obtained at a brief glance. While studies have examined the effects of increased cognitive load on the visual field, no one has specifically looked at the effects of postural control or locomotor activity on the UFOV. The current study aimed to examine the effects of postural demand and locomotor activity on UFOV performance in healthy young adults. Eleven participants were tested on three modified UFOV tasks (central processing, peripheral processing, and divided-attention) while seated, standing, and stepping in place. Across all postural conditions, participants showed no difference in their central or peripheral processing. However, in the divided-attention task (reporting the letter in central vision and target location in peripheral vision amongst distracter items) a main effect of posture condition on peripheral target accuracy was found for targets at 57° of eccentricity (p=.037). The mean accuracy reduced from 80.5% (standing) to 74% (seated) to 56.3% (stepping). These findings show that postural demands do affect UFOV divided-attention performance. In particular, the size of the useful field of view significantly decreases when stepping. This finding has important implications for how the results of a UFOV test are used to evaluate the general size of the UFOV during varying activities, as the traditional seated test procedure may overestimate the size of the UFOV during locomotor activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Transfer of Dynamic Learning Across Postures
Wolpert, Daniel M.
2009-01-01
When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently. PMID:19710374
Toledo, Diana R; Barela, José A; Kohn, André F
2017-09-01
The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
A link-segment model of upright human posture for analysis of head-trunk coordination
NASA Technical Reports Server (NTRS)
Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.
1998-01-01
Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.
Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten
2015-10-01
Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.
Head posture measurements among work vehicle drivers and implications for work and workplace design.
Eklund, J; Odenrick, P; Zettergren, S; Johansson, H
1994-04-01
An increased risk of musculoskeletal disorders, e.g. from the neck region, has been found among professional drivers of work vehicles. The purpose of this study was to identify causes of postural load and implications for vehicle design and work tasks. A second purpose was to develop the methods for measurement and analysis of head postures. Field measurements of head postures for drivers of fork lift trucks, forestry machines, and cranes were carried out. The equipment used was an electric goniometer measurement system, containing a mechanical transmission between the head and the upper trunk. Methods for data presentation and quantification were developed. The results showed that rotatable and movable driver cabins improved head postures and viewing angles substantially. Narrow window frame structures and large, optimally-placed windows were also advantageous. The steering wheel, controls, and a high backrest restricted shoulder rotation, which increased head rotation in unfavourable viewing angles. Improved workspace layouts and work organization factors such as job enlargement decreased the influence of strenuous postures. The results also showed that head postures should be analysed in two or three dimensions simultaneously, otherwise the postures taken will be underestimated in relation to the maximal voluntary movement.
Measuring postural control during mini-squat posture in men with early knee osteoarthritis.
Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M
2017-04-01
Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP velocity of displacement and physical function (ρ=0.47, p=0.01) and stiffness (ρ=-0.45, p=0.02). The findings of the present study emphasize the importance of rehabilitation from the early degrees of knee OA to prevent postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee should be further investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest support the notion that in-flight treadmill exercise, in addition to providing aerobic exercise and mechanical stimuli to the bone, also has a number of sensorimotor benefits by providing: 1) A balance challenge during locomotion requiring segmental coordination in response to a downward force. 2) Body-support loading during performance of a full-body active motor task. 3) Oscillatory stimulation of the otoliths and synchronized periodic foot impacts that facilitate the coordination of gait motions and tune the full-body gaze control system. 4) Appropriate sensory input (foot tactile input, muscle and tendon stretch input) to spinal locomotor central pattern generators required for the control of locomotion. Forward work will focus on a follow-up bed rest study that incorporates aerobic and resistance exercise with a treadmill balance and gait training system that can serve as an integrated interdisciplinary countermeasure system for future exploration class missions.
Marrega, Luiz H G; Silva, Simone M; Manffra, Elisangela F; Nievola, Julio C
2015-01-01
Maintaining balance is a motor task of crucial importance for humans to perform their daily activities safely and independently. Studies in the field of Artificial Intelligence have considered different classification methods in order to distinguish healthy subjects from patients with certain motor disorders based on their postural strategies during the balance control. The main purpose of this paper is to compare the performance between Decision Tree (DT) and Genetic Programming (GP) - both classification methods of easy interpretation by health professionals - to distinguish postural sway patterns produced by healthy and stroke individuals based on 16 widely used posturographic variables. For this purpose, we used a posturographic dataset of time-series of center-of-pressure displacements derived from 19 stroke patients and 19 healthy matched subjects in three quiet standing tasks of balance control. Then, DT and GP models were trained and tested under two different experiments where accuracy, sensitivity and specificity were adopted as performance metrics. The DT method has performed statistically significant (P < 0.05) better in both cases, showing for example an accuracy of 72.8% against 69.2% from GP in the second experiment of this paper.
Claudino, Renato; dos Santos, Eloá C C; Santos, Marcio J
2013-08-01
This study investigated anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) and their relationship in older adults during lateral postural perturbations. Unpredictable and predictable postural disturbances were induced by a swinging pendulum that impacted at the shoulder level of two groups of older adults, non-fallers (20) and fallers (20), and in a group of young control subjects (20). The electromyographic (EMG) activity of the postural muscles and the center of pressure (COP) displacement were recorded and quantified within the time intervals typical for APAs and CPAs. Both groups of older adults (non-fallers and fallers) showed higher magnitude of EMG activity in the lateral muscles and increased COP displacement, particularly, during the CPAs time interval when compared to the young group. Older adults, however, were able to change the electrical activity of the muscles during the predictable task by generating APAs with similar magnitudes of those found in young subjects. Compensatory but not anticipatory adjustments are altered in older adults during predictable lateral postural perturbations. These findings provide new data on the role of APAs and CPAs in their relationship in older adults during external lateral perturbations and may advance current rehabilitative management strategies to improve balance control in older individuals. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Barbosa, Roberto N; Silva, Nilson R S; Santos, Daniel P R; Moraes, Renato; Gomes, Matheus M
2018-05-31
The force variability of the plantar flexor muscles (PFM) appears to be directly related to the control of upright standing. Nevertheless, this association is still uncertain in older adults. This study aimed to evaluate the relationship between PFM force variability and postural sway in the upright standing in older women. Forty older women performed submaximal plantar flexion movements measured by force transducers coupled to an experimental chair. They performed this task during three sets of 20 s at 5% and 10% of their maximum voluntary isometric contraction with and without the aid of visual feedback of the force produced. The volunteers then stood barefoot, with eyes closed and feet parallel on a force platform, which allowed the measurement of the center of pressure displacement in the anteroposterior direction. The results did not indicate a significant association between force variability of the PFMs and postural sway in older women. It can be inferred that the force variability of the PFM does not play an important role in controlling the posture in this population, suggesting that other factors may influence the functioning of the postural control system in older adults. Copyright © 2018. Published by Elsevier B.V.
People with chronic low back pain have poorer balance than controls in challenging tasks.
da Silva, Rubens A; Vieira, Edgar R; Fernandes, Karen B P; Andraus, Rodrigo A; Oliveira, Marcio R; Sturion, Leandro A; Calderon, Mariane G
2018-06-01
To compare the balance of individuals with and without chronic low back pain during five tasks. The participants were 20 volunteers, 10 with and 10 without nonspecific chronic low back pain, mean age 34 years, 50% females. The participants completed the following balance tasks on a force platform in random order: (1) two-legged stance with eyes open, (2) two-legged stance with eyes closed, (3) semi-tandem with eyes open, (4) semi-tandem with eyes closed and (5) one-legged stance with eyes open. The participants completed three 60-s trials of tasks 1-4, and three 30-s trials of task 5 with 30-s rests between trials. The center of pressure area, velocity and frequency in the antero-posterior and medio-lateral directions were computed during each task, and compared between groups and tasks. Participants with chronic low back pain presented significantly larger center of pressure area and higher velocity than the healthy controls (p < 0.001). There were significant differences among tasks for all center of pressure variables (p < 0.001). Semi-tandem (tasks 3 and 4) and one-leg stance (task 5) were more sensitive to identify balance impairments in the chronic low back pain group than two-legged stance tasks 1 and 2 (effect size >1.37 vs. effect size <0.64). There were no significant interactions between groups and tasks. Individuals with chronic low back pain presented poorer postural control using center of pressure measurements than the healthy controls, mainly during more challenging balance tasks such as semi-tandem and one-legged stance conditions. Implications for Rehabilitation People with chronic low back had poorer balance than those without it. Balance tasks need to be sensitive to capture impairments. Balance assessments during semi-tandem and one-legged stance were the most sensitive tasks to determine postural control deficit in people with chronic low back. Balance assessment should be included during rehabilitation programs for individuals with chronic low back pain for better clinical decision making related to balance re-training as necessary.
Are divided attention tasks useful in the assessment and management of sport-related concussion?
Register-Mihalik, Johna K; Littleton, Ashley C; Guskiewicz, Kevin M
2013-12-01
This article is a systematic review of the literature on divided attention assessment inclusive of a cognitive and motor task (balance or gait) for use in concussion management. The systematic review drew from published papers listed in PubMed, MEDLINE, EMBASE and CINAHL databases. The search identified 19 empirical research papers meeting the inclusion criteria. Study results were considered for the psychometric properties of the paradigms, the influence of divided attention on measures of cognition and postural control and the comparison of divided attention task outcomes between individuals with concussion and healthy controls (all samples were age 17 years or older). The review highlights that the reliability of the tasks under a divided attention paradigm presented ranges from low to high (ICC: 0.1-0.9); however, only 3/19 articles included psychometric information. Response times are greater, gait strategies are less efficient, and postural control deficits are greater in concussed participants compared with healthy controls both immediately and for some period following concussive injury, specifically under divided attention conditions. Dual task assessments in some cases were more reliable than single task assessments and may be better able to detect lingering effects following concussion. Few of the studies have been replicated and applied across various age groups. A key limitation of these studies is that many include laboratory and time-intensive measures. Future research is needed to refine a time and cost efficient divided attention assessment paradigm, and more work is needed in younger (pre-teens) populations where the application may be of greatest utility.
Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L.
2016-01-01
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and help a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties. PMID:27866261
Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L
2017-03-01
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.
NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.;
2015-01-01
Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.
Multi-segmental postural coordination in professional ballet dancers.
Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G
2011-05-01
Ballet dancers have heightened balance skills, but previous studies that compared dancers to non-dancers have not quantified patterns of multi-joint postural coordination. This study utilized a visual tracking task that required professional ballet dancers and untrained control participants to sway with the fore-aft motion of a target while standing on one leg, at target frequencies of 0.2 and 0.6Hz. The mean and variability of relative phase between the ankle and hip, and measures from cross-recurrence quantification analysis (i.e., percent cross-recurrence, percent cross-determinism, and cross-maxline), indexed the coordination patterns and their stability. Dancers exhibited less variable ankle-hip coordination and a less deterministic ankle-hip coupling, compared to controls. The results indicate that ballet dancers have increased coordination stability, potentially achieved through enhanced neuromuscular control and/or perceptual sensitivity, and indicate proficiency at optimizing the constraints that enable dancers to perform complex balance tasks. Copyright © 2011 Elsevier B.V. All rights reserved.
Do we always prioritize balance when walking? Towards an integrated model of task prioritization.
Yogev-Seligmann, Galit; Hausdorff, Jeffrey M; Giladi, Nir
2012-05-01
Previous studies suggest that strategies such as "posture first" are implicitly employed to regulate safety when healthy adults walk while simultaneously performing another task, whereas "posture second" may be inappropriately applied in the presence of neurological disease. However, recent understandings raise questions about the traditional resource allocation concept during walking while dual tasking. We propose a task prioritization model of walking while dual tasking that integrates motor and cognitive capabilities, focusing on postural reserve, hazard estimation, and other individual intrinsic factors. The proposed prioritization model provides a theoretical foundation for future studies and a framework for the development of interventions designed to reduce the profound negative impacts of dual tasking on gait and fall risk in patients with neurological diseases. © 2012 Movement Disorder Society. Copyright © 2012 Movement Disorder Society.
Reduced Cognitive-Motor Interference on Voluntary Balance Control in Older Tai Chi Practitioners.
Varghese, Rini; Hui-Chan, Christina W Y; Bhatt, Tanvi
2016-01-01
Recent dual-task studies suggest that Tai Chi practitioners displayed better control of standing posture and maintained a quicker response time of postural muscle activation during a stepping down activity. Whether this effect extends to voluntary balance control, specifically the limits of excursion of the center of pressure, remains to be examined. The purpose of this study was to evaluate the cognitive-motor interference pattern by examining the effects of a concurrently performed cognitive task on attention of voluntary balance control in older adults who are long-term practitioners of Tai Chi. Ten older Tai Chi practitioners and 10 age-matched nonpractitioners performed a voluntary balance task that required them to shift their weight to reach a preset target in the forward and backward directions, with (single task, ST) and without (dual task, DT) a secondary cognitive task, which was the counting backward task. The counting backward task required the individual to compute and verbalize a series of arithmetic differences between a given pair of randomly generated numbers. The cognitive task was also performed independently (cognitive-ST). All trials were performed in a random order. Balance outcomes included reaction time, movement velocity, and maximal excursion of the center of pressure provided by the NeuroCom system. Cognitive outcome was the number of correct responses generated within the 8-second trial during the ST and DT conditions. Outcome variables were analyzed using a 2-factor, group by task, analysis of variance. DT costs for the variables were calculated as the relative difference between ST and DT conditions and were compared between the 2 groups using independent t tests. Tai Chi practitioners displayed shorter reaction times (P < .001) and faster movement velocities (P < .05) of their center of pressure than older nonpractitioners for both directions; however, no difference was found between the maximal excursions of the 2 groups. Cost analyses revealed that reaction time and cognitive costs were significantly lower in the Tai Chi practitioners for both forward and backward directions (P < .05); however, similar findings for movement velocity costs were significant only in the backward direction (P < .05). Our results suggest that Tai Chi practitioners expended fewer motor and cognitive resources than older nonpractitioners during a fairly complex (dynamic) postural equilibrium task while performing a verbal working memory task. They exhibited lesser cognitive-motor interference and thus better allocation of attentional resources toward the voluntary balance control task. Given that dynamic balance is a crucial prerequisite for walking and dual-tasking ability is considered to be a significant predictor of falls in older adults, our results might point at the possible long-term benefits of Tai Chi practice to counteract age-related decline in dual-tasking ability. Findings present preliminary data for further investigation, especially related to potential benefits in fall prevention.
Characterization of posture and comfort in laptop users in non-desk settings.
Gold, J E; Driban, J B; Yingling, V R; Komaroff, E
2012-03-01
Laptop computers may be used in a variety of postures not coupled to the office workstation. Using passive motion analysis, this study examined mean joint angles during a short typing/editing task in college students (n=20), in up to seven positions. Comfort was assessed after task execution through a body map. For three required postures, joint angles in a prone posture were different than those while seated at a couch with feet either on floor or on ottoman. Specifically, the prone posture was characterized by comparatively non-neutral shoulders, elbows and wrists, and pronounced neck extension. Significantly greater intensity and more regions of discomfort were marked for the prone posture than for the seated postures. It is recommended that the prone posture only be assumed briefly during laptop use. Exposure to laptops outside of the office setting should be assessed in future epidemiologic studies of musculoskeletal complaints and computer use. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Body schema and corporeal self-recognition in the alien hand syndrome.
Olgiati, Elena; Maravita, Angelo; Spandri, Viviana; Casati, Roberta; Ferraro, Francesco; Tedesco, Lucia; Agostoni, Elio Clemente; Bolognini, Nadia
2017-07-01
The alien hand syndrome (AHS) is a rare neuropsychological disorder characterized by involuntary, yet purposeful, hand movements. Patients with the AHS typically complain about a loss of agency associated with a feeling of estrangement for actions performed by the affected limb. The present study explores the integrity of the body representation in AHS, focusing on 2 main processes: multisensory integration and visual self-recognition of body parts. Three patients affected by AHS following a right-hemisphere stroke, with clinical symptoms akin to the posterior variant of AHS, were tested and their performance was compared with that of 18 age-matched healthy controls. AHS patients and controls underwent 2 experimental tasks: a same-different visual matching task for body postures, which assessed the ability of using your own body schema for encoding others' body postural changes (Experiment 1), and an explicit self-hand recognition task, which assessed the ability to visually recognize your own hands (Experiment 2). As compared to controls, all AHS patients were unable to access a reliable multisensory representation of their alien hand and use it for decoding others' postural changes; however, they could rely on an efficient multisensory representation of their intact (ipsilesional) hand. Two AHS patients also presented with a specific impairment in the visual self-recognition of their alien hand, but normal recognition of their intact hand. This evidence suggests that the AHS following a right-hemisphere stroke may involve a disruption of the multisensory representation of the alien limb; instead, self-hand recognition mechanisms may be spared. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
Chen, Fu-Chen; Tsai, Chia-Liang; Stoffregen, Thomas A.; Chang, Chihu-Hui; Wade, Michael G.
2012-01-01
Aim: The present study investigated the effects of varying the cognitive demands of a memory task (a suprapostural task) while recording postural motion on two groups of children, one diagnosed with developmental coordination disorder (DCD) and an age-matched group of typically developing children. Method: Two groups, each comprising 38 child…
Szeto, Grace P Y; Straker, Leon M; O'Sullivan, Peter B
2009-01-01
Do symptomatic female office workers perform computing tasks with higher cervical postural muscle loads (in terms of higher amplitudes and less muscular rest) and more discomfort compared with asymptomatic individuals? Are these differences in postural muscle loads consistent across bilateral (typing) and unilateral (mousing) conditions? an experimental case-control study. 18 symptomatic female office workers and 21 asymptomatic female office workers. Three conditions (typing, mousing, and type-and-mouse) were performed in random order. Muscle load was measured as median amplitude and gap frequency using surface EMG of bilateral cervical erector spinae and upper trapezius. Discomfort was measured using a numerical rating scale. The case group demonstrated 4.3% (95% CI 0.1 to 8.4) higher amplitude during typing and 3.5% (95% CI 0.1 to 6.9) higher amplitude during type-and-mouse in the right cervical erector spinae compared with the control group. There was a similar difference between groups in the left cervical erector spinae which also demonstrated a 1.2 gaps/min (95% CI -2.3 to 0.0) lower frequency during typing. The case group had significantly higher discomfort during all conditions compared with the control group. The case group demonstrated higher median amplitudes and lower gap frequencies than the control group during bilateral conditions (typing and type-and-mouse) compared with unilateral conditions (mousing) for both muscle groups. There was increased amplitude and decreased muscular rest in the cervical erector spinae of office workers performing typing and mousing tasks. These findings may represent a mechanism underlying computer-related musculoskeletal disorders.
Lee, Haneul; Petrofsky, Jerrold
2018-03-01
Although much attention has been paid to the effect of estrogen on the knee ligaments, little has been done to examine the ligaments in the foot, such as the plantar fascia, and how they may be altered during the menstrual cycle. To (1) examine sex differences in plantar fascia thickness and laxity and postural sway and (2) identify any menstrual cycle effects on plantar fascia laxity, postural sway, and neuromuscular tremor between menstruation and the ovulation phase. Case-control study. Research laboratory. Fifteen healthy women (age = 25.9 ± 1.8 years) and 15 healthy men (age = 27.3 ± 2.0 years) volunteered to participate in this study. We asked participants to perform 8 balance tasks on a force platform while we assessed postural sway and tremor. Plantar fascia length and thickness unloaded and loaded with body weight were measured via ultrasound. Postural sway and tremor were measured using a force platform. Plantar fascia length and thickness with pressure were greater in ovulating women compared with men ( P < .001), but no differences were found between women during menstruation and men. Postural sway and tremor were greater at ovulation than during menstruation ( P < .05), and men had less sway than ovulating women on the 3 most difficult balance tasks ( P < .01). Plantar fascia laxity was increased and postural sway and tremor were decreased at ovulation compared with menstruation in women. Postural sway and tremor in men were the same as in women during menstruation. These findings support the need to be aware of the effect of sex hormones on balance to prevent lower extremity injuries during sport activities.
Accessory stimulus modulates executive function during stepping task
Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo
2015-01-01
When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321
König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.
Monjezi, Saeideh; Negahban, Hossein; Tajali, Shirin; Yadollahpour, Nava; Majdinasab, Nastaran
2017-02-01
To investigate the effects of dual-task balance training on postural performance in patients with multiple sclerosis as compared with single-task balance training. Double-blind, pretest-posttest, randomized controlled pilot trial. Local Multiple Sclerosis Society. A total of 47 patients were randomly assigned to two equal groups labeled as single-task training and dual-task training groups. All patients received supervised balance training sessions, 3 times per week for 4 weeks. The patients in the single-task group performed balance activities, alone. However, patients in dual-task group practiced balance activities while simultaneously performing cognitive tasks. The 10-Meter Walk Test and Timed Up-and-Go under single-task and dual-task conditions, in addition to Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment were assessed pre-, and post intervention and also 6-weeks after the end of intervention. Only 38 patients completed the treatment plan. There was no difference in the amount of improvement seen between the two study groups. In both groups there was a significant effect of time for dual-10 Meter Walk Test (F 1, 36 =11.33, p=0.002) and dual-Timed Up-and-Go (F 1, 36 =14.27, p=0.001) but not for their single-tasks. Moreover, there was a significant effect of time for Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment ( P<0.01). This pilot study did not show more benefits from undertaking dual-task training than single-task training. A power analysis showed 71 patients per group would be needed to determine whether there was a clinically relevant difference for dual-task gait speed between the groups.
Kim, Kyung-Min; Hart, Joseph M.; Saliba, Susan A.; Hertel, Jay
2016-01-01
Context: Individuals with chronic ankle instability (CAI) present with decreased modulation of the Hoffmann reflex (H-reflex) from a simple to a more challenging task. The neural alteration is associated with impaired postural control, but the relationship has not been investigated in individuals with CAI. Objective: To determine differences in H-reflex modulation and postural control between individuals with or without CAI and to identify if they are correlated in individuals with CAI. Design: Descriptive laboratory study. Setting: Laboratory. Patients or Other Participants: A total of 15 volunteers with CAI (9 males, 6 females; age = 22.6 ± 5.8 years, height = 174.7 ± 8.1 cm, mass = 74.9 ± 12.8 kg) and 15 healthy sex-matched volunteers serving as controls (9 males, 6 females; age = 23.8 ± 5.8 years, height = 171.9 ± 9.9 cm, mass = 68.9 ± 15.5 kg) participated. Intervention(s): Maximum H-reflex (Hmax) and motor wave (Mmax) from the soleus and fibularis longus were recorded while participants lay prone and then stood in unipedal stance. We assessed postural tasks of unipedal stance with participants' eyes closed for 10 seconds using a forceplate. Main Outcome Measure(s): We normalized Hmax to Mmax to obtain Hmax : Mmax ratios for the 2 positions. For each muscle, H-reflex modulation was quantified using the percentage change scores in Hmax : Mmax ratios calculated from prone position to unipedal stance. Center-of-pressure data were used to compute 4 time-to-boundary variables. Separate independent-samples t tests were performed to determine group differences. Pearson product moment correlation coefficients were calculated between the modulation and balance measures in the CAI group. Results: The CAI group presented less H-reflex modulation in the soleus (t26 = −3.77, P = .001) and fibularis longus (t25 = −2.59, P = .02). The mean of the time-to-boundary minima in the anteroposterior direction was lower in the CAI group (t28 = −2.06, P = .048). We observed a correlation (r = 0.578, P = .049) between the fibular longus modulation and mean of time-to-boundary minima in the anteroposterior direction. Conclusions: The strong relationship indicated that, as H-reflex amplitude in unipedal stance was less down modulated, unipedal postural control was more impaired. Given the deficits in H-reflex modulation and postural control in the CAI group, the relationship may provide insights into the neurophysiologic mechanism of postural instability. PMID:27583692
Iwamoto, Yoshitaka; Takahashi, Makoto; Shinkoda, Koichi
2017-08-02
Agonist and antagonist muscle co-contractions during motor tasks are greater in the elderly than in young adults. During normal walking, muscle co-contraction increases with gait speed in young adults, but not in elderly adults. However, no study has compared the effects of speed on muscle co-contraction of the ankle joint during dynamic postural control in young and elderly adults. We compared muscle co-contractions of the ankle joint between young and elderly subjects during a functional stability boundary test at different speeds. Fifteen young adults and 16 community-dwelling elderly adults participated in this study. The task was functional stability boundary tests at different speeds (preferred and fast). Electromyographic evaluations of the tibialis anterior and soleus were recorded. The muscle co-contraction was evaluated using the co-contraction index (CI). There were no statistically significant differences in the postural sway parameters between the two age groups. Elderly subjects showed larger CI in both speed conditions than did the young subjects. CI was higher in the fast speed condition than in the preferred speed condition in the young subjects, but there was no difference in the elderly subjects. Moreover, after dividing the analytical range into phases (acceleration and deceleration phases), the CI was larger in the deceleration phase than in the acceleration phase in both groups, except for the young subjects in the fast speed conditions. Our results showed a greater muscle co-contraction of the ankle joint during dynamic postural control in elderly subjects than in young subjects not only in the preferred speed condition but also in the fast speed condition. In addition, the young subjects showed increased muscle co-contraction in the fast speed condition compared with that in the preferred speed condition; however, the elderly subjects showed no significant difference in muscle co-contraction between the two speed conditions. This indicates that fast movements cause different influences on dynamic postural control in elderly people, particularly from the point of view of muscle activation. These findings highlight the differences in the speed effects on muscle co-contraction of the ankle joint during dynamic postural control between the two age groups.
Working with horses: an OWAS work task analysis.
Löfqvist, L; Pinzke, S
2011-01-01
Most work in horse stables is performed manually in much the same way as a century ago. It is the least mechanized sector dealing with large animals. People working with horses are exposed to several types of risk for developing musculoskeletal problems, but the work tasks and workload have not been investigated in detail. The aim of this study was to estimate the postural load of the work tasks performed around horses to find those that were harmful and required measures to be taken to reduce physical strain. Altogether, 20 subjects (stable attendants and riding instructors) were video recorded while carrying out their work in the stable, and preparing and conducting riding lessons. The work was analyzed with the Ovako Working posture Analysis System (OWAS) to determine the postural load and to categorize the potential harmfulness of the work postures. Three work tasks involved about 50% of the work positions in the three OWAS categories (AC2 to AC4) where measures for improvement are needed: "mucking out" (50%), "bedding preparation" (48%), and "sweeping" (48%). These work tasks involved over 60% work postures where the back was bent, twisted, or both bent and twisted. Therefore, it is important to find preventive measures to reduce the workload, which could include improved tools, equipment, and work technique.
Jongsma, Marijtje L A; Meulenbroek, Ruud G J; Okely, Judith; Baas, C Marjolein; van der Lubbe, Rob H J; Steenbergen, Bert
2013-01-01
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs.
NASA Astrophysics Data System (ADS)
Stapley, Paul; Pozzo, Thierry
In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.
Petersen, Andrew; Barrett, Rod
2009-05-01
The purpose of this study was to investigate the effect of a 2-day driver-training course that emphasised postural stability maintenance during critical driving situations on postural stability and vehicle kinematics during an evasive lane change manoeuvre. Following training, the trainee group experienced enhanced postural stability during specific phases of the task. In terms of vehicle kinematics, the main adaptation to training was that trained drivers reduced the extent to which they experienced vehicle decelerations during rapid turning compared to controls. Such a strategy may confer a safety benefit due to the increased risks associated with simultaneous braking while turning during an evasive manoeuvre. The newly learned strategy was consistent with the strategy used by a group of highly skilled drivers (driving instructors). Taken together, the results of the study suggest postural stability may be a useful variable to consider in relation to the skill-based component of hierarchical driver training programmes. The findings of this study provide some preliminary evidence to suggest that postural stability may be an important consideration when instructing individuals on how to safely negotiate obstacles during driving.
Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas
2015-01-01
Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.
Ziaei, Mansour; Ziaei, Hojjat; Hosseini, Seyed Younes; Gharagozlou, Faramarz; Keikhamoghaddam, Ali Akbar; Laybidi, Marzieh Izadi; Moradinazar, Mehdi
2017-06-01
Manual handling of bags which imposes frequent forces and stresses on body parts is a common task that many workers have to perform every day. The present study aimed to assess the postural risk and imposed forces due to manual handling and loading of sugar bags. This study was conducted on male warehouse workers of a sugar manufacturing plant. Rapid upper limb assessment (RULA) was used to assess the risks of awkward postures and computer-aided three-dimensional interactive application to estimate the forces and moments. RULA final scores were estimated to be 7 and 3 before and after the virtual redesign, respectively. Postures B and E obtained the highest compression forces and moments. The compression forces were higher than the action limit (AL) in all postures before the redesign and exceeded the maximum permissible limit (MPL) in posture E. After the redesign, these forces were reduced below the AL and MPL. Moreover, the shearing forces were lower than the AL and MPL in all postures. The main risk factors were heavy weight and poor control of sugar bags. Virtual redesign can diminish bending and twisting postures, and, therefore, some resulting forces and moments.
Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance
Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan
2015-01-01
Background Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered “at-risk” for musculoskeletal strain. Therefore this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Methods Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle-cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video-analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Results Task performance did not differ among tools. For FLS peg transfer, self-reported physical workload was lower for B than A70, and mean wrist postures showed significantly higher flexion for in-line than pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47%) than pistol-grip (93-94%), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43%) than B (87%). Conclusion The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks for musculoskeletal strain and allow versatility for tasks alternating between the floor and ceiling positions in a surgical trainer without impacting performance. PMID:26541720
Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance.
Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan
2016-08-01
Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered "at risk" for musculoskeletal strain. Therefore, this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Task performance did not differ between tools. For FLS peg transfer, self-reported physical workload was lower for B than for A70, and mean wrist postures showed significantly higher flexion for in-line than for pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47 %) than for pistol-grip (93-94 %), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43 %) than for B (87 %). The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks of musculoskeletal strain and allow versatility for tasks alternating between the floor and ceiling positions in a surgical trainer without impacting performance.
Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B
2003-07-01
To determine the influence of refractive blur on postural stability during somatosensory and vestibular system perturbation and dual tasking. Fifteen healthy, elderly subjects (mean age, 71 +/- 5 years), who had no history of falls and had normal vision, were recruited. Postural stability during standing was assessed using a force platform, and was determined as the root mean square (RMS) of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions collected over a 30-second period. Data were collected under normal standing conditions and with somatosensory and vestibular system perturbations. Measurements were repeated with an additional physical and/or cognitive task. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with eyes closed. The data were analyzed with a population-averaged linear model. The greatest increases in postural instability were due to disruptions of the somatosensory and vestibular systems. Increasing refractive blur caused increasing postural instability, and its effect was greater when the input from the other sensory systems was disrupted. Performing an additional cognitive and physical task increased A-P RMS COP further. All these detrimental effects on postural stability were cumulative. The findings highlight the multifactorial nature of postural stability and indicate why the elderly, many of whom have poor vision and musculoskeletal and central nervous system degeneration, are at greater risk of falling. The findings also highlight that standing instability in both normal and perturbed conditions was significantly increased with refractive blur. Correcting visual impairment caused by uncorrected refractive error could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.
Postural Coordination during Socio-motor Improvisation
Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193
Postural Coordination during Socio-motor Improvisation.
Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic
2016-01-01
Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.
Head movements and postures as pain behavior
Al-Hamadi, Ayoub; Limbrecht-Ecklundt, Kerstin; Walter, Steffen; Traue, Harald C.
2018-01-01
Pain assessment can benefit from observation of pain behaviors, such as guarding or facial expression, and observational pain scales are widely used in clinical practice with nonverbal patients. However, little is known about head movements and postures in the context of pain. In this regard, we analyze videos of three publically available datasets. The BioVid dataset was recorded with healthy participants subjected to painful heat stimuli. In the BP4D dataset, healthy participants performed a cold-pressor test and several other tasks (meant to elicit emotion). The UNBC dataset videos show shoulder pain patients during range-of-motion tests to their affected and unaffected limbs. In all videos, participants were sitting in an upright position. We studied head movements and postures that occurred during the painful and control trials by measuring head orientation from video over time, followed by analyzing posture and movement summary statistics and occurrence frequencies of typical postures and movements. We found significant differences between pain and control trials with analyses of variance and binomial tests. In BioVid and BP4D, pain was accompanied by head movements and postures that tend to be oriented downwards or towards the pain site. We also found differences in movement range and speed in all three datasets. The results suggest that head movements and postures should be considered for pain assessment and research. As additional pain indicators, they possibly might improve pain management whenever behavior is assessed, especially in nonverbal individuals such as infants or patients with dementia. However, in advance more research is needed to identify specific head movements and postures in pain patients. PMID:29444153
Effects of physical training on age-related balance and postural control.
Lelard, T; Ahmaidi, S
2015-11-01
In this paper, we review the effects of physical activity on balance performance in the elderly. The increase in the incidence of falls with age reflects the disorders of balance-related to aging. We are particularly interested in age-related changes in the balance control system as reflected in different static and dynamic balance tests. We report the results of studies demonstrating the beneficial effects of physical activity on postural balance. By comparing groups of practitioners of different physical activities, it appears that these effects on postural control depend on the type of activity and the time of practice. Thus, we have focused in the present review on "proprioceptive" and "strength" activities. Training programs offering a combination of several activities have demonstrated beneficial effects on the incidence of falls, and we present and compare the effects of these two types of training activities. It emerges that there are differential effects of programs of activities: while all activities improve participants' confidence in their ability, the "proprioceptive" activities rather improve performance in static tasks, while "strength" activities tend to improve performance in dynamic tasks. These effects depend on the targeted population and will have a greater impact on the frailest subjects. The use of new technologies in the form of "exergames" may also be proposed in home-based exercises. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Stabilisation times after transitions to standing from different working postures.
DiDomenico, Angela; McGorry, Raymond W; Banks, Jacob J
2016-10-01
Transitioning to standing after maintaining working postures may result in imbalance and could elicit a fall. The objective of this study was to quantify the magnitude of imbalance using a stabilisation time metric. Forty-five male participants completed three replications of conditions created by one of four working postures (bent at waist, squat, forward kneel, reclined kneel) and three durations within posture. Participants transitioned to quiet standing at a self-selected pace. Stabilisation time, based on changes in centre of pressure velocity, was used to indicate the initiation of steady state while standing. Stabilisation time was significantly affected by static postures but not duration within posture. The largest stabilisation times resulted from transitions initiated from a bent at waist posture. The smallest were associated with the kneeling postures, which were not significantly different from each other. Findings may lead to recommendations for redesign of tasks, particularly in high-risk environments such as construction. Statement of Relevance: Task performance on the jobsite often requires individuals to maintain non-erect postures. This study suggests that working posture affects stabilisation during transition to a standing position. Bending at the waist and squatting resulted in longer stabilisation times, whereas both kneeling postures evaluated resulted in greater imbalance but for a shorter duration.
Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.
Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent
2017-09-01
Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index < 5) volunteered to participate. Neck position sense was evaluated using a three-dimensional motion analyzer. To create the environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by head repositioning accuracy in healthy subjects. Discussion/impact/recommendations: Postural control mechanisms are very sensitive to acute mild hypoxia and have been recently investigated. Acute hypobaric hypoxia at moderate and high altitudes has a negative effect on postural control. However, which part of the postural system is affected has not yet been determined and proprioception has been little investigated. The results from this study highlighted that in healthy subjects with good cervical spine proprioception at baseline, artificial hypoxia induced by the simulation of moderate altitude does not increase head repositioning error. Further studies should investigate cervical joint position sense in real aircraft, at different altitudes and in a group of experienced helicopter pilots, to evaluate the impact of moderate altitude on cervical joint position sense in a different population. Conducting the same experiments in a population of pilots and in real flight conditions should be considered, since various factors such as the level of proprioception, head posture, type of movement, head load, muscle fatigue, flight altitude, and the length of flight time might influence the kinesthetic sensitivity. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
NASA Technical Reports Server (NTRS)
Goel, R.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Peters, B. T.; Bloomberg, J. J.; Oddsson, L. I. E.; Mulavara, A. P.
2016-01-01
Astronauts returning from space flight show significant inter-subject variations in their abilities to readapt to a gravitational environment because of their innate sensory weighting. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. We hypothesize participant's ability to utilize individual sensory information (vision, proprioception and vestibular) influences adaptation in sensorimotor performance after space flight. The goal of this study is to develop a reliable protocol to test proprioceptive utilization in a functional postural control task. Subjects "stand" in a supine position while strapped to a backpack frame holding a friction-free device using air-bearings that allow the subject to move freely in the frontal plane, similar to when in upright standing. The frame is attached to a pneumatic cylinder, which can provide different levels of a gravity-like force that the subject must balance against to remain "upright". The supine posture with eyes closed ensures reduced vestibular and visual contribution to postural control suggesting somatosensory and/or non-otolith vestibular inputs will provide relevant information for maintaining balance control in this task. This setup is called the gravity bed. Fourteen healthy subjects carried out three trials each with eyes open alternated with eyes closed, "standing" on their dominant leg in the gravity bed environment while loaded with 60 percent of their body weight. Subjects were instructed to: "use your sense of sway about the ankle and pressure changes under the foot to maintain balance." Maximum length of a trial was 45 seconds. A force plate underneath the foot recorded forces and moments during the trial and an inertial measurement unit (IMU) attached on the backpack's frame near the center of mass of the subject recorded upper body postural responses. Series of linear and non-linear analyses were carried out on several force plate and IMU data including stabilogram diffusion analysis on the center of pressure (COP) to find a subset of parameters that were sensitive to detect differences in postural performance between eyes open and closed conditions. Results revealed that seven parameters (root mean square (RMS) of medio-lateral (ML) COP, range of ML COP, RMS of roll moment, range of trunk roll, minimum time-to-boundary (TTB), integrated TTB, and critical mean square planar displacement (delta r (sup 2) (sub c)) were significantly different between eyes open and closed conditions. We will present data to show the efficacy of using performance in single leg stance with eyes closed on the gravity bed to assess individuals' ability to utilize proprioceptive information in a functional postural control task to predict re-adaptation for sensorimotor and functional performance.
How does practise of internal Chinese martial arts influence postural reaction control?
Gorgy, Olivier; Vercher, Jean-Louis; Coyle, Thelma
2008-04-01
The aim of this study was to determine the effects of Chinese martial arts practice on postural reaction control after perturbation. Participants standing in Romberg tandem posture were subjected to an unexpected lateral platform translation with the eyes open or closed at two translation amplitudes. The peak displacement of the centre of pressure and of the centre of mass, and the onset latency of muscular activity (tibialis anterior, gastrocnemius, lumbodorsal muscular group, and rectus abdominis), were evaluated for martial arts practitioners and for sport and non-sport participants. Compared with the sport and non-sport participants, the martial arts group showed lower maximal centre of pressure and centre of mass peak displacements in both the lateral and anterior - posterior directions, but no difference was found in the onset of muscular responses. We conclude that martial arts practice influences postural reaction control during a fixed-support strategy in a tandem task. The martial arts group used the ankle joint more frequently than the sport and non-sport participants, especially in the eyes-closed conditions. Our results suggest that the better balance recovery in the martial arts group is a consequence of better control of biomechanical properties of the lower limbs (e.g. through muscular response by co-contraction), not a change in the neuromuscular temporal pattern.
Influence of musical groove on postural sway.
Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh
2016-03-01
Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Chikh, Soufien; Garnier, Cyril; Faupin, Arnaud; Pinti, Antonio; Boudet, Samuel; Azaiez, Fairouz; Watelain, Eric
2018-06-01
Arm-trunk coordination during the initiation of displacement in manual wheelchair is a complex task. The objective of this work is to study the arm-trunk coordination by measuring anticipatory and compensatory postural adjustments. Nine healthy subjects participated in the study after being trained in manual wheelchair. They were asked to initiate a displacement in manual wheelchair in three directions (forward vs. left vs. right), with two speeds (spontaneous vs. maximum) and with two initial hand's positions (hands on thighs vs. hands on handrails). Muscular activities in the trunk (postural component) and the arms (focal component) were recorded bilaterally. The results show two strategies for trunk control: An anticipatory adjustment strategy and a compensatory adjustment strategy with a dominance of compensation. These two strategies are influenced by the finalities of displacement in terms of speed and direction depending on the hands positions. Arm-trunk coordination is characterized by an adaptability of anticipatory and compensatory postural adjustments. The study of this type of coordination for subjects with different levels of spinal cord injury could be used to predict the forthcoming displacement and thus assist the user in a complex task. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kaliki, Rahul R; Davoodi, Rahman; Loeb, Gerald E
2013-03-01
C5/C6 tetraplegic patients and transhumeral amputees may be able to use voluntary shoulder motion as command signals for a functional electrical stimulation system or transhumeral prosthesis. Stereotyped relationships, termed "postural synergies," among the shoulder, forearm, and wrist joints emerge during goal-oriented reaching and transport movements as performed by able-bodied subjects. Thus, the posture of the shoulder can potentially be used to infer the desired posture of the elbow and forearm joints during reaching and transporting movements. We investigated how well able-bodied subjects could learn to use a noninvasive command scheme based on inferences from these postural synergies to control a simulated transhumeral prosthesis in a virtual reality task. We compared the performance of subjects using the inferential command scheme (ICS) with subjects operating the simulated prosthesis in virtual reality according to complete motion tracking of their actual arm and hand movements. Initially, subjects performed poorly with the ICS but improved rapidly with modest amounts of practice, eventually achieving performance only slightly less than subjects using complete motion tracking. Thus, inferring the desired movement of distal joints from voluntary shoulder movements appears to be an intuitive and noninvasive approach for obtaining command signals for prostheses to restore reaching and grasping functions.
Balance control and anti‐gravity muscle activity during the experience of fear at heights
Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas
2014-01-01
Abstract Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI‐related changes in postural control were assessed by center‐of‐pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open‐ and closed‐loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open‐loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed‐loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co‐contraction of leg muscles. Body sway and leg and neck muscle co‐contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open‐ and closed‐loop postural control strategy and (2) co‐contraction of anti‐gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights. PMID:24744901
Balance control and anti-gravity muscle activity during the experience of fear at heights.
Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas
2014-02-01
Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI-related changes in postural control were assessed by center-of-pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open- and closed-loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open-loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed-loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co-contraction of leg muscles. Body sway and leg and neck muscle co-contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open- and closed-loop postural control strategy and (2) co-contraction of anti-gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights.
Exploring the dynamics of balance data — movement variability in terms of drift and diffusion
NASA Astrophysics Data System (ADS)
Gottschall, Julia; Peinke, Joachim; Lippens, Volker; Nagel, Volker
2009-02-01
We introduce a method to analyze postural control on a balance board by reconstructing the underlying dynamics in terms of a Langevin model. Drift and diffusion coefficients are directly estimated from the data and fitted by a suitable parametrization. The governing parameters are utilized to evaluate balance performance and the impact of supra-postural tasks on it. We show that the proposed method of analysis gives not only self-consistent results but also provides a plausible model for the reconstruction of balance dynamics.
Sex differences in anticipatory postural adjustments during rapid single leg lift.
Bussey, Melanie D; Castro, Marcelo Peduzzi de; Aldabe, Daniela; Shemmell, Jonathan
2018-02-01
The aim of this study was to assess the influence of sex on the kinetic, kinematic and neuromuscular correlates of anticipatory postural adjustments (APAs) during a single leg lift task performed by healthy participants. Fifty healthy age and body mass index matched participants (25 women and 25 men) performed 20 single leg lift task (hip flexion to 90 ° as quickly as possible) with their dominant and their non-dominant lower limbs. A force plate was used to determine the medial-lateral displacement of the center of pressure (COP ML ), and the initiation of weight shift (T 0 ); kinematics was used to determine leg lift (T 1 ); and electromyography was used to determine onset times from eight muscles: bilateral external oblique, internal oblique and lumbar multifidus, and unilateral (stance limb) gluteus maximus and biceps femoris. Movement control limb dominance was included in the analysis. Statistically significant interactions between sex and limb dominance (p < .001) were observed for T 1 , COP ML, and muscle onsets. Also, statistically significant main effect of sex on T 0 was observed. Women showed increased APA time (T 1 ) and magnitude (COP ML ) in their dominant limbs compared to men. Such differences between sexes did not occur in the non-dominant limb. Women recruited proximal muscles later than their man counterparts. Overall, women appear to have a stronger effect of limb dominance on their anticipatory postural control strategy which requires further investigation. The findings of the current study indicate that women and men differ in their anticipatory postural control strategy for rapid single leg lift. Copyright © 2017 Elsevier B.V. All rights reserved.
Sleep deprivation affects sensorimotor coupling in postural control of young adults.
Aguiar, Stefane A; Barela, José A
2014-06-27
Although impairments in postural control have been reported due to sleep deprivation, the mechanisms underlying such performance decrements still need to be uncovered. The purpose of this study was to investigate the effects of sleep deprivation on the relationship between visual information and body sway in young adults' postural control. Thirty adults who remained awake during one night and 30 adults who slept normally the night before the experiment participated in this study. The moving room paradigm was utilized, manipulating visual information through the movement of a room while the floor remained motionless. Subjects stood upright inside of a moving room during four 60-s trials. In the first trial the room was kept stationary and in the following trials the room moved with a frequency of 0.2Hz, peak velocity of 0.6cm/s and 0.9cm peak-to-peak amplitude. Body sway and room displacement were measured through infrared markers. Results showed larger and faster body sway in sleep deprived subjects with and without visual manipulation. The magnitude with which visual stimulus influenced body sway and its temporal relationship were unaltered in sleep deprived individuals, but they became less coherent and more variable as they had to maintain upright stance during trials. These results indicate that after sleep deprivation adults become less stable and accurate in relating visual information to motor action, and this effect is observed after only a brief period performing postural tasks. The low cognitive load employed in this task suggests that attentional difficulties are not the only factor leading to sensorimotor coupling impairments observed following sleep deprivation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Postural Change Effects on Infants' AB Task Performance: Visual, Postural, or Spatial?
ERIC Educational Resources Information Center
Lew, Adina R.; Hopkins, Brian; Owen, Laura H.; Green, Michael
2007-01-01
Smith and colleagues (Smith, L. B., Thelen, E., Titzer, R., & McLin, D. (1999). Knowing in the context of acting: The task dynamics of the A-not-B error. "Psychological Review, 106," 235-260) demonstrated that 10-month-olds succeed on a Piagetian AB search task if they are moved from a sitting position to a standing position between A and B…
Effects of Shift Work on the Postural and Psychomotor Performance of Night Workers
Narciso, Fernanda Veruska; Barela, José A.; Aguiar, Stefane A.; Carvalho, Adriana N. S.; Tufik, Sergio; de Mello, Marco Túlio
2016-01-01
The purpose of the study was to investigate the effects of shift work on the psychomotor and postural performance of night workers. The study included 20 polysomnography technicians working schedule of 12-h night shift by 36-h off. On the first day of protocol, the body mass and height were measured, and an actigraph was placed on the wrist of each participant. On the second day of protocol, sleepiness by Karolinska Sleepiness Scale, postural control by force platform (30 seconds) and psychomotor performance by Psychomotor Vigilance Task (10 minutes) were measured before and after 12-h night work. Results showed that after 12-h night work, sleepiness increased by 59% (p<0.001), postural control variables increased by 9% (p = 0.048), and 14% (p = 0.006). Mean reaction time, and the number of lapses of attention increased by 13% (p = 0.006) and 425% (p = 0.015), respectively, but the mean reciprocal reaction time decreased by 7%. In addition, there were correlations between sleepiness and postural control variables with opened eyes (r = 0.616, 95% confidence interval [CI] = 0.361–0.815; r = 0.538; 95% CI = 0.280–0.748) and closed eyes (r = 0.557; 95% CI = 0.304–0.764, r = 0497; 95% CI = 0.325–0.715) and a pronounced effect of sleepiness on postural sway (R2 = 0.393; 95% CI = 0.001–0.03). Therefore, 12-h night work system and sleepiness showed a negative impact in postural and psychomotor vigilance performance of night workers. As unexpected, the force platform was feasibility to detect sleepiness in this population, underscoring the possibility of using this method in the workplace to prevent occupational injuries and accidents. PMID:27115868
Effects of Shift Work on the Postural and Psychomotor Performance of Night Workers.
Narciso, Fernanda Veruska; Barela, José A; Aguiar, Stefane A; Carvalho, Adriana N S; Tufik, Sergio; de Mello, Marco Túlio
2016-01-01
The purpose of the study was to investigate the effects of shift work on the psychomotor and postural performance of night workers. The study included 20 polysomnography technicians working schedule of 12-h night shift by 36-h off. On the first day of protocol, the body mass and height were measured, and an actigraph was placed on the wrist of each participant. On the second day of protocol, sleepiness by Karolinska Sleepiness Scale, postural control by force platform (30 seconds) and psychomotor performance by Psychomotor Vigilance Task (10 minutes) were measured before and after 12-h night work. Results showed that after 12-h night work, sleepiness increased by 59% (p<0.001), postural control variables increased by 9% (p = 0.048), and 14% (p = 0.006). Mean reaction time, and the number of lapses of attention increased by 13% (p = 0.006) and 425% (p = 0.015), respectively, but the mean reciprocal reaction time decreased by 7%. In addition, there were correlations between sleepiness and postural control variables with opened eyes (r = 0.616, 95% confidence interval [CI] = 0.361-0.815; r = 0.538; 95% CI = 0.280-0.748) and closed eyes (r = 0.557; 95% CI = 0.304-0.764, r = 0497; 95% CI = 0.325-0.715) and a pronounced effect of sleepiness on postural sway (R2 = 0.393; 95% CI = 0.001-0.03). Therefore, 12-h night work system and sleepiness showed a negative impact in postural and psychomotor vigilance performance of night workers. As unexpected, the force platform was feasibility to detect sleepiness in this population, underscoring the possibility of using this method in the workplace to prevent occupational injuries and accidents.
2012-01-01
Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle). However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer). Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index) were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force) during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force) from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index) in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability did not differ much between the evaluated tasks (except for the 50/50 Challenge), compared to dynamic stability, which was significantly less challenged during the games than during the functional tasks. Games with greater centre of mass displacements and changes in the base of support are likely to stimulate balance control enough to see improvements in balance during dynamic functional tasks, and could be tested in pathological populations with the approach used here. PMID:22607025
Foot force direction control during a pedaling task in individuals post-stroke
2014-01-01
Background Appropriate magnitude and directional control of foot-forces is required for successful execution of locomotor tasks. Earlier evidence suggested, following stroke, there is a potential impairment in foot-force control capabilities both during stationary force generation and locomotion. The purpose of this study was to investigate the foot-pedal surface interaction force components, in non-neurologically-impaired and stroke-impaired individuals, in order to determine how fore/aft shear-directed foot/pedal forces are controlled. Methods Sixteen individuals with chronic post-stroke hemiplegia and 10 age-similar non-neurologically-impaired controls performed a foot placement maintenance task under a stationary and a pedaling condition, achieving a target normal pedal force. Electromyography and force profiles were recorded. We expected generation of unduly large magnitude shear pedal forces and reduced participation of multiple muscles that can contribute forces in appropriate directions in individuals post-stroke. Results We found lower force output, inconsistent modulation of muscle activity and reduced ability to change foot force direction in the paretic limbs, but we did not observe unduly large magnitude shear pedal surface forces by the paretic limbs as we hypothesized. Conclusion These findings suggested the preservation of foot-force control capabilities post-stroke under minimal upright postural control requirements. Further research must be conducted to determine whether inappropriate shear force generation will be revealed under non-seated, postural demanding conditions, where subjects have to actively control for upright body suspension. PMID:24739234
Static and dynamic postural control in low-vision and normal-vision adults.
Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D
2013-04-01
This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.
Neurofeedback-induced facilitation of the supplementary motor area affects postural stability.
Fujimoto, Hiroaki; Mihara, Masahito; Hattori, Noriaki; Hatakenaka, Megumi; Yagura, Hajime; Kawano, Teiji; Miyai, Ichiro; Mochizuki, Hideki
2017-10-01
Near-infrared spectroscopy-mediated neurofeedback (NIRS-NFB) is a promising therapeutic intervention for patients with neurological diseases. Studies have shown that NIRS-NFB can facilitate task-related cortical activation and induce task-specific behavioral changes. These findings indicate that the effect of neuromodulation depends on local cortical function. However, when the target cortical region has multiple functions, our understanding of the effects is less clear. This is true in the supplementary motor area (SMA), which is involved both in postural control and upper-limb movement. To address this issue, we investigated the facilitatory effect of NIRS SMA neurofeedback on cortical activity and behavior, without any specific task. Twenty healthy individuals participated in real and sham neurofeedback. Balance and hand dexterity were assessed before and after each NIRS-NFB session. We found a significant interaction between assessment periods (pre/post) and condition (real/sham) with respect to balance as assessed by the center of the pressure path length but not for hand dexterity as assessed by the 9-hole peg test. SMA activity only increased during real neurofeedback. Our findings indicate that NIRS-NFB itself has the potential to modulate focal cortical activation, and we suggest that it be considered a therapy to facilitate the SMA for patients with postural impairment.
Rougier, Patrice R; Bonnet, Cédrick T
2016-06-01
Contrasted postural effects have been reported in dual-task protocols associating balance control and cognitive task that could be explained by the nature and the relative difficulty of the cognitive task and the biomechanical significance of the force platform data. To better assess their respective role, eleven healthy young adults were required to stand upright quietly on a force platform while concomitantly solving mental-calculation or mental-navigation cognitive tasks. Various levels of difficulty were applied by adjusting the velocity rate at which the instructions were provided to the subject according to his/her maximal capacities measured beforehand. A condition without any concomitant cognitive task was added to constitute a baseline behavior. Two basic components, the horizontal center-of-gravity movements and the horizontal difference between center-of-gravity and center-of-pressures were computed from the complex center-of-pressure recorded movements. It was hypothesized that increasing the delay should infer less interaction between postural control and task solution. The results indicate that both mental-calculation and mental-navigation tasks induce reduced amplitudes for the center-of-pressure minus center-of-gravity movements, only along the mediolateral axis, whereas center-of-gravity movements were not affected, suggesting that different circuits are involved in the central nervous system to control these two movements. Moreover, increasing the delays task does not infer any effect for both movements. Since center-of-pressure minus center-of-gravity expresses the horizontal acceleration communicated to the center-of-gravity, one may assume that the control of the latter should be facilitated in dual-tasks conditions, inferring reduced center-of-gravity movements, which is not seen in our results. This lack of effect should be thus interpreted as a modification in the control of these center-of-gravity movements. Taken together, these results emphasized how undisturbed upright stance control can be impacted by mental tasks requiring attention, whatever their nature (calculation or navigation) and their relative difficulty. Depending on the provided instructions, i.e. focusing our attention on body movements or on the opposite diverting this attention toward other objectives, the evaluation of upright stance control capacities might be drastically altered. Copyright © 2016. Published by Elsevier B.V.
Measurement of stressful postures during daily activities: An observational study with older people.
Seidel, David; Hjalmarson, Jenny; Freitag, Sonja; Larsson, Tore J; Brayne, Carol; Clarkson, P John
2011-07-01
This study measured the postures of older people during cooking and laundry. A sample of men and women aged 75+ years (n=27) was recruited and observed in a home-like environment. Postures were recorded with a measurement system in an objective and detailed manner. The participants were videotaped to be able to see where 'critical' postures occurred, as defined by a trunk inclination of ≥60°. Analysis of data was facilitated by specially developed software. Critical postures accounted for 3% of cooking and 10% of laundry, occurring primarily during retrieving from and putting in lower cabinets, the refrigerator, laundry basket or washing machine as well as disposing into the waste bin. These tasks involve a great variation in postural changes and pose a particular risk to older people. The results suggest that the use of stressful postures may decrease efficiency and increase fatigue, eventually leading to difficulties with daily activities. The specific tasks identified during which critical postures occurred should be targeted by designers in order to improve the activities. A few examples are given of how better design can reduce or eliminate some of the postural constraints. Copyright © 2011 Elsevier B.V. All rights reserved.
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
Galna, Brook; Jackson, Dan; Schofield, Guy; McNaney, Roisin; Webster, Mary; Barry, Gillian; Mhiripiri, Dadirayi; Balaam, Madeline; Olivier, Patrick; Rochester, Lynn
2014-04-14
Computer based gaming systems, such as the Microsoft Kinect (Kinect), can facilitate complex task practice, enhance sensory feedback and action observation in novel, relevant and motivating modes of exercise which can be difficult to achieve with standard physiotherapy for people with Parkinson's disease (PD). However, there is a current need for safe, feasible and effective exercise games that are appropriate for PD rehabilitation. The aims of this study were to i) develop a computer game to rehabilitate dynamic postural control for people with PD using the Kinect; and ii) pilot test the game's safety and feasibility in a group of people with PD. A rehabilitation game aimed at training dynamic postural control was developed through an iterative process with input from a design workshop of people with PD. The game trains dynamic postural control through multi-directional reaching and stepping tasks, with increasing complexity across 12 levels of difficulty. Nine people with PD pilot tested the game for one session. Participant feedback to identify issues relating to safety and feasibility were collected using semi-structured interviews. Participants reported that they felt safe whilst playing the game. In addition, there were no adverse events whilst playing. In general, the participants stated that they enjoyed the game and seven of the nine participants said they could imagine themselves using the game at home, especially if they felt it would improve their balance. The Flow State Scale indicated participants were immersed in the gameplay and enjoyed the experience. However, some participants reported that they found it difficult to discriminate between different types and orientations of visual objects in the game and some also had difficulty with the stepping tasks, especially when performed at the same time as the reaching tasks. Computer-based rehabilitation games using the Kinect are safe and feasible for people with PD although intervention trials are needed to test their safety, feasibility and efficacy in the home.
2014-01-01
Background Computer based gaming systems, such as the Microsoft Kinect (Kinect), can facilitate complex task practice, enhance sensory feedback and action observation in novel, relevant and motivating modes of exercise which can be difficult to achieve with standard physiotherapy for people with Parkinson’s disease (PD). However, there is a current need for safe, feasible and effective exercise games that are appropriate for PD rehabilitation. The aims of this study were to i) develop a computer game to rehabilitate dynamic postural control for people with PD using the Kinect; and ii) pilot test the game’s safety and feasibility in a group of people with PD. Methods A rehabilitation game aimed at training dynamic postural control was developed through an iterative process with input from a design workshop of people with PD. The game trains dynamic postural control through multi-directional reaching and stepping tasks, with increasing complexity across 12 levels of difficulty. Nine people with PD pilot tested the game for one session. Participant feedback to identify issues relating to safety and feasibility were collected using semi-structured interviews. Results Participants reported that they felt safe whilst playing the game. In addition, there were no adverse events whilst playing. In general, the participants stated that they enjoyed the game and seven of the nine participants said they could imagine themselves using the game at home, especially if they felt it would improve their balance. The Flow State Scale indicated participants were immersed in the gameplay and enjoyed the experience. However, some participants reported that they found it difficult to discriminate between different types and orientations of visual objects in the game and some also had difficulty with the stepping tasks, especially when performed at the same time as the reaching tasks. Conclusion Computer-based rehabilitation games using the Kinect are safe and feasible for people with PD although intervention trials are needed to test their safety, feasibility and efficacy in the home. PMID:24731758
Sun, Fenghua; Wang, Li-Juan; Wang, Lin
2015-04-10
Childhood obesity is one of the most critical public health problems in the world. It is associated with low neuromuscular function and postural deformities. Whether weight loss can improve postural stability and neuromuscular control, benefit daily activities, or prevent injury is unknown. Therefore, this study attempts to investigate the effect of a 6 month weight management program on postural stability and neuromuscular control among obese children. We will conduct a prospective, single-blind, randomized controlled trial with 120 prepubescent obese children. Participants will be randomly assigned to a weight management group or a control group. The weight management group will participate in a dietary and exercise program. The control group will receive health education. After the intervention, participants will be followed for 6 months with no active intervention. The primary and secondary outcomes will be assessed at the baseline, and after 6 months and 12 months. Primary outcome measures will include body weight, body height, body mass index, waist circumference, hip circumference, and body fat percentage. Secondary outcome measures will include three-dimensional functional biomechanics in different tasks, proprioception tests of the knee and ankle, neuromuscular response of the leg muscles, and muscle strength tests of the knee and ankle. Furthermore, adverse events will be recorded and analyzed. An intention-to-treat analysis will be performed if any participants withdraw from the trial. The important features of this trial include the randomization procedures and large sample size. This study attempts to estimate the effect of weight loss intervention on outcomes, including daily life function, postural stability, and neuromuscular control in prepubescent obese children. Therefore, our results can be useful for obese children, medical staff, and healthcare decision makers. Chinese Clinical Trial Registry ChiCTR-IOB-15005874.
Bekkers, Esther M. J.; Dockx, Kim; Heremans, Elke; Vercruysse, Sarah; Verschueren, Sabine M. P.; Mirelman, Anat; Nieuwboer, Alice
2014-01-01
Proprioceptive deficits negatively affect postural control but their precise contribution to postural instability in Parkinson’s disease (PD) is unclear. We investigated if proprioceptive manipulations differentially affect balance, measured by force plates, during quiet standing in 13 PD patients and 13 age-matched controls with a history of falls. Perceived limits of stability (LoS) were derived from the differences between maximal center of pressure (CoP) displacement in anterior–posterior (AP) and medio-lateral (ML) direction during a maximal leaning task. Task conditions comprised standing with eyes open (EO) and eyes closed (EC): (1) on a stable surface; (2) an unstable surface; and (3) with Achilles tendon vibration. CoP displacements were calculated as a percentage of their respective LoS. Perceived LoS did not differ between groups. PD patients showed greater ML CoP displacement than elderly fallers (EF) across all conditions (p = 0.043) and tended to have higher postural sway in relation to the LoS (p = 0.050). Both groups performed worse on an unstable surface and during tendon vibration compared to standing on a stable surface with EO and even more so with EC. Both PD and EF had more AP sway in all conditions with EC compared to EO (p < 0.001) and showed increased CoP displacements when relying on proprioception only compared to standing with normal sensory input. This implies a similar role of the proprioceptive system in postural control in fallers with and without PD. PD fallers showed higher ML sway after sensory manipulations, as a result of which these values approached their perceived LoS more closely than in EF. We conclude that despite a similar fall history, PD patients showed more ML instability than EF, irrespective of sensory manipulation, but had a similar reliance on ankle proprioception. Hence, we recommend that rehabilitation and fall prevention for PD should focus on motor rather than on sensory aspects. PMID:25505395
Exploring physical exposures and identifying high-risk work tasks within the floor layer trade
McGaha, Jamie; Miller, Kim; Descatha, Alexis; Welch, Laurie; Buchholz, Bryan; Evanoff, Bradley; Dale, Ann Marie
2014-01-01
Introduction Floor layers have high rates of musculoskeletal disorders yet few studies have examined their work exposures. This study used observational methods to describe physical exposures within floor laying tasks. Methods We analyzed 45 videos from 32 floor layers using Multimedia-Video Task Analysis software to determine the time in task, forces, postures, and repetitive hand movements for installation of four common flooring materials. We used the WISHA checklists to define exposure thresholds. Results Most workers (91%) met the caution threshold for one or more exposures. Workers showed high exposures in multiple body parts with variability in exposures across tasks and for different materials. Prolonged exposures were seen for kneeling, poor neck and low back postures, and intermittent but frequent hand grip forces. Conclusions Floor layers experience prolonged awkward postures and high force physical exposures in multiple body parts, which probably contribute to their high rates of musculoskeletal disorders. PMID:24274895
Gain of postural responses increases in response to real and anticipated pain.
Hodges, Paul W; Tsao, Henry; Sims, Kevin
2015-09-01
This study tested two contrasting theories of adaptation of postural control to pain. One proposes alteration to the postural strategy including inhibition of muscles that produce painful movement; another proposes amplification of the postural adjustment to recruit strategies normally reserved for higher load. This study that aimed to determine which of these alternatives best explains pain-related adaptation of the hip muscle activity associated with stepping down from steps of increasing height adaptation of postural control to increasing load was evaluated from hip muscle electromyography (fine-wire and surface electrodes) as ten males stepped from steps of increasing height (i.e. increasing load). In one set of trials, participants stepped from a low step (5 cm) and pain was induced by noxious electrical stimulation over the sacrum triggered from foot contact with a force plate or was anticipated. Changes in EMG amplitude and onset timing were compared between conditions. Hip muscle activation was earlier and larger when stepping from higher steps. Although ground reaction forces (one of the determinants of joint load) were unchanged before, during and after pain, trials with real or anticipated noxious stimulation were accompanied by muscle activity indistinguishable from that normally reserved for higher steps (EMG amplitude increased from 9 to 17 % of peak). These data support the notion that muscle activation for postural control is augmented when challenged by real/anticipated noxious stimulation. Muscle activation was earlier and greater than that required for the task and is likely to create unnecessary joint loading. This could have long-term consequences if maintained.
Quant, Sylvia; Maki, Brian E; McIlroy, William E
2005-06-24
Previous studies have suggested that early cortical potentials (e.g. N1) that are evoked by perturbations to upright stance are associated with sensory processing of the initial perturbation and that later potentials may represent cognitive processing of this perturbation. However, it has also been suggested that later cortical potentials could reflect sensory and motor processing of later phases of the postural reaction. The current study set out to provide additional insight into the association between perturbation-evoked cortical potentials and postural reactions evoked by whole-body perturbations. By altering the deceleration onset of the perturbation, which altered the timing of later postural responses, we determined whether changes in later postural responses were associated with changes in later potentials. Based on previous work, we hypothesized that later potentials would not be associated with changes in later postural responses. During stance, seven healthy young adults were instructed to maintain their balance following two types of perturbations: (1) acceleration phase immediately followed by a deceleration phase (TASK 1), and (2) acceleration phase followed by a delayed deceleration phase (TASK 2). In spite of profound task differences in later postural responses, results revealed no significant differences in later potentials. This work provides additional support for the idea that latter elements of perturbation-evoked cortical responses are likely independent of evoked motor reactions required to maintain stability.
Conceição, Josilene Souza; Schaefer de Araújo, Felipe Gustavo; Santos, Gilmar Moraes; Keighley, John
2016-01-01
Context: Rehabilitation programs for patients with chronic ankle instability (CAI) generally involve balance-perturbation training (BPT). Anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) are the primary strategies used to maintain equilibrium during body perturbations. Little is known, however, about how APAs and CPAs are modified to promote better postural control for individuals with CAI after BPT. Objective: To investigate the effect of BPT that involves kicking a ball on postural-control strategies in individuals with CAI. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: We randomly assigned 44 volunteers with CAI to either a training group (TG; 11 women, 11 men; age = 24 ± 4 years, height = 173.0 ± 9.8 cm, mass = 72.64 ± 11.98 kg) or control group (CG; 11 women, 11 men; age = 22 ± 3 years, height = 171.0 ± 9.7 cm, mass = 70.00 ± 11.03 kg). Intervention(s): The TG performed a single 30-minute training session that involved kicking a ball while standing on 1 foot. The CG received no intervention. Main Outcome Measure(s): The primary outcome was the sum of the integrated electromyographic activity (∑∫EMG) of the lower extremity muscles in the supporting limb that were calculated during typical intervals for APAs and CPAs. A secondary outcome was center-of-pressure displacement during similar intervals. Results: In the TG after training, the ∑∫EMG decreased in both dorsal and ventral muscles during compensatory adjustment (ie, the time interval that followed lower limb movement). During this interval, muscle activity (∑∫EMG) was less in the TG than in the CG. Consequently, center-of-pressure displacement increased during the task after training. Conclusions: A single session of ball-kicking BPT promoted changes in postural-control strategies in individuals with CAI. These results should stimulate new and more comprehensive studies to investigate the effect of this and other BPT techniques on postural control in patients with CAI. PMID:27295488
Yiou, Eric; Hamaoui, Alain; Le Bozec, Serge
2007-08-09
The current study was designed to test the effect of changing the base of support (BoS) size in the initial posture on the performance of a pointing task and the associated "anticipatory postural adjustments" (APAs). Subjects performed series of arm pointing tasks at maximal velocity, from five postures that differed by the antero-posterior (AP) distance between the heels. This distance was increased stepwise from 0 cm (P0 condition) to 40 cm (P40 condition). Kinetics data were collected with a large force-plate, and kinematics data of the pointing were collected with a bi-axial accelerometer (AP and vertical direction) fixed at the wrist. ANOVA showed that the amplitude and the efficiency of the APAs, as well as the performance of the pointing, all statistically increased from P0 to P40 (with 0.0001
Hegeman, Judith; van den Bemt, Bart; Weerdesteyn, Vivian; Nienhuis, Bart; van Limbeek, Jacques; Duysens, Jacques
2011-01-01
Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat depression and are also associated with an increased falls risk. However, the biological mechanism underlying accidental falls with SSRI intake has yet to be elucidated. The present experimental study was designed to investigate whether obstacle avoidance skills in long-term (>90 days), senior paroxetine users (61 ± 5.8 years) are affected during gait, simple and challenging postural balance tasks, as well as during manual reaction time tasks. The performance of the paroxetine users was compared with healthy group-matched controls (60 ± 4.8 years). The results demonstrated impaired postural balance in the paroxetine users, especially during one-legged stance or under various dual-task conditions. Although the deficit in one-legged stance could indicate vestibular involvement, this was deemed unlikely because performance of standing on compliant surface with closed eyes remained unaffected. Paroxetine use also failed to affect manual reaction times or obstacle avoidance performance. It is suggested that paroxetine affects attentional capacities particularly in conjunction with balance control. Compared with healthy seniors, long-term senior users of paroxetine seem to be at an increased risk of falling due to impairments in balance control, especially when attention has to be divided between 2 concurrent activities.
Attentional demands and postural recovery: the effects of aging.
Brown, L A; Shumway-Cook, A; Woollacott, M H
1999-04-01
Cognitive demands associated with balance and locomotion may contribute to the incidence of falling among older adults. This study addressed issues related to the effects of aging on the attentional demands of recovering from an external disturbance to balance. This research also investigated whether performing a secondary cognitive task differentially affects postural recovery in young versus older adults. Fifteen young and 10 healthy older adults were exposed to a series of balance disturbances. Attentional demands were assessed using a dual task paradigm where postural recovery served as the primary task, and counting backwards served as a concurrent secondary cognitive task. The effect of the counting task was assessed by comparing kinematic variables related to feet-in-place and stepping recovery strategies. Recovering upright stance was found to be attentionally demanding in both age groups. The type of recovery strategy did not influence attentional demands in young adults; however, a hierarchy of increasing attentional demands between the ankle strategy and compensatory stepping was apparent among older adults. In addition, stepping appears to be more attentionally demanding for older adults than for younger adults. Counting backwards did not affect the type of strategy used; however, it did affect the kinematics of stepping. For both age groups, steps occurred when the center of mass was located in a more central location within the base of support when the secondary task was added. The ability to recover a stable posture following an external perturbation is more attentionally demanding for older adults than for younger adults. This would suggest that for some older adults, an increased risk for loss of balance and falls may result if sufficient attentional resources are not allocated to the task of postural recovery.
Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh
2016-01-01
The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of motor control among elderly participants with varying fall-risk potentials. The results suggest that, although elderly adults may be without neurological deficits, inefficient central modulation during challenging postural conditions could be an internal factor that contributes to the risk of fall. Furthermore, training that helps to improve coordinated sensorimotor integration may be a useful approach to reduce the risk of fall among elderly populations or when patients suffer from neurological deficits. PMID:27199732
McCaskey, Michael A; Schuster-Amft, Corina; Wirth, Brigitte; de Bruin, Eling D
2015-12-15
Sensorimotor training (SMT) is popularly applied as a preventive or rehabilitative exercise method in various sports and rehabilitation settings. Yet, there is only low-quality evidence on its effect on pain and function. This randomised controlled trial will investigate the effects of a theory-based SMT in rehabilitation of chronic (>3 months) non-specific low back pain (CNLBP) patients. A pilot study with a parallel, single-blinded, randomised controlled design. Twenty adult patients referred to the clinic for CNLBP treatment will be included, randomised, and allocated to one of two groups. Each group will receive 9 x 30 minutes of standard physiotherapy (PT) treatment. The experimental group will receive an added 15 minutes of SMT. For SMT, proprioceptive postural exercises are performed on a labile platform with adjustable oscillation to provoke training effects on different entry levels. The active comparator group will perform 15 minutes of added sub-effective low-intensity endurance training. Outcomes are assessed on 4 time-points by a treatment blinded tester: eligibility assessment at baseline (BL) 2-4 days prior to intervention, pre-intervention assessment (T0), post-intervention assessment (T1), and at 4 weeks follow-up (FU). At BL, an additional healthy control group (n = 20) will be assessed to allow cross-sectional comparison with symptom-free participants. The main outcomes are self-reported pain (Visual Analogue Scale) and functional status (Oswestry Disability Index). For secondary analysis, postural control variables after an externally perturbed stance on a labile platform are analysed using a video-based marker tracking system and a pressure plate (sagittal joint-angle variability and centre of pressure confidence ellipse). Proprioception is measured as relative cervical joint repositioning error during a head-rotation task. Effect sizes and mixed-model MANOVA (2 groups × 4 measurements for 5 dependent variables) will be calculated. This is the first attempt to systematically investigate effects of a theory-based sensorimotor training in patients with CNLBP. It will provide analysis of several postural segments during a dynamic task for quantitative analysis of quality and change of the task performance in relation to changes in pain and functional status. Trial registry number on cliniclatrials.gov is NCT02304120 , first registered on 17 November 2014.
Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak
2012-10-01
The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration.
Jacobs, Jesse V; Lyman, Courtney A; Hitt, Juvena R; Henry, Sharon M
2017-08-01
People with low back pain exhibit altered postural coordination that has been suggested as a target for treatment, but heterogeneous presentation has rendered it difficult to identify appropriate candidates and protocols for such treatments. This study evaluated the associations of task-related and person-related factors with the effect of low back pain on anticipatory postural adjustments. Thirteen subjects with and 13 without low back pain performed seated, rapid arm flexion in self-initiated and cued conditions. Mixed-model ANOVA were used to evaluate group and condition effects on APA onset latencies of trunk muscles, arm-raise velocity, and pre-movement cortical potentials. These measures were evaluated for correlation with pain ratings, Fear Avoidance Beliefs Questionnaire scores, and Modified Oswestry Questionnaire scores. Delayed postural adjustments of subjects with low back pain were greater in the cued condition than in the self-initiated condition. The group with low back pain exhibited larger-amplitude cortical potentials than the group without pain, but also significantly slower arm-raise velocities. With arm-raise velocity as a covariate, the effect of low back pain remained significant for the latencies of postural adjustments but not for cortical potentials. Latencies of the postural adjustments significantly correlated with Oswestry and Fear Avoidance Beliefs scores. Delayed postural adjustments with low back pain appear to be influenced by cueing of movement, pain-related disability and fear of activity. These results highlight the importance of subject characteristics, task condition, and task performance when comparing across studies or when developing treatment of people with low back pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of postural control in patients with Parkinson's disease: sway ratio analysis.
Błaszczyk, Janusz W; Orawiec, Renata
2011-04-01
Analysis of the postural stability impairments in neurodegenerative diseases is a very demanding task. Age-related declines in posturographic indices are usually superimposed on effects associated with the pathology and its treatment. We present the results of a novel postural sway ratio (SR) analysis in patients with Parkinson's disease (PD) and age-matched healthy subjects. The sway ratios have been assessed based upon center of foot-pressure (CP) signals recorded in 55 parkinsonians (Hoehn and Yahr: 1-3) and 55 age-matched healthy volunteers while standing quiet with eyes open (EO) and then with eyes closed (EC). Complementing classical sway measure abnormalities, the SR exhibited a high discriminative power for all controlled factors: pathology, vision, and direction of sway. Both the anteroposterior (AP) and mediolateral (ML) sway ratios were significantly increased in PD patients when compared to the control group. An additional SR increase was observed in the response to eyes closure. The sway ratio changes documented here can be attributed to a progressive decline of a postural stability control due to pathology. In fact, a significant correlation between the mediolateral SR under EO conditions and Motor Exam (section III) score of the UPDRS was found. The mediolateral sway ratios computed for EO and EC conditions significantly correlated with the CP path length (r = .87) and the mean anteroposterior CP position within the base of support (r = .38). Both indices reflect postural stability decline and fall tendency # in parkinsonians. The tremor-type PD patients (N=34) showed more pronounced relationships between the mediolateral SR and selected items from the UPDRS scale, including: falls (Kendall Tau=.47, p < .05), rigidity (.45, p < .05), postural stability (retropulsion) (.52), and the Motor Exam score (.73). The anteroposterior SR correlated only with tremor (Kendal Tau = .77, p < .05). It seems that in force plate posturography the SR can be recommended as a single reliable measure that allows for a better quantitative assessment of postural stability impairments. Copyright © 2010 Elsevier B.V. All rights reserved.
SAR target recognition and posture estimation using spatial pyramid pooling within CNN
NASA Astrophysics Data System (ADS)
Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin
2018-01-01
Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.
Postural Stability Margins as a Function of Support Surface Slopes.
Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim
2016-01-01
This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.
Water Immersion Affects Episodic Memory and Postural Control in Healthy Older Adults.
Bressel, Eadric; Louder, Talin J; Raikes, Adam C; Alphonsa, Sushma; Kyvelidou, Anastasia
2018-05-04
Previous research has reported that younger adults make fewer cognitive errors on an auditory vigilance task while in chest-deep water compared with on land. The purpose of this study was to extend this previous work to include older adults and to examine the effect of environment (water vs land) on linear and nonlinear measures of postural control under single- and dual-task conditions. Twenty-one older adult participants (age = 71.6 ± 8.34 years) performed a cognitive (auditory vigilance) and motor (standing balance) task separately and simultaneously on land and in chest-deep water. Listening errors (n = count) from the auditory vigilance test and sample entropy (SampEn), center of pressure area, and velocity for the balance test served as dependent measures. Environment (land vs water) and task (single vs dual) comparisons were made with a Wilcoxon matched-pair test. Listening errors were 111% greater during land than during water environments (single-task = 4.0 ± 3.5 vs 1.9 ± 1.7; P = .03). Conversely, SampEn values were 100% greater during water than during land environments (single-task = 0.04 ± 0.01 vs 0.02 ± 0.01; P < .001). Center of pressure area and velocity followed a similar trend to SampEn with respect to environment differences, and none of the measures were different between single- and dual-task conditions (P > .05). The findings of this study expand current support for the potential use of partial aquatic immersion as a viable method for challenging both cognitive and motor abilities in older adults.
Uemura, Kazuki; Yamada, Minoru; Nagai, Koutatsu; Tanaka, Buichi; Mori, Shuhei; Ichihashi, Noriaki
2012-02-01
Little is known about dynamic balance control under dual-task conditions in older adults with fear of falling (FoF). The purpose of this study was to examine the effect of FoF on anticipatory postural adjustment (APA) during gait initiation under dual-task conditions in older adults. Fifty-seven elderly volunteers (age, 79.2 [6.8] years) from the community participated in this study. Each participant was categorised into either the Fear (n=24) or No-fear (n=33) group on the basis of the presence or absence of FoF. Under single- and dual-task conditions, centre of pressure (COP) data were collected while the participants performed gait initiation trials from a starting position on a force platform. We also performed a 10-m walking test (WT), a timed up & go test (TUG), and a functional reach test (FR). The reaction and APA phases were measured from the COP data. The results showed that under the dual-task condition, the Fear group had significantly longer APA phases than the No-fear group, although no significant differences were observed between the 2 groups in the reaction and APA phases under the single-task condition and in any clinical measurements (WT, TUG, and FR). Our findings suggest that specific deficits in balance control occur in subjects with FoF during gait initiation while dual tasking, even if their physical functions are comparable to subjects without FoF. Copyright © 2011 Elsevier B.V. All rights reserved.
Gyemi, Danielle L; van Wyk, Paula M; Statham, Melissa; Casey, Jeff; Andrews, David M
2016-01-01
In agricultural field work many tasks have been cited as high priority risk factors for the development of work-related musculoskeletal disorders (WRMDs). Although video-based biomechanical approaches have been effective in documenting the physical demands and risks associated with various occupational and non-occupational tasks, to date, this method has yet to be used to document jobs such as crop harvesting in a greenhouse environment. To document and assess the postural characteristics and 3D peak and cumulative low back and shoulder loads associated with greenhouse pepper harvesting using a video-based posture sampling approach. Nine male (28.2 (4.1) years) pepper harvesters from a greenhouse in Southwestern Ontario, Canada were videotaped during a normal shift. 3DMatch was used to document working trunk and shoulder postures, from which 3D peak and cumulative forces and moments were quantified. On average, workers spent the majority of their time in neutral trunk postures (lateral bend: 99.1%; axial twist: 59.9%; flexion: 89.8%). Consistent results were found for the left and right shoulder, with the arms held in a neutral flexion posture 50% of the time or more. Four participants experienced peak L4/L5 compression forces (between 4116.3 N and 5937.0 N) which exceeded the NIOSH Action Limit (3400 N) during the cart pushing/pulling task, but remained below the threshold during picking. Mean cumulative L4/L5 extension and shoulder flexion moments ranged in magnitude from 18.5 Nm to 28.2 Nm, and between 19.4 Nm and 23.2 Nm, respectively, across all tasks. The postural characteristics and biomechanical loads associated with greenhouse pepper harvesting were quantified with a video-based biomechanical approach. Further investigations of the physical risk factors for low back and shoulder musculoskeletal disorders is warranted in pepper harvesting, given the postures and loads documented in this study.
Boucher, Jean-Alexandre; Preuss, Richard; Henry, Sharon M; Nugent, Marilee; Larivière, Christian
2018-04-22
Low back pain (LBP) has been previously associated with delayed anticipatory postural adjustments (APAs) determined by trunk muscle activation. Lumbar stabilization exercise programs (LSEP) for patients with LBP may restore the trunk neuromuscular control of the lumbar spine, and normalize APAs. This exploratory study aimed at testing the reliability of EMG and kinematics-based postural adjustment measures over an 8-week interval, assessing their sensitivity to LBP status and treatment and examining their relationship with clinical outcomes. Muscle activation of 10 trunk muscles, using surface electromyography (EMG), and lumbar angular kinematics were recorded during a rapid arm-raising/lowering task. Patients with LBP were tested before and after an 8-week LSEP. Healthy controls receiving no treatment were assessed over the same interval to determine the reliability of the measures and act as a control group at baseline. Muscle activation onsets and reactive range of motion, range of velocities and accelerations were assessed for between group differences at baseline and pre- to post-treatment effects within patients with LBP using t-tests. Correlations between these dependent variables and the change of clinical outcomes (pain, disability) over treatment were also explored. Kinematic-based measures showed comparable reliability to EMG-based measures. Between-group differences were found in lumbar lateral flexion ROM at baseline (patients < controls). In the patients with LBP, lateral flexion velocity and acceleration significantly increased following the LSEP. Correlational analyses revealed that lumbar angular kinematics were more sensitive to changes in pain intensity following the LSEP compared to EMG measures. These findings are interpreted in from the perspective of guarding behaviors and lumbar stability hypotheses. Future clinical trials are needed to target patients with and without delayed APAs at baseline and to explore the sensitivity of different outcome measures related to APAs. Different tasks more challenging to postural stability may need to be explored to more effectively reveal APA dysfunction. Copyright © 2018. Published by Elsevier Ltd.
Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom
2014-01-01
The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.
NASA Astrophysics Data System (ADS)
Brewer, Jeffrey David
The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.
Specificity of Postural Sway to the Demands of a Precision Task at Sea
ERIC Educational Resources Information Center
Chen, Fu-Chen; Stoffregen, Thomas A.
2012-01-01
Mariners actively adjust their body orientation in response to ship motion. On a ship at sea, we evaluated relations between standing postural activity and the performance of a precision aiming task. Standing participants (experienced mariners) maintained the beam from a handheld laser on a target. Targets were large or small, thereby varying the…
ERIC Educational Resources Information Center
Chen, F. C.; Tsai, C. L.; Stoffregen, T. A.; Wade, M. G.
2011-01-01
We sought to determine the effects of varying the perceptual demands of a suprapostural visual task on the postural activity of children with developmental coordination disorder (DCD), and typically developing children (TDC). Sixty-four (32 per group) children aged between 9 and 10 years participated. In a within-participants design, each child…
Movement plans for posture selection do not transfer across hands
Schütz, Christoph; Schack, Thomas
2015-01-01
In a sequential task, the grasp postures people select depend on their movement history. This motor hysteresis effect results from the reuse of former movement plans and reduces the cognitive cost of movement planning. Movement plans for hand trajectories not only transfer across successive trials, but also across hands. We therefore asked whether such a transfer would also be found in movement plans for hand postures. To this end, we designed a sequential, continuous posture selection task. Participants had to open a column of drawers with cylindrical knobs in ascending and descending sequences. A hand switch was required in each sequence. Hand pro/supination was analyzed directly before and after the hand switch. Results showed that hysteresis effects were present directly before, but absent directly after the hand switch. This indicates that, in the current study, movement plans for hand postures only transfer across trials, but not across hands. PMID:26441734
A test of fixed and moving reference point control in posture.
Lee, I-Chieh; Pacheco, Matheus M; Newell, Karl M
2017-01-01
This study investigated two contrasting assumptions of the regulation of posture: namely, fixed and moving reference point control. These assumptions were tested in terms of time-dependent structure and data distribution properties when stability is manipulated. Fifteen male participants performed a tightrope simulated balance task that is, maintaining a tandem stance while holding a pole. Pole length (and mass) and the standing support surface (fixed surface/balance board) were manipulated so as to mechanically change the balance stability. The mean and standard deviation (SD) of COP length were reduced with pole length increment but only in the balance board surface condition. Also, the SampEn was lower with greater pole length for the balance board but not the fixed surface. More than one peak was present in the distribution of COP in the majority of trials. Collectively, the findings provide evidence for a moving reference point in the maintenance of postural stability for quiet standing. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Biomechanical constraints on the feedforward regulation of endpoint stiffness.
Hu, Xiao; Murray, Wendy M; Perreault, Eric J
2012-10-01
Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.
Bramell-Risberg, Eva; Jarnlo, Gun-Britt; Elmståhl, Sölve
2012-01-01
Purpose To investigate whether separate physical tests of the lower extremities, that assess movement speed and postural control, were associated with cognitive impairment in older community-dwelling subjects. Subjects and methods In this population-based, cross-sectional, cohort study, the following items were assessed: walking speed, walking 2 × 15 m, Timed Up and Go (TUG) at self-selected and fast speeds, one-leg standing, and performance in step- and five chair-stand tests. The study comprised 2115 subjects, aged 60–93 years, with values adjusted for demographics, health-related factors, and comorbidity. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE), and cognitive impairment was defined by the three-word delayed recall task of the MMSE. Subjects who scored 0/3 on the three-word delayed recall task were defined as cases (n = 328), those who scored 1/3 were defined as intermediates (n = 457), and the others as controls (n = 1330). Results Physical tests performed rapidly were significantly associated with cognitive impairment; this was the case in increased time of five chair stands (P = 0.009, odds ratio [OR] = 1.03), TUG (P < 0.001, OR = 1.11) and walking 2 × 15 m (P < 0.001, OR = 1.05). Inability to stand on one leg for 10 seconds was associated with increased risk of being a case (P < 0.001, OR = 1.78), compared to those able to stand for 30 seconds or longer. More steps during the step test (P < 0.001, OR = 0.95) and higher fast walking speed (P < 0.001, OR = 0.51) were associated with lower risk of being a case. Conclusion Slower movements and reduced postural control were related to an increased risk of being cognitively impaired. All tests that were performed rapidly were able to separate cases from controls. These findings suggest that physical tests that are related to lower extremity and postural control, emphasizing velocity, might be useful in investigating relationships between physical and cognitive function; furthermore, they can be used to complement cognitive impairment diagnoses. PMID:22807629
Postural adjustment errors during lateral step initiation in older and younger adults
Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.
2016-01-01
The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25595953
Postural adjustment errors during lateral step initiation in older and younger adults
Sparto, Patrick J.; Fuhrman, Susan I.; Redfern, Mark S.; Perera, Subashan; Jennings, J. Richard; Furman, Joseph M.
2014-01-01
The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70 – 94 y) and twenty younger adults (21 – 58 y) performed visually-cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g. a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance. PMID:25183162
Postural stability is compromised by fatiguing overhead work.
Nussbaum, Maury A
2003-01-01
In a laboratory setting, 16 participants performed a repetitive overhead tapping task for 3 hours or until self-terminated due to substantial shoulder discomfort. Several measures of postural sway and stability were obtained using a force plate, both during quiet standing and during performance of the tapping task. Sway area and peak sway velocity showed consistent increases with time, whereas changes in average velocity and peak whole-body center-of-mass acceleration were either small or nonsignificant. Although relatively insensitive to several task variables, changes in sway areas and peak velocities were substantially larger in trials terminated by the participants. It is argued that fatigue plays a more important role than simple task duration in causing the observed increases in sway, and hence decreases in postural stability. Potential whole-body consequences of localized musculoskeletal stresses appear supported by the results, and implications for safety, risks of falls, and work scheduling are discussed.
Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe
2006-01-01
Context: Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. Objective: To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Design: Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Setting: Sports performance laboratory. Patients or Other Participants: Fifteen national male soccer players (age = 24 ± 3 years, height = 179 ± 5 cm, mass = 72 ± 3 kg) and 15 regional male soccer players (age = 23 ± 3 years, height = 174 ± 4 cm, mass = 68 ± 5 kg) participated in the study. Intervention(s): The subjects performed posturographic tests with eyes open and closed. Main Outcome Measure(s): While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Results: Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. Conclusions: In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies. PMID:16791302
Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe
2006-01-01
Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Sports performance laboratory. Fifteen national male soccer players (age = 24 +/- 3 years, height = 179 +/- 5 cm, mass = 72 +/- 3 kg) and 15 regional male soccer players (age = 23 +/- 3 years, height = 174 +/- 4 cm, mass = 68 +/- 5 kg) participated in the study. The subjects performed posturographic tests with eyes open and closed. While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies.
Cortical involvement in anticipatory postural reactions in man.
Petersen, Tue Hvass; Rosenberg, Kasper; Petersen, Nicolas Caesar; Nielsen, Jens Bo
2009-02-01
All movements are accompanied by postural reactions which ensure that the balance of the body is maintained. It has not been resolved that to what extent the primary motor cortex and corticospinal tract are involved in the control of these reactions. Here, we investigated the contribution of the corticospinal tract to the activation of the soleus (SOL) muscle in standing human subjects (n=10) in relation to voluntary heel raise, anticipatory postural activation of the soleus muscle when the subject pulled a handle and to reflex activation of the soleus muscle when the subject was suddenly pulled forward by an external perturbation. SOL motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) increased significantly in relation to rest -75 ms prior to the onset of EMG in the heel-raise and handle-pull tasks. The short-latency facilitation of the soleus H-reflex evoked by TMS increased similarly, suggesting that the increased MEP size prior to movement was caused at least partly by increased excitability of corticospinal tract cells with monosynaptic projections to SOL motoneurones. Changes in spinal motoneuronal excitability could be ruled out since there was no significant increase of the SOL H-reflex until immediately prior to EMG onset for any of the tasks. Tibialis anterior MEPs were unaltered prior to the onset of SOL EMG activity in the handle-pull task, suggesting that the MEP facilitation was specific for the SOL muscle. No significant increase of the MEPs was observed prior to EMG onset for the external perturbation. These data suggest that the primary motor cortex is involved in activating the SOL muscle as part of an anticipatory postural reaction.
Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania
2017-04-11
Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.
Vibrotactile Postural Control in Patients that have Sit-to-Stand Balance Deficit and Fall
2010-09-01
Design A prospective, pretest / posttest repeated measure design evaluated subjects’ response to force platform vibrotactile intervention. The...FIM-Motor) Pretest Activity Performance Posttest 1 Maximal Assist (performs less than 25% of task) 1 2 Maximal Assist (performs 25%-49% of task...collection vary from a pretest interval of 6 months to posttest intervals of 2 weeks, 60 days, and 90 days. For example, the pretest asks subjects to report
Ruhe, Alexander; Fejer, René; Walker, Bruce
2011-07-15
Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n = 11) was enrolled per pain score. Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.
Occupation and risk of parkinsonism: a multicenter case-control study.
Tanner, Caroline M; Ross, G Webster; Jewell, Sarah A; Hauser, Robert A; Jankovic, Joseph; Factor, Stewart A; Bressman, Susan; Deligtisch, Amanda; Marras, Connie; Lyons, Kelly E; Bhudhikanok, Grace S; Roucoux, Diana F; Meng, Cheryl; Abbott, Robert D; Langston, J William
2009-09-01
We examined risk of parkinsonism in occupations (agriculture, education, health care, welding, and mining) and toxicant exposures (solvents and pesticides) putatively associated with parkinsonism. To investigate occupations, specific job tasks, or exposures and risk of parkinsonism and clinical subtypes. Case-control. Eight movement disorders centers in North America. Inclusion criteria were parkinsonism (>or=2 cardinal signs), diagnosis within 8 years of recruitment (to minimize survival bias), and ability to participate in detailed telephone interviews. Control subjects were primarily nonblood relatives or acquaintances of patients. This multicenter case-control study compared lifelong occupational and job task histories to determine associations with parkinsonism and certain clinical subtypes (postural instability and gait difficulty and age at diagnosis
Torres-Russotto, Diego; Perlmutter, Joel S.
2009-01-01
Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127
Visual Tasks and Postural Sway in Children with and without Autism Spectrum Disorders
ERIC Educational Resources Information Center
Chang, Chih-Hui; Wade, Michael G.; Stoffregen, Thomas A.; Hsu, Chin-Yu; Pan, Chien-Yu
2010-01-01
We investigated the influences of two different suprapostural visual tasks, visual searching and visual inspection, on the postural sway of children with and without autism spectrum disorder (ASD). Sixteen ASD children (age=8.75 [plus or minus] 1.34 years; height=130.34 [plus or minus] 11.03 cm) were recruited from a local support group.…
Robert, M; Ohlmann, T
1994-01-01
In the water-level task, it has been repeatedly shown that, compared with men, women more often fail to represent the surface of a liquid as horizontal regardless of the tilt of the container. An attempt was made to reduce this robust gender gap through the manipulation of relevant upright references conveyed both by the position of the stimuli and the posture of the subject. It was reasoned that bringing the women to focus on such gravitational references through postural adjustment might help their performance equal that of men, thus shedding some light on the nature of the difficulty they experience in the standard setting. A lesser effect was anticipated among men. However, the results showed that, even after controlling for proficiency in the correlated visuospatial situation of the rod-and-frame test, the performance of men always surpassed that of women. Irrespective of gender, water-level representation on vertical sheets was unaffected by the subject's posture, whereas it improved when horizontal sheets were coupled with the most unstable posture. Whereas the persistence of the yet-unaccounted-for gender difference was underscored, the contributions of visual and postural cues issued at arm and full-body levels were discussed.
The effects of cognitive loading on balance control in patients with multiple sclerosis.
Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran
2011-10-01
The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.
Degani, Adriana M; Leonard, Charles T; Danna-Dos-Santos, Alessander
2017-08-24
The overall goal of this study was to investigate potential adaptations brought about by the natural processes of aging on the coordination of postural muscles. Considering the progressive and non-homogeneous deterioration of sensorimotor and neuromuscular systems as the individual grows older, it was hypothesized that aging is associated with a reorganization of synergistic mechanisms controlling postural muscles. Therefore, the presence, distribution, and strength of correlated neural inputs to three posterior postural muscles were measured by intermuscular coherence estimations at a low frequency band (0-55Hz). Nine healthy young adults and thirteen healthy older adults performed ten trials of a perturbed task: bipedal stance while holding a five kg load for fifteen seconds. Estimates of intermuscular coherence for each pair of electromyographic signals (soleus and biceps femoris, soleus and erector spinae, and biceps femoris and erector spinae) were computed. Results revealed significantly stronger levels of synchronization of posterior muscles within 0-10Hz in seniors compared to young adults. In addition, seniors presented similar spectra of intermuscular coherence within 0-55Hz for all three muscle pairs analyzed. These findings provide valuable information regarding compensatory mechanisms adopted by older adults to control balance. The age-related reorganization of neural drive controlling posterior postural muscles revealing a stronger synchronization within 0-10Hz might be related to the faster body sway and muscle co-activation patterns usually observed in this population. Finally, this study supports the use of Intermuscular Coherence Analysis as a sensitive method to detect age-related changes in multi-muscle control. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Di; Sessa, Salvatore; Kong, Weisheng; Cosentino, Sarah; Magistro, Daniele; Ishii, Hiroyuki; Zecca, Massimiliano; Takanishi, Atsuo
2015-11-01
Current training for laparoscopy focuses only on the enhancement of manual skill and does not give advice on improving trainees' posture. However, a poor posture can result in increased static muscle loading, faster fatigue, and impaired psychomotor task performance. In this paper, the authors propose a method, named subliminal persuasion, which gives the trainee real-time advice for correcting the upper limb posture during laparoscopic training like the expert but leads to a lower increment in the workload. A 9-axis inertial measurement unit was used to compute the upper limb posture, and a Detection Reaction Time device was developed and used to measure the workload. A monitor displayed not only images from laparoscope, but also a visual stimulus, a transparent red cross superimposed to the laparoscopic images, when the trainee had incorrect upper limb posture. One group was exposed, when their posture was not correct during training, to a short (about 33 ms) subliminal visual stimulus. The control group instead was exposed to longer (about 660 ms) supraliminal visual stimuli. We found that subliminal visual stimulation is a valid method to improve trainees' upper limb posture during laparoscopic training. Moreover, the additional workload required for subconscious processing of subliminal visual stimuli is less than the one required for supraliminal visual stimuli, which is processed instead at the conscious level. We propose subliminal persuasion as a method to give subconscious real-time stimuli to improve upper limb posture during laparoscopic training. Its effectiveness and efficiency were confirmed against supraliminal stimuli transmitted at the conscious level: Subliminal persuasion improved upper limb posture of trainees, with a smaller increase on the overall workload.
Avoid Workplace Injury through Ergonomics | Poster
Ergonomics is “the scientific study of people at work,” with the goal of reducing stress and eliminating injuries associated with overused muscles, bad posture, and repeated tasks, according to the Centers for Disease Control and Prevention (CDC). The Occupational Safety and Health Administration (OSHA) states that working ergonomically reduces muscle fatigue, increases
Ice skating promotes postural control in children.
Keller, M; Röttger, K; Taube, W
2014-12-01
High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rasouli, Omid; Stensdotter, Ann-Katrin; Van der Meer, Audrey L H
2016-08-01
Impaired postural control has been reported in static conditions in chronic fatigue syndrome and fibromyalgia, but postural control in dynamic tasks have not yet been investigated. Thus, we investigated measurements from a force plate to evaluate dynamic balance control during gait initiation in patients with chronic fatigue syndrome and fibromyalgia compared to matched healthy controls. Thirty female participants (10 per group) performed five trials of gait initiation. Center of pressure (CoP) trajectory of the initial weight shift onto the supporting foot in the mediolateral direction (CoPX) was analyzed using General Tau Theory. We investigated the hypothesis that tau of the CoPX motion-gap (τCoPx) is coupled onto an intrinsic tauG-guide (τG) by keeping the relation τCoPx=KτG, where K is a scaling factor that determines the relevant kinematics of a movement. Mean K values were 0.57, 0.55, and 0.50 in fibromyalgia, chronic fatigue syndrome, and healthy controls, respectively. Both patient groups showed K values significantly higher than 0.50 (P<0.05), indicating that patients showed poorer dynamic balance control, CoPX colliding with the boundaries of the base of support (K>0.5). The findings revealed a lower level of dynamic postural control in both fibromyalgia and chronic fatigue syndrome compared to controls. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single- and Dual-Task Balance Training Are Equally Effective in Youth
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. PMID:29928248
Single- and Dual-Task Balance Training Are Equally Effective in Youth.
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p < 0.001, d = 5.1), shorter stride length ( p < 0.001, d = 4.8), and longer stride time ( p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity ( p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes ( p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.
Man and machine design for space flight
NASA Technical Reports Server (NTRS)
Louviere, A. J.
1979-01-01
The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.
Mademli, Lida; Arampatzis, Adamantios; Karamanidis, Kiros
2008-06-01
Many studies report that muscle strength loss may alter the human system's capacity to generate rapid force for balance corrections after perturbations, leading to deficient recovery behaviours. Yet little is known regarding the effect of modifications in the neuromuscular system induced by fatigue on dynamic stability control during postural perturbations. This study investigates the effect of muscle strength decline induced by fatiguing contractions on the dynamic stability control of young and older adults during forward falls. Eleven young and eleven older male adults had to regain balance after sudden falls before and after submaximal fatiguing knee extension-flexion contractions. Young subjects had a higher margin of stability than older ones before and after the fatiguing task. This reflects their enhanced ability in using mechanisms for maintaining dynamic stability (i.e. a greater base of support). The margin of stability, the boundary of the base of support and the position of the extrapolated centre of mass, remained unaffected by the reduction in muscle strength induced by the fatiguing contractions, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Both young and older adults were able to counteract the decreased horizontal ground reaction forces after the fatiguing task by flexing their knee to a greater extent, leading to similar decreases in the horizontal velocity of centre of mass as in the pre fatigue condition. The results demonstrate the ability of the central nervous system to rapidly modify the execution of postural corrections including mechanisms for maintaining dynamic stability.
Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.
2013-01-01
Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963
Visual tasks and postural sway in children with and without autism spectrum disorders.
Chang, Chih-Hui; Wade, Michael G; Stoffregen, Thomas A; Hsu, Chin-Yu; Pan, Chien-Yu
2010-01-01
We investigated the influences of two different suprapostural visual tasks, visual searching and visual inspection, on the postural sway of children with and without autism spectrum disorder (ASD). Sixteen ASD children (age=8.75±1.34 years; height=130.34±11.03 cm) were recruited from a local support group. Individuals with an intellectual disability as a co-occurring condition and those with severe behavior problems that required formal intervention were excluded. Twenty-two sex- and age-matched typically developing (TD) children (age=8.93±1.39 years; height=133.47±8.21 cm) were recruited from a local public elementary school. Postural sway was recorded using a magnetic tracking system (Flock of Birds, Ascension Technologies, Inc., Burlington, VT). Results indicated that the ASD children exhibited greater sway than the TD children. Despite this difference, both TD and ASD children showed reduced sway during the search task, relative to sway during the inspection task. These findings replicate those of Stoffregen et al. (2000), Stoffregen, Giveans, et al. (2009), Stoffregen, Villard, et al. (2009) and Prado et al. (2007) and extend them to TD children as well as ASD children. Both TD and ASD children were able to functionally modulate postural sway to facilitate the performance of a task that required higher perceptual effort. Copyright © 2010 Elsevier Ltd. All rights reserved.
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S
1992-12-01
The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.
Multi-muscle synergies in an unusual postural task: quick shear force production.
Robert, Thomas; Zatsiorsky, Vladimir M; Latash, Mark L
2008-05-01
We considered a hypothetical two-level hierarchy participating in the control of vertical posture. The framework of the uncontrolled manifold (UCM) hypothesis was used to explore the muscle groupings (M-modes) and multi-M-mode synergies involved in the stabilization of a time profile of the shear force in the anterior-posterior direction. Standing subjects were asked to produce pulses of shear force into a target using visual feedback while trying to minimize the shift of the center of pressure (COP). Principal component analysis applied to integrated muscle activation indices identified three M-modes. The composition of the M-modes was similar across subjects and the two directions of the shear force pulse. It differed from the composition of M-modes described in earlier studies of more natural actions associated with large COP shifts. Further, the trial-to-trial M-mode variance was partitioned into two components: one component that does not affect a particular performance variable (V(UCM)), and its orthogonal component (V(ORT)). We argued that there is a multi-M-mode synergy stabilizing this particular performance variable if V(UCM) is higher than V(ORT). Overall, we found a multi-M-mode synergy stabilizing both shear force and COP coordinate. For the shear force, this synergy was strong for the backward force pulses and nonsignificant for the forward pulses. An opposite result was found for the COP coordinate: the synergy was stronger for the forward force pulses. The study shows that M-mode composition can change in a task-specific way and that two different performance variables can be stabilized using the same set of elemental variables (M-modes). The different dependences of the ΔV indices for the shear force and COP coordinate on the force pulse direction supports applicability of the principle of superposition (separate controllers for different performance variables) to the control of different mechanical variables in postural tasks. The M-mode composition allows a natural mechanical interpretation.
Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M.; Latash, Mark L.
2017-01-01
Background Postural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of postural stability. Objectives We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson’s disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. Methods Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. Results Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. Conclusions Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson’s disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy. PMID:28110044
O'Sullivan, Kieran; McCarthy, Raymond; White, Alison; O'Sullivan, Leonard; Dankaerts, Wim
2012-01-01
Low back pain (LBP) is a common musculoskeletal disorder and prolonged sitting often aggravates LBP. A novel dynamic ergonomic chair ('Back App'), which facilitates less hip flexion while sitting on an unstable base has been developed. This study compared lumbar posture and trunk muscle activation on this novel chair with a standard backless office chair. Twelve painfree participants completed a typing task on both chairs. Lumbar posture and trunk muscle activation were collected simultaneously and were analysed using paired t-tests. Sitting on the novel dynamic chair significantly (p < 0.05) reduced both lumbar flexion and the activation of one back muscle (Iliocostalis Lumborum pars Thoracis). The discomfort experienced was mild and was similar (p > 0.05) between chairs. Maintaining lordosis with less muscle activation during prolonged sitting could reduce the fatigue associated with upright sitting postures. Studies with longer sitting durations, and in people with LBP, are required. Sitting on a novel dynamic chair resulted in less lumbar flexion and less back muscle activation than sitting on a standard backless office chair during a typing task among pain-free participants. Facilitating lordotic sitting with less muscle activation may reduce the fatigue and discomfort often associated with lordotic sitting postures.
de Oliveira, Marcio R; da Silva, Rubens A; Dascal, Juliana B; Teixeira, Denilson C
2014-01-01
Different types of exercise are indicated for the elderly to prevent functional capacity limitations due to aging and reduce the risk of falls. This study aimed to evaluate the effect of three different exercises (mini-trampoline, MT; aquatic gymnastics, AG and general floor gymnastics, GG) on postural balance in elderly women. Seventy-four physically independent elderly women, mean age 69±4 years, were randomly assigned to three intervention groups: (1) MT (n=23), (2) AG (n=28), and (3) GG (n=23). Each group performed physical training, including cardiorespiratory, muscular strength and endurance, flexibility and sensory-motor exercises for 12 weeks. To determine the effects on each intervention group, five postural balance tasks were performed on a force platform (BIOMEC 400): the two-legged stand with eyes open (TLEO) and two-legged stand with eyes closed (TLEC); the semi-tandem stand with eyes open (STEO) and semi-tandem stand with eyes closed (STEC) and the one-legged stand. Three trials were performed for each task (with 30s of rest between them) and the mean was used to compute balance parameters such as center of pressure (COP) sway movements. All modalities investigated such as the MT, AG and GG were significantly (P<0.05) efficient in improving the postural balance of elderly women after 12 weeks of training. These results provide further evidence concerning exercise and balance for promoting health in elderly women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ya'acob, Noor Afifah; Abidin, Emilia Zainal; Rasdi, Irniza; Rahman, Anita Abd; Ismail, Suriani
2018-05-01
Work tasks in pineapple plantations in Malaysia are characterised by non-ergonomic work postures, repetitive tasks, awkward posture and manual handling of work tools that contribute to the reporting of musculoskeletal symptoms (MSS). There have been very limited studies performed among pineapple plantation workers focusing on ergonomic intervention programs to specifically reduce MSS. The aim of this study was to assess the effects of work improvement module using a Kiken Yochi participatory approach intervention in reducing MSS among male migrant pineapple farm plantation workers in Pontian, Johor. In this interventional study, a total of 68 male migrant workers from two plantation farms were invited to become a participant in this study. In total, 45 participants that consisted of 27 workers for the intervention group and 18 workers for the control group were recruited. The background of workers and MSS were assessed using questionnaires. Ergonomic and postural risks were evaluated and the work tasks with the highest risk were used as a basis for the development of the Kiken Yochi training module. MSS education and training intervention that provided information on proper lifting techniques and education on body mechanics and ergonomics to reduce MSS were implemented to both groups of workers. Kiken Yochi Training was given to the intervention group only. MSS were reassessed after 2 months of the follow-up period. Data was entered into statistical software and were analysed according to objectives. In terms of the postural risk assessment, almost two-third of the participants (68.5%) had working postures categorized as high risk for MSS. Ergonomic risk assessment identified cultivation, manual weeding and harvesting of pineapples as the work tasks contributing the highest health risks to workers. The most commonly reported MSS between both groups of workers were at the knees, lower back and shoulder area. Upon completion of the delivery of intervention module to both groups of workers, the MSS prevalence reported (after 2 months) were significantly lower for the ankles and feet area within the intervention group. This study suggested that development and implementation of programs using effective participatory approach training methods are able to prevent selected musculoskeletal problems for this occupation. To enhance the effects of such trainings, modifications of work tools in this occupation are desirable.
Disorders of Upper Limb Movements in Ataxia-Telangiectasia
Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191
Disorders of Upper Limb Movements in Ataxia-Telangiectasia.
Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.
Adaptive changes in anticipatory postural adjustments with novel and familiar postural supports.
Hall, Leanne M; Brauer, Sandra; Horak, Fay; Hodges, Paul W
2010-02-01
Anticipatory postural adjustments (APAs) serve to stabilize posture prior to initiation of voluntary movement. This study examined the effects of changes in postural support on APAs using novel and familiar support paradigms. We also investigated whether postural strategies were refined with practice and how the CNS responded when multiple supports were available. Twelve healthy subjects stood on dual force platforms and performed 20 randomized left and right rapid leg-lift tasks in response to a visual cue under four conditions: unsupported, bilateral handgrip, bite plate, and a combined handgrip and bite plate condition. Vertical ground reaction forces, electromyography of limb, trunk and jaw muscles, and forces exerted on the support apparatus were recorded. Shift in center-of-pressure amplitude and duration were reduced with increased support. Muscles were recruited in advance of the focal movement when able to contribute to stability, and activity was modulated based on the amount of support available. The CNS adapted anticipatory postural strategies immediately with changes in condition regardless of familiarity with the support; however, adaptation was only complete at the first repetition in conditions that involved familiar support strategies. Tasks that involved a novel bite strategy continued to adapt with practice. In the multiple support condition, both hand and bite strategies were immediately incorporated; however, the contribution of each was not identical to conditions where supports were provided individually. This study emphasizes the flexibility of the CNS to organize postural strategies to meet the demands of postural stability in both familiar and novel situations.
The effect of body posture on cognitive performance: a question of sleep quality
Muehlhan, Markus; Marxen, Michael; Landsiedel, Julia; Malberg, Hagen; Zaunseder, Sebastian
2014-01-01
Nearly all functional magnetic resonance imaging (fMRI) studies are conducted in the supine body posture, which has been discussed as a potential confounder of such examinations. The literature suggests that cognitive functions, such as problem solving or perception, differ between supine and upright postures. However, the effect of posture on many cognitive functions is still unknown. Therefore, the aim of the present study was to investigate the effects of body posture (supine vs. sitting) on one of the most frequently used paradigms in the cognitive sciences: the N-back working memory paradigm. Twenty-two subjects were investigated in a randomized within-subject design. Subjects performed the N-back task on two consecutive days in either the supine or the upright posture. Subjective sleep quality and chronic stress were recorded as covariates. Furthermore, changes in mood dimensions and heart rate variability (HRV) were assessed during the experiment. Results indicate that the quality of sleep strongly affects reaction times when subjects performed a working memory task in a supine posture. These effects, however, could not be observed in the sitting position. The findings can be explained by HRV parameters that indicated differences in autonomic regulation in the upright vs. the supine posture. The finding is of particular relevance for fMRI group comparisons when group differences in sleep quality cannot be ruled out. PMID:24723874
Batista, Wagner Oliveira; Alves Junior, Edmundo de Drummond; Porto, Flávia; Pereira, Fabio Dutra; Santana, Rosimere Ferreira; Gurgel, Jonas Lírio
2014-01-01
to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls. to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used. there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups. this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged.
Influence of obesity on accurate and rapid arm movement performed from a standing posture.
Berrigan, F; Simoneau, M; Tremblay, A; Hue, O; Teasdale, N
2006-12-01
Obesity yields a decreased postural stability. The potentially negative impact of obesity on the control of upper limb movements, however, has not been documented. This study sought to examine if obesity imposes an additional balance control constraint limiting the speed and accuracy with which an upper limb goal-directed movement performed from an upright standing position can be executed. Eight healthy lean subjects (body mass index (BMI) between 20.9 and 25.0 kg/m(2)) and nine healthy obese subjects (BMI between 30.5 and 48.6 kg/m(2)) pointed to a target located in front of them from an upright standing posture. The task was to aim at the target as fast and as precisely as possible after an auditory signal. The difficulty of the task was varied by using different target sizes (0.5, 1.0, 2.5 and 5.0 cm width). Hand movement time (MT) and velocity profiles were measured to quantify the aiming. Centre of pressure and segmental kinematics were analysed to document postural stability. When aiming, the forward centre of pressure (CP) displacement was greater for the obese group than for the normal BMI group (4.6 and 1.9 cm, respectively). For the obese group, a decrease in the target size was associated with an increase in backward CP displacement and CP peak speed whereas for the normal BMI group backward CP displacements and CP peak speed were about the same across all target sizes. Obese participants aimed at the target moving their whole body forward whereas the normal BMI subjects predominantly made an elbow extension and shoulder flexion. For both groups, MT increased with a decreasing target size. Compare to the normal BMI group, this effect was exacerbated for the obese group. For the two smallest targets, movements were on average 115 and 145 ms slower for the obese than for the normal BMI group suggesting that obesity added a balance constraint and limited the speed with which an accurate movement could be done. Obesity, because of its effects on the control of balance, also imposes constraints on goal-directed movements. From a clinical perspective, obese individuals might be less efficient and more at risk of injuries than normal weight individuals in a large number of work tasks and daily activities requiring upper limb movements performed from an upright standing position.
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin
2013-01-01
It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398
The relationship between perceived discomfort of static posture holding and posture holding time.
Ogutu, Jack; Park, Woojin
2015-01-01
Few studies have investigated mathematical characteristics of the discomfort-time relationship during prolonged static posture holding (SPH) on an individual basis. Consequently, the discomfort-time relationship is not clearly understood at individual trial level. The objective of this study was to examine discomfort-time sequence data obtained from a large number of maximum-duration SPH trials to understand the perceived discomfort-posture holding time relationship at the individual SPH trial level. Thirty subjects (15 male, 15 female) participated in this study as paid volunteers. The subjects performed maximum-duration SPH trials employing 12 different wholebody static postures. The hand-held load for all the task trials was a ``generic'' box weighing 2 kg. Three mathematical functions, that is, linear, logarithmic and power functions were examined as possible mathematical models for representing individual discomfort-time profiles of SPH trials. Three different time increase patterns (negatively accelerated, linear and positively accelerated) were observed in the discomfort-time sequences data. The power function model with an additive constant term was found to adequately fit most (96.4%) of the observed discomfort-time sequences, and thus, was recommended as a general mathematical representation of the perceived discomfort-posture holding time relationship in SPH. The new knowledge on the nature of the discomfort-time relationship in SPH and the power function representation found in this study will facilitate analyzing discomfort-time data of SPH and developing future posture analysis tools for work-related discomfort control.
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Pain relief is associated with decreasing postural sway in patients with non-specific low back pain.
Ruhe, Alexander; Fejer, René; Walker, Bruce
2012-03-21
Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship is maintained if pain levels change in adults with non-specific low back pain. Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11). The patients received three manual interventions (e.g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. A clinically relevant decrease of four NRS scores in associated with manual interventions correlated with a significant decrease in postural sway. In contrast, if no clinically relevant change in intensity occurred (≤ 1 level), postural sway remained similar compared to baseline. The postural sway measures obtained at follow-up sessions 2 and 3 associated with specific NRS level showed no significant differences compared to reference values for the same pain score. Alterations in self-reported pain intensities are closely related to changes in postural sway. The previously reported linear relationship between the two variables is maintained as pain levels change. Pain interference appears responsible for the altered sway in pain sufferers. This underlines the clinical use of sway measures as an objective monitoring tool during treatment or rehabilitation.
Postural Stability in Cigarette Smokers and During Abstinence from Alcohol
Schmidt, Thomas Paul; Pennington, David Louis; Durazzo, Timothy Craig; Meyerhoff, Dieter Johannes
2014-01-01
Background Static postural instability is common in alcohol dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. Methods A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and non-smoking ALC (nsALC) and to 74 smoking (sCON) and non-smoking light/non-drinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (approximately 1 week, 5 weeks, 34 weeks of abstinence from alcohol); a subset of nsCON was re-tested at 40 weeks. We tested if cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across time points within ALC. Results Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all three time points and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks was non-significant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Conclusions Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. PMID:24721012
Postural stability in cigarette smokers and during abstinence from alcohol.
Schmidt, Thomas P; Pennington, David L; Durazzo, Timothy C; Meyerhoff, Dieter J
2014-06-01
Static postural instability is common in alcohol-dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and nonsmoking ALC (nsALC) and to 71 smoking (sCON) and nonsmoking light/nondrinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (TPs; approximately 1, 5, 34 weeks of abstinence from alcohol); a subset of nsCON was retested at 40 weeks. We tested whether cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across TPs within ALC. Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all 3 TPs and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks were nonsignificant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. Copyright © 2014 by the Research Society on Alcoholism.
Thigpen, Mary T; Cauraugh, James; Creel, Gwen; Day, Kristin; Flynn, Sheryl; Fritz, Stacy; Frost, Shirley; Respess, Robert; Gardner-Smith, Portia; Brack, Mia; Behrman, Andrea
2009-01-01
Incomplete spinal cord injury (ISCI) frequently disrupts afferent and efferent neural pathways underlying co-requisite voluntary and involuntary muscle activation required for functional standing and walking. To understand involuntary postural control mechanisms necessary for standing, we compared eight individuals with ISCI to eight controls with no impairment. The aim of this study was to investigate anticipatory and reactive balance responses in individuals with ISCI. The ability to adapt to changes in balance conditions was assessed by monitoring automatic postural responses (APRs) during a series of expected and unexpected changes in perturbation direction (backward translation versus toes-up rotation). Both groups were able to modulate appropriately within one or two trials following an unexpected change in condition. Onset times of anterior tibialis and medial gastrocnemius (MG) were significantly slower in the ISCI group during expected and unexpected conditions. These findings demonstrate that persons with mild to moderate lower extremity sensorimotor deficits are able to generate and adapt APRs to a rapid and unexpected contextual change during a simple standing balance task.
Postural Control During Cascade Ball Juggling: Effects of Expertise and Base of Support.
Rodrigues, Sérgio T; Polastri, Paula F; Gotardi, Gisele C; Aguiar, Stefane A; Mesaros, Marcelo R; Pestana, Mayara B; Barbieri, Fabio A
2016-08-01
Cascade ball juggling is a complex perceptual motor skill which requires efficient postural stabilization. The aim of this study was to investigate effects of experience (expert and intermediate groups) and foot distance (wide and narrow stances) on body sway of jugglers during three ball cascade juggling. A total of 10 expert jugglers and 11 intermediate jugglers participated in this study. Participants stood barefoot on the force plate (some participants wore a gaze tracking system), with feet maintained in wide and narrow conditions and performed three 40-seconds trials of the three-ball juggling task. Dependent variables were sway mean velocity, amplitude, mean frequency, number of ball cycles, fixation number, mean duration and its variability, and area of gaze displacement. Two-way analyses of variance with factors for group and condition were conducted. Experts' body sway was characterized by lower velocity and smaller amplitude as compared to intermediate group. Interestingly, the more challenging (narrow) basis of support caused significant attenuation in body sway only for the intermediate group. These data suggest that expertise in cascade juggling was associated with refined postural control. © The Author(s) 2016.
Li, Zhi; Milutinović, Dejan; Rosen, Jacob
2017-05-01
Reach-to-grasp arm postures differ from those in pure reaching because they are affected by grasp position/orientation, rather than simple transport to a position during a reaching motion. This paper investigates this difference via an analysis of experimental data collected on reaching and reach-to-grasp motions. A seven-degree-of-freedom (DOFs) kinematic arm model with the swivel angle is used for the motion analysis. Compared to a widely used anatomical arm model, this model distinguishes clearly the four grasping-relevant DOFs (GR-DOFs) that are affected by positions and orientations of the objects to be grasped. These four GR-DOFs include the swivel angle that measures the elbow rotation about the shoulder-wrist axis, and three wrist joint angles. For each GR-DOF, we quantify position vs orientation task-relevance bias that measures how much the DOF is affected by the grasping position vs orientation. The swivel angle and forearm supination have similar bias, and the analysis of their motion suggests two hypotheses regarding the synergistic coordination of the macro- and micro-structures of the human arm (1) DOFs with similar task-relevance are synergistically coordinated; and (2) such synergy breaks when a task-relevant DOF is close to its joint limit without necessarily reaching the limit. This study provides a motion analysis method to reduce the control complexity for reach-to-grasp tasks, and suggests using dynamic coupling to coordinate the hand and arm of upper-limb exoskeletons.
Moraes, Renato; Bedo, Bruno L. S.; Santos, Luciana O.; Batistela, Rosangela A.; Santiago, Paulo R. P.; Mauerberg-deCastro, Eliane
2018-01-01
This study investigated the effect of adding haptic information to the control of posture, as well as comparing the effect of both the “light touch” (LT) and “anchor system” (AS) paradigms on postural sway. Additionally, it compared the effect of location and number of points of contact to the control of posture in young adults. The location consisted of using the anchors tied to the finger and held by the hands, and, for LT, the fingertip. For the number of points of contact, participants used two hands, and then separately the dominant hand, and the non-dominant hand, for both anchor and LT paradigms. Participants stood upright with feet-together and in tandem position while performing tasks that combined the use of anchors and LT, points of contact (hand grip and finger), and number of points of contact (two hands and one hand). In this study, the anchors consist of holding in each hand a flexible cable with the other end attached to the ground. The LT consists of slightly touching a rigid surface with the tip of the index finger. The results showed, first, that the anchors improved postural control less than did the LT. Second, they revealed that holding the anchors with the hands or with them tied to the fingertip resulted in a similar reduction in postural sway only in the tandem position. For the feet-together position, the anchors tied to the fingertip were ineffective. Similarly, the use of one or two hands did not affect the contribution of the anchors. However, using two hands in the LT condition was more effective than was one hand. Third, our results showed the presence of a temporal delay between force and center-of-pressure (COP) for the anchors, only in the AP direction with feet-together. In conclusion, overall, the anchors were less effective in reducing postural sway than was the LT. The anchors attached to fingertips were as effective as the hand-held anchors in the tandem position, yet ineffective during foot-together standing. Force-COP timing explains reduced postural sway with LT but not for the anchor; hence, exploratory and supra-postural components may be involved. PMID:29922122
Sit-to-Stand Movement in Children with Cerebral Palsy: A Critical Review
ERIC Educational Resources Information Center
dos Santos, Adriana Neves; Pavao, Silvia Leticia; Rocha, Nelci Adriana Cicuto Ferreira
2011-01-01
Sit-to-stand (STS) movement is widely performed in daily life and an important pre requisite for acquisition of functional abilities. However, STS is a biomechanical demanding task which requires high levels of neuromuscular coordination, muscle strength and postural control. As children with cerebral palsy (CP) exhibit a series of impairments in…
Manckoundia, Patrick; Pfitzenmeyer, Pierre; d'Athis, Philippe; Dubost, Véronique; Mourey, France
2006-02-01
The aims of this study were to analyze the effects of cognitive task on static posture in Alzheimer's disease (AD) and in healthy elderly (HE) subjects and to evaluate whether those effects were greater in AD subjects than in HE subjects. We performed a posturographic analysis on 13 subjects with mild AD (mean age, 79.7+/-5.1 years, Mini-Mental State Examination scores between 18 and 23) and on 17 HE subjects (mean age, 78.5+/-4.4 years). After watching a video sequence, the subjects were asked to maintain a stable upright posture while standing on a force platform. Then, the postural sway was measured during the following two conditions: (1) quiet standing and (2) both standing and answering questions about the video sequence. We were interested in the center of pressure (CoP) area and path. For each group, the single task was compared to the dual task for the CoP area and path. We also compared the variability of both CoP area (variation of the CoP area between the single and the dual task) and path (variation of the CoP path between the single and the dual task) between the two groups. We showed that there was no significant difference between the single and the dual task in HE subjects concerning the CoP area and path, in contrast to the AD group, and that variability of both the CoP area and path were significantly greater in the AD subjects than in the HE subjects. This finding may contribute to the risk of falls in AD patients. Copyright (c) 2005 Movement Disorder Society.
Akizuki, Kazunori; Ohashi, Yukari
2015-10-01
The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Mouthon, A; Ruffieux, J; Wälchli, M; Keller, M; Taube, W
2015-09-10
Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). This may be related to the way of performing the mental simulation or the task itself. Therefore, the present study aimed to clarify how corticospinal excitability is modulated during AO+MI, MI and action observation (AO) of balance tasks. For this purpose, MEPs and H-reflexes were elicited during three different mental simulations (a) AO+MI, (b) MI and (c) passive AO. For each condition, two balance tasks were evaluated: (1) quiet upright stance (static) and (2) compensating a medio-lateral perturbation while standing on a free-swinging platform (dynamic). AO+MI resulted in the largest facilitation of MEPs followed by MI and passive AO. MEP facilitation was significantly larger in the dynamic perturbation than in the static standing task. Interestingly, passive observation resulted in hardly any facilitation independent of the task. H-reflex amplitudes were not modulated. The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Oludare, Simisola O; Pater, Mackenzie L; Rosenblatt, Noah J; Grabiner, Mark D
2018-03-01
Informed consent usually provides foreknowledge of experimental methods that can potentially increase expectation of stimuli and, therefore, influence the response. We determined the effects of increased expectation and trip-specific training on the recovery response following a treadmill-delivered, trip-specific disturbance. To deliver unexpected disturbances, subjects were deceived during the informed consent process. The primary hypothesis was that the recovery response following an expected postural disturbance would be characterized by trunk kinematics that have been shown to decrease the likelihood of a fall, compared to following an unexpected postural disturbance. We further hypothesized that following an unexpected postural disturbance, the recovery response of the subjects who had completed a trip-specific training protocol would be more biomechanically favorable to recovery compared to those of subjects who had not received the training. Young adults were randomized into Untrained or Trained groups. During the informed consent process, the purpose of the study was explained to subjects in both groups as being to determine the effect of trip-specific training on postural sway while performing an attention-demanding task. Untrained subjects completed two trials during which they minimized their postural sway. During the second trial, an unexpected disturbance was delivered while they performed the attention-demanding task. Trained subjects performed a pre-training postural sway trial, followed by the delivery of a series of expected, training disturbances. Finally, an unexpected disturbance was delivered while they minimized postural sway and performed the attention-demanding task. Expectation significantly improved trunk kinematics (p < .05). In addition, participation in the trip-specific training protocol following the unexpected disturbance the trunk kinematics of the Trained subjects were more biomechanically favorable to recovery than those of the Untrained subjects (p < .01). Improved trunk kinematics following trip-specific training may be independent of the extent to which the disturbance is expected. Copyright © 2018 Elsevier B.V. All rights reserved.
Virtual Balancing for Studying and Training Postural Control.
Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K; Maurer, Christoph
2017-01-01
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.
Virtual Balancing for Studying and Training Postural Control
Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K.; Maurer, Christoph
2017-01-01
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training. PMID:29018320
Straker, L; Burgess-Limerick, R; Pollock, C; Murray, K; Netto, K; Coleman, J; Skoss, R
2008-04-01
Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.
Relation between risk of falling and postural sway complexity in diabetes.
Morrison, S; Colberg, S R; Parson, H K; Vinik, A I
2012-04-01
For older individuals with diabetes, any decline in balance control can be especially problematic since it is often a precursor to an increased risk of falling. This study was designed to evaluate differences in postural motion dynamics and falls risk for older individuals with type 2 diabetes (T2DM) classified as fallers/non-fallers and, to assess what impact exercise has on balance and falls risk. The results demonstrated that the risk of falling is greater for those older individuals with multiple risk factors including diabetes and a previous falls history. The postural motion features of the high-risk individuals (T2DM-fallers) were also different, being characterized by increased variability and complexity, increased AP-ML coupling, less overall COP motion and increased velocity. One suggestion is that these individuals evoked a stiffening strategy during the more challenging postural tasks. Following training, a decline in falls risk was observed for all groups, with this effect being most pronounced for the T2DM-fallers. Interestingly, the COP motion of this group became more similar to controls, exhibiting decreased complexity and variability, and decreased velocity. The reciprocal changes in COP complexity support the broader view that age/disease-related changes in physiological complexity are bi-directional. Overall, these results show that, even for older T2DM individuals at greater risk of falling, targeted interventions can positively enhance their postural dynamics. Further, the finding that the pattern of postural motion variability and complexity was altered highlights that a decline in physiological complexity may not always be negatively associated with aging and/or disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Bansbach, Heather M; Lovalekar, Mita T; Abt, John P; Rafferty, Deirdre; Yount, Darcie; Sell, Timothy C
2017-08-01
The odds of sustaining non-contact musculoskeletal injuries are higher in Special Operations Forces operators than in infantry soldiers. The ankle is one of the most commonly injured joints, and once injured can put individuals at risk for reinjury. The purpose of this study was to determine if any differences in postural stability and landing kinematics exist between operators with a self-reported ankle injury in the past one year and uninjured controls. A total of 55 Special Operations Forces operators were included in this analysis. Comparisons were made between operators with a self-reported ankle injury within one-year of their test date (n=11) and healthy matched controls (n=44). Comparisons were also made between injured and uninjured limbs within the injured group. Dynamic postural stability and landing kinematics at the ankle, knee, and hip were assessed during a single-leg jump-landing task. Comparisons were made between groups with independent t-tests and within the injured group between limbs using paired t-tests. There were no significant differences in dynamic postural stability index or landing kinematics between the injured and uninjured groups. Anterior-posterior stability index was significantly higher on the uninjured limb compared to the injured limb within the injured group (P=0.02). Single ankle injuries sustained by operators may not lead to deficits in dynamic postural stability. Dynamic postural stability index and landing kinematics within one year after injury were either not affected by the injuries reported, or injured operators were trained back to baseline measures through rehabilitation and daily activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dual tasking and balance in those with central and peripheral vision loss.
Kotecha, Aachal; Chopra, Reena; Fahy, Rachel T A; Rubin, Gary S
2013-08-09
To investigate the effects of a secondary task on standing balance in patients with glaucoma or AMD compared with age-similar control subjects. Twelve AMD, 12 glaucoma, and 12 control participants underwent posturography under two standing conditions (eyes open on a firm or foam-rubber surface) and two tasks: quiet standing and undertaking a mental arithmetic task. Center of foot-pressure average displacement (root mean square [RMS]; in millimeters) was calculated. The mean (SD) age of the participants in each group was as follows: controls 66.2 (6.4) years, glaucoma 69.2 (4.3) years, and AMD 72.2 (5.3) years. There were significant differences in RMS between controls and AMD patients when undertaking the mental arithmetic task standing on the firm surface (mean difference [SE]: 2.8 [0.8] mm, P = 0.005). There were significant differences between controls and AMD patients when undertaking the mental arithmetic task on the foam surface, with the difference between controls and glaucoma patients approaching significance (mean difference [SE]: control versus AMD = 3.1 [0.9] mm, P = 0.005; control versus glaucoma = 2.2 [0.9] mm, P = 0.06). Postural instability increases with the addition of a secondary task in older persons, which may put them at greater risk of falls. Patients with central losses exhibit greater instability with the addition of a secondary task, particularly during somatosensory perturbations. The negative effects of secondary tasks on balance control in those with peripheral visual losses become more apparent under somatosensory perturbations.
Duncan, Carolyn A; Ingram, Tony G J; Mansfield, Avril; Byrne, Jeannette M; McIlroy, William E
2016-01-01
Central or postural set theory suggests that the central nervous system uses short term, trial to trial adaptation associated with repeated exposure to a perturbation in order to improve postural responses and stability. It is not known if longer-term prior experiences requiring challenging balance control carryover as long-term adaptations that influence ability to react in response to novel stimuli. The purpose of this study was to determine if individuals who had long-term exposure to balance instability, such as those who train on specific skills that demand balance control, will have improved ability to adapt to complex continuous multidirectional perturbations. Healthy adults from three groups: 1) experienced maritime workers (n = 14), 2) novice individuals with no experience working in maritime environments (n = 12) and 3) individuals with training in dance (n = 13) participated in the study. All participants performed a stationary standing task while being exposed to five 6 degree of freedom motions designed to mimic the motions of a ship at sea. The balance reactions (change-in-support (CS) event occurrences and characteristics) were compared between groups. Results indicate dancers demonstrated significantly fewer CS events than novices during the first trial, but did not perform as well as those with offshore experience. Linear trend analyses revealed that short-term adaptation across all five trials was dependent on the nature of participant experience, with dancers achieving postural stability earlier than novices, but later than those with offshore experience. These results suggest that long term previous experiences also have a significant influence on the neural control of posture and balance in the development of compensatory responses.
Behavioral and functional strategies during tool use tasks in bonobos.
Bardo, Ameline; Borel, Antony; Meunier, Hélène; Guéry, Jean-Pascal; Pouydebat, Emmanuelle
2016-09-01
Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in-hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in-hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in-hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities. © 2016 Wiley Periodicals, Inc.
Olivier, Agnès; Faugloire, Elise; Lejeune, Laure; Biau, Sophie; Isableu, Brice
2017-01-01
Maintaining equilibrium while riding a horse is a challenging task that involves complex sensorimotor processes. We evaluated the relative contribution of visual information (static or dynamic) to horseback riders' postural stability (measured from the variability of segment position in space) and the coordination modes they adopted to regulate balance according to their level of expertise. Riders' perceptual typologies and their possible relation to postural stability were also assessed. Our main assumption was that the contribution of visual information to postural control would be reduced among expert riders in favor of vestibular and somesthetic reliance. Twelve Professional riders and 13 Club riders rode an equestrian simulator at a gallop under four visual conditions: (1) with the projection of a simulated scene reproducing what a rider sees in the real context of a ride in an outdoor arena, (2) under stroboscopic illumination, preventing access to dynamic visual cues, (3) in normal lighting but without the projected scene (i.e., without the visual consequences of displacement) and (4) with no visual cues. The variability of the position of the head, upper trunk and lower trunk was measured along the anteroposterior (AP), mediolateral (ML), and vertical (V) axes. We computed discrete relative phase to assess the coordination between pairs of segments in the anteroposterior axis. Visual field dependence-independence was evaluated using the Rod and Frame Test (RFT). The results showed that the Professional riders exhibited greater overall postural stability than the Club riders, revealed mainly in the AP axis. In particular, head variability was lower in the Professional riders than in the Club riders in visually altered conditions, suggesting a greater ability to use vestibular and somesthetic information according to task constraints with expertise. In accordance with this result, RFT perceptual scores revealed that the Professional riders were less dependent on the visual field than were the Club riders. Finally, the Professional riders exhibited specific coordination modes that, unlike the Club riders, departed from pure in-phase and anti-phase patterns and depended on visual conditions. The present findings provide evidence of major differences in the sensorimotor processes contributing to postural control with expertise in horseback riding. PMID:28194100
Ellegast, Rolf P; Kraft, Kathrin; Groenesteijn, Liesbeth; Krause, Frank; Berger, Helmut; Vink, Peter
2012-03-01
Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Is a submissive posture adaptive when being evaluated negatively? Effects on cortisol reactivity.
Turan, Bulent
2015-01-01
Subordinate status and submissiveness are stressful and are often associated with ill-health. However, when there is a physical or social threat posed by more powerful others, showing submissiveness may be a good strategy to avoid or terminate conflict. One way to show submissiveness is to assume a subordinate body posture, which may also help regulate one's own stress responses by making one feel safer, and by diverting attention away from one's negative emotions and positive expectations. 85 male participants were randomly assigned to assume either a dominant posture (expansive, taking up more space with open limbs) or a subordinate posture (constrictive, taking up less space with closed limbs) while delivering a speech and performing difficult arithmetic tasks in front of two critical evaluators. Cortisol levels were assessed from saliva samples obtained before and after these stressful tasks. Dominant posture resulted in a larger cortisol response compared to the subordinate posture. Participants in the subordinate posture did not show the normative increase in cortisol observed in other studies using this standardized social-evaluative stress protocol. The finding that a subordinate posture decreases acute stress responses during negative social evaluation suggests that submissive strategies may be appropriate and adaptive in uncontrollable situations involving negative social evaluation. Submissiveness may diminish endocrine stress responses, which are hypothesized to have adverse effects on health in the long term. These findings have implications for developing strategies to help individuals deal with stressful social-evaluative situations while protecting their physical and mental health.
Simpson, Jeffrey D; Stewart, Ethan M; Macias, David M; Chander, Harish; Knight, Adam C
2018-06-13
To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gabizon, Hadas; Press, Yan; Volkov, Ilia; Melzer, Itshak
2016-07-01
To evaluate the effect of a group-based Pilates training program on balance control and health status in healthy older adults. A single-blind, randomized, controlled trial. General community. A total of 88 community-dwelling older adults (age 71.15 ± 4.30 years), without evidence of functional balance impairment, were recruited and allocated at random to a Pilates intervention group (n = 44) or a control group (n = 44). The Pilates intervention group received 36 training sessions over three months (3 sessions a week), while the control group did not receive any intervention. Standing upright postural stability, performance-based measures of balance, and self-reported health status was assessed in both groups at baseline and at the end of the intervention period. Compared with the control group, the Pilates intervention did not improve postural stability, baseline functional measures of balance, or health status. The results suggest that because Pilates training is not task specific, it does not improve balance control or balance function in independent older adults.
Stooped postures are modified by pretask walking in a simulated weed-pulling task.
Hudson, D S; Copeland, J L; Hepburn, C G; Doan, J B
2014-01-01
Seasonal agricultural workers are hired in some sectors for intermittent manual weed removal, a stoop and grasp harvesting task likely similar to those associated with the high prevalence of musculoskeletal disorders in agriculture. Evaluation of this task in an experimental situation would be useful for identifying and controlling musculoskeletal injury risks, presuming a valid experimental model of the task can be created. The purpose of the present study was to examine how a relevant work-related task, namely prolonged walking, altered the biomechanics of manual weed removal in a laboratory setting. Preliminary field assessments informed the development and analysis of a simulated manual weed removal with two separate conditions: not primed, where 11 participants (4 female, mean age 21.6 years) manually removed a simulated weed six times, and primed, where 23 participants (13 female, mean age 22.1 years) walked 1600 m prior to manually removing the same simulated weed six successive times. Segment end point markers and experimental motion capture were used to determine hip, knee, and ankle angles, as well as toe-target proximity, during weed removal. Significant differences between primed and not primed participants were found for angular displacement at the ankle (t(32) = 5.08, P < .001) and toe-target proximity (t(32) = 2.78, P = .008), where primed participants had increased ankle flexion and a greater distance to the weed, leading to decreased trunk flexion during the harvesting task. These findings suggest that priming can positively influence whole-body postures for manual weed removal.
Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks.
Ferguson, Sue A; Marras, Williams S; Gary Allread, W; Knapik, Gregory G; Vandlen, Kimberly A; Splittstoesser, Riley E; Yang, Gang
2011-07-01
Musculoskeletal disorders (MSD) are costly and common problem in automotive manufacturing. The research goal was to quantify MSD exposure as a function of vehicle rotation angle and region during assembly tasks. The study was conducted at the Center for Occupational Health in Automotive Manufacturing (COHAM) Laboratory. Twelve subjects participated in the study. The vehicle was divided into seven regions, (3 interior, 2 underbody and 2 engine regions) representative of work areas during assembly. Three vehicle rotation angles were examined for each region. The standard horizontal assembly condition (0° rotation) was the reference frame. Exposure was assessed on the spine loads and posture, shoulder posture and muscle activity, neck posture and muscle activity as well as wrist posture. In all regions, rotating the vehicle reduced musculoskeletal exposure. In five of the seven regions 45° of vehicle rotation represented the position that reduced MSD exposure most. Two of the seven regions indicated 90° of vehicle rotation had the greatest impact for reducing MSD exposure. This study demonstrated that vehicle rotation shows promise for reducing exposure to risk factors for MDS during automobile assembly tasks. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Coordination of rapid stepping with arm pointing: anticipatory changes and step adaptation.
Yiou, Eric; Schneider, Cyril; Roussel, Didier
2007-06-01
The present study explored whether rapid stepping is influenced by the coordination of an arm pointing task. Nine participants were instructed to (a) point the index finger of the dominant arm towards a target from the standing posture, (b) initiate a rapid forward step with the contralateral leg, and (c) synchronize stepping and pointing (combined task). Force plate and ankle muscle electromyography (EMG) recordings were contrasted between (b) and (c). In the combined task, the arm acceleration trace most often peaked around foot-off, coinciding with a 15% increase in the forward acceleration of the center of gravity (CoG). Backward displacement of the center of foot pressure at foot-off, duration of anticipatory postural adjustments (APAs) and ankle muscle EMG activity remained unchanged. In contrast, durations of swing phase and whole step were reduced and step length was smaller in the combined task. A reduction in the swing phase was correlated with an increased CoG forward acceleration at foot-off. Changes in the biomechanics of step initiation during the combined task might be ascribed to the postural dynamics elicited by arm pointing, and not to a modulation of the step APAs programming.
Paterno, Mark V.; Schmitt, Laura C.; Ford, Kevin R.; Rauh, Mitchell J.; Myer, Gregory D.; Huang, Bin; Hewett, Timothy E.
2016-01-01
Background Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non–anterior cruciate ligament–injured athletes. Hypotheses Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Study Design Cohort study (prognosis); Level of evidence, 2. Methods Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Results Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Conclusion Altered neuromuscular control of the hip and knee during a dynamic landing task and postural stability deficits after ACLR are predictors of a second anterior cruciate ligament injury after an athlete is released to return to sport. PMID:20702858
Standing working posture compared in pregnant and non-pregnant conditions.
Paul, J A; Frings-Dresen, M H
1994-09-01
During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems.
Threat affects risk preferences in movement decision making
O'Brien, Megan K.; Ahmed, Alaa A.
2015-01-01
Emotional states such as sadness, anger, and threat have been shown to play a critical role in decision-making processes. Here we addressed the question of whether risk preferences are influenced by postural threat and whether this influence generalizes across motor tasks. We examined risk attitudes in the context of arm-reaching (ARM) and whole-body (WB) leaning movements, expecting that increased postural threat would lead to proportionally similar changes in risk-sensitivity for each motor task. Healthy young adults were shown a series of two-alternative forced-choice lotteries, where they were asked to choose between a riskier lottery and a safer lottery on each trial. Our lotteries consisted of different monetary rewards and target sizes. Subjects performed each choice task at ground level and atop an elevated platform. In the presence of this postural threat, increased physiological arousal was correlated with decreased movement variability. To determine risk-sensitivity, we quantified the frequency with which a subject chose the riskier lottery and fit lottery responses to a choice model based on cumulative prospect theory (CPT). Subjects exhibited idiosyncratic changes in risk-sensitivity between motor tasks and between elevations. However, we found that overweighting of small probabilities increased with postural threat in the WB task, indicating a more cautious, risk-averse strategy is ascribed to the possibility of a fall. Subjects were also more risk-seeking in the WB movements than in ARM at low elevation; this behavior does not seem to derive from consistent distortions in utility or probability representations but may be explained by subjects' inaccurate estimation of their own motor variability. Overall, our findings suggest that implicit threat can modify risk attitudes in the motor domain, and the threat may induce risk-aversion in salient movement tasks. PMID:26106311
Threat affects risk preferences in movement decision making.
O'Brien, Megan K; Ahmed, Alaa A
2015-01-01
Emotional states such as sadness, anger, and threat have been shown to play a critical role in decision-making processes. Here we addressed the question of whether risk preferences are influenced by postural threat and whether this influence generalizes across motor tasks. We examined risk attitudes in the context of arm-reaching (ARM) and whole-body (WB) leaning movements, expecting that increased postural threat would lead to proportionally similar changes in risk-sensitivity for each motor task. Healthy young adults were shown a series of two-alternative forced-choice lotteries, where they were asked to choose between a riskier lottery and a safer lottery on each trial. Our lotteries consisted of different monetary rewards and target sizes. Subjects performed each choice task at ground level and atop an elevated platform. In the presence of this postural threat, increased physiological arousal was correlated with decreased movement variability. To determine risk-sensitivity, we quantified the frequency with which a subject chose the riskier lottery and fit lottery responses to a choice model based on cumulative prospect theory (CPT). Subjects exhibited idiosyncratic changes in risk-sensitivity between motor tasks and between elevations. However, we found that overweighting of small probabilities increased with postural threat in the WB task, indicating a more cautious, risk-averse strategy is ascribed to the possibility of a fall. Subjects were also more risk-seeking in the WB movements than in ARM at low elevation; this behavior does not seem to derive from consistent distortions in utility or probability representations but may be explained by subjects' inaccurate estimation of their own motor variability. Overall, our findings suggest that implicit threat can modify risk attitudes in the motor domain, and the threat may induce risk-aversion in salient movement tasks.
Eagles, Jeremy S.; Carlsen, Anthony N.
2016-01-01
Movements that are executed or imagined activate a similar subset of cortical regions, but the extent to which this activity represents functionally equivalent neural processes is unclear. During preparation for an executed movement, presentation of a startling acoustic stimulus (SAS) evokes a premature release of the planned movement with the spatial and temporal features of the tasks essentially intact. If imagined movement incorporates the same preparatory processes as executed movement, then a SAS should release the planned movement during preparation. This hypothesis was tested using an instructed-delay cueing paradigm during which subjects were required to rapidly release a handheld weight while maintaining the posture of the arm or to perform first-person imagery of the same task while holding the weight. In a subset of trials, a SAS was presented at 1500, 500, or 200 ms prior to the release cue. Task-appropriate preparation during executed and imagined movements was confirmed by electroencephalographic recording of a contingent negative variation waveform. During preparation for executed movement, a SAS often resulted in premature release of the weight with the probability of release progressively increasing from 24 % at −1500 ms to 80 % at −200 ms. In contrast, the SAS rarely (<2 % of trials) triggered a release of the weight during imagined movement. However, the SAS frequently evoked the planned postural response (suppression of bicep brachii muscle activity) irrespective of the task or timing of stimulation (even during periods of postural hold without preparation). These findings provide evidence that neural processes mediating the preparation and release of the focal motor task (release of the weight) are markedly attenuated or absent during imagined movement and that postural and focal components of the task are prepared independently. PMID:25744055
Kinematic analysis of work-related musculoskeletal loading of trunk among dentists in Germany.
Ohlendorf, Daniela; Erbe, Christina; Hauck, Imke; Nowak, Jennifer; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A
2016-10-18
In Germany, about 86.7 % of the dentists have stated to suffer from pain in the neck and shoulder region. These findings are predominantly based on surveys. Therefore the objective of this study is to conduct a kinematic analysis of occupational posture in dentistry. Twenty one dentists (11 f/10 m; age: 40.1 ± 10.4 years) have participated in this examination. The CUELA-System was used to collect kinematic data of the activities on an average dental workday. A detailed, computer-based task analysis took place parallel to the kinematic examination. Through the synchronization of data collected from both measurements, patterns of posture were arranged chronologically and in conjunction with the tasks performed: (I) "treatment" (II) "office" and (III) "other activities". For the data analysis, characteristic data of joint angular distributions (percentiles P05, P25, P50, P75 and P95) of head, neck and torso at pre-defined tasks were examined and assessed corresponding to ergonomic standards. Forty one percent of tasks executed on an average dental workday can be categorized as the treatment of patients. These tasked are most frequently performed in "straight back" positions (78.7 %), whereas 20.1 % were carried out in a "twisted or inclined" torso posture, 1.1 % "bowed" and only 0.1 % "bowed and twisted/inclined to the side" upper body position. In particular, it can be observed that in the area of the cervical and thoracic spine the 75th and 95th percentile show worse angular values during treatment than during non-dental tasks. For the period of treatment (at a standardized dental chair construction), a seated position with a strong inclination of the thoracic spine to the right while the lumbar spine is inclined towards the left is adopted. The kinematic analysis of dentists illustrates typical patterns of postures during tasks that are essential to the dental treatment of patients. The postures in the area of the cervical and thoracic spine have higher angular values during treatment compared to other dental tasks. Consistently, appropriate ergonomic design measures to optimize the dental chair and equipment as well as integrated training in ergonomics as part of the study of dentistry to prevent musculoskeletal are recommended.
Martinelli, Alessandra Rezende; Coelho, Daniel Boari; Teixeira, Luis Augusto
2018-04-01
Cerebral damage provoked by stroke may lead to deficits of quiet balance control and of the recovery of body equilibrium following an unanticipated postural perturbation. In this investigation we aimed to evaluate the effect of light touch (LT) of an earth-fixed surface on balance stability in individuals with post-stroke hemiparesis, taking performance of age-matched healthy participants as reference. Evaluations were made in conditions of full and no visual information. Analysis of quiet balance showed that LT induced higher balance stability, with reduced amplitude and velocity of postural sway. Evaluation of the effect of LT on automatic postural responses was made in the task of recovering body equilibrium following a mechanical perturbation of balance leading to fast forward body sway. Results showed that LT led to reduced amplitude of center of mass displacement following the perturbation, in addition to reduced amplitude and velocity of center of pressure under the feet, and lower activation of the lower legs muscles. Those effects of LT were observed in both the post-stroke and control groups, and did not interact with vision availability. Our results indicated then that individuals who suffered a cerebral stroke can stabilize perturbed and non-perturbed postural responses by lightly touching a stable surface to a similar extent of healthy older individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Batista, Wagner Oliveira; Alves, Edmundo de Drummond; Porto, Flávia; Pereira, Fabio Dutra; Santana, Rosimere Ferreira; Gurgel, Jonas Lírio
2014-01-01
OBJECTIVE: to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls. METHOD: to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used. RESULTS: there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups. CONCLUSION: this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged. PMID:25296149
Van Ooteghem, Karen; Frank, James S.; Allard, Fran; Horak, Fay B
2011-01-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a constant frequency-variable amplitude oscillating platform. One group was trained using an embedded sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45-s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body centre of mass (COM), and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Improvements were also characterized by general rather than specific postural motor learning. These findings are similar to young adults (Van Ooteghem et al. 2008) and indicate that age does not influence the type of learning which occurs for balance control. PMID:20544184
Sarabon, Nejc; Panjan, Andrej; Latash, Mark
2013-09-01
The effects of healthy aging on postural sway and its rambling and trembling components were studied. Young and elderly subjects stood quietly for 1 min in different postures, and with eyes open and closed. We found that age-related changes in postural sway and its components were similar to those observed in young participants in challenging conditions. These changes may therefore be viewed as secondary to the increased subjective perception of the complexity of postural tasks. Contrary to our expectations, stronger effects of age were seen in characteristics of rambling, not trembling. The commonly accepted hypothesis that older persons rely on vision more was not supported by this study: we found no significant interaction effects of age and vision on any of the sway characteristics. It was concluded that the reported higher reliance on vision in older persons may be task-specific. The results are compatible with the ideas that much of the age-related changes in postural sway emerge at the level of exploring the limits of stability and using the drift-and-act strategy. Our results suggest that the dominant view on rambling and trembling as reflecting supraspinal and peripheral mechanisms, respectively, may be too simplistic. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of smart phone use on dynamic postural balance.
Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh
2014-07-01
[Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20's who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged.
Verrel, Julius; Lisofsky, Nina; Kühn, Simone; Lindenberger, Ulman
2016-02-01
Correlational studies indicate an association between age-related decline in balance and cognitive control, but these functions are rarely addressed within a single task. In this study, we investigate adult age differences in a two-choice response task with balance constraints under three levels of response conflict. Sixteen healthy young (20-30 years) and 16 healthy older adult participants (59-74 years) were cued symbolically (letter L vs. R) to lift either the left or the right foot from the floor in a standing position. Response conflict was manipulated by task-irrelevant visual stimuli showing congruent, incongruent, or no foot lift movement. Preparatory weight shifts (PWS) and foot lift movements were recorded using force plates and optical motion capture. Older adults showed longer response times (foot lift) and more PWS errors than younger adults. Incongruent distractors interfered with performance (greater response time and PWS errors), but this compatibility effect did not reliably differ between age groups. Response time effects of age and compatibility were strongly reduced or absent in trials without PWS errors, and for the onset of the first (erroneous) PWS in trials with preparation error. In addition, in older adults only, compatibility effects in the foot lift task correlated significantly with compatibility effects in the Flanker task. The present results strongly suggest that adult age differences in response latencies in a task with balance constraints are related to age-associated increases in postural preparation errors rather than being an epiphenomenon of general slowing. Copyright © 2015 Elsevier B.V. All rights reserved.
Hubble, Ryan P; Naughton, Geraldine A; Silburn, Peter A; Cole, Michael H
2014-12-31
Exercise has been shown to improve clinical measures of strength, balance and mobility, and in some cases, has improved symptoms of tremor and rigidity in people with Parkinson's disease (PD). However, to date, no research has examined whether improvements in trunk control can remedy deficits in dynamic postural stability in this population. The proposed randomised controlled trial aims to establish whether a 12-week exercise programme aimed at improving dynamic postural stability in people with PD; (1) is more effective than education; (2) is more effective when training frequency is increased; and (3) provides greater long-term benefits than education. Forty-five community-dwelling individuals diagnosed with idiopathic PD with a falls history will be recruited. Participants will complete baseline assessments including tests of cognition, vision, disease severity, fear of falling, mobility and quality of life. Additionally, participants will complete a series of standing balance tasks to evaluate static postural stability, while dynamic postural control will be measured during walking using head and trunk-mounted three-dimensional accelerometers. Following baseline testing, participants will be randomly-assigned to one of three intervention groups, who will receive either exercise once per week, exercise 3 days/week, or education. Participants will repeat the same battery of tests conducted at baseline after the 12-week intervention and again following a further 12-week sustainability period. This study has the potential to show that low-intensity and progressive trunk exercises can provide a non-invasive and effective means for maintaining or improving postural stability for people with PD. Importantly, if the programme is noted to be effective, it could be easily performed by patients within their home environment or under the guidance of available allied health professionals. The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12613001175763). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Technical Reports Server (NTRS)
Harm, D. L.; Taylor, L. C.
2006-01-01
Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Changes in the environmental sensory stimulus conditions and the way we interact with the new stimuli may result in motion sickness, and perceptual, spatial orientation and sensorimotor disturbances. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays, and to examine the effects of exposure duration, and repeated exposures to VR systems. Forty-one subjects (21 men, 20 women) participated in the study with an age range of 21-49 years old. One training session was completed in order to achieve stable performance on the posture and VR tasks before participating in the experimental sessions. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or head-mounted display (HMD) VR system for either 30 or 60 min. The environment was a square room with 15 pedestals on two opposite walls. The objects appeared on one set of pedestals and the subject s objective was to move the objects to the other set of pedestals. After the subject picked up an object, a pathway appeared and they were required to follow the pathway to the other side of the room. The subject was instructed to perform the task as quickly and accurately as possible, avoiding hitting walls and other any obstacles and placing the object on the center of the pedestal. Postural equilibrium was measured (using the Equitest CDP balance system, Neurocom, International) before, immediately after, and at 1 hr, 2 hr, 4 hr and 6 hr following exposure to VR. Postural equilibrium was measured during quiet stance with eyes open, eyes closed and vision and/or ankle proprioceptive inputs selectively altered by servo-controlling the visual surround and/or support surface to the subject s center of mass sway. Posture data was normalized using a log transformation and motion sickness data were normalized using the square root. In general, we found that exposure to VR resulted in decrements in postural stability. The largest decrements were observed in the tests performed immediately following exposure to VR and showed a fairly rapid recovery across the remaining test sessions. In addition, subjects generally showed improvement across days. We found significant main effects for day and time for the composite equilibrium score and for sensory organization tests (SOT) 1, 2 and 6. Significant main effects were observed for day for SOT 3 and 5. Although we found no significant main effects for gender (when center of gravity was used as a covariate), we did observe significant gender X time interaction effects for composite equilibrium and for SOT 1, 3, 4 and 5. Women appeared to show larger decrements in postural stability immediately after exposure to VR than men, but recover more quickly than n. Finally, we found no significant main effects for type of VR device or for exposure duration, however, these factors did interact with other factors during some of the SOTs. Subjects exhibited rapid recovery of motion sickness symptoms across time following exposure to VR and significantly less severe symptoms across days. We did not observe main effects for gender, type of device or duration of exposure. Individuals recovered from the detrimental effects of exposure to virtual reality on postural control and motion sickness within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and support the idea that preflight training of astronauts may serve as useful countermeasure for the sensorimotor effects of space flight.
Fernandes, Ângela; Rocha, Nuno; Santos, Rubim; Tavares, João Manuel R S
2015-01-01
The aim of this study was to analyze the efficacy of cognitive-motor dual-task training compared with single-task training on balance and executive functions in individuals with Parkinson's disease. Fifteen subjects, aged between 39 and 75 years old, were randomly assigned to the dual-task training group (n = 8) and single-task training group (n = 7). The training was run twice a week for 6 weeks. The single-task group received balance training and the dual-task group performed cognitive tasks simultaneously with the balance training. There were no significant differences between the two groups at baseline. After the intervention, the results for mediolateral sway with eyes closed were significantly better for the dual-task group and anteroposterior sway with eyes closed was significantly better for the single-task group. The results suggest superior outcomes for the dual-task training compared to the single-task training for static postural control, except in anteroposterior sway with eyes closed.
Contingency learning deficits and generalization in chronic unilateral hand pain patients.
Meulders, Ann; Harvie, Daniel S; Bowering, Jane K; Caragianis, Suzanne; Vlaeyen, Johan W S; Moseley, G Lorimer
2014-10-01
Contingency learning, in particular the formation of danger beliefs, underpins conditioned fear and avoidance behavior, yet equally important is the formation of safety beliefs. That is, when threat beliefs and accompanying fear/avoidance spread to technically safe cues, it might cause disability. Indeed, such over generalization has been advanced as a trans-diagnostic pathologic marker, but it has not been investigated in chronic pain. Using a novel hand pain scenario contingency learning task, we tested the hypotheses that chronic hand pain patients demonstrate less differential pain expectancy judgments because of poor safety learning and demonstrate broader generalization gradients than healthy controls. Participants viewed digitized 3-dimensional hands in different postures presented in random order (conditioned stimulus [CS]) and rated the likelihood that a fictive patient would feel pain when moving the hand into that posture. Subsequently, the outcome (pain/no pain) was presented on the screen. One hand posture was followed by pain (CS+), another was not (CS-). Generalization was tested using novel hand postures (generalization stimuli) that varied in how similar they were to the original conditioned stimuli. Patients, but not healthy controls, demonstrated a contingency learning deficit determined by impaired safety learning, but not by exaggerated pain expectancy toward the CS+. Patients showed flatter, asymmetric generalization gradients than the healthy controls did, with higher pain expectancy for novel postures that were more similar to the original CS-. The results clearly uphold our hypotheses and suggest that contingency learning deficits might be important in the development and maintenance of the chronic pain-related disability. Chronic hand pain patients demonstrate 1) reduced differential contingency learning determined by a lack of safety belief formation, but not by exaggerated threat belief formation, and 2) flatter, asymmetric generalization gradients than the healthy controls. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Computer-Aided Design (CAD) Tools to Support the Human Factors Design Teams
NASA Technical Reports Server (NTRS)
Null, Cynthia H.; Jackson, Mariea D.; Perry, Trey; Quick, Jason C.; Stokes, Jack W.
2014-01-01
The scope of this assessment was to develop a library of basic 1-Gravity (G) human posture and motion elements used to construct complex virtual simulations of ground processing and maintenance tasks for spaceflight vehicles, including launch vehicles, crewed spacecraft, robotic spacecraft, satellites, and other payloads. The report herein describes the task, its purpose, performance, findings, NASA Engineering and Safety Center (NESC) recommendations, and conclusions in the definition and assemblage of the postures and motions database (PMD).
Afzal, Muhammad Raheel; Byun, Ha-Young; Oh, Min-Kyun; Yoon, Jungwon
2015-03-13
Haptic control is a useful therapeutic option in rehabilitation featuring virtual reality interaction. As with visual and vibrotactile biofeedback, kinesthetic haptic feedback may assist in postural control, and can achieve balance control. Kinesthetic haptic feedback in terms of body sway can be delivered via a commercially available haptic device and can enhance the balance stability of both young healthy subjects and stroke patients. Our system features a waist-attached smartphone, software running on a computer (PC), and a dedicated Phantom Omni® device. Young healthy participants performed balance tasks after assumption of each of four distinct postures for 30 s (one foot on the ground; the Tandem Romberg stance; one foot on foam; and the Tandem Romberg stance on foam) with eyes closed. Patient eyes were not closed and assumption of the Romberg stance (only) was tested during a balance task 25 s in duration. An Android application running continuously on the smartphone sent mediolateral (ML) and anteroposterior (AP) tilt angles to a PC, which generated kinesthetic haptic feedback via Phantom Omni®. A total of 16 subjects, 8 of whom were young healthy and 8 of whom had suffered stroke, participated in the study. Post-experiment data analysis was performed using MATLAB®. Mean Velocity Displacement (MVD), Planar Deviation (PD), Mediolateral Trajectory (MLT) and Anteroposterior Trajectory (APT) parameters were analyzed to measure reduction in body sway. Our kinesthetic haptic feedback system was effective to reduce postural sway in young healthy subjects regardless of posture and the condition of the substrate (the ground) and to improve MVD and PD in stroke patients who assumed the Romberg stance. Analysis of Variance (ANOVA) revealed that kinesthetic haptic feedback significantly reduced body sway in both categories of subjects. Kinesthetic haptic feedback can be implemented using a commercial haptic device and a smartphone. Intuitive balance cues were created using the handle of a haptic device, rendering the approach very simple yet efficient in practice. This novel form of biofeedback will be a useful rehabilitation tool improving the balance of stroke patients.
Bergamin, M; Gobbo, S; Bullo, V; Zanotto, T; Vendramin, B; Duregon, F; Cugusi, L; Camozzi, V; Zaccaria, M; Neunhaeuserer, D; Ermolao, A
2015-12-01
Participation in exercise programs is heartily recommended for older adults since the level of physical fitness directly influences functional independence. The aim of this present study was to investigate the effects of supervised Pilates exercise training on the physical function, hypothesizing that a period of Pilates exercise training (PET) can increase overall muscle strength, body composition, and balance, during single and dual-task conditions, in a group of post-menopausal women. Twenty-five subjects, aged 59 to 66 years old, were recruited. Eligible participants were assessed prior and after 3 months of PET performed twice per week. Muscular strength was evaluated with handgrip strength (HGS) test, 30-s chair sit-to-stand test (30CST), and abdominal strength (AST) test. Postural control and dual-task performance were measured through a stabilometric platform while dynamic balance with 8 ft up and go test. Finally, body composition was assessed by means of dual-energy X-ray absorptiometry. Statistically significant improvements were detected on HGS (+8.22%), 30CST (+23.41%), 8 ft up and go test (-5.95%), AST (+30.81%), medio-lateral oscillations in open eyes and dual-task condition (-22.03% and -10.37%). Pilates was effective in increasing upper body, lower body, and abdominal muscle strength. No changes on body composition were detected. Results on this investigation indicated also that 12-week of mat Pilates is not sufficient to determine a clinical meaningful improvement on static balance in single and dual-task conditions.
Cortical processes associated with continuous balance control as revealed by EEG spectral power.
Hülsdünker, T; Mierau, A; Neeb, C; Kleinöder, H; Strüder, H K
2015-04-10
Balance is a crucial component in numerous every day activities such as locomotion. Previous research has reported distinct changes in cortical theta activity during transient balance instability. However, there remains little understanding of the neural mechanisms underlying continuous balance control. This study aimed to investigate cortical theta activity during varying difficulties of continuous balance tasks, as well as examining the relationship between theta activity and balance performance. 37 subjects completed nine balance tasks with different levels of surface stability and base of support. Throughout the balancing task, electroencephalogram (EEG) was recorded from 32 scalp locations. ICA-based artifact rejection was applied and spectral power was analyzed in the theta frequency band. Theta power increased in the frontal, central, and parietal regions of the cortex when balance tasks became more challenging. In addition, fronto-central and centro-parietal theta power correlated with balance performance. This study demonstrates the involvement of the cerebral cortex in maintaining upright posture during continuous balance tasks. Specifically, the results emphasize the important role of frontal and parietal theta oscillations in balance control. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie
2014-09-01
The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.
Comfort, Paul; Jones, Paul A; McMahon, John J; Newton, Robert
2015-01-01
The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666-.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.
Stania, Magdalena; Sarat-Spek, Alina; Blacha, Teresa; Kazek, Beata; Słomka, Kajetan J; Emich-Widera, Ewa; Juras, Grzegorz
2017-01-01
Early detection of movement deficits during step initiation will facilitate the selection of the optimal physiotherapy management strategy. The main aim of the study was to assess potential differences in step initiation between 5- and 6-year-old children with faulty posture who had been diagnosed with neurodevelopmental disorders during infancy and healthy children. The experimental group consisted of 19 children aged 5-6 years with faulty posture, who had been diagnosed with neurodevelopmental disorders during infancy and were given physiotherapy in the first year of their lives. The control group comprised 19 nursery school children aged 5-6 years with no postural defects, no history of postural control or movement deficits, and no physiotherapy interventions in the first year of their lives. Step initiation was performed on force platforms under various conditions, i.e., with and without an obstacle, stepping up onto a platform placed at a higher level, stepping down onto a platform placed on a lower level. The recording of center of foot pressure (COP) displacements was divided into three phases: phase 1 (P1)-quiet standing before step initiation, phase 2 (P2)-transit, phase 3 (P3)-quiet standing until measurement completion. The Tukey post hoc test showed that the means of sway range (raCOP) and mean velocity (vCOP) in sagittal ( AP ) plane for phase 1 and vCOP in frontal ( ML ) plane for phase 3 registered in the step-up trial were significantly higher ( p < 0.05) in children with faulty posture compared to children with typical development. P1vCOP ML , P3vCOP AP , P3raCOP ML , and P3vCOP ML of the step-down trial were also significantly higher in children with faulty posture ( p < 0.05). Inclusion of functional movement exercises (stair-walking tasks) in physiotherapy interventions for children with postural defects seems well justified.The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12617001068358).
Does increased postural threat lead to more conscious control of posture?
Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L
2009-11-01
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.
Feasibility of MOS Task Analysis and Redesign to Reduce Physical Demands in the U.S. Army
1997-12-01
developed to study perchery workers (Scott & Lamb , 1996). Another posture analysis technique is called postural targeting (Corlett, et al., 1979). A...method which had been successfully applied to a variety of situations (Lee & Chiou, 1995; Scott & Lamb , 1996). Some modifications were made in the...Scott, G.B., & Lamb , N.R. (1996). Working practices in a perchery system, using the Ovako Working Posture Analyzing System (OWAS). Applied Ergonomics
A biomechanical and physiological study of office seat and tablet device interaction.
Weston, Eric; Le, Peter; Marras, William S
2017-07-01
Twenty subjects performed typing tasks on a desktop computer and touch-screen tablet in two chairs for an hour each, and the effects of chair, device, and their interactions on each dependent measure were recorded. Biomechanical measures of muscle force, spinal load, and posture were examined, while discomfort was measured via heart rate variability (HRV) and subjective reports. HRV was sensitive enough to differentiate between chair and device interactions. Biomechanically, a lack of seat back mobility forced individuals to maintain an upright seating posture with increased extensor muscle forces and increased spinal compression. Effects were exacerbated by forward flexion upon interaction with a tablet device or by slouching. Office chairs should be designed with both the human and workplace task in mind and allow for reclined postures to off-load the spine. The degree of recline should be limited, however, to prevent decreased lumbar lordosis resulting from posterior hip rotation in highly reclined postures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holmes, Jeffrey D; Jenkins, Mary E; Johnson, Andrew M; Hunt, Michael A; Clark, Ross A
2013-04-01
Impaired postural stability places individuals with Parkinson's at an increased risk for falls. Given the high incidence of fall-related injuries within this population, ongoing assessment of postural stability is important. To evaluate the validity of the Nintendo Wii(®) balance board as a measurement tool for the assessment of postural stability in individuals with Parkinson's. Twenty individuals with Parkinson's participated. Subjects completed testing on two balance tasks with eyes open and closed on a Wii(®) balance board and biomechanical force platform. Bland-Altman plots and a two-way, random-effects, single measure intraclass correlation coefficient model were used to assess concurrent validity of centre-of-pressure data. Concurrent validity was demonstrated to be excellent across balance tasks (intraclass correlation coefficients = 0.96, 0.98, 0.92, 0.94). This study suggests that the Wii(®) balance board is a valid tool for the quantification of postural stability among individuals with Parkinson's.
Nordander, Catarina; Hansson, Gert-Åke; Ohlsson, Kerstina; Arvidsson, Inger; Balogh, Istvan; Strömberg, Ulf; Rittner, Ralf; Skerfving, Staffan
2016-07-01
There is a lack of quantitative data regarding exposure-response relationships between occupational risk factors and musculoskeletal disorders in the neck and shoulders. We explored such relationships in pooled data from a series of our cross-sectional studies. We recorded the prevalence of complaints/discomfort (Nordic Questionnaire) and diagnoses (physical examination) in 33 groups (24 female and 9 male) within which the workers had similar work tasks (3141 workers, of which 817 were males). In representative sub-groups, we recorded postures and velocities of the head (N = 299) and right upper arm (inclinometry; N = 306), right wrist postures and velocities (electrogoniometry; N = 499), and muscular activity (electromyography) in the right trapezius muscle (N = 431) and forearm extensors (N = 206). We also assessed the psychosocial work environment (Job Content Questionnaire). Uni- and multivariate linear meta-regression analysis revealed several statistically significant group-wise associations. Neck disorders were associated with head inclination, upper arm elevation, muscle activity of the trapezius and forearm extensors and wrist posture and angular velocity. Right-side shoulder disorders were associated with head and upper arm velocity, activity in the trapezius and forearm extensor muscles and wrist posture and angular velocity. The psychosocial work environment (low job control, job strain and isostrain) was also associated with disorders. Women exhibited a higher prevalence of neck and shoulder complaints and tension neck syndrome than men, when adjusting for postures, velocities, muscular activity or psychosocial exposure. In conclusion, the analyses established quantitative exposure-response relationships between neck and shoulder disorders and objective measures of the physical workload on the arm. Such information can be used for risk assessment in different occupations/work tasks, to establish quantitative exposure limits, and for the evaluation of preventive measures. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of Near Tasks on Posture in Myopic Chinese Schoolchildren
Bao, Jinhua; Drobe, Björn; Wang, Yuwen; Chen, Ke; Seow, Eu Jin; Lu, Fan
2015-01-01
ABSTRACT Purpose To investigate near-vision posture in Chinese myopic schoolchildren and compare near-vision posture during different near-vision tasks (i.e., playing video games, reading, and writing). Methods The study investigated 120 myopic children (grades 1 through 6 and aged 6 to 13 years). An electromagnetic motion-tracking system was used for continuous measurements of the working distance and head declination of the subjects while they were playing video games or reading or writing at a desk. The reading and writing documents were adjusted by grade level (i.e., grades 1 to 2, 3 to 4, and 5 to 6). For analysis, the subjects were grouped in two refractive groups according to their median spherical equivalent refractive error (−1.50D). Results The myopic schoolchildren used close working distances for all tasks: 21.3 ± 5.2 cm (video games), 27.2 ± 6.4 cm (reading), and 24.9 ± 5.8 cm (writing). The mean head declinations were 63.5 ± 12.2 deg (video games), 37.1 ± 12.8 deg (reading), and 44.5 ± 14.1 deg (writing). Working distance decreased significantly across time for the reading and writing tasks (p < 0.001). Head declination increased significantly across time only for the reading task (p < 0.001). Grade level significantly influenced working distance, but the difference was not significant when working distance was adjusted by the subject’s size. No differences were observed within the refractive or the accommodative lag groups in terms of the posture data (p > 0.05). Working distance was negatively correlated with head declination (r = −0.53, p < 0.001). Conclusions Close working distances were observed for Chinese myopic schoolchildren. The attention dedicated to each task, the task difficulty, and the page/screen size may affect near working distance and head declination. Handheld video games were associated with the closest working distance, which may be a risk factor for myopia progression, according to previous studies. PMID:26107025
Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea
2017-10-01
The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.
Impaired Inhibitory Force Feedback in Fixed Dystonia.
Mugge, Winfred; Schouten, Alfred C; van Hilten, Jacobus J; van der Helm, Frans C T
2016-04-01
Complex regional pain syndrome (CRPS) is a multifactorial disorder associated with an aberrant host response to tissue injury. About 25% of CRPS patients suffer poorly understood involuntary sustained muscle contractions associated with dysfunctional reflexes that result in abnormal postures (fixed dystonia). A recent modeling study simulated fixed dystonia (FD) caused by aberrant force feedback. The current study aims to validate this hypothesis by experimentally recording the modulation of reflexive force feedback in patients with FD. CRPS patients with and without FD, patients with FD but without CRPS, as well as healthy controls participated in the experiment. Three task instructions and three perturbation characteristics were used to evoke a wide range of responses to force perturbations. During position tasks ("maintain posture"), healthy subjects as well as patients resisted the perturbations, becoming more stiff than when being relaxed (i.e., the relax task). Healthy subjects and CRPS patients without FD were both more compliant during force tasks ("maintain force") than during relax tasks, meaning they actively gave way to the imposed forces. Remarkably, the patients with FD failed to do so. A neuromuscular model was fitted to the experimental data to separate the distinct contributions of position, velocity and force feedback, as well as co-contraction to the motor behavior. The neuromuscular modeling indicated that inhibitory force feedback is deregulated in patients with FD, for both CRPS and non-CRPS patients. From previously published simulation results and the present experimental study, it is concluded that aberrant force feedback plays a role in fixed dystonia.
Electric versus hydraulic hospital beds: differences in use during basic nursing tasks.
Capodaglio, Edda Maria
2013-01-01
Biomechanical, postural and ergonomic aspects during real patient-assisting tasks performed by nurses using an electric versus a hydraulic hospital bed were observed. While there were no differences in the flexed postures the nurses adopted, longer performance times were recorded when electric beds were used. Subjective effort, force exertion and lumbar shear forces exceeding safety limits proved electric beds were superior. Patients' dependency level seemed to influence the type of nurses' intervention (duration and force actions), irrespective of the bed used. The nurses greatly appreciated the electric bed. Its use seemed to reduce the level of effort perceived during care giving and the postural load during critical subtasks. Ergonomics and organizational problems related to adopting electric beds in hospital wards should be addressed further to make their use more efficient.
Inouye, Joshua M.; Valero-Cuevas, Francisco J.
2016-01-01
Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies—correlated muscle activations—to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption—when available—can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms of learning, plasticity, versatility and pathology in neuromuscular systems. PMID:26867014
Inouye, Joshua M; Valero-Cuevas, Francisco J
2016-02-01
Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms of learning, plasticity, versatility and pathology in neuromuscular systems.