Recovery of postural equilibrium control following spaceflight
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.
1992-01-01
Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.
Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W
2016-01-01
Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial perception of their postural limitation boundary towards target directions and reduced time to correct this error during dynamic postural sways but not during static stance. Regarding postural equilibrium, they showed a compromised ability to decouple ankle dorsi-/plantar-flexion and hip abduction/adduction processes during dynamic stances. These results suggest that deficits in both postural orientation and equilibrium processes contribute to reduced postural stability in ASD. Specifically, increased postural sway in ASD appears to reflect patients' impaired perception of their body movement relative to their own postural limitation boundary as well as a reduced ability to decouple distinct ankle and hip movements to align their body during standing. Our findings that deficits in postural orientation and equilibrium are more pronounced during dynamic compared to static stances suggests that the increased demands of everyday activities in which children must dynamically shift their COP involve more severe postural control deficits in ASD relative to static stance conditions that often are studied. Systematic assessment of dynamic postural control processes in ASD may provide important insights into new treatment targets and neurodevelopmental mechanisms.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S
1992-12-01
The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.
Effects of body lean and visual information on the equilibrium maintenance during stance.
Duarte, Marcos; Zatsiorsky, Vladimir M
2002-09-01
Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.
[Posture and aging. Current fundamental studies and management concepts].
Mourey, F; Camus, A; Pfitzenmeyer, P
2000-02-19
FUNDAMENTAL IMPORTANCE OF POSTURE: In the elderly subject, preservation of posture is fundamental to maintaining functional independence. In recent years, there has been much progress in our understanding of the mechanisms underlying strategies used to control equilibrium in the upright position. Physiological aging, associated with diverse disease states, dangerously alters the postural function, particularly anticipated adjustments which allow an adaptation of posture to movement. CLINICAL ASSESSMENT OF POSTURE: Several tests have been developed to assess posture in the elderly subject, particularly the time it takes to start walking. We selected certain tests which can be used in everyday practice to predict falls: the stance test, the improved Romberg test, the "timed get up and go test", measurement of walking cadence, assessment of balance reactions, sitting-standing and standing-sitting movements and capacity to get up off the floor. PATIENT CARE: Elderly patients with equilibrium disorders can benefit from specific personalized rehabilitation protocols. Different techniques have been developed for multiple afferential stimulation, reprogramming postural strategies, and correcting for deficient motor automatisms.
Postural perturbations: new insights for treatment of balance disorders
NASA Technical Reports Server (NTRS)
Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)
1997-01-01
This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.;
2014-01-01
The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.
Toth, Adam J; Harris, Laurence R; Zettel, John; Bent, Leah R
2017-02-01
Visuo-vestibular recalibration, in which visual information is used to alter the interpretation of vestibular signals, has been shown to influence both oculomotor control and navigation. Here we investigate whether vision can recalibrate the vestibular feedback used during the re-establishment of equilibrium following a perturbation. The perturbation recovery responses of nine participants were examined following exposure to a period of 11 s of galvanic vestibular stimulation (GVS). During GVS in VISION trials, occlusion spectacles provided 4 s of visual information that enabled participants to correct for the GVS-induced tilt and associate this asymmetric vestibular signal with a visually provided 'upright'. NoVISION trials had no such visual experience. Participants used the visual information to assist in realigning their posture compared to when visual information was not provided (p < 0.01). The initial recovery response to a platform perturbation was not impacted by whether vision had been provided during the preceding GVS, as determined by peak centre of mass and pressure deviations (p = 0.09). However, after using vision to reinterpret the vestibular signal during GVS, final centre of mass and pressure equilibrium positions were significantly shifted compared to trials in which vision was not available (p < 0.01). These findings support previous work identifying a prominent role of vestibular input for re-establishing postural equilibrium following a perturbation. Our work is the first to highlight the capacity for visual feedback to recalibrate the vertical interpretation of vestibular reafference for re-establishing equilibrium following a perturbation. This demonstrates the rapid adaptability of the vestibular reafference signal for postural control.
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.
Postural Stability in Young Adults with Down Syndrome in Challenging Conditions
Bieć, Ewa; Zima, Joanna; Wójtowicz, Dorota; Wojciechowska-Maszkowska, Bożena; Kręcisz, Krzysztof; Kuczyński, Michał
2014-01-01
To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning. PMID:24728178
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Effect of 6 days of support withdrawal on characteristics of balance function
NASA Astrophysics Data System (ADS)
Sayenko, D.; Artamonov, A. A.; Ivanov, O. G.; Kozlovskaya, I. B.
2005-08-01
The role of different sensorimotor and sensory factors on postural disorders at different stages of the exposure to microgravity still remains unknown. The results obtained after the Dry Immersion (DI) exposure, showed that after 6 days of DI the subjects' ability to resist to posture perturbations was highly reduced, the EMG response of corrective muscles was increased, and the structure of corrective responses was modified, so that the equilibrium was maintained by the elimination of excessive degrees of freedom. Thus, the results of the study have revealed profound changes in postural synergies suggesting a significant contribution of the support afferentation to posture control.
Posture and equilibrium in orthopedic and rheumatologic diseases.
Missaoui, B; Portero, P; Bendaya, S; Hanktie, O; Thoumie, P
2008-12-01
Posture and balance may be affected in many spine or lower-limb disorders. An extensive evaluation including clinical tests and movement analysis techniques may be necessary to characterize how rheumatologic or orthopedic diseases are related to static or dynamic changes in postural control. In lower limbs, unbalance may be related to a decreased stability following arthrosis or ligament injuries at knee or ankle levels, while hip lesions appear less associated with such troubles. Spinal diseases at cervical level are frequently associated with postural changes and impaired balance control, related to the major role of sensory inputs during stance and gait. At lower levels, changes are noticed in major scoliosis and may be related to pain intensity in patients with chronic low-back pain. Whatever the initial lesion and the affected level, improvement in clinical or instrumental tests following rehabilitation or brace wearing provides argument for a close relationship between rheumatologic or orthopedic diseases and related impairments in posture and balance control.
Effects of astigmatic axis orientation on postural stabilization with stationary equilibrium
NASA Astrophysics Data System (ADS)
Kanazawa, Masatsugu; Uozato, Hiroshi; Asakawa, Ken; Kawamorita, Takushi
2018-02-01
We evaluated 15 healthy participants by assessing their maintenance of postural control while standing on a platform stabilometer for 1 min under the following conditions: eyes open; eyes open with + 3.00 D on both eyes on same directions (45, 90, 135, 180 degree axis); right eye on 45 degree axis and left eye on 135 degree axis (inverted V-pattern), and right eye on 135 degree axis and left eye on axis 45 degree axis (V-pattern). The differences in the linear length, area and maximum velocity of center of pressure during postural control before and after the six types of positive cylinder-oriented axes were analyzed. Comparing the antero-posterior lengths and antero-posterior maximum velocities, there were significant differences between the V-pattern condition and the six other conditions. Astigmatic defocus in the antagonistic axes conditions, particularly the V-pattern condition, affects postural control of antero-posterior sway (143/150).
[Neuronal control of posture and locomotion in decerebrated and spinalized animals].
Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P
2013-03-01
We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.
NASA Technical Reports Server (NTRS)
Sayenko D.; Miller, T.; Sayenko. I.; Kozlovskaya, I.; Reschke, M.
2004-01-01
Posture disorders are an inevitable consequence of exposure to microgravity . However, the role of different sensorimotor and sensory factors on postural function at different stages of the exposure to microgravity still remains unknown. The results obtained in a 6 hr dry immersion (DI) study where chest pushes served as a pre- and post-immersion perturbation, and DI was used as an analog of microgravity suggest that in addition to vestibular contributions, postural control may be related to a reduction of support loading and consequent decline of the tone of anti-gravitational muscles. Analysis of postural video data in response to chest pushes obtained before and after DI indicate that the structure of corrective responses was modified so that postural perturbations from threshold to moderate pushes showed a significant rise in the amplitude of ankle and knee angular displacement. With push intensity near the submaximal level, equilibrium was maintained by the elimination of excessive degrees of freedom; as manifested by the restriction of the hip joints mobility when coupled with a reduction of the knee and ankle displacement. These results suggest that DI increases the sensitivity of the posture control system by making posture control more rigid reflecting a change of the weight bearing receptors.
Effect of long-duration spaceflight on postural control during self-generated perturbations
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; McDonald, P. V.; Pruett, C. J.; Kozlovskaya, I. B.; Bloomberg, J. J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.
Effect of Long-Duration Spaceflight on Postural Control During Self-Generated Perturbations
NASA Technical Reports Server (NTRS)
Layne, Charles S.; Mulavera, Ajitkumar P.; McDonald, P. Vernon; Pruett, Casey J.; Kozlovskaya, Innessa B.; Bloomberg, Jacob J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure motion (COP) associated with arm movement of eight subjects who experienced long duration spaceflight (3-6 months) aboard the Mir space station. Surface electromyography (EMG), arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions prior to and after spaceflight. Subjects displayed compromised postural control after flight as evidenced by modified peak-to-peak COP anterior-posterior and medio-lateral motion and COP pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e. when subjects were attempting to maintain their upright posture). These findings suggest that although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long duration spaceflight.
van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K
2003-12-01
The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.
Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung
2016-01-01
Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which was independent of clinical characteristics. Patients further demonstrated similar pattern and level of utilizing sensory information to maintain balance compared to the controls.
Classification of posture maintenance data with fuzzy clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1992-01-01
Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various sensory organization test (SOT) conditions were collected in conjunction with Johnson Space Center postural control studies using a tilt-translation device (TTD). The University of West Florida applied the fuzzy c-meams (FCM) clustering algorithms to this data with a view towards identifying various states and stages of subjects experiencing such changes. Feature analysis, time step analysis, pooling data, response of the subjects, and the algorithms used are discussed.
Role of cerebellum in learning postural tasks.
Ioffe, M E; Chernikova, L A; Ustinova, K I
2007-01-01
For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.
NASA Technical Reports Server (NTRS)
Harm, D. L.; Taylor, L. C.
2006-01-01
Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Changes in the environmental sensory stimulus conditions and the way we interact with the new stimuli may result in motion sickness, and perceptual, spatial orientation and sensorimotor disturbances. Initial interpretation of novel sensory information may be inappropriate and result in perceptual errors. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, unilateral labyrinthectomy and experimentally produced stimulus rearrangements. Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays, and to examine the effects of exposure duration, and repeated exposures to VR systems. Forty-one subjects (21 men, 20 women) participated in the study with an age range of 21-49 years old. One training session was completed in order to achieve stable performance on the posture and VR tasks before participating in the experimental sessions. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or head-mounted display (HMD) VR system for either 30 or 60 min. The environment was a square room with 15 pedestals on two opposite walls. The objects appeared on one set of pedestals and the subject s objective was to move the objects to the other set of pedestals. After the subject picked up an object, a pathway appeared and they were required to follow the pathway to the other side of the room. The subject was instructed to perform the task as quickly and accurately as possible, avoiding hitting walls and other any obstacles and placing the object on the center of the pedestal. Postural equilibrium was measured (using the Equitest CDP balance system, Neurocom, International) before, immediately after, and at 1 hr, 2 hr, 4 hr and 6 hr following exposure to VR. Postural equilibrium was measured during quiet stance with eyes open, eyes closed and vision and/or ankle proprioceptive inputs selectively altered by servo-controlling the visual surround and/or support surface to the subject s center of mass sway. Posture data was normalized using a log transformation and motion sickness data were normalized using the square root. In general, we found that exposure to VR resulted in decrements in postural stability. The largest decrements were observed in the tests performed immediately following exposure to VR and showed a fairly rapid recovery across the remaining test sessions. In addition, subjects generally showed improvement across days. We found significant main effects for day and time for the composite equilibrium score and for sensory organization tests (SOT) 1, 2 and 6. Significant main effects were observed for day for SOT 3 and 5. Although we found no significant main effects for gender (when center of gravity was used as a covariate), we did observe significant gender X time interaction effects for composite equilibrium and for SOT 1, 3, 4 and 5. Women appeared to show larger decrements in postural stability immediately after exposure to VR than men, but recover more quickly than n. Finally, we found no significant main effects for type of VR device or for exposure duration, however, these factors did interact with other factors during some of the SOTs. Subjects exhibited rapid recovery of motion sickness symptoms across time following exposure to VR and significantly less severe symptoms across days. We did not observe main effects for gender, type of device or duration of exposure. Individuals recovered from the detrimental effects of exposure to virtual reality on postural control and motion sickness within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and support the idea that preflight training of astronauts may serve as useful countermeasure for the sensorimotor effects of space flight.
Martinelli, Alessandra Rezende; Coelho, Daniel Boari; Teixeira, Luis Augusto
2018-04-01
Cerebral damage provoked by stroke may lead to deficits of quiet balance control and of the recovery of body equilibrium following an unanticipated postural perturbation. In this investigation we aimed to evaluate the effect of light touch (LT) of an earth-fixed surface on balance stability in individuals with post-stroke hemiparesis, taking performance of age-matched healthy participants as reference. Evaluations were made in conditions of full and no visual information. Analysis of quiet balance showed that LT induced higher balance stability, with reduced amplitude and velocity of postural sway. Evaluation of the effect of LT on automatic postural responses was made in the task of recovering body equilibrium following a mechanical perturbation of balance leading to fast forward body sway. Results showed that LT led to reduced amplitude of center of mass displacement following the perturbation, in addition to reduced amplitude and velocity of center of pressure under the feet, and lower activation of the lower legs muscles. Those effects of LT were observed in both the post-stroke and control groups, and did not interact with vision availability. Our results indicated then that individuals who suffered a cerebral stroke can stabilize perturbed and non-perturbed postural responses by lightly touching a stable surface to a similar extent of healthy older individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Goal Directed Locomotion and Balance Control in Autistic Children
ERIC Educational Resources Information Center
Vernazza-Martin, S.; Martin, N.; Vernazza, A.; Lepellec-Muller, A.; Rufo, M.; Massion, J.; Assaiante, C.
2005-01-01
This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed: (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy…
Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
Gomi, H; Kawato, M
1997-03-01
By using a newly designed high-performance manipulandum and a new estimation algorithm, we measured human multi-joint arm stiffness parameters during multi-joint point-to-point movements on a horizontal plane. This manipulandum allows us to apply a sufficient perturbation to subject's arm within a brief period during movement. Arm stiffness parameters were reliably estimated using a new algorithm, in which all unknown structural parameters could be estimated independent of arm posture (i.e., constant values under any arm posture). Arm stiffness during transverse movement was considerably greater than that during corresponding posture, but not during a longitudinal movement. Although the ratios of elbow, shoulder, and double-joint stiffness were varied in time, the orientation of stiffness ellipses during the movement did not change much. Equilibrium-point trajectories that were predicted from measured stiffness parameters and actual trajectories were slightly sinusoidally curved in Cartesian space and their velocity profiles were quite different from the velocity profiles of actual hand trajectories. This result contradicts the hypothesis that the brain does not take the dynamics into account in movement control depending on the neuromuscular servo mechanism; rather, it implies that the brain needs to acquire some internal models of controlled objects.
NASA Astrophysics Data System (ADS)
Stapley, Paul; Pozzo, Thierry
In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2014-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older. PMID:24474907
Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel
2013-01-01
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effect of stance width on multidirectional postural responses
NASA Technical Reports Server (NTRS)
Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
2001-01-01
The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified for a change in stance width. Nevertheless, the magnitude of the trunk displacement, as well as of CoP displacement, was modified based on the degree of passive stiffness in the musculoskeletal system, which increased with stance width. The change from a more passive to an active horizontal force constraint, to larger EMG magnitudes especially in the trunk muscles and larger trunk and CoP excursions in narrow stance are consistent with a more effortful response for equilibrium control in narrow stance to perturbations in all directions.
Yiou, Eric; Mezaour, Malha; Le Bozec, Serge
2009-04-01
This study investigated how young healthy subjects control their equilibrium in situations of instability specifically elicited by a reduced capacity of force production in the postural muscle system. Ten subjects displaced a bar forward with both hands at maximal velocity toward a target while standing on the dominant leg (UNID), on the nondominant leg (UNIND), or on both legs. In each stance condition, anticipatory postural adjustments (APAs) were elicited. Along the anteroposterior axis, APAs were two-times longer in UNID and UNIND than in bipedal stance, while the anticipatory inertia forces remained equivalent. The focal performance was maintained without any additive postural perturbation. A small effect of leg dominance could be detected on APAs along the mediolateral axis (i.e., anticipatory inertia forces were higher in UNIND than in UNID). These results stress the adaptability of the central nervous system to the instability specifically elicited by reduced postural muscle system efficiency.
Rambling and trembling in response to body loading.
Tahayor, Behdad; Riley, Zachary A; Mahmoudian, Armaghan; Koceja, David M; Hong, Siang Lee
2012-04-01
Various studies have suggested that postural sway is controlled by at least two subsystems. Rambling-Trembling analysis is a widely accepted methodology to dissociate the signals generated by these two hypothetical subsystems. The core assumption of this method is based on the equilibrium point hypothesis which suggests that the central nervous system preserves upright standing by transiently shifting the center of pressure (COP) from one equilibrium point to another. The trajectory generated by this shifting is referred to as rambling and its difference from the original COP signal is referred to as trembling. In this study we showed that these two components of COP are differentially affected when standing with external loads. Using Detrended Fluctuation analysis, we compared the pattern of these two signals in different configurations of body loading. Our findings suggest that by applying an external load, the dynamics of the trembling component is altered independently of the area of postural sway and also independently of the rambling component. The dynamics of rambling changed only during the backloading condition in which the postural sway area also substantially increased. It can be suggested that during loaded standing, the trembling mechanism (which is suggested to be activated by peripheral mechanisms and reflexes) is altered without affecting the central influence on the shifts of the equilibrium point.
Temporal changes in postural sway caused by ultrashort-acting hypnotics: triazolam and zolpidem.
Nakamura, M; Ishii, M; Niwa, Y; Yamazaki, M; Ito, H
2005-01-01
Two ultrashort-acting hypnotics, triazolam 0.25 mg and zolpidem 10 mg, were studied for their effects on equilibrium function in humans. Eight healthy male subjects participated in a double-blind, placebo-controlled study after informed consent. They subjected to static equilibrium tests, oculomotor tests and an assay of drug concentrations in the blood. Zolpidem was statistically significant in postural sway in tandem stance test, as defined by parametric values of tracing sum length and polygonal area of foot pressure center measured by a gait analysis system. In the tandem stance test, triazolam was statistically significant in postural sway only as defined by the polygonal area. However, in the Romberg test, the only statistically significant difference in zolpidem use was observed in polygonal area values. Blood concentrations of triazolam and zolpidem were found to closely correlate with the extent of postural sway in both tandem stance and Romberg tests. In this study, zolpidem with minimal muscle-relaxant effect incurred imbalance more extensively than triazolam, which is known for its effect of muscle relaxation. In addition, gaze deviation nystagmus was observed only in zolpidem use in 5 of 8 subjects (62.5%). From these results, it is suggested that in the use of hypnotics, sway derives from the suppression of the central nervous system relevant to awakening rather than from muscle relaxation. The prior reference to blood concentrations of hypnotics should help improve safety care in minimizing loss of balance control and possible fall. Copyright 2005 S. Karger AG, Basel.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B
2015-01-01
To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Postural Control Disturbances Produced By Exposure to HMD and Dome Vr Systems
NASA Technical Reports Server (NTRS)
Harm, D. L.; Taylor, L. C.
2005-01-01
Two critical and unresolved human factors issues in VR systems are: 1) potential "cybersickness", a form of motion sickness which is experienced in virtual worlds, and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Most astronauts and cosmonauts experience perceptual and sensorimotor disturbances during and following space flight. All astronauts exhibit decrements in postural control following space flight. It has been suggested that training in virtual reality (VR) may be an effective countermeasure for minimizing perceptual and/or sensorimotor disturbances. People adapt to consistent, sustained alterations of sensory input such as those produced by microgravity, and experimentally-produced stimulus rearrangements (e.g., reversing prisms, magnifying lenses, flight simulators, and VR systems). Adaptation is revealed by aftereffects including perceptual disturbances and sensorimotor control disturbances. The purpose of the current study was to compare disturbances in postural control produced by dome and head-mounted virtual environment displays. Individuals recovered from motion sickness and the detrimental effects of exposure to virtual reality on postural control within one hour. Sickness severity and initial decrements in postural equilibrium decreases over days, which suggests that subjects become dual-adapted over time. These findings provide some direction for developing training schedules for VR users that facilitate adaptation, and address safety concerns about aftereffects.
Postural equilibrium following exposure to weightless space flight
NASA Technical Reports Server (NTRS)
Homick, J. L.; Reschke, M. F.
1977-01-01
Postural equilibrium performance by Skylab crewmen following exposure to weightlessness of 28, 59, and 84 days respectively was evaluated using a modified version of a quantitative ataxia test developed by Graybiel and Fregly (1966). Performance for this test was measured under two sets of conditions. In the first, the crewman was required to maintain postural equilibrium on narrow metal rails (or floor) with his eyes open. In the second condition, he attempted to balance with his eyes closed. A comparison of the preflight and postflight data indicated moderate postflight decrements in postural equilibrium in three of the crewmen during the eyes open test condition. In the eyes-closed condition, a considerable decrease in ability to maintain balance on the rails was observed postflight for all crewmen tested. The magnitude of the change was most pronounced during the first postflight test day. Improvement was slow; however, on the basis of data obtained, recovery of preflight baseline levels of performance was evidently complete at the end of approximately two weeks for all crewmen. The findings are explained in terms of functional alterations in the kinesthetic, touch, vestibular and neuromuscular sensory mechanisms induced by the prolonged absence of a normal 1-G gravitational environment.
Hirata, Rogério Pessoto; Ervilha, Ulysses Fernandes; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas
2011-08-01
Musculoskeletal pain impairs postural control and stability. Nine subjects stood as quietly as possible on a moveable force platform before, during, and after experimental pain in the right leg muscles. A moveable force platform was used to measure the center of pressure and provided unexpected perturbations. Lower limb muscle activity, joint angles, and foot pressure distributions were measured. Hypertonic saline was used to induce pain in the vastus lateralis, vastus medialis, or biceps femoris muscle of the right leg. Compared to baseline and control sessions, pain in the knee extensor muscles during quiet standing evoked: 1) larger sway area, greater medial-lateral center of pressure displacement and higher speed (P < .05); 2) increased sway displacement in the anterior-posterior direction (P < .05); and 3) increased electromyography (EMG) activity for left tibialis anterior and left erector spinae muscles (P < .05). Pain provoked longer time to return to an equilibrium posture after forward EMG activity for, and pain in vastus medialis muscle decreased the time for the maximum hip flexion during this perturbation (P < .05). These results show that muscle pain impairs postural stability during quiet standing and after unexpected perturbation, which suggest that people suffering from leg muscle pain are more vulnerable to falls. This article presents the acute responses to leg muscle pain on the postural control. This measure could potentially help clinicians who seek to assess how pain responses may contribute to patient's postural control and stability during quiet standing and after recovering from unexpected perturbations. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
A link-segment model of upright human posture for analysis of head-trunk coordination
NASA Technical Reports Server (NTRS)
Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.
1998-01-01
Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.
Blind Evaluation of Body Reflexes and Motor Skills in Learning Disability.
ERIC Educational Resources Information Center
Freides, David; And Others
1980-01-01
Twelve 6 to 10 year old boys with learning disability were blindly compared with paired controls on measures of postural and equilibrium reflexes as well as skills. Learning disabled children as a group showed significant deficits on all measures; a few, however, were totally without deficit. (Author/SBH)
Ozinga, Sarah J; Linder, Susan M; Alberts, Jay L
2017-04-01
To determine the accuracy of inertial measurement unit data from a mobile device using the mobile device relative to posturography to quantify postural stability in individuals with Parkinson disease (PD). Criterion standard. Motor control laboratory at a clinic. A sample (N=28) of individuals with mild to moderate PD (n=14) and age-matched community-dwelling individuals without PD (n=14) completed the study. Not applicable. Center of mass (COM) acceleration measures were compared between the mobile device and the NeuroCom force platform to determine the accuracy of mobile device measurements during performance of the Sensory Organization Test (SOT). Analyses examined test-retest reliability of both systems and sensitivity of (1) the equilibrium score from the SOT and (2) COM acceleration measures from the force platform and mobile device to quantify postural stability across populations. Metrics of COM acceleration from inertial measurement unit data and the NeuroCom force platform were significantly correlated across balance conditions and groups (Pearson r range, .35 to .97). The SOT equilibrium scores failed to discriminate individuals with and without PD. However, the multiplanar measures of COM acceleration from the mobile device exhibited good to excellent reliability across SOT conditions and were able to discriminate individuals with and without PD in conditions with the greatest balance demands. Metrics employing medial-lateral movement produce a more sensitive outcome than the equilibrium score in identifying postural instability associated with PD. Overall, the output from the mobile device provides an accurate and reliable method of rapidly quantifying balance in individuals with PD. The portable and affordable nature of a mobile device with the application makes it ideally suited to use biomechanical data to aid in clinical decision making. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A real time study of the human equilibrium using an instrumented insole with 3 pressure sensors.
Abou Ghaida, Hussein; Mottet, Serge; Goujon, Jean-Marc
2014-01-01
The present work deals with the study of the human equilibrium using an ambulatory e-health system. One of the point on which we focus is the fall risk, when losing equilibrium control. A specific postural learning model is presented, and an ambulatory instrumented insole is developed using 3 pressures sensors per foot, in order to determine the real-time displacement and the velocity of the centre of pressure (CoP). The increase of these parameters signals a loss of physiological sensation, usually of vision or of the inner ear. The results are compared to those obtained from classical more complex systems.
ERIC Educational Resources Information Center
Carvalho, R. L.; Almeida, G. L.
2009-01-01
Background: The purpose of this study was to investigate the kinematic and electromyography strategy used by individuals with intellectual disability to keep equilibrium during anterior-posterior balance on seesaws with different degrees of instability. Method: Six individuals with Down syndrome (DS) and six control group individuals (CG) balanced…
Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S
2015-01-01
Postural control in certain situations depends on functioning of tactile or proprioceptive receptors and their respective dynamic integration. Loss of sensory functioning can lead to increased risk of falls in challenging postural tasks, especially in older adults. Stochastic resonance, a concept describing better function of systems with addition of optimal levels of noise, has shown to be beneficial for balance performance in certain populations and simple postural tasks. In this study, we tested the effects of aging and a tactile stochastic resonance stimulus (TSRS) on balance of adults in a sensory conflict task. Nineteen older (71-84 years of age) and younger participants (22-29 years of age) stood on a force plate for repeated trials of 20 s duration, while foot sole stimulation was either turned on or off, and the visual surrounding was sway-referenced. Balance performance was evaluated by computing an Equilibrium Score (ES) and anterior-posterior sway path length (APPlength). For postural control evaluation, strategy scores and approximate entropy (ApEn) were computed. Repeated-measures ANOVA, Wilcoxon signed-rank tests, and Mann-Whitney U-tests were conducted for statistical analysis. Our results showed that balance performance differed between older and younger adults as indicated by ES (p = 0.01) and APPlength (0.01), and addition of vibration only improved performance in the older group significantly (p = 0.012). Strategy scores differed between both age groups, whereas vibration only affected the older group (p = 0.025). Our results indicate that aging affects specific postural outcomes and that TSRS is beneficial for older adults in a visual sensory conflict task, but more research is needed to investigate the effectiveness in individuals with more severe balance problems, for example, due to neuropathy.
The effects of breath alcohol concentration on postural control.
Fiorentino, Dary D
2018-05-19
Two of the 3 standardized field sobriety tests that U.S. law enforcement uses at roadside checks have a postural equilibrium component to them. Those tests have been validated to detect impairment caused by blood alcohol concentrations (BACs) of 0.08 g/dL or above. Many medical and traffic safety associations support a lower limit, and one state, Utah, has passed a law to lower the limit to 0.05 g/dL. Many studies have examined the effects of alcohol on postural control (of which postural equilibrium is a component), with a consensus emerging that impairment is usually found at BACs greater than 0.06 g/dL. Most of these studies, however, had a relatively small number of subjects, usually between 10 and 30. The current study collected data from a much larger sample. The objective of this study was to provide additional evidence that posture control is negatively affected at BACs greater than 0.06 g/dL or breath alcohol concentrations (BrACs) of 0.06 g/210 L. This was a between-subjects study, with BrAC group as the independent variable (5 levels: 0.00, 0.04, 0.06, 0.08, and 0.10 g/210 L); 4 measures of postural control as the dependent variables; and age, height, and weight as the covariates. Posture control was measured with a force-sensing platform connected to a computer. The feet's center of pressure (CoP) on the platform was recorded and the corresponding movement of the body in the anterior-posterior and lateral planes was derived. Participants (N = 96) were randomly assigned to one of the BrAC groups. Positive BrAC groups were compared to the zero BrAC group. Data were examined with hierarchical multiple regression. Adjusted for age, height, and weight, the main effect of lateral CoP with eyes open was not statistically significant. There was a statistically significant main effect of alcohol on anterior-posterior CoP excursion with eyes open and with eyes closed and lateral CoP excursion with eyes closed. For all 3 of those variables, only BrACs of 0.08 and 0.10 g/210 L produced differences against zero BrAC. Although the main effect of alcohol on Lateral CoP Excursion with eyes open was not statistically significant, the contrasts between 0 and 0.08 and 0 and 0.10 g/210L BrAC were in the hypothesized direction. The current study did not directly address the issue of whether the sobriety tests are sensitive to BrACs of 0.05 g/210 L or above; rather, it provides additional evidence that postural control, one of the components of those tests, is relatively unaffected by BrACs lower than 0.08 g/210 L. Additional research is needed on the diagnostic characteristics of the sobriety tests at BrACs lower than 0.08 g/210 L.
Conceição, Josilene Souza; Schaefer de Araújo, Felipe Gustavo; Santos, Gilmar Moraes; Keighley, John
2016-01-01
Context: Rehabilitation programs for patients with chronic ankle instability (CAI) generally involve balance-perturbation training (BPT). Anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) are the primary strategies used to maintain equilibrium during body perturbations. Little is known, however, about how APAs and CPAs are modified to promote better postural control for individuals with CAI after BPT. Objective: To investigate the effect of BPT that involves kicking a ball on postural-control strategies in individuals with CAI. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: We randomly assigned 44 volunteers with CAI to either a training group (TG; 11 women, 11 men; age = 24 ± 4 years, height = 173.0 ± 9.8 cm, mass = 72.64 ± 11.98 kg) or control group (CG; 11 women, 11 men; age = 22 ± 3 years, height = 171.0 ± 9.7 cm, mass = 70.00 ± 11.03 kg). Intervention(s): The TG performed a single 30-minute training session that involved kicking a ball while standing on 1 foot. The CG received no intervention. Main Outcome Measure(s): The primary outcome was the sum of the integrated electromyographic activity (∑∫EMG) of the lower extremity muscles in the supporting limb that were calculated during typical intervals for APAs and CPAs. A secondary outcome was center-of-pressure displacement during similar intervals. Results: In the TG after training, the ∑∫EMG decreased in both dorsal and ventral muscles during compensatory adjustment (ie, the time interval that followed lower limb movement). During this interval, muscle activity (∑∫EMG) was less in the TG than in the CG. Consequently, center-of-pressure displacement increased during the task after training. Conclusions: A single session of ball-kicking BPT promoted changes in postural-control strategies in individuals with CAI. These results should stimulate new and more comprehensive studies to investigate the effect of this and other BPT techniques on postural control in patients with CAI. PMID:27295488
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G.; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A control strategy related to this hypothesis (CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway. PMID:27999535
Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.
Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin
2016-01-01
Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.
Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C
1993-01-01
Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Balance performance was recorded under normal loading (NL, 1 g), UL (0.16 g 0.38 g) and OL (1.8 g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5 Hz (LF), medium 0.5-2 Hz (MF), high 2-6 Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin
2016-08-01
Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.
NASA Technical Reports Server (NTRS)
Forth, Katharine E.; Taylor, Laura C.; Paloski, William H.
2006-01-01
The purpose of the present experiment was to compare in normal human subjects the differential effects on postural stability of introducing somatosensory noise via compliant and/or sway-referenced support surfaces during quiet standing. The use of foam surfaces (two thicknesses: thin (0.95cm) and thick (7.62cm)) and sway-referenced support allowed comparison between two different types of destabilizing factors that increased ankle/foot somatosensory noise. Under some conditions neck extensions were used to increase sensory noise by deviating the vestibular system from its optimal orientation for balance control. The impact of these conditions on postural control was assessed through objective measures of instability. Thick foam and sway-referenced support conditions generated comparable instability in subjects, as measured by equilibrium score and minimum time-to-contact. However, simultaneous application of the conditions resulted in greater instability, suggesting a higher level of generated sensory noise and thus, different receptor types affected during each manipulation. Indeed, sway-referenced support generated greater anterior-posterior center-of-mass (COM) sway, while thick foam generated greater medio-lateral COM sway and velocity. Neck extension had minimal effect on postural stability until combined with simultaneous thick foam and sway-referenced support. Thin foam never generated enough sensory noise to affect postural stability even with noise added by sway-reference support or neck extension. These results provide an interesting window into the central integration of redundant sensory information and indicate the postural impact of sensory inputs is not solely based on their existence, but also their level of noise.
Do Equilibrium Constraints Modulate Postural Reaction when Viewing Imbalance?
ERIC Educational Resources Information Center
Tia, Banty; Paizis, Christos; Mourey, France; Pozzo, Thierry
2012-01-01
Action observation and action execution are tightly coupled on a neurophysiological and a behavioral level, such that visually perceiving an action can contaminate simultaneous and subsequent action execution. More specifically, observing a model in postural disequilibrium was shown to induce an increase in observers' body sway. Here we…
Neuroanatomy of flying reptiles and implications for flight, posture and behaviour.
Witmer, Lawrence M; Chatterjee, Sankar; Franzosa, Jonathan; Rowe, Timothy
2003-10-30
Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.
Feedback equilibrium control during human standing
Alexandrov, Alexei V.; AA, Frolov; FB, Horak; P, Carlson-Kuhta; S, Park
2006-01-01
Equilibrium maintenance during standing in humans was investigated with a 3-joint (ankle, knee and hip) sagittal model of body movement. The experimental paradigm consisted of sudden perturbations of humans in quiet stance by backward displacements of the support platform. Data analysis was performed using eigenvectors of motion equation. The results supported three conclusions. First, independent feedback control of movements along eigenvectors (eigenmovements) can adequately describe human postural responses to stance perturbations. This conclusion is consistent with previous observations (Alexandrov et al., 2001b) that these same eigenmovements are also independently controlled in a feed-forward manner during voluntary upper-trunk bending. Second, independent feedback control of each eigenmovement is sufficient to provide its stability. Third, the feedback loop in each eigenmovement can be modeled as a linear visco-elastic spring with delay. Visco-elastic parameters and time-delay values result from the combined contribution of passive visco-elastic mechanisms and sensory systems of different modalities. PMID:16228222
Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces
Pletcher, Erin R.; Williams, Valerie J.; Abt, John P.; Morgan, Paul M.; Parr, Jeffrey J.; Wohleber, Meleesa F.; Lovalekar, Mita; Sell, Timothy C.
2017-01-01
Context: Postural stability is the ability to control the center of mass in relation to a person's base of support and can be affected by both musculoskeletal injury and traumatic brain injury. The NeuroCom Sensory Organization Test (SOT) can be used to objectively quantify impairments to postural stability. The ability of postural stability to predict injury and be used as an acute injury-evaluation tool makes it essential to the screening and rehabilitation process. To our knowledge, no published normative data for the SOT from a healthy, highly active population are available for use as a reference for clinical decision making. Objective: To present a normative database of SOT scores from a US Military Special Operations population that can be used for future comparison. Design: Cross-sectional study. Setting: Human performance research laboratory. Patients or Other Participants: A total of 542 active military operators from Naval Special Warfare Combatant-Craft Crewmen (n = 149), Naval Special Warfare Command, Sea, Air, and Land (n = 101), US Army Special Operations Command (n = 171), and Air Force Special Operations Command (n = 121). Main Outcome Measure(s): Participants performed each of the 6 SOT conditions 3 times. Scores for each condition, total equilibrium composite score, and ratio scores for the somatosensory, visual, and vestibular systems were recorded. Results: Differences were present across all groups for SOT conditions 1 (P < .001), 2 (P = .001), 4 (P > .001), 5 (P > .001), and 6 (P = .001) and total equilibrium composite (P = .000), visual (P > .001), vestibular (P = .002), and preference (P > .001) NeuroCom scores. Conclusions: Statistical differences were evident in the distribution of postural stability across US Special Operations Forces personnel. This normative database for postural stability, as assessed by the NeuroCom SOT, can provide context when clinicians assess a Special Operations Forces population or any other groups that maintain a high level of conditioning and training. PMID:28140624
Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces.
Pletcher, Erin R; Williams, Valerie J; Abt, John P; Morgan, Paul M; Parr, Jeffrey J; Wohleber, Meleesa F; Lovalekar, Mita; Sell, Timothy C
2017-02-01
Postural stability is the ability to control the center of mass in relation to a person's base of support and can be affected by both musculoskeletal injury and traumatic brain injury. The NeuroCom Sensory Organization Test (SOT) can be used to objectively quantify impairments to postural stability. The ability of postural stability to predict injury and be used as an acute injury-evaluation tool makes it essential to the screening and rehabilitation process. To our knowledge, no published normative data for the SOT from a healthy, highly active population are available for use as a reference for clinical decision making. To present a normative database of SOT scores from a US Military Special Operations population that can be used for future comparison. Cross-sectional study. Human performance research laboratory. A total of 542 active military operators from Naval Special Warfare Combatant-Craft Crewmen (n = 149), Naval Special Warfare Command, Sea, Air, and Land (n = 101), US Army Special Operations Command (n = 171), and Air Force Special Operations Command (n = 121). Participants performed each of the 6 SOT conditions 3 times. Scores for each condition, total equilibrium composite score, and ratio scores for the somatosensory, visual, and vestibular systems were recorded. Differences were present across all groups for SOT conditions 1 (P < .001), 2 (P = .001), 4 (P > .001), 5 (P > .001), and 6 (P = .001) and total equilibrium composite (P = .000), visual (P > .001), vestibular (P = .002), and preference (P > .001) NeuroCom scores. Statistical differences were evident in the distribution of postural stability across US Special Operations Forces personnel. This normative database for postural stability, as assessed by the NeuroCom SOT, can provide context when clinicians assess a Special Operations Forces population or any other groups that maintain a high level of conditioning and training.
Comparison of Balance Performance Between Thai Classical Dancers and Non-Dancers.
Krityakiarana, Warin; Jongkamonwiwat, Nopporn
2016-01-01
Thai classical dance is a traditional dramatic art, the technique of which has many features in common with South East Asian performing art. The choreographic patterns consist of various forms of balance control together with limb movements in slow rhythm. The grace and beauty of the dancer are dependent on how well the limb movements curve and angle. The relationship of whole body proportion and balance control in various patterns of support base is also important. The purpose of this study was to compare balance abilities between Thai classical dancers and non-dancers in different balance conditions. Twenty-five Thai classical dancers and 25 non-dancers performed the modified Sensory Organization Test (mSOT) and were further challenged by adding dynamic head tilts (DHTs) in four different directions during mSOT. Mixed model ANOVA was applied to determine the equilibrium score in each balance condition and also the interaction between dancer and non-dancer groups. It was found that Thai classical dancers achieved better equilibrium scores in all mSOT conditions except the least challenging one. Moreover, additional multitask conditions (mSOT+DHT) were revealed to profoundly affect differences between dancers and controls. In conclusion, Thai classical dancers demonstrated a better ability to maintain postural stability during different challenging postural tests. This information suggests various ways of putting the practice of Thai classical dance to use in the future.
The timing of galvanic vestibular stimulation affects responses to platform translation
NASA Technical Reports Server (NTRS)
Hlavacka, F.; Shupert, C. L.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
We compared the effects of galvanic vestibular stimulation applied at 0, 0.5, 1.5 and 2.5 s prior to a backward platform translation on postural responses. The effect of the galvanic stimulation was largest on the final equilibrium position of the center of pressure (CoP). The largest effects occurred for the 0.5 and 0-s pre-period, when the dynamic CoP pressure changes in response to both the galvanic stimulus and the platform translation coincided. The shift in the final equilibrium position was also larger than the sum of the shifts for the galvanic stimulus and the platform translation alone for the 0.5 and 0-s pre-periods. The initial rate of change of the CoP response to the platform translation was not significantly affected in any condition. Changes in the peak CoP position could be accounted for by local interaction of CoP velocity changes induced by the galvanic and translation responses alone, but the changes in final equilibrium position could only be accounted for by a change in global body orientation. These findings suggest that the contribution of vestibulospinal information is greatest during the dynamic phase of the postural response, and that the vestibular system contributes most to the later components of the postural response, particularly to the final equilibrium position. These findings suggest that a nonlinear interaction between the vestibular signal induced by the galvanic current and the sensory stimuli produced by the platform translation occurs when the two stimuli are presented within 1 s, during the dynamic phase of the postural response to the galvanic stimulus. When presented at greater separations in time, the stimuli appear to be treated as independent events, such that no interaction occurs. Copyright 1999 Elsevier Science B.V.
Motion-Induced Interruptions and Postural Equilibrium in Linear Lateral Accelerations
2013-09-01
model. 50 THIS PAGE INTENTIONALLY LEFT BLANK 51 APPENDIX A. PRE- AND POSTTEST QUESTIONNAIRES Pretest ...Screening and Pretest Q. Midtest Q. Posttest Q. Motion Profile/Noldus Video Researchers’ Data 3001 1-2-3-4 √ √ √ √ √ 3102 * 1-2-3-4...parameters and Motion-Induced Interruptions (MIIs) in a controlled environment, and (b) focus on the effect of the frequency (period) of the
Resolving Sensory Conflict: the Effect of Muscle Vibration on Postural Stability
NASA Technical Reports Server (NTRS)
Layne, Charles S.
1991-01-01
The otolith-tilt reinterpretation hypothesis (OTTR) proposes that the central nervous system adapts to weightlessness by reinterpreting all otolith input as linear motion. While interpreting otolith input exclusively as linear motion is functionally useful in space, it is maladaptive upon return to Earth. Astronauts have reported experiencing illusory sensations during head movement which contributes to postural instability. The effect is assessed of muscle vibration in combination with a variety of sensory conflicts on postural equilibrium. The equilibrium of six healthy subjects was tested using the EquiTest sensory test protocol, with and without the confounding influence of triceps surea vibration. The data were analyzed with repeated measures with vibration, vision status, and platform status as independent variables. All main effects and an interaction between the presence of vision and platform sway referencing were found to be significant. Overall, a 4.5 pct. decrease in postural stability was observed with vibration. The trend of the difference scores between conditions with and without vibration suggests that vibration is most destabilizing when the triceps surea is able to change length during postural sway (i.e., conditions with a fixed support surface). The impact of sway referencing vision was virtually identical to that of eye closure, providing compelling evidence that sway referencing 'nulls out' useful cues about subject sway.
Chow, Gary C C; Fong, Shirley S M; Chung, Joanne W Y; Chung, Louisa M Y; Ma, Ada W W; Macfarlane, Duncan J
2016-11-01
Postural control strategy and balance performance of rugby players are important yet under-examined issues. This study aimed to examine the differences in balance strategy and balance performance between amateur rugby players and non-players, and to explore training- and injury-related factors that may affect rugby players' balance outcomes. Cross-sectional and exploratory study. Forty-five amateur rugby players and 41 healthy active individuals participated in the study. Balance performance and balance strategies were assessed using the sensory organization test (SOT) of the Smart Equitest computerized dynamic posturography machine. Rugby training history and injury history were solicited from the participants. The SOT strategy scores were 1.99-54.90% lower in the rugby group than in the control group (p<0.05), and the equilibrium scores were 1.06-14.29% lower in the rugby group than in the control group (p<0.05). After accounting for age, sex and body mass index, only length of rugby training (in years) was independently associated with the SOT condition 6 strategy score, explaining 15.7% of its variance (p=0.006). There was no association between SOT condition 6 strategy/equilibrium scores and injury history among the rugby players (p>0.05). Amateur rugby players demonstrated inferior balance strategy and balance performance compared to their non-training counterparts. Their suboptimal balance strategy was associated with insufficient training experience but not with history of injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Space and time in the context of equilibrium-point theory.
Feldman, Anatol G
2011-05-01
Advances to the equilibrium-point (EP) theory and solutions to several classical problems of action and perception are suggested and discussed. Among them are (1) the posture-movement problem of how movements away from a stable posture can be made without evoking resistance of posture-stabilizing mechanisms resulting from intrinsic muscle and reflex properties; (2) the problem of kinesthesia or why our sense of limb position is fairly accurate despite ambiguous positional information delivered by proprioceptive and cutaneous signals; (3) the redundancy problems in the control of multiple muscles and degrees of freedom. Central to the EP hypothesis is the notion that there are specific neural structures that represent spatial frames of reference (FRs) selected by the brain in a task-specific way from a set of available FRs. The brain is also able to translate or/and rotate the selected FRs by modifying their major attributes-the origin, metrics, and orientation-and thus substantially influence, in a feed-forward manner, action and perception. The brain does not directly solve redundancy problems: it only limits the amount of redundancy by predetermining where, in spatial coordinates, a task-specific action should emerge and allows all motor elements, including the environment, to interact to deliver a unique action, thus solving the redundancy problem (natural selection of action). The EP theory predicts the existence of specific neurons associated with the control of different attributes of FRs and explains the role of mirror neurons in the inferior frontal gyrus and place cells in the hippocampus. WIREs Cogni Sci 2011 2 287-304 DOI: 10.1002/wcs.108 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support. PMID:26053055
Kapilevich, L V; Davlet'yarova, K V; Ovchinnikova, N A
The problem of deterioration of the health status in the university students at present remains as topical as it was before being a major cause of impaired working capacity, disability and/or poor social adaptation of the large number of graduates. It has been proposed to introduce a class of therapeutic physical training (TPT) into the schedule of physical education for the students. The objective of the present study was to evaluate the effectiveness of the formation of the skills needed to maintain motor coordination and equilibrium in the students presenting with the functional disorders of the musculoskeletal system (MSS) including scoliosis by the introduction of the elements of therapeutic physical training into their academic schedules. The main study group was comprised of 32 students (men) at the age of 18-19 years presenting with the disorders of the musculoskeletal system (type III scoliosis, osteochondropathy, and osteochondrosis). The students of this group received a curriculum aimed at improving their motor skills with the emphasis laid on the selected elements of therapeutic physical training. The control group was composed of 17 students without disorders of the musculoskeletal system who attended the physical education classes following the traditional program. The coordination abilities and balance skills were evaluated based on the analysis with the use of the Stabilan-1 stabilographic apparatus. In addition, the stability test and the Romberg test with open and closed eyes were performed. The results of the study give evidence that the introduction of the elements of therapeutic physical training into the structure of academic schedule of physical education for the students suffering from diseases of the musculoskeletal system has beneficial effect on the parameters of stability and the general ability to maintain the posture and balance. Specifically, in the beginning of the academic year, the students of the main study group presenting with the locomotor problems (the scatter of the manifest disorders in the frontal and sagittal planes, the mean amplitude and velocity of fluctuations of the center of pressure, the area of the projection of the center of pressure displacements as well as the quality of the equilibrium function that characterizes the ability to maintain the posture) were significantly different from the respective characteristics in the control group (p<0,05). After the course of therapeutic physical training given during the academic year, the scatter of the manifestations in the frontal and sagittal planes as well as the role of the visual control in the maintenance of balance decreased significantly. The present study has demonstrated that the introduction of the elements of therapeutic physical training into the structure of academic schedule of physical education for the students presenting with the functional disorders of the locomotor apparatus exerts the positive influence on the parameters characterizing stability and the ability to maintain the posture as well as equilibrium at large. Such beneficial effect is apparent in the form of reduction of the amplitude and velocity of fluctuations of the centre of pressure, the decrease in the area of projection of its displacements, and the improvement of the quality of the equilibrium function that characterizes the ability to maintain the posture. Moreover, the ratio of spreading in the frontal and sagittal planes decreases, and the role of the visual control in the maintenance of equilibrium becomes diminished. The results of the study give grounds for recommending the introduction of the elements of therapeutic physical training into the learning process of students presenting with diseases of the musculoskeletal system.
Physiological and Functional Alterations after Spaceflight and Bed Rest.
Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J
2018-04-03
Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is required to maintain functional performance.
Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography.
Wood, Scott J; Paloski, William H; Clark, Jonathan B
2015-12-01
Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (± 20° at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember's ability to automatically recover from unexpected support-surface perturbations. The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.
Once more on the equilibrium-point hypothesis (lambda model) for motor control.
Feldman, A G
1986-03-01
The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.
Ayhan, Cigdem; Bilgin, Sevil; Aksoy, Songul; Yakut, Yavuz
2016-08-10
Automatic and voluntary body position control is essential for postural stability; however, little is known about individual factors that impair the sensorimotor system associated with low back pain (LBP). To evaluate automatic and voluntary motor control impairments causing postural instability in patients with LBP. Motor control impairments associated with poor movement and balance control were analyzed prospectively in 32 patients with LBP. Numeric Rating Scale (NRS) for pain assessment, Oswestry Disability Index (ODI) for disability measurement, and computerized dynamic posturography (CDP) for analysis of postural responses were used to measure outcomes of all patients. Computerized dynamic posturography tests including Sensory organization test (SOT), limits of stability test (movement velocity, directional control, endpoint, and maximum excursion), rhythmic weight shift (rhythmic movement speed and directional control), and adaptation test (toes-up and toes-down tests) were performed and the results compared with NeuroCom normative data. The mean age of the patients was 40.50 ± 12.28 years. Lower equilibrium scores were observed in SOT (p < 0.05). There was a significant increase in reaction time and decrease in movement velocity, directional control, and endpoint excursion (p < 0.05). Speed of rhythmic movement along the anteroposterior direction decreased, while speed increased along the lateral direction (p < 0.05). Poor directional control was recorded in the anteroposterior direction (p < 0.05). Toes-down test showed an increased COG sway in patients compared with that in the controls (p < 0.05). LBP causes poor voluntary control of body positioning, a reduction in movement control, delays in movement initiation, and a difficulty to adapt to sudden surface changes.
Lateral stepping for postural correction in Parkinson's disease.
King, Laurie A; Horak, Fay B
2008-03-01
To characterize the lateral stepping strategies for postural correction in patients with Parkinson's disease (PD) and the effect of their anti-parkinson medication. Observational study. Outpatient neuroscience laboratory. Thirteen participants with idiopathic PD in their on (PD on) and off (PD off) levodopa state and 14 healthy elderly controls. Movable platform with lateral translations of 12 cm at 14.6 cm/s ramp velocity. The incidence and characteristics of 3 postural strategies were observed: lateral side-step, crossover step, or no step. Corrective stepping was characterized by latency to step after perturbation onset, step velocity, and step length and presence of an anticipatory postural adjustment (APA). Additionally, percentages of trials resulting in falls were identified for each group. Whereas elderly control participants never fell, PD participants fell in 24% and 35% of trials in the on and off medication states, respectively. Both PD and control participants most often used a lateral side-step strategy; 70% (control), 67% (PD off), and 73% (PD on) of all trials, respectively. PD participants fell most often when using a crossover strategy (75% of all crossover trials) or no-step strategy (100% of all no-step trials). In the off medication state, PD participants' lateral stepping strategies were initiated later than controls (370+/-37 ms vs 280+/-10 ms, P<.01), and steps were smaller (254+/-20 mm vs 357+/-17 mm, P<.01) and slower (0.99+/-0.08 m/s vs 1.20+/-0.07 m/s, P<.05). No differences were found between the PD off versus PD on state in the corrective stepping characteristics. Unlike control participants, PD participants often (56% of side-step strategy trials) failed to activate an APA before stepping, although their APAs, when present, were of similar latency and magnitude as for control participants. Levodopa on or off state did not significantly affect falls, APAs, or lateral step latency, velocity, or amplitude (P>.05). PD participants showed significantly more postural instability and falls than age-matched controls when stepping was required for postural correction in response to lateral disequilibrium. Although PD participants usually used a similar lateral stepping strategy as controls in response to lateral translations, lack of an anticipatory lateral weight shift, and bradykinetic characteristics of the stepping responses help explain the greater rate of falls in participants with PD. Differences were not found between the levodopa on and off states. The results suggest that rehabilitation aimed at improving lateral stability in PD should include facilitating APAs before a lateral side-stepping strategy with faster and larger steps to recover equilibrium.
Comparison of Postural Recovery Following Short and Long Duration Spaceflights
NASA Technical Reports Server (NTRS)
Wood, S. J.; Fiedler, J.; Taylor, L. C.; Kozlovskaya, I.; Black, F. O.; Paloski, W. H.
2010-01-01
INTRODUCTION: Post-flight postural ataxia reflects adaptive changes to vestibulo-spinal reflexes and control strategies adopted for movement in weightlessness. Quantitative measures obtained during computerized dynamic posturography (CDP) from US and Russian programs provide insight into the effect of spaceflight duration in terms of both the initial decrements and recovery of postural stability. METHODS: CDP was obtained on 117 crewmembers following Shuttle flights lasting 4-17 days, and on 64 crewmembers following long-duration missions lasting 48-380 days. Although the number and timing of sessions varied, the goal was to characterize postural recovery pooling similar measures from different research and flight medicine programs. This report focuses on eyes closed, head erect conditions with either a fixed or sway-referenced base of support. A smaller subset of subjects repeated the sway-referenced condition while making pitch head movements (+/- 20deg at 0.33Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Fall probability was modeled using Bayesian statistical methods to estimate parameters of a logit function. RESULTS: The standard Romberg condition was the least sensitive. Longer duration flights led to larger decrements in stability with sway-reference support during the first 1-2 days, although the timecourse of recovery was similar across flight duration with head erect. Head movements led to increased incidence of falls during the first week, with a significantly longer recovery following long duration flights. CONCLUSIONS: The diagnostic assessment of postural instability, and differences in the timecourse of postural recovery between short and long flight durations, are more pronounced during unstable support conditions requiring active head movements.
Classification of posture maintenance data with fuzzy clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1991-01-01
Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various conditions were collected in conjunction with JSC postural control studies using a Tilt-Translation Device (TTD). The University of West Florida proposed applying the Fuzzy C-Means Clustering (FCM) Algorithms to this data with a view towards identifying various states and stages. Data supplied by NASA/JSC were submitted to the FCM algorithms in an attempt to identify and characterize cluster substructure in a mixed ensemble of pre- and post-adaptational TTD data. Following several unsuccessful trials with FCM using a full 11 dimensional data set, a set of two channels (features) were found to enable FCM to separate pre- from post-adaptational TTD data. The main conclusions are that: (1) FCM seems able to separate pre- from post-TTD subject no. 2 on the one trial that was used, but only in certain subintervals of time; and (2) Channels 2 (right rear transducer force) and 8 (hip sway bar) contain better discrimination information than other supersets and combinations of the data that were tried so far.
Effects of 30-, 60-, and 90-Day Bed Rest on Postural Control in Men and Women
NASA Technical Reports Server (NTRS)
Esteves, Julie; Taylor, Laura C.; Vanya, Robert D.; Dean, S. Lance; Wood, Scott J.
2011-01-01
INTRODUCTION Head-down-tilt bed rest (HDT) has been used as a safe gr ound-based analog to mimic and develop countermeasures for the physiological effects of spaceflight, including decrements in postural stability. The purpose of this investigation was to characterize the effects of 30-, 60-, and 90-day bed rest on postural control in men and women. METHODS Twenty-nine subjects (18M,11F) underwent 13 days of ambula tory acclimatization and were placed in 6? HDT for 30 (n=12), 60 (n=8), or 90 (n=9) days, followed by 14 days of ambulatory recovery. Computerized dynamic posturography (CDP) was used to assess changes in sensory and motor components of postural control, and recovery after HDT. Sensory Organization Tests (SOTs) objectively evaluate one?s ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Stability during the SOTs was assessed using peak-to-peak sway and convergence toward stability limits to derive an equilibrium score. Motor Control Tests (MCTs) evaluate one?s ability to recover from unexpected support surface perturbations, with performance determined by center-of-pressure path length. Whole-body kinematic data were collected to determine body-sway strategy used to maintain stability during each condition. Baselines were determined pre-HDT. Recovery was tracked post-HDT on days 0, 1, 2, and 4. RESULTS Immediately after HDT, subjects showed decreased performance on most SOTs, primarily on sway-referenced support conditions, typically returning to baseline levels within 4 days. MCT performance was not significantly affected. There were no significant gender or duration differences in performance. Kinematic data revealed a tendency to use ankle strategy to maintain an upright stance during most SOT conditions. Interestingly, six subjects (2M,4F) experienced orthostatic intolerance and were unable to complete day 0 testing. CONCLUSION HDT mimics some un loading mechanisms of spaceflight and elicits orthostatic issues present post-spaceflight (contributing to instability); however, it does not sufficiently address the vestibular dysfunction which occurs post-spaceflight.
The role of haptic cues from rough and slippery surfaces in human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Lackner, J. R.
1995-01-01
Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.
Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.
Kutsuna, Kenichiro; Matsuura, Yasuyuki; Fujikake, Kazuhiro; Miyao, Masaru; Takada, Hiroki
2013-01-01
Visually induced motion sickness (VIMS) is caused by sensory conflict, the disagreement between vergence and visual accommodation while observing stereoscopic images. VIMS can be measured by psychological and physiological methods. We propose a mathematical methodology to measure the effect of three-dimensional (3D) images on the equilibrium function. In this study, body sway in the resting state is compared with that during exposure to 3D video clips on a liquid crystal display (LCD) and on a head mounted display (HMD). In addition, the Simulator Sickness Questionnaire (SSQ) was completed immediately afterward. Based on the statistical analysis of the SSQ subscores and each index for stabilograms, we succeeded in determining the quantity of the VIMS during exposure to the stereoscopic images. Moreover, we discuss the metamorphism in the potential functions to control the standing posture during the exposure to stereoscopic video clips.
Stance control is not affected by paresis and reflex hyperexcitability: the case of spastic patients
Nardone, A; Galante, M; Lucas, B; Schieppati, M
2001-01-01
OBJECTIVES—Spastic patients were studied to understand whether stance unsteadiness is associated with changes in the control of voluntary force, muscle tone, or reflex excitability, rather than to abnormal posture connected to the motor deficit itself. METHODS—Twenty four normal subjects, 12 patients affected by amyotrophic lateral sclerosis (ALS), seven by spastic paraparesis, and 14 by hemiparesis were studied. All patients featured various degrees of spasticity and paresis but were free from clinically evident sensory deficits. Body sway during quiet upright stance was assessed through a stabilometric platform under both eyes open (EO) and eyes closed (EC) conditions. The sudden rotation of a supporting platform, in a toe up and toe down direction respectively, evoked short (SLR) and medium latency (MLR) reflex responses to stretch of the soleus or the tibialis anterior (TA) muscle. RESULTS—No relation was found between clinical findings (tone, muscle strength, tendon reflexes, plantar response, and duration of disease) and body sway. On average, all patient groups exhibited a forward shift of the centre of foot pressure (CFP) with respect to normal subjects; in addition, paraparetic and to a much larger extent hemiparetic patients showed a lateral shift of CFP. Body sway area was significantly increased only in the hemiparetic patients. No relation was found between position of the CFP and sway within any patient group. Soleus SLR was increased in all patients with respect to normal subjects. TA SLR was often seen in both patients with ALS and paraparetic patients, but only rarely in normal subjects and hemiparetic patients. However, no relation was found between amplitude of soleus or TA SLRs and stabilometric variables. The frequency and size of soleus MLR and TA MLR were decreased in all patients. These responses were decreased in size and not modulated by background EMG in the affected leg of hemiparetic patients, suggesting a disturbed control of spinal reflexes fed by spindle group II afferent fibres. CONCLUSIONS—It is proposed that body posture, paresis, or monosynaptic reflex hyperexcitability do not affect the control of equilibrium during quiet upright stance. In hemiparetic patients, the decreased amplitude of MLRs might be the main cause of the large postural instability. The results are congruent with the hypothesis of a role for group II afferent input in the reflex control of equilibrium. PMID:11309458
Testing postural control among various osteoporotic patient groups: a literature review.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Lamoth, Claudine J C
2012-10-01
Osteoporosis can cause vertebral fractures, which might lead to a flexed posture, impaired postural control and consequently increased fall risk. Therefore, the aim of the present review was to examine whether postural control of patients with osteoporosis, vertebral fractures, thoracic kyphosis and flexed posture is affected. Furthermore, instruments measuring postural control were evaluated and examined for sensitivity and easy clinical use. Until February 2011, electronic databases were systematically searched for cross-sectional studies. Methodological quality was assessed with a modified Downs & Black scale. Of the 518 found studies, 18 studies were included. Postural control was generally affected for patients with vertebral fractures, thoracic kyphosis and flexed posture. Patients with osteoporosis had impaired postural control when assessed with computerized instruments. Easy performance-based tests did not show any impairments. There is evidence for an impaired postural control in all patient groups included. Impaired postural control is an important risk factor for falls. Functional performance tests are not sensitive and specific enough to detect affected postural control in patients with osteoporosis. To detect impaired postural control among osteoporotic patients and to obtain more insight into the underlying mechanisms of postural control, computerized instruments are recommended, such as easy-to-use ambulant motion-sensing (accelerometry) technology. © 2012 Japan Geriatrics Society.
Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1995-01-01
The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Effects of simulated artificial gravity on human performance
NASA Technical Reports Server (NTRS)
Green, J. A.; Peacock, J. L.
1972-01-01
The ability of test subjects to perform operational type tasks was evaluated at rotational rates to 6 rpm and radii to 78 ft (24 m). The tasks included fine motor activity, mental operations, postural equilibrium, cargo handling, radial and tangential locomotion. Performance data indicate that 6 rpm presents a physiological limit at radii to 75 ft (23 m). Radial locomotion was not found to produce excessive adverse stimuli, and tangential locomotion was readily accomplished at walking rates of 2 of 4.8 ft/s (.6 to 1.4 m/s). The absence of vision dramatically reduced an individual's postural equilibrium during rotation. The use of selected anti-motion pharmaceuticals had, generally, a positive effect upon psychomotor performance at 6 rpm, but did not prove to be a panacea for the adverse effects of rotation at this rate.
Dynamic balance sensory motor control and symmetrical or asymmetrical equilibrium training.
Guillou, Emmanuel; Dupui, Philippe; Golomer, Eveline
2007-02-01
Determine whether symmetrical or asymmetrical equilibrium training can enhance the proprioceptive input of the left versus right supporting leg (SL) motor control. Proprioceptive input was tested using a seesaw platform through a cross-sectional study. The total spectral energy was recorded and divided into 0-2 and 2-20Hz frequency bands. Experts in asymmetrical tasks (soccer players) were compared to experts in symmetrical tasks (dancers, acrobats) and untrained subjects according to pitch versus roll imbalance direction on each SL. Regarding the low frequency band, spectral energy values were lower for experts than for untrained subjects in the roll direction only, whatever the SL (p<0.05). Regarding the high frequency band, spectral energy values were lower for the left SL compared to the right one for soccer players only (p<0.05). Furthermore, soccer players also exhibited lower values than other subjects on the left SL. Asymmetrical equilibrium training minimizes the proprioceptive input, emphasizing the role of the biomechanical component in postural regulation. Testing athletes on a spontaneous unstable platform is a way to accurately discriminate each SL performance for one type of sport training. In sport medicine rehabilitation, injured SL could be detected with this protocol comparing it with healthy SL.
Furnari, Anna; Calabrò, Rocco Salvatore; Gervasi, Giuseppe; La Fauci-Belponer, Francesca; Marzo, Antonio; Berbiglia, Fabio; Paladina, Giuseppe; De Cola, Maria Cristina; Bramanti, Placido
2014-01-01
Patients with stroke present an asymmetric posture, severe balance dysfunction with delayed and disrupted equilibrium reactions, exaggerated postural sway and abnormal gait with an increased risk of falling. The aim of this study is to evaluate the efficacy of hydrokinesytherapy on stance, balance and gait in individuals after stroke. In this single-blinded randomized controlled trial, patients with stroke were divided into two groups: an experimental one (G1), performing hydrokinesytherapy (3 times/week) in addition to a conventional physical therapy (3 times/week) and a control one (G2), performing only a conventional physical therapy (6 times/week). All of the participants underwent a proper clinical and baropodometric evaluation before and after 8 weeks of treatment. The two groups presented similar clinical and instrumental features at enrolment (mean modified Rankin Scale of 3, and a disease duration of 6.3 ± 1.4 months). After treatment, the patients undergoing hydrokinesytherapy showed a significantly greater improvement than those undergoing traditional training. Hydrokinesytherapy may be considered a promising treatment in improving gait and balance in individuals following stroke.
Specific Stimuli Induce Specific Adaptations: Sensorimotor Training vs. Reactive Balance Training
Freyler, Kathrin; Krause, Anne; Gollhofer, Albert; Ritzmann, Ramona
2016-01-01
Typically, balance training has been used as an intervention paradigm either as static or as reactive balance training. Possible differences in functional outcomes between the two modalities have not been profoundly studied. The objective of the study was to investigate the specificity of neuromuscular adaptations in response to two balance intervention modalities within test and intervention paradigms containing characteristics of both profiles: classical sensorimotor training (SMT) referring to a static ledger pivoting around the ankle joint vs. reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. Thirty-eight subjects were assigned to either SMT or RBT. Before and after four weeks of intervention training, postural sway and electromyographic activities of shank and thigh muscles were recorded and co-contraction indices (CCI) were calculated. We argue that specificity of training interventions could be transferred into corresponding test settings containing properties of SMT and RBT, respectively. The results revealed that i) postural sway was reduced in both intervention groups in all test paradigms; magnitude of changes and effect sizes differed dependent on the paradigm: when training and paradigm coincided most, effects were augmented (P<0.05). ii) These specificities were accompanied by segmental modulations in the amount of CCI, with a greater reduction within the CCI of thigh muscles after RBT compared to the shank muscles after SMT (P<0.05). The results clearly indicate the relationship between test and intervention specificity in balance performance. Hence, specific training modalities of postural control cause multi-segmental and context-specific adaptations, depending upon the characteristics of the trained postural strategy. In relation to fall prevention, perturbation training could serve as an extension to SMT to include the proximal segment, and thus the control of structures near to the body’s centre of mass, into training. PMID:27911944
Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest support the notion that in-flight treadmill exercise, in addition to providing aerobic exercise and mechanical stimuli to the bone, also has a number of sensorimotor benefits by providing: 1) A balance challenge during locomotion requiring segmental coordination in response to a downward force. 2) Body-support loading during performance of a full-body active motor task. 3) Oscillatory stimulation of the otoliths and synchronized periodic foot impacts that facilitate the coordination of gait motions and tune the full-body gaze control system. 4) Appropriate sensory input (foot tactile input, muscle and tendon stretch input) to spinal locomotor central pattern generators required for the control of locomotion. Forward work will focus on a follow-up bed rest study that incorporates aerobic and resistance exercise with a treadmill balance and gait training system that can serve as an integrated interdisciplinary countermeasure system for future exploration class missions.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen
2007-01-01
Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway-referencing. Electrotactile feedback improved performance with GVS toward non-GVS levels, again with the greatest improvement during trials with rotation sway-referencing. These results demonstrate the effectiveness of tongue electrotactile feedback in providing sensory substitution to maintain postural stability with distorted vestibular input.
Feldman, Anatol G; Latash, Mark L
2005-02-01
Criticisms of the equilibrium point (EP) hypothesis have recently appeared that are based on misunderstandings of some of its central notions. Starting from such interpretations of the hypothesis, incorrect predictions are made and tested. When the incorrect predictions prove false, the hypothesis is claimed to be falsified. In particular, the hypothesis has been rejected based on the wrong assumptions that it conflicts with empirically defined joint stiffness values or that it is incompatible with violations of equifinality under certain velocity-dependent perturbations. Typically, such attempts use notions describing the control of movements of artificial systems in place of physiologically relevant ones. While appreciating constructive criticisms of the EP hypothesis, we feel that incorrect interpretations have to be clarified by reiterating what the EP hypothesis does and does not predict. We conclude that the recent claims of falsifying the EP hypothesis and the calls for its replacement by EMG-force control hypothesis are unsubstantiated. The EP hypothesis goes far beyond the EMG-force control view. In particular, the former offers a resolution for the famous posture-movement paradox while the latter fails to resolve it.
Should the Equilibrium Point Hypothesis (EPH) be Considered a Scientific Theory?
Sainburg, Robert L.
2017-01-01
The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature. PMID:25386681
Should the Equilibrium Point Hypothesis (EPH) be Considered a Scientific Theory?
Sainburg, Robert L
2015-04-01
The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature.
Brunetti, O; Filippi, G M; Lorenzini, M; Liti, A; Panichi, R; Roscini, M; Pettorossi, V E; Cerulli, G
2006-11-01
Surgical reconstruction of the anterior cruciate ligament (ACL) may reduce, but it does not always eliminate, knee and body instability because of a persisting proprioceptive deficit. In order to enhance body stability, a new protocol of treatment has been proposed consisting of mechanical vibration (100 Hz frequency and < 20 microm amplitude) of the quadriceps muscle in the leg that has undergone ACL reconstruction. In our trials, stimulation was performed when the quadriceps muscle was kept isometrically contracted. Treatment was started one month after surgery. Vibration was applied for short periods over three consecutive days. Nine months after treatment, postural stability was re-evaluated with the subjects standing on one leg with open and with closed eyes. The postural stability of the subjects having undergone vibration treatment, standing on the operated leg was significantly improved one day after treatment when evaluated as mean of speed and elliptic area of the center of pressure. The improvement persisted and increased during the following weeks. Peak torques of the operated leg extensor muscles also increased and reached values close to that of the leg, which had not been operated. Conversely, the balance of the untreated subjects standing on the operated leg did not improve and the restoration of the extensor muscle peak torque was poor. It is concluded that short lasting proprioceptive activation by vibration may lead to a faster and more complete equilibrium recovery probably by permanently changing the network controlling knee posture.
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2013-01-01
Obese people suffer from postural deficits and are more subject to falls than their lean counterpart. To improve prevention and post-fall rehabilitation programs, it seems important to better understand the posturo-kinetic disorders in daily life situations by determining the contribution of some key factors, mainly morphological characteristics and physical activity level, in the apparition of these disorders. Twelve severe android obese and eight healthy non obese adults performed a reaching task mobilizing the whole body. To further determine the origin of the postural and motor behavior differences, non obese individuals also performed an experimental session with additional constraints which simulated some of the obese morphological characteristics. Impact of the sedentary lifestyle was also studied by dissociation of the obese in two subgroups: physically « active » and physically « inactive ». Movement kinetics and kinematics were characterized with an optoelectronic system synchronized to a force platform. The mechanical equilibrium pattern was evaluated through the displacements of the Centre of Mass (CoM) and the centre of foot pressure within the Base of Support (BoS). Results showed that obesity decreased movement speed (≈−23%, p<0.01), strongly increased CoM displacement (≈+30%, p<0.05) and induced an important spatio-temporal desynchronization (≈+40%, p<0.05) of the focal and postural components of the movement during the transition between the descending and ascending movements. The role of some morphological characteristics and of physical activity on obese patients' postural control disorder is discussed and set back in the more general context of overall factors contributing to postural deficits with obesity. PMID:23560097
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2013-01-01
Obese people suffer from postural deficits and are more subject to falls than their lean counterpart. To improve prevention and post-fall rehabilitation programs, it seems important to better understand the posturo-kinetic disorders in daily life situations by determining the contribution of some key factors, mainly morphological characteristics and physical activity level, in the apparition of these disorders. Twelve severe android obese and eight healthy non obese adults performed a reaching task mobilizing the whole body. To further determine the origin of the postural and motor behavior differences, non obese individuals also performed an experimental session with additional constraints which simulated some of the obese morphological characteristics. Impact of the sedentary lifestyle was also studied by dissociation of the obese in two subgroups: physically « active » and physically « inactive ». Movement kinetics and kinematics were characterized with an optoelectronic system synchronized to a force platform. The mechanical equilibrium pattern was evaluated through the displacements of the Centre of Mass (CoM) and the centre of foot pressure within the Base of Support (BoS). Results showed that obesity decreased movement speed (≈-23%, p<0.01), strongly increased CoM displacement (≈+30%, p<0.05) and induced an important spatio-temporal desynchronization (≈+40%, p<0.05) of the focal and postural components of the movement during the transition between the descending and ascending movements. The role of some morphological characteristics and of physical activity on obese patients' postural control disorder is discussed and set back in the more general context of overall factors contributing to postural deficits with obesity.
Schmidt, Julianne D; Terry, Douglas P; Ko, Jihyun; Newell, Karl M; Miller, L Stephen
2018-02-01
Subclinical postural-control changes may persist beyond the point when athletes are considered clinically recovered postconcussion. To compare postural-control performance between former high school football players with or without a history of concussion using linear and nonlinear metrics. Case-control study. Clinical research laboratory. A total of 11 former high school football players (age range, 45-60 years) with 2 or more concussions and 11 age- and height-matched former high school football players without a history of concussion. No participant had college or professional football experience. Participants completed the Sensory Organization Test. We compared postural control (linear: equilibrium scores; nonlinear: sample and multiscale entropy) between groups using a 2 × 3 analysis of variance across conditions 4 to 6 (4: eyes open, sway-referenced platform; 5: eyes closed, sway-referenced platform; 6: eyes open, sway-referenced surround and platform). We observed a group-by-condition interaction effect for medial-lateral sample entropy ( F 2,40 = 3.26, P = .049, η p 2 = 0.140). Participants with a history of concussion presented with more regular medial-lateral sample entropy values (0.90 ± 0.41) for condition 5 than participants without a history of concussion (1.30 ± 0.35; mean difference = -0.40; 95% confidence interval [CI] = -0.74, -0.06; t 20 = -2.48, P = .02), but conditions 4 (mean difference = -0.11; 95% CI: -0.37, 0.15; t 20 = -0.86, P = .40) and 6 (mean difference = -0.25; 95% CI: -0.55, 0.06; t 20 = -1.66, P = .11) did not differ between groups. Postconcussion deficits, detected using nonlinear metrics, may persist long after injury resolution. Subclinical concussion deficits may persist for years beyond clinical concussion recovery.
Does increased postural threat lead to more conscious control of posture?
Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L
2009-11-01
Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.
Hogan, Kathleen K; Powden, Cameron J; Hoch, Matthew C
2016-10-01
To investigate the effect of foot posture on postural control and dorsiflexion range of motion in individuals with chronic ankle instability. The study employed a cross-sectional, single-blinded design. Twenty-one individuals with self-reported chronic ankle instability (male=5; age=23.76(4.18)years; height=169.27(11.46)cm; weight=73.65(13.37)kg; number of past ankle sprains=4.71(4.10); episode of giving way=17.00(18.20); Cumberland Ankle Instability Score=18.24(4.52); Ankle Instability Index=5.86(1.39)) participated. The foot posture index was used to categorize subjects into pronated (n=8; Foot Posture Index=7.50(0.93)) and neutral (n=13; Foot Posture Index=3.08(1.93)) groups. The dependent variables of dorsiflexion ROM and dynamic and static postural control were collected for both groups at a single session. There were no significant differences in dorsiflexion range of motion between groups (p=0.22) or any of the eyes open time-to-boundary variables (p>0.13). The pronated group had significantly less dynamic postural control than the neutral group as assessed by the anterior direction of the Star Excursion Balance Test (p<0.04). However, the pronated group had significantly higher time-to-boundary values than the neutral group for all eyes closed time-to-boundary variables (p≤0.05), which indicates better eyes closed static postural control. Foot posture had a significant effect on dynamic postural control and eyes closed static postural control in individuals with chronic ankle instability. These findings suggest that foot posture may influence postural control in those with chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Postural Control in Children: Implications for Pediatric Practice
ERIC Educational Resources Information Center
Westcott, Sarah L.; Burtner, Patricia
2004-01-01
Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…
The effects of brief swaying on postural control.
Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François
2017-12-06
Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability. PMID:18523566
Relationship between morphologic somatotypes and standing posture equilibrium.
Allard, P; Nault, M L; Hinse, S; LeBlanc, R; Labelle, H
2001-01-01
Previous studies have identified height and weight as important factors affecting quiet standing stability but studies have not addressed body morphology as a global factor. Using anthropometric measurements, the morphologic somatotypes were defined in terms of body composition and structure. The aim of this study was to test the hypothesis that morphologic somatotypes were related to standing posture equilibrium in able-bodied girls. A total of 43 able-bodied girls having a mean age of 13.8 +/- 2.2 years participated in this study. Somatotype measurements were taken to determine their endomorphic, mesomorphic or ectomorphic components. Then, subjects were asked to stand still on a force platform for 64 s with their eyes opened, feet about 23 cm apart and arms aligned with the trunk. Afterwards, subjects were grouped based on the highest value of their somatotype component. There was no statistical difference in age, height and weight among the groups. The surface area of an ellipse delineated by the displacement of the centre of pressure (COP) was statistically larger (236.9 +/- 134.3 mm2) for the ectomorphs than for the endomorphs 137.7 +/- 71.4 mm2). The minor axis was longer (8.1 +/- 2.9 mm) for the ectomorphs than for the endomorphs (5.7 +/- 2.2 mm). The decrease in standing posture stability of the ectomorphic group was attributed to a relatively low muscle component, a high height weight ratio and an elevated position of the body centre of mass in this population of girls. Somatotypes should be considered when assessing standing posture in both able-bodied subjects and patients.
Dusing, Stacey C; Izzo, Theresa A.; Thacker, Leroy R.; Galloway, James C
2014-01-01
Background and Aims Postural control differs between infants born preterm and full term at 1–3 weeks of age. It is unclear if differences persist or alter the development of early behaviors. The aim of this longitudinal study was to compare changes in postural control variability during development of head control and reaching in infants born preterm and full term. Methods Eighteen infants born preterm (mean gestational age 28.3±3.1 weeks) were included in this study and compared to existing data from 22 infants born full term. Postural variability was assessed longitudinally using root mean squared displacement and approximate entropy of the center of pressure displacement from birth to 6 months as measures of the magnitude of the variability and complexity of postural control. Behavioral coding was used to quantify development of head control and reaching. Results Group differences were identified in postural complexity during the development of head control and reaching. Infants born preterm used more repetitive and less adaptive postural control strategies than infants born full term. Both groups changed their postural complexity utilized during the development of head control and reaching. Discussion Early postural complexity was decreased in infants born preterm, compared to infants born full term. Commonly used clinical assessments did not identify these early differences in postural control. Altered postural control in infants born preterm influenced ongoing skill development in the first six months of life. PMID:24485170
Two stages and three components of the postural preparation to action.
Krishnan, Vennila; Aruin, Alexander S; Latash, Mark L
2011-07-01
Previous studies of postural preparation to action/perturbation have primarily focused on anticipatory postural adjustments (APAs), the changes in muscle activation levels resulting in the production of net forces and moments of force. We hypothesized that postural preparation to action consists of two stages: (1) Early postural adjustments (EPAs), seen a few hundred ms prior to an expected external perturbation and (2) APAs seen about 100 ms prior to the perturbation. We also hypothesized that each stage consists of three components, anticipatory synergy adjustments seen as changes in covariation of the magnitudes of commands to muscle groups (M-modes), changes in averaged across trials levels of muscle activation, and mechanical effects such as shifts of the center of pressure. Nine healthy participants were subjected to external perturbations created by a swinging pendulum while standing in a semi-squatting posture. Electrical activity of twelve trunk and leg muscles and displacements of the center of pressure were recorded and analyzed. Principal component analysis was used to identify four M-modes within the space of muscle activations using indices of integrated muscle activation. This analysis was performed twice, over two phases, 400-700 ms prior to the perturbation and over 200 ms just prior to the perturbation. Similar robust results were obtained using the data from both phases. An index of a multi-M-mode synergy stabilizing the center of pressure displacement was computed using the framework of the uncontrolled manifold hypothesis. The results showed high synergy indices during quiet stance. Each of the two stages started with a drop in the synergy index followed by a change in the averaged across trials activation levels in postural muscles. There was a very long electromechanical delay during the early postural adjustments and a much shorter delay during the APAs. Overall, the results support our main hypothesis on the two stages and three components of the postural preparation to action/perturbation. This is the first study to document anticipatory synergy adjustments in whole-body tasks. We interpret the results within the referent configuration hypothesis (an extension of the equilibrium-point hypothesis): The early postural adjustment is based primarily on changes in the coactivation command, while the APAs involve changes in the reciprocal command. The results fit an earlier hypothesis that whole-body movements are controlled by a neuromotor hierarchy where each level involves a few-to-many mappings organized to stabilize its overall output.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
McCaslin, Devin L; Jacobson, Gary P; Grantham, Sarah L; Piker, Erin G; Verghese, Susha
2011-09-01
Postural stability in humans is largely maintained by vestibular, visual, and somatosensory inputs to the central nervous system. Recent clinical advances in the assessment of otolith function (e.g., cervical and ocular vestibular evoked myogenic potentials [cVEMPs and oVEMPs], subjective visual vertical [SVV] during eccentric rotation) have enabled investigators to identify patients with unilateral otolith impairments. This research has suggested that patients with unilateral otolith impairments perform worse than normal healthy controls on measures of postural stability. It is not yet known if patients with unilateral impairments of the saccule and/or inferior vestibular nerve (i.e., unilaterally abnormal cVEMP) perform differently on measures of postural stability than patients with unilateral impairments of the horizontal SCC (semicircular canal) and/or superior vestibular nerve (i.e., unilateral caloric weakness). Further, it is not known what relationship exists, if any, between otolith system impairment and self-report dizziness handicap. The purpose of this investigation was to determine the extent to which saccular impairments (defined by a unilaterally absent cVEMP) and impairments of the horizontal semicircular canal (as measured by the results of caloric testing) affect vestibulospinal function as measured through the Sensory Organization Test (SOT) of the computerized dynamic posturography (CDP). A secondary objective of this investigation was to measure the effects, if any, that saccular impairment has on a modality-specific measure of health-related quality of life. A retrospective cohort study. Subjects were assigned to one of four groups based on results from balance function testing: Group 1 (abnormal cVEMP response only), Group 2 (abnormal caloric response only), Group 3 (abnormal cVEMP and abnormal caloric response), and Group 4 (normal control group). Subjects were 92 adult patients: 62 were seen for balance function testing due to complaints of dizziness, vertigo, or unsteadiness, and 30 served as controls. All subjects underwent videonystagmography or electronystagmography (VNG/ENG), vestibular evoked myogenic potentials (VEMPs), self-report measures of self-perceived dizziness disability/handicap (Dizziness Handicap Inventory), and tests of postural control (Neurocom Equitest). Subjects were categorized into one of four groups based on balance function test results. All variables were subjected to a multifactor analysis of variance (ANOVA). The Dizziness Handicap Inventory (DHI) total scores and equilibrium scores served as the dependent variables. Results showed that patients with abnormal unilateral saccular or inferior vestibular nerve function (i.e., abnormal cVEMP) demonstrated significantly impaired postural control when compared to normal participants. However, this group demonstrated significantly better postural stability when compared to the group with abnormal caloric responses alone and the group with abnormal caloric responses and abnormal cVEMP results. Patients with an abnormal cVEMP did not differ significantly on the DHI compared to the other two impaired groups. We interpret these findings as evidence that a significantly asymmetrical cVEMP in isolation negatively impacts performance on measures of postural control compared to normal subjects but not compared to patients with significant caloric weaknesses. However, patients with a unilaterally abnormal cVEMP do not differ from patients with significant caloric weaknesses in regard to self-perceived dizziness handicap. American Academy of Audiology.
Development of the Coordination between Posture and Manual Control
ERIC Educational Resources Information Center
Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.
2012-01-01
Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…
Interference between oculomotor and postural tasks in 7-8-year-old children and adults.
Legrand, Agathe; Doré Mazars, Karine; Lemoine, Christelle; Nougier, Vincent; Olivier, Isabelle
2016-06-01
Several studies in adults having observed the effect of eye movements on postural control provided contradictory results. In the present study, we explored the effect of various oculomotor tasks on postural control and the effect of different postural tasks on eye movements in eleven children (7.8 ± 0.5 years) and nine adults (30.4 ± 6.3 years). To vary the difficulty of the oculomotor task, three conditions were tested: fixation, prosaccades (reactive saccades made toward the target) and antisaccades (voluntary saccades made in the direction opposite to the visual target). To vary the difficulty of postural control, two postural tasks were tested: Standard Romberg (SR) and Tandem Romberg (TR). Postural difficulty did not affect oculomotor behavior, except by lengthening adults' latencies in the prosaccade task. For both groups, postural control was altered in the antisaccade task as compared to fixation and prosaccade tasks. Moreover, a ceiling effect was found in the more complex postural task. This study highlighted a cortical interference between oculomotor and postural control systems.
NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.;
2015-01-01
Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.
Ohnishi, K; Yamamoto, T; Takahashi, A; Tanaka, H; Koyama, M; Ohnishi, T
1999-08-01
The catfish (Synodontis nigriventris) has a unique habitat of keeping an upside-down posture under normal gravity. We examined its postural control under pseudomicrogravity generated artificially, and the effect of unilateral labyrinthectomy on the postural control. The stable swimming posture under pseudomicrogravity was observed in the upside-down swimming catfish but not in the catfish (Corydoras paleatus), which has normal swimming habitat. Furthermore, although S. nigriventris but not C. paleatus could keep the stable swimming posture under normal gravity condition after unilateral labyrinthectomy, the labyrinthectomized fishes could not keep it under pseudomicrogravity. Seven days after the operation, S. nigriventris alone partially recovered the ability to keep an upside-down swimming posture, and did completely, to the control level, 25 days after the operation. Furthermore, when S. nigriventris was under pseudomicrogravity in dark conditions, it showed disturbed swimming postures. These results suggest that the upside-down swimming catfish has superior ability of postural control depending on the labyrinth.
Olivier, Agnès; Faugloire, Elise; Lejeune, Laure; Biau, Sophie; Isableu, Brice
2017-01-01
Maintaining equilibrium while riding a horse is a challenging task that involves complex sensorimotor processes. We evaluated the relative contribution of visual information (static or dynamic) to horseback riders' postural stability (measured from the variability of segment position in space) and the coordination modes they adopted to regulate balance according to their level of expertise. Riders' perceptual typologies and their possible relation to postural stability were also assessed. Our main assumption was that the contribution of visual information to postural control would be reduced among expert riders in favor of vestibular and somesthetic reliance. Twelve Professional riders and 13 Club riders rode an equestrian simulator at a gallop under four visual conditions: (1) with the projection of a simulated scene reproducing what a rider sees in the real context of a ride in an outdoor arena, (2) under stroboscopic illumination, preventing access to dynamic visual cues, (3) in normal lighting but without the projected scene (i.e., without the visual consequences of displacement) and (4) with no visual cues. The variability of the position of the head, upper trunk and lower trunk was measured along the anteroposterior (AP), mediolateral (ML), and vertical (V) axes. We computed discrete relative phase to assess the coordination between pairs of segments in the anteroposterior axis. Visual field dependence-independence was evaluated using the Rod and Frame Test (RFT). The results showed that the Professional riders exhibited greater overall postural stability than the Club riders, revealed mainly in the AP axis. In particular, head variability was lower in the Professional riders than in the Club riders in visually altered conditions, suggesting a greater ability to use vestibular and somesthetic information according to task constraints with expertise. In accordance with this result, RFT perceptual scores revealed that the Professional riders were less dependent on the visual field than were the Club riders. Finally, the Professional riders exhibited specific coordination modes that, unlike the Club riders, departed from pure in-phase and anti-phase patterns and depended on visual conditions. The present findings provide evidence of major differences in the sensorimotor processes contributing to postural control with expertise in horseback riding. PMID:28194100
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
Perrochon, A; Holtzer, R; Laidet, M; Armand, S; Assal, F; Lalive, P H; Allali, G
2017-04-01
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting various neurological domains, such as postural control, cognition, fear of falling, depression-anxiety, and fatigue. This study examined the associations of cognitive functions, fear of falling, depression-anxiety, and fatigue with postural control in patients with MS. Postural control (sway velocity) of 63 patients with MS (age 39.0 ± 8.9 years; %female 57%; Expanded Disability Status Scale score median (interquartile range) 2.0 (1.5)) was recorded on two platforms at stable and unstable conditions. Cognition, fear of falling, depression-anxiety, and fatigue were evaluated by a comprehensive neuropsychological assessment. The associations between these domains and postural control have been measured by multivariable linear regression (adjusted for age, gender, disability, and education). In stable condition, only working memory was associated with postural control (p < 0.05). In unstable condition, working memory, executive functions, attention/processing speed, and fear of falling were associated with postural control (p < 0.05). Specific cognitive domains and fear of falling were associated with postural control in MS patients, particularly in unstable condition. These findings highlight the association of cognitive functions and fear of falling with postural control in MS.
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
A major presenting symptom in 'individuals with multiple sclerosis with mild balance disability' (IwMS) is poor postural control, resulting from slowed spinal somatosensory conduction. Postural control deficits in IwMS are most apparent when vision is removed and the base of support is reduced such is the case during tandem and single support stances. The current study used center of pressure (COP) measurements to determine whether postural control differences exist between IwMS and either 'healthy age-matched individuals' (HAMI) or 'community-dwelling older adults' (OA). Postural control was evaluated using a Romberg standing task, which required participants to stand with their feet together and hands by their sides for 45 s with either their eyes open or closed. Results revealed that COP velocity root mean square was greater in IwMS and their COP position was closer to their self-selected maximum stability limits (e.g., greater Standing Index proportion) when vision was removed compared to HAMI. Conversely, IwMS displayed similar postural control characteristics to OA. The current study highlights two novel findings: (1) the utility of novel COP measurements to assess differences in the level of postural control in IwMS; and (2) the benefit of assessing postural control levels in IwMS to not only a population with a fully intact and functional postural control system (HAMI) but also to another population that is thought to experience postural control deficits (OA).
The effect of instructions on postural-suprapostural interactions in three working memory tasks.
Burcal, Christopher J; Drabik, Evan C; Wikstrom, Erik A
2014-06-01
Examining postural control while simultaneously performing a cognitive, or suprapostural task, has shown a fairly consistent trend of improving postural control in young healthy adults and provides insight into postural control mechanisms used in everyday life. However, the role of attention driven by explicit verbal instructions while dual-tasking is less understood. Therefore, the purpose of this investigation is to determine the effects of explicit verbal instructions on the postural-suprapostural interactions among various domains of working memory. A total of 22 healthy young adults with a heterogeneous history of ankle sprains volunteered to participate (age: 22.2±5.1 years; n=10 history of ankle sprains, n=12 no history). Participants were asked to perform single-limb balance trials while performing three suprapostural tasks: backwards counting, random number generation, and the manikin test. In addition, each suprapostural task was completed under three conditions of instruction: no instructions, focus on the postural control task, focus on the suprapostural task. The results indicate a significant effect of instructions on postural control outcomes, with postural performance improving in the presence of instructions across all three cognitive tasks which each stress different aspects of working memory. Further, postural-suprapostural interactions appear to be related to the direction or focus of an individual's attention as instructions to focus on the suprapostural task resulted in the greatest postural control improvements.Thus, attention driven by explicit verbal instructions influence postural-suprapostural interactions as measured by a temporal-spatial postural control outcome, time-to-boundary, regardless of the suprapostural task performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessment of Postural Control in Children with Cerebral Palsy: A Review
ERIC Educational Resources Information Center
Pavao, Silvia Leticia; dos Santos, Adriana Neves; Woollacott, Marjorie Hines; Rocha, Nelci Adriana Cicuto Ferreira
2013-01-01
This paper aimed to review studies that assessed postural control (PC) in children with cerebral palsy (CP) and describe the methods used to investigate postural control in this population. It also intended to describe the performance of children with CP in postural control. An extensive database search was performed using the keywords: postural…
Nafati, Gilel; Vuillerme, Nicolas
2011-12-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they performed a short-term digit-span memory task. Decreased center-of-gravity displacements and decreased center-of-foot-pressure displacements minus center-of-gravity displacements were observed in the cognitive condition relative to the control condition. These results suggest that shifting the attentional focus away from postural control by executing a concurrent attention-demanding task could increase postural performance and postural efficiency.
Jazaeri, Seyede Zohreh; Azad, Akram; Mehdizadeh, Hajar; Habibi, Seyed Amirhassan; Mandehgary Najafabadi, Mahbubeh; Saberi, Zakieh Sadat; Rahimzadegan, Hawre; Moradi, Saeed; Behzadipour, Saeed; Parnianpour, Mohamad; Khalaf, Kinda
2018-01-01
Background Although anxiety is a common non-motor outcome of Parkinson's disease (PD) affecting 40% of patients, little attention has been paid so far to its effects on balance impairment and postural control. Improvement of postural control through focusing on the environment (i.e. external focus) has been reported, but the role of anxiety, as a confounding variable, remains unclear. Objectives This study aimed to investigate the influence of anxiety and attentional focus instruction on the standing postural control of PD patients. Methods Thirty-four patients with PD (17 with high anxiety (HA-PD) and 17 with low anxiety (LA-PD)), as well as 17 gender- and age-matched healthy control subjects (HC) participated in the study. Postural control was evaluated using a combination of two levels of postural difficulty (standing on a rigid force plate surface with open eyes (RO) and standing on a foam surface with open eyes (FO)), as well as three attentional focus instructions (internal, external and no focus). Results Only the HA-PD group demonstrated significant postural control impairment as compared to the control, as indicated by significantly greater postural sway measures. Moreover, external focus significantly reduced postural sway in all participants especially during the FO condition. Conclusion The results of the current study provide evidence that anxiety influences balance control and postural stability in patients with PD, particularly those with high levels of anxiety. The results also confirmed that external focus is a potential strategy that significantly improves the postural control of these patients. Further investigation of clinical applicability is warranted towards developing effective therapeutic and rehabilitative treatment plans. PMID:29390029
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S
2017-11-01
Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.
Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou
2014-11-01
Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lim, Yi Huey; Partridge, Katie; Girdler, Sonya; Morris, Susan L.
2017-01-01
Impairments in postural control affect the development of motor and social skills in individuals with autism spectrum disorder (ASD). This review compared the effect of different sensory conditions on static standing postural control between ASD and neurotypical individuals. Results from 19 studies indicated a large difference in postural control…
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R
2008-02-01
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.
Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant
2016-06-30
Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.
Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales
Boker, Steven M.
2015-01-01
An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197
Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P
2017-02-01
It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.
Gabriner, Michael L; Braun, Brittany A; Houston, Megan N; Hoch, Matthew C
2015-02-01
Chronic ankle instability (CAI) is a condition commonly experienced by physically active individuals. It has been suggested that foot orthotics may increase a CAI patient's postural control. For patients with CAI, is there evidence to suggest that an orthotic intervention will help improve postural control? The literature was searched for studies of level 2 evidence or higher that investigated the effects of foot orthotics on postural control in patients with CAI. The search of the literature produced 5 possible studies for inclusion; 2 studies met the inclusion criteria and were included. One randomized controlled trial and 1 outcomes study were included. Foot orthotics appear to be effective at improving postural control in patients with CAI. There is moderate evidence to support the use of foot orthotics in the treatment of CAI to help improve postural control. There is grade B evidence that foot orthotics help improve postural control in people with CAI. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.
Agmon, Maayan; Lavie, Limor; Doumas, Michail
2017-06-01
Degraded hearing in older adults has been associated with reduced postural control and higher risk of falls. Both hearing loss (HL) and falls have dramatic effects on older persons' quality of life (QoL). A large body of research explored the comorbidity between the two domains. The aim of the current review is to describe the comorbidity between HL and objective measures of postural control, to offer potential mechanisms underlying this relationship, and to discuss the clinical implications of this comorbidity. PubMed and Google Scholar were systematically searched for articles published in English up until October 15, 2015, using combinations of the following strings and search words: for hearing: Hearing loss, "Hearing loss," hearing, presbycusis; for postural control: postural control, gait, postural balance, fall, walking; and for age: elderly, older adults. Of 211 screened articles, 7 were included in the systematic review. A significant, positive association between HL and several objective measures of postural control was found in all seven studies, even after controlling for major covariates. Severity of hearing impairment was connected to higher prevalence of difficulties in walking and falls. Physiological, cognitive, and behavioral processes that may influence auditory system and postural control were suggested as potential explanations for the association between HL and postural control. There is evidence for the independent relationship between HL and objective measures of postural control in the elderly. However, a more comprehensive understanding of the mechanisms underlying this relationship is yet to be elucidated. Concurrent diagnosis, treatment, and rehabilitation of these two modalities may reduce falls and increase QoL in older adults. American Academy of Audiology
Obesity Impact on the Attentional Cost for Controlling Posture
Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent
2010-01-01
Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914
Characterization of postural control impairment in women with fibromyalgia
Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel
2018-01-01
The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (p<0.05) and a significant decrease in SampEn in both directions (p<0.05). Postural control also worsens with the gradual alteration of sensory inputs in this population (p<0.05). Performing a stressor dual task only impacts Ellipse in women with FMS (p>0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223
Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori
2013-01-01
In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Analysis of Human Body Bipedal Stability for Neuromotor Disabilities
NASA Astrophysics Data System (ADS)
Baritz, Mihaela; Cristea, Luciana; Rogozea, Liliana; Cotoros, Diana; Repanovici, Angela
2009-04-01
The analysis of different biomechanical aspects of balance and equilibrium is presented in the first part of the paper. We analyzed the posture, balance and stability of human body for a normal person and for a person with loco-motor or neuro-motor disabilities (in the second part). In the third part of the paper we presented the methodology and the experimental setup used to record the human body behavior in postural stability for persons with neuro-motors disabilities. The results and the conclusions are presented in the final part of the paper and also in the future work meant to establish the computer analysis for rehabilitation neuromotor disabilities.
NASA Technical Reports Server (NTRS)
Park, Brian Vandellyn
1993-01-01
The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.
Hägg, Mary; Tibbling, Lita
2016-07-01
Conclusion All patients with dysphagia after stroke have impaired postural control. IQoro® screen (IQS) training gives a significant and lasting improvement of postural control running parallel with significant improvement of oropharyngeal motor dysfunction (OPMD). Objectives The present investigation aimed at studying the frequency of impaired postural control in patients with stroke-related dysphagia and if IQS training has any effect on impaired postural control in parallel with effect on OPMD. Method A prospective clinical study was carried out with 26 adult patients with stroke-related dysphagia. The training effect was compared between patients consecutively investigated at two different time periods, the first period with 15 patients included in the study more than half a year after stroke, the second period with 11 patients included within 1 month after stroke. Postural control tests and different oropharyngeal motor tests were performed before and after 3 months of oropharyngeal sensorimotor training with an IQS, and at a late follow-up (median 59 weeks after end of training). Result All patients had impaired postural control at baseline. Significant improvement in postural control and OPMD was observed after the completion of IQS training in both intervention groups. The improvements were still present at the late follow-up.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
NASA Astrophysics Data System (ADS)
Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi
2010-01-01
The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.
Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz
2016-06-30
Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Matsuura, Yukako; Fujino, Haruo; Hashimoto, Ryota; Yasuda, Yuka; Yamamori, Hidenaga; Ohi, Kazutaka; Takeda, Masatoshi; Imura, Osamu
2015-03-01
The purpose of this study was to assess postural instability in patients with schizophrenia using a pressure-sensitive platform and to examine the effects of anxiety, psychiatric symptoms, and the use of neuroleptic medications on postural sway. Participants were 23 patients with schizophrenia and 23 healthy controls. We found that the patients showed greater overall postural instability than the controls. Furthermore, they demonstrated greater instability when the test was performed with the eyes closed than with the eyes open. However, removal of visual input had less impact on the indices of postural instability in the patients than in the controls, suggesting that schizophrenia is associated with difficulties in integrating visual information and proprioceptive signals. Furthermore, in contrast to the controls, anxiety exacerbated postural instability in the patients. There were significant associations between postural stability and psychiatric symptoms in the patients without extrapyramidal symptoms, whereas medication dose did not significantly correlate with postural stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural control in chronic obstructive pulmonary disease: a systematic review.
Porto, E F; Castro, A A M; Schmidt, V G S; Rabelo, H M; Kümpel, C; Nascimento, O A; Jardim, J R
2015-01-01
Patients with chronic obstructive pulmonary disease (COPD) fall frequently, although the risk of falls may seem less important than the respiratory consequences of the disease. Nevertheless, falls are associated to increased mortality, decreased independence and physical activity levels, and worsening of quality of life. The aims of this systematic review was to evaluate information in the literature with regard to whether impaired postural control is more prevalent in COPD patients than in healthy age-matched subjects, and to assess the main characteristics these patients present that contribute to impaired postural control. Five databases were searched with no dates or language limits. The MEDLINE, PubMed, EMBASE, Web of Science, and PEDro databases were searched using "balance", "postural control", and "COPD" as keywords. The search strategies were oriented and guided by a health science librarian and were performed on March 27, 2014. The studies included were those that evaluated postural control in COPD patients as their main outcome and scored more than five points on the PEDro scale. Studies supplied by the database search strategy were assessed independently by two blinded researchers. A total of 484 manuscripts were found using the "balance in COPD or postural control in COPD" keywords. Forty-three manuscripts appeared more than once, and 397 did not evaluate postural control in COPD patients as the primary outcome. Thus, only 14 studies had postural control as their primary outcome. Our study examiners found only seven studies that had a PEDro score higher than five points. The examiners' interrater agreement was 76.4%. Six of those studies were accomplished with a control group and one study used their patients as their own controls. The studies were published between 2004 and 2013. Patients with COPD present postural control impairment when compared with age-matched healthy controls. Associated factors contributing to impaired postural control were muscle weakness, physical inactivity, elderly age, need for supplemental oxygen, and limited mobility.
Reconstruction of equilibrium trajectories during whole-body movements.
Domen, K; Latash, M L; Zatsiorsky, V M
1999-03-01
The framework of the equilibrium-point hypothesis was used to reconstruct equilibrium trajectories (ETs) of the ankle, hip and body center of mass during quick voluntary hip flexions ('Japanese courtesy bow') by standing subjects. Different spring loads applied to the subject's back were used to introduce smooth perturbations that are necessary to reconstruct ETs based on a series of trials at the same task. Time patterns of muscle torques were calculated using inverse dynamics techniques. A second-order linear model was employed to calculate the instantaneous position of the spring-like joint or center of mass characteristic at different times during the movement. ETs of the joints and of the center of mass had significantly different shapes from the actual trajectories. Integral measures of electromyographic bursts of activity in postural muscles demonstrated a relation to muscle length corresponding to the equilibrium-point hypothesis.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. THE AIMS OF THIS SYSTEMATIC REVIEW ARE: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed.
Assessing Somatosensory Utilization during Unipedal Postural Control.
Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P
2017-01-01
Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.
Advantages and disadvantages of stiffness instructions when studying postural control.
Bonnet, Cédrick T
2016-05-01
To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing Somatosensory Utilization during Unipedal Postural Control
Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.
2017-01-01
Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Postural Control in Children with Autism.
ERIC Educational Resources Information Center
Kohen-Raz, Reuven; And Others
1992-01-01
Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Recovery of postural equilibrium control following space flight
NASA Technical Reports Server (NTRS)
Paloski, William H.; Reschke, Millard F.; Black, F. Owen; Dow, R. S.
1999-01-01
DSO 605 represents the first large study of balance control following spaceflight. Data collected during DSO 605 confirm the theory that postural ataxia following short duration spaceflight is of vestibular origin. We used the computerized dynamic posturography technique developed by Nashner et al. to study the role of the vestibular system in balance control in astronauts during quiet stance before and after spaceflight. Our results demonstrate unequivocally that balance control is disrupted in all astronauts immediately after return from space. The most severely affected returning crew members performed in the same way as vestibular deficient patients exposed to this test battery. We conclude that otolith mediated spatial reference provided by the terrestrial gravitational force vector is not used by the astronauts balance control systems immediately after spaceflight. Because the postflight ataxia appears to be mediated primarily by CNS adaptation to the altered vestibular inputs caused by loss of gravitational stimulation, we believe that intermittent periods of exposure to artificial gravity may provide an effective in-flight countermeasure. Specifically, we propose that in-flight centrifugation will allow crew members to retain their terrestrial sensory-motor adapted states while simultaneously developing microgravity adapted states. The dual-adapted astronaut should be able to make the transition from microgravity to unit gravity with minimal sensory-motor effects. We have begun a ground based program aimed at developing short arm centrifuge prescriptions designed to optimize adaptation to altered gravitational environments. Results from these experiments are expected to lead directly to in-flight evaluation of the proposed centrifuge countermeasure. Because our computerized dynamic posturography system was able to (1) quantify the postflight postural ataxia reported by crew members and observed by flight surgeons and scientists, (2) track the recovery of normal (preflight) balance control, (3) differentiate between rookie and veteran subjects, and (4) provide normative and clinical databases for comparison, and because our study successfully characterized postflight balance control recovery in a large cross-section of Shuttle crew members, we recommend that this system and protocol be adopted as a standard dependent measure for evaluating the efficacy of countermeasures and/or evaluating the postflight effects of changing mission durations or activities.
Otolith and Vertical Canal Contributions to Dynamic Postural Control
NASA Technical Reports Server (NTRS)
Black, F. Owen
1999-01-01
The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.
Postural control in restless legs syndrome with medication intervention using pramipexole.
Ahlgrén-Rimpiläinen, Aulikki; Lauerma, Hannu; Kähkönen, Seppo; Aalto, Heikki; Tuisku, Katinka; Holi, Matti; Pyykkö, Ilmari; Rimpiläinen, Ilpo
2014-02-01
Central dopamine regulation is involved in postural control and in the pathophysiology of restless legs syndrome (RLS) and Parkinson's disease (PD). Postural control abnormalities have been detected in PD, but there are no earlier studies with regard to RLS and postural control. Computerized force platform posturography was applied to measure the shift and the velocity (CPFV) of center point of forces (CPF) with eyes open (EO) and eyes closed (EC) in controls (n = 12) and prior and after a single day intervention with pramipexole in RLS subjects (n = 12). CPFV (EO) was significantly lower in the RLS group (p < 0.05) than in controls. After pramipexole intake, the difference disappeared and the subjective symptom severity diminished. Pramipexole did not significantly influence CPFV (EC) or CPF shift direction. Subjects with RLS used extensively visual mechanisms to control vestibule-spinal reflexes to improve or compensate the postural stability. Further research is needed to clarify altered feedback in the central nervous system and involvement of dopamine and vision in the postural control in RLS.
Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh
2014-01-01
Context: Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. Evidence Acquisition: A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Results: Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Conclusions: Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided. PMID:25520765
Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian
2014-01-01
A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.
Postural control and balance self-efficacy in women with fibromyalgia: are there differences?
Muto, L H A; Sauer, J F; Yuan, S L K; Sousa, A; Mango, P C; Marques, A P
2015-04-01
Fibromyalgia (FM) is a rheumatic disease characterized by chronic widespread pain and symptoms such as fatigue, sleep disturbances, cognitive difficulties, and depression. Postural instability is a debilitating disorder increasingly recognized as part of FM. To assess and compare postural control and balance self-efficacy in women with and without FM and verify the association of these variables with pain, symptom severity, and strength. Case-control study Physiotherapeutic Clinical Research and Electromyography Laboratory Department of Physical Therapy, Speech Therapy, and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. Case-control study of 117 women ranging from age 35 to 60 years. Of these, 67 had FM. Posture control was assessed with the modified clinical test of sensory interaction on balance with patients in forceplates, balance self-efficacy with the Activities-specific Balance Confidence Scale, pain severity with the Visual Analog Scale, tender point pain threshold with digital algometry, symptom severity with the fibromyalgia impact questionnaire, and lower limb strength with a dynamometer. Individuals with FM had impaired postural control showing increased speed of oscillation of the center of gravity (P=0.004) and decreased balance self-efficacy (P<0.001). They had moderate to excellent correlations of balance self-efficacy with pain (r=0.7, P<0.01), muscle strength (r=0.52, P<0.01), and symptom severity (r=0.78, P<0.10) compared with the control group. Correlation of postural control with the same variables was weak. Patients with FM have impaired postural control and low balance self-efficacy that are associated with pain, muscle strength, and symptom severity. Postural control and balance self-efficacy needs to be assessed in patients with FM and the treatment goals should be the improvement of postural control and balance self-efficacy.
Frequency-Specific Fractal Analysis of Postural Control Accounts for Control Strategies
Gilfriche, Pierre; Deschodt-Arsac, Véronique; Blons, Estelle; Arsac, Laurent M.
2018-01-01
Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans. PMID:29643816
Age Related Decline in Postural Control Mechanisms.
ERIC Educational Resources Information Center
Stelmach, George E.; And Others
1989-01-01
Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…
Functional Neuroanatomy for Posture and Gait Control
Takakusaki, Kaoru
2017-01-01
Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432
Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars
2011-04-01
The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
Iyengar, Y R; Vijayakumar, K; Abraham, J M; Misri, Z K; Suresh, B V; Unnikrishnan, B
2014-01-01
This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = -0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.
Static postural control among school-aged youth with Down syndrome: A systematic review.
Maïano, Christophe; Hue, Olivier; Tracey, Danielle; Lepage, Geneviève; Morin, Alexandre J S; Moullec, Grégory
2018-05-01
Youth with Down syndrome are characterized by motor delays when compared to typically developing (TD) youth, which may be explained by a lower postural control or reduced postural tone. In the present article, we summarize research comparing the static postural control, assessed by posturography, between youth with Down syndrome and TD youth. A systematic literature search was performed in 10 databases and seven studies, published between 2001 and 2017, met our inclusion criteria. Based on the present reviewed findings, it is impossible to conclude that children with Down syndrome present significantly lower static postural control compared to TD children. In contrast, findings showed that adolescents with Down syndrome tended to present significantly lower static postural control compared to TD adolescents when visual and plantar cutaneous inputs were disturbed separately or simultaneously. The present findings should be interpreted with caution given the limitations of the small number of reviewed studies. Therefore, the static postural control among youth with Down syndrome should be further investigated in future rigorous studies examining the contribution of a range of sensory information. Copyright © 2018 Elsevier B.V. All rights reserved.
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800
Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.
Paillard, Thierry; Noé, Frédéric
2015-01-01
The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…
Gallea, Cecile; Ewenczyk, Claire; Degos, Bertrand; Welter, Marie-Laure; Grabli, David; Leu-Semenescu, Smaranda; Valabregue, Romain; Berroir, Pierre; Yahia-Cherif, Lydia; Bertasi, Eric; Fernandez-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Benali, Habib; Poupon, Cyril; François, Chantal; Arnulf, Isabelle; Lehéricy, Stéphane; Vidailhet, Marie
2017-05-01
The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Donker, Stella F.; Roerdink, Melvyn; Greven, An J.
2007-01-01
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Body movements during the off-ice execution of back spins in figure skating.
Mapelli, Andrea; Rodano, Renato; Fiorentini, Angelo; Giustolisi, Andrea; Sidequersky, Fernanda V; Sforza, Chiarella
2013-10-01
Using an optoelectronic motion capture system, we quantitatively assessed the arrangement of body segments and the displacement of the horizontal projection of the center of mass (CM) in seven skaters performing off-ice back spins on a rotating device (spinner). The position of the CM at the beginning of the spins was not a determining factor, but its rapid stabilization towards the center of the spinner, together with the achievement of a stable arrangement of trunk and limbs, was crucial to get the dynamic equilibrium, necessary for a lasting performance. At full spinning, however, there was an indicative variety of individual body postures. A final deceleration, associable with the loss of body equilibrium, was detected in the last spin of most of skaters. In conclusion, the current investigation demonstrated that the off-ice execution of back spin, a critical movement of ice skating, can be measured in laboratory, thus providing quantitative information to both the skaters and the coaches. The analysis is not invasive, and it may be proposed also for longitudinal evaluations of skating and postural training. Copyright © 2013 Elsevier Ltd. All rights reserved.
Agmon, Maayan; Belza, Basia; Nguyen, Huong Q; Logsdon, Rebecca G; Kelly, Valerie E
2014-01-01
Background Injury due to falls is a major problem among older adults. Decrements in dual-task postural control performance (simultaneously performing two tasks, at least one of which requires postural control) have been associated with an increased risk of falling. Evidence-based interventions that can be used in clinical or community settings to improve dual-task postural control may help to reduce this risk. Purpose The aims of this systematic review are: 1) to identify clinical or community-based interventions that improved dual-task postural control among older adults; and 2) to identify the key elements of those interventions. Data sources Studies were obtained from a search conducted through October 2013 of the following electronic databases: PubMed, CINAHL, PsycINFO, and Web of Science. Study selection Randomized and nonrandomized controlled studies examining the effects of interventions aimed at improving dual-task postural control among community-dwelling older adults were selected. Data extraction All studies were evaluated based on methodological quality. Intervention characteristics including study purpose, study design, and sample size were identified, and effects of dual-task interventions on various postural control and cognitive outcomes were noted. Data synthesis Twenty-two studies fulfilled the selection criteria and were summarized in this review to identify characteristics of successful interventions. Limitations The ability to synthesize data was limited by the heterogeneity in participant characteristics, study designs, and outcome measures. Conclusion Dual-task postural control can be modified by specific training. There was little evidence that single-task training transferred to dual-task postural control performance. Further investigation of dual-task training using standardized outcome measurements is needed. PMID:24741296
Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L
2017-12-01
peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques
The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.
The Role of Neuromuscular Changes in Aging and Knee Osteoarthritis on Dynamic Postural Control
Takacs, Judit; Carpenter, Mark G.; Garland, S. Jayne; Hunt, Michael A.
2013-01-01
Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA. PMID:23696951
Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-12-01
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
Huisinga, Jessie M; Filipi, Mary L; Stergiou, Nicholas
2012-01-01
Postural disturbances are one of the first reported symptoms in patients with Multiple Sclerosis (MS). The purpose of this study was to investigate the effect of supervised resistance training on postural control in MS patients. Postural control was assessed using amount of sway variability [Root Mean Square (RMS)] and temporal structure of sway variability [Lyapunov Exponent (LyE)] from 15 MS patients. Posture was evaluated before and after completion of three months of resistance training. There were significant differences between MS patients pretraining and healthy controls for both LyE (p = .000) and RMS (p = .002), but no differences between groups after training. There was a significant decrease in RMS (p = .025) and a significant increase in LyE (p = .049) for MS patients pre- to posttraining. The findings suggested that postural control of MS patients could be affected by a supervised resistance training intervention.
Postural control assessment in students with normal hearing and sensorineural hearing loss.
Melo, Renato de Souza; Lemos, Andrea; Macky, Carla Fabiana da Silva Toscano; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2015-01-01
Children with sensorineural hearing loss can present with instabilities in postural control, possibly as a consequence of hypoactivity of their vestibular system due to internal ear injury. To assess postural control stability in students with normal hearing (i.e., listeners) and with sensorineural hearing loss, and to compare data between groups, considering gender and age. This cross-sectional study evaluated the postural control of 96 students, 48 listeners and 48 with sensorineural hearing loss, aged between 7 and 18 years, of both genders, through the Balance Error Scoring Systems scale. This tool assesses postural control in two sensory conditions: stable surface and unstable surface. For statistical data analysis between groups, the Wilcoxon test for paired samples was used. Students with hearing loss showed more instability in postural control than those with normal hearing, with significant differences between groups (stable surface, unstable surface) (p<0.001). Students with sensorineural hearing loss showed greater instability in the postural control compared to normal hearing students of the same gender and age. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review.
Mustapa, Amirah; Justine, Maria; Mohd Mustafah, Nadia; Jamil, Nursuriati; Manaf, Haidzir
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were "postural control," "balance," "gait performance," "diabetes mellitus," and "diabetic peripheral neuropathy." Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults.
Eye Movements Affect Postural Control in Young and Older Females
Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412
Eye Movements Affect Postural Control in Young and Older Females.
Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan
2016-01-01
Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.
Return of Postural Control to Baseline After Anaerobic and Aerobic Exercise Protocols
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
Context: With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. Objective: To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Design: Counterbalanced, repeated measures. Setting: Research laboratory. Patients Or Other Participants: Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 ± 1.01 years, height = 172.44 ± 10.47 cm, mass = 69.72 ± 12.84 kg). Intervention(s): Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Main Outcome Measure(s): Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. Results: We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Conclusions: Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury. PMID:18833307
Return of postural control to baseline after anaerobic and aerobic exercise protocols.
Fox, Zachary G; Mihalik, Jason P; Blackburn, J Troy; Battaglini, Claudio L; Guskiewicz, Kevin M
2008-01-01
With regard to sideline concussion testing, the effect of fatigue associated with different types of exercise on postural control is unknown. To evaluate the effects of fatigue on postural control in healthy college-aged athletes performing anaerobic and aerobic exercise protocols and to establish an immediate recovery time course from each exercise protocol for postural control measures to return to baseline status. Counterbalanced, repeated measures. Research laboratory. Thirty-six collegiate athletes (18 males, 18 females; age = 19.00 +/- 1.01 years, height = 172.44 +/- 10.47 cm, mass = 69.72 +/- 12.84 kg). Participants completed 2 counterbalanced sessions within 7 days. Each session consisted of 1 exercise protocol followed by postexercise measures of postural control taken at 3-, 8-, 13-, and 18-minute time intervals. Baseline measures were established during the first session, before the specified exertion protocol was performed. Balance Error Scoring System (BESS) results, sway velocity, and elliptical sway area. We found a decrease in postural control after each exercise protocol for all dependent measures. An interaction was noted between exercise protocol and time for total BESS score (P = .002). For both exercise protocols, all measures of postural control returned to baseline within 13 minutes. Postural control was negatively affected after anaerobic and aerobic exercise protocols as measured by total BESS score, elliptical sway area, and sway velocity. The effect of exertion lasted up to 13 minutes after each exercise was completed. Certified athletic trainers and clinicians should be aware of these effects and their recovery time course when determining an appropriate time to administer sideline assessments of postural control after a suspected mild traumatic brain injury.
Wikstrom, Erik A; Song, Kyeongtak; Lea, Ashley; Brown, Nastassia
2017-07-01
One of the major concerns after an acute lateral ankle sprain is the potential for development of chronic ankle instability (CAI). The existing research has determined that clinician-delivered plantar massage improves postural control in those with CAI. However, the effectiveness of self-administered treatments and the underlying cause of any improvements remain unclear. To determine (1) the effectiveness of a self-administered plantar-massage treatment in those with CAI and (2) whether the postural-control improvements were due to the stimulation of the plantar cutaneous receptors. Crossover study. University setting. A total of 20 physically active individuals (6 men and 14 women) with self-reported CAI. All participants completed 3 test sessions involving 3 treatments: a clinician-delivered manual plantar massage, a patient-delivered self-massage with a ball, and a clinician-delivered sensory brush massage. Postural control was assessed using single-legged balance with eyes open and the Star Excursion Balance Test. Static postural control improved (P ≤ .014) after each of the interventions. However, no changes in dynamic postural control after any of the interventions were observed (P > .05). No differences were observed between a clinician-delivered manual plantar massage and either a patient-delivered self-massage with a ball or a clinician-delivered sensory brush massage in any postural-control outcome. In those with CAI, single 5-minute sessions of traditional plantar massage, self-administered massage, and sensory brush massage each resulted in comparable static postural-control improvements. The results also provide empirical evidence suggesting that the mechanism for the postural-control improvements is the stimulation of the plantar cutaneous receptors.
Objective Biomarkers of Balance and Gait for Parkinson’s Disease using Body-worn Sensors
Horak, Fay B; Mancini, Martina
2014-01-01
Balance and gait impairments characterize progression of Parkinson’s disease (PD), predict fall risk, and are important contributors to reduced quality of life. Advances in technology of small, body-worn inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate end-points for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop-watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body-worn sensors. We organize the metrics based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal-spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks that are abnormal in people with PD do not yet qualify as behavioral biomarkers because many balance and gait impairments observed in PD are not specific to the disease, nor shown to be related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and related to the underlying disease process. PMID:24132842
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Uhm, Yo-Han; Yang, Dae-Jung
2017-11-01
[Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.
Postural control under clinorotation in upside-down catfish, Synodontis nigriventris.
Ohnishi, K; Takahashi, A; Koyama, M; Ohnishi, T
1996-12-01
The upside-down catfish Synodontis nigriventris has a unique habit of swimming and resting upside-down in free water. This behavior leads to the assumption that the catfish has a specific gravity information processing system. We examined the postural control behaviors in the catfish under clinorotation which is usually used for producing pseudo-microgravity. Synodontis nigriventris kept its body posture at a stable area of the rotated flask in which the catfish was kept, when it was clinorotated at the rate of 60 rpm. In contrast to Synodontis nigriventris, a related species, Corydoras paleatus, did not show such steady postural control. When the flask was rotated at a lower rate of 30 rpm or a higher rate of 100 rpm, Synodontis nigriventris as well as Corydoras paleatus showed a considerable disturbed control of body posture. In this condition, they were frequently rotated with the flask. These findings suggest that Synodontis nigriventris has a high ability to keep upside-down posture and the gravity sensation in this catfish is likely to contribute to its different postural control from that of many other fishes.
Lajoie, Y; Richer, N; Jehu, D A; Polskaia, N; Saunders, D
2016-05-01
In the examination of postural control, instructions to stand as still as possible are common and promote a relatively unnatural sway pattern. The validity of the stability requirement is discussed in the present commentary in response to the discussion initiated by Cedrick T. Bonnet. The advantages of using the stability requirement include: evaluating unbiased postural control, reducing variability in postural sway, manipulating focus of attention, examining the ability to maintain an upright stance, and ecological validity of testing. The disadvantages include: constraining natural postural sway, increasing the complexity of the control condition, promoting an internal focus of attention, and reducing the ability to detect exploratory behaviour. After evaluating the aforementioned advantages and disadvantages, the present commentary suggests that researchers should strive to provide specific instructions to maintain feet, arm and eye position without specifically requiring participants to reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
Asseman, François B; Caron, Olivier; Crémieux, Jacques
2008-01-01
The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.
Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms.
Helmich, Ingo; Berger, Alisa; Lausberg, Hedda
2016-12-01
Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.
Larson, Dennis J; Brown, Stephen H M
2018-02-01
The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4 days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Tai Chi training reduced coupling between respiration and postural control
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2015-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body’s center-of-mass including those caused by spontaneous respiration. Both aging and disease increase “posturo-respiratory synchronization;” which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86±5yrs) or educational-control program (n=34, 85±6yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. PMID:26518241
Static Postural Control in Youth With Osteogenesis Imperfecta Type I.
Pouliot-Laforte, Annie; Lemay, Martin; Rauch, Frank; Veilleux, Louis-Nicolas
2017-10-01
To assess static postural control in eyes-open and eyes-closed conditions in individuals with osteogenesis imperfecta (OI) type I as compared with typically developing (TD) individuals and to explore the relation between postural control and lower limb muscle function. Cross-sectional study. Outpatient department of a pediatric orthopedic hospital. A convenience sample (N=38) of individuals with OI type I (n=22; mean age, 13.1y; range, 6-21y) and TD individuals (n=16; mean age, 13.1y; range, 6-20y) was selected. Participants were eligible if they were between 6 and 21 years and if they did not have any fracture or surgery in the lower limb in the 12 months before testing. Not applicable. Postural control was assessed through static balance tests and muscle function through mechanographic tests on a force platform. Selected postural parameters were path length, velocity, 90% confidence ellipse area, and the ellipse's length of the mediolateral and anteroposterior axes. Mechanographic parameters were peak force and peak power as measured using the multiple two-legged hopping and the single two-legged jump test, respectively. Individuals with OI type I had poorer postural control than did TD individuals as indicated by longer and faster displacements and a larger ellipse area. Muscle function was unrelated to postural control in the OI group. Removing visual information resulted in a larger increase in postural control parameters in the OI group than in the TD group. A proprioceptive deficit could explain poorer postural control in individuals with OI type I. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel
2018-02-01
Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p < 0.001) similarly in both groups. The addition of the cognitive task decreased sway area and sway path (p < 0.001) similarly in both groups. Patients with ACLR who recently completed their rehabilitation have normalized postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial and temporal analysis of postural control in dyslexic children.
Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia
2015-07-01
The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Elbasan, Bulent; Akaya, Kamile Uzun; Akyuz, Mufit; Oskay, Deran
2018-02-06
Neurodevelopmental treatment (NDT), neuromuscular electrical stimulation (NMES), and Kinesio Taping (KT) applications are separately used to improve postural control and sitting balance in children with cerebral palsy (CP). The aim of this study is to examine the combined effect of NDT, NMES and KT applications on postural control and sitting balance in children with CP. Forty five children, in 3 groups, between the ages 5-12 years were included in the study. Group 1 received NDT; group 2 received NDT + NMES; and the group 3 received NDT + NMES + KT for 6 weeks. Sitting function evaluated by the sitting section of the gross motor function measure (GMFM), and postural control assessed with the seated postural control measurement (SPCM). Seating section of GMFM was improved significantly in all the groups; however, increases in the group 3 were higher than groups 1 and 2 (p= 0.001). While significant differences were observed in all groups in the SPCM posture (p< 0.001), function (p< 0.001), and the total scores (p< 0.001); the change in the third group was higher according to the comparison of the three groups within each other. Implementation of the NMES, and KT additionally to NDT improve the sitting posture, postural control, seating function, and gross motor function in children with CP.
Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review
Mustapa, Amirah; Mohd Mustafah, Nadia; Jamil, Nursuriati
2016-01-01
Purpose. The aim of this paper is to review the published studies on the characteristics of impairments in the postural control and gait performance in diabetic peripheral neuropathy (DPN). Methods. A review was performed by obtaining publication of all papers reporting on the postural control and gait performance in DPN from Google Scholar, Ovid, SAGE, Springerlink, Science Direct (SD), EBSCO Discovery Service, and Web of Science databases. The keywords used for searching were “postural control,” “balance,” “gait performance,” “diabetes mellitus,” and “diabetic peripheral neuropathy.” Results. Total of 4,337 studies were hit in the search. 1,524 studies were screened on their titles and citations. Then, 79 studies were screened on their abstract. Only 38 studies were eligible to be selected: 17 studies on postural control and 21 studies on the gait performance. Most previous researches were found to have strong evidence of postural control impairments and noticeable gait deficits in DPN. Deterioration of somatosensory, visual, and vestibular systems with the pathologic condition of diabetes on cognitive impairment causes further instability of postural and gait performance in DPN. Conclusions. Postural instability and gait imbalance in DPN may contribute to high risk of fall incidence, especially in the geriatric population. Thus, further works are crucial to highlight this fact in the hospital based and community adults. PMID:27525281
ERIC Educational Resources Information Center
Nafati, Gilel; Vuillerme, Nicolas
2011-01-01
This experiment was designed to investigate whether and how decreasing the amount of attentional focus invested in postural control could affect bipedal postural control. Twelve participants were asked to stand upright as immobile as possible on a force platform in one control condition and one cognitive condition. In the latter condition, they…
Posture and posturology, anatomical and physiological profiles: overview and current state of art.
Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni
2017-04-28
posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Spinal lordosis optimizes the requirements for a stable erect posture.
Wagner, Heiko; Liebetrau, Anne; Schinowski, David; Wulf, Thomas; de Lussanet, Marc H E
2012-04-16
Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.
Spinal lordosis optimizes the requirements for a stable erect posture
2012-01-01
Background Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. Results We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. Conclusions We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment. PMID:22507595
Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin
2013-01-01
It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398
Intermittent use of an "anchor system" improves postural control in healthy older adults.
Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato
2013-07-01
Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958
Difference in postural control between patients with functional and mechanical ankle instability.
Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi
2014-10-01
Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training should also include the contralateral side after a unilateral ankle ligament injured. © The Author(s) 2014.
Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain
Matheron, Eric; Kapoula, Zoï
2011-01-01
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210
Postural Control and Emotion in Children with Autism Spectrum Disorders
Gouleme, Nathalie; Scheid, Isabelle; Peyre, Hugo; Seassau, Magali; Maruani, Anna; Clarke, Julia; Delorme, Richard; Bucci, Maria Pia
2017-01-01
Abstract Autism Spectrum Disorders subjects (ASD) are well known to have deficits in social interaction. We recorded simultaneously eye movements and postural sway during exploration of emotional faces in children with ASD and typically developing children (TD). We analyzed several postural and ocular parameters. The results showed that all postural parameters were significantly greater in children with ASD; ASD made significantly fewer saccades and had shorter fixation time than TD, particularly in the eyes, and especially for unpleasant emotions. These results suggest that poor postural control of ASD and their impaired visual strategies could be due to a lack of interest in social cognition, causing a delay in the development of the cortical areas, and thus could have an effect on their postural control. PMID:29177103
Clark, Callie A M; Sacrey, Lori-Ann R; Whishaw, Ian Q
2009-09-15
External cues, including familiar music, can release Parkinson's disease patients from catalepsy but the neural basis of the effect is not well understood. In the present study, posturography, the study of posture and its allied reflexes, was used to develop an animal model that could be used to investigate the underlying neural mechanisms of this sound-induced behavioral activation. In the rat, akinetic catalepsy induced by a dopamine D2 receptor antagonist (haloperidol 5mg/kg) can model human catalepsy. Using this model, two experiments examined whether novel versus familiar sound stimuli could interrupt haloperidol-induced catalepsy in the rat. Rats were placed on a variably inclined grid and novel or familiar auditory cues (single key jingle or multiple key jingles) were presented. The dependent variable was movement by the rats to regain equilibrium as assessed with a movement notation score. The sound cues enhanced movements used to regain postural stability and familiar sound stimuli were more effective than unfamiliar sound stimuli. The results are discussed in relation to the idea that nonlemniscal and lemniscal auditory pathways differentially contribute to behavioral activation versus tonotopic processing of sound.
Gera, Geetanjali; Fling, Brett W; Van Ooteghem, Karen; Cameron, Michelle; Frank, James S; Horak, Fay B
2016-09-01
Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. To determine the ability of people with MS to improve postural control with surface perturbation training. A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = -7.1 ± 1.3; MS = -12.9 ± 1.0) toward a phase-lead (CS = -0.7 ± 1.8; MS = -6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments. © The Author(s) 2015.
Soysal Tomruk, Melda; Uz, Muhammed Zahid; Kara, Bilge; İdiman, Egemen
2016-05-01
Decreased postural control, sensory integration deficits and fatigue are important problems that cause functional impairments in patients with multiple sclerosis (pwMS). To examine the effect of modified clinical Pilates exercises on sensory interaction and balance, postural control and fatigue in pwMS. Eleven patients with multiple sclerosis and 12 healthy matched controls were recruited in this study. Limits of stability and postural stability tests were used to evaluate postural control by Biodex Balance System and sensory interaction assessed. Fatigue was assessed by Modified Fatigue Impact Scale. Pilates exercises were applied two times a week for 10 weeks and measurements were repeated to pwMS after exercise training. Postural control and fatigue (except psychosocial parameter) of pwMS were significantly worser than healthy controls (p<0.05). Significant improvements occurred in sensory interaction (eyes open, foam surface) and total, physical and cognitive scores of fatigue after 10-week modified clinical Pilates training (p<0.05). No significant changes were detected in postural control after the pilates exercises (p>0.05). Ten-week Pilates training is effective to improve sensory interaction and to decrease fatigue. Pilates exercises can be applied safely in ambulatory pwMS for enhance sensory interaction and balance and combat fatigue. More investigations are needed. Copyright © 2016 Elsevier B.V. All rights reserved.
Diurnal changes in postural control in normal children: Computerized static and dynamic assessments.
Bourelle, Sophie; Taiar, Redha; Berge, Benoit; Gautheron, Vincent; Cottalorda, Jerome
2014-01-01
Mild traumatic brain injury (mTBI) causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning) and after (4-7 p.m. in the afternoon) school on regular school days using the Balance Master® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P < 0.05). By end of afternoon, the body weight was borne mainly on the left side with the knee fully extended and at various degrees of knee flexion. A significantly better directional control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P < 0.05). In summary, most of our findings are inconsistent with results from previous studies in adults, suggesting age-related differences in posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training) or in abnormal conditions (e.g., mTBI-associated balance disorders), be better performed late in the afternoon.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2015-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713
Experience of handicap and anxiety in phobic postural vertigo.
Holmberg, Johan; Karlberg, Mikael; Harlacher, Uwe; Magnusson, Mans
2005-03-01
We found a difference in gender distribution in a population of phobic postural vertigo patients compared with dizzy patients seen in general neuro-otological practice. It appears as if women with phobic postural vertigo suffer more and are more handicapped by dizziness than both men with phobic postural vertigo and a population with dizziness. These differences may reflect other causes of phobic postural vertigo besides anxiety, such as gender-related coping behaviour and postural strategy. Anxiety influences the degree of suffering and handicap in dizzy patients. Experiences of anxiety and handicap were investigated among a population with phobic postural vertigo. Using the Dizziness Handicap Inventory, the Vertigo Symptom Scale and the Vertigo Handicap Questionnaire, 34 consecutive patients with phobic postural vertigo were compared with a population of 95 consecutive patients seen at a balance disorder clinic. Patients with phobic postural vertigo scored higher than the control subjects with respect to all parameters with the exception of the physical subscale of the Dizziness Handicap Inventory. Because there were significantly more women in the control group we performed a gender-specific analysis of the results. The higher test scores among patients with phobic postural vertigo can be explained by the higher scores among women in this group, while the test results for men were more similar to those of the control group.
Acute Effects of Posture Shirts on Rounded-Shoulder and Forward-Head Posture in College Students.
Manor, John; Hibberd, Elizabeth; Petschauer, Meredith; Myers, Joseph
2016-12-01
Rounded-shoulder and forward-head posture can be contributing factors to shoulder pain. Corrective techniques such as manual therapy and exercise have been shown to improve these altered postures, but there is little evidence that corrective garments such as posture shirts can alter posture. To determine the acute effects of corrective postureshirt use on rounded-shoulder and forward-head posture in asymptomatic college students. Repeated-measures intervention study with counterbalanced conditions. Research laboratory. 24 members of the general student body of a university, 18-25 y old, with a forward shoulder angle (FSA) >52° and no history of upper-extremity surgery, scoliosis, active shoulder pain, or shoulder pain in the previous 3 mo that restricted participation for 3 consecutive days. Photographic posture assessment under a control condition, under a sham or treatment condition (counterbalanced), under another control condition, and treatment or sham. FSA and forward head angle (FHA) calculated from a lateral photograph. FSA decreased relative to the control condition while participants wore the sham shirt (P = .029) but not the corrective posture shirt (P = 1.00). FHA was unchanged between groups (P = .371). Application of a corrective posture shirt did not acutely alter FSA or FHA, while application of a sham shirt may decrease FSA at rest.
Mandibular position influence on pilots' postural balance analyzed under dynamic conditions.
Baldini, Alberto; Nota, Alessandro; Cioffi, Clementina; Ballanti, Fabiana; Tecco, Simona
2017-11-01
The aim of this study is to evaluate the influence of the mandibular position on the postural stability in a sample of civilian and military pilots. Twenty military pilots (males, mean age 35.15 ± 3.14 years) and 17 civilian pilots (males, mean 34.91 ± 2.15 years) were enrolled in this study and underwent a Sensory Organization Test (SOT) using the EquiTest® (NeuroCom International Inc., Clackamas, OR, USA) computerized dynamic posturography. The composite parameter was recorded and analyzed. The equilibrium score (ES) recorded in centric occlusion is slightly higher than the ES recorded in mandibular rest position; civilian pilots showed ESs slightly higher than military pilots. The two-way ANOVA analysis shows these differences are not statistically significant. The findings of this study seem to suggest that the composite parameter of the SOT is not sensitive in analyzing the influence of the stomatognathic system on the postural balance of civilian and military pilots.
Clark, Sean; Iltis, Peter W
2008-05-01
Controlled laboratory study. To compare postural performance measures of athletes with those of nonathletes when completing the standard Sensory Organization Test (SOT) and a modified SOT that included dynamic head tilts (DHT-SOT). Authors of recently published research have suggested that modifications to the SOT protocol (eg, introduction of pitch and roll head tilts) may enhance the test's sensitivity when assessing postural stability in individuals with higher balance capabilities or with well-compensated sensory deficits. Nineteen athletes and 19 nonathletes (group) completed both the SOT and DHT-SOT (protocol). During the SOT, participants stood upright as steadily as possible for 20 seconds during each of 6 different sensory conditions. As a variation of the SOT, the DHT-SOT incorporated active pitch and roll head tilts into the SOT protocol. Four 2-way mixed-model analyses of variance (with protocol as the repeated factor) were performed to determine if the composite equilibrium score or the visual, vestibular, or somatosensory ratio scores differed between the 2 groups across the 2 testing protocols. Significant group-by-protocol interaction effects were present for both the composite equilibrium score and visual ratio. Follow-up simple main-effects analyses indicated that these measures did not differ between groups for the SOT protocol but were significantly different on the DHT-SOT. The addition of dynamic head tilts to the SOT protocol resulted in subtle differences in balance function between athletes and nonathletes. Athletes demonstrated an increased ability to adapt to sensory disruptions during the DHT-SOT. Therapists should consider including active pitch and roll head tilts to the SOT when evaluating individuals with higher balance function or to detect subtle deficits in balance function. Diagnosis, level 3b.
NASA Astrophysics Data System (ADS)
Kirchner, M.; Schubert, P.; Schmidtbleicher, D.; Haas, C. T.
2012-10-01
The analysis of postural control has a long history. Traditionally, the amount of body sway is solely used as an index of postural stability. Although this leads to some extent to an effective evaluation of balance performance, the control mechanisms involved have not yet been fully understood. The concept of nonlinear dynamics suggests that variability in the motor output is not randomness but structure, providing the stimulus to reveal the functionality of postural sway. The present work evaluates sway dynamics by means of COP excursions in a quiet standing task versus a dual-task condition in three different test times (30, 60, 300 s). Besides the application of traditional methods-which estimate the overall size of sway-the temporal pattern of body sway was quantified via wavelet transform, multiscale entropy and fractal analysis. We found higher sensitivity of the structural parameters to modulations of postural control strategies and partly an improved evaluation of sway dynamics in longer recordings. It could be shown that postural control modifications take place on different timescales corresponding to the interplay of the sensory systems. A continued application of nonlinear analysis can help to better understand postural control mechanisms.
Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration
ERIC Educational Resources Information Center
Doumas, Michail; McKenna, Roisin; Murphy, Blain
2016-01-01
We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…
McCaskey, Michael A; Wirth, Brigitte; Schuster-Amft, Corina; de Bruin, Eling D
2018-01-01
Reduced postural control is thought to contribute to the development and persistence of chronic non-specific low back pain (CNLBP). It is therefore frequently assessed in affected patients and commonly reported as the average amount of postural sway while standing upright under a variety of sensory conditions. These averaged linear outcomes, such as mean centre of pressure (CP) displacement or mean CP surface areas, may not reflect the true postural status. Adding nonlinear outcomes and multi-segmental kinematic analysis has been reported to better reflect the complexity of postural control and may detect subtler postural differences. In this cross-sectional study, a combination of linear and nonlinear postural parameters were assessed in patients with CNLBP (n = 24, 24-75 years, 9 females) and compared to symptom-free controls (CG, n = 34, 22-67 years, 11 females). Primary outcome was postural control measured by variance of joint configurations (uncontrolled manifold index, UI), confidence ellipse surface areas (CEA) and approximate entropy (ApEn) of CP dispersion during the response phase of a perturbed postural control task on a swaying platform. Secondary outcomes were segment excursions and clinical outcome correlates for pain and function. Non-parametric tests for group comparison with P-adjustment for multiple comparisons were conducted. Principal component analysis was applied to identify patterns of segmental contribution in both groups. CNLBP and CG performed similarly with respect to the primary outcomes. Comparison of joint kinematics revealed significant differences of hip (P < .001) and neck (P < .025) angular excursion, representing medium to large group effects (r's = .36 - .51). Significant (P's < .05), but moderate correlations of ApEn (r = -.42) and UI (r = -.46) with the health-related outcomes were observed. These findings lend further support to the notion that averaged linear outcomes do not suffice to describe subtle postural differences in CNLBP patients with low to moderate pain status.
Uhm, Yo-Han; Yang, Dae-Jung
2018-02-01
[Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.
Leisure sports and postural control: can a black belt protect your balance from aging?
Krampe, Ralf T; Smolders, Caroline; Doumas, Michail
2014-03-01
To determine potential benefits of intensive leisure sports for age-related changes in postural control, we tested 3 activity groups comprising 70 young (M = 21.67 years, SD = 2.80) and 73 older (M = 62.60 years, SD = 5.19) men. Activity groups were martial artists, who held at least 1st Dan (black belt), sportive individuals exercising sports without explicit balance components, and nonsportive controls. Martial artists had an advantage over sportive individuals in dynamic posture tasks (upright stance on a sway-referenced platform), and these 2 active groups showed better postural control than nonsportive participants. Age-related differences in postural control were larger in nonsportive men compared with the 2 active groups, who were similar in this respect. In contrast, negative age differences in other sensorimotor and cognitive functions did not differ between activity groups. We concluded that individuals engaging in intensive recreational sports have long-term advantages in postural control. However, even in older martial artists with years of practice in their sports, we observed considerable differences favoring the young. (c) 2014 APA, all rights reserved.
Influence of gymnastics training on the development of postural control.
Garcia, Claudia; Barela, José Angelo; Viana, André Rocha; Barela, Ana Maria Forti
2011-03-29
This study investigated the influence of gymnastics training on the postural control of children with and without the use of visual information. Two age groups, aged 5-7 and 9-11 years old, of gymnasts and nongymnasts were asked to maintain an upright and quiet stance on a force platform with eyes open (EO) and eyes closed (EC) for 30s. Area of the stabilogram (AOS) and mean velocity of the center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were calculated and used to investigate the effects of gymnastics training, age, and visual information. Younger gymnasts presented greater postural control compared to younger nongymnasts while visual information did not improve postural control in younger nongymnasts. Younger gymnasts displayed improved postural control with EO compared to EC. The mean velocity of the COP in the ML direction was: less for younger gymnasts than younger nongymnasts with EO. These results suggest that gymnastics training promotes improvements in postural control of younger children only, which results from their use of visual information when available. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Toprak Çelenay, Şeyda; Özer Kaya, Derya
2017-04-18
To investigate the effects of an 8-week thoracic stabilization exercise program on back pain, spinal alignment, postural sway, and core endurance in university students. University students were randomly allocated into exercise (n: 28) and control (n: 25) groups. The exercise program was carried out 3 days a week for 8 weeks. Postural pain, spinal alignment, postural sway, and core endurance were assessed via visual analogue scale, Spinal Mouse, Biodex Balance System, and McGill's trunk muscle endurance tests at the baseline and after 8 weeks of training. Differences were observed for postural pain, thoracic and lumbar curvature, dynamic stability index (eyes closed), and core endurance scores in the exercise group between baseline and week 8 (P < 0.05) and all the parameters were significantly different when compared to those of the control group (P < 0.05). The program decreased postural pain, spinal curvatures, and postural sway, and increased core endurance in university students. The program can be effective in postural pain and misalignment of spine problems related to core weakness and balance disorders.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability.
Azadinia, Fatemeh; Ebrahimi-Takamjani, Ismail; Kamyab, Mojtaba; Parnianpour, Mohamad; Asgari, Morteza
2017-01-01
Background: Poor balance performance and impaired postural control have been frequently reported in patients with low back pain. However, postural control is rarely monitored during the course of treatment even though poor postural control may contribute to chronicity and recurrence of symptoms. Therefore, the present study aimed at investigating the effect of a nonextensible lumbosacral orthosis (LSO) versus routine physical therapy on postural stability of patients with nonspecific chronic low back pain. Methods: This was a randomized controlled trial conducted between November 2015 and May 2016 at the outpatient physical therapy clinic of the School of Rehabilitation Sciences. Patients with nonspecific chronic low back pain aged 20 to 55 years were randomly allocated to the intervention and control groups. Both groups received 8 sessions of physical therapy twice weekly for 4 weeks. The intervention group received nonextensible LSO in addition to routine physical therapy. Pain intensity, functional disability, fear of movement/ (re)injury, and postural stability in 3 levels of postural difficulty were measured before and after 4 weeks of intervention. A 2×2×3 mixed model of analysis of variance (ANOVA) was used to determine the main and interactive effects of the 3 factors including group, time, and postural difficulty conditions for each variable of postural stability. Results: The LSO and control groups displayed significant improvement in postural stability at the most difficult postural task conditions (P-value for 95% area ellipse was 0.003; and for phase plane, the mean total velocity and standard deviation of velocity was <0.001). Both groups exhibited a decrease in pain intensity, Oswestry Disability Index, and Tampa Scale of Kinesiophobia after 4 weeks of intervention. A significant difference between groups was found only for functional disability, with greater improvement in the orthosis group (t = 3.60, P<0.001). Conclusion: Both routine physical therapy and LSO significantly improved clinical and postural stability outcomes immediately after 4 weeks of intervention. The orthosis group did not display superior outcomes, except for functional disability. PMID:29445655
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Hur, Pilwon; Shorter, K Alex; Mehta, Prashant G; Hsiao-Wecksler, Elizabeth T
2012-04-01
In this paper, a novel analysis technique, invariant density analysis (IDA), is introduced. IDA quantifies steady-state behavior of the postural control system using center of pressure (COP) data collected during quiet standing. IDA relies on the analysis of a reduced-order finite Markov model to characterize stochastic behavior observed during postural sway. Five IDA parameters characterize the model and offer physiological insight into the long-term dynamical behavior of the postural control system. Two studies were performed to demonstrate the efficacy of IDA. Study 1 showed that multiple short trials can be concatenated to create a dataset suitable for IDA. Study 2 demonstrated that IDA was effective at distinguishing age-related differences in postural control behavior between young, middle-aged, and older adults. These results suggest that the postural control system of young adults converges more quickly to their steady-state behavior while maintaining COP nearer an overall centroid than either the middle-aged or older adults. Additionally, larger entropy values for older adults indicate that their COP follows a more stochastic path, while smaller entropy values for young adults indicate a more deterministic path. These results illustrate the potential of IDA as a quantitative tool for the assessment of the quiet-standing postural control system.
Wang, Tien-Ni; Howe, Tsu-Hsin; Hinojosa, Jim; Weinberg, Sharon L
2011-01-01
We examined the relationship between postural control and fine motor skills of preterm infants at 6 and 12 mo adjusted age. The Alberta Infant Motor Scale was used to measure postural control, and the Peabody Developmental Motor Scales II was used to measure fine motor skills. The data analyzed were taken from 105 medical records from a preterm infant follow-up clinic at an urban academic medical center in south Taiwan. Using multiple regression analyses, we found that the development of postural control is related to the development of fine motor skills, especially in the group of preterm infants with delayed postural control. This finding supports the theoretical assumption of proximal-distal development used by many occupational therapists to guide intervention. Further research is suggested to corroborate findings.
Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1994-01-01
The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.
De Pauw, J; Mercelis, R; Hallemans, A; Van Gils, G; Truijen, S; Cras, P; De Hertogh, W
2018-03-01
Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (r s ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.
Moll van Charante, A W; Snijders, C J; Mulder, P G
1991-10-01
In a previous case-control study on the effect of impaired perceptual acuity on the risk of industrial injuries at a naval shipyard, three factors which might influence the perception and processing of sensory impressions--alcohol consumption, hearing loss exceeding 20 decibels (dB) and exposure to noise exceeding 82 dB(A)--were found to contribute to the risk of injury. According to recent reports, these factors can all lead to impaired posture control. Because in general about 40% of all accidents are associated with falling, tripping, slipping and the like, a supplementary study has been carried out to unravel possible confounding effects of posture control on these three risk factors. Cases (who had suffered two or more accidents during the preceding 4 years) and controls (who had been accident-free in the same period) were compared as regards posture control measured during silence or noise. No significant difference in posture control was found between cases and controls, either in silence or during exposure to heavy noise.
Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults.
Furtado, Fabianne; Gonçalves, Bruno da Silva B; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia; Forner-Cordero, Arturo
2016-01-01
The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation.
Impairment of Postural Control in Rabbits With Extensive Spinal Lesions
Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.
2009-01-01
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112
Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults
Gonçalves, Bruno da Silva B.; Abranches, Isabela Lopes Laguardia; Abrantes, Ana Flávia
2016-01-01
The lack of sleep, both in quality and quantity, is an increasing problem in modern society, often related to workload and stress. A number of studies have addressed the effects of acute (total) sleep deprivation on postural control. However, up to date, the effects of chronic sleep deficits, either in quantity or quality, have not been analyzed. Thirty healthy adults participated in the study that consisted of registering activity with a wrist actigraph for more than a week before performing a series of postural control tests. Sleep and circadian rhythm variables were correlated and the sum of activity of the least active 5-h period, L5, a rhythm variable, obtained the greater coefficient value with sleep quality variables (wake after sleep onset WASO and efficiency sleep). Cluster analysis was performed to classify subjects into two groups based on L5 (low and high). The balance tests scores used to asses postural control were measured using Biodex Balance System and were compared between the two groups with different sleep quality. The postural tests were divided into dynamic (platform tilt with eyes open, closed and cursor) and static (clinical test of sensory integration). The results showed that during the tests with eyes closed, the group with worse sleep quality had also worse postural control performance. Lack of vision impairs postural balance more deeply in subjects with chronic sleep inefficiency. Chronic poor sleep quality impairs postural control similarly to total sleep deprivation. PMID:27732604
Zeinalzadeh, Afsaneh; Talebian, Saeed; Naghdi, Soofia; Salavati, Mahyar; Nazary-Moghadam, Salman; Zeynalzadeh Ghoochani, Bahareh
2018-04-01
To compare the effects of vision and cognitive load on static postural control in subjects with and without patellofemoral pain syndrome (PFPS). Twenty-eight PFPS patients and 28 controls participated in the study. Postural control was assessed in isolation as well as with visual manipulation and cognitive loading on symptomatic limb. The outcome measures of postural control were quantified in terms of area, anterior-posterior (AP), medial-lateral (ML), and mean velocity (MV) of the displacements of center of pressure (COP). In addition, cognitive performance (auditory Stroop task) was measured in the forms of average reaction time and error ratio in baseline (sitting) and different postural conditions. PFPS subjects showed greater increases in area (p = 0.01), AP (p = 0.01), and ML (p = 0.05) displacements of COP in the blindfolded tasks as compared to control group. However, cognitive load did not differently affect postural control in the two groups. Although PFPS and control group had similar reaction times in the sitting position (p = 0.29), PFPS subjects had longer reaction times than healthy subjects in dual task conditions (p = 0.04). Visual inputs seem to be essential for discriminating postural control between PFPS and healthy individuals. PFPS patients biased toward decreasing cognitive performance more than healthy subjects when they perform the single leg stance and cognitive task concurrently.
Influence of dental occlusion on postural control and plantar pressure distribution.
Scharnweber, Benjamin; Adjami, Frederic; Schuster, Gabriele; Kopp, Stefan; Natrup, Jörg; Erbe, Christina; Ohlendorf, Daniela
2017-11-01
The number of studies investigating correlations between the temporomandibular system and body posture, postural control or plantar pressure distribution is continuously increasing. If a connection can be found, it is often of minor influence or for only a single parameter. However, small subject groups are critical. This study was conducted to define correlations between dental parameters, postural control and plantar pressure distribution in healthy males. In this study, 87 male subjects with an average age of 25.23 ± 3.5 years (ranging from 18 to 35 years) were examined. Dental casts of the subjects were analyzed. Postural control and plantar pressure distribution were recorded by a force platform. Possible orthodontic and orthopedic factors of influence were determined by either an anamnesis or a questionnaire. All tests performed were randomized and repeated three times each for intercuspal position (ICP) and blocked occlusion (BO). For a statistical analysis of the results, non-parametric tests (Wilcoxon-Matched-Pairs-Test, Kruskall-Wallis-Test) were used. A revision of the results via Bonferroni-Holm correction was considered. ICP increases body sway in the frontal (p ≤ 0.01) and sagittal planes (p ≤ 0.03) compared to BO, whereas all other 29 correlations were independent of the occlusion position. For both of the ICP or BO cases, Angle-class, midline-displacement, crossbite, or orthodontic therapy were found to have no influence on postural control or plantar pressure distribution (p > 0.05). However, the contact time of the left foot decreased (p ≤ 0.001) while detecting the plantar pressure distribution in each position. Persistent dental parameters have no effect on postural sway. In addition, postural control and plantar pressure distribution have been found to be independent postural criteria.
Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin
2009-01-01
OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498
Tai Chi training reduced coupling between respiration and postural control.
Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li
2016-01-01
In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin
2016-01-01
Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626
Effects Of Exercise During Prolonged Bed Rest
NASA Technical Reports Server (NTRS)
Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.;
1992-01-01
Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2014-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B
2016-04-01
The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc
2014-11-15
Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. Copyright © 2014 the American Physiological Society.
Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat
2013-09-01
The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.
Personality traits and individual differences predict threat-induced changes in postural control.
Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L
2015-04-01
This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterizing Postural Sway during Quiet Stance Based on the Intermittent Control Hypothesis
NASA Astrophysics Data System (ADS)
Nomura, Taishin; Nakamura, Toru; Fukada, Kei; Sakoda, Saburo
2007-07-01
This article illustrates a signal processing methodology for the time series of postural sway and accompanied electromyographs from the lower limb muscles during quiet stance. It was shown that the proposed methodology was capable of identifying the underlying postural control mechanisms. A preliminary application of the methodology provided evidence that supports the intermittent control hypothesis alternative to the conventional stiffness control hypothesis during human quiet upright stance.
Aging and Posture Control: Changes in Sensory Organization and Muscular Coordination.
ERIC Educational Resources Information Center
Woollacott, Marjorie H.; And Others
1986-01-01
Examined two aspects of balance control in the older adult: coordination of timing and amplitude of muscle responses to postural perturbations, and ability of the participant to reorganize sensory inputs and subsequently modify postural responses as a consequence of changing environmental conditions. (Author/ABB)
Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki
2017-09-06
The origin of continual body oscillation during quiet standing is a neural-muscular-skeletal closed feedback loop system that includes insufficient joint stiffness and a time delay. Thus, muscle activity and joint oscillations are nonlinear during quiet standing, making it difficult to demonstrate the muscular-skeletal relationship experimentally. Here we experimentally revealed this relationship using intermittent control theory, in which non-actuation works to stabilize the skeletal system towards equilibrium. We found that leg muscles were activated/inactivated when the state point was located in the opposite/same direction as the direction of anatomical action, which was associated with joint torque actuating the body towards equilibrium. The derivative values of stability index defined in the phase space approximately 200 ms before muscle inactivation were also larger than those before activation for some muscles. These results indicate that bipedal standing might be achieved by monitoring the rate of change of stability/instability components and generating joint torque to stabilize the body. In conclusion, muscles are likely to activate in an event-driven manner during quiet standing and a possible metric for on/off switching is SI dot, and our methodology of EMG processing could allows us to extract such event-driven intermittent muscle activities.
Hsieh, Ru-Lan; Lee, Wen-Chung; Lo, Min-Tzu; Liao, Wei-Cheng
2013-02-01
To assess the differences in postural stability between patients with knee osteoarthritis and controls without knee osteoarthritis, and to evaluate possible relations between postural stability scores and International Classification of Functioning, Disability and Health (ICF) components. An age-matched, case-controlled trial with a cross-sectional design. A teaching hospital. Patients with knee osteoarthritis (n=73) and age-matched controls (n=60). Data on patients' postural stability and additional health-related variables were collected using various instruments. These included the Hospital Anxiety and Depression Scale, the Multidimensional Fatigue Inventory, the World Health Organization Quality of Life Brief Version, the physical function test (chair-rising time), the Chinese version of the Western Ontario and McMaster Universities Osteoarthritis Index, the Chinese version of the Knee Injury and Osteoarthritis Outcome Score, and the Biodex Stability System. A comparison of postural stability in patients with knee osteoarthritis versus that of controls was performed. The relation between postural stability scores for patients with knee osteoarthritis and ICF components was evaluated. Pearson correlation tests were used to determine the variables that correlated with postural stability among these patients. Patients with knee osteoarthritis displayed lower overall postural stability than controls (scores of 0.7 vs. 0.5, P=.006) and scored lower on the environmental domain of the World Health Organization Quality of Life Brief Version (62.2 vs 66.8, P=.014). For patients with knee osteoarthritis, postural stability was weakly associated with the ICF components of body functions and structures, including pain (r=.33-.34, P=.004), physical fatigue (r=.28, P=.016), and reduced motivation (r=.30, P=.011). Weak to moderate associations between postural stability and the ICF components of activities and participation were found; the relevant ICF variables included reduced activity (r=.38, P=.001), physical domain and function (r=.34-.48, P=.001 to P<.004), activities of daily living (r=.51, P<.001), and sports and recreation (r=.35, P=.003). A moderate association between postural stability and the ICF components of personal and environmental factors was observed, including age (r=.52, P<.001) and quality of life (r=0.4, P=.001). Patients with knee osteoarthritis displayed lower postural stability and achieved lower scores in the environmental domain of quality-of-life measures than did controls. The postural stability of patients with knee osteoarthritis was weakly to moderately associated with the following ICF components: body functions and structures, activities and participation, and personal and environmental factors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Huisinga, Jessie M.; St. George, Rebecca J.; Spain, Rebecca; Overs, Shannon; Horak, Fay B.
2015-01-01
Objective To understand examined the relationship between postural response latencies obtained during postural perturbations and representative measures of balance during standing (sway variables) and during walking (trunk motion). Design Cross-sectional Setting University medical center balance disorders laboratory Participants Forty persons with MS were compared with 20 similar aged control subjects. Twenty subjects with MS had normal walking velocity group and 20 had slow walking velocity based on the 25-foot walk time greater than 5 seconds. Interventions None Main Outcome Measures Postural response latency, sway variables, trunk motion variables Results: We found that subjects with MS with either slow or normal walking velocities had significantly longer postural response latencies than the healthy control group. Postural response latency was not correlated with the 25-ft walk time. Postural response latency was significantly correlated with center of pressure sway variables during quiet standing: root mean square (ρ = 0.334, p=0.040), range (ρ=0.385, p=0.017), mean velocity (ρ=0.337, p=0.038), and total sway area (ρ=0.393, p=0.015). Postural response latency was also significantly correlated with motion of the trunk during walking: sagittal plane range of motion (ρ=0.316, p=0.050) and standard deviation of transverse plane range of motion (ρ=-0.430, p=0.006). Conclusions These findings clearly indicate that slow postural responses to external perturbations in patients with MS contribute to disturbances in balance control, both during standing and walking. PMID:24445088
Time course of the acute effects of core stabilisation exercise on seated postural control.
Lee, Jordan B; Brown, Stephen H M
2017-09-20
Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.
Anticipatory and compensatory postural adjustments in sitting in children with cerebral palsy.
Bigongiari, Aline; de Andrade e Souza, Flávia; Franciulli, Patrícia Martins; Neto, Semaan El Razi; Araujo, Rubens Correa; Mochizuki, Luis
2011-06-01
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p<.05). The children with CP presented the highest EMG and level of co-activation (p<.05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of 3,4-diaminopyridine on the postural control in patients with downbeat nystagmus.
Sprenger, Andreas; Zils, Elisabeth; Rambold, Holger; Sander, Thurid; Helmchen, Christoph
2005-04-01
Downbeat nystagmus (DBN) is a common, usually persistent ocular motor sign in vestibulocerebellar midline lesions. Postural imbalance in DBN may increase on lateral gaze when downbeat nystagmus increases. 3,4-Diaminopyridine (3,4-DAP) has been shown to suppress the slow-phase velocity component of downbeat nystagmus and its gravity-dependent component with concomitant improvement of oscillopsia. Because the pharmacological effect is thought to be caused by improvement of the vestibulocerebellar Purkinje cell activity, the effect of 3,4-DAP on the postural control of patients with downbeat nystagmus syndrome was examined. Eye movements were recorded with the video-based Eyelink II system. Postural sway and pathway were assessed by posturography in lateral gaze in the light and on eye closure. Two out of four patients showed an improvement of the area of postural sway by 57% of control (baseline) on eye closure. In contrast, downbeat nystagmus in gaze straight ahead and on lateral gaze did not benefit in these two patients, implying a specific influence of 3,4-DAP on the vestibulocerebellar control of posture. It was concluded that 3,4-DAP may particularly influence the postural performance in patients with downbeat nystagmus.
Postural compensation for vestibular loss and implications for rehabilitation.
Horak, Fay B
2010-01-01
This chapter summarizes the role of the vestibular system in postural control so that specific and effective rehabilitation can be designed that facilitates compensation for loss of vestibular function. Patients with bilateral or unilateral loss of peripheral vestibular function are exposed to surface perturbations to quantify automatic postural responses. Studies also evaluated the effects of audio- and vibrotactile-biofeedback to improve stability in stance and gait. The most important role of vestibular information for postural control is to control orientation of the head and trunk in space with respect to gravitoinertial forces, particularly when balancing on unstable surfaces. Vestibular sensory references are particularly important for postural control at high frequencies and velocities of self-motion, to reduce trunk drift and variability, to provide an external reference frame for the trunk and head in space; and to uncouple coordination of the trunk from the legs and the head-in-space from the body CoM. The goal of balance rehabilitation for patients with vestibular loss is to help patients 1) use remaining vestibular function, 2) depend upon surface somatosensory information as their primary postural sensory system, 3) learn to use stable visual references, and 4) identify efficient and effective postural movement strategies.
Postural control in man: the phylogenetic perspective.
Gramsbergen, Albert
2005-01-01
Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure.
Relationship between craniomandibular disorders and poor posture.
Nicolakis, P; Nicolakis, M; Piehslinger, E; Ebenbichler, G; Vachuda, M; Kirtley, C; Fialka-Moser, V
2000-04-01
The purpose of this research was to show that a relationship between craniomandibular disorders (CMD) and postural abnormalities has been repeatedly postulated, but still remains unproven. This study was intended to test this hypothesis. Twenty-five CMD patients (mean age 28.2 years) were compared with 25 gender and age matched controls (mean age 28.3 years) in a controlled, investigator-blinded trial. Twelve postural and ten muscle function parameters were examined. Measurements were separated into three subgroups, consisting of those variables associated with the cervical region, the trunk in the frontal plane, and the trunk in the sagittal plane. Within these subgroups, there was significantly more dysfunction in the patients, compared to control subjects (Mann-Whitney U test p < 0.001, p < 0.05, p < 0.01). Postural and muscle function abnormalities appeared to be more common in the CMD group. Since there is evidence of the mutual influence of posture and the craniomandibular system, control of body posture in CMD patients is recommended, especially if they do not respond to splint therapy. Whether poor posture is the reason or the result of CMD cannot be distinguished by the data presented here.
Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Both participants significantly increased their target response (body swing) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph
2017-01-01
Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430
The internal representation of head orientation differs for conscious perception and balance control
Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy
2017-01-01
Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
Neuromuscular Control and Coordination during Cycling
ERIC Educational Resources Information Center
Li, Li
2004-01-01
The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…
A method to model anticipatory postural control in driver braking events.
Östh, Jonas; Eliasson, Erik; Happee, Riender; Brolin, Karin
2014-09-01
Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering. Copyright © 2014. Published by Elsevier B.V.
Khanal, Minoo; Arazpour, Mokhtar; Bahramizadeh, Mahmood; Samadian, Mohammad; Hutchins, Stephen W; Kashani, Reza Vahab; Mardani, Mohammad A; Tari, Hossein Vahid; Aboutorabi, Atefeh; Curran, Sarah; Sadeghi, Heidar
2016-08-01
Idiopathic scoliosis patients have postural equilibrium problems. The objective of this study was to assess postural control in subjects with idiopathic scoliosis following a 4-month intervention in an unbraced position. Quasi-experimental. Eight healthy girls and eight girls with idiopathic scoliosis took part. A Kistler force platform was used with a frequency of 100 Hz for recording data. The center of pressure was recorded in different positions out of brace for scoliosis and healthy subjects. Test conditions were single limb and double limb stance, with eyes open and closed, and foam and rigid surfaces. The data reflected a weak balance of idiopathic scoliosis subjects compared to healthy subjects. After 1 and 4 months of wearing the brace, center of pressure and center of gravity sway increased in the majority of the tests, although there were no significant differences in any of the test conditions (p > 0.05). While the center of pressure sway in medio-lateral direction decreased after 4 months of wearing a brace, in other variables center of pressure and center of gravity sway increased. Idiopathic scoliosis patients have weak balance in comparison to healthy subjects. In addition, following a period of 4 months of wearing a brace, balance parameters in the scoliosis subjects did not improve. The results show that we need more follow-up of orthoses wearing in idiopathic scoliosis subjects and suggest more studies at least 1-year follow-up to identify the efficiency of brace wear on balance. Scoliosis can alter postural stability and balance performance during quiet standing. Spinal deformity can alter a subject's ability to compensate for postural changes and cause gait deviations. This study investigated balance differences between the healthy and idiopathic scoliosis patients and the results of thoraco lumbo sacral orthosis brace wear. It might provide some new insight into the conservative treatment of idiopathic scoliosis patients for clinicians and researchers. © The International Society for Prosthetics and Orthotics 2015.
El Hage, Yasmin; Politti, Fabiano; Herpich, Carolina Marciela; de Souza, Dowglas Fernando Magalhães; de Paula Gomes, Cid André Fidelis; Amorim, Cesar Ferreira; de Oliveira Gonzalez, Tabajara; Biasotto-Gonzalez, Daniela Aparecida
2013-01-01
The influence of the neuromuscular system on the cervical region and mastication is directly associated with mandibular movements and neck posture. Normal occlusal homeostasis depends on complex sensory feedback mechanisms of the periodontal ligament, temporomandibular joint and other structures of the stomatognathic system. This feedback serves as a regulatory mechanism that helps determine the force and nature of muscle contractions. Alterations in the muscles of mastication, neck muscles, and occlusal characteristics constitute causal factors of imbalances in the postural muscle chains, leading to alterations in the center of pressure (CoP) of the feet. Thus, therapies that seek occlusal reestablishment, such as muscle relaxation techniques, may lead to a restructuring of the global equilibrium of the neuromuscular system and an improvement in body posture. The aim of the present pilot study was to investigate the immediate effect of facial massage on the CoP in the anteroposterior (CoPAP) and mediolateral (CoPML) directions in individuals with temporomandibular disorder (TMD). Twenty individuals with a diagnosis of TMD based on the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) were submitted to a facial massage technique. CoPAP and CoPML were evaluated using a force plate. Evaluations were performed under two visual conditions (eyes open and eyes closed) prior to resting in dorsal decubitus (baseline), after 10 minutes of rest (premassage) and after the administration of the massage technique (postmassage). No significant differences were found regarding CoPAP velocity with eyes open or the following aspects under either visual condition (eyes open or closed): CoPML velocity, RMS of CoPAP, RMS of CoPML, and sway area. The only significant difference was found for mean CoPAP velocity with eyes closed. While the results of the present study demonstrate the reliability of the reproduction of the data, facial massage had no immediate influence on postural control in individuals with TMD.
Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi
2017-02-01
Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.
Monjo, Florian; Forestier, Nicolas
2017-08-01
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.
Milosavljevic, Stephan
2017-01-01
Introduction Low back pain (LBP) is the most common, costly and disabling musculoskeletal disorder worldwide, and is prevalent in healthcare workers. Posture is a modifiable risk factor for LBP shown to reduce the prevalence of LBP. Our feasibility research suggests that postural feedback might help healthcare workers avoid hazardous postures. The Effectiveness of Lumbopelvic Feedback (ELF) trial will investigate the extent to which postural monitor and feedback (PMF) can reduce exposure to hazardous posture associated with LBP. Methods This is a participant-blinded, randomised controlled trial with blocked cluster random allocation. Participants will include volunteer healthcare workers recruited from aged care institutions and hospitals. A postural monitoring and feedback device will monitor and record lumbopelvic forward bending posture, and provide audio feedback whenever the user sustains a lumbopelvic forward bending posture that exceeds predefined thresholds. The primary outcome measure will be postural behaviour (exceeding thresholds). Secondary outcome measures will be incidence of LBP, participant-reported disability and adherence. Following baseline assessment, we will randomly assign participants to 1 of 2 intervention arms: a feedback group and a no-feedback control group. We will compare between-group differences of changes in postural behaviour by using a repeated measures mixed-effect model analysis of covariance (ANCOVA) at 6 weeks. Postural behaviour baseline scores, work-related psychosocial factors and disability scores will be input as covariates into the statistical models. We will use logistic mixed model analysis and Cox's proportional hazards for assessing the effect of a PMF on LBP incidence between groups. Discussion Posture is a modifiable risk factor for low back disorders. Findings from the ELF trial will inform the design of future clinical trials assessing the effectiveness of wearable technology on minimising hazardous posture during daily living activities in patients with low back disorders. Trial registration number ACTRN12616000449437. PMID:28073798
Postural Stability in Older Adults With Alzheimer Disease.
Mesbah, Normala; Perry, Meredith; Hill, Keith D; Kaur, Mandeep; Hale, Leigh
2017-03-01
The prevalence of adults with Alzheimer disease (AD) aged >65 years is increasing and estimated to quadruple by 2051. The aim of this study was to investigate postural stability in people with mild to moderate AD and factors contributing to postural instability compared with healthy peers (controls). A computerized systematic search of databases and a hand search of reference lists for articles published from 1984 onward (English-language articles only) were conducted on June 2, 2015, using the main key words "postural stability" and "Alzheimer's disease." Sixty-seven studies were assessed for eligibility (a confirmed diagnosis of AD, comparison of measured postural stability between participants with AD and controls, measured factors potentially contributing to postural instability). Data were extracted, and Downs and Black criteria were applied to evaluate study quality. Eighteen articles were analyzed using qualitative synthesis and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Strength of evidence was guided by the Grading of Recommendations Assessment, Development and Evaluation. Strong evidence was found that: (1) older adults with mild to moderate AD have reduced static and functional postural stability compared with healthy peers (controls) and (2) attentional demand during dual-task activity and loss of visual input were key factors contributing to postural instability. Deta-analysis was not possible due to heterogeneity of the data. Postural stability is impaired in older adults with mild to moderate AD. Decreasing visual input and concentrating on multiple tasks decrease postural stability. To reduce falls risk, more research discerning appropriate strategies for the early identification of impairment of postural stability is needed. Standardization of population description and consensus on outcome measures and the variables used to measure postural -instability and its contributing factors are necessary to ensure meaningful synthesis of data. © 2017 American Physical Therapy Association
Measuring postural control during mini-squat posture in men with early knee osteoarthritis.
Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M
2017-04-01
Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=<0.001), stiffness (p=0.001) and physical function (p<0.001) were found for the OAG. Moderate and negative correlations were found between the AP COP amplitude of displacement and physical function (ρ=-0.40, p=0.02). Moderate and negative correlations were observed between the AP COP velocity of displacement and physical function (ρ=0.47, p=0.01) and stiffness (ρ=-0.45, p=0.02). The findings of the present study emphasize the importance of rehabilitation from the early degrees of knee OA to prevent postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee should be further investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Birdwell, J Alexander; Hargrove, Levi J; Weir, Richard F ff; Kuiken, Todd A
2015-01-01
Fine-wire intramuscular electrodes were used to obtain electromyogram (EMG) signals from six extrinsic hand muscles associated with the thumb, index, and middle fingers. Subjects' EMG activity was used to control a virtual three-degree-of-freedom (DOF) hand as they conformed the hand to a sequence of hand postures testing two controllers: direct EMG control and pattern recognition control. Subjects tested two conditions using each controller: starting the hand from a predefined neutral posture before each new posture and starting the hand from the previous posture in the sequence. Subjects demonstrated their abilities to simultaneously, yet individually, move all three DOFs during the direct EMG control trials; however, results showed subjects did not often utilize this feature. Performance metrics such as failure rate and completion time showed no significant difference between the two controllers.
Light and heavy touch reduces postural sway and modifies axial tone in Parkinson’s disease
Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay
2014-01-01
Background Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson’s disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. Objective To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Methods Fourteen subjects with mid-stage PD, and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms: 1) crossed, 2) lightly touching a fixed rigid bar in front of them and 3) firmly gripping the bar. Postural sway was measured with a forceplate and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Results Subjects with PD significantly decreased their postural sway with light or heavy touch (p<0.001 vs. arms crossed), similarly as control subjects. Without touch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD: r=− 0.72 to −0.95 and controls: r=−0.74 to−0.85). Conclusions We showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone. PMID:22415944
Static and dynamic single leg postural control performance during dual-task paradigms.
Talarico, Maria K; Lynall, Robert C; Mauntel, Timothy C; Weinhold, Paul S; Padua, Darin A; Mihalik, Jason P
2017-06-01
Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s -1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s -1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F 2,58 = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.
Impaired perception of surface tilt in progressive supranuclear palsy
Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina
2017-01-01
Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762
Çelenay, Şeyda Toprak; Kaya, Derya Özer; Özüdoğru, Anıl
2015-01-01
Spinal posture and mobility are significant for protecting spine. The aim was to compare effects of different postural training interventions on spinal posture and mobility. Ninety-six university students (ages: 18–25 years) were allocated into Electrical Stimulation (ES) (n = 24), Exercise (n = 24), Biofeedback Posture Trainer (Backtone) (n = 24), and Postural Education (n = 24, Controls) groups. All the groups got postural education. The interventions were carried out 3 days a week for 8 weeks. Spinal Mouse device (Idiag, Fehraltorf, Switzerland) was used to detect thoracic and lumbar curvatures and mobility (degrees) in standing and sitting positions. Paired Student’s t-test, one-way ANOVA, and pairwise post-hoc tests were used. ES decreased thoracic curvature, the exercise decreased thoracic and lumbar curvature and increased thoracic mobility in standing position between pre-post training (p < 0.05). Exercise and Backtone improved thoracic curvature in sitting (p <0.05). In Exercise Group, thoracic curvature decreased compared to Backtone and Education Groups, and thoracic mobility increased compared to all groups (p < 0.05). The exercise was effective and superior in improving thoracic and lumbar curves, and mobility among university students. ES decreased thoracic curve. Biofeedback posture trainer improved sitting posture. A prospective randomized controlled trial, Level 1.
Berger, L; Chuzel, M; Buisson, G; Rougier, P
2005-09-01
The authors investigated age-related changes in postural control in 33 healthy young adults (18-31 years), 29 seniors (62-75 years), and 22 elderly people (75-96 years). A force platform recorded the results. The horizontal motions of the center of gravity (CGh) and their difference in the plane of support CP - CGv were deduced from the complex center of pressure (CP) trajectories. With fractional Brownian modeling, one can establish that the aging process seems to induce a transition phase in which seniors take more time to initiate the corrective process in the mediolateral (ML) axis than do younger people. The elderly develop a new strategy characterized by the mobilization of higher neuromuscular energy to maintain equilibrium. In the ML axis, the larger displacements could be caused mainly by a hip strategy that could facilitate step initiation. In the anteroposterior (AP) axis, seniors and elderly individuals maintain a relative ability to stabilize their CG into the base of support compared with younger people.
Postural Stability is Altered by Blood Shift
NASA Astrophysics Data System (ADS)
Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.
2008-06-01
Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.
Development of Postural Muscles and Their Innervation
IJkema-Paassen, J.; Gramsbergen, A.
2005-01-01
Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482
Improving Postural Control in the Battement Tendu: One Teacher's Reflections and Somatic Exercises
ERIC Educational Resources Information Center
Batson, Glenna
2010-01-01
The battement tendu is introduced early in dance training, remaining integral to a dancer's vocabulary. Although appearing relatively simple to execute, the tendu aesthetic takes years to master. One reason might be that efficient performance requires complex coordination of postural balance. Known as postural control, this coordination appears in…
Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo
Schniepp, Roman; Wuehr, Max; Pradhan, Cauchy; Novozhilov, Sergej; Krafczyk, Siegbert; Brandt, Thomas; Jahn, Klaus
2013-01-01
Background: Subjective postural imbalance is a key symptom in the somatoform phobic postural vertigo (PPV). It has been assumed that more attentional control of body posture and / or co-contraction of leg muscles during standing is used to minimize the physiological body sway in PPV. Here we analyze nonlinear variability of body sway in patients with PPV in order to disclose changes in postural control strategy associated with PPV. Methods: Twenty patients with PPV and 20 age-matched healthy subjects (HS) were recorded on a stabilometer platform with eyes open (EO), eyes closed (EC), and while standing on a foam rubber with eyes closed (ECF). Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed to assess the structure of postural variability by computing the scaling exponent α and the sample entropy (SEn) of the time series. Results: With EO on firm ground α and SEn of CoP displacement were significantly lower in patients (p < 0.001). For more difficult conditions (EC, ECF) postural variability in PPV assimilated to that of HS. Conclusion: Postural control in PPV patients differs from HS under normal stance condition. It is characterized by a reduced scaling behavior and higher regularity. These changes in the structure of postural variability might suggest an inappropriate attentional involvement with stabilizing strategies, which are used by HS only for more demanding balance tasks. PMID:23966974
Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A; Lorås, Håvard W; Stensdotter, Ann-Katrin
2018-01-01
As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19-49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p < 0.001; ML, p < 0.001) for the slow component, as well as for the fast component (amplitudes: AP, p = 0.010; ML, p = 0.001 and frequencies: AP, p = 0.001; ML, p = 0.029) compared to controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups.
Rasouli, Omid; Vasseljen, Ottar; Fors, Egil A.; Lorås, Håvard W.
2018-01-01
As many similar symptoms are reported in fibromyalgia (FM) and chronic fatigue syndrome (CFS), underlying defcits may potentially also be similar. Postural disequilibrium reported in both conditions may thus be explained by similar deviations in postural control strategies. 75 females (25/group FM, CFS and control, age 19–49 years) performed 60 s of quiet standing on a force platform in each of three conditions: 1) firm surface with vision, 2) firm surface without vision and, 3) compliant surface with vision. Migration of center of pressure was decomposed into a slow and a fast component denoting postural sway and lateral forces controlling postural sway, analyzed in the time and frequency domains. Main effects of group for the antero-posterior (AP) and medio-lateral (ML) directions showed that patients displayed larger amplitudes (AP, p = 0.002; ML, p = 0.021) and lower frequencies (AP, p < 0.001; ML, p < 0.001) for the slow component, as well as for the fast component (amplitudes: AP, p = 0.010; ML, p = 0.001 and frequencies: AP, p = 0.001; ML, p = 0.029) compared to controls. Post hoc analyses showed no significant differences between patient groups. In conclusion, both the CFS- and the FM-group differed from the control group. Larger postural sway and insufficient control was found in patients compared to controls, with no significant differences between the two patient groups. PMID:29617424
Gauchard, G C; Jeandel, C; Perrin, P P
2001-01-01
Ageing is associated with a reduction in balance, in particular through dysfunction of each level of postural control, which results in an increased risk of falling. Conversely, the practice of physical activities has been shown to modulate postural control in elderly people. This study examined the potential positive effects of two types of regular physical and sporting activities on vestibular information and their relation to posture. Gaze and postural stabilisation was evaluated by caloric and rotational vestibular tests on 18 healthy subjects over the age of 60 who regularly practised low-energy or bioenergetic physical activities and on 18 controls of a similar age who only walked on a regular basis. These subjects were also submitted to static and dynamic posturographic tests. The control group displayed less balance control, with a lower vestibular sensitivity and a relatively high dependency on vision compared to the group practising low-energy physical activities, which had better postural control with good vestibular sensitivity and less dependency on vision. The postural control and vestibular sensitivity of subjects practising bioenergetic activities was average, and required higher visual afferent contribution. Low-energy exercises, already shown to have the most positive impact on balance control by relying more on proprioception, also appear to develop or maintain a high level of vestibular sensitivity allowing elderly people practising such exercises to reduce the weight of vision. Copyright 2001 S. Karger AG, Basel
Glofcheskie, Grace O; Brown, Stephen H M
2017-04-01
Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali
2013-06-01
It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
Mezzarobba, Susanna; Grassi, Michele; Valentini, Roberto; Bernardis, Paolo
2018-03-01
The intricate linkage between Freezing of Gait (FoG) and postural control in Parkinson's disease (PD) is unclear. We analyzed the impact of FoG on dynamic postural control. 24 PD patients, 12 with (PD + FoG), 12 without FoG (PD-FoG), and 12 healthy controls, were assessed in ON state. Mobility and postural control were measured with clinical scales (UPDRS III, BBS, MPAS) and with kinematic and kinetic analysis during three tasks, characterized by levels of increasing difficulty to plan sequential movement of postural control: walk (W), gait initiation (GI) and sit-to-walk (STW). The groups were balanced by age, disease duration, disease severity, mobility and balance. During STW, the spatial distribution of COP trajectories in PD + FoG patients are spread over medial-lateral space more than in the PD-FoG (p < .001). Moreover, the distribution of COP positions. in the transition between sit-to-stand and gait initiation, is not properly shifted toward the leading leg, as in PD-FoG and healthy controls, but it is more centrally dispersed (p < .01) with a delayed weight forward progression (p < .05). In GI task and walk task, COM and COP differences are less evident and even absent between PD patients. PD + FoG show postural control differences in STW, compared with PD-FoG and healthy. Different spatial distribution of COP trajectories, between two PD groups are probably due to a deficit to plan postural control during a more demanding motor pattern, such as STW. Copyright © 2018 Elsevier B.V. All rights reserved.
Manor, Brad; Costa, Madalena D; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C K; Novak, Vera; Lipsitz, Lewis A
2010-12-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.
Costa, Madalena D.; Hu, Kun; Newton, Elizabeth; Starobinets, Olga; Kang, Hyun Gu; Peng, C. K.; Novak, Vera; Lipsitz, Lewis A.
2010-01-01
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = −0.34, P = 0.002) and percent (R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors. PMID:20947715
Yelshyna, Darya; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090
Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.
Sleep quality, sleeping postures, and sleeping equipment in patients with ankylosing spondylitis
Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Gündoğdu, Barış; Özgen, Metin; Koca, Süleyman Serdar
2017-08-23
Background/aim: Inflammatory back pain, spinal stiffness, and limited spinal mobility are characteristic features of ankylosing spondylitis (AS). Sleeping postures can affect and/or reflect sleeping disturbances. The aim of the study was to evaluate sleeping postures and sleep disturbances in patients with AS. Materials and methods: Seventy-seven patients with AS and 49 healthy controls were enrolled. The Pittsburgh Sleep Quality Index (PSQI) and the Insomnia Severity Index (ISI) were applied to both groups. The most common sleeping postures were noted. Results: There was no significant difference between the groups in terms of sleeping postures. Total PSQI and ISI scores were higher in the AS group than in the controls (P = 0.004 and P = 0.038, respectively). The selection of sleeping postures of active and inactive patients were similar. The number of pillows used was not the same in the AS and control groups (P = 0.016). The frequency of customized bed use was higher in the AS group compared to the control group (P = 0.004). Conclusion: Sleep disturbances are more of a problem in patients with AS compared to healthy patients and in active AS patients compared to inactive ones. However, sleeping postures do not seem to affect either sleep disturbances or disease activity in patients with AS.
Kadri, Mohamed Abdelhafid; Noé, Frederic; Nouar, Merbouha Boulahbel; Paillard, Thierry
2017-09-01
To compare the effects of unilateral strength training by stimulated and voluntary contractions on muscle strength and monopedal postural control of the contralateral limb. 36 non-active healthy male subjects were recruited and split randomly into three groups. Two groups of 12 subjects took part in a strength-training program (3 sessions a week over 8 weeks) comprising 43 contractions of the quadriceps femoris of the ipsilateral limb (at 20% of the MVC). One group carried out voluntary contractions exclusively (VOL group), while the other group benefited exclusively from electro-induced contractions (NMES group). The other 12 subjects formed the control (CON) group. Assessments of MVC and monopedal postural control in static and dynamic postural tasks were performed with the ipsilateral (ISPI) and contralateral (CONTRA) limbs before (PRE) and after (POST) completion of the training program. After the training program, the MVC of the IPSI and CONTRA limbs increased similarly for both experimental groups (VOL and NMES). There were no significant improvements of monopedal postural control for the IPSI or CONTRA limbs in either the VOL or NMES experimental group. No change was observed for the CON group over the protocol period. The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.
A Correlation-based Framework for Evaluating Postural Control Stochastic Dynamics
Hernandez, Manuel E.; Snider, Joseph; Stevenson, Cory; Cauwenberghs, Gert; Poizner, Howard
2016-01-01
The inability to maintain balance during varying postural control conditions can lead to falls, a significant cause of mortality and serious injury among older adults. However, our understanding of the underlying dynamical and stochastic processes in human postural control have not been fully explored. To further our understanding of the underlying dynamical processes, we examine a novel conceptual framework for studying human postural control using the center of pressure (COP) velocity autocorrelation function (COP-VAF) and compare its results to Stabilogram Diffusion Analysis (SDA). Eleven healthy young participants were studied under quiet unipedal or bipedal standing conditions with eyes either opened or closed. COP trajectories were analyzed using both the traditional posturographic measure SDA and the proposed COP-VAF. It is shown that the COP-VAF leads to repeatable, physiologically meaningful measures that distinguish postural control differences in unipedal versus bipedal stance trials with and without vision in healthy individuals. More specifically, both a unipedal stance and lack of visual feedback increased initial values of the COP-VAF, magnitude of the first minimum, and diffusion coefficient, particularly in contrast to bipedal stance trials with open eyes. Use of a stochastic postural control model, based on an Ornstein-Uhlenbeck process that accounts for natural weight-shifts, suggests an increase in spring constant and decreased damping coefficient when fitted to experimental data. This work suggests that we can further extend our understanding of the underlying mechanisms behind postural control in quiet stance under varying stance conditions using the COP-VAF and provides a tool for quantifying future neurorehabilitative interventions. PMID:26011886
Kanekar, Neeta; Aruin, Alexander S
2015-04-01
Humans use anticipatory and compensatory postural strategies to maintain and restore balance when perturbed. Inefficient generation and utilization of anticipatory postural adjustments (APAs) is one of the reasons for postural instability. The aim of the study was to investigate the role of training in improvement of APAs and its effect on subsequent control of posture. Thirteen healthy young adults were exposed to predictable external perturbations before and after a single training session consisting of catches of a medicine ball thrown at the shoulder level. 3-D body kinematics, EMG activity of thirteen trunk and lower limb muscles, and ground reaction forces were recorded before and immediately after a single training session. Muscle onsets, EMG integrals, center of pressure (COP), and center of mass (COM) displacements were analyzed during the anticipatory and compensatory phases of postural control. The effect of a single training session was seen as significantly early muscle onsets and larger anticipatory COP displacements. As a result, significantly smaller peak COM displacements were observed after the perturbation indicating greater postural stability. The outcome of this study provides a background for examining the role of training in improvement of APAs and its effect on postural stability in individuals in need. Copyright © 2014 Elsevier Ltd. All rights reserved.
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s2 vs. 6.69 ± 0.87 cm/s2), and sway area (1.77 ± 0.22 cm2 vs. 1.04 ± 0.25 cm2). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness. PMID:29930534
Postural Instability Induced by Visual Motion Stimuli in Patients With Vestibular Migraine.
Lim, Yong-Hyun; Kim, Ji-Soo; Lee, Ho-Won; Kim, Sung-Hee
2018-01-01
Patients with vestibular migraine are susceptible to motion sickness. This study aimed to determine whether the severity of posture instability is related to the susceptibility to motion sickness. We used a visual motion paradigm with two conditions of the stimulated retinal field and the head posture to quantify postural stability while maintaining a static stance in 18 patients with vestibular migraine and in 13 age-matched healthy subjects. Three parameters of postural stability showed differences between VM patients and controls: RMS velocity (0.34 ± 0.02 cm/s vs. 0.28 ± 0.02 cm/s), RMS acceleration (8.94 ± 0.74 cm/s 2 vs. 6.69 ± 0.87 cm/s 2 ), and sway area (1.77 ± 0.22 cm 2 vs. 1.04 ± 0.25 cm 2 ). Patients with vestibular migraine showed marked postural instability of the head and neck when visual stimuli were presented in the retinal periphery. The pseudo-Coriolis effect induced by head roll tilt was not responsible for the main differences in postural instability between patients and controls. Patients with vestibular migraine showed a higher visual dependency and low stability of the postural control system when maintaining quiet standing, which may be related to susceptibility to motion sickness.
Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.
Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L
2017-01-01
Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p < 0.01 for all tests). The balance metric, in conjunction with mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.
Papa, Evan V; Garg, Hina; Dibble, Leland E
2015-01-01
Falls are the leading cause of traumatic brain injury and fractures and the No. 1 cause of emergency department visits by older adults. Although declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. In an effort to increase awareness of the detrimental effects of skeletal muscle fatigue on postural control, we sought to systematically review research studies examining this issue. The specific purpose of this review was to provide a detailed assessment of how anticipatory and reactive postural control tasks are influenced by acute muscle fatigue in healthy older individuals. An extensive search was performed using the CINAHL, Scopus, PubMed, SPORTDiscus, and AgeLine databases for the period from inception of each database to June 2013. This systematic review used standardized search criteria and quality assessments via the American Academy for Cerebral Palsy and Developmental Medicine Methodology to Develop Systematic Reviews of Treatment Interventions (2008 version, revision 1.2, AACPDM, Milwaukee, Wisconsin). A total of 334 citations were found. Six studies were selected for inclusion, whereas 328 studies were excluded from the analytical review. The majority of articles (5 of 6) utilized reactive postural control paradigms. All studies incorporated extrinsic measures of muscle fatigue, such as declines in maximal voluntary contraction or available active range of motion. The most common biomechanical postural control task outcomes were spatial measures, temporal measures, and end-points of lower extremity joint kinetics. On the basis of systematic review of relevant literature, it appears that muscle fatigue induces clear deteriorations in reactive postural control. A paucity of high-quality studies examining anticipatory postural control supports the need for further research in this area. These results should serve to heighten awareness regarding the potential negative effects of acute muscle fatigue on postural control and support the examination of muscle endurance training as a fall risk intervention in future studies.
Postural-Sway Response in Learning-Disabled Children: Pilot Data.
ERIC Educational Resources Information Center
Polatajko, H. J.
1987-01-01
The postural-sway response of five learning disabled (LD) and five nondisabled children was evaluated using a force platform. From statistical analysis of the two groups, the LD children appeared to use visual input to compensate for postural problems and had significant difficulty controlling posture with eyes closed. (SK)
Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2017-04-15
We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Gait, posture and cognition in Parkinson's disease
Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen
2016-01-01
Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD. PMID:29213470
Howells, Brooke E; Clark, Ross A; Ardern, Clare L; Bryant, Adam L; Feller, Julian A; Whitehead, Timothy S; Webster, Kate E
2013-09-01
Postural control impairments may persist following anterior cruciate ligament (ACL) reconstruction. The effect of a secondary task on postural control has, however, not been determined. The purpose of this case-control study was to compare postural control in patients following ACL reconstruction with healthy individuals with and without a secondary task. 45 patients (30 men and 15 women) participated at least 6 months following primary ACL reconstruction surgery. Participants were individually matched by age, gender and sports activity to healthy controls. Postural control was measured using a Nintendo Wii Balance Board and customised software during static single-leg stance and with the addition of a secondary task. The secondary task required participants to match the movement of an oscillating marker by adducting and abducting their arm. Centre of pressure (CoP) path length in both medial-lateral and anterior-posterior directions, and CoP total path length. When compared with the control group, the anterior-posterior path length significantly increased in the ACL reconstruction patients' operated (12.3%, p=0.02) and non-operated limbs (12.8%, p=0.02) for the single-task condition, and the non-operated limb (11.5%, p=0.006) for the secondary task condition. The addition of a secondary task significantly increased CoP path lengths in all measures (p<0.001), although the magnitude of the increase was similar in both the ACL reconstruction and control groups. ACL reconstruction patients showed a reduced ability in both limbs to control the movement of the body in the anterior-posterior direction. The secondary task affected postural control by comparable amounts in patients after ACL reconstruction and healthy controls. Devices for the objective measurement of postural control, such as the one used in this study, may help clinicians to more accurately identify patients with deficits who may benefit from targeted neuromuscular training programs.
The influence of the aquatic environment on the control of postural sway.
Marinho-Buzelli, Andresa R; Rouhani, Hossein; Masani, Kei; Verrier, Mary C; Popovic, Milos R
2017-01-01
Balance training in the aquatic environment is often used in rehabilitation practice to improve static and dynamic balance. Although aquatic therapy is widely used in clinical practice, we still lack evidence on how immersion in water actually impacts postural control. We examined how postural sway measured using centre of pressure and trunk acceleration parameters are influenced by the aquatic environment along with the effects of visual information. Our results suggest that the aquatic environment increases postural instability, measured by the centre of pressure parameters in the time-domain. The mean velocity and area were more significantly affected when individuals stood with eyes closed in the aquatic environment. In addition, a more forward posture was assumed in water with eyes closed in comparison to standing on land. In water, the low frequencies of sway were more dominant compared to standing on dry land. Trunk acceleration differed in water and dry land only for the larger upper trunk acceleration in mediolateral direction during standing in water. This finding shows that the study participants potentially resorted to using their upper trunk to compensate for postural instability in mediolateral direction. Only the lower trunk seemed to change acceleration pattern in anteroposterior and mediolateral directions when the eyes were closed, and it did so depending on the environment conditions. The increased postural instability and the change in postural control strategies that the aquatic environment offers may be a beneficial stimulus for improving balance control. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bodfish, James W.; Parker, Dawn E.; Lewis, Mark H.; Sprague, Robert L.; Newell, Karl M.
2001-01-01
This study examined whether dynamic measures of postural stability differentiated stereotyped movement disorder from dyskinetic movement disorder in a severely mentally retarded population. Participants (N=20) with either stereotypy or dyskinesia movement disorders and a control group were given a goal-oriented postural stability task. Both groups…
Effects of Dyslexia on Postural Control in Adults
ERIC Educational Resources Information Center
Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.
2010-01-01
Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…
Postural Strategies in Prader-Willi and Down Syndrome Patients
ERIC Educational Resources Information Center
Cimolin, Veronica; Galli, Manuela; Grugni, Graziano; Vismara, Luca; Precilios, Helmer; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo
2011-01-01
Patients affected by Down (DS) and Prader-Willi syndrome (PWS) are characterised by some common clinical and functional features including gait disorders and reduced postural control. The aim of our study was to quantitatively compare postural control in adult PWS and DS. We studied 12 PWS and 19 DS adult patients matched for age, height, weight…
Doumas, Michail
2017-01-01
We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18–35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition–M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant’s body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS’ growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control. PMID:28099522
Craig, Chesney E; Doumas, Michail
2017-01-01
We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18-35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition-M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant's body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS' growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control.
Stensdotter, Ann-Katrin; Tengman, Eva; Häger, Charlotte
2016-05-01
To explore long-term consequences of anterior cruciate ligament (ACL) rupture on postural sway and control strategies during bilateral quiet standing, in subjects treated with or without reconstructive surgery compared to uninjured controls. 70 individuals who had unilateral ACL rupture 23±2.4 years ago (33 received ACL reconstructive surgery, ACLR, and 37 had physiotherapy only, ACLPT) and 33 uninjured matched controls (CTRL) (mean age 46±5.3) stood quietly with eyes closed for 3min on a firm and on a compliant surface, respectively. Center of pressure (CoP) was registered with a force plate and postural sway was calculated from center of mass (CoM) derived from 3D kinematics. Sway density (SD) analyses of CoP assessed distance and duration of stable phases. The torque controlling postural sway was estimated from CoP-CoM. Comparisons across conditions to CTRL revealed larger CoP-CoM-area in ACLR (p=0.017, CI: 10.95, 143.10), but not in ACLPT. Mean distance between SD-peaks was greater for ACLR (p<0.001, CI: 1.73, 5.31) than for ACLPT (p=0.006, CI: 0.56, 4.12) relative to CTRL. Duration of SD-peaks was smaller for both ACLR and ACLPT (p<0.001, CI: -4.04, -1.23 and -3.82, -1.03, respectively) compared to CTRL. CoM-area in the ACL-groups did not differ from CTRL. ACL-injured subjects demonstrated greater postural control efforts than CTRL but without significant differences in postural sway. Control efforts were thus not directly associated with sway and further research should be focused on variance in postural control strategies. Copyright © 2016. Published by Elsevier B.V.
Trial-to-trial adaptation in control of arm reaching and standing posture
Pienciak-Siewert, Alison; Horan, Dylan P.
2016-01-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. PMID:27683888
Trial-to-trial adaptation in control of arm reaching and standing posture.
Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A
2016-12-01
Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. Copyright © 2016 the American Physiological Society.
Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne
2015-01-01
Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus.
What triggers the continuous muscle activity during upright standing?
Masani, Kei; Sayenko, Dimitry G; Vette, Albert H
2013-01-01
The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.
Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas
2016-06-01
Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level 3.
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Albiol-Pérez, Sergio; Gil-Gómez, José-Antonio; Muñoz-Tomás, María-Teresa; Gil-Gómez, Hermenegildo; Vial-Escolano, Raquel; Lozano-Quilis, José-Antonio
2017-03-23
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor clinical alterations among others. Postural problems have serious consequences for patients, not only limiting their daily life but also increasing some risks, like the risk of fall. Inadequate postural control and postural instability is a major problem in PD patients. A Virtual Motor Rehabilitation System (VMR) has been tested in patients with PD in the intervention period. Our purpose was to analyze the evolution of the spatial postural control during the intervention period, to see if there are any changes caused precisely by this intervention. Ten people with PD carried out 15 virtual rehabilitation sessions. We tested a groundbreaking system based on Virtual Motor Rehabilitation in two periods of time (baseline evaluation and final evaluation). In the training sessions, the participants performed a customizable treatment using a low-cost system, the Active Balance Rehabilitation system (ABAR). We stored the pressure performed by the participants every five hundredths of a second, and we analyzed the patients' pressure when they maintained their body on the left, on the right, and in the center in sitting position. Our system was able to measure postural control in every patient in each of the virtual rehabilitation sessions. There are no significant differences in the performance of postural control in any of the positions evaluated throughout the sessions. Moreover, the results show a trend to an improvement in all positions. This improvement is especially remarkable in the left/right positions, which are the most important positions in order to avoid problems such as the risk of fall. With regard to the suitability of the ABAR system, we have found outstanding results in enjoyment, success, clarity, and helpfulness. Although PD is a progressive neurodegenerative disorder, the results demonstrate that patients with PD maintain or even improve their postural control in all positions. We think that the main factor influencing these results is that patients use more of their available cognitive processing to improve their postural control. The ABAR system allows us to make this assumption because the system requires the continuous attention of patients, promoting cognitive processing.
Models of the vestibular system and postural control
NASA Technical Reports Server (NTRS)
Young, L. R.; Weiss, A.
1974-01-01
Applications of control theory and systems analysis to the problem of orientation and posture control are discussed, with the possible long range goals of contributing to the development of hardware for rehabilitation of the handicapped.
Cerebellar transcranial direct current stimulation improves adaptive postural control.
Poortvliet, Peter; Hsieh, Billie; Cresswell, Andrew; Au, Jacky; Meinzer, Marcus
2018-01-01
Rehabilitation interventions contribute to recovery of impaired postural control, but it remains a priority to optimize their effectiveness. A promising strategy may involve transcranial direct current stimulation (tDCS) of brain areas involved in fine-tuning of motor adaptation. This study explored the effects of cerebellar tDCS (ctDCS) on postural recovery from disturbance by Achilles tendon vibration. Twenty-eight healthy volunteers participated in this sham-ctDCS controlled study. Standing blindfolded on a force platform, four trials were completed: 60 s quiet standing followed by 20 min active (anodal-tDCS, 1 mA, 20 min, N = 14) or sham-ctDCS (40 s, N = 14) tDCS; three quiet standing trials with 15 s of Achilles tendon vibration and 25 s of postural recovery. Postural steadiness was quantified as displacement, standard deviation and path derived from the center of pressure (COP). Baseline demographics and quiet standing postural steadiness, and backwards displacement during vibration were comparable between groups. However, active-tDCS significantly improved postural steadiness during vibration and reduced forward displacement and variability in COP derivatives during recovery. We demonstrate that ctDCS results in short-term improvement of postural adaptation in healthy individuals. Future studies need to investigate if multisession ctDCS combined with training or rehabilitation interventions can induce prolonged improvement of postural balance. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Dusing, Stacey C; Thacker, Leroy R; Galloway, James C
2016-08-01
Infants born preterm are at increased risk of developmental disabilities, that may be attributed to their early experiences and ability to learn. The purpose of this paper was to evaluate the ability of infants born preterm to adapt their postural control to changing task demands. This study included 18 infants born at 32 weeks of gestation or less whose posture was compared in supine under 2 conditions, with and without a visual stimulus presented. The postural variability, measured with root mean squared displacement of the center of pressure, and postural complexity, measured with the approximate entropy of the center of pressure displacement were measured longitudinally from 2.5 to 5 months of age. The infants looked at the toys in midline for several months prior to adapting their postural variability in a manner similar to full term infants. Only after postural variability was reduced in both the caudal cephalic and medial lateral direction in the toy condition did the infants learn to reach for the toy. Postural complexity did not vary between conditions. These findings suggest that infants used a variety of strategies to control their posture. In contrast to research with infants born full term, the infants born preterm in this study did not identify the successful strategy of reducing movement of the center of pressure until months after showing interest in the toy. This delayed adaptation may impact the infants ability to learn over time. Copyright © 2016 Elsevier Inc. All rights reserved.
Madeleine, Pascal; Prietzel, Hanne; Svarrer, Heine; Arendt-Nielsen, Lars
2004-03-01
To quantify neck mobility and posture with and without various postural perturbations. A multivariable 2-group study with repeated measures and treatments. A human performance laboratory. Eleven patients with chronic whiplash injury (mean age, 33.3+/-6.7 y; weight, 73.4+/-11.4 kg; height, 173.3+/-7.2 cm) with a sex- and age-matched control group (mean age, 33.1+/-6.8 y; weight, 68+/-12.5 kg; height, 171.5+/-6.3 cm). Neck mobility and the effects of postural perturbations affecting the visual, vestibular, cutaneous, proprioceptive, and nociceptive systems were measured. Active range of motion, neck position sense, and postural activity. We found significantly reduced neck mobility and increased postural activity in the patient group compared with the control group. In patients, there was significantly greater postural activity with eyes closed, eyes open and speaking, and eyes closed with Achilles' tendons vibrations compared with eyes open with no vibrations. In the controls, there was no significant effect of experimental muscle pain on postural activity. Patients with chronic whiplash injury had a protective response to neck movement and different tuning, sequencing, and execution of the postural synergies probably because of excessive reliance on visual input despite a possible deficit and altered vestibular and/or proprioceptive activity. In healthy volunteers, the pain induced by a single bolus injection of hypertonic saline was probably too limited in intensity and spreading to decrease postural stability.
The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games
Edis, Çağlar; Vurgun, Hikmet
2016-01-01
Abstract Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior–posterior and medial–lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman’s rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game. PMID:28149410
The Importance of Postural Control in Relation to Technical Abilities in Small-Sided Soccer Games.
Edis, Çağlar; Vural, Faik; Vurgun, Hikmet
2016-12-01
Making assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior-posterior and medial-lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman's rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant
2018-06-01
Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Reaching while standing in microgravity: a new postural solution to oversimplify movement control.
Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry
2012-01-01
Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.
Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic
2014-06-01
We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements. Copyright © 2014 Elsevier Ltd. All rights reserved.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C
2014-02-01
A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of adaptive sensorimotor control in infant sitting posture.
Chen, Li-Chiou; Jeka, John; Clark, Jane E
2016-03-01
A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24 Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64 cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76 Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. Copyright © 2016 Elsevier B.V. All rights reserved.
Pérez-de la Cruz, S
One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
A Method for the Control of Multigrasp Myoelectric Prosthetic Hands
Dalley, Skyler Ashton; Varol, Huseyin Atakan; Goldfarb, Michael
2012-01-01
This paper presents the design and preliminary experimental validation of a multigrasp myoelectric controller. The described method enables direct and proportional control of multigrasp prosthetic hand motion among nine characteristic postures using two surface electromyography electrodes. To assess the efficacy of the control method, five nonamputee subjects utilized the multigrasp myoelectric controller to command the motion of a virtual prosthesis between random sequences of target hand postures in a series of experimental trials. For comparison, the same subjects also utilized a data glove, worn on their native hand, to command the motion of the virtual prosthesis for similar sequences of target postures during each trial. The time required to transition from posture to posture and the percentage of correctly completed transitions were evaluated to characterize the ability to control the virtual prosthesis using each method. The average overall transition times across all subjects were found to be 1.49 and 0.81 s for the multigrasp myoelectric controller and the native hand, respectively. The average transition completion rates for both were found to be the same (99.2%). Supplemental videos demonstrate the virtual prosthesis experiments, as well as a preliminary hardware implementation. PMID:22180515
Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou
2016-01-01
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…
Cognitive tasks promote automatization of postural control in young and older adults.
Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves
2017-09-01
Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Kyeongjin; Lee, Yong Woo
2017-09-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.
Lee, Kyeongjin; Lee, Yong Woo
2017-01-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults. PMID:28931994
Effects of visual motion consistent or inconsistent with gravity on postural sway.
Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo
2017-07-01
Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.
Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder
Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.
2015-01-01
Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567
Computerized dynamic posturography: the influence of platform stability on postural control.
Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt
2014-01-01
Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.
Clinical Implications From an Exploratory Study of Postural Management of Breech Presentation
Founds, Sandra A.
2013-01-01
The results from an exploratory study of the effectiveness of maternal knee-chest posture for producing cephalic version of breech presentation are shown. Methods are briefly described and clinical implications are presented. Among 25 women, fewer who performed the maternal knee-chest postural intervention experienced fetal cephalic version than women in the control group who did nothing to influence breech presentation. Despite limitations of the underpowered findings, trends in the data may indicate that parity and gestational age were potentially relevant covariates of version. Postural management is not an evidence-based practice. This exploratory study indicates that maternal knee-chest posture may work opposite to the expected direction, but the small sample size precludes generalizations about efficacy of knee-chest postural management. At least one adequately powered trial that controls for parity and gestational age is needed to determine whether knee-chest postural management results in no effect, a small, or small to moderate clinically significant effect. PMID:16814225
Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E
2016-01-01
Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.
Warm-up Optimizes Postural Control but Requires Some Minutes of Recovery.
Paillard, Thierry; Kadri, Mohamed Abdelhafid; Nouar, Merbouha Boulahbel; Noé, Frederic
2018-05-02
Paillard, T, Kadri, MA, Nouar, MB, and Noé, F. Warm-up optimizes postural control but requires some minutes of recovery. J Strength Cond Res XX(X): 000-000, 2018-The aim was to compare monopedal postural control between the dominant leg (D-Leg) and the nondominant leg (ND-Leg) in pre- and post-warm-up conditions. Thirty healthy male sports science students were evaluated before and after a warm-up exercise (12 minutes of pedaling with an incremental effort on a cycle ergometer with a controlled workload). Monopodal postural control was assessed for the D- and ND-Legs before and immediately, 2, 5, 10, and 15 minutes after the warm-up exercise, using a force platform and calculating the displacement velocity of the center of foot pressure on the mediolateral (COPML velocity) and anteroposterior (COPAP velocity) axes. No significant difference was observed between the D-Leg and ND-Leg for both COPML and COPAP velocity in all the periods. In comparison with pre-warm-up, COPML decreased after 15-minute and 10-minute recovery periods for the D-Leg and the ND-Leg, respectively (p < 0.05), whereas COPAP decreased after 10-minute and 15-minute recovery periods (p < 0.001; p < 0.01, respectively) for the D-Leg, and after a 10-minute recovery period for the ND-Leg (p < 0.001). The warm-up optimized monopedal postural control but did not make it possible to distinguish a difference between the D-Leg and the ND-Leg. Some minutes of recovery are required between the end of the whole-body warm-up exercise and the beginning of the postural test to optimize postural control. The optimal duration of recovery turns out to be about 10-15 minutes.
2013-01-01
Background In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. Methods In this case–control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Results Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p < 0.01) and front/back (p < 0.01) as well as balance ability right/left (p = 0.01) and front/back (p < 0.01) compared to healthy controls. There were no significant group differences with regard to symmetry index. However, there was a significant (p < 0.01) symmetry shift towards the affected side within the shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Conclusions Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies. PMID:24088342
Polskaia, Nadia; Richer, Natalie; Dionne, Eliane; Lajoie, Yves
2015-02-01
Research has demonstrated clear advantages of using an external focus of attention in postural control tasks, presumably since it allows a more automatic control of posture to emerge. However, the influence of cognitive tasks on postural stability has produced discordant results. This study aimed to compare the effects of an internal focus of attention, an external focus of attention and a continuous cognitive task on postural control. Twenty healthy participants (21.4±2.6 years) were recruited for this study. They were asked to stand quietly on a force platform with their feet together in three different attentional focus conditions: an internal focus condition (minimizing movements of the hips), an external focus condition (minimizing movements of markers placed on the hips) and a cognitive task condition (silently counting the total number of times a single digit was verbalized in a 3-digit sequence comprised of 30 numbers). Results demonstrated improved stability while performing the cognitive task as opposed to the internal and external focus conditions, as evidenced by a reduction in sway area, sway variability in the anterior-posterior (AP) and medial-lateral (ML) directions, and mean velocity (ML only). Results suggest that the use of a continuous cognitive task permits attention to be withdrawn from the postural task, thereby facilitating a more automatic control of posture. Copyright © 2014 Elsevier B.V. All rights reserved.
Hart, Raphael; Ballaz, Laurent; Robert, Maxime; Pouliot, Annie; D'Arcy, Sylvie; Raison, Maxime; Lemay, Martin
2014-08-01
Children with a neuromuscular disease are prone to early muscular fatigue. The objective of the present study was to evaluate the effects of fatigue induced by a walking exercise on the strength, postural control, and gait of children with a neuromuscular disease. Maximal isometric knee strength (extension and flexion), quiet standing postural control, and gait were evaluated in 12 children (8.8 [1.4] yrs) with a neuromuscular disease before and after a walking exercise. The participants were asked to stop walking when they considered themselves "very fatigued." After the exercise-induced fatigue, a significant increase in range of motion in pelvis obliquity, hip abduction and adduction, and ankle flexion and extension during gait was reported along with an increase in stride length variability. Fatigue also reduced the knee flexor strength and had a detrimental effect on postural control. Fatigue affects the strength, postural control, and gait of children with a neuromuscular disease and could notably increase the risks of falling and the occurrence of serious injuries.
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with "reactive" balancing of external disturbances and "proactive" balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot.
Suárez, H; Musé, P; Suárez, A; Arocena, M
2001-01-01
In order to assess the influence of visual stimulation in the triggering of imbalance and falls in the elderly population, the postural responses of 18 elderly patients with central vestibular disorders and clinical evidence of instability and falls were studied while receiving different types of visual stimuli. The stimulation conditions were: (i) no specific stimuli; (ii) smooth pursuit with pure sinusoids of 0.2 Hz as foveal stimulation; and (iii) optokinetic stimulation (OK) as retinal stimuli. Using a platform AMTI Accusway platform, the 95% confidence ellipse (CE) and sway velocity (SV) were evaluated with a scalogram using wavelets in order to assess the relationship between time and frequency in postural control. Velocity histograms were also constructed in order to observe the distribution of velocity values during the recording. A non-homogeneous postural behavior after visual stimulation was found among this population. In five of the patients the OK stimulation generated: (i) significantly higher average values of CE ( > 3.4+/-0.69 cm2); (ii) a significant increase in the average values of the SV ( > 3.89+/-1.15 cm/s) and a velocity histogram with a homogeneous distribution between 0 and 18 cm/s; and (iii) a scalogram with sway frequencies of up to 4 Hz distributed in both the X and Y directions (backwards and forwards and lateral) during visual stimulation with arbitrary units of energy density > 5. These three qualitative and quantitative aspects could be "markers" of visual dependence in the triggering of the mechanism of lack of equilibrium and hence falls in some elderly patients and should be considered in order to prevent falls and also to assist in the rehabilitation program of these patients.
Stereometric Analysis Of Static Equilibrium In CNS Disorders
NASA Astrophysics Data System (ADS)
Sheffer, D. B.; Lehmkuhl, D. L.; Herron, R. E.
1980-07-01
A primary aim in the physical rehabilitation of individuals with severe head or spinal injuries resulting in hemiparesis, tetraparesis or paraparesis, is the restoration of the functional motor abilities controlling involved muscle groups. The regaining of trunk postural stability provides a valuable antecedent in the recovery of use of the arms and legs. Accurate objective infor-mation must be provided to the therapist for assessment of treatment regimes. At present, few objective practical methods are available to furnish this evaluative information. Therefore the purpose of this study was to investigate the use of a biostereometric range of motion sensor for recording and quantifying trunk static equilibrium in individuals ungergoing therapy for head trauma. The sensor located the relative position of the C-7 vertebrae of the patient in space using continual monitoring of spherical coordinates. Results of the test protocol included : plots of the movement of the trunk excursions, determination of the maximum area of excursion and a trunk sway index (the relationship of the maximum area, the total excursion distance and a time factor). Further results demonstrated that the biostereometric sensor yielded quantitative documentation of improvement in a patient undergoing therapy.
A unified model of shoot tropism in plants: photo-, gravi- and Propio-ception.
Bastien, Renaud; Douady, Stéphane; Moulia, Bruno
2015-02-01
Land plants rely mainly on gravitropism and phototropism to control their posture and spatial orientation. In natural conditions, these two major tropisms act concurrently to create a photogravitropic equilibrium in the responsive organ. Recently, a parsimonious model was developed that accurately predicted the complete gravitropic and proprioceptive control over the movement of different organs in different species in response to gravitational stimuli. Here we show that the framework of this unifying graviproprioceptive model can be readily extended to include phototropism. The interaction between gravitropism and phototropism results in an alignment of the apical part of the organ toward a photogravitropic set-point angle. This angle is determined by a combination of the two directional stimuli, gravity and light, weighted by the ratio between the gravi- and photo-sensitivities of the plant organ. In the model, two dimensionless numbers, the graviproprioceptive number B and the photograviceptive number M, control the dynamics and the shapes of the movement. The extended model agrees well with two sets of detailed quantitative data on photogravitropic equilibrium in oat coleoptiles. It is demonstrated that the influence of light intensity I can be included in the model in a power-law-dependent relationship M(I). The numbers B and M and the related photograviceptive number D are all quantitative genetic traits that can be measured in a straightforward manner, opening the way to the phenotyping of molecular and mechanical aspects of shoot tropism.
A Unified Model of Shoot Tropism in Plants: Photo-, Gravi- and Propio-ception
Bastien, Renaud; Douady, Stéphane; Moulia, Bruno
2015-01-01
Land plants rely mainly on gravitropism and phototropism to control their posture and spatial orientation. In natural conditions, these two major tropisms act concurrently to create a photogravitropic equilibrium in the responsive organ. Recently, a parsimonious model was developed that accurately predicted the complete gravitropic and proprioceptive control over the movement of different organs in different species in response to gravitational stimuli. Here we show that the framework of this unifying graviproprioceptive model can be readily extended to include phototropism. The interaction between gravitropism and phototropism results in an alignment of the apical part of the organ toward a photogravitropic set-point angle. This angle is determined by a combination of the two directional stimuli, gravity and light, weighted by the ratio between the gravi- and photo-sensitivities of the plant organ. In the model, two dimensionless numbers, the graviproprioceptive number B and the photograviceptive number M, control the dynamics and the shapes of the movement. The extended model agrees well with two sets of detailed quantitative data on photogravitropic equilibrium in oat coleoptiles. It is demonstrated that the influence of light intensity I can be included in the model in a power-law-dependent relationship M(I). The numbers B and M and the related photograviceptive number D are all quantitative genetic traits that can be measured in a straightforward manner, opening the way to the phenotyping of molecular and mechanical aspects of shoot tropism. PMID:25692607
The Control of Posture in Newly Standing Infants is Task Dependent
ERIC Educational Resources Information Center
Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.
2012-01-01
The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…
The Role of Postural Support in Young Adults' Control of Stationary Kicking
ERIC Educational Resources Information Center
Sidaway, Ben; Bouchard, Matthew; Chasse, Julie; Dunn, Jonathan; Govoni, Andrea; McPherson, Breanne; Roy, Katherine; Anderson, David I.
2017-01-01
Purpose: The requirement for postural stability during the performance of motor skills has been clearly demonstrated in infants, but the necessity for such a postural substrate is not well documented in adults. The present study investigated the role of postural stability during a ballistic ball-kicking task in adults by providing varying degrees…
Evaluation of posture and pain in persons with benign joint hypermobility syndrome.
Booshanam, Divya S; Cherian, Binu; Joseph, Charles Premkumar A R; Mathew, John; Thomas, Raji
2011-12-01
The objective of the present study is to compare and quantify the postural differences and joint pain distribution between subjects with benign joint hypermobility syndrome (BJHS) and the normal population. This observational, non-randomized, and controlled study was conducted at Rheumatology and Physical Medicine and Rehabilitation Medicine Departments of a tertiary care teaching hospital. Subjects comprise 35 persons with diagnosis of BJHS, and the control group was matched for age and sex. Reedco's Posture score (RPS) and visual analogue scale (VAS) were the outcome measures. The subjects were assessed for pain in ten major joints and rated on a VAS. A standard posture assessment was conducted using the Reedco's Posture score. The same procedure was executed for an age- and sex-matched control group. Mean RPS for the BJHS group was 55.29 ± 8.15 and for the normal group it was 67 ± 11.94. The most common postural deviances in subjects with BJHS were identified in the following areas of head, hip (Sagittal plane), upper back, trunk, and lower back (Coronal plane). Intensity of pain was found to be more in BJHS persons than that of the normal persons, and the knee joints were the most affected. The present study compared and quantified the postural abnormalities and the pain in BJHS persons. The need for postural re-education and specific assessment and training for the most affected joints are discussed. There is a significant difference in posture between subjects with BJHS and the normal population. BJHS persons need special attention to their posture re-education during physiotherapy sessions to reduce long-term detrimental effects on the musculoskeletal system.
Assessment of postural asymmetry in mild to moderate Parkinson's disease.
Geurts, A C H; Boonstra, T A; Voermans, N C; Diender, M G; Weerdesteyn, V; Bloem, B R
2011-01-01
Asymmetry of symptoms of Parkinson's disease is clinically most evident for appendicular impairments. For axial impairments such as freezing of gait, asymmetry is less obvious. To date, asymmetries in balance control in PD patients have seldom been studied. Therefore, in this study we investigated whether postural control can be asymmetrically affected in mild to moderate PD patients. Seventeen PD patients were instructed to stand as still and symmetrically as possible on a dual force-plate during two trials. Dynamic postural asymmetry was assessed by comparing the centre-of-pressure velocities between both legs. Results showed that four patients (24%) had dynamic postural asymmetry, even after correcting for weight-bearing asymmetry. Hence, this study suggests that postural control can be asymmetrical in early PD. However, future studies should investigate the prevalence of dynamic postural asymmetry, in a larger group of PD patients. It should also be further investigated whether this approach can be used as a tool to support the initial diagnosis or monitor disease progression, or as an outcome measure for interventions aimed at improving balance in PD. Copyright © 2010 Elsevier B.V. All rights reserved.
How performing a repetitive one-legged stance modifies two-legged postural control.
Burdet, Cyril; Vuillerme, Nicolas; Rougier, Patrice R
2011-10-01
The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.
Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe
2017-12-22
Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults experience difficulty predicting the timing of target presentation, which could be related to deteriorated cognitive function, resulting in reduced use of the ankle joints for postural control.
The dentist's operating posture - ergonomic aspects.
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-06-15
The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.
Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril
2017-02-01
Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
Does a crouched leg posture enhance running stability and robustness?
Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre
2011-07-21
Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height. Copyright © 2011 Elsevier Ltd. All rights reserved.
Postural responses to unexpected perturbations of balance during reaching
Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.
2014-01-01
To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321
Mergner, Thomas; Lippi, Vittorio
2018-01-01
Posture control is indispensable for both humans and humanoid robots, which becomes especially evident when performing sensorimotor tasks such as moving on compliant terrain or interacting with the environment. Posture control is therefore targeted in recent proposals of robot benchmarking in order to advance their development. This Methods article suggests corresponding robot tests of standing balance, drawing inspirations from the human sensorimotor system and presenting examples from robot experiments. To account for a considerable technical and algorithmic diversity among robots, we focus in our tests on basic posture control mechanisms, which provide humans with an impressive postural versatility and robustness. Specifically, we focus on the mechanically challenging balancing of the whole body above the feet in the sagittal plane around the ankle joints in concert with the upper body balancing around the hip joints. The suggested tests target three key issues of human balancing, which appear equally relevant for humanoid bipeds: (1) four basic physical disturbances (support surface (SS) tilt and translation, field and contact forces) may affect the balancing in any given degree of freedom (DoF). Targeting these disturbances allows us to abstract from the manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way with the control of voluntary movements for undisturbed movement execution, both with “reactive” balancing of external disturbances and “proactive” balancing of self-produced disturbances from the voluntary movements. Our proposals therefore target both types of disturbances and their superposition. (3) Relevant for both versatility and robustness of the control, linkages between the posture control mechanisms across DoFs provide their functional cooperation and coordination at will and on functional demands. The suggested tests therefore include ankle-hip coordination. Suggested benchmarking criteria build on the evoked sway magnitude, normalized to robot weight and Center of mass (COM) height, in relation to reference ranges that remain to be established. The references may include human likeness features. The proposed benchmarking concept may in principle also be applied to wearable robots, where a human user may command movements, but may not be aware of the additionally required postural control, which then needs to be implemented into the robot. PMID:29867428
Role of sensory information in the control of postural orientation in Parkinson's disease.
Vaugoyeau, Marianne; Azulay, Jean-Philippe
2010-02-15
Clinical findings and experimental studies both in parkinsonian patients and on animal provide evidence that the control of the axial orientation is markedly impaired in Parkinson's disease (stooped posture, Camptocormia, Pisa syndrome). Nevertheless the postural orientation component in Parkinson's disease has been poorly investigated. One study reports that Parkinsonian patients present a major impairment of the postural orientation component in relation with a proprioceptive impairment. On the basis of these results, the visual dependence observed in Parkinsonian patients is re-defined as an adaptive strategy partly compensating for the impaired proprioception.
MacRae, Catharine Siân; Critchley, Duncan; Lewis, Jeremy S; Shortland, Adam
2018-01-01
Differences in postural control and gait have been identified between people with and without chronic low back pain (CLBP); however, many previous studies present data from small samples, or have used methodologies with questionable reliability. This study, employing robust methodology, hypothesised that there would be a difference in postural control, and spatiotemporal parameters of gait in people with CLBP compared with asymptomatic individuals. This cross-sectional case-control study age-matched and gender-matched 16 CLBP and 16 asymptomatic participants. Participants were assessed barefoot (1) standing, over three 40 s trials, under four posture challenging conditions (2) during gait. Primary outcome was postural stability (assessed by root mean squared error of centre of pressure (CoP) displacement (CoP RMSEAP ) and mean CoP velocity (CoP VELAP ), both in the anteroposterior direction); gait outcomes were hip range of movement and peak moments, walking speed, cadence and stride length, assessed using force plates and a motion analysis system. There were no differences between groups in CoP RMSEAP (P=0.26), or CoP VELAP (P=0.60) for any standing condition. During gait, no differences were observed between groups for spatiotemporal parameters, maximum, minimum and total ranges of hip movement, or peak hip flexor or extensor moments in the sagittal plane. In contrast to previous research, this study suggests that people with mild to moderate CLBP present with similar standing postural control, and parameters of gait to asymptomatic individuals. Treatments directed at influencing postural stability (eg, standing on a wobble board) or specific parameters of gait may be an unnecessary addition to a treatment programme.
The Rim and the Ancient Mariner: The Nautical Horizon Affects Postural Sway in Older Adults
Wade, Michael G.; Stergiou, Nick
2016-01-01
On land, the spatial magnitude of postural sway (i.e., the amount of sway) tends to be greater when participants look at the horizon than when they look at nearby targets. By contrast, on ships at sea, the spatial magnitude of postural sway in young adults has been greater when looking at nearby targets and less when looking at the horizon. Healthy aging is associated with changes in the movement patterns of the standing body sway, and these changes typically are interpreted in terms of age-related declines in the ability to control posture. To further elucidate the mechanisms associated with these changes we investigated control of posture in a setting that poses substantial postural challenges; standing on a ship at sea. In particular, we explored postural sway on a ship at sea when older adults looked at the horizon or at nearby targets. We evaluated the kinematics of the center of pressure in terms of spatial magnitude (i.e., the amount of sway) and multifractality (a measure of temporal dynamics). We found that looking at the horizon significantly affected the multifractality of standing body, but did not systematically influence the spatial magnitude of sway. We discuss the results in terms of age-related changes in the perception and control of dynamic body orientation. PMID:27973576
Characteristics of hand tremor and postural sway in patients with fetal-type Minamata disease.
Iwata, Toyoto; Takaoka, Shigeru; Sakamoto, Mineshi; Maeda, Eri; Nakamura, Masaaki; Liu, Xiao-Jie; Murata, Katsuyuki
2016-01-01
About forty certified patients aged around 50 years old existed as living witnesses to fetal-type Minamata disease (methylmercury poisoning due to in utero exposure) in Minamata, Japan in 2006. Computerized hand tremor and postural sway tests with spectral analysis were conducted for 24 of them and in matched control subjects to examine the pathophysiological feature of neuromotor function. The tremor intensities of the patients with fetal-type Minamata disease were significantly larger than those of the 67 controls at every frequency band for both hands. In the patients, proportions for intensity at 1-6 Hz of both hands were larger, but those of the intensity at 6-10 Hz were smaller compared with the controls. The center frequency of a tremor was significantly lower in the patients than in the controls. Only eight males of the 24 patients were examined to evaluate postural sway because of extremely low scores in activities of daily living in the remaining. Most of the postural sway parameters obtained with eyes open and closed were significantly larger in the patients than in the male controls. Likewise, Romberg quotients of postural sway in anterior-posterior direction were significantly higher in the patients. In conclusion, the patients with fetal-type Minamata disease of our study showed a larger tremor of low frequency at less than 6 Hz and postural instability. Spectral analyses of computerized hand tremor and postural sway are suggested to be useful for assessing the pathophysiological change, related to a lesion of the cerebellum, resulting from prenatal methylmercury exposure.
Hassan, B; Mockett, S; Doherty, M
2001-01-01
OBJECTIVES—To investigate whether subjects with knee osteoarthritis (OA) have reduced static postural control, knee proprioceptive acuity, and maximal voluntary contraction (MVC) of the quadriceps compared with normal controls, and to determine possible independent predictors of static postural sway. METHODS—77 subjects with symptomatic and radiographic knee OA (58 women, 19 men; mean age 63.4 years, range 36-82) and 63 controls with asymptomatic and clinically normal knees (45 women, 18 men; mean age 63 years, range 46-85) underwent assessment of static postural sway. 108 subjects (59 patients, 49 controls) also underwent assessment of knee proprioceptive activity and MVC (including calculation of quadriceps activation). In patients with knee OA knee pain, stiffness, and functional disability were assessed using the WOMAC Index. The height (m) and weight (kg) of all subjects was assessed. RESULTS—Compared with controls, patients with knee OA were heavier (mean difference 15.3 kg, p<0.001), had increased postural lateral sway (controls: median 2.3, interquartile (IQ) range 1.8-2.9; patients: median 4.7, IQ range 1.9-4.7, p<0.001), reduced proprioceptive acuity (controls: mean 7.9, 95% CI 6.9 to 8.9; patients: mean 12.0, 95% CI 10.5 to 13.6, p<0.001), weaker quadriceps strength (controls: mean 22.5, 95% CI 19.9 to 24.6; patients: mean 14.7, 95% CI 12.5 to 16.9, p<0.001), and less percentage activation of quadriceps (controls: mean 87.4, 95% CI 80.7 to 94.2; patients: mean 66.0, 95% CI 58.8 to 73.2, p<0.001). The significant predictors of postural sway were knee pain and the ratio of MVC/body weight. CONCLUSIONS—Compared with age and sex matched controls, subjects with symptomatic knee OA have quadriceps weakness, reduced knee proprioception, and increased postural sway. Pain and muscle strength may particularly influence postural sway. The interaction between physiological, structural, and functional abnormalities in knee OA deserves further study. PMID:11350851
Terada, Masafumi; Kosik, Kyle; Johnson, Nathan; Gribble, Phillip
2018-02-01
The current study aimed to examine postural control performance during a single-leg balance task in elderly individuals with and without a previous history of lateral ankle sprain (LAS). Eighteen adults with a previous history of LAS (mean age = 66 years old) and 12 healthy controls (mean age = 65 years old) were included in the study. Participants performed three trials of a single-leg balance task during an eyes-opened condition for 20-s. Center of pressure (COP) trajectories in the anteroposterior (AP) and mediolateral (ML) directions were collected with a force plate. The following postural control measures were calculated in the AP and ML directions: 1) Sample Entropy (SampEn); 2) Approximate Entropy (ApEn); 3) mean of Time-to-Boundary minima (mean TTB); and 4) COP velocity (COPV). Older-age participants with a history LAS exhibited lower ApEn-AP, SampEn-AP, and SampEn-ML values compared to healthy controls (p < 0.05). The information gained from this investigation indicates more rigid postural control patterns, less adaptability, and more difficulty maintaining COP during a single-leg balance task in adults with a previous history of LAS. Our data suggest that there is a need to consider history of musculoskeletal injury when evaluating factors for postural control and fall risk in the elderly. Future investigations are needed to assess the effect of LAS on age-related declines in postural control and discern associations between potential risk factors of fall-related injuries and LAS in an elderly population. Copyright © 2017 Elsevier B.V. All rights reserved.
INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS
Klusendorf, Anna; Kernozek, Thomas
2016-01-01
ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group X direction interaction was also found for postural stability indices during the lateral landing task (p=0.03). Only the Hip/Thigh/Knee INJ runners displayed a greater VPSI (p=0.01, d=0.91) and DPSI (p=0.017, d=0.89) when compared to CON. Conclusions When compared to CON, INJ runners demonstrated impaired dynamic control of vertical forces when performing the single leg landing and stabilization tasks. Clinicians should consider addressing dynamic control of vertical loads through functional tasks during the rehabilitation of running injury. Level of Evidence Level 3 PMID:27274423
Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.
Stribling, Kate; Christy, Jennifer
2017-10-01
To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.
ERIC Educational Resources Information Center
Memari, Amir Hossein; Ghanouni, Parisa; Gharibzadeh, Shahriar; Eghlidi, Jandark; Ziaee, Vahid; Moshayedi, Pouria
2013-01-01
Postural control is a fundamental building block of each child's daily activities. The aim of this study was to compare patterns of postural sway in children with autism spectrum disorder (ASD) with typically developing children (TD). We recruited 21 schoolchildren diagnosed with ASD aged 9-14 and 30 TD pupils aged 8-15. Postural sway parameters…
Song, Kyeongtak; Kang, Tae Kyu; Wikstrom, Erik A; Jun, Hyung-Pil; Lee, Sae Yong
2017-10-01
The purpose of this study was to determine how reduced plantar cutaneous sensation influences static postural control in individuals with and without CAI. A case-control study design. Twenty-six individuals with self-reported CAI and 26 matched healthy controls participated in this study. The plantar aspect of the participants' foot was then submersed in ice water (0°C) for 10min to reduce plantar sensation. Before and after the cooling procedure, plantar cutaneous sensation thresholds and single leg balance with eyes open and closed were assessed. Significantly, higher scores were observed in both groups after ice water submersion (p<0.001) indicating a significant reduction in the plantar cutaneous sensitivity after the cooling procedure. In single limb balance with eyes open, there were significant intervention main effects for the TTB ML mean (p<0.001), TTB AP mean (p=0.035) and TTB ML SD (p=0.021); indicating postural control improvement in both groups post-cooling. In single limb balance with eyes closed, Group×Intervention interactions were observed for the TTB AP mean (p=0.003) and TTB AP SD (p=0.017); indicating postural control deficits in CAI group post-cooling, but no changes in the control group. The main finding of this study was that reduced plantar cutaneous sensation induced by an ice submersion procedure caused eyes closed postural control impairments in those with CAI but not healthy controls. The present investigation demonstrated that the ability to dynamically reweight among sensory inputs to maintain postural stability appears to be diminished in CAI patients compared to healthy controls. Copyright © 2016. Published by Elsevier Ltd.
Differences in intermittent postural control between normal-weight and obese children.
Villarrasa-Sapiña, Israel; García-Massó, Xavier; Serra-Añó, Pilar; Garcia-Lucerga, Consolación; Gonzalez, Luis-Millán; Lurbe, Empar
2016-09-01
The main objective of this study was to determine differences in postural control between obese and non-obese children. The study design was cross-sectional, prospective, between-subjects. Postural control variables were obtained from a group of obese children and a normal-weight control group under two different postural conditions: bipedal standing position with eyes open and bipedal standing with eyes closed. Variables were obtained for each balance condition using time domain and sway-density plot analysis of the center of pressure signals acquired by means of a force plate. Pairwise comparisons revealed significant differences between obese and normal-weight children in mean velocity in antero-posterior and medio-lateral directions, ellipse area and mean distance with both eyes open and eyes closed. Normal-weight subjects obtained lower values in all these variables than obese subjects. Furthermore, there were differences between both groups in mean peaks with eyes open and in mean time with eyes closed. Alterations were detected in the intermittent postural control in obese children. According to the results obtained, active anticipatory control produces higher center of pressure displacement responses in obese children and the periods during which balance is maintained by passive control and reflex mechanisms are of shorter duration. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Hong-Yun; Zheng, Jie-Jiao; Zhang, Jian; Cai, Ye-Hua; Hua, Ying-Hui; Chen, Shi-Yi
2016-04-01
Lateral ankle sprain is the most common injury. A previous study demonstrated that patients with mechanical ankle instability suffered deficits in postural control, indicating that structural damage of the lateral ankle ligaments may produce a balance deficit. The purpose of this study was to confirm that lateral ligaments reconstruction could improve postural control in patients with mechanical ankle instability. A total of 15 patients were included in the study. Each patient had a history of an ankle sprain with persistent symptoms of ankle instability and a positive anterior drawer test and had been treated nonoperatively for at least 3 months. All patients were diagnosed with lateral ankle ligaments tear by ultrasonography and magnetic resonance imaging. They underwent arthroscopic debridement and open lateral ankle ligaments reconstruction with a modified Broström procedure. One day before and 6 months after the operation, all of the participants underwent single-limb postural sway tests. The anterior drawer test and the American Orthopedic Foot and Ankle Society scale score were used to evaluate the clinical results in these patients. At 6 months after the operation, with the patients' eyes closed, there was significantly decreased postural sway in the anteroposterior direction, the circumferential area, and the total path length on the operated ankles compared with those measurements before the operation. With eyes open, however, no difference was found in postural sway before and after the operation. Postural control was improved by reconstructing the lateral ligaments. IV.
The effect of aging on anticipatory postural control
Kanekar, Neeta; Aruin, Alexander S.
2014-01-01
The aim of the study was to investigate the differences in anticipatory (APAs) postural adjustments between young and older adults and its effect on subsequent control of posture. Ten healthy older adults and thirteen healthy young adults were exposed to predictable external perturbations using the pendulum-impact paradigm. EMG activity of the trunk and leg muscles, the center of pressure (COP), and center of mass (COM) displacements in the anterior-posterior (AP) direction were recorded and analyzed during the anticipatory and compensatory (CPAs) phases of postural control. The effect of aging was seen as delayed anticipatory muscle activity and larger compensatory muscle responses in older adults as compared to young adults. Moreover, in spite of such larger reactive responses, older adults were still more unstable, exhibiting larger COP and COM peak displacements after the perturbation than young adults when exposed to similar postural disturbances. Nonetheless, while APAs are impaired in older adults, the ability to recruit muscles anticipatorily is largely preserved, however, due to their smaller magnitudes and delayed onsets, it is likely that their effectiveness in reducing the magnitude of CPAs is smaller. The outcome of the study lends support towards investigating the ways of improving anticipatory postural control in people with balance impairments due to aging or neurological disorders. PMID:24449006
Mandibular deviations in TMD and non-TMD groups related to eye dominance and head posture.
Pradham, N S; White, G E; Mehta, N; Forgione, A
2001-01-01
This study was designed to determine whether eye-dominance affects head posture (rotation) and in turn, whether head posture is associated with mandibular frenum midline deviation, in both TMJ and control subjects. Eye dominance was determined using three tests: Porta, Hole, Point tests. Natural head posture was evaluated using the Arthrodial protractor. Mandibular frenum deviation was recorded as left, right or no deviation. Fifty female subjects were included in the study, 25 TMJ patients attending the Gelb Craniomandibular Pain Center and 25 non-TMJ control subjects. The findings indicate that eye dominance and direction of head rotation are strongly associated in both TMJ and control subjects. Further, in TMJ subjects mandibular deviation occurred in greater frequency than in controls and tends to occur in the contra lateral direction of head rotation.
Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C
2015-01-01
muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.
Akizuki, Kazunori; Ohashi, Yukari
2014-12-01
The influence of attention on postural control and the relationship between attention and falling has been reported in previous studies. Although a dual-task procedure is commonly used to measure attentional demand, such procedures are affected by allocation policy, which is a mental strategy to divide attention between simultaneous tasks. Therefore, we examined the effectiveness of salivary α-amylase, which is a physiological method for measuring attentional demand during postural control. Sixteen healthy participants performed a postural-control task using the Balance System, which is a device that can be calibrated to a specific stability level ("Level 1 = least stable" to "Level 8 = most stable"). Levels 1, 2, and 3 were used for this study. Dependent variables measured were overall stability index, which represents the variance of platform displacement in degrees from a horizontal plane; probe reaction time, which was measured using a sound stimulator and recorder; and salivary α-amylase, which was measured using a portable salivary amylase analyzer. As stability level of the test task decreased, both stability index and probe reaction time significantly increased. In addition, we identified a positive moderate correlation between probe reaction time and salivary α-amylase. Our results suggest that salivary α-amylase and probe reaction time reflect the change in attentional demands during a postural-control task and that salivary α-amylase may be an effective tool for evaluating attentional demands during postural control because it is noninvasive and simple to perform.
[Effects of Surgically Treated Pelvic Ring and Acetabular Fractures on Postural Control].
Lang, P; Schnegelberger, A; Riesner, H-J; Stuby, F; Friemert, B; Palm, H-G
2016-04-01
The aim of surgical treatment of pelvic ring and acetabular fractures is to allow rapid mobilisation of patients in order to restore stance and gait stability (postural control), as this significantly correlates with a positive outcome. The regulation of postural stability is mainly controlled by transmission of proprioceptive stimuli. In addition, the pelvis serves as a connection between the legs and the spine and thus is also of great importance for mechanical stabilisation. It remains unclear whether surgical treatment of pelvic ring and acetabular fractures affects the regulation of postural control. Therefore, the aim of this study was to examine the impact of surgically treated pelvic ring and acetabular fractures on postural stability by means of computerised dynamic posturography (CDP) after a mean of 35 months and to compare the results with a healthy control group. A retrospective case control study of 38 patients with surgically treated pelvic ring and acetabular fractures and 38 healthy volunteers was carried out using CDP. The average time of follow-up was 35 (12-78) months. The most important outcome parameter in this investigation was the overall stability index (OSI). Hip joint mobility, the health-related quality of life (SF-12) and pain were supplementary outcome parameters. It was found that surgically treated pelvic ring and acetabular fractures had no influence on postural stability. The OSI was 2.1 ° in the patient group and 1.9 ° in the control group. There was no significant difference between the groups in hip joint mobility. A total of 52 % of patients showed no or only mild pain. Mean health-related quality of life was the same as in the total population. Surgically treated pelvic ring and acetabular fractures do not lead to deterioration in postural control in the mid term. This is of high prognostic importance for rapid mobilisation of the patients. Therefore no increase in the risk of falling is expected after successfully treatment of fractures. Georg Thieme Verlag KG Stuttgart · New York.
Evaluation of Postural Control in Patients with Glaucoma Using a Virtual Reality Environment.
Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A
2015-06-01
To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in patients with glaucoma. Cross-sectional study. The study involved 42 patients with glaucoma with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Torque moments around the center of foot pressure on the force platform were measured, and the standard deviations of the torque moments (STD) were calculated as a measurement of postural stability and reported in Newton meters (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Patients with glaucoma had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) and rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared with those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with a history of falls in patients with glaucoma (incidence rate ratio, 1.85; 95% confidence interval, 1.30-2.63; P = 0.001). The study presented and validated a novel paradigm for evaluation of balance control in patients with glaucoma on the basis of the assessment of postural reactivity to dynamic visual stimuli using a virtual reality environment. The newly developed metrics were associated with a history of falls and may help to provide a better understanding of balance control in patients with glaucoma. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Evaluation of Postural Control in Glaucoma Patients Using a Virtual 1 Reality Environment
Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A.
2015-01-01
Purpose To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in glaucoma patients. Design Cross-sectional study. Participants The study involved 42 glaucoma patients with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Methods Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Main Outcome Measures Torque moments around the center of foot pressure on the force platform were measured and the standard deviations (STD) of these torque moments were calculated as a measurement of postural stability and reported in Newton meter (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Results Glaucoma patients had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) as well as rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared to those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with history of falls in glaucoma patients (incidence-rate ratio = 1.85; 95% CI: 1.30 – 2.63; P = 0.001). Conclusions The study presented and validated a novel paradigm for evaluation of balance control in glaucoma patients based on the assessment of postural reactivity to dynamic visual stimuli using a virtual reality environment. The newly developed metrics were associated with history of falls and may help to provide a better understanding of balance control in glaucoma patients. PMID:25892017
Bobbert, Maarten F; Richard Casius, L J; Kistemaker, Dinant A
2013-05-01
We investigated adjustments of control to initial posture in squat jumping. Eleven male subjects jumped from three initial postures: preferred initial posture (PP), a posture in which the trunk was rotated 18° more backward (BP) and a posture in which it was rotated 15° more forward (FP) than in PP. Kinematics, ground reaction forces and electromyograms (EMG) were collected. EMG was rectified and smoothed to obtain smoothed rectified EMG (srEMG). Subjects showed adjustments in srEMG histories, most conspicuously a shift in srEMG-onset of rectus femoris (REC): from early in BP to late in FP. Jumps from the subjects' initial postures were simulated with a musculoskeletal model comprising four segments and six Hill-type muscles, which had muscle stimulation (STIM) over time as input. STIM of each muscle changed from initial to maximal at STIM-onset, and STIM-onsets were optimized using jump height as criterion. Optimal simulated jumps from BP, PP and FP were similar to jumps of the subjects. Optimal solutions primarily differed in STIM-onset of REC: from early in BP to late in FP. Because the subjects' adjustments in srEMG-onsets were similar to adjustments of the model's optimal STIM-onsets, it was concluded that the former were near-optimal. With the model we also showed that near-maximum jumps from BP, PP and FP could be achieved when STIM-onset of REC depended on initial hip joint angle and STIM-onsets of the other muscles were posture-independent. A control theory that relies on a mapping from initial posture to STIM-onsets seems a parsimonious alternative to theories relying on internal optimal control models. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
The Relationship Between the Stomatognathic System and Body Posture
Cuccia, Antonino; Caradonna, Carola
2009-01-01
In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553
Haid, Thomas H.; Doix, Aude-Clémence M.; Nigg, Benno M.; Federolf, Peter A.
2018-01-01
Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: −9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: −8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control. PMID:29459826
Fluid and electrolyte control in simulated and actual spaceflight
NASA Technical Reports Server (NTRS)
Leach, C. S.; Johnson, P. C., Jr.
1985-01-01
Effects of microgravity on body fluid distribution and electrolyte and hormonal levels of astronauts have been studied since the early manned space missions. Bedrested subjects have been used as controls to separate effects of microgravity from those of hypokinesia. These investigations have led to documentation of the physiological effects of spaceflight and to a unified theory of response to microgravity. During flight, crewmembers have decreased thirst and a net loss of body water, sodium, and potassium. These changes seem to be initiated by passive transfer of extracellular fluid resulting in increased central venous pressure (CVP), to which the homeostatic mechanisms respond. A new equilibrium state is maintained during flight; it does not change in response to negative calcium and nitrogen balances during flight. On reexposure to gravity, profound water and salt retention occurs to replete extracellular fluid. Attempts to avoid cardiac deconditioning by repleting water and salt before leaving microgravity have somewhat ameliorated postural hypotension but have had little effect on CVP, cardiac chamber size or electrolyte dynamics.
Improving Dual-Task Control With a Posture-Second Strategy in Early-Stage Parkinson Disease.
Huang, Cheng-Ya; Chen, Yu-An; Hwang, Ing-Shiou; Wu, Ruey-Meei
2018-03-31
To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). University research laboratory. Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. Not applicable. Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2010-03-01
Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Abbasi, Soheila; Rojhani-Shirazi, Zahra; Shokri, Esmaeil; García-Muro San José, Francisco
2018-04-01
The aim of this study was to investigate the possible alterations in postural control during upright standing in subjects with non-specific chronic low back pain and the effect of Kinesio taping on the postural control. Twenty subjects with non-specific chronic low back pain and twenty healthy subjects participated in this study. The center of pressure excursion was evaluated before the intervention for both groups, and immediately after intervention for the low back pain group. Independent sample t-test, Mann-Whitney test and repeated measure ANOVA were used for the statistical analysis of the data. There were significant differences in the center of pressure excursion between the low back pain group versus the healthy group. The results of the ANOVA demonstrated a statistically significant difference in the mean COP displacement and velocity before Kinesio Taping, immediately after, and 24 h after in the low back pain group. There are poor postural control mechanisms in subjects with non-specific chronic low back pain. Kinesio taping seems to change postural control immediately and have lasting effects until the day after. Copyright © 2017 Elsevier Ltd. All rights reserved.
Support surface related changes in feedforward and feedback control of standing posture
Mohapatra, Sambit; Kukkar, Komal K.; Aruin, Alexander S.
2013-01-01
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. PMID:24268589
Lahr, Juliana; Pereira, Marcelo Pinto; Pelicioni, Paulo Henrique Silva; De Morais, Luana Carolina; Gobbi, Lilian Teresa Bucken
2015-12-01
This study assesses the association between disease onset side (dominant or non-dominant) and vision on postural control of Parkinson's disease patients. Patient volunteers composed two groups, according to the onset side affected: Dominant group (n=9; M age=66.1 yr., SD=7.2; 6 women, 3 men) and Non-dominant group (n=9; M age=67.4 yr., SD=6.4; 6 women, 3 men). The groups' postural control was assessed by posturography during quiet upright stance in two conditions, Eyes open and Eyes closed. Two-way analyses of variance (ANOVAs; group×condition) with repeated measures for the second factor assessed the differences associated with affected hemibody and vision on postural control. Analyses indicated that patients with the dominant side affected also presented significantly greater variation in center of pressure than those with the non-dominant side affected, mainly in the Eyes closed condition. The results demonstrate a higher reliance on vision in the dominant side, possibly to compensate somatosensory system impairments. These results also highlight the importance of analyzing the hemibody affected by the disease when postural control is assessed in this population.
Support surface related changes in feedforward and feedback control of standing posture.
Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S
2014-02-01
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Melzer, Itshak; Elbar, Ori; Tsedek, Irit; Oddsson, Lars IE
2008-01-01
Background Gait and balance impairments may increase the risk of falls, the leading cause of accidental death in the elderly population. Fall-related injuries constitute a serious public health problem associated with high costs for society as well as human suffering. A rapid step is the most important protective postural strategy, acting to recover equilibrium and prevent a fall from initiating. It can arise from large perturbations, but also frequently as a consequence of volitional movements. We propose to use a novel water-based training program which includes specific perturbation exercises that will target the stepping responses that could potentially have a profound effect in reducing risk of falling. We describe the water-based balance training program and a study protocol to evaluate its efficacy (Trial registration number #NCT00708136). Methods/Design The proposed water-based training program involves use of unpredictable, multi-directional perturbations in a group setting to evoke compensatory and volitional stepping responses. Perturbations are made by pushing slightly the subjects and by water turbulence, in 24 training sessions conducted over 12 weeks. Concurrent cognitive tasks during movement tasks are included. Principles of physical training and exercise including awareness, continuity, motivation, overload, periodicity, progression and specificity were used in the development of this novel program. Specific goals are to increase the speed of stepping responses and improve the postural control mechanism and physical functioning. A prospective, randomized, cross-over trial with concealed allocation, assessor blinding and intention-to-treat analysis will be performed to evaluate the efficacy of the water-based training program. A total of 36 community-dwelling adults (age 65–88) with no recent history of instability or falling will be assigned to either the perturbation-based training or a control group (no training). Voluntary step reaction times and postural stability using stabiliogram diffusion analysis will be tested before and after the 12 weeks of training. Discussion This study will determine whether a water-based balance training program that includes perturbation exercises, in a group setting, can improve speed of voluntary stepping responses and improve balance control. Results will help guide the development of more cost-effective interventions that can prevent the occurrence of falls in the elderly. PMID:18706103
EMG responses to maintain stance during multidirectional surface translations
NASA Technical Reports Server (NTRS)
Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1998-01-01
To characterize muscle synergy organization underlying multidirectional control of stance posture, electromyographic activity was recorded from 11 lower limb and trunk muscles of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. The latency and amplitude of muscle responses were quantified for each perturbation direction. Tuning curves for each muscle were examined to relate the amplitude of the muscle response to the direction of surface translation. The latencies of responses for the shank and thigh muscles were constant, regardless of perturbation direction. In contrast, the latencies for another thigh [tensor fascia latae (TFL)] and two trunk muscles [rectus abdominis (RAB) and erector spinae (ESP)] were either early or late, depending on the perturbation direction. These three muscles with direction-specific latencies may play different roles in postural control as prime movers or as stabilizers for different translation directions, depending on the timing of recruitment. Most muscle tuning curves were within one quadrant, having one direction of maximal activity, generally in response to diagonal surface translations. Two trunk muscles (RAB and ESP) and two lower limb muscles (semimembranosus and peroneus longus) had bipolar tuning curves, with two different directions of maximal activity, suggesting that these muscle can play different roles as part of different synergies, depending on translation direction. Muscle tuning curves tended to group into one of three regions in response to 12 different directions of perturbations. Two muscles [rectus femoris (RFM) and TFL] were maximally active in response to lateral surface translations. The remaining muscles clustered into one of two diagonal regions. The diagonal regions corresponded to the two primary directions of active horizontal force vector responses. Two muscles (RFM and adductor longus) were maximally active orthogonal to their predicted direction of maximal activity based on anatomic orientation. Some of the muscles in each of the synergic regions were not anatomic synergists, suggesting a complex central organization for recruitment of muscles. The results suggest that neither a simple reflex mechanism nor a fixed muscle synergy organization is adequate to explain the muscle activation patterns observed in this postural control task. Our results are consistent with a centrally mediated pattern of muscle latencies combined with peripheral influence on muscle magnitude. We suggest that a flexible continuum of muscle synergies that are modifiable in a task-dependent manner be used for equilibrium control in stance.
The dentist’s operating posture – ergonomic aspects
Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C
2014-01-01
Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007
Park, Sun Wook; Son, Sung Min; Lee, Na Kyung
2017-05-01
This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants) were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic) and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.
Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.
Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry
2009-06-01
The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.
Neck postures in air traffic controllers with and without neck/shoulder disorders.
Arvidsson, Inger; Hansson, Gert-Ake; Mathiassen, Svend Erik; Skerfving, Staffan
2008-03-01
Prolonged computer work with an extended neck is commonly believed to be associated with an increased risk of neck-shoulder disorders. The aim of this study was to compare neck postures during computer work between female cases with neck-shoulder disorders, and healthy referents. Based on physical examinations, 13 cases and 11 referents were selected among 70 female air traffic controllers with the same computer-based work tasks and identical workstations. Postures and movements were measured by inclinometers, placed on the forehead and upper back (C7/Th1) during authentic air traffic control. A recently developed method was applied to assess flexion/extension in the neck, calculated as the difference between head and upper back flexion/extension. cases and referents did not differ significantly in neck posture (median neck flexion/extension: -10 degrees vs. -9 degrees ; p=0.9). Hence, the belief that neck extension posture is associated with neck-shoulder disorders in computer work is not supported by the present data.
Increased dynamic regulation of postural tone through Alexander Technique training
Cacciatore, TW; Gurfinkel, VS; Horak, FB; Cordo, PJ; Ames, KE
2010-01-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo “long-term” (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of “short-term” (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (~50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. PMID:21185100
Increased dynamic regulation of postural tone through Alexander Technique training.
Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E
2011-02-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.
Balance ability and posture in postmenopausal women with chronic pelvic pain.
Fuentes-Márquez, Pedro; Rodríguez-Torres, Janet R; Valenza, Marie C; Ortíz-Rubio, Araceli; Ariza-Mateos, María J; Cabrera-Martos, Irene
2018-04-09
The aim of the present study was to analyze balance ability and posture in postmenopausal women with chronic pelvic pain (CPP). This study includes a sample of 48 women with CPP recruited from the Gynecology Service of Virgen de las Nieves and San Cecilio Hospitals in Granada (Spain) and 48 healthy control women matched with respect to age and anthropometric characteristics. Outcome variables collected included: balance ability (Mini-Balance Evaluation Systems Test and Timed Up an Go Test) and posture (photogrammetry and Spinal Mouse). Significant differences were found in all Mini Best Test subscales: total (P < 0.001), anticipatory (P = 0.002), reactive postural control (P < 0.001), sensory orientation (P < 0.001), and dynamic gait (P < 0.001), and all Timed Up and Go test subscales: alone (P < 0.001), with manual (P = 0.002) and cognitive task (P = 0.030). Significant differences were also found on spinal cervical angles with a forward head posture in women with CPP; global spine alignment exhibited more deviation in the women with CPP (P < 0.001); and a higher percentage of women with CPP (58%) presented with increased thoracic kyphosis and lumbar lordosis. Cohen's d was used to calculate the effect size. Some subscales of balance and posture tests showed a large effect size (d ≥0.8), indicating a more consistent result. Women with CPP presented poor balance including anticipatory, reactive postural control, sensory orientation, dynamic gait, and dual task-related conditions. Posture showed higher values on the dorsal angle and lower sacral inclination, less spine alignment, and a more prevalent posture with increased kyphosis and lumbar lordosis.
Kenis-Coskun, Ozge; Karadag-Saygi, Evrim; Bahar-Ozdemir, Yeliz; Gokdemir, Yasemin; Karadag, Bulent; Kayhan, Onder
2017-11-21
Cystic fibrosis (CF) affects the musculoskeletal system via a multifactorial pathway that includes vitamin D deficiency and involvement of respiratory muscles such as intercostals due to recurrent upper and lower respiratory tract infections. Eventual result is the deterioration of musculoskeletal health and posture in CF patients. Postural stability is directly affected by posture and can be compromised in every musculoskeletal problem. The aim of this study is to evaluate musculoskeletal system and postural stability in patients with CF. Patients with CF over six years of age and age and sex-matched control groups were included in the study. Cobb angle and thoracic kyphosis angles were measured on the spine radiographs. Both patients and control group were examined with pediatric gait, arms, legs and spine scale (pGALS). They also were evaluated with a NeuroCom Balance Master for their postural stability. Fifty-one patients with CF and 94 healthy controls participated in the study. In results of the pGALS examination, CF group had significantly more pathological findings than the control group in lower extremity appearance and movement (p = 0.006 and p = 0.01) and spine appearance and movement (p = 0.001 and p = 0.022) domains. The tandem walking speed was significantly higher in controls with a mean of 24.45 ± 7.79 while it was 20.47 ± 6.95 in the CF group (p = 0.03). Various limits of stability parameters also showed significant differences. Medium correlations were found between musculoskeletal examination and postural stability parameters. In patients with CF, a systematic but simple musculoskeletal examination can detect pathologies, which are more frequent than the normal population. These pathologies show a medium correlation with the involvement of postural stability.
Levanon, Yafa; Gefen, Amit; Lerman, Yehuda; Givon, Uri; Ratzon, Navah Z
2012-01-01
Typing is associated with musculoskeletal disorders (MSDs) caused by multiple risk factors. This control study aimed to evaluate the efficacy of a workplace intervention for reducing MSDs among computer workers. Sixty-six subjects with and without MSD were assigned consecutively to one of three groups: ergonomics intervention (work site and body posture adjustments, muscle activity training and exercises) accompanied with biofeedback training, the same ergonomics intervention without biofeedback and a control group. Evaluation of MSDs, body posture, psychosocial status, upper extremity (UE) kinematics and muscle surface electromyography were carried out before and after the intervention in the workplace and the motion lab. Our main hypothesis that significant differences in the reduction of MSDs will exist between subjects in the study groups and controls was confirmed (χ(2) = 13.3; p = 0.001). Significant changes were found in UE kinematics and posture as well. Both ergonomics interventions effectively reduced MSD and improved body posture. This study aimed to test the efficacy of an individual workplace intervention programme among computer workers by evaluating musculoskeletal disorders (MSDs), body posture, upper extremity kinematics, muscle activity and psychosocial factors were tested. The proposed ergonomics interventions effectively reduced MSDs and improved body posture.
Effects of emotional videos on postural control in children.
Brandão, Arthur de Freitas; Palluel, Estelle; Olivier, Isabelle; Nougier, Vincent
2016-03-01
The link between emotions and postural control has been rather unexplored in children. The objective of the present study was to establish whether the projection of pleasant and unpleasant videos with similar arousal would lead to specific postural responses such as postural freezing, aversive or appetitive behaviours as a function of age. We hypothesized that postural sway would similarly increase with the viewing of high arousal videos in children and adults, whatever the emotional context. 40 children participated in the study and were divided into two groups of age: group 7-9 years (n=23; mean age=8 years ± 0.7) and group 10-12 years (n=17; mean age=11 years ± 0.7). 19 adults (mean age=25.8 years ± 4.4) also took part in the experiment. They viewed emotional videos while standing still on a force platform. Centre of foot pressure (CoP) displacements were analysed. Antero-posterior, medio-lateral mean speed and sway path length increased similarly with the viewing of high arousal movies in the younger, older children, and adults. Our findings suggest that the development of postural control is not influenced by the maturation of the emotional processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of hip and knee osteoarthritis on dynamic postural control parameters among older fallers.
Mat, Sumaiyah; Ng, Chin Teck; Tan, Maw Pin
2017-03-06
To compare the relationship between postural control and knee and hip osteoarthritis in older adults with and without a history of falls. Fallers were those with ≥ 2 falls or 1 injurious fall over 12 months. Non-fallers were volunteers with no falls in the past year. Radiological evidence of osteoarthritis with no reported symptoms was considered "asymptomatic osteoarthritis", while "symptomatic osteoarthritis" was defined as radiographic osteoarthritis with pain or stiffness. Dynamic postural control was quantified with the limits of stability test measured on a balance platform (Neurocom® Balancemaster, California, USA). Parameters assessed were end-point excursion, maximal excursion, and directional control. A total of 102 older individuals, mean age 73 years (standard deviation 5.7) years were included. The association between falls and poor performance in maximal excursion and directional control was confounded by age and comorbidities. In the same linear equation model with falls, symptomatic osteoarthritis remained independently associated with poor end-point excursion (β-coefficient (95% confidence interval) -6.80 (-12.14 to -1.42)). Poor performance in dynamic postural control (maximal excursion and directional control) among fallers was not accounted for by hip/knee osteoarthritis, but was confounded by old age and comorbidities. Loss of postural control due to hip/knee osteoarthritis is not a risk factor for falls among community-dwelling older adults.
Disruption of postural readaptation by inertial stimuli following space flight
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.
1999-01-01
Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.
Closed loop kinesthetic feedback for postural control rehabilitation.
Vérité, Fabien; Bachta, Wael; Morel, Guillaume
2014-01-01
Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.
Effects of experimental leg length discrepancies on body posture and dental occlusion.
Maeda, Nozomi; Sakaguchi, Kiwamu; Mehta, Noshir R; Abdallah, Emad F; Forgione, Albert G; Yokoyama, Atsuro
2011-07-01
The purpose of this study was to quantitatively evaluate the effects of experimental leg length discrepancies on body posture and dental occlusion. Thirty asymptomatic subjects (15 males and 15 females, ages 19-33, mean age 25.6 years) were included in this study and randomly assigned to one of two groups based on a table of random numbers. The only difference between group A and group B was the sequence of testing. Experimental leg length discrepancies were provided by using ten types of insoles with heights ranging from one to ten mm at one mm intervals, placed under both feet. The MatScan (Nitta Corp., Osaka, Japan) system was used to measure changes in body posture (center of foot pressure: COP) while subjects maintained the following three postural positions: 1. natural standing posture (control); 2. control with a heel lift under the right foot; or 3. control with a heel lift under the left foot. The T-Scan II system (Nitta Corp., Osaka, Japan) was used to analyze the results of changes in dental occlusion (center of occlusal force: COF) in the above-mentioned three postural positions. When subjects used a heel lift of six mm or more under the right foot, lateral weight distribution (LWD) shifted to the right side compared to the control (p<0.05). When a heel lift of four mm or more was used under the left foot, LWD shifted to the left side compared to the control (p<0.05). When subjects used a heel lift of eight mm or more under the right foot, occlusal force shifted to the right side compared to the control (p<0.05). When subjects used a heel lift of seven mm or more under the left foot, occlusal force shifted to the left side compared to the control (p<0.05). Based on these findings, it was concluded that leg length discrepancy affected body posture and dental occlusion.
Preuschoft, Holger; Klein, Nicole
2013-01-01
The long necks of sauropods have been subject to many studies regarding their posture and flexibility. Length of the neck varies among groups. Here, we investigate neck posture and morphology in several clades from a mechanical viewpoint. Emphasis is put on comparing sauropod necks and tails with structures in living archosaurs and mammals. Differences in the use made of necks and tails lead to clear-cut differences in the mechanical loads occurring in the same models. Ways of sustaining loads are identified by theoretical considerations. If the observed skeletal structures are suited to resist the estimated loading in a particular posture, this concordance is taken as an argument that this posture or movement was of importance during the life of the individual. Apart from the often-discussed bending in side view, we analyze the often overlooked torsion. Because torsional stresses in a homogenous element concentrate near the periphery, a cylindrical cross section gives greatest strength, and the direction of forces is oblique. In a vertebrate neck, during e.g. shaking the head and twisting the neck, oblique muscles, like the mm. scaleni, if activated unilaterally initiate movement, counterbalance the torsional moments and keep the joints between neck vertebrae in equilibrium. If activated bilaterally, these muscles keep the neck balanced in an energy-saving upright posture. The tendons of the mm. scaleni may have ossified as cervical ribs The long cervical ribs in brachiosaurids and mamenchisaurids seem to have limited flexibility, whereas the shorter cervical ribs in Diplodocidae allowed free movement. The tails of sauropods do not show pronounced adaptation to torsion, and seem to have been carried more or less in a horizontal, extended posture. In this respect, sauropod tails resemble the necks of herbivorous cursorial mammals. These analyses provide an improved understanding of neck use that will be extended to other sauropods in subsequent studies. PMID:24205268
Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia
2017-09-15
The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.
Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon
2017-10-01
The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.
Stapley, Paul J; Drew, Trevor
2009-03-01
This study was designed to determine the contribution of reticular neurons in the pontomedullary reticular formation (PMRF) to the postural responses produced to compensate for an unexpected perturbation. We recorded the activity of 48 neurons in the PMRF, including 41 reticulospinal neurons, to removal of the support surface under each of the four limbs in four cats. The perturbations produced robust postural responses that were divided into three periods: an initial postural response (P1) that displaced the center of vertical pressure over the two diagonal supporting limbs; a secondary response (P2) during which the cat restored a tripedal support pattern; and a prolonged tertiary response (P3) that maintained a stable posture over all three supporting limbs. Most (44/48) reticular neurons showed modified activity to perturbation of at least one limb and a majority (39/48) showed changes in activity to perturbations of more than one limb. A few (7/48) discharged to perturbations of all four limbs. Discharge frequency in neurons showing increased activity during P1 was relatively high (>100 Hz in 57% of the neurons responding to perturbations of either the left or right forelimbs, lFl and rFL) and of short latency (17 ms for the lFL and 14 ms for the rFL). Discharge activity in most neurons was sustained throughout P2 and P3 but at a reduced level. These data show that neurons in the PMRF discharge strongly in response to unexpected perturbations and in a manner consistent with a contribution to the compensatory responses that restore equilibrium.
Motion sickness elicited by passive rotation in squirrel monkeys
NASA Technical Reports Server (NTRS)
Daunton, Nancy G.; Fox, Robert A.
1991-01-01
Current theory and recent evidence suggest that motion sickness occurs under conditions of sensory input in which the normal motor programs for producing eye, head, and body movements are not functionally effective, i.e. under conditions in which there are difficulties in maintaining posture and controlling eye movements. Conditions involving conflicting or inconsistent visual-vestibular (VV) stimulation should thus result in greater sickness rates since the existing motor programs do not produce effective control of eye-head-body movements under such conditions. It is felt that the relationship of postural control to motion sickness is an important one and one often overlooked. The results are reported which showed that when postural requirements were minimized by fully restraining squirrel monkeys during hypogravity parabolic flight, no animals became motion sick, but over 80 percent of the same 11 animals became sick if they were unrestrained and maintained control of their posture.
NASA Astrophysics Data System (ADS)
Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut
2012-07-01
Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.
Effects of Levodopa on Postural Strategies in Parkinson’s disease
Mancini, Martina; Rocchi, Laura; Horak, Fay
2017-01-01
Altered postural control and balance are major disabling issues of Parkinson’s disease (PD). Static and dynamic posturography have provided insight into PD’s postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172
Effects of Levodopa on Postural Strategies in Parkinson's disease.
Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay
2016-05-01
Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. Copyright © 2016 Elsevier B.V. All rights reserved.
Bastien, Renaud; Bohr, Tomas; Moulia, Bruno; Douady, Stéphane
2013-01-01
Gravitropism, the slow reorientation of plant growth in response to gravity, is a key determinant of the form and posture of land plants. Shoot gravitropism is triggered when statocysts sense the local angle of the growing organ relative to the gravitational field. Lateral transport of the hormone auxin to the lower side is then enhanced, resulting in differential gene expression and cell elongation causing the organ to bend. However, little is known about the dynamics, regulation, and diversity of the entire bending and straightening process. Here, we modeled the bending and straightening of a rod-like organ and compared it with the gravitropism kinematics of different organs from 11 angiosperms. We show that gravitropic straightening shares common traits across species, organs, and orders of magnitude. The minimal dynamic model accounting for these traits is not the widely cited gravisensing law but one that also takes into account the sensing of local curvature, what we describe here as a graviproprioceptive law. In our model, the entire dynamics of the bending/straightening response is described by a single dimensionless “bending number” B that reflects the ratio between graviceptive and proprioceptive sensitivities. The parameter B defines both the final shape of the organ at equilibrium and the timing of curving and straightening. B can be estimated from simple experiments, and the model can then explain most of the diversity observed in experiments. Proprioceptive sensing is thus as important as gravisensing in gravitropic control, and the B ratio can be measured as phenotype in genetic studies. PMID:23236182
Bastien, Renaud; Bohr, Tomas; Moulia, Bruno; Douady, Stéphane
2013-01-08
Gravitropism, the slow reorientation of plant growth in response to gravity, is a key determinant of the form and posture of land plants. Shoot gravitropism is triggered when statocysts sense the local angle of the growing organ relative to the gravitational field. Lateral transport of the hormone auxin to the lower side is then enhanced, resulting in differential gene expression and cell elongation causing the organ to bend. However, little is known about the dynamics, regulation, and diversity of the entire bending and straightening process. Here, we modeled the bending and straightening of a rod-like organ and compared it with the gravitropism kinematics of different organs from 11 angiosperms. We show that gravitropic straightening shares common traits across species, organs, and orders of magnitude. The minimal dynamic model accounting for these traits is not the widely cited gravisensing law but one that also takes into account the sensing of local curvature, what we describe here as a graviproprioceptive law. In our model, the entire dynamics of the bending/straightening response is described by a single dimensionless "bending number" B that reflects the ratio between graviceptive and proprioceptive sensitivities. The parameter B defines both the final shape of the organ at equilibrium and the timing of curving and straightening. B can be estimated from simple experiments, and the model can then explain most of the diversity observed in experiments. Proprioceptive sensing is thus as important as gravisensing in gravitropic control, and the B ratio can be measured as phenotype in genetic studies.
Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
Gehlen, Manuel; Eklund, Anders; Kurtcuoglu, Vartan; Malm, Jan; Schmid Daners, Marianne
2017-08-01
Three different types of anti-siphon devices (ASDs) have been developed to counteract siphoning-induced overdrainage in upright posture. However, it is not known how the different ASDs affect CSF dynamics under the complex pressure environment seen in clinic due to postural changes. We investigated which ASDs can avoid overdrainage in upright posture best without leading to CSF accumulation. Three shunts each of the types Codman Hakim with SiphonGuard (flow-regulated), Miethke miniNAV with proSA (gravitational), and Medtronic Delta (membrane controlled) were tested. The shunts were compared on a novel in vitro setup that actively emulates the physiology of a shunted patient. This testing method allows determining the CSF drainage rates, resulting CSF volume, and intracranial pressure in the supine, sitting, and standing posture. The flow-regulated ASDs avoided increased drainage by closing their primary flow path when drainage exceeded 1.39 ± 0.42 mL/min. However, with intraperitoneal pressure increased in standing posture, we observed reopening of the ASD in 3 out of 18 experiment repetitions. The adjustable gravitational ASDs allow independent opening pressures in horizontal and vertical orientation, but they did not provide constant drainage in upright posture (0.37 ± 0.03 mL/min and 0.26 ± 0.03 mL/min in sitting and standing posture, respectively). Consequently, adaptation to the individual patient is critical. The membrane-controlled ASDs stopped drainage in upright posture. This eliminates the risk of overdrainage, but leads to CSF accumulation up to the volume observed without shunting when the patient is upright. While all tested ASDs reduced overdrainage, their actual performance will depend on a patient's specific needs because of the large variation in the way the ASDs influence CSF dynamics: while the flow-regulated shunts provide continuous drainage in upright posture, the gravitational ASDs allow and require additional adaptation, and the membrane-controlled ASDs show robust siphon prevention by a total stop of drainage.
Postural control after a prolonged treadmill run at individual ventilatory and anaerobic threshold.
Guidetti, Laura; Franciosi, Emanuele; Gallotta, Maria Chiara; Emerenziani, Gian Pietro; Baldari, Carlo
2011-01-01
The objective of the study was to verify whether young males' balance was affected by 30min prolonged treadmill running (TR) at individual ventilatory (IVT) and anaerobic (IAT) thresholds in recovery time. The VO2max, IAT and IVT during an incremental TR were determined. Mean displacement amplitude (Acp) and velocity (Vcp) of center of pressure were recorded before (pre) and after (0min post; 5min post; and 10min post) prolonged TR at IAT and IVT, through posturographic trials performed with eyes open (EO) and closed (EC). Significant differences between IVT and IAT for Vcp, between EO and EC for Acp and Vcp, were observed. The IAT induced higher destabilizing effect when postural trials were performed with EC. The IVT intensity produced also a destabilizing effect on postural control immediately after exercise. An impairment of postural control after prolonged treadmill running exercise at IVT and IAT intensity was showed. However, destabilizing effect on postural control disappeared within 10min after IAT intensity and within 5min after IVT intensity. Key pointsTo verify whether young males' balance was affected by 30min prolonged treadmill running at individual ventilatory and anaerobic thresholds in recovery time.Mean displacement amplitude and velocity of foot pressure center were recorded before and after prolonged treadmill running at individual ventilatory and anaerobic thresholds, through posturographic trials performed with eyes open and closed.Destabilizing effect on postural control disappeared within 10min post individual anaerobic threshold, and within 5min post individual ventilatory threshold.
Coordination exercise and postural stability in elderly people: Effect of Tai Chi Chuan.
Wong, A M; Lin, Y C; Chou, S W; Tang, F T; Wong, P Y
2001-05-01
To evaluate the effects of coordination exercise on postural stability in older individuals by Chinese shadow boxing, Tai Chi Chuan (TCC). Cross-sectional study. Research project in a hospital-based biomechanical laboratory. The TCC group (n = 25) had been practicing TCC regularly for 2 to 35 years. The control group (n = 14) included healthy and active older subjects. Static postural stability test: progressively harder sequential tests with 6 combinations of vision (eyes open, eyes closed, sway-referenced) and support (fixed, sway-referenced); and dynamic balance test: 3 tests of weight shifting (left to right, forward-backward, multidirectional) at 3 speeds. Static and dynamic balance of Sensory Organization Testing (SOT) of the Smart Balance Master System. In static postural control, the results showed no differences between the TCC or control group in the more simple conditions, but in the more complicated SOT (eyes closed with sway surface, sway vision with sway surface), the TCC group had significantly better results than the control group. The TCC group also had significantly better results in the rhythmic forward-backward weight-shifting test. Duration of practice did not seem to affect the stability of elder people. The elderly people who regularly practiced TCC showed better postural stability in the more challenged conditions than those who do not (eg, the condition with simultaneous disturbance of vision and proprioception). TCC as a coordination exercise may reduce the risk of a fall through maintaining the ability of posture control.
Gauchard, Gérome C; Gangloff, Pierre; Jeandel, Claude; Perrin, Philippe P
2003-09-01
Balance disorders increase considerably with age due to a decrease in posture regulation quality, and are accompanied by a higher risk of falling. Conversely, physical activities have been shown to improve the quality of postural control in elderly individuals and decrease the number of falls. The aim of this study was to evaluate the impact of two types of exercise on the visual afferent and on the different parameters of static balance regulation. Static postural control was evaluated in 44 healthy women aged over 60 years. Among them, 15 regularly practiced proprioceptive physical activities (Group I), 12 regularly practiced bioenergetic physical activities (Group II), and 18 controls walked on a regular basis (Group III). Group I participants displayed lower sway path and area values, whereas Group III participants displayed the highest, both in eyes-open and eyes-closed conditions. Group II participants displayed intermediate values, close to those of Group I in the eyes-open condition and those of Group III in the eyes-closed condition. Visual afferent contribution was more pronounced for Group II and III participants than for Group I participants. Proprioceptive exercise appears to have the best impact on balance regulation and precision. Besides, even if bioenergetic activity improves postural control in simple postural tasks, more difficult postural tasks show that this type of activity does not develop a neurosensorial proprioceptive input threshold as well, probably on account of the higher contribution of visual afferent.
Three components of postural control associated with pushing in symmetrical and asymmetrical stance.
Lee, Yun-Ju; Aruin, Alexander S
2013-07-01
A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.
Influence of real and virtual heights on standing balance.
Cleworth, Taylor W; Horslen, Brian C; Carpenter, Mark G
2012-06-01
Fear and anxiety induced by threatening scenarios, such as standing on elevated surfaces, have been shown to influence postural control in young adults. There is also a need to understand how postural threat influences postural control in populations with balance deficits and risk of falls. However, safety and feasibility issues limit opportunities to place such populations in physically threatening scenarios. Virtual reality (VR) has successfully been used to simulate threatening environments, although it is unclear whether the same postural changes can be elicited by changes in virtual and real threat conditions. Therefore, the purpose of this study was to compare the effects of real and virtual heights on changes to standing postural control, electrodermal activity (EDA) and psycho-social state. Seventeen subjects stood at low and high heights in both real and virtual environments matched in scale and visual detail. A repeated measures ANOVA revealed increases with height, independent of visual environment, in EDA, anxiety, fear, and center of pressure (COP) frequency, and decreases with height in perceived stability, balance confidence and COP amplitude. Interaction effects were seen for fear and COP mean position; where real elicited larger changes with height than VR. This study demonstrates the utility of VR, as simulated heights resulted in changes to postural, autonomic and psycho-social measures similar to those seen at real heights. As a result, VR may be a useful tool for studying threat related changes in postural control in populations at risk of falls, and to screen and rehabilitate balance deficits associated with fear and anxiety. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol.
Baghbani, Fatemeh; Woodhouse, Linda J; Gaeini, Abbas A
2016-07-01
Baghbani, F, Woodhouse, LJ, and Gaeini, AA. Dynamic postural control in female athletes and nonathletes after a whole-body fatigue protocol. J Strength Cond Res 30(7): 1942-1947, 2016-Postural control is a crucial element in regular training of athletes, development of complex technical movement, and injury prevention; however, distributing factor of the postural control such as fatigue has been neglected by athletic trainers in novice and inexperienced athletes. The objective of this study was to compare changes in dynamic postural control of young female athletes and nonathletes after a fatigue protocol. Thirty females (15 athletes and 15 nonathletes) with no orthopedic problems were recruited to participate in this study. All participants completed the pre-SEBT (star excursion balance test) in 8 directions at baseline; then, they performed a 20-minute fatigue protocol after which post-SEBT was measured. Rating of perceived exertion was measured using the Borg scale immediately before, mid-way through (i.e., after the third station), and after performing the fatigue protocol (i.e., immediately before the post-SEBT). Female nonathlete groups had significant differences in dynamic balance performance after fatigue in the medial, posteromedial, and posterior directions (p < 0.01) measured by SEBT. Athletes, however, showed no significant changes after the fatigue protocol. Our results indicates the importance of evaluation and monitoring of dynamic postural control of the novice with progressing the exercise time. Our findings could also help coaches to develop trainings focused on the 3 directions of medial, posteromedial, and posterior directions and aimed at exercises increasing fatigue resistance.
Coupling of fingertip somatosensory information to head and body sway
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Schoner, G.; Dijkstra, T.; Ribeiro, P.; Lackner, J. R.
1997-01-01
Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.
Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.
2015-01-01
BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132
Ellmers, Toby J; Paraskevopoulos, Ioannis Th; Williams, A Mark; Young, William R
2018-03-22
Published reports suggest a disparity between perceived and actual balance abilities, a trait associated with increased fall-risk in older adults. We investigate whether it is possible to 'recalibrate' these disparities using a novel gaming intervention. We recruited 26 older adults for a 4-week intervention in which they participated in 8-sessions using a novel gaming intervention designed to provide explicit, augmented feedback related to postural control. Measures of perceived balance abilities (Falls Efficacy Scale-International) and actual postural control (limits of stability) were assessed pre- and post-intervention. We used focus groups to elicit the opinions of participants about how the game may have influenced balance abilities and confidence. A stronger alignment was observed between postural control and perceived balance capabilities post-intervention (i.e., significant correlations between Falls Efficacy Scale-International scores and limits of stability which were not present pre-intervention). Also, significant improvements in measures of postural control were observed, with these improvements confined to the aspects of postural control for which the exergame provided explicit, augmented feedback. Qualitative data revealed that the intervention made participants more "aware" of their balance abilities. Our results demonstrate that it is possible to recalibrate the perceptions of older adults relating to their balance abilities through a targeted, short-term intervention. We propose that the post-intervention improvements in postural control may have been, in part, the result of this recalibration; with altered perceptions leading to changes in balance performance. Findings support the application of novel interventions aimed at addressing the psychological factors associated with elderly falls.
ERIC Educational Resources Information Center
Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.
2011-01-01
The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…
Coordination between posture and movement: interaction between postural and accuracy constraints.
Berrigan, Félix; Simoneau, Martin; Martin, Olivier; Teasdale, Normand
2006-04-01
We examined the interaction between the control of posture and an aiming movement. Balance control was varied by having subjects aim at a target from a seated or a standing position. The aiming difficulty was varied using a Fitts'-like paradigm (movement amplitude=30 cm; target widths=0.5, 1.0, 2.5 and 5 cm). For both postural conditions, all targets were within the reaching space in front of the subjects and kept at a fixed relative position with respect to the subjects' body. Hence, for a given target size, the aiming was differentiated only by the postural context (seated vs. upright standing). For both postural conditions, movement time (MT) followed the well-known Fitts' law, that is, it increased with a decreasing target size. For the smallest target width, however, the increased MT was greater when subjects were standing than when they were seated suggesting that the difficulty of the aiming task could not be determined solely by the target size. When standing, a coordination between the trunk and the arm was observed. Also, as the target size decreased, the center of pressure (CP) displacement increased without any increase in CP speed suggesting that the subjects were regulating their CP to provide a controlled referential to assist the hand movement. When seated, the CP kinematics was scaled with the hand movement kinematics. Increasing the index of difficulty led to a strong correlation between the hand speed and CP displacement and speed. The complex organization between posture and movement was revealed only by examining the specific interactions between speed-accuracy and postural constraints.
Sensory Organization of Balance Control in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Fong, Shirley S. M.; Lee, Velma Y. L.; Pang, Marco Y. C.
2011-01-01
This study aimed to (1) compare functional balance performance and sensory organization of postural control between children with and without developmental coordination disorder (DCD) and (2) determine the association between postural control and participation diversity among children with DCD. We recruited 81 children with DCD and 67 typically…
NASA Astrophysics Data System (ADS)
Denomme, Luke T.
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the straight walking portion of the task in addition to a smaller DSM range (i.e., COM remained close to lateral BOS) during the entire steering task. These results suggest that IwMS adopt postural and dynamic control strategies (i.e., increased COP velocity, smaller self-selected maximal sway comfort zones and reduced walking speed) in order to maintain stability and complete the tasks. Results further revealed that IwMS display similar levels of postural and dynamic stability to OA despite differences in the type of sensory impairment possessed by each group. The findings also provide insights into the comparison of IwMS to two populations who represent the two extreme ends of the balance control continuum: HAMI and OA. Our data indicates that the level of postural and dynamic balance control in IwMS appears to express similar characteristics and may be located closer to the OA population on this continuum. Future research should evaluate the level of somatosensory impairment (i.e., monofilament testing and tuning fork tendon tap testing) between IwMS and OA in order to better differentiate levels of postural and dynamic balance control between groups and to gain a better understanding of where each group may be specifically located on the age-related balance control continuum.
Proprioceptive isokinetic exercise test
NASA Technical Reports Server (NTRS)
Dempster, P. T.; Bernauer, E. M.; Bond, M.; Greenleaf, J. E.
1993-01-01
Proprioception, the reception of stimuli within the body that indicates position, is an important mechanism for optimal human performance. People exposed to prolonged bed rest, microgravity, or other deconditioning situations usually experience reduced proprioceptor and kinesthetic stimuli that compromise body balance, posture, and equilibrium. A new proprioceptive test is described that utilizes the computer-driven LIDO isokinetic ergometer. An overview of the computer logic, software, and testing procedure for this proprioceptive test, which can be performed with the arms or legs, is described.
Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.
Borel, L; Alescio-Lautier, B
2014-01-01
In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems
NASA Astrophysics Data System (ADS)
Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar
2017-03-01
The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness.
Cerruto, Carmen; Di Vece, Luca; Doldo, Tiziana; Giovannetti, Agostino; Polimeni, Antonella; Goracci, Cecilia
2012-01-01
To assess the applicability of a computerized method to measure on digital photographs the changes in head and scapular posture following rapid palatal expansion (RPE) treatment. Randomized controlled trial. Twenty-three children (age 9.2 +/- 70.88 years) diagnosed with maxillary constriction were randomly divided into two groups: 1. Study group (n = 12): patients receiving RPE treatment; 2. Untreated controls (n = 11). Postural measurements were taken on frontal, lateral, and dorsal views of each subject. In the study group measurements were taken at T0 (the day orthodontic records were taken), T1 (end of RPE active phase), and T2 (RPE removal). In controls the same observations were conducted at T0 and T1(98.18 +/- 36.01 days after T0). Measurements were statistically analyzed (Intraclass Correlation Coefficient, t-tests, Signed Rank test, One-Way Repeated Measures Analysis of Variance, Tukey test; p < 0.05). In the study group a significant reduction in forward head posture (FHP) occurred between T0 and T1. Forward shoulder posture (FSP) decreased significantly between T1 and T2. At T1 treated patients exhibited significantly lower values of the measurements indicating FHP and FSP than controls. Changes in head and scapular posture following RPE treatment can be documented with computerized measurements on digital photographs.
Balasubramaniam, Ramesh
2014-01-01
Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576
Adaptations in movement performance after plyometric training on mini-trampoline in children.
Arabatzi, Fotini
2018-01-01
Deficits in postural control and skill performance are important intrinsic fall risk factors. Thus, the purpose of this study was to investigate the impact of trampoline plyometrics on postural control, and jumping height in prepubertal children. Twenty-two school children were assigned to either a trampoline group (TPLG, N.=12, 7 girls and 5 boys, age =9.30±0.55 years) or a control group (CG, N.=12, 8 girls and 4 boys, age =9.30±0.55 years). The TPLG participated in 4 weeks plyometric training on a mini-trampoline (3 times per week) integrated in their physical education lessons while the CG attended the standard physical education curriculum at school. Pre- and postintervention included the measurements of postural sway and maximum height in countermovement and drop jump. Postural sway decreased significantly (P<0.05) in normal quiet stance (NQS) for the TPLG but not for the CG. Statistically significant decreases in postural sway in the anteroposterior direction during one-leg stance (OLS) were found for the TPLG whereas postural sway was unchanged at both directions for control group. Furthermore, statistically significant improvements in jump height were found only for TPLG after training (P<0.05). Training on elastic surface could be incorporated into children's exercise programs aiming to enhance balance and lower-limb strength to reduce injury rates. For injury prevention during trampoline training, close supervision by experienced personnel is recommended.
de Oliveira, Gerson; Tavares, Maria da Consolação Cunha Gomes Fernandes; de Faria Oliveira, Jane Domingues; Rodrigues, Marcos Rojo; Santaella, Danilo Forghieri
2016-01-01
There is a little evidence about the influence of yoga as a complementary therapy for postural balance and its influence on activities of daily living in multiple sclerosis (MS) patients. To evaluate the influence of a six-month yoga program on postural balance and subjective impact of postural balance impairment on activities of daily living in people with MS. Randomized controlled pilot study. Protocol developed at the Adaptive Physical Activity Study Department, College of Physical Education, State University of Campinas, Brazil. A total of 12 (11 women) yoga naive people with MS randomly divided into two groups as follows: Control (C-waiting list, n = 6) and Yoga (Y-Yoga training, n = 6). Yoga group practiced postures, breathing exercises, meditation, and relaxation on weekly 60-min classes for a six-month period. The following evaluations were performed at study entry (baseline), and after six months (six months): Berg Balance Scale (BBS), Expanded Disability Status Scale (EDSS), and self-reported postural balance quality and influence of postural balance on activities of daily living. There was a significant improvement in BBS score from baseline to six months only in the Yoga group, especially in subjects with higher EDSS score, with increased quality of self-reported postural balance, and decreased influence of postural balance impairment on activities of daily living. In conclusion, a six-month yoga training is beneficial for people with MS, since it improves postural balance and decreases the influence of postural balance impairment on activities of daily living. A greater sample size is necessary to increase generalization, but it seems that yoga could be included as a feasible complementary therapy for people with MS. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Landrock, Clinton K.
Falls are the leading cause of all external injuries. Outcomes of falls include the leading cause of traumatic brain injury and bone fractures, and high direct medical costs in the billions of dollars. This work focused on developing three areas of enabling component technology to be used in postural control monitoring tools targeting the mitigation of falls. The first was an analysis tool based on stochastic fractal analysis to reliably measure levels of motor control. The second focus was on thin film wearable pressure sensors capable of relaying data for the first tool. The third was new thin film advanced optics for improving phototherapy devices targeting postural control disorders. Two populations, athletes and elderly, were studied against control groups. The results of these studies clearly show that monitoring postural stability in at-risk groups can be achieved reliably, and an integrated wearable system can be envisioned for both monitoring and treatment purposes. Keywords: electro-active polymer, ionic polymer-metal composite, postural control, motor control, fall prevention, sports medicine, fractal analysis, physiological signals, wearable sensors, phototherapy, photobiomodulation, nano-optics.
Early intensive postural and movement training advances head control in very young infants.
Lee, Hui-Min; Galloway, James Cole
2012-07-01
Daily experiences are thought to play an important role in motor development during infancy. There are limited studies on the effect of postural and movement experiences on head control. The purpose of this study was to quantify the effects of postural and movement experiences on head control through a comprehensive set of measurements beginning when infants were 1 month old. This was a prospective, longitudinal, 2-cohort study. Twenty-two full-term infants who were healthy were randomly assigned to either a training group or a control group. Infants were observed every other week from 1 to 4 months of age. Head control was assessed using a standardized developmental assessment tool, the Test of Infant Motor Performance (TIMP), as well as behavioral coding and kinematics of infants' head postures and movements in a supported sitting position. Caregivers performed at least 20 minutes of daily postural and movement activities (training group), or social interaction (control group) for 4 weeks. The training group had higher TIMP scores on head control-related items during the training period and after training stopped compared with the control group. Starting from the during training phase, the training group infants had their heads in a vertical and midline position longer compared with the control group infants. After training stopped, the training group infants actively moved their heads forward more often and for larger distances. The experiences outside daily training were not monitored, and the results may be specific to the experimental setup for infants with typical development. Young infants are able to take advantage of postural and movement experiences to rapidly advance their head control as early as 4 to 6 weeks of postnatal life. Infant positioning, caregiver handling, and caregiver-infant interactions were likely contributing factors. This database of comprehensive measures may be useful in future trials focused on head control in infants with special needs.
Effects of a salsa dance training on balance and strength performance in older adults.
Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W
2012-01-01
Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.
Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas
2014-12-01
Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.
Baumberger, Bernard; Isableu, Brice; Flückiger, Michelangelo
2004-11-01
The aim of this research was to analyse the development of postural reactions to approaching (AOF) and receding (ROF) ground rectilinear optical flows. Optical flows were shaped by a pattern of circular spots of light projected on the ground surface by a texture flow generator. The geometrical structure of the projected scenes corresponded to the spatial organisation of visual flows encountered in open outdoor settings. Postural readjustments of 56 children, ranging from 7 to 11 years old, and 12 adults were recorded by the changes of the centre of foot pressure (CoP) on a force platform during 44-s exposures to the moving texture. Before and after the optical flows exposure, a 24-s motionless texture served as a reference condition. Effect of ground rectilinear optical flows on postural control development was assessed by analysing sway latencies (SL), stability performances and postural orientation. The main results that emerge from this experiment show that postural responses are directionally specific to optical flow pattern and that they vary as a function of the motion onset and offset. Results showed that greater developmental changes in postural control occurred in an AOF (both at the onset and offset of the optical flow) than in an ROF. Onset of an approaching flow induced postural instability, canonical shifts in postural orientation and long latencies in children which were stronger than in the receding flow. This pattern of responses evolved with age towards an improvement in stability performances and shorter SL. The backward decreasing shift of the CoP in children evolved in adults towards forward postural tilt, i.show $132#e. in the opposite direction of the texture's motion. Offset of an AOF motion induced very short SL in children (which became longer in adult subjects), strong postural instability, but weaker shift of orientation compared to the receding one. Postural stability improved and orientation shift evolved to forward inclinations with age. SL remained almost constant across age at both onset and offset of the receding flow. Critical developmental periods seem to occur by the age of 8 and 10 years, as suggested by the transient 'neglect' of the children to optical flows. Linear vection was felt by 90% of the 7 year olds and decreased with age to reach 55% in adult subjects. The mature sensorimotor coordination subserving the postural organisation shown in adult subjects is an example aiming at reducing the postural effects induced by optical flows. The data are discussed in relation to the perceptual importance of mobile visual references on a ground support.
Contribution of supraspinal systems to generation of automatic postural responses
Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.
2014-01-01
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741
Postural disorders and spatial neglect in stroke patients: a strong association.
Pérennou, Dominic
2006-01-01
In this paper we analyse the arguments for a strong association between spatial neglect and postural disorders and attempt to better understand the mechanisms which underlie that. We first provide a general overview of the available tools for a rational assessment of postural control in a clinical context. We then analyse the arguments in favour of a close relationship, although not necessarily causal, between spatial neglect and: 1) body orientation with respect to gravity (including verticality perception i.e. the visual vertical, the haptic vertical, and the postural vertical); 2) body stabilisation with respect to the base of support; 3) posturographic features of stroke patients; 4) and finally their postural disability in daily life. This second part of the paper is based both on the literature review and on results of our current research. Neglect patients show a dramatic postural disability, due both to problems in body orientation with respect to gravity and to problems in body stabilisation. It might be that these problems are partly caused by a neglect phenomenon bearing on graviceptive (somaesthetic > vestibular) and visual information serving postural control. This could correspond to a kind of postural neglect involving both the bodily and nonbodily domains of spatial neglect. The existence of distorsion(s) in the body scheme are also probably involved, especially to explain the weight-bearing asymmetry in standing, and probably an impaired multisegmental postural coordination leading to an impaired body stabilisation. The present paper explains why neglect patients show longer/worse recovery of postural-walking autonomy than other stroke patients.
The effect of leg preference on postural stability in healthy athletes.
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H
2014-01-03
In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.
Domagalska-Szopa, Małgorzata; Szopa, Andrzej
2017-11-01
Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Specificity of learning: why infants fall over a veritable cliff.
Adolph, K E
2000-07-01
Nine-month-old infants were tested at the precipice of safe and risky gaps in the surface of support. Their reaching and avoidance responses were compared in two postures, an experienced sitting posture and a less familiar crawling posture. The babies avoided reaching over risky gaps in the sitting posture but fell into risky gaps while attempting to reach in the crawling posture. This dissociation between developmental changes in posture suggests that (a) each postural milestone represents a different, modularly organized control system and (b) infants' adaptive avoidance responses are based on information about their postural stability relative to the gap size. Moreover, the results belie previous accounts suggesting that avoidance of a disparity in depth of the ground surface depends on general knowledge such as fear of heights, associations between depth information and falling, or knowledge that the body cannot be supported in empty space.
Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril
2016-07-01
Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor control in this musculoskeletal condition. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Lelard, Thierry; Doutrellot, Pierre-Louis; David, Pascal; Ahmaidi, Said
2010-01-01
Lelard T, Doutrellot P-L, David P, Ahmaidi S. Effects of a 12-week Tai Chi Chuan program versus a balance training program on postural control and walking ability in older people. To compare the respective effects of 2 balance training programs: a Tai Chi (TC) program and a balance training program on static postural control and walking ability. Randomized controlled trial. General community. Older subjects (N=28) participated in the study. The TC group (n=14; mean age +/- SD, 76.8+/-5.1y) and the balance training group (n=14; 77.0+/-4.5y) were both trained for 12 weeks. Static postural control was assessed via measurement of center of pressure sway under eyes open (EO) and eyes closed (EC) conditions. Walking speed over a 10-meter course was also assessed. After the 12-week training period, there were no significant differences in walking speed or postural parameters in either the EO or EC conditions for the TC and balance training groups. Performance in the EC condition was lower than in the EO condition in pretest and posttest for the balance training and TC groups. The Romberg quotient (EO/EC ratio) was significantly higher after the balance training program than the TC program (P<.05). We cannot conclude that the balance training program has better effects than the TC program on postural control or walking ability. None of the outcome measures showed significant change posttraining in either the TC or the balance training groups. However, the differences described in the Romberg quotient after the training period between the TC and the balance training groups suggest that TC should be helpful to limit the deleterious effects of eye closure on postural balance. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T
2015-02-01
The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reinthal, Ann Karas; Mansour, Linda Moeller; Greenwald, Glenna
2004-01-01
This case study examined the effectiveness of a programme designed to improve anticipatory postural control in an adolescent over years 2 and 3 post-traumatic brain injury (TBI). It was hypothesized that her difficulty in walking and talking simultaneously was caused by excessive co-activation of extremity, trunk, and oral musculature during upright activities. The participant was treated weekly by physical and speech therapy. Treatment focussed on improving anticipatory postural control during gross motor activities in conjunction with oral-motor function. Initially, the participant walked using a walker at a speed of 23 cm s(-1). Two years later, she could walk without a device at 53 cm s(-1). Initial laryngoscopic examination showed minimal movement of the velum or pharyngeal walls; full movement was present after treatment. The measure of intelligibility improved from no single word intelligible utterances to 85% intelligible utterances after 2 years. The results suggest that less compensatory rigidification of oral musculature was needed to maintain an upright position against gravity as postural control improved. An adolescent 1-year post-TBI was followed as she underwent additional rehabilitation focussed on improving anticipatory postural control. The functional goal of simultaneously talking while walking was achieved through this intervention.
Imbalance in Multiple Sclerosis: A Result of Slowed Spinal Somatosensory Conduction
Cameron, Michelle H.; Horak, Fay B.; Herndon, Robert R.; Bourdette, Dennis
2009-01-01
Balance problems and falls are common in people with multiple sclerosis (MS) but their cause and nature are not well understood. It is known that MS affects many areas of the central nervous system that can impact postural responses to maintain balance, including the cerebellum and the spinal cord. Cerebellar balance disorders are associated with normal latencies but reduced scaling of postural responses. We therefore examined the latency and scaling of automatic postural responses, and their relationship to somatosensory evoked potentials (SSEPs), in 10 people with MS and imbalance and 10 age-, sex-matched, healthy controls. The latency and scaling of postural responses to backward surface translations of 5 different velocities and amplitudes, and the latency of spinal and supraspinal somatosensory conduction, were examined. Subjects with MS had large, but very delayed automatic postural response latencies compared to controls (161ms ± 31 vs 102 ± 21, p < 0.01) and these postural response latencies correlated with the latencies of their spinal SSEPs (r=0.73, p< 0.01). Subjects with MS also had normal or excessive scaling of postural response amplitude to perturbation velocity and amplitude. Longer latency postural responses were associated with less velocity scaling and more amplitude scaling. Balance deficits in people with MS appear to be caused by slowed spinal somatosensory conduction and not by cerebellar involvement. People with MS appear to compensate for their slowed spinal somatosensory conduction by increasing the amplitude scaling and the magnitude of their postural responses. PMID:18570015
Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A; Manor, Brad
2017-06-07
Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.
Janssens, Lotte; Brumagne, Simon; McConnell, Alison K.; Claeys, Kurt; Pijnenburg, Madelon; Goossens, Nina; Burtin, Chris; Janssens, Wim; Decramer, Marc; Troosters, Thierry
2014-01-01
Background Functional activities, such as the sit-to-stand-to-sit (STSTS) task, are often impaired in individuals with chronic obstructive pulmonary disease (COPD). The STSTS task places a high demand on the postural control system, which has been shown to be impaired in individuals with COPD. It remains unknown whether postural control deficits contribute to the decreased STSTS performance in individuals with COPD. Methods Center of pressure displacement was determined in 18 individuals with COPD and 18 age/gender-matched controls during five consecutive STSTS movements with vision occluded. The total duration, as well as the duration of each sit, sit-to-stand, stand and stand-to-sit phase was recorded. Results Individuals with COPD needed significantly more time to perform five consecutive STSTS movements compared to healthy controls (19±6 vs. 13±4 seconds, respectively; p = 0.001). The COPD group exhibited a significantly longer stand phase (p = 0.028) and stand-to-sit phase (p = 0.001) compared to the control group. In contrast, the duration of the sit phase (p = 0.766) and sit-to-stand phase (p = 0.999) was not different between groups. Conclusions Compared to healthy individuals, individuals with COPD needed significantly more time to complete those phases of the STSTS task that require the greatest postural control. These findings support the proposition that suboptimal postural control is an important contributor to the decreased STSTS performance in individuals with COPD. PMID:24533072
Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz
2014-05-01
Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work. Copyright 2014, SLACK Incorporated.
Nakajima, Masashi
2011-03-01
Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.
Role of support afferentation in control of the tonic muscle activity
NASA Astrophysics Data System (ADS)
Kozlovskaya, I. B.; Sayenko, I. V.; Sayenko, D. G.; Miller, T. F.; Khusnutdinova, D. R.; Melnik, K. A.
2007-02-01
The paper summarizes the results of experimental studies advocating for the leading role of support afferentation in control of the functional organization of the tonic muscle system. It is shown that transition to supportless conditions is followed by a significant decline of transverse stiffness and maximal voluntary force of postural (extensor) muscles limiting their participation in locomotion and increasing involvement of phasic muscles. Mechanical stimulation of the support zones of the soles under the supportless conditions eliminates all the above-mentioned effects, including changes in transverse stiffness and maximal voluntary forces of postural muscles, and consequent loss of influence of postural muscles in the locomotor activity. It is suggested that support afferentation, facilitating (support is present) or suppressing (support is absent) the tonic motor units (MUs) activities, defines the coordination patterns of postural synergies, and ensures the optimal strategy of corrective postural responses.
2018-01-01
Background Postural control may be impaired in children with foetal alcohol spectrum disorders (FASD). The study assessed the protocol feasibility in terms of (1) recruiting children with FASD in a rural, small town; (2) using the measurement instruments in a real-life setting; (3) the one-leg standing (OLS) task and (4) presenting preliminary results on postural stability of children with and without FASD. Methods Nine-year-old children diagnosed with and without FASD were invited to participate. Twenty-eight children performed OLS. Feasibility outcomes included recruitment, measurement instrument use and task instruction. Postural stability outcomes included standing duration, centre of pressure (COP) and body segment acceleration. Results Participants recruitment was feasible in terms of the (1) ability to sample a reasonable participant number in a rural town setting and the capacity to increase the sample size if more schools are included in the sampling frame and (2) use of assent and consent forms that were appropriate for this population. The measurement instruments were user-friendly, cost-effective and time-efficient. Instructions for the task require amendment to address foot placement of the non-weight–bearing leg. There was a significant difference between cases and controls on mean COP velocity (p = 0.001) and the pelvis segment acceleration in the mediolateral direction (p = 0.01) and the anteroposterior direction (p = 0.027). The control children took longer to achieve postural control. The girls demonstrated a significant difference for the COP anteroposterior displacement (p = 0.008) and velocity (p = 0.049). Conclusions The recruitment of children with and without FASD in a rural, small town and the administration of measurement instruments in a real-life, school-based setting was feasible. However, the verbal instructions for the task require revision. The male control group took longer to achieve postural control because the task was performed differently between the two groups. However, the case girls were slower to achieve postural control than control girls though performing the task similarly. PMID:29707515
Sahinoğlu, Dilek; Coskun, Gürsoy; Bek, Nilgün
2017-02-01
Adaptive seating supports for cerebral palsy are recommended to develop and maintain optimum posture, and functional use of upper extremities. To compare the effectiveness of different seating adaptations regarding postural alignment and related functions and to investigate the effects of these seating adaptations on different motor levels. Prospective study. A total of 20 children with spastic cerebral palsy (Gross Motor Function Classification System 3-5) were included. Postural control and function (Seated Postural Control Measure, Sitting Assessment Scale) were measured in three different systems: standard chair, adjustable seating system and custom-made orthosis. In results of all participants ungrouped, there was a significant difference in most parameters of both measurement tools in favor of custom-made orthosis and adjustable seating system when compared to standard chair ( p < 0.0017). There was a difference among interventions in most of the Seated Postural Control Measure results in Level 4 when subjects were grouped according to Gross Motor Function Classification System levels. A difference was observed between standard chair and adjustable seating system in foot control, arm control, and total Sitting Assessment Scale scores; and between standard chair and custom-made orthosis in trunk control, arm control, and total Sitting Assessment Scale score in Level 4. There was no difference in adjustable seating system and custom-made orthosis in Sitting Assessment Scale in this group of children ( p < 0.017). Although custom-made orthosis fabrication is time consuming, it is still recommended since it is custom made, easy to use, and low-cost. On the other hand, the adjustable seating system can be modified according to a patient's height and weight. Clinical relevance It was found that Gross Motor Function Classification System Level 4 children benefitted most from the seating support systems. It was presented that standard chair is sufficient in providing postural alignment. Both custom-made orthosis and adjustable seating system have pros and cons and the best solution for each will be dependent on a number of factors.
Effects of Kinesio taping and exercise on forward head posture.
Shih, Hsu-Sheng; Chen, Shu-Shi; Cheng, Su-Chun; Chang, Hsun-Wen; Wu, Pei-Rong; Yang, Jin-Shiou; Lee, Yi-Shuang; Tsou, Jui-Yi
2017-01-01
Little is known about the effects of Kinesio taping and therapeutic exercise on correcting forward head posture. To compare Kinesio taping versus therapeutic exercise for forward head posture on static posture, dynamic mobility and functional outcomes. Sixty subjects (31 women, 29 men) with forward head postures participated in this study. They were randomly assigned to either one of the three groups: (1) exercise group (n = 20), (2) taping group (n = 20), and (3) control groups (n = 20). The horizontal forward displacement (HFD) between ear lobe and acromion process, upper cervical and lower cervical angle (UCA, LCA), active range of motion (AROM) of cervical spine, and neck disability index (NDI) were measured before and after a 5-week intervention, and a 2-week follow-up. Data were analyzed by means of a mixed design repeated-measures ANOVA. Both taping and exercise groups showed significant improvements in HFD compared with the control group at post-treatment and follow-up. Compared with the control group, the exercise group exhibited significant improvements in the LCA and the side bending AROM at post-treatment. Both Kinesio taping and therapeutic exercise improve forward head posture after intervention and a 2-week follow-up. The effectiveness of therapeutic exercise is better than taping.
The effect of extended wake on postural control in young adults.
Smith, Simon S; Cheng, Tiffany; Kerr, Graham K
2012-09-01
The sleep-wake cycle is a major determinant of locomotor activity in humans, and the neural and physiological processes necessary for optimum postural control may be impaired by an extension of the wake period into habitual sleep time. There is growing evidence for such a contribution from sleep-related factors, but great inconsistency in the methods used to assess this contribution, particularly in control for circadian phase position. Postural control was assessed at hourly intervals across 14 h of extended wake in nine young adult participants. Force plate parameters of medio-lateral and anterior-posterior sway, centre of pressure (CoP) trace length, area, and velocity were assessed with eyes open and eyes closed over 3-min periods. A standard measure of psychomotor vigilance was assessed concurrently under constant routine conditions. After controlling for individual differences in circadian phase position, a significant effect of extended wake was found for anterior-posterior sway and for psychomotor vigilance. These data suggest that extended wake may increase the risk of a fall or other consequences of impaired postural control.
Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
Yiou, E; Deroche, T; Do, M C; Woodman, T
2011-04-01
During leg flexion from erect posture, postural stability is organized in advance during "anticipatory postural adjustments" (APA). During these APA, inertial forces are generated that propel the centre of gravity (CoG) laterally towards stance leg side. This study examined how fear of falling (FoF) may influence this anticipatory postural control of medio-lateral (ML) stability. Ten young healthy participants performed a series of leg flexions at maximal velocity from low and high surface heights (6 and 66 cm above ground, respectively). In this latter condition with increased FoF, stance foot was placed at the lateral edge of the support surface to induce maximal postural threat. Results showed that the amplitude of ML inertial forces generated during APA decreased with FoF; this decrease was compensated by an increase in APA duration so that the CoG position at time of swing foot-off was located further towards stance leg side. With these changes in ML APA, the CoG was propelled in the same final (unipodal) position above stance foot as in condition with low FoF. These results contrast with those obtained in the literature during quiet standing which showed that FoF did not have any influence on the ML component of postural control. It is proposed that ML APA are modified with increased FoF, in such a way that the risk of a sideway fall induced by the large CoG motion is attenuated.
Effect of chest physiotherapy on the removal of mucus in patients with cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossman, C.M.; Waldes, R.; Sampson, D.
1982-07-01
We studied the effectiveness of some of the components of a physiotherapy regimen on the removal of mucus from the lungs of 6 subjects with cystic fibrosis. On 5 randomized study days, after inhalation of a /sup 99/mTc-human serum albumin aerosol to label primarily the large airways, the removal of lung radioactivity was measured during 40 min of (a) spontaneous cough while at rest (control), (b) postural drainage, (c) postural drainage plus mechanical percussion, (d) combined maneuvers (postural drainage, deep breathing with vibrations, and percussion) administered by a physiotherapist, (e) directed vigorous cough. Measurements continued for an additional 2 hmore » of quiet rest. Compared with the control day, all forms of intervention significantly improved the removal of mucus: cough (p less than 0.005), physiotherapy maneuvers (0.005 less than or equal to p less than 0.01), postural drainage (p less than 0.05), and postural drainage plus percussion (p less than 0.01). However, there was no significant difference between regimented cough alone and therapist-administered combined maneuvers, nor between postural drainage alone and with mechanical percussion. We conclude that in cystic fibrosis, vigorous, regimented cough sessions may be as effective as therapist-administered physiotherapy in removing pulmonary secretions. Postural drainage, although better than the control maneuver, was not as effective as cough and was not enhanced by mechanical percussion. Frequent, vigorous self-directed cough sessions are potentially as useful as more complex measures for effective bronchial toilet.« less
Report of 14-day bedrest simulation of Skylab
NASA Technical Reports Server (NTRS)
Johnson, P. C. (Compiler); Mitchell, C. (Compiler)
1976-01-01
Part one of a two-phase bedrest project in which the physiological effects of weightlessness were simulated is presented. The project was designed to approximate the medical testing and dietary control of Skylab. The test period included a three week pre-flight period, a two week bedrest period and a two week post-flight period. The test subjects ate measured amounts of the Skylab diet and drank deionized water to recreate the metabolic balance studies of Skylab. The medical testing program, pre- and postbedrest, was similar to that of Skylab including: lower body negative pressure testing the orthostatic intolerance noted after both spaceflights and bedrest, bicycle ergometry testing the cardiovascular response to graded exercise, postural equilibrium, vestibular studies and electromyograms. Fluid and electrolyte shifts and balance were documented with intake and output records and radionuclide studies. The subjects were observed by a psychiatrist who watched for signs of mental stress in the test environment and changes in mental status.
Ankle and hip postural strategies defined by joint torques
NASA Technical Reports Server (NTRS)
Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)
1999-01-01
Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control patterns into a continuum of postural corrections.
One month of contemporary dance modulates fractal posture in aging
Coubard, Olivier A.; Ferrufino, Lena; Nonaka, Tetsushi; Zelada, Oscar; Bril, Blandine; Dietrich, Gilles
2013-01-01
Understanding the human aging of postural control and how physical or motor activity improves balance and gait is challenging for both clinicians and researchers. Previous studies have evidenced that physical and sporting activity focusing on cardiovascular and strength conditioning help older adults develop their balance and gait and/or decrease their frequency of falls. Motor activity based on motor-skill learning has also been put forward as an alternative to develop balance and/or prevent falls in aging. Specifically dance has been advocated as a promising program to boost motor control. In this study, we examined the effects of contemporary dance (CD) on postural control of older adults. Upright stance posturography was performed in 38 participants aged 54–89 years before and after the intervention period, during which one half of the randomly assigned participants was trained to CD and the other half was not trained at all (no dance, ND). CD training lasted 4 weeks, 3 times a week. We performed classical statistic scores of postural signal and dynamic analyses, namely signal diffusion analysis (SDA), recurrence quantification analysis (RQA), and detrended fluctuation analysis (DFA). CD modulated postural control in older trainees, as revealed in the eyes closed condition by a decrease in fractal dimension and an increase in DFA alpha component in the mediolateral plane. The ND group showed an increase in length and mean velocity of postural signal, and the eyes open a decrease in RQA maximal diagonal line in the anteroposterior plane and an increase in DFA alpha component in the mediolateral plane. No change was found in SDA in either group. We suggest that such a massed practice of CD reduced the quantity of exchange between the subject and the environment by increasing their postural confidence. Since CD has low-physical but high-motor impact, we conclude that it may be recommended as a useful program to rehabilitate posture in aging. PMID:24611047
Pilot randomised controlled trial of face-down positioning following macular hole surgery.
Lange, C A K; Membrey, L; Ahmad, N; Wickham, L; Maclaren, R E; Solebo, L; Xing, W; Bunce, C; Ezra, E; Charteris, D; Aylward, B; Yorston, D; Gregor, Z; Zambarakji, H; Bainbridge, J W
2012-02-01
This was a pilot randomised controlled trial (RCT) to investigate the effect of post-operative face-down positioning on the outcome of macular hole surgery and to inform the design of a larger definitive study. In all, 30 phakic eyes of 30 subjects with idiopathic full-thickness macular holes underwent vitrectomy with dye-assisted peeling of the ILM and 14% perfluoropropane gas. Subjects were randomly allocated to posture face down for 10 days (posturing group) or to avoid a face-up position only (non-posturing group). The primary outcome was anatomical hole closure. Macular holes closed in 14 of 15 eyes (93.3%; 95% confidence interval (CI) 68-100%) in the posturing group and in 9 of 15 (60%; 95% CI 32-84%) in the non-posturing group. In a subgroup analysis of outcome according to macular hole size, all holes smaller than 400 μm closed regardless of posturing (100%). In contrast, holes larger than 400 μm closed in 10 of 11 eyes (91%; 95% CI 58-99%) in the posturing group and in only 4 of 10 eyes (40%; 95% CI 12-74%) in the non-posturing group (Fisher's exact test P=0.02). Post-operative face-down positioning may improve the likelihood of macular hole closure, particularly for holes larger than 400 μm. These results support the case for a RCT.
Matheron, Eric; Yang, Qing; Delpit-Baraut, Vincent; Dailly, Olivier; Kapoula, Zoï
2016-01-01
Performance of the vestibular, visual, and somatosensory systems decreases with age, reducing the capacity of postural control, and increasing the risk of falling. The purpose of this study is to measure the effects of vision, active vergence eye movements, viewing distance/vergence angle and a simple cognitive task on postural control during an upright stance, in completely autonomous elderly individuals. Participated in the study, 23 elderly subjects (73.4 ± 6.8 years) who were enrolled in a center dedicated to the prevention of falling. Their body oscillations were measured with the DynaPort(®) device, with three accelerometers, placed at the lumbosacral level, near the center of mass. The conditions were the following: eyes open fixating on LED at 20 cm or 150 cm (vergence angle 17.0° and 2.3° respectively) with or without additional cognitive tasks (counting down from one hundred), performing active vergence by alternating the fixation between the far and the near LED (convergence and divergence), eyes closed after having fixated the far LED. The results showed that the postural stability significantly decreased when fixating on the LED at a far distance (weak convergence angle) with or without cognitive tasks; active convergence-divergence between the LEDs improved the postural stability while eye closure decreased it. The privilege of proximity (with increased convergence at near), previously established with foot posturography, is shown here to be valid for accelerometry with the center of mass in elderly. Another major result is the beneficial contribution of active vergence eye movements to better postural stability. The results bring new perspectives for the role of eye movement training to preserve postural control and autonomy in elderly. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L.
2016-01-01
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and help a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties. PMID:27866261
Piscitelli, Daniele; Falaki, Ali; Solnik, Stanislaw; Latash, Mark L
2017-03-01
We explored two aspects of feed-forward postural control, anticipatory postural adjustments (APAs) and anticipatory synergy adjustments (ASAs) seen prior to self-triggered unloading with known and unknown direction of the perturbation. In particular, we tested two main hypotheses predicting contrasting changes in APAs and ASAs. The first hypothesis predicted no major changes in ASAs. The second hypothesis predicted delayed APAs with predominance of co-contraction patterns when perturbation direction was unknown. Healthy subjects stood on the force plate and held a bar with two loads acting in the forward and backward directions. They pressed a trigger that released one of the loads causing a postural perturbation. In different series, the direction of the perturbation was either known (the same load released in all trials) or unknown (the subjects did not know which of the two loads would be released). Surface electromyograms were recorded and used to quantify APAs, synergies stabilizing center of pressure coordinate (within the uncontrolled manifold hypothesis), and ASA. APAs and ASAs were seen in all conditions. APAs were delayed, and predominance of co-contraction patterns was seen under the conditions with unpredictable direction of perturbation. In contrast, no significant changes in synergies and ASAs were seen. Overall, these results show that feed-forward control of vertical posture has two distinct components, reflected in APAs and ASAs, which show qualitatively different adjustments with changes in predictability of the direction of perturbation. These results are interpreted within the recently proposed hierarchical scheme of the synergic control of motor tasks. The observations underscore the complexity of the feed-forward postural control, which involves separate changes in salient performance variables (such as coordinate of the center of pressure) and in their stability properties.
The effect of face exploration on postural control in healthy children.
Goulème, Nathalie; Seassau, Magali; Bucci, Maria Pia
2015-07-01
The objective was to explore how face exploration affects postural control in healthy children. The novelty here is that eye movements and posture were simultaneously recorded. Three groups of children participated in the study: 12 children of 7.8±0.5 years old, 13 children of 10.4±0.5 years old and 12 children of 15.7±0.9 years old. Eye movements were recorded by video-oculography and postural stability was recorded by a platform. Children were invited to explore five emotional faces (neutral, happy, sad fear and angry). Analysis of eye movements was done on saccadic latency, percentage of exploration time spent and number of saccades for each specific region of interest (ROI): eyes, nose and mouth. Analysis of posture was made on surface area, sway length and mean velocity of the center of pressures (CoP). Results showed that visual strategies, exploration and postural control develop during childhood and adolescence. Indeed, after nine years-old, children started to look the eyes ROI firstly, then the nose ROI and finally the mouth ROI. The number of saccades decreased with the age of children. The percentage of exploration time spent in eyes ROI was longer than the others ROIs and greater for unpleasant faces (sad, fear and angry) with respect to pleasant emotional face (happy). We found that in front of sad and happy faces the surface area of the CoP was significantly larger compared to other faces (neutral and angry). These results suggest that visual strategies and postural control change during children's development and can be influenced by the emotional face. Copyright © 2015 Elsevier B.V. All rights reserved.
Longitudinal Study Evaluating Postural Balance of Young Athletes.
Steinberg, Nili; Nemet, Dan; Pantanowitz, Michal; Zeev, Aviva; Hallumi, Monder; Sindiani, Mahmood; Meckel, Yoav; Eliakim, Alon
2016-02-01
Repeated anaerobic conditions during athletic performance may cause general and local fatigue that result in postural balance deficit. Evidence suggests that improved postural balance during athletic training may decrease the risk for fallings and traumatic injuries among athletes. Twenty athletes (12 girls, 8 boys) and 20 controls (12 girls, 8 boys) ages 10-15 years participated in the current study. All athletes were active in an 8-month physical activity program, 3 times per week for 90 min., specific to basketball, soccer, or athletic training. The control children participated in physical education at school only, with no involvement in organized extracurricular sports. All participants were evaluated for postural balance in three assessments over one year (at 4-mo intervals); the Interactive Balance System machine (Tetrax device) was used to assess balance at three test times (pre-, post-, and 10 min) after a session of a repeated sprint anaerobic test, consisting of 12 × 20 m run starting every 20 sec. The athletes had better postural balance than controls. There were different group patterns of change over the sessions; a significant interaction of session and group indicated that postural balance of the groups differed. The contribution of low sway frequencies (F1) and high sway frequencies (F6) differed between the controls and the athletes group. Results suggested that although athletes had better postural balance, improvement should be encouraged during training over the sessions and seasons, with special awareness of the balance deficit that occurs immediately after anaerobic stress and at the end of the season, to decrease the risk of injuries. © The Author(s) 2016.
Lee, Myung Mo; Lee, Kyeong Jin; Song, Chang Ho
2018-04-27
BACKGROUND Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. MATERIAL AND METHODS Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. RESULTS At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). CONCLUSIONS Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.
Characteristics of balance control in older persons who fall with injury--a prospective study.
Kurz, Ilan; Oddsson, Lars; Melzer, Itshak
2013-08-01
Older adults who have recently fallen demonstrate increased postural sway compared with non-fallers. However, the differences in postural control between older adults who were seriously injured (SI) as a result of a fall, compared with those who fell but were not injured (NSI) and non-fallers (NFs), has not been investigated. The objective of the present study was to investigate the underlying postural control mechanisms related to injuries resulting from a fall. Both traditional postural sway measures of foot center-of-pressure (CoP) displacements and fractal measures, the Stabilogram-Diffusion Analysis (SDA), were used to characterize the postural control. One hundred older adults aged 65-91years were tested during narrow base upright stance in eyes closed condition; falls were monitored over a 1-year period. Forty-nine older adults fell during the 1-year follow-up, 13 were seriously injured as a result of a fall (SI), 36 were not injured (NSI), and 49 were non-fallers (NFs); two passed away. The SDA showed significantly higher short-term diffusion coefficients and critical displacements in SI in the anterior-posterior direction compared with both NSI and NF. However, in the medio-lateral direction there were no statistically significant differences between groups. For the traditional measures of sway, the average anterior-posterior CoP range was also larger in SI individuals. This work suggests that older fallers with a deterioration of anterior-posterior postural control may be at higher risk of serious injury following fall events. Copyright © 2013 Elsevier Ltd. All rights reserved.
David, Pascal; Laval, David; Terrien, Jérémy; Petitjean, Michel
2012-01-01
The present study sought to establish links between hyperventilation and postural stability. Eight university students were asked to stand upright under two hyperventilation conditions applied randomly: (1) a metabolic hyperventilation induced by 5 min of hypercapnic-hyperoxic rebreathing (CO(2)-R); and, (2) a voluntary hyperventilation (VH) of 3 min imposed by a metronome set at 25 cycles per min. Recordings were obtained with eyes open, with the subjects standing on a force plate over 20-s periods. Ventilatory response, displacements in the centre of pressure in both the frontal and sagittal planes and fluctuations in the three planes of the ground reaction force were monitored in the time and frequency domains. Postural changes related to respiratory variations were quantified by coherence analysis. Myoelectric activities of the calf muscles were recorded using surface electromyography. Force plate measurements revealed a reduction in postural stability during both CO(2)-R and VH conditions, mainly in the sagittal plane. Coherence analysis provided evidence of a ventilatory origin in the vertical ground reaction force fluctuations during VH. Electromyographic analyses showed different leg muscles strategies, assuming the existence of links between the control of respiration and the control of posture. Our results suggest that the greater disturbing effects caused by voluntary hyperventilation on body balance are more compensated when respiration is under automatic control. These findings may have implications for understanding the organisation of postural and respiratory activities and suggest that stability of the body may be compromised in situations in which respiratory demand increases and requires voluntary control.
Ringhof, Steffen; Leibold, Timo; Hellmann, Daniel; Stein, Thorsten
2015-10-01
Recent studies reported on the potential benefits of submaximum clenching of the jaw on human postural control in upright unperturbed stance. However, it remained unclear whether these effects might also be observed among active controls. The purpose of the present study, therefore, was to comparatively examine the influence of concurrent muscle activation in terms of submaximum clenching of the jaw and submaximum clenching of the fists on postural stability. Posturographic analyses were conducted with 17 healthy young adults on firm and foam surfaces while either clenching the jaw (JAW) or clenching the fists (FIST), whereas habitual standing served as the control condition (CON). Both submaximum tasks were performed at 25% maximum voluntary contraction, assessed, and visualized in real time by means of electromyography. Statistical analyses revealed that center of pressure (COP) displacements were significantly reduced during JAW and FIST, but with no differences between both concurrent clenching activities. Further, a significant increase in COP displacements was observed for the foam as compared to the firm condition. The results showed that concurrent muscle activation significantly improved postural stability compared with habitual standing, and thus emphasize the beneficial effects of jaw and fist clenching for static postural control. It is suggested that concurrent activities contribute to the facilitation of human motor excitability, finally increasing the neural drive to the distal muscles. Future studies should evaluate whether elderly or patients with compromised postural control might benefit from these physiological responses, e.g., in the form of a reduced risk of falling. Copyright © 2015 Elsevier B.V. All rights reserved.
Postural control and freezing of gait in Parkinson's disease.
Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther
2016-03-01
The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p < 0.01). PD+FOG had impaired ability to voluntary lean forward, difficulties to stand on foam with eyes closed and reduced limits of stability compared to PD-FOG (p < 0.05). During quiet stance the average anterior-posterior COP position was significantly displaced towards posterior in PD+FOG in comparison to PD-FOG and HC (p < 0.05). The COP position correlated with severity of FOG (p < 0.01). PD+FOG and PD-FOG did not differ in average COP sway excursion, sway velocity, sway regularity and postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Luk'yanova, Yu A; Ivanova-Smolenskaya, I A; Kulikov, M A
2004-07-01
The aim of the study reported here was to investigate impairments on the learning of voluntary control of the center of pressures using visual feedback in patients with lesions of the corticospinal and nigrostriatal systems. Participants were 33 patients with Parkinson's disease and 20 patients with hemipareses due to circulatory lesions in the basin of the middle cerebral artery. Subjects stood on a stabilometric platform and used two computer games over 10 days to learn to shift the body relative to the foot to move the centre of pressures, indicated by the position of a cursor on the screen, with the target and to move the target to a specified part of the screen. The games differed in terms of the postural tasks. In one, the direction of movement of the center of pressures was not known to the subjects, and subjects learned a general strategy for posture control; the other formed a strictly defined postural coordination. Both groups of patients were found to have impairments of voluntary control of the position of the center of pressures. There were no differences between groups of patients, in terms of the severity of the initial performance deficit in the task involving shifts of the center of pressures in different directions (the general strategy for controlling the center of pressures), while learning of this task was more difficult for patients with Parkinson's disease. The initial deficit in the fine postural coordination task was more marked in patients with Parkinsonism, though learning in these patients was significantly better than in patients with hemipareses. It is suggested that the mechanisms of involvement of the nigrostriatal and corticospinal systems in learning the voluntary control of posture have elements in common as well as unique elements.
Validity of the Microsoft Kinect for assessment of postural control.
Clark, Ross A; Pua, Yong-Hao; Fortin, Karine; Ritchie, Callan; Webster, Kate E; Denehy, Linda; Bryant, Adam L
2012-07-01
Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting. Copyright © 2012 Elsevier B.V. All rights reserved.
Buatois, S; Gauchard, G C; Aubry, C; Benetos, A; Perrin, P
2007-01-01
Aging process is characterized by difficulties in ensuring balance control, especially in conditions of reduced or conflicting sensory information, leading to an increased risk of falling. Conversely, the practise of physical activities (PA) has been recognized as a good approach to improve the quality of balance control. This study aimed to investigate the influence of current and/or past PA on balance-related neurosensorial organization in older adults on the maintenance of the upright stance, especially during sensory conflicting situations. Postural control was evaluated by means of the Sensory Organization Test on 130 healthy noninstitutionalized volunteers aged over 65, split into four groups according to the presence or absence of PA before or after retirement. Subjects who practised PA for a long time (Gr1) and subjects who started PA after retirement (Gr2) displayed the best postural performances and better managed sensory conflicting situations compared to subjects who had stopped PA for many years (Gr3) and subjects who had never practised PA (Gr4). Multiple regression analyses revealed that current PA was the major determinant for postural parameters during sensorial conflict compared to age, gender, body mass index and past PA. Regular PA, even when started late in life, allows appropriate reorganization of the different components of postural control during sensory conflicting situations. Indeed, active subjects were more able to compensate for suppressed or perturbed sensory information by an increased usage of another referential and so to correct their posture by adopting a more appropriate balance strategy. Thus, PA counteracts the age-related decline of postural control and could consequently reduce the risk of falling.
Effects of m-xylene on human equilibrium measured with a quantitative method.
Savolainen, K; Linnavuo, M
1979-04-01
Swaying during normal upright posture in 17 young males and the effects of m-xylene exposure on the body sway of six of the 17 has been studied by a quantitative Romberg test, conducted with an equipment consisting of a strain gauge transducer platform and of an electronic unit. The exposures were conducted in a dynamic exposure chamber. The sway of the 17 subjects was larger when their eyes were closed than when they were open (P less than 0.001) indicating the importance of vision in the control of body balance. Exposure to a time-weighted average (TWA) concentration of 100 p.p.m. (4.1 mumol/l) of xylene with 200 p.p.m. (8.2 mumol/l) peaks had no observable effect on the body balance of the six subjects. Exposure to a TWA concentration of 200 p.p.m. of xylene with 400 p.p.m. (16.4 mumol/l) peaks--the corresponding mean concentration of xylene in venous blood being 29.1 +/- 3.2 mumol/l--clearly impaired the body balance of the six subjects. The impairment was most pronounced with the eyes closed (P = 0.016). The results suggest that human equilibrium is rather sensitive to effects of exposure to xylene.